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 In a distinguished treatise 1), Lie has, among other things, developed a fundamental 
analogy that exists between the geometry of linear complexes and ordinary metric 
geometry.  This analogy comes back to the fact that one can map the linear complex in a 
single-valued way to the point-space 2), where an isolated line enters into linear 
complexes as a fundamental structure, while in point-space, it is a conic section.  Metric 
geometry is then nothing but the investigation of the projective properties of spatial 
structures on the basis of a conic section that is given once and for all, namely, the 
infinitely distant imaginary circle.  The geometry of linear complexes is therefore linked 
with metric geometry by the map in question, in such a way that for a linear complex just 
one arbitrary line is distinguished. – The connection that is uncovered here between two 
realms of geometry that seem, on first glance, to be very heterogeneous must be 
tremendously fruitful for both of them.  Here, it might suffice, in this regard, to refer to 
the rich contents of the aforementioned treatise, in particular, to the relation that is given 
in it between the problems of the principal tangent curves and curvature curves. 
 In connection with these investigations of Lie, to which I was directed by repeated, 
detailed communications from the same, I found that in precisely the same way that the 
geometry of linear complexes is connected with the metric geometry of ordinary spaces, 
a connection exists between the entirety of line geometry and the metric geometry of 
spaces of dimension four 3).  In this regard, I especially present a theorem of line 

                                                
 1) [By this, we mean the great treatise of Lie that was recently published in Bd. 5 of Math. Ann.:  
“Über Komplexe, insbesondere Linien- and Kugelkomplexe, mit Anwendung auf die Theorie partieller 
Differentialgleichungen.”  It would certainly be desirable to clarify the close relationship that exists 
between Adhandlungen VIII and IX and this treatise of Lie, especially since the latter relates to numerous 
associated remarks of my own.  However, it seems impossible to put this into the form of a brief, 
comprehensive commentary.  Thus, one must occasionally turn to other references.  We hope that the 
abundance of geometric ideas that are included in the treatise of Lie, which is presently difficult to fathom 
in its original form, a situation that was exacerbated by the inexcusable delay in the publication of Lie’s 
work, which was prepared long ago, will become common knowledge to mathematicians! K.] 
 2) Nöther first commented upon this map: Zur Theorie algebraischer Funktionen.  Gött. Nachrichten.  
1869. 
 3) By the metric geometry of such a space, one must understand this to generally mean the 
investigation of the projective properties of that structure on the basis of a distinguished structure.  If one 
determines, as one ordinarily does in metric investigations, the spatial element (the point) by rectangular 
coordinates, thus, by four coordinates x, y, z, t, then the structure in question consists of those infinitely 
distant elements for which x2 + y2 + z2 + t2 = 0. 
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geometry 4) that built upon Dupin’s theorem in ordinary metric geometry.  I linked it with 
further considerations that are aimed at the objective of, on the one hand, transferring the 
entire content of metric geometry to line geometry, while, on the other hand, utilizing the 
algebraic methods that served successfully in line geometry for the treatment of metric 
problems.  These considerations – which are, moreover, in close proximity to the ones 
that Lie set forth and grow out of them – will be represented in what follows, if only 
along general lines.  Hopefully, the presentation given here will suffice to make it clear 
that in the manner described here, one obtains a deeper development of the two 
disciplines that are in question: line geometry and metric geometry. 
 In line geometry, as one knows, one prefers to define the line by six homogeneous 
coordinates pik that are linked by a condition equation of second degree: 
 

P ≡ p12 p34 + p13 p42 + p14 p23 = 0. 
 

If one regards, for the moment, the pik as independent variables then one constructs from 
them a manifold − or, as one often says, a space − of five dimensions.  It shall be denoted 
by R5 (more generally, a space of n dimensions will be denoted by Rn).  The manifold of 
four dimensions of lines is singled out of this space by the aforementioned quadratic 
equation, in a manner that is similar to the way that the totality of points in ordinary space 
(R3) is singled out by a quadratic equation that defines a surface of second degree.  One is 
thus led to treat line geometry analytically in a manner that is similar to the geometry of 
a surface of second degree.  The viewpoint thus suggested shall be given a basis and 
discussed more closely in § 1; furthermore, it is based upon all of my work on line 
geometry up to now. 
 We might likewise introduce a notation here that will be necessary in the sequel.  We 
already denote the space of n dimensions by Rn .  A structure that will now be singled out 
by µ equations, which will thus also define a manifold of n – µ dimensions, shall be 
denoted by Mn−µ .  Thus, upper right indices might give the degree of the µ equations 
through which the Mn−µ is determined. – The totality of straight lines defines an (2)

4M  by 

means of this relationship, and it lies in the space R5 .  In a similar way, the lines of a 
linear complex define an (2)

3M  in R4 , the lines of a congruence, an (2)
2M  in R3 , and 

finally, the lines of a ruled surface define an (2)
1M  in R2 .  (While this structure, which is 

regarded as being in R5 , must preserve the relations (1,2)
3M , (1,1,2)

2M , (1,1,1,2)
1M .)  This 

notation is somewhat abstract, but it is not good to go around it in what follows. 
 The connection between line geometry and metric geometry for four variables now 
comes from a single-valued map of the (2)

4M  in R5 to R4 . – It is well-known how one can 

map an (2)
2M  in R3 − say, for instance, a surface of second degree that lies in ordinary 

space – to R2 – say, the plane − in a single-valued way.  Geometrically speaking, this 
comes about by the process of stereographic projection.  Thus, two fundamental points in 
the plane appear that are the images of the two generators that go through the point of 
projection.  On the surface of second degree one finds a fundamental point, namely, the 
projection point.  However, metric geometry uses a point-pair as the fundamental 

                                                
 4) Göttinger Nachrichten.  1871.  No. 3.  [Cf., Abh. VII of this collection.] 
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structure in the plane, namely, the two infinitely distant imaginary circle points.  For that 
reason, one can say: The geometry on a surface of second degree and metric geometry in 
the plane correspond to each other as long as one distinguishes an (arbitrary) point on the 
surface. – By the map we mentioned of an (2)

1nM −  in Rn onto Rn−1, we now find completely 

similar going on.  Let an element of (2)
1nM −  (which corresponds to the projection point) be 

distinguished.  A fundamental structure then appears in Rn−1 , since it also used the metric 
geometry of Rn−1, namely, an (1,2)

3nM − .  In general, one can then say: 

 The metric geometry of Rn−1 can be regarded as the stereographic projection of an 
(2)

1nM −  that lies in Rn  
5). 

 With this theorem, which will be established completely in § 2, the connection 
between line geometry and the metric geometry of R4 is given completely.  Naturally, one 
likewise has a connection between the geometry of linear complexes and the metric 
geometry of R3 .  One can ultimately link the geometry of a linear congruence with the 
metric geometry of R2 , and the geometry of a ruled surface with the metric geometry of 
R1 in the same sense.  On the other hand, the theorem gives a basis for the treatment of 
the metric geometry of Rn−1 that was previously suggested; this shall likewise be pursued 
a bit further in § 2.  By it, one will be led, in the first place, to distinguish between those 
metric properties of Rn−1 that, when carried over from the (2)

1nM −  in Rn , imply a particular 

relationship to the projection point that is employed by the map, and the ones that do not.  
When n = 5, the latter yield general line-geometric theorems; the former yield ones in 
which an arbitrary line enters in fundamentally. 
 In order to show, at the least, an example of the fruitfulness of this approach, in § 3, I 
show the line-geometric analogue of the orthogonal systems of metric geometry.  They 
are the systems of line complexes that I will refer to as systems in involution.  A system 
in involution is a singly infinite system of complexes that depend upon a parameter of the 
fourth degree, such that four complexes of the system go through each line of space.  
These four complexes – and this actually constitutes the character of the systems we 
speak of – lie pair-wise in involution relative to that same line 6).  The involutory position 
of two complexes thus corresponds, on the side of line geometry, to the orthogonality of 
two surfaces in metric geometry. – For systems of complexes in involution one then has a 
theorem that is analogous to Dupin’s theorem in ordinary metric geometry.  As I will 
further discuss in § 4, to the extent that is fruitful, when one is given a system in 
involution, one may understand the principal tangent curves on a large number of 

                                                
 5) Regarding the metric geometry of the plane as the stereographic projection of the geometry on a 
surface of second degree (in particular, a sphere) is a means that Chasles used in, in particular.  The general 
notion suggested in the text was occasionally employed by Darboux in the theory of systems of orthogonal 
surfaces (Comptes rendus, t. 69, 1869, 2.  Sur une nouvelle séries de systèmes othogonaux algébriques).  
As Darboux communicated to me personally, it is a general principle that he was led to in the presentation 
of his theorem on metric geometry. 
 6) I shall refer to the following relationship between two complexes relative to a common line as an 
involutory position: In each plane that goes through the line one finds, corresponding to each complex, a 
complex-curve that contacts the given line.  The two contact points may be regarded as associated with 
each other.  If one now rotates the plane then the two points describe collinear sequences of points.  The 
complex is now said to be involutory when the relationship between the two sequences of points is 
involutory. 
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surfaces.   In particular, we include the determination of the principal tangent curves of 
the Kummer surface of fourth order with sixteen nodes, as was derived from the 
investigations of Lie and myself 7). 
 I will then expressly comment upon a distinction that exists between the things that 
are presented here and some chapters of the prior work of Lie, and thus likewise explain 
how, in connection with this distinction, Lie has developed a new transformation to be 
applied to metric geometry 8).  By means of the map we spoke of that takes linear 
complexes to ordinary point-space, Lie linked line geometry with the geometry whose 
element is the sphere of ordinary space.  By contrast, here, line geometry will relate to 
the point geometry of the space of four dimensions.  Whereas the latter relationship is 
one-to-one, the former is not, since each line generally corresponds to a sphere, but each 
sphere corresponds to a line-pair.  Since both maps yield things that are of interest to line 
geometry, one can present the following method for the treatment of metric problems in 
which one ignores the considerations of line geometry as inessential: One relates a point 
of space of n dimensions to a sphere in the space of n − 1 dimensions, in such a way that 
each point corresponds to a sphere, while each sphere, to a point-pair.  This comes about 
simply when one lets the n coordinates of the points in Rn mean the n – 1 coordinates of 
the center and the radius of a sphere in Rn−1 .  This is the method that Lie presented for 
linking the metric geometry of Rn and that of Rn−1 .  Not to be confused with this is a 
process that was presented by Darboux 9) that likewise links the metric geometry of Rn 
with that of Rn−1 .  It essentially comes down to this: The metric geometry of Rn is carried 
over, by a spherical map, to a sphere in Rn and then, by stereographic projection onto 
Rn−1. 
 

§ 1. 
 

Line geometry is like the geometry of an (2)
4M  in R5 . 

 
 This statement finds its actual basis in the following behavior of the line coordinates 
pik .  For the coordinates pik one has: 
 

P ≡ p12 p34 + p13 p42 + p14 p23 = 0. 
 

Now, in order for two lines p and p′ to intersect, one must have: 
 

ik
ik

P
p

p

∂ ′⋅
∂∑  = 0. 

 

                                                
 7) Cf., a common communication in the Monatsberichten der Berliner Akademie.  December 1870 [see 
Abh. VI of this collection, as well as what is included (explained, resp.) in the cited treatise [of S. Lie]. 
 8) Göttinger Nachrichten.  1871.  No. 7. 
 9) Cf., the note that was cited above: Sur une nouvelle séries de systèmes orthogonaux algébriques.  
Comptes rendus.  69. 1869. 
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As a result, one can present the following theorem, which I have already communicated 
on one occasion 10): 
 If one replaces the line coordinates pik with arbitrary linear functions of them that 
shall satisfy only one condition in order to take the manifold (2)

4M : 

 
P = 0 

 
into itself then one has a collinear or dualistic (reciprocal) conversion of the line space.  
On the other hand, one obtains all such collinear and reciprocal conversions in this way. 
 As far as the first part of this theorem is concerned, all lines will obviously go to lines 
under the transformations in question, and intersecting lines will go to intersecting lines.  
The totality of the two-fold infinitude of lines that go through a point (and thus intersect 
it) generally correspond to a two-fold infinitude of lines that intersect it.  Thus, there 
remains the double possibility that they either again go through a point or that they 
represent the totality of lines that lie in a plane 11).  In the former case, one has a spatial 
transformation that takes each line into a line and each point into a point, and it is 
obviously a collinear conversion.  In the latter case, by comparison, one has a spatial 
transformation that takes each line into a line and each point into a plane.  It is therefore a 
dualistic conversion. 
 However, one will conversely have that each collinear and each dualistic conversion 
will be represented in line coordinates in the aforementioned way.  By such a conversion, 
the point coordinates will then be replaced with linear functions of the point or plane 
coordinates.  As a result, in place of the previous line coordinates pik , which can be 
represented equivalently as two-rowed determinants of the point coordinates or as plane 
coordinates, linear functions of them enter in.  These linear functions also have the 
property of taking the (2)

4M : 

P = 0 
 
into itself, since indeed straight lines remain straight lines under it, and thus the line 
manifold that is represented by the aforementioned equation does not change. 
 With this, the aforementioned theorem is proved completely.  This theorem now gives 
rise to the following treatment of line-geometric problems: The newer geometry 
examines all spatial structures – in particular, the line structure – only insofar as they 
remain unchanged under collinear or dualistic transformations, or, if one prefers, they 
lead all other properties back to properties of this sort.  We bring precisely the same class 
of transformations under consideration when we regard the line space as an (2)

4M  in R5 

and examine the projective properties of R5 that relate to the (2)
4M .  All of line geometry 

will then come down to the following problem: 

                                                
 10) Math. Ann., Bd. 2 (1870) (Geometrisches über Resolventen…) [See Bd. 2 of this collection.  This 
theorem was already proved in my Dissertation (Abh. I of this collection) by means of computation. (No. 6-
8) K.] 

 11) In a similar way, one divides the linear transformations that take an (2 )

1n
M −  in Rn into itself into two 

families in the event that n is an odd number.  Cf., the article: “Über die sogennante Nicht-Euklidische 
Geometrie,” § 16.  [Math. Annalen, Bd. 4 (1872).]  [See Abh. XVI of this collection.] 
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 Investigate the projective content of the (2)
4M  that lie in R5 .  Then convert the results 

into the language of line geometry. 
 I have explained how one goes about doing this more thoroughly, in all due brevity, 
in the essay: “Die allgemeine lineare Transformation der Linienkoordinaten.”  (Math. 
Annalen, Bd. 2 [see Abh. III of this collection]) A linear equation (or, we can say: a plane 
in R5) represents a linear complex that will be a special case when the plane contacts 
the (2)

4M .  If two planes are conjugate relative to the (2)
4M  then one says that the 

components are involution.  If the intersection of the planes contacts the (2)
4M  then it 

contacts the two complexes. (The common congruence to them then has two coinciding 
directrices.) 
 We shall not go further into these matters here 12); the following remarks might still 
find a place here, though.  Line geometry is ultimately nothing but projective space 
geometry.  The aforementioned theorem thus forms the basis for a peculiar treatment of 
the geometry of R3 in which the linear and dualistic transformations of R3 will be 
replaced by the linear transformations of a higher space such that a structure that lies in 
this space remains unchanged.  One can pose the question of whether an analogous 
treatment of spaces other than R3 is possible.  This is generally the case, but only in 
special spaces.  Thus, one can treat R1 as a conic section in R2 or as a space curve of third 
order in R3 , etc.  Then the straight line R1 may be related to a conic section (a space curve 
of third order, resp.) in such a way that its three-fold infinitude of linear transformations 
correspond to the equally numerous linear transformations take a conic section in the 
plane (a space curve of third order in space, resp.) to itself.  On this, rests the conversion 
principle published by Hesse (Borchards Journal, Bd. 66, 1866).  In particular, Hesse 
expressed the relationship between the straight lines and the conic sections in the plane 
and showed how the projective geometry of the plane yielded a geometry of point-pairs 
on the line by this conversion 13). 
 

§ 2. 
 

Connection between the metric geometric of (n – 1) variables and the 
geometry of an (2)

1nM −  in Rn . 
 

 Let an (2)
1nM −  in Rn be given.  By a suitable choice of homogeneous variables x1, …, 

xn+1 one can generally bring its equation into the form: 
 

0 = 2 2 2 2 2
1 2 1 1n n nx x x x x− ++ + + + +⋯ . 

We now set: 

                                                
 12) [This method of examination was later systematically developed by C. Segre.  (Mem. della R. Acc. 
di Torino, Ser. II, t. 36 (1885).] 
 13) One can again connect with this, when one, like Clebsch and Gordan, for the purpose of carrying out 
the typical representation of even binary forms, determines the points of the line by means of three 
homogeneous coordinates, between which one condition equation of second order exists; cf., Clebsch: 
Theorie der binären Formen (Leipzig 1871).  Ninth section. 
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      p = xn + ixn+1 , 
      q = xn – ixn+1 , 
then we get: 

0 = 2 2 2
1 2 1nx x x −+ + +⋯ + pq . 

 

Starting from this form of equation, one can map the (2)
1nM −  to Rn−1 with no further 

assumptions.  For that purpose, one needs only to set: 
 
      ρ x1 = y1 yn , 
      ρ x2 = y2 yn , 

… 
      ρ xn−1 = yn−1 yn , 
      ρ p = yn yn , 
      ρ q = − 2 2 2

1 2 1( )ny y y −+ + +⋯ . 

 
For n = 3, these are the well-known formula that express the stereographic projection of a 
surface of second degree onto the plane. 
 As a fundamental structure, what appears under this map is: 
 1. In Rn−1 , the (1,2)

3nM −  that will be expressed by the pair of equations: 

 
      0 = yn , 
      0 = 2 2 2

1 2 1ny y y −+ + +⋯ . 

 
Each element of it corresponds, not to one element of the given (2)

1nM − , but to a one-fold 

infinitude of them. 
 2. On the (2)

1nM − , a single element (the projection point): 

 
x1 = 0, x2 = 0, …, xn−1 = 0, p = 0. 

 
It corresponds to the linear manifold of (n – 1) dimensions: 
 

yn = 0. 
 
 Now, it was already remarked that the metric geometry of Rn−1 employs precisely a 

(1,2)
3nM −  as a fundamental structure.  By our map, as we asserted, the metric geometry of 

Rn−1 will then be related with the geometry of (2)
1nM −  in Rn by the establishment of a 

distinguished element. 
 The type of this relationship will be represented by the following theorem, which 
singles out the relationship as an essential element: 
 The linear transformations of Rn−1 , which leave the fundamental (1,2)

3nM −  unchanged, 

correspond to those linear transformations of the Rn that do not change the given Mn−1 
and the (arbitrarily chosen) projection point that one finds on it. 
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 In fact, if we set, instead of y1, …, yn , linear functions of them that do not change the 
fundamental (1,2)

3nM − : 

      0 = yn , 
      0 = 2 2 2

1 2 1ny y y −+ + +⋯ , 

 
then the formulas yield the validity of the theorem with no further assumptions. 
 The former transformations are, however, the ones that one considers in the metric 
geometry of Rn−1 ; i.e., they are the conversion that do not change the metric properties of 
Rn−1 .  As an example, if n = 4 then Rn−1 is the ordinary point space.  The fundamental 

(1,2)
3nM −  is the infinitely distant imaginary circle.  The linear transformations of point space 

that do not change the latter are the ones that one refers to as motions, similarity 
transformations, and reflections.  Under these transformations, however, all metric 
relationships between spatial figures remain unchanged. – On the other hand, one would 
have to bring under consideration the corresponding cycle of linear transformations of x, 
when one asks about those properties of the structures in Rn that relate to the given (2)

1nM −  

and the projection point one finds on it. 
 One can now pose the question: Which transformations of Rn−1 correspond to those 
linear transformations of Rn that leave only the given (2)

1nM −  unchanged, but not the 

projection point itself, as well?  Before we answer this question, we would like to alter 
the mapping formulas thus employed in such a way that a formula appears for the 
connection with the ordinary representation of the metric geometry of Rn (where 
rectangular coordinates will be used).  To that end, it suffices to set yn = 1 and to regard 
the y1, …, yn that are thus absolutely determined as rectangular coordinates.  yn = 0 is then 
the location of the infinitely distant element of Rn−1 (the infinitely distant plane).  In yn = 
0, one finds the fundamental (1,2)

3nM −  that is singled out from it by the equation: 

 
0 = 2 2 2

1 2 1ny y y −+ + +⋯ . 

 
It will now be confirmed that the (2)

2nM −  , which is represented by the following equation: 

 
(y1 – α1)

2 + (y2 – α2)
2 + … + (yn−1 – αn−1)

2 = r2, 
  
distinguishes a sphere in Rn−1, by analogy with ordinary space geometry.  α1, α2 , …, αn−1 
are the coordinates of its center and r is its radius.  Such a sphere is the image of a plane 
intersection that is given in Rn and projects onto (2)

1nM −  in Rn−1 .  The equation of the 

sphere is then the general linear relation between the given mapping functions that 
represent (2)

1nM − .  Among the spheres, one finds, in particular, ones with infinitely large 

radius – i.e., planes; they are the images of those plane intersections in the given (2)
1nM −  

that go through the projection point 14). 

                                                
 14) One makes sense of this by the ordinary stereographic projection of a F2 .  Any plane intersection 
maps to a circle; in particular, when it includes the projection point it maps to the projection point. 
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 We now consider how one changes the map of the given (2)
1nM −  when one takes (2)

1nM −  

into itself by linear transformations of Rn .  We have already examined those 
transformations among them that do not change the projection point.  They correspond to 
the motions and the similarity transformations of Rn−1 .  All other transformations, 
however, are obviously compositions of transformations of this sort and transformations 
that correspond to a relocation of the projection point to the given (2)

1nM −  .  However, if we 

exchange the projection point we have used up to now: 
 

x1 = 0, x2 = 0, …, xn−1 = 0, p = 0 
 
with another one which we, regardless of generality, would like to make: 
 

x1 = 0, x2 = 0, …, xn−1 = 0, q = 0, 
 

then what comes out of this is that the quantities in Rn−1 : 
 

y1 , y2 , …, yn−1 , 
 
must be replaced with the following ones: 
 

1
2

y

ρ
, 2

2

y

ρ
, …, 1

2
ny

ρ
− , 

 
where ρ2 refers to the expression: 
 

ρ2 = 2 2 2
1 2 1ny y y −+ + +⋯ . 

 
Such a transformation shall be called, by analogy with the corresponding transformation 
of two and three variables, a transformation through reciprocal radius vectors.  We can 
now state the theorem: 
 The totality of the linear transformations of Rn that take the given (2)

1nM −  into itself 

correspond to a cycle of transformations in Rn−1 that can be composed of motions, 
similarity transformations, and transformations through reciprocal radii. 
 Here, one now links this treatment of metric geometry in Rn−1 with the one that we 
spoke of in the introduction.  Next, one will divide the entirety of metric geometry into 
two parts.  One will distinguish those relationships that carry over to (2)

1nM − , in which the 

chosen projection point is implicit, and the ones for which this is not the case.  The latter 
are, as one now sees, all of the ones that remain unchanged under the inversion through 
reciprocal radii.  For their treatment, it must be preferable to also treat the Rn−1 
algebraically as an (2)

1nM −  in Rn .  This means: One will, by their treatment, determine the 

element of Rn−1 , not by n − 1 absolute coordinates, but by n + 1 homogeneous ones, 
between which there exists a condition equation of second degree.  (Since the latter, when 
set to zero, describes a plane section of (2)

1nM − , it represents a sphere in Rn−1 .) 
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 One thus determines – for example – the points of ordinary space, not by three 
absolute coordinates, but by five homogeneous ones: 
 

s1 , s2 , s3 , s4 , s5 , 
 
which, when set to zero, describe a circle.  Geometrically, this comes down to 
establishing the points through the relative values of the powers of these coordinates, 
when multiplied by certain constants, relative to five given spheres.  Between the five s 
there exists a condition equation of second degree: 
 

Ω = 0. 
 

The entire part of metric geometry that remains unchanged under reciprocal radii is 
present in the discussion of this equation, and in the same sense, as one links all of line 
geometry to the discussion of the corresponding equation P = 0.  That this treatment of 
metric problems can be a great advantage might be mentioned here only by an example.  
Lie was led to this example in his study of the structure of linear complexes when he 
gave line-geometric reasons that I had given in a previous treatise 15), and which he had 
carried over to corresponding metric notions.  On the other hand, this example was, for 
me, the impetus to present the more general ideas set down here.  Namely, one 
determines a point of space by five coordinates s1 , …, s5 , which, when set to zero, 
describe spheres that intersect orthogonally.  Ω then has the form: 
 

2 2 2 2 2
1 2 3 4 5s s s s s+ + + +  = 0. 

If one now writes the equation: 
 

22 2
51 2

1 2 5

ss s

k k kλ λ λ
+ + +

+ + +
⋯ = 0, 

 
where λ is a parameter, then one has, with no further assumptions, the system of 
orthogonal surfaces before one that Darboux and Moutard had found, and which is 
constructed from surfaces of fourth order that include the imaginary circle doubly 16). – 
This form corresponds, up to the number of variables, precisely to the form that I have 
given in loc. cit. for the equation of the complex of second degree with the same 
singularity surface; one therefore also finds the same sort of discussion applied to it that 
Lie carried out in the aforementioned treatise [Math. Ann., Bd. 5]. 

                                                
 15) Math. Annalen, Bd. 2 (1870).  Zur Theorie der Komplexe ersten und zweiten Grades.  [See Abh. II 
of this collection.] 
 16) Cf., Lie.  Göttinger Nachrichten.  1871.  No. 7, or the aforementioned treatise of S. Lie (Math. Ann., 
Bd. 5). – Darboux was already led to the same form of equation previously.  He had developed it in a 
treatise that he submitted to the Paris Academy, but which has, however, not been published yet.  Cf., a 
recent Note in the Compte rendus, Sept. 1871, where Darboux cited some results obtained by his general 
treatment.  [The treatise of Darboux that is mentioned here has since then appeared in extended form as a 
book: Sur une classe remarquable des courbes et des surfaces.  Paris, 1873.] 
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 However, for the geometry of the (2)
1nM −  in Rn , the way that it is linked with the metric 

geometry here is also not without importance.  Among many similar considerations, I 
will bring up only one of them that will be employed in line geometry in the sequel.  The 
∞n−2 different directions of advance that lead an element of the metric space Rn−1 to a 
neighboring element together define an angle; e.g., two such directions of advance can be 
perpendicular to each other.  As is well-known, this angle remains unchanged under 
inversions through reciprocal radii.  When an (2)

1nM −  in Rn is given, one may thus also 

speak of angles that are defined by the directions of advance of an element of (2)
1nM −  to a 

neighboring element of (2)
1nM − .  For the determination of this angle, only the projective 

properties of (2)
1nM −  itself come under consideration, but not, perhaps, fundamental 

structures that lie outside of Rn .  One sees this clearly when one takes n = 3, so the (2)
1nM −  

can mean a surface of second degree.  Two generators go through each point of the 
surface; the fundamental line-pair 17) that relates to them is the angle that exists between 
the directions of advance to neighboring points.  In particular, one can take two directions 
of advance to be perpendicular to each other when they lie harmonically to the two 
generators.  The analytic expression for this is obviously this one: Let Ω = 0 be the 
surface of second degree.  We then define the expression: 
 

2 Ωxy = 1 2 3 4
1 2 3 4

y y y y
x x x x

∂Ω ∂Ω ∂Ω ∂Ω⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

. 

 
If we substitute dx1, dx2, dx3, dx4 in it for x1 , x2 , x3 , x4 , resp. and d′x1, d′x2, d′x3, d′x4 in it 
for y1 , y2 , y3 , y4 , resp. then the vanishing of the expression means that the two directions 
of advance are perpendicular to each other in the stated sense 18).  The corresponding 
formula will also remain valid in n dimension, and shall be employed for line geometry in 
the following paragraphs. 
 

                                                
 17) Cf., “Über die sogenannte Nicht-Euklidische Geometrie.”  Math. Annalen, Bd. 4 (1871) [see Abh. 
XVI of this collection] § 2, 3. 
 18) In general, the angle in question will be given by the following expression: Let Ωxy be the expression 
described in the text; Ωxx and Ωyy  mean the equation Ω describes with the x or the y, resp.  The desired 
angle is then equal to: 

arc cos xy

xx yy

Ω
Ω Ω

, 

 
in which dx and d′x are to be inserted in place of x and y, resp. 
 Here, it is obvious how this determination of the angle is connected with the more general projective 
metric that Cayley described, which employed an F2 as a fundamental structure.   (Phil. Trans., t. 149.  A 
sixth Memoir upon Quantics [(1859) Coll. Papers, Bd. II].  Cf., also the author: “Über die sogenannte 
Nicht-Euklidische Geometrie,” loc. cit.)  In it, the connection that is also true for arbitrarily many 
dimensions is not pursued further.  [F. Lindemann went deeper into the notion of the angle between two 
linear complexes in his dissertation: Über unendliche kleine Bewegungen und über Kraftsysteme bei 
allgemeiner projektivischer Massbestimmung.  Erlangen, 1873 (Math. Ann., Bd. 7).] 



§ 3. 
 

Transferring the study of curvature curves and  
orthogonal systems to line geometry. 

 
 The study of curvature curves and orthogonal systems constitute one part of metric 
geometry that remains unchanged under reciprocal radii.  We shall now seek the 
corresponding notion in line geometry as an example of such a transfer.  To this end, the 
ordinary theory might first be formulated in such a manner that its independence of the 
transformation through reciprocal radii becomes evident. 
 Let a surface be given in ordinary space R3 .  At each point, it will contact a one-fold 
infinitude of spheres.  Among them, there are now always two of them that are 
distinguished and which also contact at a neighboring point – the so-called principal 
spheres.  Their existence is intimately linked with the definition of the curvature curves.  
One obtains a curvature curve when one proceeds from a chosen point to a neighboring 
point to which one of the principal spheres is in contact.  Curvature curves are then the 
curves that lie in a surface in whose consecutive points the surface will contact the same 
sphere 19).  Two curvature curves go through each point; they are perpendicular to each 
other. 
 We now go to metric spaces of four, or even (n – 1), dimensions.  A surface in one of 
them – i.e., a manifold in it that is singled out by one equation – will again contact a one-
fold infinitude of spheres at each point (by a sphere, we mean, as before, a particular 

(2)
2nM − ).  Among them, one finds (n – 2) of them in stationary contact – i.e., ones that also 

contact at a neighboring point.  One can now proceed from the arbitrarily chosen point to 
a neighboring point, and so forth.  One then obtains a corresponding curvature curve in 
R3, a one-fold infinitude in the surface that lies in the manifold that has the property that 
the given surface will contact the stated sphere at two consecutive points.  Such 
manifolds 20) go through each point of the surface n − 2; their directions of advance are 
perpendicular to each other. 
 We now go over to line geometry.  We then must set n equal to 5.  In place of the 
surface in R4, the line complex enters in here.  Instead of points of the surface, we speak 
of lines in the complex; in place of spheres in R4 , linear complexes (that indeed intersect 
the (2)

4M  in R5 that describes the line space).  We thus obtain the following: 

 Let a line complex be given.  It will contact a one-fold infinitude of linear complexes 
at an (arbitrarily chosen) line; these are the so-called linear tangential complexes of 
Plücker.  Among them, three are distinguished that further contact at a neighboring line.  
If one proceeds from the chosen lines to one of these neighboring lines and further from 
there in the same sense then one describes a line surface that is associated with the 

                                                
 19) The ordinary definition of curvature curves – that the surface normals intersect at consecutive points 
of a curvature curve – is a consequence of the one presented here.  By the application of reciprocal radii it 
goes to a more general one in which the (randomly chosen) inversion center enters in; for that reason, we 
prefer the definition that is given in the text. 
 20) One can again define them by saying that the surface normals that are directed from each of their 
consecutive points intersect. – The curvature theory of a space of arbitrarily many dimensions has been the 
object of repeated representations in recent times.  One then mostly starts with the latter definition. 
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complex – in the following, it shall be called a principal surface of the complex – which 
has the property that the complex will be contacted at two consecutive generators of the 
stated linear complex.  Three principal surfaces go through each line of the complex; its 
directions of advance are perpendicular to each other in a sequential sense. 
 We now have to discuss what sort of metric sense this perpendicularity possesses.  
Since, on the basis of ordinary line coordinates, the condition equation for it has the form: 
 

P ≡ p12 p34 + p13 p43 + p14 p23 = 0, 
 
from § 2, two directions of advance dp and d′p can be said to be perpendicular to each 
other when: 
 
  0 = dp12 d′p34 + dp13 d′p43 + dp14 d′p23 + d′p12 dp34 + d′p13 dp43 + d′p14 dp23 . 
 
However, there then exists a relationship between the given line p and its two neighbors p 
+ dp and p + d′p that I shall refer to as two neighboring lines in an involutory position 21) 
and has the following geometric content: 
 A neighboring line p + dp always associates the planes that go through p projectively 
with the points found on p.  Each plane that goes through p intersects p + dp at a point 
that goes back to p itself when one takes the limit.  One sees this clearly when one 
considers p and p + dp as consecutive generators of a line surface.  Any plane that goes 
through p then corresponds to a point that lies on p and is determined by p + dp: the 
contact point with the surface. 
 If two neighboring lines p + dp and p + d′p are now given then one always regards 
two points to be corresponding when a plane through p is associated with respect to the 
two neighboring lines.  One then obtains two mutually collinear sequences of points on p. 
 The two neighboring lines are now said to lie in involution when the two point 
sequences define an involution 22).  [Cf., the completely analogous definition of the 
involutory position of complexes in the introduction, pp. 3] 
 We now once again go back to the metric space R3 and consider an orthogonal system 
in it.  This is a one-fold infinitude of surfaces, three of which go through each point of 
space.  They intersect each other perpendicularly.  For such systems of orthogonal 
surfaces, one has Dupin’s theorem: Any two surfaces of the system intersect each other 
along a common curvature curve. 

                                                
 21) One can denote the angle between two neighboring points by: 
 

arc cos 12 34 12 34

12 34 12 342

dp d p

dp d p

d p dp
dp d p

′
′⋅

′ + +
′+ +
⋯

⋯ ⋯

. 

 
 22) One sees, with no further assumptions, the validity of the following theorem: The lines that belong to 
a line complex in the vicinity of one of its lines p lie in involution to a line that neighbors a certain p, which 
generally does not itself belong to the complex.  Conversely, all such neighboring lines belong to the 
complex. – Two complexes are now said to be in involution with respect to a common line p when the 
neighboring lines p + dp and p + d′p lie in involution, which are associated with the line p in the sense that 
was explained here, resp. 
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 One can consider similar systems of surfaces in Rn−1 ; there is a theorem that is true 
for them that corresponds to Dupin’s.  These systems of surfaces are again one-fold 
infinite and n – 1 surfaces go through every point of R n−1 .  They intersect each other in a 
mutually perpendicular way.  For this system, one then has the theorem: Any n – 2 
surfaces intersect along a common curvature curve, and by “curvature curve,” we mean 
the one-fold infinitude of manifold we just considered. 
 In line space, we will have to define the concept of system of complexes in involution.  
It is a one-fold infinitude of system of complexes.  Each line of space belongs to four of 
the complexes and indeed the four complexes that belong to a line always lie in 
involution pair-wise with respect to this line. 
 For this system of complexes in involution, one then again has a theorem that 
corresponds to Dupin’s: Any three complexes intersect on a common principal surface. 
 It is well-known how yet another general theorem can be presented for irreducible 
orthogonal systems.  Kummer then showed that the curves of an irreducible system of 
orthogonal curves are necessarily confocal; Darboux 23) extended this theorem to systems 
of orthogonal surfaces on R3 and added further properties that first appeared in R3 .  It is 
obvious that analogous properties exist for irreducible orthogonal systems in ordinary 
space to the ones that exist in line space for irreducible systems in involution.  I shall not 
go into this here, but I will only remark that the theorem of the confocality of orthogonal 
surfaces corresponds to line-geometric theorem: Complexes in an irreducible system in 
involution have a common singularity surface 24). 
 The simplest example of an irreducible system in involution then also gives the one-
fold infinitude of complexes of second degree with a common singularity surface.  One 
can apply the following algebraic representation for them, as I have shown in the 
previously-cited work: “Zur Theorie, etc.” (Math. Annalen, Bd. 2 (1870) [see Abh. II of 
this collection]: Let x1 , …, x5 be homogeneous functions of pik for which: 
 

2 2 2
1 2 6x x x+ + +⋯  = 0. 

 
The complexes are then represented by: 
 

22 2
61 2

1 2 6

xx x

k k kλ λ λ
+ + +

− − −
⋯ = 0, 

 
where λ refers to a parameter.  In fact, the parameter λ appears in the fourth degree by 
means of the relation 2x∑ = 0.  Any line of the space thus belongs to four complexes of 

the system.  However, any two complexes λ = λ1 and λ = λ2 also lie in involution with 
respect to the same line.  The condition for two complexes: 
 

ϕ = 0, ψ = 0 

                                                
 23) Annales Scientifiques de l’École Normale Supérieure. t. 2. 1865. 
 24) For Plücker, the singularity surface is defined only for complexes of degree two.  This lacuna was 
filled in by Pasch in his Habilitationsschrift: “Zur Theorie der Komplexe und Kongruenzen von Geraden,” 
Giessen 1870. 
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to be in involution with respect to a common line is, in the chosen coordinate 
representation: 

a ax x

ϕ ψ∂ ∂⋅
∂ ∂∑ = 0 {by means of ϕ = 0, ψ = 0}. 

 
However, this expression always vanishes when ϕ, ψ are two complexes of the system in 
question.  It will then equal: 
 

22 2
61 2

1 1 1 2 2 1 2 2 6 1 6 2

4
( )( ) ( )( ) ( )( )

xx x

k k k k k kλ λ λ λ λ λ
 

+ + + − − − − − − 
⋯ , 

 
which is, by a partial fraction expansion, equal to: 
 

1 2

4
( )ϕ ψ

λ λ
−

−
, 

so it vanishes with ϕ and ψ. 
 Any three complexes of the system then have line surfaces of the sixth degree in 
common as a complex of second degree; the principal surfaces of the complex of the 
second degree are then of sixth degree.  I shall not further into a discussion of these 
surfaces, which encompass a great number of special surfaces when one specializes the 
complex. 

§ 4. 
 

Further considerations on the principal surfaces of the complex. 
 

 In these last paragraphs we might develop even more properties of the principal 
surfaces of complexes, systems in involution, etc., and indeed, purely line-geometric 
considerations.  The latter again naturally carry over to the metric geometry of R4 , which 
will not, however, be pursued further. 
 Lie has found the remarkable theorem (which came about in a much different context 
for him) that on any line surface that belongs to a linear complex one knows a principal 
tangent curve.  Namely, there are two points on any generator of the line surface whose 
tangential plane is likewise the plane that corresponds with in the linear complex.  The 
totality of these points defines the principal tangent curve in question. 
 One can prove this quite simply.  All of the tangents to the surface at such a point 
belong to the complex.  The points thus define a curve whose tangents belong to the 
complex, namely, a complex curve.  However, a complex curve has the property that 
each of its points possesses the corresponding plane in the complex for its osculating 
plane.  On the other hand, this plane is, in any case, the tangential plane to the surface, by 
assumption.  The curve is thus a principal tangent curve. 
 When a line surface is given as belonging to any complex, one can determine a curve 
on it in a similar manner; however, in general it is not a principal tangent curve.  Namely, 
one seeks those two points on any generators at which the surface will contact the 
complex cone.  The sequence of these point-pairs constitutes the curve in question. 
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 However, if the line surface is, in particular, a principal surface of the given complex 
then the curve thus constructed is a principal tangent curve of it 25). 
 The proof follows immediately from the definition of a principal surface by means of 
Lie’s theorem.  The given complex will be contacted at any two consecutive generators 
of the stated linear complex.  The linear complex in question thus includes three 
consecutive generators of the line surface and determines the stated two point-pairs by 
the first two of them, like the given complex itself. 
 Now, one can also formulate Lie’s theorem as follows: If a linear complex includes 
three consecutive generators of a line surface then it is determined by the first two point-
pairs, which belong to the principal tangent curve itself.  With this, the proof of our 
theorem is given. 
 We now consider a system in involution.  A single line p belongs to four of the 
complexes, which may be denoted by a, b, c, d.  They lie pair-wise in involution with 
each other.  As a consequence, one next has the following theorem, for whose proof, I 
refer one to the paper: “Zur Theorie, etc.” (Math. Annalen, Bd. 2 (1870) [see Abh. II of 
this collection] 26). 
 1. The line surface that three of the complexes – say, a, b, c – belong to will be 
contacted at all points of p of the complex cone of d in question. 
 2. The line p contacts the caustic of the congruence of two complexes a, b in the 
stated two points, at which it contacts the caustic of the congruence of the other two 
complexes c, d. 
 3. The three point-pairs (ab, cd), (ac, bd), (ad, bc) that arise in this way on the lines 
are harmonic to each other 27). 
 We now consider a principal surface that is common to three of the complexes – say, 
a, b, c.  On it, corresponding to each of the three complexes, one knows a principal 
tangent curve that intersects each generator twice.  Now, however, the theorem of Paul 
Serret is true for principal tangent curves of the line complex: The generators of the line 
surface will be projectively divided among the principal tangent curves.  From this, one 
will once conclude that the six points at which each generator of the three principal 
tangent curves a, b, c will intersect, are six fixed elements projectively.  This is, as 
mentioned before (Theorem 3), in fact the case.  On the other hand, one will infer that on 
the principal surface in question one can determine all principal tangent curves by a 
purely algebraic process.  One then obtains all principal tangent curves when one moves 
a point on the surface in such a way that, in any case, it defines a fixed double ratio with 
three of the six points (and thus, with all of them) on all generators, and only algebraic 
operations are necessary for this. 
 The two points at which the principal curve a involves a generator – say, p – are, I 
now assert, the contact point of p with the caustic of the congruence common to b and c.  
The complex cone of a then contacts surface at these points, and therefore also, from 
Theorem 1, the complex cone of d.  For this reason, these points are the contact points of 
                                                
 25) The converse of this theorem is also valid. 
 26) There, it is only proved for linear complexes.  It is therefore also valid for the linear tangential 
complexes of complexes given here, and thus, for the latter itself. 
 27) This is linked with the further theorem: If one lays a plane through p then, corresponding to a, b, c, 
d, it includes each complex curve.  The four contact points of the four curves, along with p, define a four-
parameter point-group whose covariant of the sixth degree will be represented by the three point-pairs of 
the text. 
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p with the caustic ad and thus also, from Theorem 2, with the caustic bc, which was to be 
proved.  One then has the theorem: 
 The principal surface abc contacts the caustic bc along the principal tangent curve a, 
the caustic ca, along the curve b, and the caustic ab, along the curve c. 
 From this, one may further infer: 
 One also knows the principal tangent curves of the congruence of any two complexes 
on the caustic. 
 They are the curves that are principal tangent curves of the principal surface.  In fact, 
from the totality of contact curves of the caustic with the principal surfaces, one also 
obtains the totality of the principal tangent curves of the caustic.  Then the line that 
contacts the caustic ab at a point, and which contains a and b, simultaneously belongs to 
two more complexes c and d.  One thus obtains, in the contact curves of the caustic with 
the principal surfaces abc, abd, both of the principal tangent curves that go through the 
chosen point 28). 
 For the system in involution of the complex of second degree, one finds, in particular: 
The principal tangent curves to the principal surface, along which the caustic contacts, 
are of order and class 32.  The caustics themselves are likewise the principal surfaces of 
sixteenth order and class. 
 By a suitable particularization, one obtains from the consideration of these caustics 
and principal surfaces the determination of the principal tangent curves of a great number 
of special surfaces.  Let only one such particularization be chosen here.  The two 
complexes of the system, which together determine the congruence, and, by it, the 
caustic, might coincide.  Then, the congruence will be the congruence of singular lines of 
the complex in question.  Its caustic decomposes into the singularity surface that is 
common to all complexes, which is of fourth order and class, and a further surface of 
twelfth order and class.  On both of them, one obtains the principal tangent curves, which 
will now be of sixteenth order.  Now, for the general complex of second degree the 
singularity surface is a Kummer surface of fourth degree with sixteen nodes.  One thus 
obtains a determination of the principal tangent curves of this surface that goes thus: 
They are the contact curves of the surface with those line surfaces, which belong to an 
arbitrary (but chosen once and for all) associated complex as singular lines and, 
moreover, yet a second (variable) one that belongs to the associated complex.  Thus, one 
finds this to be in agreement with a determination of the principal tangent curves of the 
Kummer surface that was given by Lie and myself in a common paper in the 
Monatsberichten der Berliner Akademie, December 1870. [See Abh. VI of this 
collection.]  The content of this Note can be regarded as closer analysis of some of the 
concepts that were published there. 
 
 Göttingen, in October 1871. 

                                                
 28) I have summarized the various theorems presented here, along with theorem 3: “that any three 
complexes of a system in involution intersect along a common principal surface,” in the previously-cited 
Note in the Gött. Nachrichten, No. 3 (1871) [see Abh. VII of this collection.] as the theorem: The line 
surface that is common to three complexes of a system in involution contacts the caustic of any two of them 
along a principal tangent curve, and proved this analytically in that version.  The heterogeneous 
component that this theorem includes seems to be separated in the text.  I am obliged to Lie for the fact that 
he drew my attention to the possibility of this separation. 


