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 It is known that the equations of motion that are valid in three-dimensional Euclidian space 

can be adapted to an arbitrarily-large number of dimensions, and the admissibility of that 

adaptation will also be recognized immediately geometrically. In the context of that, the main 

problem that I posed for the present article was that of deriving the equations of motion that one 

gets when one drops the parallel axiom, in addition to the three-dimensionality of space, from the 

principles of mechanics. The result that was obtained can be given the following form: One 

determines the equations of motion for points in an (n + 1)-fold extended Euclidian space form 

that belong to an n-fold extended spherical structure at the onset of the motion and are constrained 

to remain on it during the motion. The equations that are then obtained will then be true for an n-

dimensional non-Euclidian space form. For a finite space, the radius and all coordinates must be 

real, whereas for the Lobachevskian space form, the radius and one coordinate must be pure 

imaginary, while the remaining coordinates are real. The derivation of that result is very simple 

and was eased substantially for me by applying the coordinates of Herrn Weierstrass that I had 

employed before in my earlier papers, which also prompted me to write this article. The 

applicability of those coordinates is based upon the fact that the law that was posed above for 

mechanics is true for the purely geometric properties. Thus, its validity for mechanics would have 

to be expected from the onset, from the way that Herr Lipschitz and others inferred the form of 

the equations of motion from the form of the line element. The fact that I initially derived the law 

for three dimensions is based upon the complexity in the expressions that a higher number of 

dimensions necessitates. 

 The general equations of motion will be applied to a series of individual problems from 

potential theory and the motion of solid bodies. When one considers the fact that the theory of 

parallels is employed in mechanical investigations quite extensively, one would not expect to find 

the tremendous agreement in the results that is shown by the parts that have been explored. 

However, that similarity is in no way restricted to the examples that were cited; it emerges perhaps 

even more strongly in other branches of mechanics, e.g., hydrodynamics. Only those problems in 

which the principle of the center of mass plays an essential role demand special treatment and are 

excluded here. By contrast, the Hamilton-Jacobi method remains unchanged, even in its external 

form, when one assumes that every function of the coordinates will be homogeneous of degree 

zero by means of the equation that exists for it. The motion of a free point that is attracted to a 

fixed point according to an arbitrary function of distance, or which is attracted to two fixed points 

according to the law that corresponds to Newton’s law, the infinitely-small motion of a pendulum, 
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the shortest line on the intersection of arbitrarily-many confocal second-degree structures, and 

some related problems do not offer the slightest difficulty. I have added some of them in which 

the motion always results in a two-fold or three-fold extended plane in the first two sections. 

 Perhaps I did not need to go into potential theory. Once Herr Kronecker proved for 

Euclidianian space forms that the laws of potentials are only entirely-special cases of very general 

analytical laws, and once Herr Schering had communicated the proposition by which the known 

laws could be adapted to our space forms, I could not hope to add anything substantial to the 

theory. However, it seemed appropriate to me to first develop the geometric foundations of that 

theory briefly, secondly, to add some elementary theorems, and thirdly, to give the simple form 

that the formulas take on when one applies Weierstrass coordinates. 

 I went into the mechanics of rigid bodies all the more precisely. Part of that realm had already 

found a detailed treatment for three dimensions some time ago by Herrn Lindemann (Math. Ann., 

Bd. VII), while another part of it was examined for Euclidian (“planar”) space forms by Herrn 

Scheefer in his dissertation (Berlin, 1880). My treatment differs from both of those by the fact that 

it is broader in scope and from the latter one by also the fact that it places Riemannian space forms 

at its focus. One can state with no exaggeration that the simplest and most beautiful laws in that 

subject are true for the finite space forms in particular, and that rigid motion can be understood 

completely for the other space forms only when it is understood for the finite ones. 

 At one point, Lindemann’s results seem to contradict my own. Whereas I give only one special 

type of infinitely-small motion besides the rotation around a line (namely, the motion that is “self-

reciprocal”), Lindemann enumerated four of them, of which a second one occurred in the 

Lobachevskian space form. However, on the one hand, Lindemann did not wish to confine 

himself to real motions, and on the other hand, he did not wish to pose the condition that is posed 

differently here that the space form must agree with the Euclidian one in an infinitely-small 

domain. He went one step further into generality than I did and considered all projective space 

forms with three dimensions and six-fold mobility. The treatment of such things is most naturally 

connected with the analytical treatment of our space forms, although the line element cannot be 

postulated for several of them. 

 As far as the geometric theorems that are employed in this article are concerned, some of them 

have not been published before, in general. I hope that the brief suggestions about them that can 

be given in the course of the investigation will suffice for their understanding, although I point out 

that I have published a summary and brief derivation of them recently on a special occasion (“Über 

die Nicht-Euklidischen Raumformen von n Dimensionen,” Braunsberg, Huyes Buchhandlung). I 

have already pointed out before that I call any structure in which a line lies completely whenever 

it has two points in common with it a “principle structure” or “plane.” 

 

 

§ 1. – Motion of a free point in three-dimensional spaces. 

 

 The concepts of mass, density, velocity, and force are independent of the infinitude of lines 

and of the parallel axiom for infinite lines. Therefore, they will suffer no alterations in the non-

Euclidian space forms. Likewise, their persistence will still be true, and the unit of force can be 

reduced to the units of time and mass in the known way. The measurement of force presents no 
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theoretical difficulties, either. In addition, since infinitely-small regions in our space forms have 

the same properties as in Euclidian geometry, the parallelograms of motions and forces will still 

be valid for our infinitely-small region. 

 We once more base our investigations on Weierstrass coordinates, but replace the symbols t, 

u, v, w with p, x, y, z, resp., and call time t. The derivatives of the coordinates with respect to time 

might be denoted by p, x, y, z; p, …, for brevity. We will then have the relations: 

 

 

(1)      

 

 

in which k2 denotes the reciprocal value of the curvature. One immediately gets the three equations 

for the velocity v : 

 

 

(2)     

 

 

 

 

 If no forces act upon the point initially then, from what was said, the point must move with 

uniform velocity along a straight line. One must then have: 

 

 
 

The second of equations (2) implies that N = − v2 / k2 and the third one implies M = 0. Thus, the 

equations of motion for a point on which no forces act will be: 

 

(3)    

 

where v denotes the constant velocity. 

 A force R might now act upon a point (p, x, y, z) at rest. We represent that force in the known 

way by a straight line segment and imagine that the line is traverse with uniform velocity in a unit 

of time. Let the coordinates of the point to which one then arrives after a time dt be p + (P / k2) dt, 

x + X dt, y + Y dy, z + Z dt . That then implies the second equation (1): 
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 Since the velocity vanishes for t = 0, and with it, the first derivatives of the coordinates with 

respect to time, a known argument will yield that for t = 0, one must have the following equations 

of motion: 

 

(6)     

 

m means the mass of the point here. 

 The quantities P, X, Y, Z can be defined geometrically in yet another way. One lays a plane  

through the point of application of the force that is perpendicular to the direction of the force. If it 

intersects the planes x = 0, y = 0, z = 0 with the angles , , , resp., then X = R cos , Y = R cos 

, Z = R cos  . If one of those planes is not intersected then the distance divided by k will enter in 

place of the angle. Moreover, if e is the distance from the plane  to the origin of the coordinate 

system then P = k R sin e / k .Therefore, P, X, Y, Z might be referred to as the components of the 

force. 

 When several forces act upon a point at rest, their components must be added together on the 

left-hand side of (6). Likewise, the parallelogram of forces teaches one that the left-hand sides of 

(3) and (6) must be added together when a force (P, X, Y, Z) acts upon a moving point. We then 

get the equations of motion in the form: 
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 Here, v represents the (variable) velocity. As a result of the last equation in (2), one must add 

the following relation to equations (4) and (5): 
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 If the force R goes through a center of attraction or repulsion then another form for the 

equations of motion will occasionally be quite convenient. Let p0, x0, y0, z0 be the coordinates of 
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(9)      

 

 

 

 

 

 

 

The function L satisfies the equations: 
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 Equations (9) and (10) can either be easily derived directly or reduced to equations (7) and (8). 

 

 Example: Planetary motion. 

 

 In order to adapt Newton’s law of gravitation to non-Euclidian space forms, one must not start 
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to be points, and ignore the mutual attraction of the planets, we can give the following expression 

to the problem of planetary motion: 

 

 A point moves under the influence of a force that points away from a fixed center and is 

inversely proportional to the square of the sine of the distance from the fixed point, divided by k. 

 

 We choose the fixed point to be the origin of the coordinate system, and since the motion 
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 p = 
𝜇

𝑞3
 – p L , 

 

 x = − x L , 

 

 y = − y L . 

 

 That directly implies the integrals: 

 

()      

 

 

 

in which c and h mean two constants. If we then couple the second equation (1) and the first 

equation (2) then it will follow that: 

 

()     k4 p2 = 2 h q2 + 2  p q – c2. 

 

 If we now get the value of L from the second equation in (10) and then calculate the value of 
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 Those two equations integrate to the relations: 

 

 c q = c3 p – a y + b x , 

 0 = c2 (p q – q p) q + a x + b y . 

 

 One can make a = 0 by a suitable rotation of the coordinate system. The last two equations will 

then be: 

 

()       c q = c3 p + b x , 

 

 

 

 Equation () teaches us that Kepler’s first law remains unchanged. 

 In place of the quantities p and q, we introduce a new variable r by the equation: 
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q = r p . 

Equation () will then go to: 

 

()      

 

 

 

 For y = 0, dp / dt will be equal to zero, and therefore also dr / dt . If we denote the corresponding 

values of r by r1 and r2 then: 

 
so 

 
 

when the principal diameter of the conic section is set to 2a. 

 One-half the orbital period of the planet will be obtained when one integrates equation () 

between the limits r1 and r2 . If one performs that integration then one will get the following 

equation for the orbital period T : 

 

 
or 
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such that Kepler’s third law is altered slightly. From equation (), one must give Kepler’s second 

law the following form: If one lengthens the radius vector beyond the planets to itself then twice 

the radius will describe equal areas in equal times. 

 That law – viz., the law of areas – is obviously true for any free central motion. 

 

 

§ 2. – Motion on a surface. 

 

 If a point is constrained to move on a surface without friction then it is known that this 

condition can be replaced with a force that acts in the direction of the normal and whose magnitude 

is determined from the fact that the point remains on the surface during the motion. 
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 If  (p, x, y, z) = 0 is the equation of the surface then the equation of the tangent plane that is 

laid through the point (p, x, y, z) has the coefficients: 

 

 
 

 

 

 

 

 

 

 

 

Those four quantities are then proportional to the components of the force, which correspond to 

the given condition and which must be added to the given forces using the parallelogram of forces. 

If we denote the resultant of the given forces by (P, X, Y, Z) then we will get the equation of motion: 
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 The velocity v will, in turn, be calculated from equation (8). Moreover, one has k2 S = v2 when 
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 Example. The pendulum. 

 

 A point that is constrained to remain on a spherical surface is acted upon by a constant force 

that points away from a (real or imaginary) fixed point. 

 The equations will become simple when we choose the center of the sphere to be the point (1, 

0, 0, 0) and lay the axis y = z = 0 through the attracting point, whose other coordinates might be p0 

and x0 . Let the constant force be g, let the radius of the sphere be l, let the distance from the center 

to the attracting point be a, and let the variable distance from the moving point to the attracting 

point be e. The equations of motion are then: 
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 Since p is constant, we can overlook the first equation entirely. It follows from the last three 

that: 

v2 = 2g (h – e) , 

 

where h refers to a constant. If we then couple that with the law of areas then the quadratures that 

solve the problem in full generality are easy to give. Meanwhile, only the infinitely-small motions 

are especially significant, and for them we can assume that x and e are constant, up to infinitely-

small quantities or order two. We will then have: 
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 The same result can be derived from the equation for v2 for planar oscillations when one 

expresses e and h in terms of the angle of deflection and develop the expression for h – e using 

Tayler’s theorem. The isochronism of small oscillations is then true for non-Euclidian space 

forms, as well. 

 

 

§ 3. – The general equations of motion in triply-extended space. 

 

 The equations of motion that were derived in the first section can be adapted to arbitrarily-
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equations of the second section that the surface on which the point should remain will itself move 

in an arbitrarily-prescribed way. If we assume that the equation of the surface: 

 

 = 0 

 

is homogeneous in the coordinates and that the coefficients include time then we will also have: 

 

mv2 = k2 S 

 

now, but v itself cannot be calculated in the given way. If we also assume that the conditions that 

exist between the moving points can be expressed by a sequence of equations in their coordinates 

and time and that those equations represent the effects that were given in the previous section then 

we will get the equations of motion that correspond to the first Lagrangian form. If the equations 

of constraint are: 

 

(12)      = 0,  = 0, … 

 

then the equations of motion are: 
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 If one now introduces virtual displacements: p, x, y, z, for which, in addition to the r 
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then one will immediately derive d’Alembert’s principle from equations (13): 

 

2
2 2

2

2

2

,

,

......................................................,

d p
m k P k S p M N

dt p p

d x
m X S p M N

dt x x


   

 


   

 

 

 

  
= − + + +

 
  

= − + + +
 





0,p x y z
p x y z

   
   

    
+ + + = 

    




Killing – Mechanics in non-Euclidian space forms. 11 

 

 

(16) 

  

 In order to arrive at Hamilton’s principle one defines the work done by a force under any 

displacement, precisely as in Euclidian geometry, to be the product of the force and the 

displacement with the cosines of the angle they subtend, and refers to the sum of those products 

for all points as the work done on the system. The analytical expression for the work done by a 

force is then: 

 

(17)     P p + X x + Y y + Z z , 

 

and the total work U will be obtained upon summing over all points. One likewise refers to the 

expression: 

 

(18)     

 

as the vis viva of the system. Hamilton’s principle: 

 

(19)       

 

is then true in the same sense and to the same extent as in Euclidian space forms. 

 It hardly needs to be mentioned that one can also derive equations (13) and (16) from (19) here. 

 We do not need to go into the details of Gauss’s principle of least constraint. It would suffice 

to refer to a treatise by Lipschitz in this journal (Bd. 82, pp. 316). 

 When a potential exists, i.e., when the work done is U = U, one will have: 

 

(20)    

 

 

for every point, where E is determined by means of equation (4). If one makes U homogeneous of 

degree zero then E will be equal to zero. 

 One gets several theorems from the general equations of motion in Euclidian space that are 

true for numerous groups of motions, such as the law of vis viva, the law of the center of mass, and 

the law of areas. The first one does not change at all for non-Euclidian space forms and the law of 

the center of mass loses its validity, but we obtain six laws of area. I would like to go into that in 

some detail. One begins with the equations: 

 

(21)   

 

One can arrive at these six equations by means of d’Alembert’s principle when it is possible to 

displace the system along each coordinate axis and rotate about it. In that regard, one has the 

theorem: 

2 2 2 2
2

2 2 2 2
0.

d p d x d y d z
k m P p m X x m Y y m Z z

dt dt dt dt
   

        
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
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2
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   
= − = − = − = −

   
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, ,
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 If a system can be rotated around two straight lines that intersect then it can be rotated around 

every line that goes through the point of intersection, and when it can be rotated around a line, in 

addition, it can be rotated around every line and displaced along it. When a system can be 

displaced along two lines that lie in a plane, it can be displaced along every line that lies in that 

plane, and if that possibility is true for yet another line then the possibility of displacement and 

rotation will be true in full generality 

 

 From that, one can easily predict how many areal theorems will be true for a given system. As 

far as the geometric meaning is concerned, one has: 

 

 
 

 

 

when R means the magnitude of the force,  is the angle between the direction of the force and the 

y = z = 0 axis, and a is the distance between the two directions. That will imply the meaning of the 

integrals on the left-hand sides of (21). 

 The expressions on the right-hand sides of equations (21) will not change when any force is 

displaced arbitrarily along its direction. Therefore, when no equations of constraint exist, only 

internal forces will act upon the system, and any force will be equal to its opposite, so the right-

hand sides will be equal to zero, and one will get six integral equations from (21). 

 One will get the conditions for equilibrium in three different forms when one sets the 

derivatives of the coordinates equal to zero in equations (13), (16), and (19). It is not necessary to 

write out the equations. Rather, I would only like to recall the facts that Dirichlet’s way of 

characterizing the stability of equilibrium is also true for non-Euclidian space forms, and that the 

conditions for the equilibrium of an inextensible string lead to very simple equations. When a 

string is not constrained to remain on a surface, the direction of the force at every point will lie in 

the osculating plane to the curve. 

 

 

§ 4. – Motion in n-fold extended space forms. The Hamilton-Jacobi method. 

 

 Since the geometric concepts that were employed in the foregoing section were completely 

independent of the number of dimensions, the results obtained can be adapted immediately to an 

arbitrary number of dimensions. Hence, when we now assume that the motion takes place in an n-

fold extended space with constant Riemannian curvature 1 / k2, we will determine the position of 

every point by n + 1 coordinates x0 , x1 , …, xn , between which, one has the equation: 

 

(22)      

 

 If X0, X1, …, Xn are the components of the force R that acts upon the point (x0 , x1 , …, xn) then 

one will have: 

2
cos cos ,

x P a
p X R

k k
− =

sin sin ,
a

y Z zY R k
k

− =

2 2 2 2 2

0 1 .nk x x x k+ + + =
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X0 x0 + X1 x1 + … + Xn xn = 0 , 

(23) 

 
 

The X0, X1, …, Xn have the corresponding meanings that were given above, namely, that X is equal 

to the product of R with the cosine of the angle that the (n – 1)-dimensional plane that is constructed 

at the point of application and perpendicular to the  direction of the force makes with the plane x 

= 0. X0 is, in turn, equal to k R sin e / k, where e denotes the distance from point (1, 0, 0, …, 0) to 

the aforementioned plane. 

 The moving system might consist of r points with the masses m and the coordinates 𝑥0
(𝜄)

, 𝑥1
(𝜄)

, 

… 𝑥𝑛
(𝜄)

. The forces 𝑋0
(𝜄)

, 𝑋1
(𝜄)

, … 𝑋𝑛
(𝜄)

 might act upon them, and the conditions  = 0,  = 0, … 

might exist between them. Corresponding to equations (13), the first Lagrange equations will then 

be: 

 

(24)    

 

 

 

( = 1, …, r ;  = 1, …, n) . 

 

 The virtual displacements x0, …, xn must satisfy equation (22), as well as the equations  = 

0,  = 0, …, when time is considered to be constant in them. One then has d’ Alembert’s principle: 

 

(25)   

 

 

 The definition of work does not change, and its expression will become: 

 

 (k2 X0 x0 + X1 x1 + … + Xn xn) . 

 

 Hamilton’s principle does not change in any way. If the forces have a potential U then, with 

Hamilton, one sets: 

 

(26)     T – U = H 

 

and expresses all of the coordinates in terms of a sequence of independent quantities q that will 

all satisfy the equations of constrain identically when one substitutes them in those equations. T is 

then a function of q and q = dq / dt . One sets T / q = p and expresses H in terms of q and 

p . Hamilton’s equations of motion are now: 

 

 

2
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(27)     

 

 

 It needs no proof that the methods of Hamilton and Jacobi can also be adapted to non-

Euclidian space forms. Only their relationship with the Weierstrass coordinates requires a more 

detailed discussion. We will show later that those methods are also quite appropriate for the 

solution of problems here in some examples. 

 Jacobi based his method of the last multiplier upon the fact that the multiplier for a given 

system of differential equations can be determined before one does any integration. It is equal to 

an arbitrary constant and can then be set equal to unity when the point is free, as well as when one 

uses Hamilton’s equations as a basis. However, if one determines the motion in a Euclidian space 

from the first Lagrangian form and defines the quantities (), (), … from the equations of 

constraint  = 0,  = 0, … according to the rule: 

 

 

 

then the multiplier of the system will be equal to the determinant: 

 

 

(28)      

 

 

 Now, Jacobi’s investigations can be adapted to a Euclidian space form of arbitrarily many 

dimensions, as he himself often emphasized. However, our general equations of motion can be 

summarized analytically in the following way: A Euclidian space form of n + 1 dimensions can 

be based upon the rectangular coordinates k x0, x1, …, xn . Let the rectangular components of each 

force be X0 / k, X1, …, Xn . In addition to the equations of constraint  = 0,  = 0, … the condition 

(22) must be true for the coordinates of each point, which we would like to write briefly as: 

 

 = k2. 

 

Under that assumption, the equations of motion have the same form in (n + 1)-fold extended 

Euclidian space form that they have in the n-fold extended non-Euclidian space form whose 

reciprocal curvature is equal to k2. Indeed, equation (23) says that the direction of every force 

belongs to the structure  = k2, but that condition is analytically unnecessary, since one requires 

only the simplest values of S . It makes just as little difference in the purely-analytical treatment 

that k2 is negative and every k x0 and X0 / k is imaginary for the Lobachevski space form. 

 It does not need to be mentioned that the multiplier of the system (27) of Hamilton’s equations 

can be set equal to unity. However, when one starts from the first Lagrangian form, one will have 

to construct the expressions: 

 

( ), ( ), …, ( ),    ( ),    ( ), … 

 

, .i i

i i

dq dpH H

dt p dt q

 
= = −

 

( ) ( )

( ) ( ) .

 

   

( ) ,
x x y y z z

     

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      
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according to the rule: 

 

 

 

(29)    

 

 

 

One will then have: 

 
and 

 
 

 Thus, when the motion in the non-Euclidian space form is initially free, the multiplier of the 

system of Lagrange equations will be equal to the determinant of the quantities ( ), so it will 

be equal to a constant that can also be chosen to be equal to unity. However, when equations of 

constraint exist, they shall be assumed to be homogeneous for the coordinates of any point. Each 

( ), ( ), … will also vanish then, and the determinant of the quantities ( ), ( ), 

( ), … will be equal to the determinant that is formed from the quantities ( ), ( ), …, up 

to a constant factor. With the assumed form for , , …, the multiplier of the system of Lagrange 

equations will be equal to the determinant (28), whose elements are formed according to the rule 

(29). 

 Now, as far as Hamilton’s method is concerned, which was perfected by Jacobi in his 

Vorlesungen über Mechanik (pp. 167), it is represented it in roughly the following form for the 

case in which the force function did not contain time explicitly: 

 

 One expresses T and U in terms of the 2 quantities qi and pi that were defined above. One 

then replaces pi with W / qi in the equation: 

 

0 =  + T – U , 

 

such that this equation will become a partial differential equation for W. If one knows a complete 

solution of it that contains the  constants 1, …, −1 , in addition to the constant that is additively 

coupled with W, then the integral equations for the differential equations of motion will be: 
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 In that form, the method can also be employed for non-Euclidian space forms. Jacobi’s 

general result is also valid for those spaces, namely, the general theory of perturbations. However, 

I believe that it is important to give the form of the differential equation when Weierstrass 

coordinates x0, x1, …, xn are used. Rather than developing that form directly (which would not be 

difficult), I shall employ the equation that Jacobi exhibited for the case of equations of constraint 

and communicated in the first treatise that was printed in his lectures (pp. 376-379). That will 

allow us to give the result immediately. 

 

 If the function W is assumed to be homogeneous of degree zero in the coordinates of all points 

then it can be determined from the following differential equation for a system of free points: 

 

(30)     

 

 

 When homogeneous equations of constraint exist  = 0,  = 0, …, W might once more be 

postulated to be homogeneous of degree zero. The equation will then be: 

 

 
= 2U – 2 , 

 

in which the coefficients ,  are found by means of the equations: 

 

 ( ) +  ( ) + … = (W ) , 

 ( ) +  ( ) + … = (W ) , 

…………………………………, 

 

and ( ), ( ), … have the meanings that they were given above. 

 

 First example: The shortest line on an arbitrarily-extended structure. 

 

 Let a spatial structure be determined by r equations  = 0,  = 0, which might be homogeneous 

in the coordinates. A point moves in that structure without any accelerating forces acting upon it. 

The equations of motion will then be obtained when one sets the quantities X0, …, Xn equal to zero 

in equations (24). The same equations are obtained from the basic theorems of the variational 

calculus for the shortest line, as well as the equilibrium conditions for the form that a weightless 

tensed string will assume on the structure. We conclude from the equations that: 

 

 If one passes an (r + 1)-fold extended plane through the (r-fold extended) normal plane to an 

(n – r)-fold extended structure at an arbitrary point of the latter and through the tangent to a 

shortest line that goes through its base point then it will go through yet a third infinitely-close 

point of the shortest line, so the two-fold extended osculating plane will include the shortest line. 

2 22
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 We seek the equation of the shortest line for an arbitrary curvature structure of quadratic 

structures, so for an (n – r)-fold extended structure in which r confocal quadratic structures 

intersect. Let the equations of that structure be: 

 

                 (i = 1, 2, …, r). 

 

 

The equations of the shortest line are: 

 

 

 
…………………………………….., 

 
 

 We integrate them using the method that Weierstrass gave [Berliner Monatsberichte (1861), 

pp. 988] and set: 

 

 

 
 

 
 

If we next consider  to be independent of t then we will prove by differentiation that: 

 

 
 

is independent of t, so it is just a function of . As such, it had degree 2n and vanishes for – k2, 

1,…, n, 1, …, r,  so it will also vanish for the n – r – 1 values 1, …, n−r−1, in addition. We 

then set: 

R () = − 
𝜆+𝑘2

𝑘2
 ( – 1) … ( – n) ( – 1) … ( – r) ( – 1) … ( – n−r−1) , 

 

and can now also consider  to depend upon t in the equation: 
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when we set: 

 
 

and assign it the same values r+1, …, n for which  () vanishes, in addition to 1, …, r . If we 

introduce the abbreviation: 

g () = ( – 1) … ( – r) 

 

then the following equations will emerge from the considerations that were posed: 

 

 

 
……………………………………………….. 

 

 
 

 

 

 In particular, when r = 1, so one seeks the shortest line on a quadratic structure, one can express 

the elliptic coordinates, and then also the coordinates x0, …, xn of the shortest line, most simply in 

terms of hyperelliptic functions of the n – 1 quantities u, u, …, u(n−2), the first of which is variable, 

while the remaining ones are constant. 

 The Jacobi method leads to that goal quite simply. If  mean the n roots of the equation: 
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In our case, 1, …, r are constant. In the formula: 

 

 
we must then set: 

 
and obtain the differential equation: 

 
which will decompose into the following ones: 

 

 for  = r + 1, …, n,     

 

when one employs the notation above. 

 The differentiation of W with respect to the  and c2 will lead to the equations above. 

 Permit us to add the solution to the following problem here: Define a two-fold extended 

curvature structure of quadratic structures on the Euclidian plane. Once that problem has been 

solved, the mapping of that space form to the plane will present no difficulties. 

 Since all d in the expression for the line element vanish, except for dn−1 and dn , from the 

known method, one can set: 

 

 
 

 Here, u and v are rectangular coordinates in the mapping plane, and either the upper or the 

lower sign in  is chosen everywhere. Now, if n−1 > n then one chooses a = 
2

√𝜆𝑛−1−𝜆𝑛
 , b = 0. 

In that way, u will become a function of just n−1 and v, a function of just n, and their 

representation will be obvious. 

 

 Second example: A free point is attracted to a fixed point according to an arbitrary function of 

the distance between them. 

 

 Although the solution is very simple, one might be permitted to say a few words about it. If 

one would like to employ the usual methods then one would perhaps start from the fact that the 

motion takes place in a two-fold extended plane, as one learns from the theory of surfaces. If one 

would like to integrate the partial differential equation then one would introduce polar coordinates 
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(cf., Jacobi, loc. cit., pp. 185 and 344). The equation then decomposes into a sequence of other 

ones that can be integrated immediately. When the law of attraction is the one that was posed in 

the example in § 1, one can very easily determine the position of the point in terms of its distance 

r from the attracting point and in terms of the distance  from a second arbitrarily-chosen point. If 

one chooses the latter to be along the path of the moving point at a distance r0 from the center then 

one will have: 

 
 

which is an equation that can be obtained by differentiating the equations of motion. 

 

 Third example: A point moves in an n-dimensional space form under the influence of two 

forces that point from fixed centers and are inversely-proportional to the square of the sine of the 

distance divided by k. 

 

 We can start from the fact that the moving point remains the triply-extended principal structure, 

which is determined by the two attracting points and the initial direction of the moving point. 

Meanwhile, the calculation will not simplify in that way. We then pay no attention to the initial 

direction of the point and lay the planes x2 = 0, x3 = 0, …, xn = 0 of a Weierstrass coordinate 

system through the line that connects the attracting points and give the structure x1 = 0 a symmetric 

position with respect to those two points. We set: 

 

  x2 = s  cos 1 , 

  x3 = s  sin 1 cos 2 , 

  …………………….. 

  xn = s  sin 1 sin 2 … sin n-2 , 

such that we will have: 

 
 

 In that way, the differential equation (30) will go to: 
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where r denotes an arbitrary constant. I express the first equation in terms of elliptic coordinates, 

for which the focal points coincide with the attracting points. The first example shows one how to 

convert the left-hand side. On the right-hand side, one sets: 

 

 
 

where r and r1 mean the distances from the foci. An easy conversion will give: 

 

 
and one will find that: 

 
We then find that: 

 
 

 

 

 

 

+ F (1, …, n−2) , 

 

in which  denotes a constant, and F is just a function of 1, …, n−2 that is obtained from the 

second differential equation by further decomposition. 
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 is expressed in terms of n and  in a known way. As an extension of Newton’s law of attraction 

for an n-dimensional space form, we then consider an attraction that is directly proportional to the 

mass and inversely proportional to the (n – 1)th power of the since of the distance divided by k. 

 For the sake of brevity, we might be permitted in this section to refer to a part of space that is 

bounded by an (n – 1)-fold extended spherical surface as a “sphere,” the boundary surface as a 

“spherical surface,” and the space that is bounded by two concentric (n – 1)-fold extended spherical 

surfaces as a “spherical shell.” The word “ellipsoid” might have a corresponding definition. 

 Theorem IV in Band v, pp. 9, of Gauss’s Werke corresponds to the following one: 

 

 If dS denotes an element of an (n – 1)-fold extended structure S that is simply included in a 

finite space, while P denotes a point of that element, M denotes a fixed point in space, r denotes 

the distance MP, and u denotes the angle between MP and the interior normal to dS then the 

following integral, which extends over the entire structure S: 

 

  

will be equal to 0 or  or 
1

2
𝜛 according to whether M lies outside of S, inside of it, or on it, 

respectively. 

 

 In order to prove that, one describes a spherical surface around M with an infinitely-small 

radius  and draws straight lines from M to all of the points on the boundary of dS. If the conical 

structure that arises in that way cuts out the region  n−1 d from the spherical surface then: 

 

 
 

from which, the theorem follows immediately. 

 That theorem leads to an extension of another theorem that Gauss proved (Werke, V, pp. 225). 

The extension was presented by Herrn Schering in the treatise: “Die Schwerkraft in mehrfach 

ausgedehnten Gaussischen und Riemannschen Räumen” [Göttinger Nachrichten (1873), pp. 154] 

as Lehrsatz III. 

 The attraction that an infinitely-thin homogeneous spherical shell exerts is zero for interior 

points, and for exterior points, it is so large that it is as if the mass were concentrated at the center. 

That immediately implies the attraction that an arbitrary homogeneous spherical shell or solid ball 

exerts upon any point. 

 If  is a homogeneous function of degree two in the coordinates, and if  has the meaning that 

it was given above then the structures that are represented by the equations: 
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shall be referred to as similar concentric structures. The space that is contained between two 

infinitely-close similar ellipsoids: 

 

 
 

might be uniformly filled with mass. The mass thus-distributed exerts no attraction on any interior 

point. We shall add a proof that will allow us to communicate several important formulas for the 

ellipsoid. 

 The density at the point x is proportional to  d, where  means the sine of the distance from 

the center to the tangent plane and is obtained from the formula: 

 

 
 

 The attracting point  has the distance r from the point x, and the line r defines an angle  with 

normal at x; one then has: 

 
 

 If one describes a sphere around  with the infinitely-small radius  and if an element dS of the 

attracting body that contains the point x determines the element  n−1 d on the sphere then the 

attraction that is exerted upon dS will be proportional to: 

 

 
 

 As the polar properties of the ellipsoid would imply, that expression will remain unchanged 

when one takes the element whose boundary, in conjunction with , leads to the same conical 

structure instead of dS. 

 When one associates those points on two confocal ellipsoids that coincide in n – 1 elliptic 

coordinates, one will arrive at the following theorem in the known way: 

 

 Any confocal ellipsoid is a level surface for an infinitely-thin layer that is bounded by similar 

ellipsoids. 

 

 The form that the potential assumes for the given law and the most important laws for it were 

given before in the aforementioned paper by Schering [Gött. Nachr. (1873), pp. 159 to 159]. The 
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function wn (r) of the distance r with which the mass is multiplied is different for even and odd n, 

and indeed, for an odd n, it is: 

 

(31)   

 

 

whereas for an even n > 2 : 

 

 

(32)  

 

 

 In order for the potential function: 

 

(33)      

 

to also preserve the known exterior properties, we represent it as a homogeneous function of degree 

zero in the coordinates x0, x1, …, xn and also let the first differential quotients that are used for 

defining the second partial differential quotients consist of functions of degree – 1 in the 

coordinates. The components of the force are then: 

 

 
 

 If only an infinitely-small mass is contained in any infinitely-small region of space then the 

potential and the first derivatives will change continuously in all of space. By contrast, the 

differential expression that is defined by the rule above will be: 

 

(34)     

 

 

in which  denotes the coefficient that was given above, and  is the density at the point x. When 

the mass is condensed into (n – 1)-fold extended structures, the potential itself will be continuous, 

but the derivative in the direction of the normal will change by   when one passes through the 

mass structure. When the mass is condensed even further, the potential will become infinite at the 

mass, and indeed it will become logarithmically infinite for an (n – 2)-fold extended structure. 

(Schering expressed those theorems in Lehrsatzen V, VI, VII.) 

 As far as the proof is concerned, one can perhaps initially prove the formula V = 0 for a point 

that lies outside the mass, which can be accomplished by differentiating under the integral sign. 

For the general proof of the formula V = −   and for the proof of the other theorems, one can 

restrict oneself to an infinitely-small region, and the laws of Euclidian space forms will be valid 

for it. 
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 The further properties of the potential are based upon Green’s theorem (Lehrsatz VIII in 

Schering), which assumes the following form with our notation: 

 

 

(35)  

 

 

 Here, the spatial region Rn is singly-enclosed by the structure Rn−1 , the differentiation V / N 

is along the outward-pointing normal, and V has the meaning that it was given above. The 

integration on the left is over the entire region Rn, while it extends over the entire boundary Rn−1 

on the right. 

 We believe that we do not need to add a proof of that theorem. On the other hand, we would 

like to briefly make note of the fact that the idea that Somoff connected with that theorem in the 

second volume of his Mechanik (German edition, pp. 147) also remains true here. If U means the 

density of a mass that is distributed in Rn , and V means the potential of the velocity with which 

each particle moves then we can easily show that we have: 

 

 
 

Hence, the left-hand side of the equation above, as well as the right, represents the change in mass, 

and indeed the former expression will be obtained by considering every element, while the latter 

by determining the entrances and exits that occur in the boundary. 

 Therefore, the properties of the potential remain true. Since the conversion is quite simple, it 

will suffice to give those points at which the potential differs for Euclidian and non-Euclidian 

space forms. 

 In the Euclidian space forms, the potential and the force are equal to zero at infinity, and the 

development in 1 / r contains only positive powers for which the coefficient of the lowest-order 

one can be given immediately. That breaks down in non-Euclidian space forms completely. In the 

Lobachevskian space forms of odd dimensions, the potential will be equal to the mass multiplied 

by a certain constant. 

 When an infinite -fold extended plane in an n-dimensional Euclidian space form is uniformly 

covered with mass, the law of attraction to a point will be the one that is true for the attraction by 

a point in an (n – )-fold extended Euclidian space form. Completely different laws of attraction 

will be true for non-Euclidian space forms under the assumptions that were made. 

 

 

§ 6. – Infinitely-small motion of a rigid body. 
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(36)     

 

the following conditions must be fulfilled: 

 

(37)      = 0 ,  +  = 0 . 

 

 The square of the velocity of the point x is then: 

 

 

 

 

(38)   

 

 

 

 All points that possess that velocity lie on a second-order structure. That structure will be 

displaced into itself by the motion. All structures of that type have the same midpoint and are 

similar to each other. The problem of determining the nature of that structure is identical to the 

problem of seeking the maxima and minima of the velocity. Both of them lead to the determination 

of the elementary divisors of the determinant: 
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 It is the square of the determinant: 
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Euclidian space forms by Jordan (C. R. Acad. Sci. Paris, LXXV, pp. 1614) and first proved for 

our space forms by Beltrami (*): 

 

 In a space form with an even number of dimensions, any instantaneous motion consists of a 

rotation about a point. For an odd number of dimensions, no point remains at rest, in general, but 

whenever a point is kept fixed, a rotation around a line will take place. 

 

 That theorem admits a significant generalization. One proves it by means of either the theorems 

that Frobenius (this journal, Bd. 82, pp. 244 and 245) presented in regard to the vanishing of the 

sub-determinants of a skew determinant, or also geometrically by repeated application of the 

foregoing theorem. We give that extension the form: 

 

 A structure that remains at rest under the motion of an even-dimensional space form always 

has an odd number of dimensions. Therefore, whenever a second point remains at rest, in addition 

to a point at rest (and its opposite point in a Riemannian space), at least all points of a two-fold 

extended plane must keep their positions. Whenever a point remains at rest, in addition to such a 

plane, the same thing will be true for a four-fold extended plane, etc. 

 

  In order to go into more detail about the motion that is characterized by equations (36) and 

(37), we next consider the case in which n is odd, k2 is positive, and the equation  = 0 is not 

satisfied by the value  = 0. The roots of  = 0 are then pair-wise equal and opposite, and D = 0 

has only paired equal roots. By converting the coordinate system, one can give equation (38) the 

form: 

 
 

Here, a0, a1, … are the roots of the equation D = 0. If they are mutually distinct then the velocity 

 = √𝑎𝜄 will define a structure that can be represented homogeneously by n – 1 coordinates. I shall 

call such a thing a conical structure with singular lines. The conical structure that corresponds to 

the largest and smallest velocity is imaginary, except for the singular lines, and real for the other 

roots. Those considerations lead to the following theorem: 

 

 For the most general infinitely-small motion of a finite space form with an odd number n of 

dimensions, (n + 1) / 2 straight lines will be displaced into themselves. Each of those lines defines 

a right angle with the other ones and has a distance from them of  
1

2
𝑘𝜋, so it belongs to the absolute 

polar structure of the remaining ones. Once any one of them has been chosen, a second one can 

be chosen arbitrarily on an (n – 2)-fold extended plane, and then a third one can be chosen 

arbitrarily on an (n – 4)-fold extended plane, etc. One of those lines has the property that its points 

have greatest velocity, and the points that lie on a second of those lines move the slowest. For all 

other points, the velocity lies between those limits. The velocity that one of the remaining lines that 

 
 (*) Darboux and Hoüel, Bull. (1), t. IX, pp. 239. Unfortunately, I am not familiar with the paper itself, but only 

the reference to it “Fortschritten der Mathematik.” 
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is displaced into itself has is also possessed by the points of a quadratic conical structure for which 

that line is a double line. If one associates every point with all of the points that have the same 

velocity that it has then space will be decomposed into similar concentric second-order structures. 

All of those structures have the peculiarity that their midpoints fill up (n + 1) / 2 lines, namely, the 

straight lines that are displaced into themselves. 

 

 Any infinitely-small motion can be composed of (n + 1) / 2 displacements along a line [(n + 1) 

/ 2 rotations around an (n – 2)-fold extended plane, resp.]. Those lines can be chosen such that 

each of them belongs to the absolute polar plane of the others. 

 

 Any infinitely-small motion can be composed of a displacement along a line and a rotation 

around that line, and indeed, the line can be chosen in (n + 1) / 2 different ways if that motion is 

to arise. 

 

 One now assumes that the equation  = 0 has nothing but equal roots. One might believe that 

this requirement leads to (n – 1) / 2 equations of constraint. However, since  = 0 is itself the 

condition for a maximum, those conditions must split into a larger number. I would not like to go 

into the search for those conditions here, whose number amounts to (
𝑛+1

2
)

2

 – 1, and how one 

expresses the  in terms of (n2 + 3) / 4 arbitrarily-chosen quantities. Namely, since the equation 

D = 0 might possess only one root, and all elements must vanish for it, we will get a sequence of 

conditions that indeed no longer have to be mutually-independent, but which will allow one to 

easily derive the geometric properties of that motion. (If one would like to have the formulas in 

their simplest form then one let all  vanish, except for 01 / k, 23 , 45 , …, n−1,n , for a special 

choice of coordinates, and set the latter equal to each other.) The line that connects the point x to 

the infinitely-close position of that point contains all points whose coordinates are 𝛼𝑥𝜄 +

𝛽 ∑ 𝜇𝜄𝜅𝑥𝜅𝜅  when  and  satisfy the condition that: 𝑘2𝛼2 + 𝛽2𝜌2 = 𝑘2. If one replaces x with any 

point on that line then equations that exist between the quantities  will show that the new line 

coincides with the previous one. Thus, a line that moves into itself will go through any point in 

space. The set of all those lines has an important property in common with the parallels in 

Euclidian space: Whereas, in general, for any two lines in a finite space, two straight lines can be 

found that intersect both of them perpendicularly, and both of them at are unequal distances, the 

known method for determining those distances will yield two equal roots for two straight lines in 

that system. However, at the same time, the base-points of the common perpendiculars will be 

undetermined, and all lines that go from a point of the one straight line to the other one will be 

perpendicular to the first one and equal to each other. That property can be verified directly very 

easily. If one would like to adapt the concepts of angle and the distance between two lines to the 

finite space forms then one would have to refer to the smaller of the two common perpendiculars 

that were found above as the “distance between them” and the larger one, divided by k, as the 

“angle between them.” We can also say then that for any two lines in the system, the distance 

between them is equal to the angle multiplied by k. Hence, we can characterize that special motion, 

which I would like to refer to as self-reciprocal, in the following way: 
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 If the equation  = 0 possesses nothing but equal roots in 2 then all point in space will move 

in straight lines with equal velocity. A straight line that is displaced into itself goes through each 

point in space. The (n – 1)-fold extended system of those lines differs from the system of parallels 

in a Euclidian space by the fact that no two of them can lie on the same two-fold extended plane, 

but it agrees with that system in that any two lines have the same distance between them 

everywhere and that a line goes through every point of the one that intersects both of them at right 

angles. If one lays a two-fold extended plane through any line of the system then the angle through 

which that plane rotates around the line is equal to the displacement along the line divided by k. 

A threefold-extended plane goes through two lines of the system that contains a two-fold infinitude 

of lines that move into themselves. Every four-fold plane that goes through that plane makes the 

same rotation around the three-fold extended plane that moves into itself as the two-fold extended 

one does around the line that moves into itself. m lines of the system determine a (2m – 1)-fold 

extended plane, in general, and each of those 2m-dimensional planes that go through it rotate with 

the point velocity divided by k. 

 

 Now, the (n + 1) / 2 roots of the equation  = 0 might be split into groups of , , … equal 

ones, but all of the remaining roots are different, and none of those roots can be equal to zero. The 

-fold root corresponds to a velocity that all points of a (2 – 1)-fold extended principal structure 

possess. A straight line that is displaced into itself goes through each point of the principal 

structure, and any two of those lines have the same distance between them everywhere. Similarly, 

a (2 – 1)-fold extended plane that belongs to the absolute polar plane of the first, (2 – 1)-fold 

extended principal structure will possess a velocity that corresponds to the -fold root, and in that 

way, which we have just characterized as a self-reciprocal motion, will displace into itself. The 

same thing is true of the remaining roots. 

 When a principal structure is at rest, the motion of an even-dimensional (paarig ausgedehnten) 

and an odd-dimensional (unpaarig ausgedehnten) space form differ by only the number of 

dimensions of the structure at rest. If the structure at rest has n – 2m dimensions then the (2m)-fold 

extended plane that is perpendicular to it at one of its points will rotate around the fixed point of 

intersection. Each (2m – 1)-fold extended spherical structure that is contained in such a plane has 

the properties of a Riemannian space form, so it contains at least m principal circles that are 

displaced into themselves. Therefore, at least m two-dimensional planes will go through each point 

of the structure at rest that rotate about that point. However, if the equation  = 0 has several non-

vanishing roots, in addition to the vanishing ones, then there will be several extended planes with 

an even number of dimensions that go through each point of the structure at rest, and for them, the 

velocity of each point will depend upon only its distance from the structure at rest, and a two-fold 

extended plane will go through each point that rotates into itself. 

 Thus, the most general motion an even-dimensional space form consists of a fixed point and n 

/ 2 two-fold extended planes going through it that are displaced into themselves; those planes are 

mutually-perpendicular. If r is the distance from a moving point to the fixed point, and if the 

velocity is equal to k  sin r / k then there will be n / 2 singular values for  ; the largest and 

smallest values of  each belong to one of those planes. Whereas the general value of  belongs to 

a conical structure that has the fixed point as its vertex, for the stationary values of , it will contain 

a two-dimensional double plane. Therefore, the most general motion of such a space form can be 
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composed of n / 2 special motions along n / 2 mutually-perpendicular, two-fold extended planes 

that go through that point. Each of those special motions not only rotates the two-fold extended 

plane into itself about the fixed point, but also displaces every three-fold extended plane that is 

laid through the two-fold extended plane into itself, and every point of the (n – 2)-fold extended 

plane that is perpendicular to the first plane at the point of rotation will remain at rest. 

 When the equation  = 0 has several non-zero roots in addition to the zero root, there will be 

even-dimensional planes with a point that remains fixed and in which a two-fold extended plane 

that rotates into itself will go through each point. That system of planes deserves attention. 

Whereas, in general, two two-dimensional planes that have a point in common will define two 

angles with each other, one will get only one angle for two planes of the aforementioned system, 

and the angle that a line that is drawn in one of the planes through the common point makes with 

its projection onto the other plane will be constant. If one describes a circle in one of the planes 

about the common point then all of its points will have the same distance from the other plane, and 

the foot of the perpendicular that is dropped from one of them to the other plane will again lie on 

a circle. 

 If one would like to foresee the various possibilities that are possible for the motion of an n-

fold extended space form then one can proceed in the following way: 

 

 If no structure is to remain at rest then one decomposes the number (n + 1) / 2 into a sum of 

whole numbers all different ways. If , , … is such a decomposition then one associates each of 

them with a certain positive quantity  ,  , …; the quantities  ,  , … shall be distinct. The 

velocity  of all points is then associated with a (2 – 1)-fold extended principal structure that 

moves within itself; likewise, all points of a (2 − 1)-fold extended principal structure will move 

with the velocity  , etc. The motion of each such structure is of the type that was described above. 

 

 Should an r-dimensional principal structure remain at rest, then one could decompose the 

number (n – r) / 2 into numbers , , … in all different ways and associate each of them with a 

particular velocity  ,  , … A (2)-fold extended plane will then go through each point of the 

structure at rest that is not only displaced into itself, but in which a two-fold extended plane that 

is displaced into itself will also go through each point. The other numbers determine 

corresponding planes of dimension 2, … that possess that property. 

 

 The following theorem deserves to be pointed out: 

 

 An even-dimensional plane that moves within itself cannot occur in isolation within a space 

form with an odd number of dimensions but must belong to a family of such planes in an odd-

dimensional principal structure that possesses that property. Similarly, one can combine all 

principal structures that continue to cover their initial position under an infinitely-small motion of 

an even-dimensional space form into a finite number of such planes, each of the latter, in turn, has 

an even number of dimensions. 

 

 I do not need to go further into the Lobachevskian space forms. If one considers that every 

displacement along a n-fold extended plane comes from a rotation about its absolute polar 
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structure, so about an (n –  – 1)-fold extended plane then one will easily see how the foregoing 

result must be altered. Indeed, in its proof, we made use of the fact that for a positive k2, every 

bundle of similar quadratic structures can be represented by n + 1 squares. Instead of them, we 

must now also look at the bundle that can be defined for negative k2, according to Weierstrass 

(Berliner Monatsberichte, May 1868). 

 If one would like to characterize the infinitely-small motions in more detail then one could also 

study their close relationship to the straight lines in space here, which is a relationship that has 

proved to be so fruitful for n = 3 in recent papers. If one considers the x to be given and the  to be 

variable in the equation: 

 
 

then that equation will represent the plane that is perpendicular to the direction of motion of the 

point x at that point. However, if one considers the x  – x  to be the coordinates of a straight 

line then every line that satisfies the equation will have the property that each of its points is 

perpendicular to the direction of motion. The “line complex” characterizes the motion considered 

completely. It has a close relationship with the study of the composition of motions, degrees of 

mobility, constraints, and the like. Namely, the polar properties also prove to be especially 

important in that context. However, I believe that I shall not go further into that theory at this point. 

 The theory of force that act upon a fixed body is not essentially different from the theory of 

infinitely-small motions. If the forces X() act on the points x(), and we derive the equations of 

motion from, say, d’Alembert’s principle then we will see that in addition to the initial state, we 

will be dealing with only the n (n + 1) / 2 quantities: 

 

 
 

Those quantities have the properties that were assumed for the  in equation (37). Thus, the same 

laws are true for the classification of force-systems and their composition that are true for 

infinitely-small motions. The work that the force system M does under an infinitely-small motion 

is: 

 
 

 That gives the meaning of the M : M01 is the work that the given system of forces does when 

the body is displaced with unit velocity along the axis x1 = x2 = … = xn = 0 . 

 

 

§ 7. – The theory of moments of inertia. 

 

 If shall preface the further examination of the motion of a rigid body with the theory of 

moments of inertia. I define the moment of a mass-point relative to any principal structure to be k2 

times the product of the mass with the square of the sine of the distance divided by k. I further 
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assume that the moment of a system shall be equal to the sum of the moments of the individual 

points. 

 If a0, a1, …, an are the coordinates of an (n – 1)-extended plane, which satisfy the equation: 

 

 

 

and if  is the distance from the point x to that plane then: 

 

k sin 
𝜌

𝑘
 = a0 x0 + a1 x1 + … + an xn . 

 

 If r is the distance from the point to an (n – l)-fold extended plane, moreover, then one lays l 

mutually-perpendicular (n – 1)-fold extended planes. If the point has the distances 1, …, l from 

them then one will have: 

 
If we multiply both sides of that equation by k2 m and add over all mass-points then we will get 

the following theorem: 

 

 The moment of a mass-system for any (n – l)-fold extended plane is equal to the sum of the 

moments of the system for l (n – 1)-dimensional planes that all go through the (n – l)-fold extended 

plane and are perpendicular to each other. In particular, the moment at a point is equal to the sum 

of the moments relative to n (n – 1)-fold extended planes that go through the point and are 

perpendicular to each other but are otherwise chosen arbitrarily. 

 

 That theorem makes it seem appropriate to next investigate the moment of inertia for (n – 1)-

fold extended planes. If the points x() have the masses m then the moment of inertia  for the 

plane  will be: 

 

(41)     

 

Some theorems will follow from that form that are closely connected with the theorem that was 

just cited and which we would like to express in the following way: 

 

 If each of n + 1 (n – 1)-dimensional planes is perpendicular to the other n then the sum of the 

moments of a mass system relative to that plane will be equal to the mass times k2. 

 The moment of a mass relative to an arbitrary plane the moment of that mass relative to the 

absolute polar plane of the former differ from each other by the mass times k2. 

 

 If one lets the quantities  in equation (41) vary in such a way that  remains constant then the 

plane will continue to be the tangent plane to a structure of class two. The structure for which  = 

0 corresponds to the imaginary Hessian structure of the body. For varying , equation (41) 

represents a family of confocal structures. That gives the following theorem: 
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 All (n – 1)-fold extended planes for which a given mass-system possesses the same moment 

will contact the same (n – 1)-fold extended surface of degree two. All of the structures that possess 

that property define a family of confocal surfaces. 

 

 Since the moment is independent of the choice of coordinate system, one can refer the structure 

(41) to the principal coordinate system and represent it in the form: 

 

(42)     

 

 That yields the following theorems: 

 

 The moment of inertia will assume its stationary value for the n + 1 symmetry planes of the 

aforementioned quadratic structure. It attains its largest and smallest values only for those planes, 

but every other stationary value will be attained for the tangent planes to an (n – 2)-fold extended 

structure. 

 

 One can distribute the mass at the n + 1 midpoints of the structure (42) in such a way that the 

moment of those n + 1 mass-points relative to each (n – 1)-fold extended plane and is therefore 

equal to the moment of the given body relative to every principal structure. 

 

 The last theorem can be extended in conjunction with a theorem by Reye (Schlömilch’s 

Zeitschrift, Bd. X and this journal Bd. 72). 

 Among the (n – 1)-fold extended principal structures that go through the same point, there are 

n of them for which the moment will be stationary. They are perpendicular to each other and define 

the symmetry planes for all tangent conical structures that can be laid from the point to the structure 

(42). Two of those n stationary moments can be equal to each other only when the point lies on a 

focal structure of the family. Naturally, the moments are also equal for all planes of a bundle in 

that case. However, they cannot be equal to more of them when the quantities k2 A0, A1, …, An are 

distinct. However, if k2 A0 = A1 = … = An = k2 M / (n + 1), in particular, where M denotes the total 

mass, then that value will give the moment relative to each plane. 

 The theory of the moments of inertia relative to the points in space is obtained from the 

foregoing by means of the reciprocity theorem. According to it, all points for which a mass-system 

possesses equal moment lie on a structure of degree two. All such structures are similar and 

concentric. The moment assumes its greatest value for one of their midpoints and its least value 

for a second one. The moments that are obtained at all the other points then defines a conical 

structure, as well. Those quadratic structures have the same midpoint as the aforementioned one; 

it occurs at perhaps the center of mass of the Euclidian space. We refer to it as the center of inertia 

and the symmetry planes of the quadratic structures as the principal planes of inertia of space. The 

moment of inertia assumes its stationary values for n points on every (n – 1)-fold extended plane 

when that plane does not contact a conical structure that belongs to the bundle of similar structures. 

Analogous statements are true for every plane of lower dimension. 

 The Poinsot moment ellipsoid can be adapted in several ways. If an r-fold extended plane is 

given, and if  is the moment of inertial for an (r + 1)-fold extended plane that goes through the 

2 2 2
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given plane then one raises a perpendicular to the first plane at one of its points that lies in the (r 

+ 1)-fold extended plane and carries a line segment a from its foot for which k sin a / k is inversely 

proportional to the square root of . One makes that construction for all (r + 1)-fold extended 

planes that go through the given plane when one leaves the foot of the perpendicular unchanged. 

The end points of the perpendiculars then lie on a structure of degree two. 

 Since the proof for different values of r does not change very much, we choose r = 0 and then 

determine the moment of inertia for all lines that go through the same point. We choose that point 

to the initial point (1, 0, …, 0) of a Weierstrass coordinate system and choose the planes x1, …, 

xn to be the planes for which the moment of inertia assumes its stationary values. If a denotes the 

cosine of the angle that an (n – 1)-fold extended plane that goes through the point will define the 

plane x = 0 then the moment of inertia for that plane will be equal to: 

 

 
 

 For a line that goes through the point of intersection and is perpendicular to that plane, the 

moment will be equal to the difference between the moments that are true for the point and the 

plane, so it will equal: 

 

 
 

If one then draws a line segment r along that line from the origin then one will have: 

 

x = a k sin 
𝑟

𝑘
 

 

for its endpoint, which implies the theorem immediately. If one makes the line segment infinitely 

small then one will have to make the square root inversely proportional to the moment. 

 The theory of the moment of inertial finds its true meaning in its relationship to the vis viva. 

Up to a certain factor, it depends upon the position of the principal structure that moves within 

itself and the ratios of the velocities with which it moves. Therefore, if any motion is given then 

we can leave the ratios of the  unchanged, but assume that the sum of the stationary values of 

r2 is equal to k2, so we can set: 

 
 

 Every motion that is defined in that way (every force-system of that kind, resp.) can be 

considered to be an element of an {
1

2
 n (n + 1) – 1}-fold extended space, and the work done by a 

motion under the influence of a force-system implies the concept of distance. The vis viva will 

then lead to similar concentric second-order structures whose midpoints will represent certain 

motions, as the moment of inertia did just now. The importance of that consideration lies in the 

fact that a restricted mobility is represented in full generality in an especially simple way. I hope 
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that these suggestions will suffice for everything that is known in the relevant investigations for n 

= 3. 

 

 

§ 8. – On the finite motion of a rigid body. 

 

 Obviously, the previous formulas would simplify if I had taken k x0 to be the coordinate and 

imposed the demand that it should be imaginary for Lobachevskian space forms. However, I feel 

that it would be appropriate to operate with real quantities, and cos r / k, k sin r / k, etc, are as well 

for negative k2. Furthermore, I desire that it should emerge as clearly as possible that our formulas 

go to the known formulas of Euclidian geometry for k = . Thus, I shall also preserve the factor 

k2 in what follows, although I could otherwise employ the known formulas of orthogonal 

substitution. 

 We imagine that one coordinate system is coupled with the moving body, while a second one 

is fixed in space. We denote the coordinates of the former by , while the coordinates of the former 

will be denoted by x. We will then have the equations: 

 

(43)     

 

 

 Despite their similarity, we shall combine the equations of motion with the known equations: 

 

 

(44)   

 

 

 

 

 We know that the final position that a solid body will attain under any motion can always be 

obtained by a uniform motion. Indeed, the proof that Scheefer gave for Euclidian space forms in 

his dissertation (Berlin, 1880) is also true for the other spaces. One can also derive a proof from 

the treatise by Rosanes in volume 80 of this journal. However, I would like to add two other 

proofs. 

 The first one, which I would like to suggest only briefly, is based upon the problem: Find the 

points whose coordinates have the same ratios in the second position of the body that they had in 

the first. If we then set  =  x then  will be determined from the equation: 

 

  

 

(45)     
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 That equation is reciprocal.  If we next remove the roots  1 and determine those points that 

belong to two non-reciprocal roots then their distance will be k  / 2. However, if x and x belong 

to reciprocal roots then any point whose coordinates are  x +  x and which belongs to the real 

domain under the condition that 2  (k2 x0 x0 + x1 x1 + … + xn xn) = k2 will take on the 

coordinates   x + ( / ) x under the motion, so it will belong to the same line. When we 

likewise examine the multiple roots, we will easily confirm that certain principal structures overlap 

in both positions, and that will support the further proof. 

 The following proof is even simpler: 

 Obviously, one has: 

 

 
 

 

 The determinant of the form: 

 

 
 

will be the square of the determinant E () when one sets (1 + 2) /  = 2 . (In order to obtain 

that product, one multiplies E () with a determinant that differs from it by the fact that the element 

a 0 has the divisor k2, instead of a0 .) 

 That implies the following theorem: 

 

 All points that have a prescribed distance from their first position to the second one lie on a 

quadratic structure. Any such structure coincides with its initial position in its second position. All 

such structures belong to a similarity bundle. That bundle has the same type as the ones that have 

the same property under an infinitely-small motion. 

 

 One now determines those infinitely-small motions whose characteristic bundle is identical to 

the one that was just found, and the lines that move into themselves can also coincide for several 

roots of E () = 0. One gives the conical structures of the bundle the velocity  that corresponds 

to the value of  for the conical structure that is obtained from the equation  = cos  / k . The 

continuation of that motion will take the body to the desired final position. 

 In order to obtain the differential equations of the motion of a solid body upon which arbitrary 

forces act, one forms the components of the motion along axes that are fixed in the body by setting: 

 

 

(46)     

 

one then has: 

 +  = 0 . 
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 The moment of inertia is a homogeneous function of degree two in the quantities  , and one 

will obtain it when one multiplies both sides of equation (38) by m / 2 and sums over all points of 

the body. If the quantities M  have the meanings that they were given at the end of § 6 then one 

can write the desired equations in the form: 

 

 

(47)     

 

 

 

in which the summation over  also includes the index zero. 

 Whether the body is free or certain equations restrict its mobility, one can always find 

mutually-independent linear functions of  for which T can be represents as a sum of squares. We 

first consider the case in which no constraint equations exist. We then choose the principal planes 

of inertia to be the coordinate planes that are coupled with the body. Since the vis viva T will then 

take the form: 

 
 

the equations of motion will now take the simple form: 

 

 

(48)    

 

 

 

 Up to now, I have not succeeded in integrating those equations, even for the case in which all 

of the quantities M vanish. A sequence of integrals can be obtained with somewhat greater ease, 

and for special values of the individual integration constants, the complete solution is not difficult 

either. However, due to the nature of this article, I believe that I do not need to go into the details 

of those analytical investigations, and at this point, I would then like to infer only the consequences 

of our equations that can be known from them without any calculation. We first ask: When will 

the motion be uniform? That is, how must the initial motion of a solid body be arranged in order 

for it to leave the body to itself? 

 That will happen when the first derivatives of the quantities  vanish for t = 0, since the 

higher derivatives, which are homogeneous linear functions of the first derivatives, will likewise 

all vanish. When we compare the right-hand sides of equations (48) with equation (38) for the case 

in which the principal moments of inertia are all different from each other, we will arrive at the 

theorem: 

 

 For a given initial motion of a rigid body whose principal moments of inertia are all different 

from each other, one seeks the lines that are displaced into themselves. If a line that is displaced 
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into itself then goes through the all of the centers of inertia of the body then as long as it does not 

remain at rest, the body will continue its initial motion until external forces produce a different 

motion. 

 

 One can also give that theorem the following form: 

 

 One determines the bundle of similar structures that are determined by the initial position. If 

the center of inertia is, at the same time, the midpoint for that structure then the body will preserve 

its initial motion. 

 

 It seems appropriate to me to apply that theorem to the various types of infinitely-small motions 

that were enumerated in the penultimate section. In that way, we will get the following theorem: 

 

 In a space form of an odd number of dimensions, in the absence of external forces, the general 

motion of a rigid body whose principal moments of inertia are unequal can be uniformly continued 

only when each of the (n + 1) / 2 lines that are displaced into themselves contain two centers of 

inertia. 

 

 If the equation  = 0 has no vanishing root, but the roots split into groups of , , … equal 

ones (say, 𝜌𝛼
2, 𝜌𝛽

2 , …) then the plane that moves with velocity  must contain 2 centers of inertia, 

and likewise the principal structure whose points all have the velocity  must include 2 of those 

points, etc. 

 If the motion is reciprocal then it will continue uniformly in the absence of external forces. 

 Should a space form of an even number of dimensions continue its motion uniformly, then a 

center of inertia would have to remain at rest. That condition is also sufficient only when the 

motion with which the absolute polar plane of the fixed point is displaced into itself is reciprocal 

to itself, or in other words, when a two-fold extended plane that moves within itself goes through 

every point of the body. 

 In order for an even-dimensional space form to continue the most general motion, two of the 

n moving centers of inertia must lie on a line that is displaced into itself. 

 If the structure at rest has r dimensions under a motion, and if the equation  = 0 in 2 has 

groups of , , … equal roots, in addition, then r + 1 centers of inertia must remain at rest, 2 must 

move rectilinearly with velocity  , 2 must move likewise with velocity  , etc. 

 It deserves to be pointed out that although self-reciprocal motion is more general than the 

parallel displacement in Euclidian space, it still possesses all of its characteristic properties. I shall 

also draw attention to the fact that in a Lobachevskian space form, and likewise in an even-

dimensional finite space (except for a an exception that will be mentioned later), there is no motion 

that continues uniformly for a completely-arbitrary position of the fixed body, as would be the 

case for parallel displacement in any Euclidian space and the self-reciprocal motion in an odd-

dimensional finite space form. 

 When the principal moments of inertia split into groups of , , … equal ones, there will be an 

( – 1)-fold extended plane such that every point is a center of inertia, etc. Should every d / dt 
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in equation (48) vanish for t = 0, then the coefficients of the x x in equation (38) for which A 

and A do not belong to the same group for unequal  and  do not have to vanish. The right-hand 

side of equation (38) will then split into groups, one of which contains only  variables, a second 

contains only , etc. The condition that a motion continues will now consist of saying that in any 

( – 1)-fold extended principal structure that contains nothing but centers of inertia, there are  

points that move in straight lines. 

 Finally, if all moments of inertia are equal to each other then any motion of the body will 

continue until external forces produce another motion. 

 Once that question has been treated exhaustively, we would like to mention a few conditions 

under which all continuations of a motion belong to the same (linear) group. In that regard, we 

have the general theorem: 

 

 If the initial motion of a body displaces a plane (straight line, resp.) into itself, with respect to 

which the imaginary image of the body (and therefore every structure that is confocal to it) is 

symmetric, then the continuation of that motion in the absence of external forces will preserve the 

same property. 

 

 The following remark is closely connected with the last theorem: When the constraint that acts 

upon a body consists of keeping one of the planes that were referred to in its initial position, in the 

absence of external forces, that motion will be precisely the same as when the body is free and 

only the initial motion satisfies the condition that was imposed. 

 Among the various types of motions that are not completely free, the rotation about a point is 

most important. We choose the fixed point to be the origin (1, 0, …, 0) of a Weierstrass coordinate 

system and the stationary planes of inertia of the point to be the planes x1, …, xn . The motions will 

then assume the form (48) when one sets each 0 and M0 in them equal to zero and no longer 

understands the A to mean principal moments of inertia, but the stationary values that the moment 

assumes for the planes that are laid through the fixed point. The equations of motion will also keep 

that form for any other constraint, except that the meanings of the  and M will change. 

 

 Braunsberg, in January 1884. 

 

 Remark. – It was only belatedly that it was possible for me to confer the paper by Clifford: 

“On the free motion under no forces of a rigid system in an n-fold Homaloid,” Proc. London Math. 

Soc. VIII, pp. 67. In it, equations (48) were already developed for a body on which no forces acted 

that moved in a finite space form. However, when Clifford asserted that those equations could be 

integrated by simple -quotients, he forgot to point out that the solution, which is possible under 

only certain initial conditions, lacks the character of generality. 

 

 Braunsberg, in October 1884. 

___________ 

 


