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VIIIl. On line geometry and metric geometry.
By Felix Klein
Translated by D. H. Delphenich

[Math. Annalen, Bd. 5 (1872)]

In a distinguished treatis®, Lie has, among other things, developed a fundamental
analogy that exists between the geometry of lineanptexes and ordinary metric
geometry. This analogy comes back to the fact thatcan map the linear complex in a
single-valued way to the point-spaée where an isolated line enters into linear
complexes as a fundamental structure, while in point-gpaisea conic section. Metric
geometry is then nothing but the investigation of theegtive properties of spatial
structures on the basis of a conic section that isngosgce and for all, namely, the
infinitely distant imaginary circle. The geometrylmiear complexes is therefore linked
with metric geometry by the map in question, in such atiatyfor a linear complex just
one arbitrary line is distinguished. — The connectioh ihancovered here between two
realms of geometry that seem, on first glance, tovée heterogeneous must be
tremendously fruitful for both of them. Here, it migduffice, in this regard, to refer to
the rich contents of the aforementioned treatisg@anticular, to the relation that is given
in it between the problems of the principal tangent ciar@ curvature curves.

In connection with these investigations of Lie, to whickals directed by repeated,
detailed communications from the same, | found that inipes/ the same way that the
geometry of linear complexes is connected with the imgeometry of ordinary spaces,
a connection exists between the entirety of line geometry and the metric geometry of
spaces of dimension four °). In this regard, | especially present a theorem mé i

Y [By this, we mean the great treatise of Lie thaswecently published in Bd. 5 of Math. Ann.:
“Uber Komplexe, insbesondere Linien- and Kugelkomplexe, Anivendung auf die Theorie partieller
Differentialgleichungen.” It would certainly be desiraltte clarify the close relationship that exists
between Adhandlungen VIl and IX and this treatise of b&pecially since the latter relates to numerous
associated remarks of my own. However, it seems imfgessd put this into the form of a brief,
comprehensive commentary. Thus, one must occasionatyto other references. We hope that the
abundance of geometric ideas that are included in thtseeof Lie, which is presently difficult to fathom
in its original form, a situation that was exacerbatedhayihexcusable delay in the publication of Lie’s
work, which was prepared long ago, will become comkrmwledge to mathematicians! K.]

%) Noéther first commented upon this map: Zur Theorie algebner Funktionen. Gétt. Nachrichten.
1869.

% By the metric geometry of such a space, one must stader this to generally mean the
investigation of the projective properties of that strreeton the basis of a distinguished structure. If one
determines, as one ordinarily does in metric investgs, the spatial element (the point) by rectangular
coordinates, thus, by four coordinatesy, z t, then the structure in question consists of thosaitaly
distant elements for whiokf +y* + Z +t2 = 0.



On line geometry and metric geometry 2

geometry’) that built upon Dupin’s theorem in ordinary metric geom | linked it with
further considerations that are aimed at the objeciiven the one hand, transferring the
entire content of metric geometry to line geometry leylan the other hand, utilizing the
algebraic methods that served successfully in line gegrfat the treatment of metric
problems. These considerations — which are, moreovetpse proximity to the ones
that Lie set forth and grow out of them — will be resgrged in what follows, if only
along general lines. Hopefully, the presentation givere will suffice to make it clear
that in the manner described here, one obtains a deepelogieent of the two
disciplines that are in questidine geometry andmetric geometry.

In line geometry, as one knows, one prefers to defiadine by six homogeneous
coordinategix that are linked by a condition equation of second degree:

P = P12 Paa + P13 Pa2 + P1a P23 = 0.

If one regards, for the moment, the as independent variables then one constructs from
them a manifold- or, as one often says, a spacef five dimensions. It shall be denoted
by Rs (more generally, a space mtdimensions will be denoted ®4). The manifold of
four dimensions of lines is singled out of this space byatfoeementioned quadratic
equation, in a manner that is similar to the way thatotality of points in ordinary space
(Rs) is singled out by a quadratic equation that defines a suofasecond degree. One is
thus led tareat line geometry analytically in a manner that is similar to the geometry of

a surface of second degree. The viewpoint thus suggested shall be given a basis and
discussed more closely in 8 1; furthermore, it is based atloaf my work on line
geometry up to now.

We might likewise introduce a notation here that éllnecessary in the sequel. We
already denote the spacerodimensions by, . A structure that will now be singled out
by 1 equations, which will thus also define a manifoldnot i dimensions, shall be
denoted byM,-, . Thus, upper right indices might give the degree ofiutlegjuations
through which théM,—, is determined. — The totality of straight lines definesvaf? by
means of this relationship, and it lies in the spage In a similar way, the lines of a

linear complex define aM{? in R, , the lines of a congruence, an{® in Ry , and
finally, the lines of a ruled surface define Bf? in R, . (While this structure, which is
regarded as being iRs , must preserve the relationd -, M{*? M) This
notation is somewhat abstract, but it is not googlt@round it in what follows.

The connection between line geometry and metric geonf@tripur variables now
comes from a single-valued map of thg? in Rs to Ry. — It is well-known how one can

map anM{? in Rs — say, for instance, a surface of second degree thailiesdinary

space — tdR, — say, the plane in a single-valued way. Geometrically speaking, this
comes about by the process of stereographic projeciibuas, two fundamental points in
the plane appear that are the images of the two gemsrthat go through the point of
projection. On the surface of second degree one findadamental point, namely, the
projection point. However, metric geometry uses a poamt as the fundamental

%) Géttinger Nachrichten. 1871. No. 3. [Cf., Abh. Viitiis collection.]
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structure in the plane, namely, the two infinitely agtimaginary circle points. For that
reason, one can say: The geometry on a surface afideegree and metric geometry in
the plane correspond to each other as long as onegdistnes an (arbitrary) point on the

surface. — By the map we mentioned ofMi¥) in R, ontoR,-1, we now find completely
similar going on. Let an element & ?) (which corresponds to the projection point) be

distinguished. A fundamental structure then appedrs-in, since it also used the metric
geometry oR,-1, namely, arM 2. In general, one can then say:

The metric geometry of R,-; can be regarded as the stereographic projection of an
M@ that liesin R, °).

With this theorem, which will be established completgly8 2, the connection
between line geometry and the metric geometii,a$ given completely. Naturally, one
likewise has a connection between the geometry of liceamplexes and the metric
geometry ofR; . One can ultimately link the geometry of a lineangroence with the
metric geometry oR; , and the geometry of a ruled surface with the mgemmetry of
R: in the same sense. On the other hand, the theoxe® gibasis for the treatment of
the metric geometry d®.-; that was previously suggested; this shall likewise be pdrsue
a bit further in 8 2. By it, one will be led, in the figgdace, to distinguish between those

metric properties olR,-1 that, when carried over from thd ?) in R, , imply a particular

relationship to the projection point that is employedh®ymap, and the ones that do not.
Whenn = 5, the latter yield general line-geometric theoreths; former yield ones in
which an arbitrary line enters in fundamentally.

In order to show, at the least, an example of thigfdlness of this approach, in 8 3, |
show the line-geometric analogue of tir¢hogonal systems of metric geometry. They
are the systems of line complexes that | will reea$systems in involution. A system
in involution is a singly infinite system of complexeattdepend upon a parameter of the
fourth degree, such that four complexes of the systerthigaugh each line of space.
These four complexes — and this actually constituteschiagacter of the systems we
speak of — lie pair-wise in involution relative to thatre line®). The involutory position
of two complexes thus corresponds, on the side of linengtry, to the orthogonality of
two surfaces in metric geometry. — For systems of ¢exag in involution one then has a
theorem that is analogous to Dupin’s theorem in ordinagtriomgeometry. As | will
further discuss in 8§ 4, to the extent that is fruitiwhen one is given a system in
involution, one may understand the principal tangent cunvesa large number of

®) Regarding the metric geometry of the plane as theogpenghic projection of the geometry on a
surface of second degree (in particular, a sphere) imagtleat Chasles used in, in particular. The general
notion suggested in the text was occasionally employed HyoDatin the theory of systems of orthogonal
surfaces (Comptes rendus, t. 69, 1869, 2. Sur une nougels sle systémes othogonaux algébriques).
As Darboux communicated to me personally, it is a gépeirzciple that he was led to in the presentation
of his theorem on metric geometry.

®) I shall refer to the following relationship betweawtcomplexes relative to a common line as an
involutory position: In each plane that goes through the line one findsegponding to each complex, a
complex-curve that contacts the given line. The twutamt points may be regarded as associated with
each other. If one now rotates the plane thenviloepbints describe collinear sequences of points. The
complex is now said to be involutory when the relatigmsbetween the two sequences of points is
involutory.
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surfaces. In particular, we include the determinatioth® principal tangent curves of
the Kummer surface of fourth order with sixteen nodes,was derived from the
investigations of Lie and mys€l.

I will then expressly comment upon a distinction thasts between the things that
are presented here and some chapters of the prior waik,aind thus likewise explain
how, in connection with this distinction, Lie has deped a new transformation to be
applied to metric geometr§). By means of the map we spoke of that takes linear
complexes to ordinary point-space, Lie linked line geoynefith the geometry whose
element is thesphere of ordinary space. By contrast, here, line geomeitlyrelate to
the point geometry of the spacdf four dimensions. Whereas the latter relationship is
one-to-one, the former is not, since each line gewecalresponds to a sphere, but each
sphere corresponds to a line-pair. Since both mapsthielgls that are of interest to line
geometry, one can present the following method fortrg@ment of metric problems in
which one ignores the considerations of line geometmessential: One relates a point
of space ofi dimensions to a sphere in the spaca ofl dimensions, in such a way that
each point corresponds to a sphere, while each spheagdimt-pair. This comes about
simply when one lets the coordinates of the points R, mean then — 1 coordinates of
the center and the radius of a spher&.n . This is the method that Lie presented for
linking the metric geometry dR, and that ofR,-; . Not to be confused with this is a
process that was presented by Darbduthat likewise links the metric geometry Bf
with that ofR,-; . It essentially comes down to this: The metric geioynofR, is carried
over, by a spherical map, to a sphererinand then, by stereographic projection onto

Ro-1.
81
Line geometry islike the geometry of an M{® in Rs .

This statement finds its actual basis in the followingavér of the line coordinates
pik . For the coordinatgs one has:

P = P12 Paa + P13 Pa2 + P1a P23 = 0.

Now, in order for two linep andp’to intersect, one must have:

oP _, _
za_plktpik =0

"y Cf., a common communication in the MonatsberichitenBerliner Akademie. December 1870 [see
Abh. VI of this collection, as well as what is includ@xplained, resp.) in the cited treatise [of S. Lie].

8 Goéttinger Nachrichten. 1871. No. 7.

%) Cf., the note that was cited above: Sur une nousgeéities de systémes orthogonaux algébriques.
Comptes rendus. 69. 1869.
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As a result, one can present the following theorem¢chvhihave already communicated
on one occasiotf):
If one replaces the line coordinates pix with arbitrary linear functions of them that

shall satisfy only one condition in order to take the manifold M ?:
P=0

into itself then one has a collinear or dualistic (reciprocal) conversion of the line space.
On the other hand, one obtains all such collinear and reciprocal conversionsin this way.

As far as the first part of this theorem is conceymdidines will obviously go to lines
under the transformations in question, and intersectias Will go to intersecting lines.
The totality of the two-fold infinitude of lines that glarough a point (and thus intersect
it) generally correspond to a two-fold infinitude of knéhat intersect it. Thus, there
remains the double possibility that they either againhgough a point or that they
represent the totality of lines that lie in a pldfe In the former case, one has a spatial
transformation that takes each line into a line and gmmht into a point, and it is
obviously a collinear conversion. In the latter cdse,comparison, one has a spatial
transformation that takes each line into a line anth patt into a plane. It is therefore a
dualistic conversion.

However, one will conversely have that each collireea each dualistic conversion
will be represented in line coordinates in the aforernertd way. By such a conversion,
the point coordinates will then be replaced with linearcfions of the point or plane
coordinates. As a result, in place of the previous dioerdinatespix , which can be
represented equivalently as two-rowed determinants of tim gmordinates or as plane
coordinates, linear functions of them enter in. Thisear functions also have the

property of taking thev {?:
P=0

into itself, since indeed straight lines remain straigigés under it, and thus the line
manifold that is represented by the aforementioned equaties not change.

With this, the aforementioned theorem is proved cotafyle This theorem now gives
rise to the following treatment of line-geometric prolde The newer geometry
examines all spatial structures — in particular, the ditracture — only insofar as they
remain unchanged under collinear or dualistic transformgtion if one prefers, they
lead all other properties back to properties of this séfe bring precisely the same class

of transformations under consideration when we regaditle space as aM” in Rs

and examine the projective propertiesRefthat relate to thi1®. All of line geometry
will then come down to the following problem:

19 Math. Ann., Bd. 2 (1870) (Geometrisches iiber Resolventesed Bd. 2 of this collection. This
theorem was already proved in my Dissertation (Abh.thisfcollection) by means of computation. (No. 6-
8) K.]

11 (2)
)

In a similar way, one divides the linear transfaiores that take arM ' in R, into itself into two

families in the event that is an odd number. Cf., the article: “Uber die sogeteddicht-Euklidische
Geometrie,” 8§ 16. [Math. Annalen, Bd. 4 (1872).] [See Abtil &f this collection.]

n-=:
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Investigate the projective content of the M (? that liein Rs. Then convert the resuits

into the language of line geometry.

| have explained how one goes about doing this moreudlbiy, in all due brevity,
in the essay: “Die allgemeine lineare Transformation ldeienkoordinaten.” (Math.
Annalen, Bd. 2 [see Abh. Ill of this collection]) A limeaquation (or, we can say: a plane
in Rs) represents a linear complex that will be a spe@akowvhen the plane contacts

theM®. If two planes are conjugate relative to thM{” then one says that the

components are involution. If the intersection of penes contacts th#{® then it

contacts the two complexes. (The common congruenteeto then has two coinciding
directrices.)

We shall not go further into these matters Hérethe following remarks might still
find a place here, though. Line geometry is ultimatedyhing but projective space
geometry. The aforementioned theorem thus formbalses for a peculiar treatment of
the geometry ofR; in which the linear and dualistic transformations Raf will be
replaced by the linear transformations of a higher spacie that a structure that lies in
this space remains unchanged. One can pose the guestwimetifer an analogous
treatment of spaces other thBRg is possible. This is generally the case, but only in
special spaces. Thus, one can tRyads a conic section iR, or as a space curve of third
order inR3, etc. Then the straight lif® may be related to a conic section (a space curve
of third order, resp.) in such a way that its thred-fofinitude of linear transformations
correspond to the equally numerous linear transformatakes a conic section in the
plane (a space curve of third order in space, respt3dth. i On this, rests the conversion
principle published by Hesse (Borchards Journal, Bd. 66, 18G6)articular, Hesse
expressed the relationship between the straight lindglee conic sections in the plane
and showed how the projective geometry of the plaaklgnl a geometry of point-pairs
on the line by this conversid).

§2.

Connection between the metric geometric of (n — 1)variables and the
geometry of an M®) in R, .

Let an M ?) in R, be given. By a suitable choice of homogeneous variahles.,
Xn+1 ONE can generally bring its equation into the form:

0= X12+X22+...+XI'12—1+XI'12+Xn2+1'
We now set:

13 [This method of examination was later systematicadiyeloped by C. Segre. (Mem. della R. Acc.
di Torino, Ser. 11, t. 36 (1885).]

3% One can again connect with this, when one, like €telasid Gordan, for the purpose of carrying out
the typical representation of even binary forms, ddtesthe points of the line by means of three
homogeneous coordinates, between which one conditioni@yuzt second order exists; cf., Clebsch:

Theorie der bindren Formen (Leipzig 1871). Ninth section.
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P =Xn+ X1,
g =Xn —1Xn+1
then we get:
0= x¢+xC 44X, +pq.

Starting from this form of equation, one can map #Mé’) to R,y with no further
assumptions. For that purpose, one needs only to set:

PX1  =Yi¥n,

PX2  =Y2¥n,

PXn-1 =Y¥Yn-1Y¥n,

PP =Yn¥n,

PA  =-(yp+y;+tyr).

Forn = 3, these are the well-known formula that expriesstereographic projection of a

surface of second degree onto the plane.
As a fundamental structure, what appears under this map is

1. InR.1, theM ™2 that will be expressed by the pair of equations:

O:yn1
0=y, +y;+- -ty

Each element of it corresponds, not to one elemetiteo§ivenM ), but to a one-fold

infinitude of them.
2. OntheM?, a single element (the projection point):

X1=0,%=0, ....%-1=0, pZO
It corresponds to the linear manifold af 1) dimensions:
Yo = 0.

Now, it was already remarked that the metric geoynet R,-; employs precisely a
M®? as a fundamental structure. By our map, as we asséfnedetric geometry of

R.-1 will then be related with the geometry ®f?) in R, by the establishment of a

distinguished element.

The type of this relationship will be represented by tHievong theorem, which
singles out the relationship as an essential element:

The linear transformations of Ry , which leave the fundamental M -2’ unchanged,

correspond to those linear transformations of the R, that do not change the given M1
and the (arbitrarily chosen) projection point that one finds on it.
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In fact, if we set, instead @i, ..., yn, linear functions of them that do not change the
fundamentaM -2
O :yn ]
0=y +y;+ Yy,

then the formulas yield the validity of the theoreithwo further assumptions.
The former transformations are, however, the ohat dne considers in the metric

geometry oR,1 ; i.e., they are the conversion that do not changenttteic properties of
R.-1 . As an example, ih = 4 thenR,-; is the ordinary point space. The fundamental
M &2 is the infinitely distant imaginary circle. The laretransformations of point space
that do not change the latter are the ones that deesr& as motions, similarity
transformations, and reflections. Under these tramsfbons, however, all metric
relationships between spatial figures remain unchanged. heDatther hand, one would
have to bring under consideration the correspondingayclinear transformations af
when one asks about those properties of the structuRegtimat relate to the givem )

and the projection point one finds on it.

One can now pose the question: Which transformatidri&, @ correspond to those
linear transformations oR, that leave only the giverM ?) unchanged, but not the
projection point itself, as well? Before we answas juestion, we would like to alter
the mapping formulas thus employed in such a way thairmula appears for the
connection with the ordinary representation of thetrimegeometry ofR, (where
rectangular coordinates will be used). To that enslyffices to sey, = 1 and to regard
they, ..., yn that are thus absolutely determined as rectangular catedity, = O is then
the location of the infinitely distant elementR{1 (the infinitely distant plane). In, =
0, one finds the fundament® %2 that is singled out from it by the equation:

0=y +y;++yr,.
It will now be confirmed that thé/ (%) , which is represented by the following equation:

(Y1 —an)® + V2 — @)+ ... + (-1 — an1)® =12,

distinguishes aphere in R,-;, by analogy with ordinary space geometoy, a, ..., 0h-1

are the coordinates of its center and its radius. Such a sphere is the image of a plane
intersection that is given iR, and projects ontdM ) in Ry . The equation of the
sphere is then the general linear relation between ithen gnapping functions that
representM 2. Among the spheres, one finds, in particular, onitls infinitely large
radius — i.e., planes; they are the images of thaseephtersections in the givev )

that go through the projection poifj.

%y One makes sense of this by the ordinary stereograpbjection of aF, . Any plane intersection

maps to a circle; in particular, when it includes thequtopn point it maps to the projection point.
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We now consider how one changes the map of the diwgh when one take#! %)

into itself by linear transformations dR, . We have already examined those
transformations among them that do not change the pmjgmint. They correspond to
the motions and the similarity transformations Rf; . All other transformations,
however, are obviously compositions of transformatiminghis sort and transformations

that correspond to a relocation of the projection poirthe givenM ) . However, if we
exchange the projection point we have used up to now:

Xx1=0,%=0, ....%-1=0, p=0

with another one which we, regardless of generality,ldvitke to make:
Xx1=0,%=0, ....X-1=0, q=0,

then what comes out of this is that the quantitieR,in:

yl 1y21 ---,yn—ly

must be replaced with the following ones:

where/” refers to the expression:
=YYty

Such a transformation shall be called, by analogy thighcorresponding transformation
of two and three variables, a transformatibrough reciprocal radius vectors. We can
now state the theorem:

The totality of the linear transformations of R, that take the given M @) into itself
correspond to a cycle of transformations in R,-; that can be composed of motions,
similarity transformations, and transformations through reciprocal radii.

Here, one now links this treatment of metric geometriR,-; with the one that we
spoke of in the introduction. Next, one will divide tietirety of metric geometry into
two parts. One will distinguish those relationshipat tcarry over tav ), in which the
chosen projection point is implicit, and the ones faich this is not the case. The latter
are, as one now sees, all of the ones that remalmuoged under the inversion through
reciprocal radii. For their treatment, it must be f@ragble to also treat th&,
algebraically as aM ?) in R, . This means: One will, by their treatment, deterntiree
element ofR,-1 , not byn — 1 absolute coordinates, but hy+ 1 homogeneous ones,
between which there exists a condition equation ofrekdegree. (Since the latter, when
set to zero, describes a plane sectioMqf), it represents a sphereRqy-; .)
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One thus determines — for example — the points of ordispace, not by three
absolute coordinates, but by five homogeneous ones:

S$,2,8,%,%,

which, when set to zero, describe a circle. Geonadlyjcthis comes down to
establishing the points through the relative values ofpihweers of these coordinates,
when multiplied by certain constants, relative to fineeg spheres. Between the fige
there exists a condition equation of second degree:

Q=0.

The entire part of metric geometry that remains ungeédnunder reciprocal radii is
present in the discussion of this equation, and in the s@mse, as one links all of line
geometry to the discussion of the corresponding equitierD. That this treatment of
metric problems can be a great advantage might be menti@nednly by an example.
Lie was led to this example in his study of the structurénefr complexes when he
gave line-geometric reasons that | had given in a previeasise™), and which he had

carried over to corresponding metric notions. On therobhand, this example was, for
me, the impetus to present the more general ideas set Here. Namely, one

determines a point of space by five coordinates ..., S5 , which, when set to zero,
describe spheres that intersect orthogondliythen has the form:

S+ +si+sivsi=0.
If one now writes the equation:

2 2 2
St + S +... 4 S5 =0,
k+A k,+] ke +

where A is a parameter, then one has, with no further assumsptihe system of
orthogonal surfaces before one that Darboux and Moutadd found, and which is
constructed from surfaces of fourth order that includeirtaginary circle doubly®). —
This form corresponds, up to the number of variables, migcie the form that | have
given in loc. cit. for the equation of the complex of second degree with dame
singularity surface; one therefore also finds the ssomeof discussion applied to it that
Lie carried out in the aforementioned treatise [M&thn., Bd. 5].

% Math. Annalen, Bd. 2 (1870). Zur Theorie der Komplexe enstehzweiten Grades. [See Abh. Il
of this collection.]

% Cf., Lie. Géttinger Nachrichten. 1871. No. 7, or tfeee@mentioned treatise of S. Lie (Math. Ann.,
Bd. 5). — Darboux was already led to the same form of emuatieviously. He had developed it in a
treatise that he submitted to the Paris Academy, buthahas, however, not been published yet. Cf., a
recent Note in the Compte rendus, Sept. 1871, where Dariiedxsome results obtained by his general
treatment. [The treatise of Darboux that is mentioreze@ has since then appeared in extended form as a
book: Sur une classe remarquable des courbes et des suffares, 1873.]
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However, for the geometry of thd (%) in R, , the way that it is linked with the metric

geometry here is also not without importance. Amongyramilar considerations, |
will bring up only one of them that will be employed indigeometry in the sequel. The
"2 different directions of advance that lead an elenoérihe metric spac®,; to a
neighboring element together defineamgle; e.g., two such directions of advance can be
perpendicular to each other. As is well-known, thigl@arremains unchanged under

inversions through reciprocal radii. When &) in R, is given, one may thus also
speak of angles that are defined by the directions aframvof an element dfl ®) to a
neighboring element oM ?. For the determination of this angle, only the project
properties of M itself come under consideration, but not, perhaps, fuadtah

structures that lie outside Bf . One sees this clearly when one takes3, so theM )

can mean a surface of second degree. Two generatdisaymh each point of the
surface; the fundamental line-palj that relates to them is the angle that exists @etw
the directions of advance to neighboring points. Iti@adar, one can take two directions
of advance to be perpendicular to each other when tkelalimonically to the two
generators. The analytic expression for this is obwotlsk one: LetQ = 0 be the
surface of second degree. We then define the expression:

0Q 0Q 0Q
IO S Y — Y.
X, Y. X, ¥s X, Y.

0Q
= [0y +
2 QXY 6x1 Bﬁ
If we substitutedx;, dxo, dxs, dxs in it for X , X2, X3, X4, resp. andl'xs, d'x, d'xs, d'x4 In it
foryi,V2,Ys, Ya, resp. then the vanishing of the expression meanghihao directions
of advance are perpendicular to each other in the state®). The corresponding
formula will also remain valid im dimension, and shall be employed for line geometry in
the following paragraphs.

1 cf., “Uber die sogenannte Nicht-Euklidische Geométriklath. Annalen, Bd. 4 (1871) [see Abh.
XVI of this collection] § 2, 3.

% " In general, the angle in question will be given by thieiéeng expression: LeD,, be the expression
described in the texQ,, andQ,, mean the equatiof2 describes with the or they, resp. The desired
angle is then equal to:

Q
arc cos——>—,
J2..Q,

in whichdx andd % are to be inserted in place»oéndy, resp.

Here, it is obvious how this determination of the arigleonnected with the more general projective
metric that Cayley described, which employedraras a fundamental structure. (Phil. Trans., t. 149. A
sixth Memoir upon Quantics [(1859) Coll. Papers, Bd. li]f., @lso the author: “Uber die sogenannte
Nicht-Euklidische Geometrie,” loc. cit.) In it, theonnection that is also true for arbitrarily many
dimensions is not pursued further. [F. Lindemann went deefmethe notion of the angle between two
linear complexes in his dissertation: Uber unendlichén&ldBewegungen und (iber Kraftsysteme bei
allgemeiner projektivischer Massbestimmung. Erlangen3 IBlath. Ann., Bd. 7).]



§3.

Transferring the study of curvature curves and
orthogonal systemsto line geometry.

The study of curvature curves and orthogonal systemgittm@sone part of metric
geometry that remains unchanged under reciprocal ratMe shall now seek the
corresponding notion in line geometry as an example ¢f aucansfer. To this end, the
ordinary theory might first be formulated in such anmex that its independence of the
transformation through reciprocal radii becomes evident.

Let a surface be given in ordinary spége At each point, it will contact a one-fold
infinitude of spheres. Among them, there are now wwbnvo of them that are
distinguished and which also contact at a neighboring peitiie so-callegorincipal
spheres. Their existence is intimately linked with the definitiohthe curvature curves.
One obtains a curvature curve when one proceeds fromsemipoint to a neighboring
point to which one of the principal spheres is in contaCurvature curves are then the
curves that lie in a surface in whose consecutive pthetsurface will contact the same
sphere'®). Two curvature curves go through each point; theyparpendicular to each
other.

We now go to metric spaces of four, or evenr (1), dimensions. A surface in one of
them — i.e., a manifold in it that is singled out by egeation — will again contact a one-
fold infinitude of spheres at each point (by a sphere,ean, as before, a particular

M ). Among them, one finds1(- 2) of them in stationary contact — i.e., ones #fs

contact at a neighboring point. One can now proceed the arbitrarily chosen point to
a neighboring point, and so forth. One then obtaingreesponding curvature curve in
Rs, a one-fold infinitude in the surface that lies in thenifedd that has the property that
the given surface will contact the stated sphere at two consecutive points. Such
manifolds?®) go through each point of the surfate 2; their directions of advance are
perpendicular to each other.

We now go over to line geometry. We then mustnsetjual to 5. In place of the
surface inRy, the line complex enters in here. Instead of pmhtyie surface, we speak
of lines in the complex; in place of sphere®in linear complexes (that indeed intersect

the M{? in Rs that describes the line space). We thus obtain tleeviol:

Let a line complex be given. It will contact a doé&t infinitude of linear complexes
at an (arbitrarily chosen) line; these are the skedalinear tangential complexes of
Plicker. Among them, three are distinguished that futbatact at a neighboring line.
If one proceeds from the chosen lines to one of thegghlboring lines and further from
there in the same sense then one describes a lineceutiat is associated with the

9 The ordinary definition of curvature curves — thatshgace normals intersect at consecutive points
of a curvature curve — is a consequence of the one prddere By the application of reciprocal radii it
goes to a more general one in which the (randomlyetf)yasversion center enters in; for that reason, we
prefer the definition that is given in the text.

2 One can again define them by saying that the surfaceat®that are directed from each of their
consecutive points intersect. — The curvature thebayspace of arbitrarily many dimensions has been the
object of repeated representations in recent times.ti@nemostly starts with the latter definition.
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complex — in the following, it shall be calledoaincipal surface of the complex — which
has the property that the complex will be contactevatconsecutive generators of the
stated linear complex. Three principal surfaces go threagh line of the complex; its
directions of advance are perpendicular to each athesequential sense.

We now have to discuss what sort of metric sense thfgepeéicularity possesses.
Since, on the basis of ordinary line coordinatesctmalition equation for it has the form:

P = P12 Paa + P13 Paz + P1a P23 = 0,

from § 2, two directions of advandp andd'p can be said to be perpendicular to each
other when:

0 =dp12 d'ps4 + dp1z d'Paz + dprs d' P23+ d'Pr2 dpss + d'Pra dPaz + d'Pra dp23.

However, there then exists a relationship betweeqgitten linep and its two neighbons
+dp andp + d'p that | shall refer to asvo neighboring linesin an involutory position %)
and has the following geometric content:

A neighboring linegp + dp always associates the planes that go thrgugtojectively
with the points found op. Each plane that goes througlintersecte + dp at a point
that goes back t@ itself when one takes the limit. One sees thisrisleahen one
considerg andp + dp as consecutive generators of a line surface. Any plategoes
throughp then corresponds to a point that liespand is determined by + dp: the
contact point with the surface.

If two neighboring linep + dp andp + d'p are now given then one always regards
two points to be corresponding when a plane thrqughassociated with respect to the
two neighboring lines. One then obtains two mutuallyimedlr sequences of points pn

The two neighboring lines are now said to lie in involutwhen the two point
sequences define an involutidf). [Cf., the completely analogous definition of the
involutory position of complexes in the introduction, pp. 3

We now once again go back to the metric spp&cand consider an orthogonal system
in it. This is a one-fold infinitude of surfaces, thiewhich go through each point of
space. They intersect each other perpendicularlyr sdoh systems of orthogonal
surfaces, one has Dupin’s theorelmy two surfaces of the system intersect each other
along a common curvature curve.

1 One can denote tramgle between two neighboring points by:

arc cos dp12d 'p34+d'p1z('jp 34':" B )
2\/dp12dp34+’ o Q/d p1zd Pait-

) One sees, with no further assumptions, the validithefollowing theorem: The lines that belong to

a line complex in the vicinity of one of its linpdie in involution to a line that neighbors a certpjrwhich
generally does not itself belong to the complex. Caelgr all such neighboring lines belong to the
complex. — Two complexes are now said to be in involutigh vespect to a common liqewhen the
neighboring linep + dp andp + d'p lie in involution, which are associated with the Imi the sense that
was explained here, resp.



On line geometry and metric geometry 14

One can consider similar systems of surfacd’,in ; there is a theorem that is true
for them that corresponds to Dupin's. These systemsudlces are again one-fold
infinite andn — 1 surfaces go through every poinfRaf1 . They intersect each other in a
mutually perpendicular way. For this system, one thes the theoremAny n — 2
surfaces intersect along a common curvature curve, and by “curvature curve,” we mean
the one-fold infinitude of manifold we just considered.

In line space, we will have to define the concepystem of complexes in involution.

It is a one-fold infinitude of system of complexesack line of space belongs to four of
the complexes and indeed the four complexes that belong lioe always lie in
involution pair-wise with respect to this line.

For this system of complexes in involution, one thgaim has a theorem that
corresponds to Dupin’#iny three complexes intersect on a common principal surface.

It is well-known how yet another general theorem ba presented for irreducible
orthogonal systems. Kummer then showed that theesup¥ an irreducible system of
orthogonal curves are necessarily confocal; DarBiduextended this theorem to systems
of orthogonal surfaces d®& and added further properties that first appeardg in It is
obvious that analogous properties exist for irreducible gdhal systems in ordinary
space to the ones that exist in line space for irredusysgems in involution. | shall not
go into this here, but | will only remark that the theorof the confocality of orthogonal
surfaces corresponds to line-geometric theor@omplexes in an irreducible system in
involution have a common singularity surface %4).

The simplest example of an irreducible system in invotuthen also gives the one-
fold infinitude of complexes of second degree with a comsiogularity surface. One
can apply the following algebraic representation for thas | have shown in the
previously-cited work: “Zur Theorie, etc.” (Math. AnnaleBgl. 2 (1870) [see Abh. Il of
this collection]: Letx; , ..., Xs be homogeneous functionsmf for which:

X12+X22+---+X§ =0.

The complexes are then represented by:

2 2

2
X + X5 +...4 X =0,
k-1 k,—A ke —/

where A refers to a parameter. In fact, the paramétappears in the fourth degree by
means of the relatioi x>=0. Any line of the space thus belongs to four complekes o

the system. However, any two complexXes A; andA = A, also lie in involution with
respect to the same line. The condition for two corgsde

=0, =0

g
)

Annales Scientifiques de I'Ecole Normale Supérieur. 1865.

For Plicker, the singularity surface is defined ontydomplexes of degree two. This lacuna was
filled in by Pasch in his Habilitationsschrift: “Zur Térée der Komplexe und Kongruenzen von Geraden,”
Giessen 1870.
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to be in involution with respect to a common line ig, the chosen coordinate
representation:

09 9¢ _ _q =
zaxa G?E 0 {by means ofp = 0, = 0}.

However, this expression always vanishes weg are two complexes of the system in
question. It will then equal:

2 2 2

X . X; s X |
)(kl_/]z) (kz_/]l)(kz_/]z) (ka_/])(k 6_/] )

4
(k1 _/]1
which is, by a partial fraction expansion, equal to:

4
/]1_/]2

(9-v),

SO it vanishes witlp and ¢.

Any three complexes of the system then have lurdases of the sixth degree in
common as a complex of second degtee;principal surfaces of the complex of the
second degree are then of sixth degree. | shall not further into a discussion of these
surfaces, which encompass a great number of spmaifeices when one specializes the
complex.

§4.

Further considerations on the principal surfaces of the complex.

In these last paragraphs we might develop evere rpooperties of the principal
surfaces of complexes, systems in involution, edad indeed, purely line-geometric
considerations. The latter again naturally caxrgrdo the metric geometry & , which
will not, however, be pursued further.

Lie has found the remarkable theorem (which caboiain a much different context
for him) thaton any line surface that belongs to a linear complex one knows a principal
tangent curve. Namely, there are two points on any generatahefline surface whose
tangential plane is likewise the plane that comesis with in the linear complex. The
totality of these points defines the principal tangcurve in question.

One can prove this quite simply. All of the tantgeto the surface at such a point
belong to the complex. The points thus define veewhose tangents belong to the
complex, namely, a complex curve. However, a cemmlurve has the property that
each of its points possesses the corresponding ptathe complex for its osculating
plane. On the other hand, this plane is, in asg cthe tangential plane to the surface, by
assumption. The curve is thus a principal tangante.

When a line surface is given as belonging to anypalex, one can determine a curve
on it in a similar manner; however, in generaginot a principal tangent curve. Namely,
one seeks those two points on any generators athwhie surface will contact the
complex cone. The sequence of these point-pairstitotes the curve in question.
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However, if the line surface is, in particular, a pipat surface of the given complex
thenthe curve thus constructed is a principal tangent curve of it ).

The proof follows immediately from the definition opancipal surface by means of
Lie’s theorem. The given complex will be contacedany two consecutive generators
of the stated linear complex. The linear complexgirestion thus includes three
consecutive generators of the line surface and deternhieestdted two point-pairs by
the first two of them, like the given complex itself.

Now, one can also formulate Lie’s theorem as Wdlplf a linear complex includes
three consecutive generators of a line surface therdatermined by the first two point-
pairs, which belong to the principal tangent curve itsalith this, the proof of our
theorem is given.

We now consider a system in involution. A single Imdelongs to four of the
complexes, which may be denoteddyb, ¢, d. They lie pair-wise in involution with
each other. As a consequence, one next has thevifedidheorem, for whose proof, |
refer one to the paper: “Zur Theorie, etc.” (Math. AenaBd. 2 (1870) [see Abh. Il of
this collection]®).

1. The line surface that three of the complexes — a&aly, ¢ — belong to will be
contacted at all points gfof the complex cone af in question.

2. The linep contacts the caustic of the congruence of two complaxb in the
stated two points, at which it contacts the caustithef congruence of the other two
complexeg, d.

3. The three point-pairglf, cd), (ac, bd), (ad, bc) that arise in this way on the lines
are harmonic to each ottfy.

We now consider a principal surface that is commahriee of the complexes — say,
a, b, c. On it, corresponding to each of the three comgler@me knows a principal
tangent curve that intersects each generator twice. , Nowever, the theorem of Paul
Serret is true for principal tangent curves of the liomglex: The generators of the line
surface will be projectively divided among the principageant curves. From this, one
will once conclude that the six points at which each geae of the three principal
tangent curves, b, c will intersect, are six fixed elements projectivelyfhis is, as
mentioned before (Theorem 3), in fact the case. h®rother hand, one will infer thah
the principal surface in question one can determine all principal tangent curves by a
purely algebraic process. One then obtains all principal tangent curves whenmoves
a point on the surface in such a way that, in any cadefiites a fixed double ratio with
three of the six points (and thus, with all of themm) all generators, and only algebraic
operations are necessary for this.

The two points at which the principal curaanvolves a generator — sgy,— are, |
now assert, the contact pointfvith the caustic of the congruence commoib ndc.
The complex cone od then contacts surface at these points, and therafsoe from
Theorem 1, the complex coneaf For this reason, these points are the contactgofn

%) The converse of this theorem is also valid.

2 There, it is only proved for linear complexes. ltthigrefore also valid for the linear tangential
complexes of complexes given here, and thus, for the itséf.

2 This is linked with the further theorem: If one layplane througlp then, corresponding @ b, c,
d, it includes each complex curve. The four contact padfithe four curves, along with define a four-
parameter point-group whose covariant of the sixth degriédevrepresented by the three point-pairs of
the text.
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p with the causti@d and thus also, from Theorem 2, with the caustjovhich was to be
proved. One then has the theorem:

The principal surface abc contacts the caustic bc along the principal tangent curve a,
the caustic ca, along the curve b, and the caustic ab, along the curve c.

From this, one may further infer:

One also knows the principal tangent curves of the congruence of any two complexes
on the caustic.

They are the curves that are principal tangent curvéseqgbrincipal surface. In fact,
from the totality of contact curves of the caustithwthe principal surfaces, one also
obtains the totality of the principal tangent curvestte caustic. Then the line that
contacts the caustab at a point, and which contaiasandb, simultaneously belongs to
two more complexes andd. One thus obtains, in the contact curves of the icawgh
the principal surfaceabc, abd, both of the principal tangent curves that go through the
chosen poinf®).

For the system in involution of the complex of secdedree, one finds, in particular:
The principal tangent curves to the principal surfacengalwhich the caustic contacts,
are of order and class 32. The caustics themselvdikeangse the principal surfaces of
sixteenth order and class.

By a suitable particularization, one obtains frora tdonsideration of these caustics
and principal surfaces the determination of the principeje¢at curves of a great number
of special surfaces. Let only one such particularinabe chosen here. The two
complexes of the system, which together determine tmgraence, and, by it, the
caustic, might coincide. Then, the congruence will eecttingruence of singular lines of
the complex in question. Its caustic decomposes irgosthgularity surface that is
common to all complexes, which is of fourth order alabs; and a further surface of
twelfth order and class. On both of them, one obtdéegtincipal tangent curves, which
will now be of sixteenth order. Now, for the genecaimplex of second degree the
singularity surface is a Kummer surface of fourth degvitle sixteen nodes. One thus
obtains a determination of the principal tangent curvethisf surface that goes thus:
They are the contact curves of the surface with thiasesurfaces, which belong to an
arbitrary (but chosen once and for all) associated BMmps singular lines and,
moreover, yet a second (variable) one that belongisetassociated complex. Thus, one
finds this to be in agreement with a determination of thecypal tangent curves of the
Kummer surface that was given by Lie and myself in anrmoon paper in the
Monatsberichten der Berliner Akademie, December 1870. [Sek. A/l of this
collection.] The content of this Note can be regaraedloser analysis of some of the
concepts that were published there.

Gottingen, in October 1871.

%) | have summarized the various theorems presented &lergg with theorem 3: “that any three
complexes of a system in involution intersect along ancomprincipal surface,” in the previously-cited
Note in the Go6tt. Nachrichten, No. 3 (1871) [see Abh. VIthe$ collection.] as the theorerhe line
surface that is common to three complexes of a systemin involution contacts the caustic of any two of them
along a principal tangent curve, and proved this analytically in that version. Thetehogeneous
component that this theorem includes seems to be separ#tedext. | am obliged to Lie for the fact that

he drew my attention to the possibility of this sepanat



