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XXXI. On Hilbert’s first note on the foundations of physics ¢).

[Nachrichten der Kgl. Gesellschaft der Wissenschafte@o6ttingen. Mathematisch-
physikalische Klasse. (1917). Presented at the sessidh danuary 1918.]

By F. Klein

Translated by D. H. Delphenich

. From a letter from F. Klein to D. Hilbert.

...When | studied your Note carefully, | remarked that cmeld essentially shorten
the intermediate calculations that you carried out lgyube of the ordinarkagrange
variational theorem, and in connection with that, gaimae precise insight into the
meaning of the conservation theorem that you have posgodo energy vector. In the
following presentation of my arguments, | shall, ascm as possible, adopt your
notation, except that, for the sake of consisteneyillldistinguish the world-parameters

w by upperindices:
w,w', owY,

and denote the undetermined indices by Greek symbols throughothiat way, | shall
ease the comparison with the parallel developmenErstein, about which, | have, at
the same, made a few remarks.

1. | thus begin with pp. 404 of your note, in which, you introdutde two integrals
that | shall call; andl:

(1) L= [ Kdw, 2= | Ldw,
and one understandsuto mean the invariant space element:
dw= /g [ow...dw".

In this, K is the fundamental position invariant of the baist which | write, with the
use of theRiemanrfour-index symbol:

() K= > (uv,po)(9*g” - g“d*),

UV.p.o

() Géttinger Nachrichten, Math.-phys. Klasse, (1915), 395-407 (Gorimated on 20 November
1915).
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but for L, since it does not seem possess enough generality asieaplgsumption, |
would like to write the simplest allowed value on pp. 40yofr Note:

3) L=aQ=-a ) (49,-9,)(q,-q,)(d" "~ ¢° &).

UV.p.o

In this, according tdinstein’'sway of looking at thingsg is taken to be equal to the
gravitational constant, multiplied by® c?, so it will be a very small number:

- a=1.87107%,

in the units that are useful to physicists; | quititie numerical value expressly in order
for one to see that the dldaxwelliantheory of electron-free space, which sets 0 and
does not speak & at all, can be regarded as an adequate approamtdithe new
Ansatze that will be discussed here for the uswesarements. (Cf., nb, below.)

2. 1 shall next construct the variations of the gmtds I;, |, that correspond to
arbitrary variations of thg”", q, by &, &, (%), resp., in a purely formal way, and write
them briefly as:

(4a) di=[ > K, 09" dw,
(4b) do=af [ZQWJQ‘“’ +> Qaéqgj .

In this, K., , Qu denote the well-known tensors that are contragntdo the products

dw’ dw”:
9y gK 9y gK
0 gK ° 09, ° 09,
52) ) I ol IS

ag”  Z oW oW oW

09"

(5b) Quv = {M—QQJ Vg,

while Q” is the vector that is cogredient to the’:

() [Here, we make the assumption tiagt”, 4g.", and &y, vanish on the boundary of the domain of
integration.]



Klein. — On Hilbert’s first note on the foundations bfypics. 3

(6) Q=- ZM Ja.

The equations:

(7) Q=0

when written in the coordinates w, are the Maxwegjuations that correspond to your
physical assumptions; on the other hand, as youwarked on pp. 407 of your note, the
Quv are the components of the energy of the electroetafield.

3. For the sake of clarity, | would still like to sfinguish between thecalar
divergenceof a “vectorp’” and thevectorial divergencef a “tensort,, .” As is well-
known, in our general coordinate§ one expresses the former by the sum:

(8) Zw:ﬁ,

v

but the latter is somewhat more complicated; iteponents read:

) Za(fi )+1J_Z AR N

v

foro=1, 2, 3, 4.

4. 1 will now developthe four simple partial differential equatiotisat|; (I, resp.)
must satisfy (because both of them are invariaheglwtrary transformations of ths).
Naturally, to that end, dde in particular has done in his numerous, incisivbligations,
one determines the formal variations that an ayitmfinitesimal transformation:

(10) o =p, .., owv=pY

will produce. (We understarmgf to mean an infinitesimal vector whose higher pawver
can be neglected.) You have done this for thegnaié; on pp. 398-400 of your Note in
such a way that you next directed your attentiotheorelatively complicated variations
of K, in order to rise to the variation bfby integration. My entire simplification of the
argument consists in the fact that in connectiah varmula (4a) — i.e., the variation laf

— | have calculated it directly from theagrangederivative. The variation of | must be
zero when |l substitutes the values @& (in 4a) that correspond to the infinitesimal
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transg‘ormation(lO). Since they”” are cogredient to thew' dw’, one will find simply
that ():

(11) = (9 -9 8- d7 if).
We will then have [when we set th€ equal to zero on the boundary]:
| ZKW[Z o -> g B> ¢ gj dw= 0.
y78% g g g

In this, we have rearranged the terms in tife p, by partial integration, in a well-

known way, in which we subject the otherwise adbitp’ to the condition that it must
have vanishing first and second differential quaBeon the boundary of the integration.
We then get:

IZp J_Z e ‘”+ZZ (J_ ”"gw) dw...dw" =0,

and from this, due to the arbitrariness in pgl getthe four differential equations that
are true for the tensdf,,:

(f wg“”)

=0 =123 4)

(12) Jad K, g +2z

that you (Einstein, resp.) posexhd which we can obviously interpret by saying:tihae
vectorial divergence of the tensog,Kvanishes.

One can treat the integril in precisely the same way. Along with the increme
(11) in theg"”, only the following increments of the, will occur ¢):

(13) d:IU: Z(qpa pU + q7 ﬁ;) .
We then get the following four differential equatidor the Q,, Q°:

o500 alsas))
ow’ ow’ ’

14) >|J0Q,q"+2 S

fors=1, 2, 3, 4.

() [This will be explained more precisely in § 1 of thiédaing Abh. XXXII.]

() My @ (11) anddy, (13) are nothing but the quantities that you denoteai"bgndp, in your Note
on pp. 398.
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It is quite unnecessary to put this into words. Howevés, probably worthwhile to
convert it in such a way that it will admit oQrin that special form (and which likewise
appeared in various placesutatis mutandisin your Note). Q depends upon only the
differencesy,s — 0 and therefore, as a glimpse at (6) will show, It kave a vanishing
scalar divergence:

oly9Q
LA

> 0w

As a result of this, we can put the differential equat{@43into an other form:

a(ﬁaf}“gw) 2 (V9T (4 - q)) =0

P

foro=1, 2, 3, 4.

(14) >JaQ, g +2

v

5. Only now do | introduce the basic assumption of Einsteiinéory. Naturally, it
would be best to introduce it in the form that you chwmsgour Note, which | shall
express here by saying thiae variation should satisfy:

(15) d,+d>=0
for arbitrary &y, &, .

According to (4a), (4b), this gives the 14 well-knofigdd equationsnamely, the ten
equations:

(16a) Kw+aQu=0
and the four equations:
(16b) Q’=0.

In your Note, you remarked that four dependencies must betsteen these 14
equations, and on pp. 406, you showed, by explicit calculdhen;onnection that exists
between the four equations (16b) — viz., the Maxwell equgatioand the ten equations
(16a). Naturally, for me, that is already containedthe formulas of the previous
number. In fact, one needs only to add equationy,(When multiplied bya, to
equations (12) in order to immediately read off the faat the vanishing o€’ will
follow from equations (16a).

At the same time, what was said about the charattée oldeMaxwelltheory as a
limiting case of the new theory becomes entirely rclel we treat the oldeMaxwell
theory in arbitrary curvilinear coordinates ..., w", then we will also have to deal with
a ds whoseRiemanncurvature vanishes identically, so ke, will also be simply zero.
On the other hand, one takes= 0. The ten equation§l6a) are then fulfilled by
themselves; the energy componenjs @ the electromagnetic field are then subject to no
further constraints from there onAll that remains are the four equations (16b); iLest |
Maxwell's equations. As a consequence of them, according to (B4Rt will have a
vanishing vectorial divergence.
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Naturally, beforeEinstein,the rest of us introduced curvilinear coordinateto
physics only in such a way that the three space coordmnatestransformed arbitrarily,
but thet remained essentially unchanged. The fact thaas included with the same
status in the coordinate transformation seems to beotiinstein’sgreat achievements.
The other one is then self-explanatory, i.e., that ¢alculation of gravitation can be
carried out when one replaces t& with a vanishingRiemanncurvature with a more
generalds. On the other hand, we should also emphasize thatrimhematical
background for dealing with these new physical thoughts hasdyl been long-
established, since for us, spaces of arbitrarily manymiioas with arbitrary arc-length
elements have been commonplace since the tinkieshann This is not the place to
digress into a historical excursion that would have tgirbevith the methods of
Lagrange’s Mécanique analytiquetherwise, one would have to discuss not only the
aforementioned papers Ghristoffe| but also those d@eltramiandLipschitz

6. | would now like to add equations (12), (14) together, withouleying the field
equations (16), and then multiply the latterdny Foro = 1, 2, 3, 4, that will give the
identities:

(17) >Jo (K, +aQ, )¢ +>afgQ g,

a[ﬁ(Kﬂngﬂg)gﬂ”—‘z’fgdq}
=22 ow |

v

| then multiply these equations Ipf (where one understands thgt means the vector
that is cogredient taw’) and sum overa. Here, | can insert the’ under the
differentiation sign in the right-hand side, whilput corresponding extended terms into
the left-hand side. Thus, | would like to swittle tsymbolsoandv in the left-hand side,
and also replace 8 p. with the symmetric expressiog“{ p. + g’ p#), which is

equivalent in the context of this argument. Irt thay, it will arise that:

>J9 Ku+aQuw) (9P -g78-d° §)

uv.o

(18) +>aJgQ(q, F+q )

a{[ﬁ(KﬂﬁaQﬂg)g‘”—gﬁd q} ﬁ}
==-2 z

fvo ow’

which is naturally just another way of writing (17)n view of the special value that |
have chosen for youd (viz., H = K + aQ), all that is on the left-hand side here is



Klein. — On Hilbert’s first note on the foundations bfypics. 7

precisely what you gave as the value of scalar diveegehgourenergy vector '€ when
multiplied by\/E (pp. 402 of your Note), namely:

¢
sofee.

v

It then follows thatyour energy vector‘aiffers from:
v, a
- 22 [(K,ua +aQ;1g) gﬂ +E Q/ q7:l ﬁ
U,o

by just one term whose scalar divergence vanistegtically.
If we now add the 14 field equations (16a), (1&ne” will reduce to that extra term,
and the statement on pp. 402 of your note that:

0y g€

v

will appear to be an identity. That statement canby any means, be then regarded as
an analogue of the law of conservation of energy fpinevails in ordinary mechanics. If
we write the latter as:
d(T+U) _
dt

0

then this differential relationship will not be adentity, but only as a result of the
differential equations of mechanics.

7. Naturally, it would be desirable to give the exterm explicitly, in order to
distinguish your” from the terms that vanish as a result of thel fagjuations. However,
| find your formulas so complicated that | have atiempted to duplicate them. It only
seems clear that they subsume components thahaae In thep?, as well as other ones

that include thep; linearly, and perhaps only ones that include e linearly. It

might actually not be difficult to give the mostngeal vector of that form whose scalar
divergence vanishes identically. One obtains mgthbut vectorsX” of vanishing
divergence when one starts with any six-tensor, (@eskew-symmetric tensodf"” and
sets:

(20) \/_g XY = 20/];«/ |

"]
7 0w

If one would wish that th&" should be linear in the” and p; then one can choose, for
example:
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(21) A= ([Z g””qu of —(Z g qgj rfj-
p p

8. Here, | must interject an essential remark. Onevenitvat NOther has continued
to advise me in my research and that | was actuallyiotrlyduced into the present topic
by her. When I now ultimately spoke to N6ther about nsylte concerning your energy
vector, she wrote me that she had already derived the gang from the developments
in your Note (and thus, not with the simplified calcwlat in my own no4) a year ago,
and wrote that down in a manuscript at the time (whitdeh looked into). However,
she had not proved it as decisively as | did recentlyenMathematischen Gesellschaft
(22 January).

9. In conclusion, | would like to make the remark in regrdhat, that it is self-
explanatory that the same thing will be true for yowotlem (19) on the “conservation
laws” that Einsteinhad formulated in 1916°) He himself actually expressed it quite
clearly. 1 would not like to go into the details of le@lculations here, but only refer to
his final result, which he wrote thus:

(22) zaiwv(z; +t/) =0 ¢=1,2,3,4),

in which he denoted the “mixed” energy components tloee electromagnetic
(gravitational, resp.) byg’ (t., resp.). In that way, he got that thig +t/ could be
expressed as:

0 [ 08"
(23) T+l = - _( _ g””}
ﬂz;j[awp a9,

when one invokes the field equations and introdacésction®” that he defined more
precisely that is independent of the coordinatéesysand that thelentity equation:

o [(as° ).
(24) 26\/\/"6\/\/"{69;‘”9 j_o

UV.p

exists for that®s” independently of the value @f That is precisely what we arrive at
here.

() Cf., the self-sufficient paper: “Die Grundlagen dégemeinen Relativitatstheorie” (Leipzig 1916),
as well as the communication to the Berlin Academy2® Oct. 1916, “Hamiltonsches Prinzip und
allgemeine Relativitéatstheorie” (Sitzungsberichte, il 1-1116).
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In order to present the connection with the notati@b thhave used, | remark that
Einstein's ¥, is the same thing as mZ\/E Q, 9", butEinstein’s t; differs from the
U

corresponding expressioplrz\/ﬁ K,g" by a summand that one gets when one
a H

compares equations (23) with the field equations:

Kuw+ aQu=0.

[I. From D. Hilbert’'s response.

... | am actually in complete agreement with yoyplaration of the energy theorem.
Emmy Notherwhose help | called upon for the clarification stfme questions of an
analytical nature regarding my energy theorem avperiod of more than a year, found,
at that time, that the energy components thatdemied formally (like those dinsteir)
by means of théagrangedifferential equations (4), (5) in my first commcation could
be converted into expressions whose divergenceishedidentically, i.e., without the
use of the_agrangeequations (4), (5). On the other hand, sincestiergy equations of
classical mechanics, the theory of elasticity, alsttrodynamics are fulfilled only as a
consequence of theagrange differential equations of the problem in questi@njs
justified if you do not therefore perceive the agales to any of those theories in my
energy equations. Admittedly, | then assert tbagéneralrelativity — i.e., in the case of
the generalinvariance ofHamilton’s function — energy equation that correspond to the
energy equations of the orthogonally-invariant tyean your sense, do not exist at all.
Indeed, | would like to refer to that situationeag&en a characteristic feature of the general
theory of relativity. The mathematical proof of mgsertion is forthcoming.

Please allow me, on this occasion, to show brieflw | treated the question of the
energy equations of the orthogonally-invariant tieoof physics (viz., electrodynamics,
hydrodynamics, and the theory of elasticity) ieetlire last winter.

For the sake of brevity, we choose the world-fiomcH, which depends upon only
the components of an electrodynamical four-potenti@nd its first derivativegs with
respect ton (s, | = 1, 2, 3, 4) to be orthogonally-invariant (thethael is true just the
same, whetheH perhaps includes the four-densrtyand its derivatives or some other
physical parameter and its derivativeBjamilton’s principle:

(1) 5dea):0

then leads to the system of fduagrangedifferential equations:

(2) Hls=0 §=1,234),
in which we generally mean:

H < 0 oH
-2

Hls = .
[ ]S aqs k aWkaqsk
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In order to arrive at the energy equations of this proplge embark upon the path
that explains the statements in my first paper, namiilg path of the theory of
gravitation.

Let H be the general invariant with the arguments:

Gs, Gs1, 0, 0"
that goes tadd for:

() o= v = O, g/ =0.

We will be dealing with the same thing when we replaesgthin H with the covariant

derivatives:
_ s
qs|:q5I_Z{h}Qk,

h

and at the same time, raise the indices withgttie If H takes on, for example, a term in
the form of the orthogonal-invariant expression:

(4) “Q=) (U= )* = 2D M2,

then it will have to be replaced with:

The expression:

will get converted into:

T = qshqmn gsm ghn ,

n

o
=
3

etc.

Now, an identity is verified by every general inaat that was proved in my first
paper (Theorem IIl) only in the case for which theariant depended upat’” and its
derivatives; however, the method of proof that vi@dkwed there is also true for our

general invariantH . If we employ the notations of my first paperrthe place of the

equation in it, namely:
[P (3 g)dw=0,
we will get the equation:

[{R(AVS)+ (A5} @= [{p(AVs) sw=0

in our present case, which is an identity thatthasmmediate consequence that:
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I{;[ﬁ A, v+ 3], pﬂ} = 0.

After introducingp””, p, and applying partial integration, we can bring the irtegn
the left-hand side into a form in which the integranthigtiplied byp®. However, since
p° is an arbitrary vector, the other factor under thegiratiesign must vanish identically,
and that will imply the identitiessE 1, 2, 3, 4)9):

5) Y[Jor], o -2y o {Z[f H] ¢ }
ICELIRES Yol NELICIRL

These four identities are, at the same time (prgcaelou have remarked above) the
ones between the 1&grangeequations of our problem whose existence was asserted in
Theorem | that | presented.

If we now return to the original problem, in which wiemgnate the gravitational
potentials by means of (3) and considerlthgrangedifferential equations (2), then the
identities (5) will go to:

© SalVafL}, ., =0

gllV UV

If we then refer to the bracket expressions:

7) fins = 2{[@ A j

gllV UV

as thecomponents of the energy tensloen we will obtain the desired energy equations
of the physical problem (1) from the divergence equatiéns

If we takeH to be the invarianQ in (4), in particular, therg,s will become the
components of the known electromagnetic energy teasdrtheMaxwellequations:

{[\/E H]m} = Divm M =1y

9 =0

(we understand to mean the electric four-density) will yield our idéies (5) in this
case:

DiVs &- zrmqms+za%(rnq s): O’

or, since Divr = 0:
Divse=-rs[M ;

() [For this, cf., my formula (14), which agrees with thieaderm-by-term. K]
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i.e., they produce the well-known divergence expredsiothe ponderomotive force.

It is only in the case of general relativity — i.ehem the original invarianH is
already a general invariant — that the given path failsxtabit the energy equations for
the problem (1). In the general theory of relativity, meve a substitute for the missing
energy equations in your sense in the fact that #ygangeequations (Theorem | in my
first paper) are four-fold superfluous, as was expressechanfaur identities (5).
Conversely, the energy theorem of the orthogonalrtheeems to be the residue of those
four identities of the theory of gravitation.

It should be remarked that as one sees immediatelyenbrgy tensor (7) possesses
not only the properties of orthogonal invariance and symymbut in addition, it also
fulfills the requirements of the special physical tyed@he same thing will be true in the
case of electrodynamics, in whiehcontains thejg only in the combinations:

Mks = Osk — Cks »

as well as upon only these components of the six-vétt@nd on the other hand, in the
case of the theory of elasticity, in which it also defgeupon only the actual distortion
guantities that enter into the question of elasticity...

lll. From a further writing of F. Klein.

...It is important for me to characterize the differenoetween the orthogonal-
invariant theory of electrodynamics and that of gravigttl have been considering in a
few words.

In that regard, things become much clearer when,afreddy suggested above (no.
5), one appeals to the treatment of classical eleatadics in arbitrary (“curvilinear”)
world-coordinates as an intermediate step.

Your main theorem that the energy components of tletrethynamical field can be
represented simply by th®,, then already comes to the foreground in all of its
significance; | would then prefer to not speak of the modleeory of gravitation in this
theorem.

| also find it useful to distinguish the integralsk dw and [ Q dw in the
representation, and not fuse them together into ongraifeH dwfrom the outset.

We then havéour identities for the,, and theQ,, [viz., the equations (12) and (14)
— or (14) — in my first paper], seight in all, and the opposite of the earlier and present
theory can then be put into precise words as follows:

1. In both cases, we have 14 “field equations”, along thitheight identities, for
the comparison that comes under consideration here.

2. In the previous theory, they redit (

() [As a consequence of the 20 equations that come froRi¢meanncurvature vanishing identically.
K]
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a) Ky =0, b) Q= 0.

The four identities (12) are fulfilled by themselves byamg of the ten
equationsa), but the identities (14) — or (94~ reduce to the four statements
that one calls the four conservation theorems (ingpalergy theorem) by
means of the four equatiobk

3. Inreturn, one has the field equations in the new yheor
a) Kuw+aQu=0, witha#0 b') Q’=0.

The equation®” = 0 now appear to be a consequence of the ten equations
a') by means of the eight identities.

When one drops th@”, “conservation laws” for th€,, will still follow
from the identities (14). However, they will now nonger have any
autonomous (physical) meaning, since they will reduce tdotneidentities
(12) by means of the ten equatiai} they are even already included in the
ten field equations.

All of this is actually in complete agreement with gheesentation in your letter.
However, it would be very interesting to me to seeddtails of the mathematical proof
that you promised at the end of the first paragraph.

[In the meantime, the stated proof was provided by E. éi6{see her Note on “Invariante
Variationsprobleme” in the Géttinger Nachrichten of 26/1918.) | shall return to that at the conclusion
of XXXII.

Moreover, | would like add the following remarks in ordemtake the relationship with the articles
XXXI to XXXIII on the Erlanger Programm clearer:

1. The invariant theory of the Lorentz group that weated in XXX is precisely what the modern
physicists refer to as “the special theory of reltivi

2. Therefore, the Lorentz group can apparently be definbéd the largest continuous family of the
most general continuous transformations of finite valkfes, y, z t that take the quadratic differential
form:

2
dg = ap - PHYT 2
to itself.

3. One now imagines that instead of ihg, z t, one introduces any real, everywhere continuous at
finite points, differentiable sufficiently often, sirglalued, invertible functions:

w=¢’ (XY, z1) =123, 4).
Theds that we just wrote down will then go to a more generatigaii form in thedw, which we would

like to write in theEinsteinmanner as:
ds’ = X g,, dw' dw".
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4. Naturally, this newds, like the one that was given in 2, has inertia charagt-—-. Its
coefficientsg,, are continuous, differentiable sufficiently often, rkalctions of thew that are naturally
specialized only by the fact that tReemanncurvature that is constructed fratsf must vanish identically.

5. From the basic laws of the Erlanger Programm, wermav also treat the special theory of
relativity in such a way that we base it upon the tggadup of all real, continuous, differentiable
sufficiently often, uniquely invertible transformatioofsthew?, but theradjoin theds of 3; i.e., we append
the conversions that thg,, experience under the respective transformations ofvti@ne then obtains
uniquely-determined linear transformations of #)g, since the relations that couple tgg as the
coefficients of a form with vanishing curvature have &olvanced a character to have any influence. In
addition, one must observe that not only the coeffisiefithe substitution, but also tgg, themselves are
functions of thex, y, z, t (thew?, resp.). The conversions that differential quotiehthe g,, experience
from the respective transformations then follow fritvat. Furthermore, the group that is “extended” by all
of them is the one that all considerations shouldased upon.

6. When we do that, we will have taken a decisive stiptire “general theory of relativity.” A
further step might be when we introduce the most ger(elreal w) everywhere-real, continuous,
differentiable sufficiently often function of the as the coefficientg,, of theds. TheRiemanrcurvature
and the invariant that is derived from it tivlilbert denotes bK will then no longer be identically zero.

Moreover, one will choose the “group” exactly as weidifl.

Incidentally, this also raises the question of the coiioreto the world as a whole, which analogous in
to the consideration on Abh. XXI in relation to theeca$ the geometry of the plane. This question still
seems to have not been dealt with very much. Thétpkar case presents possibilities that will emenge i
Abh. XXXIIl. The entire question naturally goes away fhe special theory of relativity, in which we let
X, Y, Z t run from- oo to + oo inclusive in order to obtain all world-points.

7. The general theory of relativity of the pure grafigyd thus results froninstein’sfundamental
Ansatz [which was formulated almost simultaneousl¥mmsteinandHilbert (°)] when one subjects thog,
to the equationk,, = 0, which are ten, in all, and invariant under the groupwiledpeak of. (Here, for the
sake of brevity, | am using the notation (5a) of my ovately

8. We might now direct our attention to any other smfrtphysical phenomena, along with
gravitation, or furthermore, we might, as we did in finesent article in connection witHilbert’s first
Note, restrict ourselves to electromagnetic praess empty space, along with gravitation.

9. One will consider this most simply, also in theecakthe special theory of relativity (which was,
unfortunately, not mentioned in Abh. XXX), when one pokedinhear form:

Xq,dw’,

along with ourd’, in which the real, everywhere continuous, diffeiaie sufficiently often, functiong,
define the so-called four-potential of the electromégriield.

() Einstein“Zur allgemeinen Relativititstheorie” in the Sitzsbgrichten der Berliner Akademie of 11
and 25 Nov. 1915 (pp. 799 to 801, pp. 844 to 847, resp. of the years, idgbert in his (presently
critiqued) first Note on the “Grundlagen der Physik” e (Gottinger Nachrichten of 20 Nov. 1915. One
cannot speak of any question of priority then, since bothoesitpursued completely different lines of
thought (and indeed, for that reason, the consistendyeafesults did not seem certain at firdBinstein
proceedednductivelyand considered arbitrary material systerfdbert proceededieductivelyin that he
let the restriction on electrodynamics that was maetioin this article under 8 enter in as a prescribed
main variational principle, moreoveHilbert then also connected up with Mie, in particul&insteinfirst
presented the connection between the two kinds of Anisélus aforementioned (pp. 8) communication to
the Berlin Academy on 29 Oct. 1916.



Klein. — On Hilbert’s first note on the foundations bfypics. 15

10. The fundamental group is now extended in comparisoimtthat, along with the transformations
of theg,, and their differential quotients, which come about (aee, “induced”) by the transformations of
thew, now, those of thg, and their differential quotients also enter in.

11. However, the,, , d, are now subjected to the 14 equations (16a), (16b) chrincte:

Kw+aQu=0, Q,=0,

which are again invariant under the extended group. In ctonetth 10, this is the core of the general
theory of relativity in physics, as far as it comteus here.

Obviously, these formulations can only be expressedadthanlanguage, which is whitnsteinand
Hilbert said, anyway. Here, | would like to referHdbert's second communication on the foundations of
physics (in the Géttinger Nachrichten 1917, pp. 53-76) There, on pp. 61, it was expressly stated that
only those consequences that one could deduce from theedifédrequations 11 that hagthysical
meaningcould, like the differential equations themselves, pesaegvariant character(N. B., under the
group that was defined in 10). Thatngjtatis mutandisghe same thing that was concluded in the Erlanger
Programm from the statements about any geometry @ltharacterized arbitrarily by a group).

It hardly needs to be said that similarly the furthedgtof Einstein’stheory, such as whaVeylhas
done, can be connected with the schema of the Erl&nggramm.

There is even an especially close relationship tanttigidual explanations that are present there (Note
VI of Abh. XXVII, pp. 491-492), insofar as it was not arth d, but anequation d§ = 0, that was
fundamental there. K.]

() Sumitted on 23 Dec. 1916.



