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L. On ageometric representation of the resolvents
of algebraic equations.

[Math. Annalen, Bd. 4 (1871)]

By Felix Klein

Translated by D. H. Delphenich

The general theory of the algebraic equations canllietrated beautifully by a
number of special geometric examples. Here, | rexayt *) the problem of inflection
points of curves of third order, the problem of the 28 dotdrigents to curves of fourth
order, the problem of the 27 lines of a surface of third @ggre., but then, especially,
the subdivision of the circle, as wé)l

The advanced uses of this example are based in thehtt¢ in and of itself, it
exhibits a particularly abstract presentation of stiigin theory in an intuitive way. It
mostly relates to equations of a very special charabigween whose roots, special
groupings occur, and thus allow one to ignore how such $gegiations can appear. In
the following, | would now like to exhibit a method, by ams of which one obtains a
geometric picture fogeneralequations of an arbitrary degreen particular, for those
groupings of roots of an equation that one might use fd#scription of a resolvent.
This method describes timeroots of an equation by elements of a space of dimension
(n = 2) and replaces the permutation of roots with thosEaii transformations of the
aforementioned space by which thegiven elements will be taken to each other. By
means of this representation, the theory of equation® degree will be brought into a
remarkable connection with the theory of covariantsnoélements of a space of
dimensionn — 2, such that each of the two theories can be diresgigrded as an image
of the other one. — The essential aspect of this maahgresentation is that the
permutation of the@ roots amongst themselves will be replaced by a lineasframation
of a continuous space in the geometrical picture. Im#das way, one can also make
sensible equations of a particular type such that ngeloall, but only the characteristic,
permutations of their roots appear in the image as lin@asformations of space. In the
following, | will restrict myself to showing that jughis character of the geometric
picture is present for the inflection points of curvéthod order and the equations of the
subdivision of the circle. — Later on, | would therelito give a representation for the
general equations of sixth degree that is based upasathe principles, which is drawn
from line geometry, and by which, one can envision a dieystem of 360 linear and
360 reciprocal transformations of three-dimensional spdteis, in particular, one also

) Cf., Camille Jordan, Traité des Substitutions, 241870, pp. 30kt seq
%) In contrast to the usual manner of expression, heréetim “subdivision of the circle” refers to any
“pure” equationX’ —A, whereA is a parameter and =e*" are adjoined as the roots of unity.
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encounters the well-known resolvent of sixth degrethade equations that correspond to
the speciaf) group of 120 substitutions that can be described by six eleraadtis not
identical with the 120 substitutions of five elements.

The first inducement for me to pursue the matters dha suggested here was the
geometric considerations that Clebsch had applied in .Mathalen, Bd. 4 (1871), pp.
284, et seq, in regard to the discussion of equations of fifth degand which he was
gracious enough to repeat in a personal communication.toGnethe other hand, these
things are closely connected with the consideratiome#li transformations of geometric
structures into themselves, as Lie and myself havedsemn in the article: “Uber
diejenigen ebenen Kurven, welche durch ein geschlosseansysin einfach unendlich
vielen vertauschbaren linearen Transformationen in sicérgehen,” in the Math.
Annalen, Bd. 4 (1871) [cf., Abh. XXVI in vol. 1 of this cedtion].

l.
Geometric representation of equations of " degree.

Let n element$or n plane manifolds of dimensign — 3) be given in a space of
dimension(n — 2). These elements go to each other by means of a closed $ysferh
linear transformations of the space in question.

In general, one can, in fact, tak@lements in such a spacentarbitrary elements by
means of such a transformation; on the other hand,rémsformation is determined
completely whemn mutually independent corresponding element pairs are givan.
particular, one can now let elements coincide with thelr corresponding ones in an
arbitrary sequence. There are thus just as many lire@sformations of space, under
which the arbitrarily chosen elements go to each other, as there are permutations of
things, and therefora! of them. These transformations define a closedesyssince
when arbitrarily many of them are combined with eacleiothis again yields a linear
transformation under which the totality of theelements remains unchanged, and thus
itself belongs to the given system.

Let us give an example: 3 points of a line go into eztbler by means of 6 linear
transformations, 4 points of a plane go to each oth&4bynear transformations, and 5
points of space go to each other by 120 linear transformadfchsir respective carriers.

I now think of then! transformations as being applied to an arbitrary eléroém
space of dimensiom(-— 2), and which exchange timegiven elements amongst each
other. The elements then assunmiedifferent position, in general.The system of!n
elements that are thus generated is the image of the Galois resofviet equation of
n" degree that is defined by the n given elements.

% Cf., Serret, Traité d’Algebre Supérieure, German etifi@ipzig, 1868, Bd. II, pp. 250.

%) Here, by the term “closed system of transformatione shall understand this to mean, as already
happens in the cited paper of Lie and myself, a systementhasssformations, when combined with each
other, always produce another transformation of thesyfthus, in modern terminology,gaoup.
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For special assumptions on the arbitrary elementslteé&ements that emerge from
them can coincide several times. The Galois resolwalhtthen be a power of an
expression that will be referred to aspeecial resolvent.

The images of each special resolvent thus appear as those groups of etkatarts
included multiple times in the general group belements.

These geometric definitions are capable of being cedfith an analytical form that
clearly explains the complete identity of them withe tordinary definition of the
substitution theory. The given elements may be described by their equations:

p=0,g=0,r=0,

A linear identity exists between the linear expressipng, r, ... From now on, we
would now like to think of the expressiopsq, r, ... as being multiplied with such
constants that the identity has the form:

O=p+q+r+ ..

By this assumption, tha! transformations of space are represented when osehset
new p, g, r, ... equal to the previous ones in an arbitrary sequenche lifiear
transformations in question are then described in exdwtlgame way as the exchanges
of nthingsp, q, 1, ...

Furthermore, let an arbitrary element be given [whérenust be regarded as
inessential that we have restricted ourselves befocet@elements that are represented
by a linear equation in the coordinates; one already fitder Ansatze on pp. 269, et
seq.]:

O=ap+bg+ecr+...

The n! elements that emerge from these by the transformsatio question are
represented by all of those equations that can be ddrivedthe foregoing ones by the
exchanges op, g, r, ... or — what amounts to the same thirgthe a, b, ¢, ... The
multiplication of all of these equations by each otyietds the equation of the entire
group of elements that is the image of the Galois vestl For special values afb, c,
..., this resolvent can then correspond to the powesad@#ier-order expression.

We would like to illustrate this statement with theueple ofn = 4, and thus, the
quadrangle- or, what might be more convenient — the tetrahedrahe plané).

Let the four sides of it be described by:

p=0,9=0,r=0, s=0,

for which, the identity exists:
p+g+r+s=0.

%) [Cf., Clebschloc. cit, § 4]
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For each arbitrarily chosen line:
ap + bg+cr+ds=0,

there exists a system 24 lines that are associatedtwithgeneral. They can be easily
constructed in the following way: The arbitrarily chodime cuts the four faces of the
tetrahedron in four points, which determine a certain dorddio with the three vertices
of the tetrahedron that always lie on such a lin@e @ow constructs those 24 points on
each face (one of which is the current intersectiomtpahat define one of the four
double ratios, together with the three vertices tinat ¢in the face, which are chosen in an
arbitrary sequence. These four times 24 points lie fowegitwenty-four times on a line;
these 24 lines (one of which is the given one) arelélsged ones.

If the arbitrarily chosen line goes through a vertexhef tetrahedron, in particular,
then one obtains, as is easy to see, only twelve, limbgh pair-wise go through the
vertices of the tetrahedron. In fact, when the giu@ngoes through a vertex, two of the
coefficients a, b, ¢, d must be equal to each other. The Galois resolverit wil
correspondingly be the square of an equation of twelignede

In particular, the given line goes through two opposingiices of the given
tetrahedron. One then obtains only systems of thmeg, namely, the three diagonals of
the tetrahedron. These are the image of a resolvehird degree, and one will also be
led to such things when one takes #hé, c, d to be pair-wise equal, and thus, perhaps,
as is asserted by the identity that exists betweep, the, s, choosesa=b=1,c=d=-

1.

.
The covariants of n elements of a space of dimension n— 2.

The groups of! elements, which, from the foregoing, are associatikd mvgiven
elements of a space of dimensionH 2), are obviouslgovariantsof the systems of
given elements, for which the absolute numerical walig®ouble ratios) by which the
element that enters in will be established relativehtont given ones, and which are
unchanged by the linear transformations, serve as paeanet

The equations of these covariants have a remarkabgenyoThey are rationally
composed from the symmetric functions of p,.q, This emerges immediately from the
formation of the these equations, which we obtain wherpermute th@, g, r, ... in an
arbitrary linear equation in all possible ways and thettiphy the resulting equations
together.

From this itself, one understands that in the equatidrise special element groups,
which, corresponding to special resolvents, are includgemeral groups multiple times,
the multiplicity must be expressed as a power in omlethis representation to also find
applications.

On the other hand, it is obvious that of the symméanctions of thep, g, r, ..., one
of them— namely, their sum corresponding to the identity:

O=p+qg+r+...,
has been omitted.



L. On a geometric representation of the resolvensdgebraic equations. 5

Now, one may easily sdbat the groups of Inelements that were considered up to
now are the only imaginable covariants of the given n elements that sseuwstad from
separate individual elements, or, more generally, that each covaofathe given n
elements:

p=0,g=0,r=0, ...

is rational, and composed entirely from tfme— 1) non-vanishing symmetric functions of
thep,q,r, ...

In fact, each covariant must go to itself under tHemsar transformations, like the
original structure. Its equation must then remain ungédry then! permutations of the
p, g, I, ... in the present case, so, from known theorems, it ingst be rationally
expressible in terms of symmetric functions.

This reasoning admits an extension in the same sensesasecessary for the
(multiply counted) covariants of less thah elements. In fact, the equation of the
covariant does not need to remain completely unchamgeer the permutations of tpe
g, r, ..., since it can pick up a factor. However, thisdaaan only be a root of unity,
since the repetition of a well-defined permutation finitelgny times gives the identity,
and thus, a well-defined power of the factor will be ¢qoaaunity. The corresponding
power of the covariant equation then remains completeichanged under the
permutation of the, g, r, ...; it is what we must call the actual covariant, arnictv can
be rationally composed from the symmetric functionthep, q, r...

By the latter considerations, the theory of covariants of n elemenfs — 2)-
dimensional space is closely connected with the theory of equatichslegree.

As an example of the applicability of such conclusitmisthe theory of covariants,
what follows here is the treatment of the simptaste that arises from it, namety= 3,
and thus, the treatment tbile binary cubic form.

Let a cubic binary formhbe given. Let it be described by three points on a lDee
can then transform the line by six linear transfornmetione of which is the identity)
that will permute the three given points amongst theraselBy means of this, the points
of the line define groups of sixThese groups of six points are covariants of the given
cubic form; there are no other covariant® the sense that every covariant must be
resolvable into a number of such groups.

It is now easy to give an account of the geometrazattier of these point groups, and
thereby likewise settle the question of whether powéldeveer groups are included in
them. In fact, as would follow immediately from thay it was generated and which,
on the other hand, also suffices for its definitioa group of six points includes those six
points that define the double ratio in question, along whth given three, when one
permutes their sequence arbitrarily, which amounts toséime thing as saying that it
includes such points that define six associated double natibsthe given three, the
latter being thought of as having a fixed sequence. Theredach of those six double
ratios that appear for altered sequences of four givenspeititoe calledassociated.
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It follows from this that among the single infinity groups of six points, besides the
ones that are described by 0 itself, when doubly counted, one finds two distinguished
ones, corresponding to a harmonic and an equiharmonic ratio

The group of points that lie harmonically consists eé¢hdoubly-counted points.
They define a covariant of third degree that is ordipaténoted byQ in the theory of
binary cubic forms.

The group of points that lie equiharmomically encompassgstwo triply-counted
points. It constitutes the quadratic covariamdf the ordinary theory.

It is quite intuitive that one finds the mutual redatiof the formd, Q, A when one
interprets them, not as points of a line, but as régspencil, and thus the two rafs= 0
may go through the imaginary circle points in the infigigistant line. f = O will then be
defined by three rays that define equal angles = R/@ith each other. Q = 0
encompasses the bisectors of the angles defined byr#ysseFinally, each six-element
group consists of six rays that define angles g with the elements df= 0, whereg
denotes any inclination. The linear transformations bicivf = O goes to itself and
therefore, alsdQ = 0 andA = 0, as well as each six-element grouponsist of, first,
rotations of the pencil of rays in its plane, alwaseuad 2/R, and then a rotation of the
pencil of rays around an elementfof O through R, by which the plane of the pencil
will be turned.

Upon establishing the factors &fas variables, one now easily recognizes that each
six-element group is linearly and homogeneously composedabt them. One thus
has one homogeneous linear equation between any thredesignt groups. In
particular, such an equation will exist betwéénQ?, A% say:

N =pf2+oQ

It is known that the solution of cubic equations rests wgoitentity of this form.

As was said before, the theory of the covarianthi@fe points on a line was derived
from the consideration of the permutation of thresmeints among them, so one can treat
the covariants of the tetrahedron in the plane, th&abpedron in space, etc., in a
completely similar way. On this subject, a remark ningstmnade that is particular to the
pentahedron, but which likewise finds application in the gdrease. The resolvents of
the equation of fifth degree that can be represented bgtahgelron in space include not
only a system of 120 associated planes or points, butl@associated (i.e., emerging
from the application of the transformations) geomedticictures, curves, surfaces, etc.
Now, if perhaps a finite number of special curves lie aocovariant surface of the
pentahedron then they will always group together into sashlvents. One can also
express this a\ll equations that can give rise to covariant surfaces of the pentahedron
may be decomposed into ones that are resolvents of one equation of fiféh degre

An example of this is the following: Let five pentahdgiianes be:

p=0,9=0,r=0, s=0, t=0,
and, as always, let:
p+q+r+s+t=0.
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There is then a covariant surface of third de§yee
pP+g+ri+S+t°=0.

As Clebschlpc. cit) has proved, the 27 lines of this surface decompose iatgiteups,
with 15 in one of them (which are counted eight timeteass in a Galois resolvent) and
12 in the other (which are counted ten times).

The equation for the inflection pointsof curves of third order.
The subdivision of thecircle.

It was already suggested in the Introduction that thengakdetail in the foregoing
recitation of the equations of" degree is the fact thahe permutations of the roots
amongst themselves can be replaced by linear transformations of spassuld now
like to show that the representation that certain égpusgbf ninth degree find through the
inflection points of the curves of third order possessasnilar character. The same is
true for the equations of the subdivision of the circléhe situation is modified only in
the two cases in which the geometrically represented iegeaho longer have the
general degree, but groupings of their roots can come abBatrespondingly, in the
geometric picture, not all of the permutations of the gdotd their representation in
terms of linear transformations, but only ones thatclrsely linked with the groupings
of the roots.

As far as the equation of inflection points is conceyiitels easy to see thatgeneral
plane curve of third order, and in particular, its inflection points, gaegself under 18
linear transformations. One produces them most simply when one starts weh th
canonical form for the equation of a curve that relades inflection point triangle. It is:

O:a(ﬁ+x§+ >§) +b X X X3 .

The linear transformations may be composed by permutingdh@ngst themselves and
then multiplying them with suitable cube roots of unity.

Under these transformations, not only the giverveur goes to itself, but also its
Hessian determinat and any curve whatsoever of the pencilf A.

The fact that these transformations simultaneoadg & simple infinitude of curves
of third order into themselves suggests the nonsense, Widsci the first counting, that
a general curve of third order that depends upon nine constemikl go to itself under a
finite number of linear transformations, which indeedudes only eight parameters.

®) My attention was first directed to the propertieshafse surfaces that go to themselves under linear
transformation by Lie.
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As a geometric picture of the equation of ninth degreenew consider, not a curve
of third order that possesses inflection points,tbetinflection points themselves and the
cycle of transformations under which they are permuted amongst themselves

Any equation that can give rise to a curve of third ordiéhough a foreign element
would be employed in it, must be decomposable into redsh@mnthe inflection point
equation. One seeks, e.g., such triangles whose dwlagsacontact th€; in a vertex.
The representation of the; by elliptical functions shows immediately that thare 24
such triangles. The discovery of them, in fact, cameof the subdivision of the elliptic
functions into nine; of the 81 values that are producddisway, nine of them relate to
the inflection point itself, and the remaining 72 of thgmld three triangles that are
always the same. However, one now writes@herelative to one such triangle that is
considered to be the fundamental triangle, in thevotig way:

0=a(x%x+xX+x%) +bxxx.

When one cyclically permutes, X;, X3, this equation and the triangle remain unchanged.
These permutations correspond to linear transformatioas dhe included in the
aforementioned 18; only these then possess the profdet#king Cs into itself. The
triangle thus remains unchanged under three of the 18fdramations under whiclkes
goes to itself. Thus, six triangles always define athanging group — a resolvent of the
inflection point equation. The solution of the™degree equation that determines the
triangles next requires the solution of an equation oftfodegree for the determination
of the groups of six associated triangles, and thentbalgolution of the inflection point
equation. — One naturally comes to the same result whentreats the subdivision of
elliptic functions into nine.

Here, one occasionally remarks that 18 reciprocattoamations are closely linked
with the 18 linear transformations that were consdiérere. One obtains them from the
18 linear ones when one switches xhand theu;, where one understangs u; to mean
the point and line coordinates that relate to an itilacpoint triangle. In place of the
inflection points then, there harmonic polars entelamd in place of the pendit A A,
the pencil of polar contacting curves of third class, eterom this standpoint, the
examination of the 18 linear and 18 reciprocal transfoonatiseems to be the main
problem; at the same time, one thus disposes of tbeytbécurves of third order or third
class and their root-related associations.

As far as theequations of the circle subdivisi@r the projective generalizations of
them, theequations of the cyclic projectivity), are concerned, one immediately
recognizes in what way the characteristic permutatiotisenf roots can be replaced with
linear transformations (rotations of the plane arousdhtidpoint of the circle).

" Clebsch, in Crelle’s Journal, Bd. 63 (1863/64), pp. 120.



V.
Geometric representation of the general equation of sixth degree.

I now turn to the discussion of the particular geoime®presentation that one can
present for the equations of sixth degr@me represents the roots of the equation by six
linear complexes that lie pair-wise in involution; the permutationghein amongst
themselves correspond to linear transformations of point space.

The geometric concepts that come under consideratienfor the most part, the
same as the ones that | set down in the article heorie der Linienkomplexe des
erstens und zweitens Grades” in the Math. Annalen2Bd870) [cf., Abh. Il in Band 1
of this collection]. According to the discussion theydietween six linear complexes:

X1=0,%=0,..,%=0

that lie pair-wise in involution with each other (chetcited article), there exists an
identity of the form:

0:x12+x22+...+x§_

| now further employ a theorem of line geometry thapbke of, in a somewhat less
general form, in my inaugural dissertatf)n It reads as follows:

The coordinate determination of lines can be based uporarbixrary linear
complexes; they will satisfy an identity of second eegr

R=0.

A collinear or reciprocal transformation of space corresponds to a lineastormation
of line coordinates, under which R goes to a multiple of itself. Cselyeif one sets, in
place of the line coordinates, linear expressions such that R goes tdtiplenof itself
then they correspond to a collinear or reciprocal transformation of space.

In the case at hand, the identity that exists betwlken will not change its form
under a permutation of them. Any permutation ofXtieen corresponds to a collinear or
reciprocal transformation of space, and indeed is cotliaeaeciprocal, depending upon
whether the permutation of thhas composed of an even or odd number of transpositions.

The 720 permutations of the six complexes x amongst themselves orjswhat
equivalent, the 360 collinear and 360 reciprocal transformations of space groupdoget
into, on the one hand, 720 lines, and, on the other, 360 points and 360 planes; any such
group is the image of the Galois resolvent of the equation of sixth déupees
described by the six complexes.

8 “Uber die Transformation der allgemeinen Gleichung deseitens Grades zwischen
Linienkoordinaten auf eine kanonische Form,” Bonn 1868. QrdgsgCf., Abh. | in Bd. 1 of this
collection].
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It is not my intent here to examine these groups miosely, which is, moreover,
rather simple in connection with the line coordinate mheit@ation; | would not like to go
into the subject here of how the system of lines Hrat common to 2, 3, 4 of the
complexes, respectively [cf., the cited Abh. Il], defaeamples of particular resolvents.

Any two of the six given complexes have a congruencemneon, and it possesses
two directrices. There are 6 - 5/ 2 = 15 such directrips pal hese directrix pairs are
likewise the line-pairs that are always common to émeaining complexes.

The 15 directrix pairs are the image of a resolvent of fifteengnege

The 15 directrix pairs now define the edges of 15 tetral{edreesponding to the fact
that one can divide them into three groups of two in 1fsjyva

These 15 tetrahedra represent a second resolvent of fifteenth degree.

From the 15 tetrahedra, one can now look for fivehefrt that collectively have all
30 directrices for edges in six ways.

These groups of five tetrahedra represent a resolvent of sixth degree

This is the resolvent of sixth degree that diffemnfrthe given equation that was
already mentioned in the introduction.

Any three of the given six complexes have the linesnefgenerator of a hyperboloid
in common, while the lines of the other generator @t thyperboloid belong to the
remaining three complexes. There are ten such hyperbotmid®sponding to the ten
possible ways of dividing six things into two groups oéghr

The hyperboloids define a resolvent of tenth degree.

| would thus like to expressly emphasize that the eguatif sixteenth degree
depends upon the determination of the singularities ofKilnamer surface of fourth
degree with 16 nodeg), and which, as | showed iloc. cit, has an immediate
relationship to a system of six linear complexes oftyipe that were considered heie,
not a resolvent of the equation of sixth degree that pgesented by the complex.
Moreover, its relationship to the equation of sixth degsesuch that one can represent its
16 roots by the symbol:

(a]_X]_ tarXot ...t 86X6)2,

where the sign o& should be chosen in such a way that the number ofl sigres is
always ever?).

%) The fact that the solution of this equation requiely the solution of a general equation of sixth
degree and some quadratic ones was first establishedrbyi€€Jordan in the treatise “Sur une équation du
16" degré” (Crelle’s Journal, Bd. 70 (1869).

19 This equation of sixteenth degree is closely relateal $econd one of the same degree, viz., the one
that is determined by 16 lines of dawith a double conic section (or also the 16 linesnakdhat meet a
fixed conic section). The latter equation demands onéy exjuation of fifth degree and some quadratic
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In conclusion, | would still like to demonstrate how tHeur geometric
representations of the equations of sixth degree tha eamined here can illuminate
the algebraic character of some of the problems tieaihaluded in the general problem:
Find those rational transformations, under which a general equation of sixthedgges
to another one and which possess some well-defined invariant progehtyittedly, one
method for treating this problem has already been suggéste@lebsch in Math.
Annalen, Bd. 4, pp. 289 to 290, not only for the equations tf siggree, but for those of
arbitrary degree; however, it is perhaps always intiegeso see how these things behave
for the geometric representations that were applieel her

In an arbitrary plane of space, the six complexesrrespond to six points that lie on
a conic section [cf., the cited Abh. Il]. These sixnp® should describe the given
equation of sixth degree. If one now gives that planeadingr position then the given
equation of sixth degree goes to another one by a rhtahatitution. In particular, one
can give the plane such positions that the equatikestan distinguished invariant
properties.

For example, if one lays the plane through one & fbur vertices of the
aforementioned 15 tetrahedra then the invafwmnishes for the resulting equation; the
six corresponding points define an involution.

If the plane falls on one of the 60 faces of the ifabedra then the six points in it
reduce to three doubly counted points.

Finally, if the plane contacts one of the ten afmgationed hyperboloids then the
conic section that includes the six points decomposeswttdines, upon which, each of
three points lie. The equation of sixth degree is thelwable through one quadratic
equation and two cubic ones.

Gottingen, May 1871.

ones for its solution. This is to be regarded as dtteeoequations of sixteenth degree that were considere
in the text for which one must adjoin root of the equmtbsixth degree that is to be solved.



