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I.  From a letter from F. Klein to D. Hilbert.  
 

 …When I studied your Note carefully, I remarked that one could essentially shorten 
the intermediate calculations that you carried out by the use of the ordinary Lagrange 
variational theorem, and in connection with that, gain a more precise insight into the 
meaning of the conservation theorem that you have posed for your energy vector.  In the 
following presentation of my arguments, I shall, as much as possible, adopt your 
notation, except that, for the sake of consistency, I will distinguish the world-parameters 
w by upper indices: 

wI, wII, …, wIV, 
 
and denote the undetermined indices by Greek symbols throughout.  In that way, I shall 
ease the comparison with the parallel developments of Einstein, about which, I have, at 
the same, made a few remarks. 
 
 
 1. I thus begin with pp. 404 of your note, in which, you introduced the two integrals 
that I shall call I1 and I2: 

(1)     I1 = K dω∫ ,  I2 = L dω∫ , 

 
and one understands dω to mean the invariant space element: 
 

dω = g ⋅ dwI…dwIV. 

 
In this, K is the fundamental position invariant of the basic ds2, which I write, with the 
use of the Riemann four-index symbol: 
 
(2)     K = 

, , ,

( , )( )g g g gµρ νσ µσ νρ

µ ν ρ σ
µν ρσ −∑ , 

                                                
 (1) Göttinger Nachrichten, Math.-phys. Klasse, (1915), 395-407 (Communicated on 20 November 
1915).  
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but for L, since it does not seem possess enough generality as a physical assumption, I 
would like to write the simplest allowed value on pp. 407 of your Note: 
 
(3)   L = αQ = − α 

, , ,

( )( )( )q q q q g g g gµρ νσ µσ νρ
µν νµ ρσ σρ

µ ν ρ σ
− − −∑ . 

 
In this, according to Einstein’s way of looking at things, α is taken to be equal to the 
gravitational constant, multiplied by 8π / c2, so it will be a very small number: 
 

− α = 1.87 ⋅ 10−27, 
 
in the units that are useful to physicists; I quote this numerical value expressly in order 
for one to see that the old Maxwellian theory of electron-free space, which sets α = 0 and 
does not speak of K at all, can be regarded as an adequate approximation to the new 
Ansätze that will be discussed here for the usual measurements.  (Cf., no. 5, below.) 
 
 
 2.  I shall next construct the variations of the integrals I1, I2 that correspond to 
arbitrary variations of the gµν, qρ by δgµν, δqρ (

2), resp., in a purely formal way, and write 
them briefly as: 

(4a)    δI1 = 
,

K g dµν
µν

µ ν
δ ω∑∫ , 

 

(4b)    δI2 = 
,

Q g Q q dµν ρ
µν ρ

µ ν ρ
α δ δ ω

 
+ 

 
∑ ∑∫ . 

 
In this, Kµν , Qµν denote the well-known tensors that are contragredient to the products 
dwµ dwν: 

(5a)  Kµν = 
,

:

g K gK

g ggK
g

g w w w

µν µν
ρ ρσ

µν ρ ρ σ
ρ ρ σ

    ∂ ∂
∂ ∂       ∂ ∂∂    − + ∂ ∂ ∂ ∂ 

 
 

∑ ∑ , 

 

(5b)  Qµν = :
gQ

g
gµν

 ∂
  ∂ 

, 

 
while Qρ is the vector that is cogredient to the dwρ: 
 

                                                
 (2) [Here, we make the assumption that δgµν, gµν

ρδ , and δqρ vanish on the boundary of the domain of 

integration.] 
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(6)     Qρ = − :

gQ

q
g

w

ρσ
σ

σ

  ∂
∂   ∂  

 ∂ 
 
 

∑ . 

 
 The equations: 
(7)      Qρ = 0, 
 
when written in the coordinates w, are the Maxwell equations that correspond to your 
physical assumptions; on the other hand, as you remarked on pp. 407 of your note, the 
Qµν are the components of the energy of the electromagnetic field. 
 
 
 3.  For the sake of clarity, I would still like to distinguish between the scalar 
divergence of a “vector pρ ” and the vectorial divergence of a “tensor tµν .”  As is well-
known, in our general coordinates wv, one expresses the former by the sum: 
 

(8)      
( )

:
g p

g
w

ν

ν
ν

∂

∂∑ , 

 
but the latter is somewhat more complicated; its components read: 
 

(9)    
( )

1
2

, ,

:
g t g

g t g g
w

µν
µα µν

µν σν
µ ν µ ν

 ∂
 +
 ∂
 
∑ ∑  

for σ = 1, 2, 3, 4. 
 
 
 4. I will now develop the four simple partial differential equations that I1 (I2, resp.) 
must satisfy (because both of them are invariants of arbitrary transformations of the w).  
Naturally, to that end, as Lie in particular has done in his numerous, incisive publications, 
one determines the formal variations that an arbitrary infinitesimal transformation: 
 
(10)    δwI = pI, …, δwIV = pIV 
 
will produce.  (We understand pσ to mean an infinitesimal vector whose higher powers 
can be neglected.)  You have done this for the integral I1 on pp. 398-400 of your Note in 
such a way that you next directed your attention to the relatively complicated variations 
of K, in order to rise to the variation of I1 by integration.  My entire simplification of the 
argument consists in the fact that in connection with formula (4a) – i.e., the variation of I1 
– I have calculated it directly from the Lagrange derivative.  The variation of I must be 
zero when I1 substitutes the values of δgµν (in 4a) that correspond to the infinitesimal 
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transformation (10).  Since the gµν are cogredient to the dwµ dwν, one will find simply 
that (3): 
(11)    δgµν = ( )g p g p g pµν σ µσ ν νσ µ

σ σ σ
σ

− −∑ . 

 
We will then have [when we set the pσ equal to zero on the boundary]: 
 

,

K g p g p g pµν σ µα ν να µ
µν σ σ σ

µ ν σ σ σ

 − − 
 

∑ ∑ ∑ ∑∫  dω = 0. 

 
In this, we have rearranged the terms in the pν

σ , pµ
σ  by partial integration, in a well-

known way, in which we subject the otherwise arbitrary pσ to the condition that it must 
have vanishing first and second differential quotients on the boundary of the integration.  
We then get: 

( )
, ,

2
g K g

p g K g
w

µν
µσσ µν

µν σ ν
σ µ ν µ ν

 ∂
 +
 ∂
 

∑ ∑ ∑∫  dwI…dwIV = 0, 

 
and from this, due to the arbitrariness in the pσ, I get the four differential equations that 
are true for the tensor Kµν : 
 

(12)  
( )

, ,

2
g K g

g K g
w

µν
µσµν

µν σ ν
µ ν µ ν

∂
+

∂∑ ∑  = 0   (σ = 1, 2, 3, 4) 

 
that you (Einstein, resp.) posed, and which we can obviously interpret by saying that: The 
vectorial divergence of the tensor Kµν  vanishes. 
 One can treat the integral I2 in precisely the same way.  Along with the increment 
(11) in the gµν, only the following increments of the qσ will occur (4): 
 
(13)    δqσ = ( )q p q pσ σ

ρσ σ ρ
σ

+∑ . 

 
 We then get the following four differential equations for the Qµν , Q

ρ : 
 

(14) 
( ) ( )

,

2
g Q g g Q q

g Q g g Q q
w w

µν ρ
µσ σµν ρ

µν σ ρσν ρ
µ ν ρ

   ∂ ∂
   + + −
   ∂ ∂
   

∑ ∑  = 0, 

for s = 1, 2, 3, 4. 
 

                                                
 (3) [This will be explained more precisely in § 1 of the following Abh. XXXII.]  
 (4) My δgµν (11) and δqρ (13) are nothing but the quantities that you denoted by pµν and pρ in your Note 
on pp. 398.  
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 It is quite unnecessary to put this into words.  However, it is probably worthwhile to 
convert it in such a way that it will admit our Q in that special form (and which likewise 
appeared in various places, mutatis mutandis, in your Note).  Q depends upon only the 
differences qρσ – qσρ, and therefore, as a glimpse at (6) will show, it will have a vanishing 
scalar divergence: 

( )g Q

w

ρ

ρ
ρ

∂

∂∑  = 0. 

 
As a result of this, we can put the differential equations (14) into an other form: 
 

(14′)  
( ) ( )

,

2 ( )
g Q g

g Q g g Q q q
w

µν
µσµν ρ

µν σ ρσ σρν
µ ν ρ

 ∂
 + + −
 ∂
 

∑ ∑  = 0, 

for σ = 1, 2, 3, 4. 
 
 

 5. Only now do I introduce the basic assumption of Einstein’s theory.  Naturally, it 
would be best to introduce it in the form that you chose in your Note, which I shall 
express here by saying that the variation should satisfy: 
 
(15)     δI1 + δI2 = 0 
for arbitrary δgµν, δqρ . 
 According to (4a), (4b), this gives the 14 well-known field equations, namely, the ten 
equations: 
(16a)     Kµν + α Qµν = 0 
and the four equations: 
(16b) Qρ = 0. 
 
 In your Note, you remarked that four dependencies must exist between these 14 
equations, and on pp. 406, you showed, by explicit calculation, the connection that exists 
between the four equations (16b) – viz., the Maxwell equations – and the ten equations 
(16a).  Naturally, for me, that is already contained in the formulas of the previous 
number.  In fact, one needs only to add equations (14′), when multiplied by α, to 
equations (12) in order to immediately read off the fact that the vanishing of Qρ will 
follow from equations (16a). 
 At the same time, what was said about the character of the older Maxwell theory as a 
limiting case of the new theory becomes entirely clear.  If we treat the older Maxwell 
theory in arbitrary curvilinear coordinates wI, …, wIV, then we will also have to deal with 
a ds2 whose Riemann curvature vanishes identically, so the Kµν will also be simply zero.  
On the other hand, one takes α = 0.  The ten equations (16a) are then fulfilled by 
themselves; the energy components Qµν of the electromagnetic field are then subject to no 
further constraints from there on.  All that remains are the four equations (16b); i.e., just 
Maxwell’s equations.  As a consequence of them, according to (14), the Qµν will have a 
vanishing vectorial divergence. 
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 Naturally, before Einstein, the rest of us introduced curvilinear coordinates w into 
physics only in such a way that the three space coordinates were transformed arbitrarily, 
but the t remained essentially unchanged.  The fact that t was included with the same 
status in the coordinate transformation seems to be one of Einstein’s great achievements.  
The other one is then self-explanatory, i.e., that the calculation of gravitation can be 
carried out when one replaces the ds2 with a vanishing Riemann curvature with a more 
general ds2. On the other hand, we should also emphasize that the mathematical 
background for dealing with these new physical thoughts has already been long-
established, since for us, spaces of arbitrarily many dimensions with arbitrary arc-length 
elements have been commonplace since the time of Riemann.  This is not the place to 
digress into a historical excursion that would have to begin with the methods of 
Lagrange’s Mécanique analytique; otherwise, one would have to discuss not only the 
aforementioned papers of Christoffel, but also those of Beltrami and Lipschitz. 
 
 
 6. I would now like to add equations (12), (14) together, without employing the field 
equations (16), and then multiply the latter by α.  For σ = 1, 2, 3, 4, that will give the 
identities: 

(17)   ( )
,

g K Q g g Q qµν ρ
µν µν σ ρσ

µ ν ρ
α α+ +∑ ∑  

= − 2 
,

( )
2

g K Q g g Q q

w

µν ν
µσ µσ σ

ν
µ ν

αα ∂ + −  
∂∑  . 

 
I then multiply these equations by pσ (where one understands that pσ means the vector 
that is cogredient to dwσ) and sum over σ.  Here, I can insert the pσ under the 
differentiation sign in the right-hand side, while I put corresponding extended terms into 
the left-hand side.  Thus, I would like to switch the symbols σ and ν in the left-hand side, 
and also replace 2 gµσ pν

σ  with the symmetric expression (gµν pν
σ  + gνσ pµ

σ ), which is 

equivalent in the context of this argument.  In that way, it will arise that: 
 

, ,

g
µ ν σ
∑  (Kµν + α Qµν) (( )g p g p g pµν σ µσ ν νσ µ

σ σ σ− −  

(18)    + 
,

( )g Q q p q pρ σ σ
ρσ σ ρ

ρ σ
α +∑  

 

= − 2 
, ,

( )
2

g K Q g g Q q p

w

µν ν σ
µσ µσ σ

ν
µ ν σ

αα  ∂ + −    
∂∑ , 

 
which is naturally just another way of writing (17).  In view of the special value that I 
have chosen for your H (viz., H = K + αQ), all that is on the left-hand side here is 
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precisely what you gave as the value of scalar divergence of your energy vector eν, when 

multiplied by g  (pp. 402 of your Note), namely: 

 

g e

w

ν

ν
ν

∂
∂∑ . 

 
It then follows that your energy vector eν differs from: 
 

− 2
,

( )
2

K Q g Q q pµν ν σ
µσ µσ σ

µ σ

αα + +  
∑  

 
by just one term whose scalar divergence vanishes identically. 
 If we now add the 14 field equations (16a), (16) then eν will reduce to that extra term, 
and the statement on pp. 402 of your note that: 
 

(19)     
g e

w

ν

ν
ν

∂
∂∑  = 0 

 
will appear to be an identity.  That statement cannot, by any means, be then regarded as 
an analogue of the law of conservation of energy that prevails in ordinary mechanics.  If 
we write the latter as: 

( )d T U

dt

+
= 0 

 
then this differential relationship will not be an identity, but only as a result of the 
differential equations of mechanics. 
 
 
 7.  Naturally, it would be desirable to give the extra term explicitly, in order to 
distinguish your eν from the terms that vanish as a result of the field equations.  However, 
I find your formulas so complicated that I have not attempted to duplicate them.  It only 
seems clear that they subsume components that are linear in the pσ, as well as other ones 
that include the pσ

µ  linearly, and perhaps only ones that include the pσ
µν  linearly.  It 

might actually not be difficult to give the most general vector of that form whose scalar 
divergence vanishes identically.  One obtains nothing but vectors Xν of vanishing 
divergence when one starts with any six-tensor (i.e., a skew-symmetric tensor) λµν and 
sets: 

(20)    g Xν  = 
w

µν

µ
µ

λ∂
∂∑ . 

 
If one would wish that the Xν should be linear in the pσ and pσ

µ   then one can choose, for 

example: 
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(21)   λµν = g q p g q pµρ ν νρ µ
ρ ρ

ρ ρ

    
−     

    
∑ ∑ . 

 
 
 8.  Here, I must interject an essential remark.  One knows that Nöther has continued 
to advise me in my research and that I was actually only introduced into the present topic 
by her.  When I now ultimately spoke to Nöther about my results concerning your energy 
vector, she wrote me that she had already derived the same thing from the developments 
in your Note (and thus, not with the simplified calculations in my own no. 4) a year ago, 
and wrote that down in a manuscript at the time (which I then looked into).  However, 
she had not proved it as decisively as I did recently in the Mathematischen Gesellschaft 
(22 January). 
 
 
 9. In conclusion, I would like to make the remark in regard to that, that it is self-
explanatory that the same thing will be true for your theorem (19) on the “conservation 
laws” that Einstein had formulated in 1916 (5).  He himself actually expressed it quite 
clearly.  I would not like to go into the details of his calculations here, but only refer to 
his final result, which he wrote thus: 
 

(22)    ( )
w

ν ν
σ σν

ν

∂ +
∂∑ T t  = 0              (σ = 1, 2, 3, 4), 

 
in which he denoted the “mixed” energy components of the electromagnetic 
(gravitational, resp.) by ν

σT  ( ν
σt , resp.).  In that way, he got that this ν ν

σ σ+T t  could be 
expressed as: 

(23)    ν ν
σ σ+T t  = − 

,

g
w g

µν
ρ µσ

µ ρ ρ

∗  ∂ ∂
    ∂ ∂  

∑
G

 

 
when one invokes the field equations and introduces a function G* that he defined more 

precisely that is independent of the coordinate system, and that the identity equation: 
 

(24)    
, ,

g
w w g

µν
ν ρ µσ

µ ν ρ ρ

∗ ∂ ∂
  ∂ ∂ ∂ 

∑
G

= 0 

 
exists for that G* independently of the value of σ.  That is precisely what we arrive at 

here. 

                                                
 (5) Cf., the self-sufficient paper: “Die Grundlagen der allgemeinen Relativitätstheorie” (Leipzig 1916), 
as well as the communication to the Berlin Academy on 20 Oct. 1916, “Hamiltonsches Prinzip und 
allgemeine Relativitätstheorie” (Sitzungsberichte, pp. 1111-1116). 
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 In order to present the connection with the notation that I have used, I remark that 

Einstein’s ν
σT  is the same thing as my g Q gµν

µσ
µ
∑ , but Einstein’s ν

σt  differs from the 

corresponding expression 
1

g K gµν
µσ

µα ∑
 by a summand that one gets when one 

compares equations (23) with the field equations: 
 

Kµν + α Qµν = 0. 
 
 

II.  From D. Hilbert’s response. 
 

 … I am actually in complete agreement with your explanation of the energy theorem. 
Emmy Nöther, whose help I called upon for the clarification of some questions of an 
analytical nature regarding my energy theorem over a period of more than a year, found, 
at that time, that the energy components that I presented formally (like those of Einstein) 
by means of the Lagrange differential equations (4), (5) in my first communication could 
be converted into expressions whose divergences vanished identically; i.e., without the 
use of the Lagrange equations (4), (5).  On the other hand, since the energy equations of 
classical mechanics, the theory of elasticity, and electrodynamics are fulfilled only as a 
consequence of the Lagrange differential equations of the problem in question, it is 
justified if you do not therefore perceive the analogues to any of those theories in my 
energy equations.  Admittedly, I then assert that for general relativity – i.e., in the case of 
the general invariance of Hamilton’s function – energy equation that correspond to the 
energy equations of the orthogonally-invariant theory, in your sense, do not exist at all.  
Indeed, I would like to refer to that situation as even a characteristic feature of the general 
theory of relativity.  The mathematical proof of my assertion is forthcoming. 
 Please allow me, on this occasion, to show briefly how I treated the question of the 
energy equations of the orthogonally-invariant theories of physics (viz., electrodynamics, 
hydrodynamics, and the theory of elasticity) in a lecture last winter. 
 For the sake of brevity, we choose the world-function H, which depends upon only 
the components of an electrodynamical four-potential qs and its first derivatives qsl with 
respect to wk (s, l = 1, 2, 3, 4) to be orthogonally-invariant (the method is true just the 
same, whether H perhaps includes the four-density r and its derivatives or some other 
physical parameter and its derivatives).  Hamilton’s principle: 
 

(1)      H dδ ω∫  = 0 

 
then leads to the system of four Lagrange differential equations: 
 
(2)      [H]s = 0    (s = 1, 2, 3, 4), 
in which we generally mean: 

[H]s = 
ks k sk

H H

q w q

∂ ∂ ∂−
∂ ∂ ∂∑ . 
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 In order to arrive at the energy equations of this problem, we embark upon the path 
that explains the statements in my first paper, namely, the path of the theory of 
gravitation. 
 Let H  be the general invariant with the arguments: 
 

qs , qsl , g
µν, lgµν  

that goes to H for: 
(3)     gµν = gµν = δµν , lgµν  = 0. 

 
We will be dealing with the same thing when we replace the qsl in H with the covariant 
derivatives: 

slq  = qsl – 
h

s l

h

 
 
 

∑  qk ,  

 
and at the same time, raise the indices with the gµν.  If H takes on, for example, a term in 
the form of the orthogonal-invariant expression: 
 
(4)     − Q = 2

,

( )mn nm
m n

q q−∑ = 21
4

,
mn

m n

M∑  

 
then it will have to be replaced with: 
 

−Q  = 1
4

, , ,

mk ml
mn kl

m n k l

M M g g∑ . 

The expression: 
T = 2

,
sh

s h

q∑  

will get converted into: 
T  = 

, , ,

sm hn
sh mn

s h m n

q q g g∑ , 

etc. 
 Now, an identity is verified by every general invariant that was proved in my first 
paper (Theorem III) only in the case for which the invariant depended upon gµν and its 
derivatives; however, the method of proof that was followed there is also true for our 
general invariant H .  If we employ the notations of my first paper then, in place of the 
equation in it, namely: 

( )gP J g dω∫ = 0, 

we will get the equation: 
 

( ) ( ){ }g qP H g P H g dω+∫ ≡ ( ){ }P H g dω∫  = 0 

 
in our present case, which is an identity that has the immediate consequence that: 
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,

g H p g H p dµν
µµν µµ ν µ

ω
 

   +    
 
∑ ∑∫  = 0. 

 
 After introducing pµν, pµ and applying partial integration, we can bring the integral on 
the left-hand side into a form in which the integrand is multiplied by ps.  However, since 
ps is an arbitrary vector, the other factor under the integral sign must vanish identically, 
and that will imply the identities (s = 1, 2, 3, 4) (6): 
 

(5)   
,

2 m
s

s
m m

g H g g H g
w

µν µ

µν µµ ν µ

 ∂   −     ∂  
∑ ∑ ∑  

+ ( )s sg H q g H q
wµµ µµ µ µ

∂   −   ∂∑ ∑  = 0. 

 
 These four identities are, at the same time (precisely as you have remarked above) the 
ones between the 14 Lagrange equations of our problem whose existence was asserted in 
Theorem I that I presented. 
 If we now return to the original problem, in which we eliminate the gravitational 
potentials by means of (3) and consider the Lagrange differential equations (2), then the 
identities (5) will go to: 

(6)     { }
ms gm m

g H
w µν µνδ=

∂  
 ∂∑ = 0. 

 
If we then refer to the bracket expressions: 
 

(7)     εms = 2 { }
ms g

g H
µν µνδ=

 
   

 
as the components of the energy tensor then we will obtain the desired energy equations 
of the physical problem (1) from the divergence equations (6). 
 If we take H to be the invariant Q in (4), in particular, then εms will become the 
components of the known electromagnetic energy tensor, and the Maxwell equations: 
 

{ }
m g

g H
µν µνδ=

 
  = Divm M = rm 

 
(we understand r to mean the electric four-density) will yield our identities (5) in this 
case: 

Divs ε − ( )m ms m s
m m m

r q r q
w

∂+
∂∑ ∑ = 0, 

 or, since Divs r = 0: 
Divs ε = − rs ⋅⋅⋅⋅ M ; 

                                                
 (6) [For this, cf., my formula (14), which agrees with this one term-by-term. K]  
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i.e., they produce the well-known divergence expression for the ponderomotive force. 
 It is only in the case of general relativity – i.e., when the original invariant H is 
already a general invariant – that the given path fails to exhibit the energy equations for 
the problem (1).  In the general theory of relativity, we have a substitute for the missing 
energy equations in your sense in the fact that the Lagrange equations (Theorem I in my 
first paper) are four-fold superfluous, as was expressed in the four identities (5).  
Conversely, the energy theorem of the orthogonal theory seems to be the residue of those 
four identities of the theory of gravitation. 
 It should be remarked that as one sees immediately, the energy tensor (7) possesses 
not only the properties of orthogonal invariance and symmetry, but in addition, it also 
fulfills the requirements of the special physical theory: The same thing will be true in the 
case of electrodynamics, in which H contains the qsl only in the combinations: 
 

Mks = qsk – qks , 
 
as well as upon only these components of the six-vector M, and on the other hand, in the 
case of the theory of elasticity, in which it also depends upon only the actual distortion 
quantities that enter into the question of elasticity… 
 
 

III.  From a further writing of F. Klein.  
 

 …It is important for me to characterize the difference between the orthogonal-
invariant theory of electrodynamics and that of gravity that I have been considering in a 
few words. 
 In that regard, things become much clearer when, as I already suggested above (no. 
5), one appeals to the treatment of classical electrodynamics in arbitrary (“curvilinear”) 
world-coordinates as an intermediate step. 
 Your main theorem that the energy components of the electrodynamical field can be 
represented simply by the Qµν then already comes to the foreground in all of its 
significance; I would then prefer to not speak of the modern theory of gravitation in this 
theorem. 
 I also find it useful to distinguish the integrals ∫ K dω and ∫ Q dω in the 
representation, and not fuse them together into one integral ∫ H dω from the outset. 
 We then have four identities for the Kµν and the Qµν [viz., the equations (12) and (14) 
– or (14′) – in my first paper], so eight, in all, and the opposite of the earlier and present 
theory can then be put into precise words as follows: 
 

1. In both cases, we have 14 “field equations”, along with the eight identities, for 
the comparison that comes under consideration here. 

 
2. In the previous theory, they read (7): 
 

                                                
 (7) [As a consequence of the 20 equations that come from the Riemann curvature vanishing identically. 
K] 
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    a)  Kµν = 0,  b) Qρ = 0. 
 

 The four identities (12) are fulfilled by themselves by means of the ten 
equations a), but the identities (14) – or (14′) – reduce to the four statements 
that one calls the four conservation theorems (impulse-energy theorem) by 
means of the four equations b). 

 
3. In return, one has the field equations in the new theory: 
 
   a′) Kµν + α Qµν = 0, with α ≠ 0 b′) Qρ = 0. 
 
  The equations Qρ = 0 now appear to be a consequence of the ten equations 

a′) by means of the eight identities. 
  When one drops the Qρ, “conservation laws” for the Qµν will still follow 

from the identities (14).  However, they will now no longer have any 
autonomous (physical) meaning, since they will reduce to the four identities 
(12) by means of the ten equations a′); they are even already included in the 
ten field equations. 

 
 All of this is actually in complete agreement with the presentation in your letter.  
However, it would be very interesting to me to see the details of the mathematical proof 
that you promised at the end of the first paragraph. 
 

___________ 
 

 [In the meantime, the stated proof was provided by E. Nöther (see her Note on “Invariante 
Variationsprobleme” in the Göttinger Nachrichten of 26 July 1918.)  I shall return to that at the conclusion 
of XXXII. 
 Moreover, I would like add the following remarks in order to make the relationship with the articles 
XXXI to XXXIII on the Erlanger Programm clearer: 
 
 1. The invariant theory of the Lorentz group that was treated in XXX is precisely what the modern 
physicists refer to as “the special theory of relativity.” 
 
 2. Therefore, the Lorentz group can apparently be defined to be the largest continuous family of the 
most general continuous transformations of finite values of x, y, z, t that take the quadratic differential 
form: 

ds2 = dt2 – 
2 2 2

2

dx dy dz

c
+ +

 

to itself. 
 
 3. One now imagines that instead of the x, y, z, t, one introduces any real, everywhere continuous at 
finite points, differentiable sufficiently often, single-valued, invertible functions: 
 

wρ = ϕρ (x, y, z, t)           (ρ = 1, 2, 3, 4). 
 
The ds2 that we just wrote down will then go to a more general quadratic form in the dw, which we would 
like to write in the Einstein manner as: 

ds2 = gµν∑ dwµ dwν. 
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 4. Naturally, this new ds2, like the one that was given in 2, has inertia character + − − −.  Its 
coefficients gµν are continuous, differentiable sufficiently often, real functions of the w that are naturally 
specialized only by the fact that the Riemann curvature that is constructed from ds2 must vanish identically. 
 
 5. From the basic laws of the Erlanger Programm, we can now also treat the special theory of 
relativity in such a way that we base it upon the total group of all real, continuous, differentiable 
sufficiently often, uniquely invertible transformations of the wρ, but then adjoin the ds2 of 3; i.e., we append 
the conversions that the gµν experience under the respective transformations of the w. One then obtains 
uniquely-determined linear transformations of the gµν , since the relations that couple the gµν as the 
coefficients of a form with vanishing curvature have too advanced a character to have any influence.  In 
addition, one must observe that not only the coefficients of the substitution, but also the gµν themselves are 
functions of the x, y, z, t (the w2, resp.).   The conversions that differential quotients of the gµν experience 
from the respective transformations then follow from that.  Furthermore, the group that is “extended” by all 
of them is the one that all considerations should be based upon. 
 
 6. When we do that, we will have taken a decisive step into the “general theory of relativity.”  A 
further step might be when we introduce the most general (for real w) everywhere-real, continuous, 
differentiable sufficiently often function of the w as the coefficients gµν of the ds2.  The Riemann curvature 
and the invariant that is derived from it that Hilbert denotes by K will then no longer be identically zero. 
 Moreover, one will choose the “group” exactly as we did in 5. 
 Incidentally, this also raises the question of the connection to the world as a whole, which analogous in 
to the consideration on Abh. XXI in relation to the case of the geometry of the plane.  This question still 
seems to have not been dealt with very much.  That particular case presents possibilities that will emerge in 
Abh. XXXIII.  The entire question naturally goes away for the special theory of relativity, in which we let 
x, y, z, t run from − ∞ to + ∞ inclusive in order to obtain all world-points. 
 
 7. The general theory of relativity of the pure gravity field thus results from Einstein’s fundamental 
Ansatz [which was formulated almost simultaneously by Einstein and Hilbert (8)] when one subjects the gµν 
to the equations Kµν = 0, which are ten, in all, and invariant under the group that we speak of. (Here, for the 
sake of brevity, I am using the notation (5a) of my own Note.) 
 
 8. We might now direct our attention to any other sort of physical phenomena, along with 
gravitation, or furthermore, we might, as we did in the present article in connection with Hilbert’s first 
Note, restrict ourselves to electromagnetic processes in empty space, along with gravitation. 
 
 9. One will consider this most simply, also in the case of the special theory of relativity (which was, 
unfortunately, not mentioned in Abh. XXX), when one poses the linear form: 
 

q dwρ
ρ∑ , 

 
along with our ds2, in which the real, everywhere continuous, differentiable sufficiently often, functions qρ 
define the so-called four-potential of the electromagnetic field. 
 

                                                
 (8) Einstein “Zur allgemeinen Relativitätstheorie” in the Sitzungsberichten der Berliner Akademie of 11 
and 25 Nov. 1915 (pp. 799 to 801, pp. 844 to 847, resp. of the year’s issue), Hilbert in his (presently 
critiqued) first Note on the “Grundlagen der Physik” in the Göttinger Nachrichten of 20 Nov. 1915.  One 
cannot speak of any question of priority then, since both authors pursued completely different lines of 
thought (and indeed, for that reason, the consistency of the results did not seem certain at first).  Einstein 
proceeded inductively and considered arbitrary material systems.  Hilbert proceeded deductively, in that he 
let the restriction on electrodynamics that was mentioned in this article under 8 enter in as a prescribed 
main variational principle, moreover.  Hilbert then also connected up with Mie, in particular.  Einstein first 
presented the connection between the two kinds of Ansätze in his aforementioned (pp. 8) communication to 
the Berlin Academy on 29 Oct. 1916. 
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 10. The fundamental group is now extended in comparison to 5 in that, along with the transformations 
of the gµν and their differential quotients, which come about (i.e., are “induced”) by the transformations of 
the w, now, those of the qρ and their differential quotients also enter in. 
 
 11. However, the gµν  , qρ are now subjected to the 14 equations (16a), (16b) of this article: 
 

Kµν + α Qµν = 0,  Qρ = 0, 
 
which are again invariant under the extended group.  In connection with 10, this is the core of the general 
theory of relativity in physics, as far as it concerns us here. 
 Obviously, these formulations can only be expressed in another language, which is what Einstein and 
Hilbert said, anyway.  Here, I would like to refer to Hilbert’s second communication on the foundations of 
physics (in the Göttinger Nachrichten 1917, pp. 53-76) (9).  There, on pp. 61, it was expressly stated that 
only those consequences that one could deduce from the differential equations 11 that had physical 
meaning could, like the differential equations themselves, possess an invariant character (N. B., under the 
group that was defined in 10).  That is, mutatis mutandis, the same thing that was concluded in the Erlanger 
Programm from the statements about any geometry (that is characterized arbitrarily by a group). 
 It hardly needs to be said that similarly the further study of Einstein’s theory, such as what Weyl has 
done, can be connected with the schema of the Erlanger Programm. 
 There is even an especially close relationship to the individual explanations that are present there (Note 
VI of Abh. XXVII, pp. 491-492), insofar as it was not a form ds2, but an equation ds2 = 0, that was 
fundamental there. K.] 
 

                                                
 (9) Sumitted on 23 Dec. 1916.  


