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XXIX. On Sir Robert Ball's Theory of Screws

By Felix Klein
Translated D. H. Delphenich

[Zeitschr. Math. u. Physik Bd. 47 (1902); published again witapgendix
in the Math. Annalen, Bd. 62 (1906).]

In the previous year, Sir Robert Ball has summarizedirnrestigations into the
theory of screws over a long period of time in an impgsiolume?), which cannot fail
to renew the general interest in this geometric retiepicof the mechanics of rigid
bodies. Two particular advantages of the Ball worled "#ssure it of a large circle of
readers from the outset are thauitive andelementarycharacter of his ground-breaking
developments. | wish to vigorously acknowledge thesardges, but, on the other
hand, it will emerge that they will be accompanied byeatain sacrifice in the
representation of the deeper questions that necessanig under consideration as a
result of further consequences of this theory (whichtheyway, the author himself has
discussed clearly in various places in his bdjks

In any case, | would like to give an extension of BalN@rks in what follows that
many readers might welcome. This extension invohest)\f thegeneral systematiasf
the subject in the sense of modern invariant-theoretigroup-theoretic) principles, and
second, however, the employment of screw theory insthdy of thefinite motions of
rigid bodies (where | will, by the way, mainly compisystematically only what is
scattered throughout the existing literature). | may@es add that | have repeatedly
brought the concepts to be discussed to bear for scane yemy lectures and occasional
talks; in particular, I connect the presentation ie thext paragraph with my own
contributions on line geometry and the theory of scrievtke years 1869 and 187). as
well as in the argument of my Erlanger Programm of 187h. It makes good sense

) A Treatise on the Theory of Screws, Cambridge 1900.

% One might cf., e.g., the amusing argument that the ayttesented in 1887 before the British
Association in Manchester on the objective of his stigations, and which is now reprinted in the relevant
Reports on pp. 496-509 of the present volume. A commisssrestablished to examine the motions of a
rigid body. “Let it suffice for us,” said the presideritthe commission right at the outset, “to experiment
upon the dynamics of this body so long it remains inear the position it now occupies. We may leave to
some more ambitious committdee task of following the body in all conceivable dias through the
universe.”

% Math. Annalen, Bd. 2 and 4 [Abh. Il and XIV of this ealtion]. In particular, cf., the “Notiz,
betreffend den Zusammenhang der Liniengeometrie mit deravidcktarrer Korper” in Bd. 4 itself. [See
Abh. X1V of this collection.]

% “Vergleichende Betrachtungen iiber neuere geometrisctsettorgen” (Erlangen 1872), printed in
Bd. 43 of the Math. Annalen and elsewhere. [See Abh. X¥Mihis collection.]
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that | therefore avail myself of the methodsaahlyticgeometry from the outset; in fact,
| intend to define the relations that come into considlen more concisely and precisely
than is possible in any other way.

8§ 1.
On the rational classification of geometrical and mechanicajuantities.

In my Erlanger Programm | essentially referred sodghoup of spatial motions and its
similarity transformations as thprincipal group of spatial changes A rectangular
coordinate system can be established; | shall pointautthe operations of the principal
group act on the associated point coordinates. We hest, formulas of the following
type for therotations about the origin:

X, =ax+by+cz
1) y,=dx+0y+ ¢z
z=dx+Bwy €7

so one has well-known relations betweendhb, c, ..., and, in particular, each of these
guantities is equal to the associated sub-determinarg ichetierminant:

a b c¢
a b d
a" b" dl

Moreover, we have formulas for tparallel displacement of spacehich | denote by:

(2) X1 =X +A, yi =y +B, z=2+C,

and finally, for thoseimilarity transformationghat fix the coordinate origin:

3) X1 = AX, y1 = Ay, z =z

among them, we may point out timversions:

(4) X1 ==X, yi=-Y, z1=-1

in particular. The formulas for the arbitrary transfatimns of the principal group are
derived from (1), (2), (3) by combination; we may correspagigtirefer to (1), (2), (3) as
the substitutions that generatéhe principal group. Thus, we next tregpatial
transformations for fixed coordinate systentdowever, nothing stands in the way of also

interpreting the formulas in such a way that for adigspace they represent the transition
to a new rectangular coordinate system (such thatpgbkeations of the principal group
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completely represent the most general transformatiohsrectangular coordinate
systems). In the sequel, we will prefer this way oklog at things, which seems to be
somewhat more convenient for the generalizations, iiticpéar. The formulas (1) and
(2) then collectively yield the most general changesofangular coordinate system by a
motion formula (4), the transition to anverse coordinate systerand formula (3), for
the ones that involve only positive valuesAQQfwhich is the most general change that
results from another choice woiit length.

We now establish not merely points, lambitrary geometric structureswith respect
to our coordinate system by means of “coordinates,” swathwe think of the structures
as defined in a special way as points whose “coordihatescouplings between various
sequences of point coordinatesWe shall nonetheless refer to the essence of the
coordinates that serve to establish geometrical structures in thatawégeometrical
guantities” Furthermore, the rational classification of geometpiantities, which we
will start with in what follows, simply rests upon tifiect that we shall observe how
coordinates that come under consideration are preservdtk lgperations (1), (2), (3),
(4), resp. (and thus, all of the operations of the pradcgroup). We will regard those
and only those geometrical quantities as similar whose coordinates sbh&éesame
changes under the operations of the principal grougowever, if the coordinates of
structures suffer different changes then the geometedation yields the two types of
geometrical quantities immediately, and in an exhaustiag, from the comparison of
the two changes.

The implementation of this principle can be foumdkter alia, in the recently-
appearing article of Abraham on the basic geometriceqas in the mechanics of
deformable bodies, Bd. IV of the Math. Enzyklopadie, &#.(1901)°). In fact, one
obviously has always proceeded from the principle corresipgly. In particular, the
customary differentiation of geometric quantities innterof their dimension in
mechanics (and physics) is nothing but a taking into acafuhe substitutions (3) in the
sense of our principle (when one tacitly restricts elige positive values o). In this
remark, one likewise finds how our principle is extendedgeneral mechanical or
physical quantities. It is, moreover, convenient to thohkntroducing, along with the
unit of lengthandunit of time not, as is customary, a unit of mass, buna of force
One will, consequently, along with formulas (3), alsbdgevn the ones that relate to the
change in time unithechange in force unitresp.):

(5) t1 = pt,
(6) P.=0oP;

one will then say that formulas (1) to (6) colleetyw define theprincipal group of
mechanicqof physics resp.), and furthermore classify the mechanical (phisresp.)
guantities according to thieehavior of their coordinates under the operations of this
principal group Incidentally, we will come back to these extendedimpsgions only
occasionally; for the present purposes, it will seffifor us to consider the spatial
principal group.

%) [Cf., as well, the article of H. E. Timerding, Gednisehe Grundlegung der Mechanik eines starren
Kdrpers. Bd. IV of the Math. Enzyklopadie, art. 2 (1902)].
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§ 2.

Coordinates for the infinitely small motion of a rigid body
as well as for the force system that is attached to it.

An infinitely small motion may be represented by thiofving formula:

dx=(-ry+qgz+ 9 dt
(7) dy=(-pz+ rx+ y dt

dz=(-ox+ pyt W dti
We refer to the quantities:
(8) P,q I, UV, W

as thecoordinates of the instantaneous velogcithile the quantities:
(9) p dt q dt r dt, u dt v dt w dt,

are thecoordinates of the infinitely small motidself.

We represent forces on the rigid body in the usual byaljne segments that lie on a
certain straight line and can be displaced along thes liThus, we will set the lengths of
these line segments equal to the magnitude of the foikcessimmaterial whether we
think of the forces collectively as impulsive forcescontinuously-acting forcedy. Let
X, ¥, z(X,Y, Z, resp.) be the starting point (end point, resp.) ofranitory” line
segment.One then has, in the usual way, for the coordinates themselves:

X =X, Yy -y, Z -z yzZ-y z ZX -7 X, Xy =Xy,

the same six quantities will serve as the coordinatéiseoforce, as long as one chooses
the length of the line segment equal to the numBehat measures the magnitude of the
force. If we would like to clearly emphasize the indef@te of the choice of force unit
and length unit then it would be more convenient to lefadhewing six quantities:

-0, Sy, —(Z-2,
I—P(yz—ya, I—P(zX—z», I—P(xy—xw,

denote the coordinates of the force.
We use the terrfiorce systento refer to the concept of arbitrarily many isolated
forces acting on the rigid body, and choose its coatdéto be the sums of the

®)  The difference first comes into play when we go kihetics, where the situation will be that the
unit of impulsive force of any mass point instantaneopsbgluces the same change in velocity as the unit
of continuous force does during the unit of time.
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respective coordinates of the individual forcés.such a way, we obtain the coordinates
of a force system in the form of the six quantities:

X ZZI—R(){— X), Y= ZF( y= ¥ Z= ZF(iZ_ 2,
(10) F') |I3 F,)
=XTOAA MR R

It will, moreover, be of interest to see how tlwinates, g, r, u, v, win (8) and
the X, Y, Z, L, M, N that we just introduced behave under the operaijdpto (6) of the
principal group. | shall simply summarize the iiessu

1. Rotation around the coordinate orig{formula (1)).

The coordinatep, g, r andu, v, w, and, on the other hand, tkeY, Z and theL, M, N
experience precisely the same substitutions apaire coordinates, y, z (This result
rests essentially on the previously-establishetlitfaat the coefficients of the substitution
a, b, ¢, ... are equal to their respective sub-determgant

2. Displacementformula (2)).

Thep, g, r and theX, Y, Z remain unchanged. By comparison, the w suffer the
following substitution:

u =u-Cg+ Br,
(11) v, =v—- Ag+ Cr,
w, = w- Bg+ Ar,

and precisely analogous formulas are true_favl, N:

LL=L-CY+BZ
(11) M, =M - AZ+ CX,
N, = N- BX+ AY

3. Similarity transformatior(formula (3) [(4), resp.]).

If Ais positivethen:

(12) P1, O, 1, U1, V1, Wi will be equal to p, q, r, Au, Av, Aw, resp.
just as:
(12) X1, Y1, Z1, L1, M1, Np will be equalto X, Y, Z, AL, AM AN, resp.

By contrast, fomegativeA a difference emerges that arises, at the mosteglamy
level, from the fact that under awersion:
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(13) P1, C, r1, U1, V1, Wy will be equalto p,q,r,—u,—v,—w, resp.,
but:
(13) X1, Y1, Z1, L1, M1, Np will be equalto - X,-Y,-Z L, MN, resp.

(This difference comes about from the fact thatléimgthsl; that appear in formulas (10)
are absolute values, which do not change their sign undsnsion, as such.)

4. Change of time uniformula (5)).

(14) P1, Q, r1, U1, V1, Wy will be equalto —,—, —, —, —,—, resp.;

the coordinates of the force system remain unchanged.
5. Change of force un{formula (6)).
Thep, q, 1, U, v, w remain unchanged, but:
(15) X1, Y1, Z1, L1, M1, Nt will be equal to oX, oY, dZ, d., oM, o\, resp.
When we, for the sake of brevity, restrict oursebeethe principal group of spatial
changeswe can say, in summation:
Under nothing but motions of the coordinate systeas, with similarity
transformations with positive similarity modulus, &ell, the force coordinates:
XY, Z LM N
transform precisely like the velocity coordinates:
p,q,r,u,V,w.
By contrast, under inversion of the coordinate exysta deviant behavior emerges;
whereas the:
p,q,r,u w, Vv gooverto p,qr,—u-Vv,—Ww,

the
XY, Z, L,M, N change into —-X,-Y,—-Z L, M, N, resp.



§ 3.

The analogy between infinitely small motions and force stams (for
rigid bodies). Screw quantities of the first and secahtype. Ball screws.

The analogy between infinitely small motions aaccé systems, which pervades all
of the mechanics of rigid bodies, and especially Bafieory of screws, is most clearly
founded and likewise limned out by the formulas of the presvmaragraphs.

We first remark that by means of formulas (7), with facher assumptions, the
system of quantities:

pdt, qdt rdt, udt vdt wdt

means an (infinitely smalcrewin the space oxX, y, z (with a certain axis, pitch, and
amplitude), while the system of quantities:

P, qruvw

correspondingly means screw velocity In that sense, | would like to refer to the
concept op, q, r, u, v, w from now on as acrew quantityor, more precisely, when it is
of issue, acrew quantity of the first type.
Moreover, one would like to compare this with the @mtoof the coordinates of a
force system, i.e., the:
XY, Z, LM, N

that were defined in (10). In particular, we would likectmnect a force system with a
screw quantity of the first type by setting:

X=p, Y=q, Z=r1, L=u, M=v, N=w,

and ask to what extent this arrangement &asieaning that is independent of the
coordinate systerthus, is invariant under the operations of the pringpalip). Next,
formulas (14), (15) of the previous paragraphs yieldtthatarrangement is independent
of the choice of time unit and force uniHowever, for rotation, parallel displacement,
and similarity transformations with positive simitgrimodulus the formulas yield that
the arrangement is independent of all of the changes of spatial coordinagensyst
included in these words. Finally, we have, from formulas (13), ()}3that under
inversion the arrangement goes over to its opposite:

(17) Xo=-p, Vi=-h, Z4=-1r, L=-U, M=-v, Ny = —wi.
The geometric considerations naturally confirm theultehius formulated step-by-
step. In order to expand upon this detail, | would like tarassthat thexisof the screw

velocityp, g, r, u, r, w has the line coordinates:

(18) p:q:r:u—kp:v—-Kkq:w-Kkr,
where the “parameter”:
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(18) K = w ,

p-+q +r
and that theotational velocityaround this axis possesses the compongrgsr and the
translational velocityalong the axis possesses the componkmtdkqg, kr. In precise
analogy, for a force systeix, Y, Z, L, M, N one can find aentral axiswhose line
coordinates are given by:
(29) X:Y:Z:L-kX:M—=KY:N-kZ

in which one understandtsto mean the quantity:

XL+YM+ ZN
(19) k= VeV
and the force system may then be reducedsiogle forcewith the componentX, Y, Z
along this axis and eouplewith the componentkX, kY, kZ in a plane that perpendicular
to the axis. The combination demands that one likewiss {hé rotational velocity
aroundthe axis, the isolated force aeti®ngthe axis, the translational velocity poiims
the direction otthe axis, and a couple lies, in a plg®pendicularto the axis. Thus, it
is obvious that a prior understanding on the time unit arak fonit is necessary. When
this does happen, one can say that ititensity of a force system (measured by

VXZ+Y?+ Z7%) is like theintensityof a velocity that is measured QM_JZ +°+r*. For

this, however, we need an agreement on which seos®d the axis one would like to
ascribe to a sense along the axige choose either the sense around the axis that 8 give
by the motion of a clock hand as one looks along theiaxike given direction or its
opposite. Once one has agreed upon this, the relatiobstvigen the force system and
the velocity becomes uniquélowever, as is well-known, any such convention gues

to its opposite under inversion of the figuamd this is what formula (17) expresses.

The concept of XYZLMN is then indeed quite closely related to the concept of
(pgruvw) — i.e., a screw quantity — but it is not in itselfcaesv quantity; we will call it a
screw quantity of the second typélowever, we will collectively put the two types of
guantities into words by saying:

Once one has established the time unit and forag tsma screw quantity of the
second type there always belongs two (equal an@si®) screw quantities of the first
type, and conversely; the association will becomeue once one agrees upon the sense
of left and right.

Along with the aforementioned screw quantities of tinet and second type, there
also arises #hird type, the closely-related geometric structure ofBaé screw. The
Ball screw is the concept of a helix of given winding sesusd a definite pitch around an
axis, or, as Ball says, the concept of a central amxisparameter (i.e., pitch). The Ball
screw thus defined is associated, in a one-to-one mawitarthe null system that is
defined by each point of the normal plane to the helik gbas through it, or also to the
linear line complex that is composed of all normalshe helix; whether | speak of the
Ball screw, the null system, or the linear complggm the standpoint taken here, it
amounts to the same thing. Each of these structurebendstablished by thiatios X: Y
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:Z:L :M: N of the coordinates of a screw quantity of the secopd,tgr also by the
ratios p: q:r:u:v:wofthe coordinates of a screw quantity of the figpiet In fact,
when one restricts oneself to the consideration edeHtratios,” the difference between
the two types of screw quantities vanishésccordingly, there is only one type of Ball
screw. Each Ball screw is associated with infinitely maayew quantities of the first, as
well as second, type, and they differ from each athéreir intensity and sense.

Thus, the connection between the various structurésatbaunder consideration can
be represented completely, as one might wish. Theidu@l “screw” is the carrier of
infinitely many “screw quantities of the first and sedotype.” When we wish to
expressly distinguish between the latter, it is to @névthe possible recurring
misunderstanding that comes from treating the arrangebetween the two types of
screw quantities as@usalconnectior).

§ 4.

On the invariants of the screw quantities and the basifr the
difference in types in terms of the notion of work.

The reciprocal relationship between the two types adveaquantities finds a very
incisive expression when one considersnt&riants i.e., those rational entire functions
that can be constructed from its coordinates that itrerecompletely unchanged under
the operations of the principal group or are changed bgtarfaFor the sake of brevity, |
will restrict myself to those operations of the printigeup that represent eitherotions
or motions that involve an inversion, and which I, alonghv8tudy, will refer to as
transfers(Umlegungen).

As invariants of the individual screw quantities, awédl-known, we first obtain the
expressions:

(20) p?+qf +r? O +Y? + 72, resp.),

which remain unchanged under both motions and transferssesnmhd, the following
ones:
(21) pu+qv+rw XL+ YM + 2N, resp.);

these remain unchanged under arbitrary motions, but chaygersiler transfers (which
follows from their behavior under inversions). We waltcordingly, refer to the (20) as
eveninvariants, the (21) askew or also the (20) ascalars of the first typeand the (21)
asscalars of the second type

"y Cf., the comments in my aforementioned Notiz, Maitmalen, Bd. 4 [See Abhandlung XIV of this
collection.] The stubbornness of the misunderstandmgoosly has a psychological root. As we go
through our daily affairs, when we think of an isolataddoacting upon a body, we think of it as acting on
the center of mass, which naturally produces a traoslaf the body. This defines an association between
the two things (isolated force and translation), whgcthen not arbitrary in our considerations if one does
not expressly separate them again by an explicit clatific and possibly a less ambiguous nomenclature.

8 Cf., the previously-cited article of Abraham in BU.of the Math. Enzyklopadie, art. 14 (no. 11 in

it).
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The difference thus introduced obviously carries overthe “simultaneous”
invariants of two screw quantities of the same type, warise from (20) [(21), resp.] by
“polarization.” Here, | would like to consider only the a@l of the expression (21):

pu+gv+rw+ put qu- Fw

(22)
XL'+YM' + ZN+ X1+ YM+ ZN

If the scalars in them are also of the second typ#hdir own right, then it follows:

Theorem |. The:
p,q,r,u,Vv,w
are directly contragredient to the:
u v, w,p,aq,r,
and likewise, the:
XY, Z LM N
are directly contragredient to the:
L,M,N, X, Y, Z

under motions, and under transfers, they are contragredient with a change.of sign

As opposed to them, one now considers the expressidonotiea assembles, by
analogy with (22), bilinearly from the coordinates of te@rew quantities of different

types:
(23) Xu+Yv+Zw+Lp+Mqg+NT.

It follows immediately that this remains entirelyclnanged, not only under motions,
but (due to its behavior under inversion) also under transteissa scalar of the first
type. From this, it follows:

Theorem Il. The:
XY, Z LM N
are reverse-contragredient to the:
u v,w,p,aq,r,

under motions, as well as transfers.

The inter-relationship between the two types of sageantities can be described in
the simplest way by means of this theorem. If we ilinkith theorem | then we revert to
the analogy between the two types of screw quantiesch was the purpose of the
previous paragraphs. This may be expressed in the followagg w

Theorem Ill.The:
XY, Z L, M N
are then directly cogredient to:
p,q,r,u,v,w
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under motions, and cogredient with a sign change under transfers.

The analogy that we spoke of thus follows here froenftltt that by means of the
special situation that was established by theorem hésdrew coordinatgs q, r, u, v,
w, the quantities, Y, Z, L, M, N that arecontragradientto them are likewiseogredient
to them in the sense established by theorem Ill. i) the basic algebraic concept of
this relationship is as clearly worked out as is evesiples We can shift these thoughts
to the pinnacle of screw theory when we clarify the iirarda behavior of the expression
(23) (the expression (22), resp.) directly on the basistsofjeometrical-mechanical
meaning. This is what | had in mind in my repeatedly-citiediz in Bd. 4 of Math.
Annalen. [See Abhandlung XIV of this collection.] etcontemporary connection, the
situation may be represented precisely as follows:

1. One interprets th¥, Y, Z, ... as the coordinates of a system of continuously-
acting forces. The expression (23), when multipliedtbhence, the product:

(24) Xu+Yv+Zw+ Lp + Mg+ Nr) dt

then means theork that the force system does during the course of amitglfi small
motionu dt v dt wdt, ..., and is then acalar of the first type.

2. On the other hand, the expressions (22), due togkemetric meaning, have the
character ofcalars of the second tyfem the outset. It suffices to verify this in the
example of two force systems that may be reduced togéedorce. We accordingly set:

P P
Xlzl—l(xi‘)ﬁ), lel—l(yl‘yl),
1 1
and analogously:

Xzz%(xz_xzz), YZZ%(yz_y'z)’

2

Thus,XiLz + YiM; + ZiN, + XoLq + YoMy + Z5N; is converted into the product ef—l | 2in
2'1
the determinant:

X Y oz
X Yz
¥, z 1
% Y, %

which represents a six-fold tetrahedral volume, andertainly a scalar of the second
type.

3. From the combination of 1 and 2, one now imedy derives Theorem llI,
which expresses the result to be proved in a prdorsn.



§ 5.

Group-theoretical characterization of the different types
of screw theories.

Up to now, we have defined the substitutions that themwscoordinatesp, g, r, u, v, w
(if they are the only ones being discussed) experigander the motions and transfers by
first defining the behavior of the, g, ... under the generating operations (1), (2), (3). It
is of interest to characterize the essence of thalsstitutions by the invariants:

p’+g?+r> and pu+qv+nw.

In this regard, | pose the following theorem:

The p, g, r undergo all ternary linear substitutions of determirahthat leave p +
o + r? unchanged, the p, g, r, u, v, w together, however, undergo all senaay li
substitutions of determinantl [under which p, g, r will only be transformed into
themselves, and’p ¢ + r? remains unchanged, among other thinet take put qv +
rwinto = (pu+ qv + rw).

The first part of this theorem (the one that relatesernary substitutions ¢, g, r)
then no longer needs the assumption that we made=doettavior of th@, g, r under the
generating operations; it only expresses the well-knoelationship between the
rotations around the coordinate orignto the ternary orthogonal substitutions. Now,
suppose we have any ternary orthogonal substitutioimeqd, i, r of determinantt 1 that
converts pu + gv + rw) into = (pu + qv + rw), resp. We combine it with a rotation around
O that takes the, g, r back to their original values (and also yields prdgifee same
ternary substitution of determinant + 1 for thev, w, with the givens of § 2, as it does
for thep, g, r themselves, such that the valugoof+ qv + rw and the value of the senary
substitution determinant thus remains unchanged). We fiafipdy an inversion, if need
be, in order to makpu + qv + rw equal to its original value; thus, the senary substitutio
determinant acquires the value + 1, in its own righte fhus-simplified substitution now
necessarily (sincpu + qv + rw must go to itself) has the form:

p=p u=u-Caqgr Br
¢=0 v=v-Ar+Cp
r=r, w,=w-Bp+ Aq

where only theA, B, C are still arbitrary. However, from (11), § 2, such assiution
represents a translation. Thus, our initial substituyiields a translation when we link it
with a suitable rotation, and possibly an inversiahthus represents either a motion or
a transfer to begin withwhich was to be proved.

So much for the substitutions of theg, r, u, w, v. The substitutionX; Y, Z, L, M, N
are then immediately obtained from them, as long aestablish only that the, v, w, p,
g, r are contragredient to them.
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With that assumption, from the basic theorems ofHErignger Programm, the two
groups of substitutions completely characterize the assaisicrew theory

We go on to the statements above about Ball's thefosgrews in the narrower sense
where we consider only thhiatios p:gq:r:u:v:w((X:Y:Z:L:M:N, resp.) (where
the difference between the two types of screw thdmappears). The:q:r:u:v:w
(to be specific) suffer such (and only such) linear sulitns for which thequations:

pP?+qgf+r’=0 and pu+qv+rw=0

, : u+qgv+rw . ,
go into themselves, while the parametglz_kqﬁ either remains completely
prg+r

unchanged or differs by a sign change. Along with theane and transfers, we would

. . o . u+ qv+ rw
also like to consider the similarity transformatiosisch that& can change by
2 q2 + r.2

P+
an arbitrary factor; the restriction on the substitutielative to the parameter then drops
away.

The Ball theory of screws, thus constrained, iemsslly identical with the line
geometry that uses the null systéan, what amounts to the same thing, the linear
complex)as its spatial element, according to the classti@mascheme of § 1However,
when we express matters that way, we naturally meahne geometry that is based on
the principal group of spatial transformations; | would likke call it concrete line
geometry In place of this, in my own older work (which haisca then also appeared in
a multitude of German and Italian works), line geometag treated in a more abstract
form, namely, by basing it on the 15-parameter group thath@wone hand, includes all
projective transformations of our space, and , on therpthe dualistic transformations.
For thisabstractline geometry (which | would like to call the oppositee here) then the
theorem is true that | presented in Bd. 4 of the Math.akem pp. 356 [“Uber ein
geometrische Reprasentation der Resolventen algebnaiStéiehungen,” see Bd. Il of
this collection], that it is based upon the group of alldm&ubstitutions of thp:q:r:u
. v . w that take the equatigov + qu + rw = O to itself. The reference to the quadratic
form | + ¢f + r? simply drops away.

With the confrontation of the associated groups thusngitree relationship between
my own older work and, for example, the work of Sturm/ioe geometry’), to that of
Ball is made precise. However, this is not the ptaggo into the details.

8 6.
Linear screw systems.

Now that we have established the basics of screwyhee may, like Ball, then go
on to the study olinear system®f screws — i.e., manifolds of screws whose coordmat
can be linearly and homogeneously composed from the catedinf 2, 3, 4, 5 screws

°)  Die Gebilde ersten und zweiten Grades der Linienge@niatisynthetischer Behandlung, 3 Teile,
Leipzig 1892-1896.
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with the help of a corresponding number of varying pararsetin his discussion of this,
Ball restricted himself essentially to the statemehthe general cases, or gave only
examples of special cases. However, it seems desitabtarry out the discussion
systematically®).

| would like to only sketch this out for the two-paramdeemily, and thus restrict
myself, for the sake of brevity, to considering only th&os of the six coordinates.
Accordingly, let:

(25) pp:A1p1+A2p2, pqzﬂlql‘Fﬂzqz, ceny ,OW:A]_W1+A2W2,

in which we understang to mean a proportionality factor. It simplifies tieminology
if we refer to the : q: ... : wthus defined as homogeneous point coordinates in a space
of five dimensions. The formulas (25) then represesttaaght linein this space, and we
will be dealing with the study (classification, respf. af of those lines in relation to the
two quadratic manifoldp? + ¢° + r? = 0 andpu + qv + rw = 0. Thus, our initial remarks
shall be directed along the lines of ih&ersection pointshat our line has in common in
these manifolds. The intersection points with eadh@two manifolds can be separate,
coincident, or undetermined. In addition, the intersegtmints that the straight line has
in common with the one manifold can coincide, piecewisentirely, with the ones that
it has in common in with the other manifold. One rhigdggard the latter as a difference
from reality. That yields an, a priori, assessable series of special case tistinchat
can not only be enumerated with little effort, but likewise, tlsgirew-theoretic
interpretation can be discussedAny geometer who is somewhat familiar with the
algebraic considerations in multidimensional spacepvdceed with this with no further
assumptions; it seems unnecessary to dwell upon thi®aggrl

All the same, it will be good to bring up a differencenssn the Ansatz sketched out
with the developments of Ball. Ball principally cahsied onlyreal phenomena, while
here both real and imaginary were regarded as equivaedtthe question of reality
considerations was first introduced at the conclusiarordier to point out an example of
the advantage that the latter process possesses, welezothe ruled surface that is
defined by the screw axis (25) — the so-cadiglihdroid. For Ball, it is of third order, in
general; however, if the component screwsqs, ri, ... andpg, gz, Iz, ... reduce to two
rotations whose axes intersect then it degenerai@s iplane pencil of rays to which the
axes belong. Instead of a surface of third order, we thga one of first order. How
does this degeneracy come about? When we look at tigenamga axis, we first find that
there are rotations with indeterminate axes (they la@estrew motions for which the
parameter that is given by formula (L8akes on the value 0/0). They leave fixed all
minimal lines that run through a fixed point of the splarele in a fixed tangent plane
to it, and thus define a pencil of rays, in their owghti Such rotations appear now in
two of the special cases of the family (25), correspantiinthe two minimal lines, which
are included among the rays of Ball's pencil of rayBhe consequence is that two
imaginary planes split off from the cylindroid, namelye two planes that go through the
normal to Ball's pencil of rays and the two minimalels. The rest, like Ball's pencil of

19 In a similar vein, Study exposed this on pp. 226-228 ofitste(and, to date, the only one to appear)
version of hisGeometrie der Dynamefheipzig 1901), and proposed more extensive developmernig in t
next version to appear.
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rays, is the naturally of first order. The reader nuestide whether the gain in insight
that results here and in similar cases is equivatetite voluminous expansion of scope
that seems unavoidable when one operates, safe and saimdnaginary elements in
geometry.

By the way, | would like to propose no less than labaration of the theory of linear
screw systems in terms of theictual mechanicabspects. The discussion of linear
screw systems that | just spoke of provides us withite fimumber of different cases for
the motion of rigid bodies in the realm of the infiyt small; one can thus treat the
sequence of 2, 3, 4, 5 degrees of freedom. One now fisidspde mechanism described
in the Natural Philosophyof Thomson and Tait (‘? ed., v. I, pp. 155 (no. 201)), by
means of which one can endow a rigid body of fifth degnéle mobility in the infinitely
small in a general way: The body rotates around adbreapindle (Schraubenspindel)
that is established by means of two Hookean wrenches liagather on a pedestal. |
pose the problenof distinguishing all real cases of infinitesimal mobility for a digi
body, according to our discussion, that can be realized by mechanisms @g &sn
possible.

A final remark on the theory of linear screw systemight lean towards group
theory. Camille Jordan, as is well-known, first gm@ed all continuous and
discontinuous groups that can be defined by real motiosgaoe'”). Among them, we
will be interested here only in tlntinuousgroups. One finds them clearly presented
and geometrically characterized by Study in volume 3thefMath. Annalen, pp. 486-
487 (1891); Lie gave a table of the associated infinitely smaltions in v. 3 of his
Transformationsgruppen (Leipzig 1893), pp. 385. Of these groupse lokly the
simplest ones, namely:

a) The totality of alb® translations,

b) The totality of alko* motions that leave an infinitely distant point fixed, (ahat
amounts to the same thing, an infinitely distant line),

c) The totality of albke®* motions that leave a finite point fixed,

d) The totality of alke® motions that leave a finite plane fixed.

Obviously, it is advisable to elaborate on the mechanfissch rigid bodies that have
the mobility of these groups (as has been done forabdeed with a finite fixed point all
along). The infinitely small motions of each suclbgwup, however, define a linear
screw system, and thus underscores the importanceeofthtls-arising linear screw
system in mechanics; | will call them linear screwtsys ofgroup-theoretic origin If |
choose the coordinate system in a suitable way thétain in cases a) through d), the
coordinates:

pa,r, uVv,w,

of the screws in question in the following way:
a) 0, 0, 0, A4, Az, A3;

b) 0, 0, A4, Ao, A3, Ag;
C) A1, A2, A3, 0, 0, O;

) Annali di Matematica, Ser. 2, v. 2 (1869).
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d) 0, 0, A4, A2, A3, 0.

Here, thel;, A, are, as in (25), arbitrarily varying parameters. Omeilshuse each of the
thus-obtained linear screw systems for the mechanit¢keofinite motions associated
with it in precisely the same way that is done imragay for the system c) for the
rotation of a body around a fixed point, and then fortoiality of all screws for the rigid

body that moves in the most general way.

§7.

Transition to kinetics. Difference between holonomic anaon-
holonomic differential expressions (differential conditionsresp.)

The fact that fon > 2 any differential expression:

(26) 2.8 (%, %,) dx

is an exact differentiatlF of a function ofx;, ..., X, , and that fom > 3 not every
differential condition:

(26) Z¢id>§ =0

is equivalent to an equatiat+ = 0, is sufficiently well-known; the classificatiaf the
various possibilities that come about in that regardeigeloped in the theory of “Pfaff
problems.” We shall use the terminology of Hertz ih @l the cases where the
differential expression or the differential conditioan be replaced, not simply by some
dF, but by a non-holonomicdifferential expression (anon-holonomic differential
condition, resp.).

In mechanics, it is the case, generally speaking, andaspecially, that one indeed
has good reason to consider non-holonomic differeaptessions and conditions, but
that it is only in recent years that this situatios haen particularly address&j

What first arises innon-holonomic differential expressiom®w enters into our
present considerations, that the coordingtel g dt, r dt of an infinitely smallrotation
aroundO, and even more so, tlserew coordinates p dg dt ..., w dtof an arbitrary
infinitely small displacement of a rigid body areealdy non-holonomic couplings of the
differentials of the three or six finite parametehspugh which one might establish the
position of the body in both cases; we will give esipliormulas for this here.

However, the matters that conceran-holonomic condition equatioase not merely
exceptional cases, but appear in the mechanical phendma&nae observe quite often
on a daily basis. Thus, in his works on the principlemethanics?), Hertz remarked
that a sphere that rolls on a plane gives an exanfpdeechanical system with five
degrees of freedom that is linked with a non-holonomiditimm equation. Perhaps even

13 cf., various places in VosBje Principien der rationellen Mechan{iEnzyklopadie der Math. Wiss.
IV, 1 (1901)), in particular, no. 38.

13 Introduction, pp. 23.
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simpler is the example of a cart or sled that mowvea borizontal plane that (due to the
friction at the interface) can always only proceed im direction of its axis; here, we
have the non-holonomic condition equatay+ tan [dx = 0, in which we understang
to mean the azimuth. We concluthet the consideration of non-holonomic condition
eqguations in mechanics is not merely an artifice, but must be cordillene the outset if
we are to understand the nature of motion that is given to us inyrealit

We will thus always refer to non-holonomic conditiequations in the sequel. For
Ball, this did not happen and did not need to happen, sBelé restricted his
considerations to infinitely small changes in positiomrfrihe outset in such a way that
he only involved the first powers of the differentialSonsequently, Ball can also briefly
refer to rigid bodies that are subject to dnydifferential relations of type (26) as
mechanical systems of (6k}-degrees of freedom. This would not be correct irctse
of finite motions: The rolling sphere may, despite tlo®-holonomic condition that its
infinitesimal motion is subject to, may take ®n positions, just as the cart moving in the
(x, y)-plane assumes positions X, y, ), in all.

§ 8.

On the use of the velocity coordinatep, q, r in the
kinetics of rigid bodies with a fixed point.

Before we go into the use of screw coordingieq, r, u, v, w in the kinematics of
arbitrary rigid bodies, we may consider the use oftleg r in the kinetics of rigid bodies
with a fixed point. Indeed, in principle one thus treatsidadly well-known things, but
one does not generally find them all together in theokest and most precise form that
we would like to give them here, and which would then ichately carry over to the
screw coordinatep, g, r, u, v, w. The detailed proofs of the individual facts can hardly
be necessary; | shall refer to the potential derivadibtihe results, as far as the German
literature is concerned, preferably the lectures thatrBerfeld and | gave on thiheorie
des KreiseldPart |, Leipzig 1897); in particular, one finds in it (pp. 188seq.) the
derivation of the Euler equations of motion (in conractvith the original development
by Hayward")) in exactly the same way that will be sketchediouthat follows.

1. Connection between the p, g, r and the velocity coordiryates’, 5.

We take a coordinate systefiyZthat is fixed in the body and atyz system that is
fixed in space (with a common origin), whose reciprocati@hship will be established
by any three parameters, which we would like to make tHerEnglesp, ¢, J, due to
their elementary character (Kreisel, pp. 19). Lettthasition from the positiog, ¢, J
to the positionp + ¢’dt, ¢ + ¢’ dt, J + F’dt be equivalent to a rotation throughdt, q dt
r dt around the axes of th€YZsystem when it is in the position that correspond$i¢o t
parameter value®, ¢, J. The juxtaposition of the relevant formulas thelgs the

%) [This derivation was already given by P. Saint-Guilhdourn. de math. (1) 19 (1854).]
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following connection between thg g, r and theg, ¢, 3 (¢, ¢, 9’, resp.) [Kreisel, pp.
45]:

p=47cosg+y' sing sip
(27) g=-'sing +¢' sind cop

r=¢ +y'coss.

One recognizes that the g, r are non-holonomic couplings of th#, ¢, 4’. The
consequence is that | can indeed replacepthg/, 4’ with thep, g, r in the equations of
motion for the rigid body, but that | must nonethelessablish theg, ¢, & for the
determination of the position of the body, which arenticoupled to the, g, r by the
equations (27), which shall call tkenematical equations

2. Force coordinates.

If one has chosen velocity coordinates (which are them, g, r here) for any
mechanical system then one must generally take the catediof the continuously-
acting forces to be those quantities that multiply tbordinates of the infinitely small
motion in the expression for the work. In the prés=ses, the work is given by (24)
above (in which the, v, w vanish):

dA=(Lp + Mg+ Nr) dt

we will thus have to establish the force system tleé$¢ apon the rigid body bits
rotational moments L, M, N around the axis of the body coordinate sys$tepnecisely
the same way, one will choose the coordinates of spre force to be its corresponding
rotational moments, which we will not go into further.

3. Presentation of the kinetic equations for the p,. q, r

The presentation of the actual equations of motionhiep,tq, r (the Euler equations
of motion) now results, most concisely, in thedaling manner:

a) One expresses the animating force of the rotabdg m terms of the, g, r. As
a unit of mass, it is natural, on the basis of our prevreasoning, to choose it in such a
way that under the action of a continuous force of miadail over a unit of time it gains
the velocity 1. Since thp, g, r relate to a body-fixed coordinate system, one obtains a
guadratic form with constant coefficients:

(28) T=1(Ag +B f +C P+ 2Dgr + 2Erp + 2Fpq).

b) From this, one defines the coordinatesvi, N of the so-called “impulse,” i.e.,
those of the system of pressure forces that would havbeet present in order to
instantaneously transfer the body in question to a vglstdte of, g, r when it is at rest
in its momentary position. From the basic laws oiekics, as they are expressed in the
so-called “first objective of Lagrange’s equations,” art@ains the same from by
differentiation with respect to the corresponding véjocoordinates.The formulas are:
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(29) L:a_T, M:a_T, N:a_T
op 0q or

c) From here on, one now obtains the desired kimefiations when one considers
that the coordinatek, M, N of the impulse will change by an infinitely small aumo
during the time elemermit for two reasons.

Firstly, there is fact that our body is acted upaemally by an appropriate system of
continuously-acting forces. We call the coordinateshef system (i.e., its rotational
moments around th¥, Y, andZ axes)\, M, N. The changes ib, M, N that then result
are:

(30) dL=Adt, dM=Mdt, dN=Ndt

Secondly, however, during the time eleméttheL, M, N then change in such a way
that the coordinate systeX¥Z to which they refer, has rotated compared to its raaigi
position byp dt g dt r dt. We can just as well say that we have rotated spaw (
therefore the impulse vector, which is fixed in spacejmared to theX, Y, Z coordinate
system by p dt, — g dt —r dt. This gives, as the changes in théM, N:

(31) d'L=(rM —-gN)dt, d'M =(pN-rL)dt, d"'N=(qL-pM) dt.

The total change in the, M, N is the sum of the changes (30), (31); it thus comes
about, when we divide by, that:

dL

S oM —gN) +A,

" ( aN)
(32) am =(pN-rL)+M,

dt

dN

—=(gL-rL)+N,

it (q )

and these are the desired kinetic equatioiibe /A, M, N will thus have to be functions
of the g, ¢, 5.

4. Remarks on the equations thus obtained.

Finally, we have the equations of motion represente@by (28), (29), (32), where
we can insert the values bf M, N that follow from (29) into (32). We then have six
differential equations of first order for thg, ¢, 4, p, q, r. In particular, if any
(holonomic or non-holonomic) condition equation igagi for theg’, ¢, $’then it can be
converted into a linear equation for they, r (whose coefficients, generally speaking, are
functions of theg, ¢, J9):

(33) Pp+ Qq+Rr=0.
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Along with the terms that relate to the otherwiseemdl forces, terms will then appear in
theA, M, N that have the following form:

(34) -AP, -1Q, - AR

in which A is understood to mean a Lagrange multiplier that isreh@ted in such a way
that equation (33) is continually fulfilled.

§9.

Continuation. Cases in which thep, g, r can be used as
Lagrangian velocity coordinates.

The considerations that we gave in the previous paragnagdr 3. are essentially
based on the assumption that fhey, r are not Lagrangian velocity coordinates; i.e.,
there is no holonomic coupling of th#, ¢’ 4’ In the other case, we need only to
address the “second objective” of the general Lagraregaations of motion. It is then
of interest to see into which Ansatzen and problemslifference between the g, r and
the Lagrangian velocity coordinates enters; we tthesdite a relatively elementary piece
of the general theory of rotation of a rigid bodyn this regard, we next arrive at the
following summary:

1. The condition equations that suitably restrictrtiability of the bodyin the realm
of the infinitely smalbre likewisdinear in thep, q, r, like theg’, ¢, 5’ (cf., eq. (33)).

2. The difference further vanishes for the questiorstatics insofar as for them the
p, g, r (and therefore also the M, N) are to be set equal to zero consistently.

3. Finally, it vanishes in théheory of pressurein fact, the form of equations (29),
which give the connection between the impulse with thecitgl coordinate®, q, r that
generates it, is entirely independent of fact thatpthg, r are non-holonomic velocity
coordinates.

This is simply that part of mechanics that leadféogdresentation of the equations of
motion that relate to continuous forces. Howevergenvione allows approximate
calculations, yet &ourth point enters into it. It comes abomben one treats the theory of
small oscillations of our rigid body around an equilibrium position, and allowsithal
omissions to enter in Namely, one assumes that one can neglect tleorideorder
terms” in the right-hand side of (32) — thus, th®l (— gN), etc. — compared to the
remaining terms — thus, tlti / dtandA, etc. In this way, one obtains the simplified
formulas:

dL _

dt
am _ v

dt

dN _

dt

(35)
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and this is, in fact, connected with the expression @8)he animating force as if thp
g, r were Lagrangian velocity coordinates.

As long as one neglects terms of higher grdésolutely nothing stands in the way of
setting thep, g, r equal to the exact differential quotients of functiohshe ¢, ¢, & with
respect to time. We will have an infinitely small ratatbefore us when we talk®and ¢
+ (¢ = y to be infinitely small. If we correspondingly repdasin with & in (27), cosd
with 1, ¢'IF with — ¢’/ 5, andg’ + ¢’ with y’then we get:

p= & cosp—4' [ sing :%:’Sm,

(36) g=-'sing - ¢' [F cosxp =w
_ _dy
r=y =

In this, Zcos ¢, — J sin ¢, yare the infinitely small angles through which the body
rotates from its initial position around the ax@%, OY, OZ

The enumeration of the four points before us is ah&diate importance for the
understanding of Ball's screw investigations. We maycgaie this by mentioning that
the screw coordinateg, g, r, u, v, w (like any non-holonomic velocity coordinates
whatsoever) can be treated just like Lagrangian wgl@oiordinates in the corresponding
four cases. Moreover, it now happens that Ball, in higiral investigations into the
application of screw theory to the mechanics of rlgpdlies, has addressed precisely the
four issues referred to here. Also, the deeper quesianhe addressed later, and of
which we shall speak later on, the question of the ewwseptpermanenscrews, may be
addressed from the same viewpoint. This is certainlyanoidental, but well-known,
corresponding to the idea that in mechanics, aboveoad, must always clarify the
simplestrelations and phenomena.

§ 10.

Use of the screw coordinates for the general kinetic¥ rigid bodies.

The development in § 7 may now be carried over, steftdyy-to the question of the
use of screw coordinates in the general kinetics of bgties.

1. We fix the actual change in position of a rigid bddy any six parameters,
perhaps in such a way that we again introducX¥acoordinate system that is fixed in
the body, and whose position is established inyasystem that is fixed in space by the
displacement componen{s 7, { of the origin and the three Euler angi&sy, & (which
admittedly yield very asymmetric formulasjhe screw coordinates p, g, r, u, v, w of the
instantaneous velocity relative to the XYZ coordinate systemheril he represented in
the following way as linear, non-holonomic couplings of&he’, (', @', @', 5’
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p=47cosg+y' sing sirg

g=-9'sing +¢' sind co®p ,

r=¢' +¢'cos?,

u=¢'(cosp cogy— cod sig sim D' (cgs W+ ads gin @os
+{'singsing ,

v=£&'(-sing cogy— cod cog s Hn' —( sih sin+ cbs @os o
+{'sind cosp

w=¢'singd sing —n'sind cogy +{' cod .

(37)

We again refer to these equations askthematicequations.

2. In order to now come to thkaeticequations, we first express the animating force
on the body in terms thp, q,r, u, v, w; we obtain aquadratic form with constant
coefficients:

(38) T=F(p,q,r,u, Vv, Ww.

According to the first objective of the Lagrange equatems the expression (24) for the
virtual work of a force system, we further compute threwaoordinateX, Y, Z, L, M, N
of the impulses that belong to the velocity coordinptegr, u, v, w by the formulas:

(39) X:a_T,Y:a_T,Z:a_T,L:a_T,M:a_T,N:a_T.
ou ov ow op oq or

We finally consider that these impulse coordinates expegiéwo basic changes during
the time elemendt which are superposed, namely, the one from the exigawing
forces on the body, which can be given collectivelyh®/coordinates:

= H Z,A M, N,

and by the motion of the coordinate system thakexfin the body with the body. From
this, we obtain:

d_x:(ry—qz)+z, ﬂ‘:(wY— v+ ( M= gN+A,
dt dt

(40) %:(pZ—rX)+H, %:(UZ— wX)+( pN=- ) +M,
%:(qx— pY) +Z, %:(vx— uy+( gt pNI+N,

and these are the desiiddetic equations.
3. This development is then connected with exactly dmesremarks as in 8 7, is
particular, what is involved with the consideratioranf condition equations.
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§ 11.

Specific examples of the development of the previousagraphs.

In order to confirm the developments in the previous graphs by specific
examples, we first and foremost address the case @fodated, freely moving body.
Things then become eminently simple, but likewise lose a good pdntiokpecific
meaning We then lay the origin of the coordinate systerthatcenter of mass of the
body. The animating force (38) then assumes the follpwell-known simple form:

(41) T:g(u2+\/2 +w) +f(p, q, 1),

in which f is understood to mean a quadratic form of the arguments io§idewith
constant coefficients. The impulse coordinates (3BXhus be:

(42) X=mu Y=my, Z=mw L:ﬂ,M:ﬂ,N:ﬂ.
op 0q or

Therefore, the last three equations in (40) take orotlening simple form:

dL

— =@M —gN) +A,

" ( aN)
(43) —dd'\t/' =(pM -rL) +M,

dN

~—— =(pL- pM)+N.

it (pL- pM)

We would now assume that the M, N depend only upon thg, ¢, & (but not on thef,
n, {), so we obviously have precisely the same Ansath@determination of the, g, r
— 1.e.,the rotation of the center of masdhat we have used all alonghe peculiarity of
screw theory vanishesOne will then treat the problem most simply, intsacway that
by determining the rotatiomround the center of mass one directly determines the
resulting motion of the latter; i.e., one presenésdidinary equations of motion for tée
n, {. Here, screw theory thus suffers a failure, ssp@ak. On the basis of this failure, it
might be true that the great validity of screw theavitich it undoubtedly possesses in
the mechanics of rigid bodies, has only been partialyeaed. If there are no other
problems in the mechanics of rigid bodies thandhes we just mentioned then it would
be superfluous to develop a particular screw theory

However, there are other problems in the skimention here the motion of a rigid
body in a resistive medium (where the M, N certainly do not depend upon the ¢,
Falone), and furthermore, the motion of a rigid body thaconstrained to roll or glide
on other rigid bodies.
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| would like to point out the problem in which screwdhg so far, may have found
its most shining applicatiorthe problem of the motion of a rigid body in a frictionless,
incompressible fluid®) In these cases, the animating force of the systeanh is
composed of the body and fluid can, with no further ags$ioms, be written down in the
form (38), upon which the entire development of the prevparagraphs was founded.
In fact, these developments are nothing but thestragtion of the Ansétze that Lord
Kelvin and Kirchhoff originally made for the body in &uifl; one can confer the
presentation in LambHydrodynamics(Cambridge, 1895; chap. 6), which is directly
connected with the terminology of screw theory, &l as the reference by Love in 1V,
15 and IV, 16 of the Mathematischen Enzyklopadie (1901). veheus forms that the
animating forcel can take on due to the symmetry of the body thanmarsed in the
fluid, the actual connection between the instantaneelecity screw and the impulse
screw, and finally, the resulting motion of the bodglitare likewise great matters that
might also be eminently suited to an intuitive-geomeadiscussion in the sense of Ball's
screw theory. This would be a direct and still nowigl expansion of Poinsot’s
illustrious investigations on the rotation of a rigid bapund a fixed point. For this,
one should confer the work of Minkowski in the Sitzungsleeic der Berliner
Akademie in 1888.

§12.

Concluding remarks on the mechanical chapter of Ball's wdxs.
— Generalization of the Ansatz givenin 8 7 and 8§ 9.

It was already suggested in § 8 that the investigatidheofmechanics of rigid bodies
that Ball carried out in his work®) exhibits an agreeable character: Ball consistently
treated those problenisr which the screw coordinates p, g, r, u, v, w of the velocit
could be used like Lagrangian velocity coordinatésave carried this out here only with
regard to the last question that was mentioned in § &uéstion of the actugermanent
screw This comes about in the simplest way in connectidh the kinetic equations
(40). Namely, one finds that Ball thus treated thectetor such values of the q, r, u,

v, W (@, ¢, 5, & n, ¢ resp.)for which the right-hand side of the kinetic equati¢4Q)

vanisheswhat then remains are theY, Z, L, M, N of the impulse and thus, also theg,

r, u, v, w, at least for a constant time element, and for fjoat reason Ball spoke of a
permanent screw in such a case. As a simple exampleuld like to cite Staude’s
example of a permanent triad in a heavy body that @teund a point (Journal fur
Mathematik, Bd. 113, 1894), as well as Kirchhoff's theoreat fbr every body in a
frictionless, incompressible fluid in the absence of metk forces there exist three

1% Unfortunately, the mathematical elegance of our ematitin is no yardstick for its physical

importance; moreover, the domain of practical utilitglitss a very humble one, due to the viscosity that is
present in all cases and the turbulent motions that afpdarge velocities.

%) Only the mechanicaldevelopments of Ball's works are discussed in the preseitie, not the
closely-connectedeometricalones. However, | would like to neglect to point out Ball has recently
pursued the geometrical questions further in a specialseaatthe Transactions of the R. Irish Academy
(vol. 31, part 12, Dublin 1901); it bears the titfeirther developments of the geometrical theory of six
SCrews.
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mutually perpendicular directions of uniform translatidiinkowski, loc. cit, discussed
all of the case of stationary motion that can oacuhe stated cases for bodies in fluids.
In these examples, the q, r, u, v, w are not just ephemeral, but always constant, such
that one can speak pérmanencef the resp. screws in the strictest sense of tirelw

The latter fact is obviously connected with the féwt tthat the rotations around a
point, like the motions of a free body, on the othemnd) define group If an infinitely
small motion belongs to the group then so does thee fmotion that arises from it by
infinite repetition, as well. That this is, in no waways the case for the motion of rigid
bodies is shown by the simplest example of a cylindat tolls on the plane. Thus, the
group of motionghat was mentioned in 8 5 (the system of linear scodself-evident
group-theoretic meaning” that was linked with it, resp.) stegbe foreground here. In
fact, the kinetics of all of these groups may empleysame approach as in the kinetics
of rotations around a point in 8 7 and that of the freeanet(of a rigid body) in 8 9; one
can say that in all of these cases thethod of Euler equationnds a natural
generalizatiort’). The totality of all motions that a rigid body carrfpem, by the very
nature of the conditions imposed upon it, should the amtasise, is always included in
a smallestgroup of motions. It may suggest that one present tietikiequations for
body in each case in such a way that one takes this gotlpe starting point, and thus
present “kinematical equations” and the analogues of thexr Eglations.

Gottingen, 3 September 1901.

Additional remarks?®)

The present article, which presents the meaning of B#ikory of screws for the entire connected
domain of mechanics and shall likewise bound it, wagehtaip by me at the time because | desired to
have such a presentation on hand for the editing of Baraf the Mathematischen Enzyklopadie (which
treated mechanics); in that regard, | refer to arti®l® (Timerding, geometrische Grundlegung der
Mechanik eines starren Korpers (1902)) and 1V.6 (Staclahemtare Dynamik; to appear soon). When |
now reprinted this article in the Math. Annalen, it wagduse the classification principle of § 1 that |
attributed general meaning to, along with the detailed anguthat was connected with it, seemed to have
since been overlooked, which | deemed inappropriate.

Perhaps | may make some remarks on the historicginsriof this principle. The thought of
classifying all commonly-occurring quantities by their bebiawnder arbitrary linear transformations
permeates all of invariant theory, as is well-knoand already defined the basis for the first invariant-
theoretical works of Cayley and Sylvester. In my ErangBrogramm (1872), then, the viewpoint was
presented that the totality of linear transformatiossonly an example of any other group of
transformations that one think of as subjected to qdati primitive variables. In physics and mechanics
one has every right to choose such a group to berthapal groupof spatial changes —i.e., the essence of
the motions of space and its similarity transformedie and this then yields, by an analogous interpretation
of the way of thinking of the invariant theorist, thassification principle of § 1 by necessity. | have
asserted this for years in my lectures, which Abralhtsn made reference to in the Enzyklopédie article
IV,14 (Geometrische Grundbegriffe fur die Mechanik der aeferbaren Korper (1901)), where he applied
the classification principle we spoke of consistently.

) These remarks stand in close proximity to certain gémensiderations on dynamical problems that
Volterra published in the years 1899 to 1900 in the Attiatino; see, in particular, the articlBopra una
classe di equazioni dinamiclev. 33, as well asSopra una classe di moti permanenti stahilv. 34.

%) [Appended to the impression in Math. Ann., Bd. 62 (1906). @keptionally comprehensive

reference by Stackel appeared in 1908.]
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Apart from that, | would like to expressly suggest a cettditude for the presentation and execution
of the principle, while keeping to the basic laws of Brianger Programm. In order to devote only one
page to this, we say: The “principal group” of spatlarges is a subgroup of the totality of afine
transformations. One can this perform our clasgiboain such a way that one first constructs a schema
for affine classification and then sorts out the ffimketails of the metric classification in hindsight.
However, there is, in no way, any scientific necessity focgeding in such a mannet.suggest this in
order to comment upon the differences in meaning thsg arithe recent discussions on the foundations of
the vector calculus between Mehmke and Prandtl (Jaliesbder Deutschen Mathematiker-Vereinigung,
Bd. 13, 1903).

In conclusion, | would like to cite some recently appepliterature that has a close relationship to the
present reprinted developments.

First, aLehrbuch der analytischen Geometrie which the difference between projective, affinad
metric (or, as the authors say, “equiform”) geomesrgarried out in the sense that is used here from the
outset with its consequences. It is the textbook of Hedftd Kohler (Leipzig, Part 1, 1905).

Then, for investigations into screw theory, aboveetdke, there is the now-compleBeometrie der
Dynamenof Study (Leipzig 1903), which includes, in particular,ompletely thorough discussion of the
different types of linear screw systems, along with ynather novelties that go beyond the realm of the
presently-printed essay. Furthermore, the investigatbr@riinwald in volumes 48, 49, and 52 of the
Zeitschrift fur Mathematik und Physik (1901, 1902, 1905), whasestl would like to at least mention
here:

1. Sir Robert Balls lineare Schraubengebiete.

2. Zur Veranschaulichen des Schraubenbiindels,

3. Darstellung aller Elementarbewegungen eines starrgrek&von beliebigem Freiheitsgrad.

Finally, as far as it concerns the examination dbfamic and non-holonomic velocity coordinates at
the conclusion of my essay, the most recent publication

Hamel, Die Lagrange-Eulerschen Gleichungen der MechanikB@d. 80 of the Zeitschrift fir
Mathematik und Physik, 1903), and Appell, Traité de Mécanidimnedle, v. 2, 2° ed. (Paris, 1904).

Géttingen, in May 1906.



