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A line complex of degrer encompasses a triply-infinite number of straight lithed
are distributed in space in such a manner that thosghdtfaies that go through a fixed
point define a cone of order, or — what says the same thirgthat those straight lines
that lie in a fixed planes will envelope a curve of slas

Its analytic representation finds such a structure by @fathe coordinates of a
straight line in space th&uecker introduced into science J. According toPluecker,
the straight line has six homogeneous coordinates thdt duecond-degree condition
equation. The straight line will be determined relativeatcoordinate tetrahedron by
means of it. A homogeneous equation of degreleetween these coordinates will
represent a complex of degnee

() In connection with the republication of some of my olpapers in Bd. XXII of these Annals, | am
once more publishing my Inaugural Dissertation (Bonn, 1868)tesentation by Lie and myself to the
Berlin Academy on Dec. 1870 (see the Monatsberichte),aandte on third-order differential equations
that | presented to the sachsischen Gesellschaft dsseWéichaften (last note, with a recently-added
Appendix). The Mathematischen Annalen thus contain tiadittoof my publications up to now, with the
single exception of a few that are appearing separatéeibook trade, and such provisional publications
that were superfluous to later research. Supplementarykeitiat | have added to the republication will
again be denoted (as in Bd. XXII) by putting the date in rjbaackets; e.g., [January 1884]. In the
republication of my dissertation, some inaccuracieeveeitted thatSegre (Turin) was kind enough to
bring to my attention.

Klein [Jan. 1884]

(") Proceedings of the Royal Soc. (1865); Phil. Transactfth865), pp. 725, translated in Liouv.
Journal, 2 Séries, t. XI; Les Mondes, par Moigno (186f),79; Annali di matematica, Ser. Il, tNeues
Geometrie des Raumes, gegriindet auf die Betrachtung der geradeal$iRi@umelement® ed., Leipzig
1868, by B. G. Teubner. (On that subject, cf. the htssbmotice on the origins of line geometry that
Clebsch gave in the Gottinger Abhandlungen of 1872 [in remembrandellnfs Pluecker]. Pluecker
published his first ideas on that subject in 1846ysteme der Geometrie des Raufnes258]; however,
the coordinates of spatial lines had already appeared darl@&massmann’s Lineale Ausdehnungslehre
(first edition, 1844). One further confeCayley. “On a new analytical representation of curvespace”
(Quarterly Journal, t. 111, 1859).

[Jan. 1884]
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In the sequel, our goal will be to transform the sdedegree equation in the line
coordinates into a canonical form by a corresponding ceiorerof the coordinate
tetrahedron. We first give the general formulas tbame to be applied to such
transformations. On the basis of them, the problentraated algebraically as the
simultaneous linear transformation of the equatiorhefdomplex into a canonical form
and the transformation of the second-degree conditjoaten that line coordinates must
satisfy into itself. By performing that transformatjowe arrive, in particular, at a
classification of second-degree complexes into diftengres.

I. On line coordinates in general.

1. If we denote the homogeneous coordinates of two polmis &re chosen
arbitrarily from a given straight line by:

X1, X2, X3, X4
and

Y1, Y2, Y3, Ya,

resp., then the given straight line, which is determinedngéacally as the connecting
line between the two pointsx)( and §), takes onthe following six — likewise
homogeneous coordinates:

PL=XY,= XY R= XY~ X%
1) P, =XYs= XY B= X% %Y
Ps=XY,~ X ¥ B= X%~ XY

These are the six determinants of degree two thabered from the elements:

X1, X2, X3, X4,
Y1, Y2, Y3, Ya,

taken with a sign that emerges by distinguishing a colunelements (the first, by our
assumption).

As a result of the form of the determinants, theci@sen coordinates will preserve
the same values when we choose any other two pointe afiven straight line in place
of the chosen two pointx)(and §). The coordinates of any such point can then be
brought into the form:

AXe+ Uy, .o, A%+ Uyy,

where A, i denote constants that are to be determined, and thétidos of such
guantities in place of theandy into the expressions that were given for the coordsnate
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p will yield, as one finds immediately, multiples oktlvalues ofp that were obtained
originally.
The six coordinates satisfy the following second-degree relation identycall

P=pips+p2ps+psps =0,

> p.P,.;=0,

which we can also write:

in which we let the index run from 1 to 3, or also 1 to 6, and thereby underskah®
to mean the number that assumes e 8) location in the continuing sequence:

1,2,...,56,1, 2, ..

Four constants will necessarily enter into the determonaof a straight line as a
result of these relations that tsi@ homogeneous coordinatesatisfy.

We obtain the following equations for those four plaf@sjection planes) that can
be laid through the straight line that is determined byttvo points X) and §), and the
four vertices of the coordinate tetrahedron:

P2+ B2t R%=0,
Pz~ B3t B3=0,
Pzt B2~ R3=0,
Psz~- B3+ R3=0,

(2)

respectively, where we have denoted the running point coocedigtz, ..., zz . Thus,
they are the four constants that enter into the emmsabf the coordinatgs of the four
projection-planes. The equation:

P=0

expresses the idea that the four planes in question eusamme straight line. It is
therefore not only thanecessary but also thesufficient condition for six arbitrarily-
chosen quantities:

P1, P2, ..., Ps

to be regarded as line coordinates. The geometric comstradtthe straight line that is
determined by them will be mediated by any two of the slg2g

The coordinate determination (1) is based upon the printipteone should consider
the constants that enter into the equations of thigktrine in point coordinates (2) as its
determining data, and that they are to be represented lopohdinates of a number of
points of the straight line that is necessary andicsefit to define the latter
geometrically.

2. Inthe foregoing, we have determined the straight linevoydf its points. In this
manner of determination, we consider a straight lineet@ locus of points — i.e.,ray.
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In a completely analogous way, we can determine @hbtrine by two of its planes and
then consider it to enveloped by planes — i.eaas().

Let two arbitrary planest)(and (1) of the given straight line be determined by the
coordinates:

ty, o, 13, 14
and

Uz, Uz, Uz, Ug .

In complete correspondence to what we said before, ilvthen obtain thdollowing six
expressions for the coordinates of the given line:

g, = tu, - tu, g,= tu,~ tu,
3) 0, = tus =~ LU, q:tu_tu
=tu,-tu, = tu,- tu,

which satisfy the following equation:

Q z qK +3

identically. Corresponding to the four equations (2), eiain the following four
equations for the intersection points of the straigig that is determined by the planes
(t) and (1) with the four faces of the tetrahedron:

QeV, + GV + GV, =0,
Vi~ %t GV, =0,
v+ g%~ qV,=0,
OV~ GV + G4 =0,

(4)

wherev,, ..., V4 mean the running plane coordinates.
If the ray coordinatep and the axis coordinatesrefer tothe samestraight line then
one will have the following proportions between them:

5) Bo_P B _ PP _ P

The validity of these relations is implied immedigtehen we form the quantitiegsfrom
the coordinates of two planes (2) or the quantijéiom the coordinates of two points
(4).

The coordinates then differ from the coordinateg only by their ordering.
Corresponding to their double geometric meaning, straigés Wwill be represented by

() Cf., Pluecker'sNeue Geometriepp. 1.
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the same six quantities. This is not the least efativantages d?luecker’s choice of
coordinates.

3. We would like to denote the four vertices of the cooreinetrahedron by:
Oy, Oz, Oz, Oy,
and the four faces opposite to them by:
Ei, B2, E3 Es.

The six edges of the tetrahedron will then be determineithdyollowing couplings of
the symbol< (E, resp.):

0107, 0103, 0104, O304, 040, 0,0,
Ei1Es Ei1Es E1Es, EsEs Es4E; EEs.

Five of thesix coordinates of an edge of the coordinate tetrahedrowvanish, and only
the sixth one will keep a finite value. That is inedliimmediately when we substitute
two vertices (faces, resp.) of the tetrahedron ineoekpression (1) [(3), resp.]. In the
present sequence, we would like to denote the edges of tiddnadertetrahedron by:

P1, P2, P3, Pa, Ps, Ps,
or

Qla QZa Q31 Q4! Q51 QG .

All coordinates of an arbitrarily-chosen edd € Q«+3) will then vanish, up to the ones
that we have denoted py = Qx5 -

The grouping of the edges of the tetrahedron amongstsdiees is determined by
the fact thaPy, P,, Ps (Qa, Qs, Qs, resp.) intersect at a point, whitg, Ps, Ps (Q1, Q2, Qs,
resp.) lie in a plane.

For the sake of brevity, in the sequel we will make usenly the independent
representation of the line coordinates through point coatels, and the completely
analogous (i.e., reciprocal) arguments that are coatheeith their representation by
plane coordinates in each case will not always beessfy emphasized. We will thus
avail ourselves of only the notatign for line coordinates in what follows, although
preserving the coordinatgsalong with the coordinatgswill allow many formulas to be
written clearly.

4. In order for two given straight linep)(and ') to intersect their coordinates
must satisfy the following equation:

(6) > p, o, =0.
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Let the two straight line) and @) be determined by the pairs of poingg, (b) and
(c), (d), respectively. If we then replace the coordingtgs in the present equation with
the values from (1) for the coordinates of these poimats we will obtain:

Ziaibzgd4 = 0.

The vanishing of this determinant is the condition forfthe points &), (b), (c)*, (d) to
lie in a plane, and therefore, for the two straigtés @, b) and €, d) to intersect (.
If we consider thep. ., in equation (6):

z pK Ep/’(+3 = 0

to be fixed and th@, to be variable then they will represent the totalityalb of those
lines that cut the fixed ling(). In particular, the coordinates of all of thosaisfint lines
that cut the coordinate edgeswill then satisfy the equation:

p/(+3 = 0

When all coordinates of the edd® itself vanish up to the onp, then that will
immediately express the idea that it will cut all &&edral edges up to the one that is
opposite to it.

If three straight linesp), (p'), (p") intersect each other mutually then an equation of
the form (6) will exist between the coordinates of ang tf them. The three straight
lines will then either go through a point or lie in thensaplane. The criterion for the
first or second case is defined by the vanishing of the demofirst factor, resp., of the

product:
2Ep B ED tp B4,

which will always vanish under the assumptions thaieweade, and the similar product
that is obtained from the latter one by permuting thatices 1, 2, 3 with the
corresponding ones 4, 5, 6 in every case.

The proof is provided by considering equations (2) and (4ihrée lines intersect at
a point then the three planes that go through a veftéxeacoordinate tetrahedron and
one of the given straight lines, in any case, wileha straight line in common, and
conversely, when three lines lie in a plane thenelhbsee points at which one face of the
coordinate tetrahedron will be intersected by the givexight line will be in a straight
line.

5. We can assignmaginary valuesto the six variablep, always under the
assumption that the condition equation:

() Cf., the article by iiroth : “Zur Theorie der windschiefen FlacheGtelle’s Journal, LXII, p. 130.



Klein — On the transformation of the general secondesdegquation. 7

z pK Ep/(+3 = 0

is fulfilled. Thus, let:
P« = P, +ip;.

We consider the quantitigs to bethe coordinates of an imaginary straight line.
This purely formal definition leads to the following geontebne: From equation (6) of
number 4, the given imaginary straight line, as wellhasconjugate imaginary one, will
be cut by all real lines whose coordinates satisfy ftilewing two linear condition
equations:

z p;'( Ep;(+3 =0, z p,'; EpK+3 =0.

The two equations are determined by any four lines whosalinates satisfy these
two equations {§, or by the two-parameter group that is defined by them, onere

D (AP +UP;) Py =0

K

(in addition, when the chosen four straight lindsitobelong to the generator of a
hyperboloid). An imaginary straight line and itsnqugate are thus given geometrically
as the two rectilinear transversals to four real straight lines.

That therefore agrees with the definition thatrkbes synthetic geometry gives for an
imaginary straight line in space.

In general, an imaginary straight line possessa®al point and no real plane. Only
when the given imaginary line and its conjugaternsgct will both of them have a real
point and a real plane in common. The imaginamigitt line will then be intersected by
all real lines that go through that point (plaresp.). It will no longer be determined by
four of its real, rectilinear transversals. Onérds it geometrically by the real point, the
real plane, and a second-order cone that emanatastlie real point or curve of class
two that lies in the real plane.

Il. Transformation of line coordinates that corresponds to a onversion
of the coordinate tetrahedron.

6. In the following, we will next exhibit those trensmations of line coordinates
that correspond to a conversion of the coordinatetiedron, or — what says the same
thing — the linear transformation of point or plase®rdinates ().

() One will find the system of such straight lines sidered, in particular, in the article ©f Hermes:
“Ueber Strahlensysteme der ersten Ordnung und dendtéasse,Crelle’s Jounral, LXII, pp. 153.

(") Confer the two articles @attaglini:

“Intorno ai sistemi di rette di primo ordine,” Renainti della R. Accademia di Napoli, 6 Giugno 1866.

“Intorno ai sistemi di rette di secondo ordine,” Reoditi della R. Accademia di Napoli, Ill, 1866.
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These transformation formulas will baear. They would lose their linear character
if one were to take five independent homogeneous coordinatesiould succeed in
determining a straight line, instead of six homogeneousdewdes that satisfy a
condition equation. We arrive at the result tthet linear substitutions that we spoke of
are the general ones that take the expression:

P=> p. .

to a multiple of itself.

The latter theorem admits the following determination

Let a linear substitution be given that takes the esme$ to a multiple of itself.
We can freely choose one of the six new variablesshwvie would like to give the name
p:. The variablgy, is then determined likewise. We can, moreoverpshp, from the
remaining four variables with no further assumptigmswill then be given. However,
which of the two remaining variablgs andps we can take is no longer arbitrary. Any
edge of the new tetrahedron that refers to the pewvill cut the two edges that
correspond to the neps andp, at a point, so it will be determined uniquely (no. 3heT
expressions for the line coordinates in terms of thedioates of two points (planes,
resp.) that were given by (1) and (3), resp., will be vaitity under the assumption that
ps is chosen accordingly.

If we understandy, y, to mean point coordinates then let:

XK :Zak,/i D<(’
K

7
( ) yK :Zak,/i [y/(

be a general linear substitution, as would correspond tarl@trary conversion of the
coordinate tetrahedron. The substitution coefficients then represent the coordinates
of the faces of the previous tetrahedron relative @ondw ones, such as the ones that are
given when we lex, (y«, resp.) vanish.

We will obtain the desired formulas by substituting ¢healues forx, , y« into the
expression for the line coordinatpghat is given by (1). The substitution coefficients
that enter into them will take on the determinant form:

a/(,,u I:b'/l,l/ - a/(,v |:b'/l,,u y

and will thus represent, geometrically, theordinates of the edges of the previous
tetrahedron relative to the new gntaken in terms of quantities like the ones that
established formula (3) for the coordinates; of the faces of the previous tetrahedron
relative to the new one. If we denote themaly when they belong to an ed@g and
occupy theA™ plane, under the coordinates of this edge, when we witm in the

Both articles are found to be reprinted in: Giornal®diematiche, Napoli, Anno VI, 1868.
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sequence that was established by (1), then the desirexfotraation formulas will
become:

(8) pK = zax+3,/1+3 Ep; .
A

We then arrive at the fact thpt vanishes- that is, that the straight lin@,(p’) cuts the
edgeP«+3 — so from number four, the condition for this is thaishing of the expression:

U
z aK+3,/1 +3 Epﬂ '
A

7. Under the substitution (8), the identically-vanishing exgioes

P= z pK EpK+3

will go to a multiple of the corresponding one:
P = z Pe [P -

If we form the first expression from (8) and compareiih the second one then we will
obtain a sequence of relations for the coefficientbat they will satisfy identically by
means of their representation in terms of the caeffis a.

The actual development of the expresdibfirom thep’ will yield a polynomial in
these variables of degree two and 21 terms. The coefficed 18 of these terms must
vanish, while those of the remaining three will be eqoaach other. The 36 quantities
a are thus subject to 20 conditions, and for that reasdinbe representable in terms of
the 16 independent quantities With these numerical ratios, it will come downtte
same thing, whether we base the expressions for linelicabes upon point (or plane)
coordinates and transform the latter linearly or whetire immediately transform the
line coordinates themselves linearly and then requirelleatxpression:

PE z pK Ep/(+3

must go to a multiple of itself. We will find the cora# confirmation of this statement
in the geometric interpretation of the conditions thatsubstitution coefficieneswill be
subjected to as a result of the latter restrictionweieer, from the previous number, the
naming of the new variables must observe a fixed rule.

8. Therefore, let:

(9) pK = sz+3,/1+3 Ep;
A

be a linear substitution, under which the expression:
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P=> p.,.;

will go to a multiple of itself. The following ref@ns will then be valid for the
coefficientb:

(10) zbk+3,/1 Ebk,/Hp = 0 (U: 1’ 21 4’ 5’ 6)’

(11) zb/(+3,/1 [bk,/1+3 = d’

whered denotes an arbitrarily-determined constant.
As a result of conditions (10), the following two produstl vanish:

Z t bll b22 b33§ * b41 b52 b53

and

Z t b14 bzs b36§ + b44 b55 b6€'

The development of this product according to the multipboaheorem for determinants
will yield a new three-parameter determinant whose eleaer) will obey the rule:

(K, )+, K =0.

We now add the further condition to (10) and (11) that l&#st two products will
vanish due to the fact that the two factors:

Zibm b, g3, Zibﬂ B B

are equal to zero. Moreover, corresponding to that, thaladyrconstructed
determinants should vanish that are derived from the laties by permuting two of the
first or second indices 1, 2, 3 with the correspondirtg, 4, each time. These conditions
do not at all restrict the relative magnitudes of theffaments b, but only the
arbitrariness in their sequence.

The solution of the substitutions (9) will be, when ampeals to the condition
equations (10), the following:

(12) zbk,/HS Eb;(+3/i Dp; = zbk,ﬂ K

or, with consideration to equations (11):

(13) d Dp;i = zbk,/i Ep/( .

When we return from (13) to (9), that will yield theldaVing formula, corresponding
to (10):
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(14) Yboslb.,, =0 @=1,24,5,6).
A

If we denote the substitution determinaEibLl b,,--bgs by D, that of the sub-

determinant that belongs to an arbitrary elengntof it — such as, above all, the sub-
determinants in what follows- through the two indices, A (D«,), and correctly
determine the sign in it — viz.,{(1)**") - then it will follow from the solutions (12) to
equations (9) that:

DK,/]+3 Dz bK,/1+3 Eb/(+3/1 = b/(+3,/] [D.

This formula will remain valid for any indexand any index. One then finds, up to
a factor:
(15) D = rl zb;(+3,/1 |:ﬂ)/(,/1+3’
(A=1,2,3) &
or, as a result of (11):
(16) D=d"

The comparison of two terms in the developmenbD ofith the product that enters
(15) will give the proof that the factor in question is dqoainity.

It follows from equations (10) that the columns of gubstitution coefficients (9)
represent the line coordinates of the edges of the eiahedron relative to those of the
previous one. Once we sgt= 6, that equation will then say that the coefficseint a
column of the substitutions (9) have the meaning of lioerdinates, and then,
corresponding to the other four valuestothat each of the six lines that are determined
by the substitution coefficients will cut four of thed remaining ones, so the six straight
lines that are represented will form a tetrahedron.

We would like to denote the six edges of this tetrahednah ¢orrespond to the
coordinated,, by P;. The conditions that we have added to equations (10) anéb(11)

the sequence of coefficienttg,, then say nothing but the facts that the three edRjes
P, B intersect at a point and that the three edgesF,, F, lie in a plane. What is
excluded from these conditions (in case the subsﬂitmtdﬂerminantZi b, b, does
not vanish) are the possibilities thgt, P,, P, are contained in a plane and tht R,

P go through a point. One of these two possibilities nmis¢ place. In connection

with these conditions, the three equations (11) saythmatatios of the coordinates of
these six straight lines can be chosen to have magsitindé would come from the
coordinates of the four vertices (faces, resp.) oft¢fi@hedron that they define on the
basis of formulas (1), (3).

With that, the proof that the chosen transformatiormesponds to the conversion of
the given coordinate tetrahedron into another one is etatl

9. We imagine that the substitution coefficiebtare represented independently in
terms of the coefficientb of one of the linear transformations of point coordsathat
correspond to the coordinate conversion:
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(17) Xx = Zﬁm X, -

We then obtain the following relation:
(18) d= Zi BBy

In order to show the validity of this, we will sagisburselves with direct calculation,
when we start with one of the formulas (11), but tmeake the remark that the
determinantD, since it is formed from the second sub-determinahthe four-term

determinantZi B1+ B4, is equal to the third power of that determinant.

The constantl can assume any positive or negative values, althoughnbtaanish.
If it did, then, as a result of equations (11), it would the opposite edges of the new
tetrahedron, and the coordinate determination would thempessible. This would
correspond to four vertices or four faces of the tettadre coinciding, which would find

its expressions in the vanishing of the determirEnt BBy

In what follows, we will assume that the constdns equal to positive unity, such
that the expressioR must go to itself under the linear substitution, intack only 15
independent coefficients would enter.

The transition from the substitution (9) to the sibson (17) takes the following
form: We can choose the coefficidmtfrom the rows and three columns in such a way
that if we think ofb as being introduced into the quantiti@sand we letd denote a
running index, and lek, i denote two indices that are well-defined in each individua
case, then either terms of the fofn, or 8, must enter in. The determinant of the
coefficients b thus-chosen will then be composed of the sub-detentsinaf the

determinaniB,,, and will consequently have the absolute vadlljy(;. The determinants
d«, Will be precisely those coefficients that enteoitite solutions of the equations (17).

10. The problem of transforming a given expression in linedioates into a given
form by a linear substitution can lead to imaginary stigon coefficients, and thus to
tetrahedra with imaginary edges. We might call sudtratiedron simply amaginary
tetrahedron

In general, an imaginary tetrahedron is associated aittonjugate one. Both
tetrahedra will then always appear together.

However, in particular, the imaginary edges of an imay tetrahedron can be
conjugate to each other. If all of the faces (verficesp.) are imaginary then the
tetrahedron will possess two real, non-intersectdgges, while the four remaining edges
will either contain a real point or a real plane, avil be pair-wise conjugate to the
opposite edges.

By contrast, if only two faces (vertices, resp.) iamaginary then, as in the foregoing
case, only two opposite edges will be real. Howewa, real planes of the tetrahedron
will intersect along the one of them, while two reeaitices of it will lie on the other one
as intersection points with these faces. The remgifuur edges of the tetrahedron will
be pair-wise conjugate. Any two conjugate edges will ruénsine of the real faces and
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intersect in it at the corresponding real vertex. Bwoh imaginary straight lines will be
of the type that was considered in the conclusion oflyar five.

Thus, if the imaginary edges of a tetrahedron are comuban two opposite edges
will always be real, and we will be dealing with a éedron of the one type or the other,
according to whether the remaining four edges do or donhertsect the conjugate one,
respectively. Tetrahedra of the one kind or the otherappear in isolation, as long as
they are self-conjugate.

Such imaginary tetrahedra that are not conjugate cangsosse real, mutually-
opposite edges. They will then be common to the giveahedron, as well as the
conjugate one.

lll. On line complexes in general.

11. A homogeneous equation in line coordinates determingsitifinite system of
straight lines. According tBliicker, such a structure is calledine complex(). If we
substitute a complex of degredor the line coordinates in the expressions (1) ori@nt
we will obtain the following two identical geometricfifitions of such a complex {:

In a complex of degree n, the straight lines that go through a fixed pdintefile a
cone of order n

In a complex of degree n, the straight lines that lie in a fixed phathde define a
curve of class n

Therefore, if the complex is linear, in particuldren each point will correspond to a
plane that goes through it, while every plane will espond to a point that lies in it.
Such a complex will be defined by the totality of all ghailines that cut a given straight
line (no. 4).

The totality of all tangents to a surface of order lasen can be regarded as the
distinguished case of a complex of degnga — 1). If one specializes the surface in such
a way that it degenerates into a developable surfaceassibciated edges of regression
then the complex will envelop all of those straight$ that contact the first one or cut
the second one.

12. The general equation of degre@volves  + 5) different terms. As long as>
1, a complex can depend upon a number of independent dsndtahis less than
minus one only if one is free to extend a series ohdan its equation by means of the
relation:

() The general concept bhe complexit would seem, is entirely associated witiicker. However,
that of linear complex had already been thoroughly exainifiest of all byMoebius in his celebrated
treatise: “Ueber eine besondere Art dualer VerhaltnmdRaume” (Crelle’s Journal, t. X, 1833).

[January 1884]

(") Pluecker, Neue Geometrjgo. 19.



Klein — On the transformation of the general secondesdegquation. 14

P= szEpK+3 =0.

We can add to the equatidh of a given complex, when multiplied by an arbitrary
function of degree — 2, without changing the complex. Such a functioh eaihtain @

+ 3 undetermined constants. We can thus also arbitrasiyrae that there is an equal
number of constants in the equation of the complege@ that they must be coupled
with terms that have one of the three factors:

P1Pa, P1P4y P1Ps,

and are all different from each other, except fos¢actors.

The reduction in number of the independent constants dwdpss long as we do not
write the equation of the complexfold linearly in the coordinatep., but in the @
coordinates:

] " (n)
Pes Pes -0 P

The expressioR is then written bilinearly:
P AE

and is then no longer equal to zero, except when thestveaght lines [§') and (")
intersect, such that it can no longer be added to theiequd the given complex with no
further assumptions.

From the foregoinga complex of degree twdepends, not on 21 — 1 = 20
independent constants, but on only 19. By contrast, thexesimply-infinite family of
associated polar systems (viz., bilinear systems), eaethich are determined by 20
constants. In such a polar system, an arbitrarilysehctraight line will correspond to a
linear complex (). Those lines that correspond to themselves will leestme in all
polar systems: viz., the lines of the associated secayéeleomplex.

The theory of complexes is entirely analogous tothe®ry of curves that lie in a
surface of second order or the theory of developablecagfhat envelope a surface of
class two. Thendividual surface, that determines a curve by its intersectibin the
given second-order surface does not come under congdeaatall in the discussion of
these intersection curves, but only the family thatesermined by it and the given
second-order surface. By contrast, a point of theergigecond-degree surface is
associated, relative to the intersection curve in guesivith another structure that lies

() Pluecker, loc. cit — This is not the place to further pursue the recifyrdisat was suggested in the
text between straight lines and complexes of first degvbhigh, under a subsequent manner of treatment,
would lead to a classification of complexes of first dedmegix independent, homogeneous coordinates.
(cf., Plueckers Neue Geometrieno. 19) In this way of looking at things, the straight lseems to be a
linear complex whose coordinates satisfy the equatian4{no

P=0.
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on that surface, according to the choice of the steoinface that is determined by the
curve.

Those straight lines that are common to two comgladefine acongruence. The
congruence is said to be of degree when the two complexes that determine it are of
degreesn andn, respectively. All lines of a linear complex cut tfied straight lines,
which can be real or imaginary: viz., thieectricesof the congruence.

Those straight lines that simultaneously belong teetltomplexes that have degree
m, n, p, respectively, define amuled surface(skew surface) of order and clagarh In
particular, three linear complexes determine a seconc€eemrrface by the lines of the
one generator of it

IV. Transformation of the second-degree equation in lineaordinates
into a canonical form.

13. Let:
(19) Q=0

be the general equation of the second-degree complexetand |

P=0
denote the condition:

z pK Ep/(+3 = O

Our problem is to determine a tetrahedron that has aglisshed relationship with the
complex (19), and to give the form that the equation @fctmplex will assume when it
is referred to this tetrahedron as a coordinate tetrahedro

This problem is treated algebraically as the simultasdioear transformation of the
form P into itself and the fornf2 into a canonical form. We thus define the canonical
form of the formQ as the simplest one into which it can be convertechégns of such a
transformation. A certain arbitrariness will alsosexn this choice, and the way in which
we will arrive at such a form in what follows is notnacessary one, but one that is
chosen as desired. — The algebraic formulation of thislgmois more general than the
geometric one, in thd andQ appear as individual forms in it, while in the geometric
investigation, along witl, only the two-parameter group:

Q + AP,

whereA means an arbitrary constant, comes under conside(afion

() Cf., Plueckers Neue Geometridoc. cit.
(") The algebraic treatment is coupled with the aforemeeti@xtension of the geometric interpretation
of six variables. Corresponding to a conversion of tadinate tetrahedron, the coordinates of a first-
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Since we have 15 arbitrary constants at our disposia¢ifinear transformation of the
form P into itself, the canonical form of the fortwill contain 6 constants. If we divide
through by one of them and add the expres§ido it, when multiplied by a suitable
constant, then we can still take away two constant®s it. The canonical form of the
equation of the complex will then contain only fourezd&@l constants.

A specialization of the complex will be required whers ldgat four constants should
enter into its equation, or when it should be possiblgansform it into the same form
with four constants in an infinitude of ways.

In connection with the most recent papetédierstrasson quadratic forms’), we
begin with a singular reformation of the two forl@andQ that isalwaysapplicable in
our case. As a special case, it includes the transfmmaf the two formd® andQ into
two that contain only squares of the variables, whi@htimnsformation that is known to
not be possible in all cases.

P andQ will go to two new form$ andQ’ under the reformation that we spoke of.
We will then return to a simple linear transformat@nP’ to P and thus transform’
into a new formQ" that we will refer to asanonical By employing the results that were
obtained in the cited treatise, we will thus arrivethie shortest way, at the exhibition of
the canonical form that corresponds to each casehasdat the classification of second-
degree complexes.

We next repeat the results to whidleierstrassarrived in the aforementioned article
in a form that will correspond to the case that is gmesiere. Weierstrass considered
the simultaneous transformation of two arbitrarily-givguadratic (or bilinear) forms,
and corresponding to the case, special precautionaryuresasust be observed in order
for one of the two forms to vanish. In our case,dhe formP is given and has the non-
vanishing determinant-(1).

14. Let:
P, ¥

denote two quadratic forms of the samevariablesx;, X, ..., X, . We make the
assumption that the determinant®@tioes not vanish. The determinant of the form:

sd + W,

which we would briefly like to denote Ify; is then an entire function of degreef s,
and can always be represented as the productastors that are linear functions ©f

Let (s — 9 be any of these factors, under the assumption thataékicient of the
highest power of that is contained i is equal to unity, or that it can be extracted as the
constant factor in the product of thosdactors. We let denote the exponent of the

degree complex will transform linearly in such a way thatexpressiof?, which does not vanish, will go
to itself.

() “Zur Theorie der quadratischen und bilinearen Formbfghatsberichte d. Berl. Akad., May, 1868,
pp. 310-338. Cf., an earlier article on the same situatdonatsberichte, 1858, pp. 207-220. (The
principle of the elementary divisors that will find apptioa in the sequel was indeed first known by
Sylvester, see his paper: “Enumeration of the Contacts of Lines Qurfaces of the Second Order,” in
Philosophical Magazine of 1851, v. 1, pp. 119-140 [Jan., 1834].
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highest power of those factors that is realize8 iffurthermorel® means the exponent
of the highest power o(— 9 by whichall of the partial determinants of order € K
that are formed from the elements®ére divisible. A3Neierstrassshowed, one then
has the following inequalities:

I>I>1"> ... >V"Y>
[(@=D_ @ 5 (@) _|(a+])

If one then sets:
e=-1I g=I-1r,.. " "D=|v-1

thene, €, ..., e"~Yare positive numbers that are ordered by their magnitade,that:

(@) 5 (a+1)

Each of thev factors of § — o' thus defined:

vl

(s—0°%(s—0°% ..., (s- 0

is calledan elementary divisor of the determinan{’s We say that an elementary
divisors haorder ewhene is the highest power afthat is contained in it.

One now has the general theorem that no matterdmvalso might transform the
two forms®, W into @', W' by linear substitutions, the associated elementarngati
will remain the same. Conversely, if two pairs ofnfisrd, W and ®', ¥’ possess the
same elementary divisors then they can be taken to @her by a linear substitution
with a non-vanishing determinant)(

We now letS*® denote that sub-determinant of the determihat arises from it by
omitting the firstk rows and columns. Furthermore, under the assumptivrathdare
both greater thar:

-1 (a+D) s ®
(-8

means then(—« — 1)™-order determinant whose elementary system emergesttfi@rof
S¥ by omitting the & — ©)'" row and 8- &)™ column, but will be set to zero when one of
the two numbers, S< «.
The functions:
SS, S, ..
are divisible by:

s-9,6-9"6-9" ...

() The elementary divisors to which the two forisA® + W lead are among the elementary divisors
that belong to the forn®, W, but differ from them in thatis replaced witls + A in them.

(") We remark that this theorem is only true in generanwbne also admits those linear substitutions
whose substitution coefficients possess values teatraginary, but not mutually conjugate.
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respectively. We assume that no powers#f(9 that is higher than the given ones is
included as a factor in any of these functions. Shdatllie the case, then one would let
SY be the first in the sequence of functions:

SS, S, ..

that contains a higher power af § thenl™. We can then let a linear transformation of
the form:

enter the picture beforehand, and arrange the constants.., hy in it in such a way that

the newS™ will contain only thd” power of 6 — 9. Since the substitution in question
has the determinant (+ 1), the functions:

ss,s,.., s
will remain unchanged by it. We can thus proceed in thengway such that we will

always have that no higher power sf{ 9 thanl® is contained in the determinarg€.
Assuming that this auxiliary transformation has beefopeed, let:

do do do

X=S, — - +... _—

do do
X' = - +... _—

(20) T
X :

Moreover, e, will denote the&" number in the sequence of numberghat is
associated with the divisos & 9. We may likewise write, instead ofc, such that the
same root of the equatiors = 0 can take on different indices according to its @ased
elementary divisors. One then develops the functions:

X (x-1)
S s

in increasing powers o8¢ c,;). The development begins with the powes,+ 2 of (5 —
c,), and has the form:

ZXMI EQS-(;)#_E, Hu=0,1, ... 00
Therefore:
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1 do do
21 Xy = C +ot G — |,
&) ”” \/Cﬁ[ M dx, e dmj

whereC, and all of the coefficients of the quantitas / dx are entire functions af; and
the coefficients of the form®, W.

The coefficienC,, whose sign is given weight in the case wigris a real quantity,
is written, when developed:

s—c 2K +e,
*2 = {ﬁ} ST

where A% has the previous given meaning I8t and the index refers to only the

common identity ok, andc, .
If e means an arbitrary whole number then one will dewote:

D X, 0K, with (X3 X))e (u+v=e-1).
One then obtains the following conversions:

®=>(X,X,),,

(23) l.IJ:ZC/‘(X/] X)e, + (X4 X)) e

where the summation extends over the various el@nedivisors that correspond
and (X, X,),,-, is to be set equal to zero wherhas the value 1.

These are the reformations of the fodns¥ in question. It can be verified that the
new variables:
X1,0, X1,2, ooy Xig g,

X/‘,Oa X/‘,la ey Xﬂye/l—ll

in terms of whichb andW are presently expressed, are derived from thamasX (20),
and thus, from the original variablesthrough a substitution whose determinant does not
vanish.

Corresponding to a given system of elementarysdig, from formulas (23), we can
write down a system of two forms with no furthes@sptions. In particular, if all
elementary divisors are of first order th@randW¥ will be represented by the squares of
the new variables.

15. Before we go on to the application of the presefdrmations of the two forms
P, Q that we were given, we might investigate to whdeeithe variableX, , that were
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introduced in (21) can be replaced with other ones tleabia an equal footing such that
® andW¥ can likewise be represented in the form (23).

Let i, timesv of the elementary divisors of the determin8ite equal to each other.
It is then possible to give a linear substitution that @iost

#(V—l)
ZV‘,AJV 1

arbitrary constants and possess the propertyd®hand ¥, in the form that was given
(23), will transform into themselves.

Let v elementary divisors of orderbe given that are all the same, and thee fetl.
We denote the divisors in sequence by the indic@s 1., v, and in general by the index
a. In the representation of the fornds and W, each of these elementary divisors
corresponds, i®, to a function of the variables:

X0, Xady eeey X

a.e,-1

that we have denoted bfX,X,), , and in¥, to the same function of the sarae
variables,multiplied by one of the constants that is indegardf the indexa, minus a
function ((xa xa)ea—l) that is a function of only the variables:

Xa,01 Xa,la raay x

ae,-2"

The variablesX are present in only the first function, and inaitcording to the

a,e,-1
meaning of the symbd(X, X, ), , only in the combination:

2 XQ’O Xayea_l .

Thus, they are presentdmand¥ only in the following expression:

2 X10 xl‘el_l +2Xz0 szez_l + ...+ 2X,0 vaev_l.

The form of® andW¥ will then remain unchanged when we transform theables
X,.e, 4 DY the following linear substitution:

xa,eg—l = xa,eg—li
minus a linear function of:
Xl,01 "-1XV,01

and thus demand that the expression:

X1,0 leq_l + X20 szez_l + ...+ Xy0 XVY%_l
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must go to itself under this substitution. For such atiutien, we have/ constants at

. + . .
our disposal, anel(% conditions to satisfy. Therefore:

V- viv+l) _v(-1
12 12
constants will remain arbitrary.
If we assume that= 1 then we will get the same number. The function:

2 2 2
x1,0+ Xz,o+"'+ Xu,o

will then be transformed into itself.
In this way, we can proceed with the each systengudledivisors that are contained
in the sequence of elementary divisors of the determi§agmd thus obtain the number

that was given above:
>V
" 12

This number refers to the value that the formg (sess on the basis of the system
of variables for these forms.

16. A further examination is linked to the sign o ttonstant€, that are determined
by the equation (22).

As is known, one classifies the quadratic formsiaariables with non-vanishing
determinants into classes according to the exbesdhe number of positive squares over
the number of negative squares yields when oneftrans the given form into a form
that only includes the squares of the variablesneyns of anyeal linear substitution
with a non-vanishing determinant. Let denote the excess that belongs to the given
function®. The following theorem is then true, independeafithe choice of the form
Y.

When one divides the constafisthat belong to real elementary divisors of an odd
order into two groups according to their sigtige group of positive £ will contain m
terms more than the group of negative ones.

This implies the theorem that the determingnindependently of the choice of the
form W, must contain at least m real elementary divisors of odd drjler

() 1would like to draw special attention to this generabtiem, which seems to have be rarely noticed
up to now. When translated into the usual manner of speaksays that of the roots of the equatiea
— b« | = 0,at least m of themwill be real wheny a,X X or 2. bixX X, iS converted into a sum of real
squares such that the squares of one sign proverntonbare than those of the other sign. If the nunmber
agrees with the number of variablethen the theorem will revert naturally to a well-kmotieorem.
[Jan. 1884].
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If (s—0d% denotes a real elementary divisor, amddenotes positive or negative

unity, according to whetheZ, is positive or negative, then we (along witleierstrasg
would like to set:

XA,, =t E) L_‘%/iu’
and therefore:
(X3 X)), = E:(X,X)),, -

The X, will then be linear functions of the original variablesvith real coefficients.

By contrast, if (S-¢)* is an imaginary divisor then one will find a second one
(S-¢)* that is conjugate to it, whem =e;-. If we then assign conjugate values to

the roots\/Cj , 4C, and set:

X/l,u :%,1/1 +ix'

Au?

—_ —1 !
X,];u —%Aju I%Wﬂ

then X, and X, will be linear functions of the variables with likewise real
coefficients, and one will have:

(X; X, )eﬂ +( Xy X/i’)ezv = 2(X,X, )eﬂ - 2(X, X, )e/], .

After these substitutionsp will be represented in terms ofreal variables. We now
have to transforn® into the squares of new variables by some sort of real substitution.
The excess of positive squares over the number ofimegajuares must then amount to
m.

Any two conjugate imaginary obviously contribute nothing tos thixcessm.
(X,X,),, will then likewise yield four squares of the one sigaiwill (X, X}),, .

The expression that corresponds to an odd real elamgativisor yields the excess of
one square with the sige . The expressio(X,X,), then contains one square and

e -1

products of each two variables. Such a product will involve positive square

and one negative one.
By contrast, if the real elementary divisor is of mverder then the expression
(X,X,)e, will include only two products of the variables, and will thyisld an equal

number of positive and negative squares.

With that, the present two theorems are proved. €asely, it is clear from formulas
(21) that one can determine a for#h with real coefficients for a giver® that
corresponds to an arbitrary system of elementary dsjiss long as among the squares
that correspond to the odd real divisors in the reptaten (21) of®, m more positive
than negative ones are present. One then imadiressbeing transformed by some real,
linear substitution into a form that contains only the sgmaf variables. Under the
assumption that was made, one can always find lindastitution that take from this
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form into the one that was given by (23), for which, tlegv variables will be expressed
in terms of the earlier ones as either real or p@ewonjugate imaginary, according to
the type of elementary divisor that they corresponditavill then suffice to furnist in
(23) with coefficients that correspond to the variousmentary divisors. Back-
substitution will then lead to a fork in the original variables that has real coefficients
There is then a means of writing down, with no furlesumptions, all of the cases that
can appear for a giveh under the transformation of the forasW into the form (23).

17.We return to the formB andQ that we were given. When we Rtenter in place
of ® as a form with non-vanishing determinant, &dh place of¥, from (23), we will
obtain the following representation of the forthandQ:

P=> (X, X)),

(24) Q=376,(% %) +(X X)),

As in the general case, the new variables are detediy the formulas (20), (21),
(22). The number of variablesmust be replaced with 6 everywhere in them. We only
remark that for the given form &f these formulas will simplify due to the fact thaet
variablesx will appear in place of the quantitid® / dx, but in an altered sequence.

The discussion on the multiplicity of the transforimatinto the form (23) that was
made in number 15 will also preserve its validity. Beeanfsthat, we might keep the
notation u, for the number of systems of elementary divisors among them that are
equal.

The theorems that were given in number 16 on the nuofogositive and negative
real squares that are contained in the represent@®)rof the form® will be modified
as follows, according to the special formPof

If we transform the forn® into a form that contains only squares of the varg@abie
some real substitution with a non-vanishing determinaam the will find just as many
positive and negative squares. The numbewhich gave the excess of positive over
negative squares in the general case, will then be emjmatd in the case of the forftn

One will then alwayd$ind an equal number of positive and negative real squieres
the representation (24) of the fofln We might denote this number by The number
of real elementary divisors of an odd order will therRbe At leastm such elementary
divisors will be present in the general case of thenfdr, while the number of real
elementary divisors of odd order will be arbitrary. @msely, the form¥ can be chosen
so that onlym real elementary divisors will be present that ade&d of odd order. Since
m has the value zero for the forfy arbitrarily many elementary divisors of the
determinant of the form spQ can then be imaginarjVe might denote the number of
elementary divisors of an odd order byi@ the sequel.

We now have enough material foclassification of second-degree complexdhe
order of the elementary divisors that are associategdQvwill determine the type of the
forms (24). When we collect the numbers that give th#ersr of the individual
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elementary divisors then we will obtain a classifmatof all second-degree complexes
into elevendifferent types by the following table:

Order of the elementary divisor

I

Il
1
IV
\%
Vi
Vil
Vil
IX
X
Xl

NWRANRERPR
N WER R

.

.

WRUONNRRRRPR

OWNRPNRRRRRR

The number 11 refers to the number of possible waysxpifessing the number of
variables — viz., 6 — as a summand.

The number of equal elementary divisors, as wellasitimber of negative ones, will
give a further basis for the classification, and ttlensigns of the terms that correspond
to the real, elementary divisors on the represemtaP4) of P. We refrain from
individually enumerating the various cases that can ¢xist, as well as from proving
that they can be related to each other continuouslsaasitional cases between extreme
terms.

18.We would like to transform the type of the fofthat was given in (24) as
follows: We leave all of those terms that corregptm elementary divisors unchanged.

By contrast, we introduce new variables in place ofvdméablesX,, ..., X, . _,, which

are associated with a real elementary divisor acegridi the sign of the consta@yj (22).
In the case wher€, is positive, we preserve the original variables. &dpposite case,
we set:

Xip=tX)p,

and thus determine the sign of the square root in such ahatyach of the doubled
products X, 50X, . _,, Will enter the new represent of the foRmas 2,5 0X,, 5,

with the positive sign.

The formP is then represented in terms of the squarepaf@iables, among which,
one will find 2o real ones and (3 g) doubled products of each two of the remaining 6 —
2p variables. Thus, those doubled products that involve re@bkes will have the
positive sign. From this representation of the faPmby means of a new linear
substitution, we must return to the originally-given form:



Klein — On the transformation of the general secondesdegquation. 25

> pMs,

in which only doubled products of each two of the six varmbildl be present, and
which will all have the positive sign.

To that end, we will, with no further assumptions, kdegse 6 — 2 variables that are
already coupled to the doubled products of two variablékargiven representation of
the form. By contrast, we will divide thepZquares intg groups of two, and resolve
each individual group into the doubled product of two new k& We thus
decompose:

Y, +Y;,
whereY?, Y; mean two such squares, into the product of the two linetréa

Y, +iY, 1Y, -iY,
0o 2, et

NFEV N

whereA means a new arbitrary constant.Y)f, Yz are not conjugate imaginaries of each
other then it will be preferable to sétequal to simply positive unity. In the opposite
case, we chooséto be equal to 1 + and thus obtain new variables that are compoked o
sums and differences of the real and imaginary comapts ofY, (Yz, resp.).

The type and manner of partitioning of the 2quares intgo groups of two is
arbitrary. As long as the elementary divisors,alifgorrespond to the individual squares,
are all different, any system of new variables thaibtained from an arbitrary grouping
of the 2o will be equally justified. We then have to chobstween:

A

(2p-1)(20- 3)...

different systems. This is then the number of ixdessvays of grouping 2 by twos. For
the 11 cases that were enumerated in the prevexi®s, this number will assume the
following values:

15,3,3,1,1,1,1,1,1,1, 1,
respectively.

Things are different when equal elementary diwsare found among the elementary
divisors that belong to thep2squares. We will then always group those squtrais
correspond to equal elementary divisors into twa with the rest of the squares that
remain under that operation, we will proceed inghme way that we did above with the
2p squares that are generally present.

In number 15, we let, denote the number that gives how often one witl fr equal
elementary divisors. Corresponding to it, we el (4, (t4,.,, resp.) denote those

numbers that express how often one will find(2v + 1, resp.) equal elementary divisors
of odd order. Finally, we introduce the notatigfy for the sums, + 14, .
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Any subdivision of Z associated (i.e., corresponding to equal elementaryots)
squares will yield:
@2n-1)(-3)...
different systems of new variables.
From any subdivision ofi2+ 1 associated squares, we must next arbitrarily single o
a square, which can happen iv@®1) ways, and then combine the remainimgpes by
twos. We will then obtain the number:

v+ 1)(v-1)v-3)...

Ultimately, Z,uém individual squares will remain. They will admit:

(3 4 -1) (X =9 -
groupings.

We then obtain the product:
R= (X u) (Xt~ - [ @+ Q@ - D@ - 3)-- F

as the total number of systems of equivalent viasab
The expression above:

(2p-1)(20-3)...

is derived from this general expression as a spease.

If P is again assumed to have its previous form wherag introduced then we will
give the six new variables thus determinge meaning of line coordinates.By
substituting them into the for@ (24), it will go over into a new forrthat we will refer
to as canonical It will take a different form according to thember and order of the
elementary divisors. We shall refrain from writidgwn the eleven different types of
complexes that correspond to them. When equal exleary divisors of odd order
appear, a number of the constants that appeariadbociated canonical form will take
on the value zero.

19. The transformation of the for@ to canonical form is aulti-valuedone. The
numberR in the previous section will determine the degyéthis multi-valuedness. We
shall now investigate to what extent one should finansformations among these
different possibilities that would lead teal new variables.

In order for that to be true, one must first flitihe condition that one should find no
imaginary roots among the multiple roots of theagun ins that expresses the idea that
the determinan§ of the formsP + Q vanishes (no. 13). Such roots will then corresipon
to either one sequence of equal elementary divisgrsvhen that is not the case, to at
least one elementary divisor of order higher thar.o In both cases, we will obtain
imaginary canonical variables. Moreover, the aggion that a system of real canonical
variables is possible demands the condition thadsitive andv negative squares will be
present amongst thevZ2v + 1, resp.) squares that belong to equal elemedigisors.
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If this condition is fulfilled consistently for valgeofn that are greater than zero, and we
combine only squares of opposite signs by twos then, fhendiscussion in number 17,
we will find just as many positive and negative squares grttmnindividual squares that
ultimately remain. With the present assumptionsywlleobtain the following number of
real transformations. Any group oP22v + 1, resp.) associated squares will give[( v

+ 1), resp.] different systems of new real variabldssquare must be selected from the
number of & + 1 squares that has a sign such that there atiger ones, in addition to it.
This is then possible iny(+ 1) ways, and then positive elements must be combined
with v negative ones by twos in such a way that each groupinerone positive element
and one negative one. There aresuch combinations. Finally, there are s@,ugm

individual squares to be grouped. We assumed above thairtiieenof all real squares
in the representation @ amounted to @ Among the individual squares, there thus still

remain:
2(0-Y vy

real ones. |If we then take the conjugate imaginadyidual squares together and
combine the real squares each time with one pes#ivd one negative then we will

obtain (O'—ZV EUL’)! systems of new variables. A real transformatibthe given form

Q to the canonical form is therefore possibl&irways, whereR” denotes the following
product:

R'=(o-Xv Dj,’j)![l_l(v +1)Hr [ 1)

In particular, if all elementary divisors are difént then this number will be equal to
o!l. For example, in the case that was denoteldabpve:

0,2,4,6

of the elementary divisors can be imaginary, ang,tlof the 15 different systems of
linear substitutions that transforfd into the canonical form under the assumption of
distinct divisors in this case:

6,2,1,1

of them will be real, respectively.

It is obviously also possible to transfofninto a simple form by a real substitution
in those cases in which all systems of canonica@likes prove to be imaginary, such as
when we consider the real and imaginary parts @fitiaginary variables that we spoke
of to be new variables. However, we cannot redesuch a form as “canonical,” because
it is derived from the representation (24) of tbenif Q by a different method from the
one that was applied in all of the other cases.

25.In summation, we have arrived at the followingutes

Let a second-degree complex be given:
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and let:

denote the second-degree condition equation that line coordinates must satisfy.
Furthermore, let(s—c,)® be an arbitrary elementary divisor of the determinant of

the form sP+ Q, and letx, mean the number that gives how often one finggjual
elementary divisors./,, and ., might denote those numbers that express how often

2v (2v + 1,resp) one finds equal elementary divisors of odd order, wpjlemeans the
sumy,, + (... Finally, let2obe the number of real elementary divisors of odd order.

P and Q can then be transformed simultaneously, by a substitution with a non-
vanishing determinant that includes:

#(V—l)
ZV‘,AJV 1

arbitrary constants, into the following forms:

P=> > X,X,,

A (utv=e;-1)
Q= z C, z X, DX, + z X, OX,, ¢
A (u+v=e;-1) (u+v=¢-2)

where Xo, ..., X, _, mean the new variables, and the sum:

z X/Lu D</1v

(u+v=e,-2)

is set to zero when, éas the value of unity.
From this representation of the foi) we can go to its canonical form by means of:

R= (X =) (X o= [] @+ Vo O@ - D@ - 3)- F

different systems of linear substitutions with mamishing determinants. In the
favorable case, the system of new variables cashbsen in:

R’ = [U—ZV QII’/’]| [I_l (v +1)“ )4

different ways such that the transformation willreal. For this to be true, it is requisite
that no multiple imaginary roots of the determinafitsP + Q be foundwhen it is set
equal to zero, and then that the number of readitp@ squares that belong to the equal
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elementary divisors in the form that was just given must beattféom the number of
real, negative ones by at mdst

V. Geometric meaning of the transformation to canonical formin particular, in the
case where all elementary factors are linear and differén

21.From number 8, the coefficients of the substitutibat ttransformsQ to the
canonical form immediately give the edges of the distsigrd coordinate tetrahedron,
relative to which the equation of the complex will be tten in canonical form.
Corresponding to the different substitutions, we witlaaip an:

D u, ﬁ% -fold

v

infinite family of R coordinate tetrahedra, among whRhof them will be real. These
tetrahedra will all have the same distinguishedti@hship with the complex.

We thus understand a simple, two-fold, mxfold infinite family of coordinate
tetrahedra to mean the totality of all of them thassess edges whose coordinates can be
derived from the coordinates of the edges of onterin, with the assistance of 1, 2, ...,
m arbitrary constants. If we then understédP..3; to mean two opposite edges of the
coordinate tetrahedron, and then apply the tramsftion:

Px = AP, Pers = Prr3,

under which the edges themselves, and thus, ttehésiron will not change, while only
the unit that the coordinate system is based upéircmange to another, then we must
consequently speak of a simply-infinite family efrahedra, corresponding to the various
values of the arbitrary constat

22.1n the sequel, we shall restrict ourselves togdemetric discussion of the results
that were obtained in only the case where all eféglementary divisors are linear and
distinct. In this casd? andQ will be represented in the following forms:

P=> X},
A

25
(23) Q=Y ¢, X7,
A

where the summation must go from 1 to 6, and.., cs mean distinct quantities. We
can transfornQ from this representation into the canonical formlb different ways.
According to whether:

0,2,4,6
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of the elementary divisors are imaginary:
6,2,1,1,

respectively, of the 15 distinguished tetrahedra will lag ré/ith respect to any of these
latter tetrahedra, the forr can be written in the following form:

(26) Q= Al,4 (plz + p42) +2 B]_’4 P1 P4
+Aos (P pS) +2Bos P2 Ps
+Ass (P £ p) +2BssPsPs,

wherepy, ..., ps denote the new real variables, ahdlenote the coefficients of the one
group, while theB denote those of the other (no. 12). Of the three digaisremain
undetermined, one must choose a pair of imaginary elergeshtasors that correspond
to- 1.

This is the canonical form d® in the case of linear, distinct elementary divisors,
whose derivation was our problem.

23.We now address the grouping of the 15 distinguished telirahamongst
themselves. We might briefly refer to them as thedamental tetrahedraf the
complex.

Two opposite edges of one of the fifteen fundamentedhiedra are common to two
other ones. If we choose any two of the six squaresmégns of whichP was
represented in (23), then the four remaining ones can leangplitwo groups of two in
three ways. The system of fifteen fundamentahhetdra then encompasses thirty edges.
Their sixty faces intersect six of these edges, dmar tsixty vertices are likewise
distributed over six of them. Any of the thirty edgedl when cut twelve of the
remaining ones. The same twelve edges will be cut bgcansgl edge that has an
exclusive relationship to the first one. Therefore, titirty edges will divide into fifteen
groups of two that belong together.

The variablesX, that enter into (25) will represent linear complexes mtieey are
each set equal to zero. If we choose two of th¥m,X,, arbitrarily then the two
equations:

X1+iX,=0, X1—iX=0

will represent two associated edges of the thirty edgésediundamental tetrahedra. All
straight lines that cut the one or the other of theseedges will satisfy the two given
equations, and will thus belong to the two complexgsX, . The two edges that we
speak of will then be the directrices of the congruethzd is defined by the two
complexesXy, Xz (no. 12). That will give the geometric interpretatiorthad variables<,

in terms of the system of fundamental tetrahedra.

Three of the complexes, — say, X;, X, X3 — determine a second-degree surface

(viz., a hyperboloid) as a skew surface (no. 12). Thisasaris associated with the
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following six of the system of edges of the fundamem¢atahedron as lines of a
generator of it:
X1 +iX,=0, Xo +iX3=0, X3 +i X1 =0,
X]_—iXZZO, Xz—iX3:0, )%—iX]_:O

as directrices of the congruences of any two of theetikomplexes'), and because of
the way that the thirty edges in question of the tethahare grouped, the following six
edges:
X4 +iX5=0, Xs+iX5=0, Xe+1X4=0,
X4—iX5:0, X5—iX6:0, Xe—iX4:0,

will be lines of the other generator.
The six symbol,; can be combined three at a time%g%.g = 20 ways. The thirty

edges of the fundamental tetrahedra thus separate imitytgreups of six that pair-wise
belong together. The six edges of one group are lindseadadme general of a second-
degree surface, while the six edges of the associated geuipes of the generator of
the same surface. The system of thirty edges thea degtinguished relationship with
ten different second-degree surfaces, of which four ehtivél cut an edge.

24. If all elementary divisors are real then six o fifteen fundamental tetrahedra
will be real. The remaining nine tetrahedra are sudhthey possess two real, opposite
edges and are conjugate to the remaining opposite edges. s$amated real edges are
common to two real and one imaginary tetrahedron.th®fthirty edges of the fifteen
tetrahedra, eighteen of them are then real, and the wthé/e are imaginary, such that
conjugate imaginary ones belong together.

If two of the six elementary divisors are imagindhen only two of the fifteen
tetrahedra are real. Like the nine tetrahedra in theque case, one of them is conjugate
to itself. The remaining twelve imaginary tetrahedra pair-wise conjugate to each
other. Of the thirty edges, only ten of them will balrevhile the remaining twenty will
be imaginary. Of these twenty edges, twice two edg#sbesiconjugate and likewise
associated, while the remaining sixteen edges will diwde two groups that are
conjugate, and each of which will include eight edges ttleapair-wise associated.

Finally, in the third and fourth cases, where four or $ixhe elementary divisors,
respectively, are imaginary, only one of the fifteematetdra will be real. Of the thirty
edges, six of them will be real, while the remaining 24 @ imaginary. They divide
into two mutually conjugate groups, each of which involvedusvedges that are pair-
wise associated. Among the imaginary fundamentalhetra, none of them will have
only two imaginary vertices (no. 10).

In the case where six of the fifteen fundamentaabetdra are real, we get from one
real tetrahedron to a second one, and indeed to thalaidsmve the two edgé€s, Ps in
common with the given one, when we set:

P1+Pas= X, P2 +pPs= X,

() Cf., Plueckers Neue Geometriamo. 101.
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P1 — Pa = iXa, P2 — Ps = iXs,
and

Xl—iX5:2pi, X2+iX4:2p'2,

X1+iX5:2p;, Xz—iX4:2pé.

The following direct transformation will emerge froms

2p = prtpa—pz2+ps,

2p, = pL+tpatp2—ps,
2p, = pL—Ppatp2+ps,
2p; =— P+ pPatp2+ps,
2p; =-2ps,
2ps = 2ps,

and this will correspond to the following transformatafrthe point coordinates( ...,

Z):
\/521: Z1+ 2, \/52’2222_23,
\/Ez;:—zl+z4, \/52;222+Z3-

Since we can also apply exactly the same conversiotihe case of imaginary
tetrahedra, we will obtain the theorem that the faces of two fundamental tetrahedra

that intersect along an edge, as well as the fourcesrtihat lie on an edge, will be
harmonically conjugate to each other.

25. We thus go on to the examination of the geometric mgaaf the form of
equation (26). For the sake of simplicity, we thus asstiat all elementary divisors are
real, so only positive signs will appear in (26).

Let a line of the complex be known whose coordinates ar

P1, P2; Pa; P4, Ps, Pe -

The same complex then belongs to a sequence of othghstlines whose coordinates
are given by the same six quantities, but in a diffesequence. We can switphwith
P4, P2 With ps, ps with ps . We then obtain seven new straight lines thatileeeise lines
of the complex:

P4, P2; Ps, P1: Ps, Po »

P1, Ps, Pe: P4, P2, Ps

P4, Ps: Ps, P1: P2, P3 s

We will obtain further lines of the complex when webe the signs g andp,, p2 and
ps, andps andps . Corresponding to each of the given eight lines, weobtain three
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new ones that likewise belong to the complex. Invalenoneline is given there will
thus be 32 of them that are determined.
This number can be easily derived, as followps ;+— p1, — ps can appear in place of
+ p1; likewise, +ps, — p2, —Ps (+Ps, — P3, — Ps, r€SP.) can appear in place opH+ ps,
resp.). We then obtain:
444 =64

combinations, and 64 / 2 = 32 straight lines that correspotitem, because a change of
sign in all coordinates of the straight line that theggresent will change nothing.

The relationship between these 32 straight lines ispn@zal. They can be
ascertained geometrically by means of those ten secandedsurfaces that each contain
twelve edges of the system of thirty edges of the fundehesirahedron (no. 23). Any
of these surfaces is represented by the equation:

212+22,=0,

relative to a suitably-chosen fundamental tetrahedutwerez, ..., zz might mean point
coordinates. The arbitrarily-chosen straight line \itiga coordinates:

P1, P2, Pa, Pa, Ps, Ps

then corresponds to a second one that is polar telative to this surface, and whose
coordinates are:

Pa, P2; = P3: P Ps, = Pe »

and this is one of the currently specified 32 lines. Eddnese 32 lines thus yields a
straight line as its polar, relative to each of & surfaces, which is itself included in the
sequence of 32 lines.

We can say thahe given complex is reciprocal to itself with respect to eatchese
ten second-degree surface§hat is: Each line of the complex corresponds terdihes
in it as its polars with respect to each of these sasfaor in other words, those of the
complex lines that go through a fixed point will define aectitat corresponds to a plane
curve with respect to each of the aforementioned swfadaich will itself be enveloped
by lines of the complex.

The determination of these ten surfaces is independéhé @bnstants that enter into
equation (26).

26. Equation (26) for the form gives a geometric constructbthe second-degree
complex. We can first bring this form into the fallmg form:

(27) 2P Ps+ 2P, Ps+ 2P3 Ps = 0,

where P1, ..., Ps denote linear complex. To that end, we need only tolveshe
aggregate of terms:

A a(PE+ B2)+2B s R OR.,



Klein — On the transformation of the general secondesdegquation. 34

into a product of two linear factors:

2(a px + B pxr3) OB pr+ Q Pr+a),

wherea, [ are determined by the equations:
2aB=Axw3, &+ [ =Byus .

The complexe®s, ..., Ps can be constructed linearly) by means of the coordinate
tetrahedra and a straight line that belongs to thermave generally, from five of their
lines.

One determines the six planes that correspond tdbéreay point in space relative to
these six linear complexes. We might likewise detindse planes with the symbdis,

.., Ps. Those two edges, along which the second-order conavdsatlefined by the
lines of the desired complex at the given point will@oy one of these planes — sBy—
can be constructed as the intersection of this pAatiethe cone:

P> Ps+P3Ps =0,
which is given by two projective pencils of planes, say:
P>+ A Pg, P;—APs5.

A three-fold repetition of this construction will yieldxsedges of the complex cone in
question. Five of them will be sufficient to determine i

27. In conclusion, we might investigate the type ofidgished relationship that the
fundamental tetrahedra have to the complexes.

According toPluecker, any line is associated with a second one as its potar
respect to a second-degree complex (It will have the double relationship with the
former that it is, on the one hand, the geometriadofor the poles of the first straight
line with respect to all curves that will be envelopedithgs of the complex in the planes
that go through them. On the other hand, they willrbelped by the polar planes to the
initial straight line with respect to all cones twatre defined at the points of the lines of
the complexes. This relationship between the two Ime@®i reciprocal. The second line
will be associated with a third, etc. Except for theedi of the complexes that are
conjugate to themselves, only a finite number of straliglts will be given that are
themselves again the polars of their polars.

If we three make arbitrary coordinates in equation (26)ish, which refer to three
edges of the fundamental tetrahedra that intersecpaintor lie in a plane, then we will

() Plueckers Neue Geometrieno. 29.

(") Plueckers Neue Geometrieno. 172. — The relationship of a straight line to ittapcan be
represented with the help of the simply-infinite famdf linear polar systems that was mentioned in
number 12, which correspond to the given straight letative to the given second-degree complex. The
given straight line and its polars are the directriceshe congruence that is determined by tme
parameter group of linear polar complexeBlu¢cker, loc. cit)
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obtain an equation for the representation of the dbaé emanates from the vertex,
relative to the curve that lies in the face, thdy amvolves the squares of the remaining
three variables. The cone and the curve are thugedféo a three-edge and a three-
corner, resp., that are self-conjugate relative tdtifollows from this that the polar that

is associated with an arbitrary edge of a fundamentahedron by the complex is the
opposite edge of that fundamental tetrahedron, so tltafoental tetrahedron is chosen
in such a way thaany two opposite edges of it will be mutually conjugate with respect to
the complex.

28. One can now show that except for the thirty edgetheffiteen fundamental
tetrahedra, no other lines possess the property thatthmesspond to themselves relative
to the given complex.

Let two such lines be given then. We choose them tmpposite edges of a
coordinate tetrahedron and refer the complex to thrme denote the two give edges
by P; andP, then its equation will be missing the eight terms il double products:

P1 P2; P1 P3, P1 Ps; P1 Pe,
Pa P2; P4 P3, Pa Ps, Pa Pe,

sop; andp4 will appear only in the combination:

a,p’ +2a,p Pt a,n

If we then transform the two forms:

P=> p P,.s

and
Q(p1, P2: P3, Pa, Ps, Pe),

as we would like to write instead ©f, corresponding to equations (25), into two forms
that only involve the squares of the variables then ltlveilpermissible to carry out this
transformation with the two pairs of forms:

2p1 Ps and a,p’+2a,pp,t a,p,
and

2P, ps + 2p3 Ps and  Q(O, p2, ps, 0, Ps, Pe)

individually. With that, we have proved that the edéesP. of the given coordinate
tetrahedron belong to the system of thirty edges ofithdamental tetrahedra. We thus
have the theorem:

Let a complex be given whose associated elemedigisors are all linear and
distinct from each other. There are then thirtyagght lines that are mutually conjugate
to each other with respect to the complex. Accgydo whethelO, 2, or more of the
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linear elementary divisors are imaginadg, 10,or 6 of these thirty straight lines will be
real, respectively ).

() My own papers in Bd. Il of these Annals (pp. 188seg.and 366gt seq. 1869) are a continuation
of my dissertation.

Furthermore, one should perhaps confer the following gatixbns:

First, as far aBnear transformations of line coordinatese concerned: a publicationtdémming in the
Ziiricher Veirteljahrsschrift, Bd. 16 (1871), and then, in paldir, Fiedler's descriptive geometry {2ed.,
1875), or the same author’s treatmen®almoris Space Geometrfy. |, 3% ed., 1879).

Furthermore, as far as thiassification of second-degree compleisesoncerned: The treatise\&feiler
in volume VII of Math. Ann. (1873), and then the more recemnéstigations oSegre(Memorie della R.
Accademia di Torino, ser. Il, t. 36, 1883). Also linkeithwthis are the special papers Mirst
(Collectanea mathematica in memoriam Chelini, 1881therProceedings of the London Mathematical
Society, v. 10, 1879), and 8kegreandLoria (Segre resp.) in volume XXIII of these Annalen (1883).

Finally, on thegeometric generation of second-degree compleXhs: doctoral disseration &chur
(Berlin, 1879, or also Math. Ann., Bd. X\fjjedler, in volume 24 of Ziricher Veirteljahrsschrift (1879), or
in volume 2 ofSalmoris Space Geometr{8“ ed., 1880)W. Stahl, in volume 93 of the Jour. f. Math.
(1882), Weiler in volume 27 of the Zeitschrift fir Math. und Physik (1883 ,well as volume 95 of the
Jour. f. Math. (1883). In particular, thmlar theoryof second-degree complexes was treated from the
geometric viewpoint byBertini (Giornale di matematiche, vol. 17, 1879), and then Stahl (Jour. f.
Math., Bd. 94, 1883).



