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INTRODUCTION

This treatise is a contribution to the study of nonservative dynamical systems for
which the generalized force depends upon both the positbredocity parameters. Our
goal is to generalize Hamilton’s principle and to geoitelly represent the trajectories
as geodesics in appropriate spaces.

Continuing the work of E. Cartan, A. Lichnerowicz, ahdn F. Gallisot, one shows
that one can base the dynamics of systems upon a ZHatrhas the Lagrange equations
of motion for its associated system. That 2-form fnedd on the fiber bundle of tangent
directions to the configuration space-time. We haven lzdde to give it a form that is
independent of the framing of space and time thanks to titeeluction of an asymmetric
tensor, namely, thiorce tensorwhich we will substitute for the force vector. \Wave
deduced that tensor from the force vector in order toaie in the case of classical
mechanics. However, it is the opposite step that mediaken, since the force tensor
permits one to characterize the dynamical state ofystem of corpuscles more
completely. The classical force vector is then deffittebe the contracted product of the
force tensor and the velocity vector.

In order to extend Hamilton’s principle to non-conseweatsystems, one must
generalize the classical variational calculus. ladleorto interpret the trajectories
geometrically, one must generalize Finsler spacesosdlgeneralizations must involve
an antisymmetric tensor of order two that analyticachanics interprets as the force
tensor of the dynamical system considered.

The first part of this work is devoted to differentiabgeetry. Most of the results that
will be pointed out can be interpreted in analytical nagics immediately, and the
second part will be devoted to that subject more especial

In Chapter I, one studies the differential systé&mgd, E (o), C (&) that are called
“associated,” “extremal,” and “characteristic,” resjpedy, for a differential formew of
classC * that is defined on a differentiable manifddg. One then gives a vector field X
of classC ®” onV, . Since the trajectories of the field X are defined kg dHferential
systemS (X), one studies the fundamental forms that are la¢theoS (X), namely:

1) The invariant formsv; i.e., the ones for which:
6(X) w=0.

2) The formswthat define an integral invariance relation:
i (X) w=0.

3) The formswthat define a relative integral invariant:
i (X) dw=0.

4) The formswthat define an absolute integral invariant:
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i (X) w=0, i(X)dw=0.

In Chapter I, we will study the restricted formsttla@e defined on the spateof

non-zero vectory that are tangent tg, or on the spac®/ of tangent directions t¥, ,
which are forms whose coefficients are homogeneoumsregipect to the componentsyof

(h forms, in what follows).
One defines the operatdr on those forms such that:

dw=d¥0d,w, inwhich 8w = g;’

where thex? are the coordinates of a poibf V, , and they” are the components of a
vectory in the tangent spadg to V, with respect to the natural frame.
In particular, one studies the differential algebteof semi-basic forms, and one

shows that ad -closed formwis thed differential of the formﬁi (y) @ wherep is

the degree ofy and the coefficients abare hk.
Chapter lll is devoted to the classical variatioceculus. One shows that a semi-

basic form 1-form oW admits basic extremals if and only if it ¢s—closed. One then
studies the properties of Euler vectors and formg astablishes the Helmholtz
conditions for a 2-form to be the Euler form of andtionL (x, y) . The chapter

concludes with some considerations on the geodesica Finsler space that are
connected with the variational calculus.

In Chapter IV, one studies the generalizationhefclassical variational calculus.

A first generalization is based upon considerimg paths that arg-close to a basic
path ofW, which are paths that are defined when one isngareantisymmetric restricted
tensorS,z onW. In order to interpret th8-extremal®f a functionL geometrically, one
introduces a general Finsler space ofSdfinslerianspace. Such a space differs from a

Finsler space by only the convention of E. Cartan: The Riemannian tors&f is not

zero, but is defined by the tens®y .

A second generalization is due to Lichnerowicz asdalso based upon the
consideration of special paths that are closediven one. One defines non-holonomic
functions and forms, as well as their exteriorediintials.

Lichnerowicz’s variational spaces (viZ,spaces) are the spaces that are defined by
the same conventions as the Finsler spaces, but ame starts with a non-holonomic
functionL.

In Part Two, which is devoted more especiallyhe @nalytical mechanic®f non-
conservative dynamical systems, one considersttrbe ani + 1)" variable. Instead of
the generalized force vector X, one considersdaheeftenso6that is defined by:

Spdd O0dé=d (- X, dx) .
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That tensor, along with the Lagrangiandefines ar-Finslerian space, or af\-space,

whose geodesics are the trajectories of the dynamsystéém. One then shows that the
system of equations of motion is the system thadss@ated with the 2-form:

Q =dl, 0dx" + 1S, dx* O d¥, with lg=0,L.

That 2-form will play a fundamental role in what éMls. The existence 61 will imply
atheoremthat generalizes a theorem of E. Cartan: The diffsxef the circulations of a
velocity vectorl along the two 1-cycle€, and C; that surround the same tube of

trajectories7 is equal to the flux of the force tenstys across the 2-chain af whose

boundary iy — C;.

One then studies the case in which the f@mwill be closed oW (i.e., the existence
of global vector potential) or admits an integratingtdac(viz., the simultaneous
existence of a vector potential and a scalar potential).

The formQ corresponds to the antisymmetric ma(rllx 0 j whereSis the matrix
(Sp andl is the identity matrix of ordem + 1. One then has a matrix notation that is
particularly convenient to the canonical equations.

The formQ defines the structure of an almost-symplectic spacelee space”

structure, onV. In particular, one can then deduce the conditiat the force tensor

must satisfy in order faR to admit an integrating factor.

Chapter VIl is dedicated to non-holonomic dynamicatesys. One introduces the
concept of constraint tensor for them and studies, riticp&ar, the perfect constraints, in
the sense of Delassus, which are characterized bycdhdition that is called the
“generalized principle of virtual work.” The trajectoria interpreted as geodesic$sin

Finslerian spaces af-spaces. A generalization of Meusnier’s theorem shtvatsthe

trajectories of a dynamical system with perfect nofehomic first-order constraints are
characterized by the principle of least curvature. ©&maws its equivalence with the
Gauss-Appell principle and then deduces the Appell equation ifnoitsogeneous
formulation.

The last chapter relates to some problems in regardn@andgal systems for which
the notion of force tensor is imposed in particular. harmge of frame introduces an
antisymmetric tensor in an immediate way: viz., teetafugal force tensor.

The dynamical systems with Appell constraints or gyroscapnstraints are
characterized by a second-order antisymmetric tensbhe ndon-conservative dynamical
systems admit a Painlevé integkhl= const. that is independent of time such that the
generalized force in the configuration sp&gevill have components of the form:

Qk = Sim x™ with  Sm=— Snk

that satisfy a generalization of the Maupertuis priecipat permits one to determine the
trajectories independently of the timetable.
That chapter will conclude with some applications to gdrrelativity.
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One associates the force density vetpwith a force tensos,s in a natural fashion
such that the differential system of the streamlisgbe associated system to the 2-form:

Q =dly 0d¥ + L5 dxX" O’ .

The streamlines are the geodesics of-Bemannian space that is defined by the torsion
forms:

>V = (is o d>€) @

2 “ap

The cases in whicl® is closed or admits an integrating factor relateh® tlassical
models. The considerations of the preceding chapterheifi, tin turn, give (among other
things) the now-classical results of general relatitiiat relate to the streamlines of
charged perfect fluids.

That work was brought into play thanks to A. Lichnerawi | wish to acknowledge
the profound admiration that | have for him here.

I would likewise like to express my respect and gratitode

J. Pérés, who kindly presented my initial resulthieoAcadémie des Sciences.

J. Favard, for the benevolent interest that he sdow my work and for the honor
that he afforded me by accepting my request to presiaeygary.

M™Y. Bruhat, who was kind enough to guide me through my sed@sikt




PART ONE

GENERALIZED VARIATIONAL GEOMETRY



CHAPTER |

REVIEW OF DIFFERENTIABLE MANIFOLDS

1. — Let V,, be ann-dimensional differentiable manifold of cla€s”, and let X be a
differentiable vector field that is defined &f . That field generates a local group of
local transformations of, by integrating the differential system:

The solution to this system that issues from the poffl) =x will be denoted by'j:
X (u) =exp (0 X) x.

The differentiable map expu(X) admits a tangent linear map, which is denoted by
exp U X), of the vector spack that is tangent t¥, atx to the vector spacky, that is

tangent tov, atx (u) . One deduces a linear map from its recipranabe that is denoted
by exp (1X)" and which takes the dual spakg, to Ty to the dual spacg,” to T.

Let wbe ap-form of V,, . One calls the-form 8 (X) wthat is defined by:

()
expl X) w,, — &,
u

[6(X) dx=lim

theinfinitesimal transfornof wby X or theLie derivativeof wby X . Leti (X) wbe the
interior product ofwby X.
We will then have the fundamental formud (
(1.2) O (X) w=di (X) w+i (X) dw.
Let Y be a second differentiable vector field tisatlefined orV,, . We set:

(1.3) 8(X) Y = [X, Y]

and recall the formulas:

(1.4) 8([X, Y]) w=8(X) 8(Y) w- 8(Y) 8(X) w
(1.5) i[X, Y] @=8X)i(Y) w-i(Y) 88X a
(1.6) i (Y)i(X)dw=8(X)i(Y)w-i(Y)8(X) w-ilX, Y] w.

In what follows, we will be sometimes led to digfinsh:

() A. Lichnerowicz B, pp. 15.
() H. Cartan{].
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i (X) w=0 from I (X) w=0.

The first relation is an exterior differential equatié\ solution of that equation will be a
(p—1)-vector ¥, ... OYp1, where Y, ..., Yp1 are independent vectorsipsuch that
one will have the numerical equality:

(1.7) i(X0OY10...0Ypa) w=0.

The second relation(X) w= 0 expresses the idea that the equality (1.7) is werifie
any vectors Y, ..., Yp1 in Ty ; i.e., that the poink considered is a zero of the
formi (X) w.

A. — Some remarkable differential systems that are attachei an exterior form.

2. Associated system to an exterior form One calls a direction that is defined by a
vector X such that:
i (X) w=0

anassociatedlirectionto watx. That identity indeed defines a direction because
i (AX)=A1(X) for any scalas .

The corresponding linear differential system tlsabbtained by replacing X wittix in
the equations that define the associated directimmgat any pointx of V, is called the
associated system (&) to w. One obtains it by equating all of the derivasiof order
p-1 in the formwto zero.

Examples:
1) A1l-form: _
w=g; (x) dX,
with _
i (X) w=a X'=0,

defines anrf — 1)-dimensional planar manifold in the tangenttge space td/, at any
ordinary point ofw.

2) Let a 2-form be given by:
w=1a; dx' Odx/,
with
i (X) w=1a (X'dx' - X dX) =0,
which implies that: _
a;j X'=0.
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If nis odd then that system will have rank at most 1, and one will get at least one
associated direction at any point\ef.

If nis even, and if the system has ranthen there will exist no associated direction
at an ordinary point o¥, .

If the system has rankpZ n then there will be an infinitude of associated dirawio
that form anf — 2p)-dimensional planar manifold if .

A direction X that is associated with the 2-formis characterized by the property:
The flux of the tensoa; across any 2-plane T that contains X is zero.

3. Extremal system of an exterior differential form.— LetW be a local differential
chain inV, of dimensiorp, let X be a differentiable vector field, and tetbe ap-form in
Vi . The point transformation exp K), whereu is fixed, will transform the points oW
into points of another chain that is denoted by:

W (u) = exp (1 X) W.
Consider the integral= J'Wa).
The Lie derivative of by X is, by definition, the scalar:

.1
Q(X) .[Wa) = IJT)G[.[W(u) wx(”) _.[Ww]

Make the change of variables in the right-hand side tthasforms the coordinates of
X(u) into those ok.

We will then have:
.[W(u) a)x(u) :-[W exp (U ><)Da)x(u) )
SO
Y 0,0 01 =
Qmﬂww—kﬂ%j@mMX)@M @]_heayu.
We now apply formula (1.2) and get:

ﬂmLﬁMLHMMaHhKde
and from Stokes’s formula, when we #¥ denote the boundary ¥, we will get:
(3.1) ﬂmkﬁnﬁ&NMw+hMMd@

We now suppose that the chaMis closed, and seek to determine the vector Keid
such a fashion that for aiy, we will have:

WMLMZQ
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Let Y1, Y2, ..., Yp bep local vector fields that are tangent\p. In order to have:
e(X)ij :jwi (X)dw =0,

it is necessary and sufficient that one should have
i(Y10Y,0...0Yp) i (X)dw=0

forany Y1, Y2, ..., Yp; i.e., that:

(3.2) i (X) dw=0.

By definition, a direction X that verifies the pezling identity is aextremal directiorof
w; such a direction is nothing but an associategtction todw.

The corresponding linear differential system igdefinition, theextremal systerof
a which is denoted bl () .

4. Characteristic system of a differential form.— Let X be a non-zero vector field
onV,. The field X defines a direction field that wether denote by X.

A direction field X is, by definition, aharacteristic fieldfor thep-form cwon an open
subselJ in V, if one has:

(4.1) i(X) w=0
and
(4.2) i (X)dw=1A w

at any pointx of U, whereA is a numerical function of.
The identity (4.2) can be replaced with:

(4.3) 0 (X) dw= 1 w.
That shows that when one is given an integral folahW of the equation:
w=0,

the manifold that is generated by the trajectasies characteristic field that meatswill
also be an integral manifold of that equation.
It is immediate that the definition of a charadtiéc field that was given above can be
replaced with the following ones:
i (X) w=0
and
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(4.4) i (X)i(Y)dw=0 for any Y such that i (Y) w=0.
From formula (1.6), the identity (4.4) is equivalent to:
i [X,Y] w=0 for any Y such that i (Y) w=0.

The linear differential system that corresponds tfinohg X at anyx O V, is, by
definition, thecharacteristic syster@ (¢) of the formw.

If wis a 1-form then the characteristic system will incltlteeequatiorw= 0, and the
differential system that is obtained by writing out éxerior equations:

i (Y)dw=0 and i(Y)w=0

will admit the same solutions as Y.

5. Integrability of the systemsA (&), E (o), C (o) . — By definition, a linear
differential system is calledompletely integrablen a domairD of V, if the fact that X
and Y are two integral direction fields @ implies that the bracket [X, Y] is also an
integral direction field om.

1. Associated system @&). — By hypothesisi (X) w= 0 andi (Y) w=0 . It will
result from formula (1.6) that:
i [X, Y] w=i(X)i(Y)dw.

In general, the associated system will not be conlpleteegrable then.
That will be true whenlw = 0, and also whew has a unique associated direction at
anyx ofD.

2. Extremal system E). — By hypothesis, (X) dw= 0 andi (Y) dw=0. Formula
(1.6) will then imply that:
X, YI=i(X)i(Y)d(dw)=0.
The extremal system t@will then be completely integrable.
3. Characteriistic system C). — Its complete integrability follows directly frons
definition.

B. — Some remarkable forms that are attached to a differeral systemsS (X).

6. — LetVn+1 be an @ + 1)-dimensional differentiable manifold of cla88. Let X be
a non-zero vector field that is defined on a doniin of Vi.1 , and letT," be the vector

subspace of,” that is orthogonal to X.
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Letx}, ¥, ..., X" be a local coordinate system about a priitt an open subset of

Dne1, and letXt, X2, ..., X™* be the components of the vector X in the associastada
frame. The differential syste®(X) of the trajectories of the local group that isided
onU by X will then be:

61) @ dy”

For a suitabl®,.1 , the relation that expresses the idea that twageiandx’are on
the same trajectory @& (X) is an equivalence relatidr that is defined on that domain.
Dn+1 will then be fibered, and its bake= Dn+1/ R can be identified with the space of first
integrals ofS (X).

Let p denote the projection dD,.1 onto its base; any point of Dn+ will then
correspond to the poigt=p xin I, .

The first integrals of S (X) are functionsf (x) that are solutions to the first-order
partial differential equation:

a(X)f=i(X)df=0.
Locally, df is a closed form that is orthogonal to X at the pa&in n independent first
integralsf; , f2, ..., fy will represent a local coordinate system for thenpgi=p x A

local coordinate system for the pomthat is adapted to the fiber structureDpf, will

then bef, , f2, ..., fn, andxX™ when one supposes thdt! = C is not a first integral of

SX).
Definitions:
1. Aformwis calledinvariantfor S (X) if:
8(X) w=0.

2. Aformwis calledsemi-basidor the spac®,.; that is fibered by X or defines an
integral invariance relatiorfor the differential syster§(X) if:

i (X) w=0.
3. A form wdefines aelative integral invarianfor S(X) if:
i (X)dw=0.

4. A form wis calledbasic for the spaceD,.1 that is fibered by X or defines an
absolute integral invarianfor S (X) if:

i (X) w=0, 8(X) w=0.
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7. Notion of an integral invariance relation(®). — Saying that the-form wdefines
anintegral invariance relatiorfor S (X) that is characterized hy(X) w= 0 amounts to
saying that X is an associated directiondeat any poink in a domairDp+1 Of Vi1 .

The identityi (X) w= 0 expresses the idea thalocally belongs to the vector space
AP(T), which is thep™ exterior power ofT!”, and a basis for the former space is

df Odf 0...0 dfp , Wherefy , f2, ..., f, aren independent first integrals &(X) . We
can then writewin the following fashion:

(7.1) w:il a™ ' df Odf O...0df ,
p. 1 2 p

in which the coefficients are functions of the ahtes:

X7, with a=1,....n+1.

Let us now justify the expression “integral invarce relation.” In order to do that,
we consider ag— 1)-dimensional chaiv that is or is not closed in a dom&mof Vy.1 .
Let Wi denote the chai, = exp (1 X) Wp that is the locus of pointg = exp (1 X) %o ,
in which xp is an arbitrary point o\, , in which the parametar has a suitable fixed
value.

For a chain\p and a suitable parametgrlet 7 denote a “tube of trajectories,” which
is a p-dimensional chain in the domald that is generated by the trajectories of the
various points o¥\p and is bounded by, andW; . The manifold that carricBadmits a
parametric representation of the form:

(7.2) XT=fu, V. VY,
SO

dx’=X"du+ Y, dv+ ... + Y7 dv,

in whichs, ..., Yp-1 arep— 1 are tangent vectorsT0
Now suppose thawis ap-form that is defined on the domd of V.1 to which7T

belongs.
The integral = J'Ta) then reduced to the multiple integral:
| = [ i(xOY,0--0Y,) wdud/ - dv™

= [ 1Y, 01(Y,.) D0 (X) atudvt - dv™,

() A. Lichnerowicz [], pp. 1-8.
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A, is the domain ok whose image under the mbijs 7 .

In order to havd = O for any tubeZ — i.e., for any vectors 1Y, ..., Yp1 — it is

necessary and sufficient that:
i (X) w=0,
hence, one has the:

Theorem:

In order for the integral J'Ta) to be zero for any tub& of trajectories for the
differential system &), it is necessary and sufficient that:

i (X) w=0;

i.e., thatewshould generate an integral invariance relation fq@<$ .

8. Notions of relative and absolute integral invariant— Let wbe ap-form that is
defined onVy:1 . LetW be an orientablp-dimensional chain iW,.1 that ha®W for its
boundary. We saw3(1) that:

H(X)J'Wa) = jawi (X)w+jwi (X)d w.

1. Suppose that the chai is closed (i.e., it is a cycle). The precedingnfola
reduces to:

(8.1) 0 (X)J'Wa) = jwi (X)dw.

In order for one to have/ (*\Zw = 0 for any cycleW, it is necessary and sufficient
(from 8§7) that one must have:

(8.2) i (X) dw=0;

i.e., that X must be an extremal directiorcdat any point of V.1 .
It then results that ¥, andW; are twop-dimensional cycles iW,:1 such thatw; =
exp U X) W, then one will have:

J. w = w.
W Wo

This equality, which one can deduce by applyingk&sts formula to the fact thatw
defines an integral invariance relation 8r(X), justifies the termrelative integral
invariant.
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2. Now suppose that the chahas a boundargW # 0. In order for one to have
8(Xx) J'Wa) = 0 for anyW, it is necessary and sufficient that one shouic Hzoth:

(8.3) I X)w=0 and i(X)dw=0.

Under those conditions:

jw: w
W Wo

for any p-dimensional chaiW, in V.1 , whether closed or not, wheve, denotes the
chain exp ¢ X) Wy, as always.
That equality, which justifies the expressmlssolute integral invariantresults from

8(X)| w = 0 and also the fact that the identities (8.3plyrthat the formew can be
w

expressed solely in terms pfindependent first integrals &(X) and their differentials
[which is a consequence of (7.1)].
Let us point out some theorems whose proofs angetimte:

Theorem:

1. If a form wdefines a relative integral invariant for &) then the form d will
define an absolute integral invariant for(%).

2. If the form dvgenerates an integral invariance relation fo(>§ then the fornw
will define an absolute integral invariant for(®), and conversely.

3. If the formsw and dw generate integral invariance relations for(®) then the
form wwill define an absolute integral invariant for(%), and conversely.

4. If the form wgenerates an integral invariance relation for’§), and if Y is an
arbitrary vector field on .1 then the form i(Y) w will also generate an integral
invariance relation for §X).

Indeed:i (X) i(Y) w=-1i(Y) i(X) w=0.

9. One-parameter groups that leave the syster (X) invariant. — Let Y be a

vector field that is tangent 8., . That field will generate a local one-parameperup
Gt of local transformations df,..1 by integrating the differential system:

when one starts from an initial poxf0) =x.
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The systent (X) is calledinvariant under G if the vectorX,y is collinear with
(expt Y) X, for any pointx whereG; is defined and fot sufficiently small.
One can show’Y that this will be true if and only if:

oY) X=[Y,X]=fX,

wheref is a scalar function of . In this case, one says that the sys8p{) admits an

infinitesimal transformatiorthat is defined by Y. One will then have the following
theorem:

Theorem 1:

If a form w generates an integral invariance relation for(®) then so will the
form 8(X) w.

Theorem 2:

If a form w defines a relative integral invariant for &) then so will the form
(X) w.

Theorem 3:

If a form w defines an absolute integral invariant for(®) then so will the forms
(X)) w and i(Y) w.

Proof:
If will suffice to establish the second part ofebinem3. One has:

i (X) di (Y) w=i (X) [8(Y) w—i(Y) dd,
i (X) di (Y) w=i (X) 8(Y) w+i(Y)i (X)dw=0,

which proves the property.

(Y H. Cartan ], Chap. IV, pp. 3.



CHAPTER I

FIBER BUNDLES OF TANGENT VECTORS OR
DIRECTIONS TO A DIFFERENTIABLE MANIFOLD

10. Definition of the fiber bundlesy and W. — LetV,+1 be an { + 1)-dimensional
differentiable manifold of clas€ . Let V be the fiber bundle of non-zero tangent

vectors toVy+1 , whose structure group@L (n + 1,R) and whose fiber is isomorphic to

R™! without its origin. Let Z be a point af and letp be the canonical projection of Z

onto its originx OVy+1 . Letx? (@=1, ...,n+ 1) be a local coordinate system of the point
x of Vna1, and lety” be the components of a vectoof Ty in the associated natural frame
R«. The & + 2 numberx?, y’ constitute a local coordinate system at a point Z ef th
fiber 77'x . The change of coordinates W1 that is defined by the functiond” =

f 7 (x#) implies the following change in the:

(10.1) Y =057y = AT Y.

Consider two points Zand 2 in the fiber7™* x such that the corresponding vectordpf
(namely,y: andy,) are positively collinearyg = Ay;, A > 0).

The relation thus-defined dnis an equivalence relatidd. The quotient spadd/ =
V [ Ris, by definition, the space of oriented directions Hra tangent t&¥,.1. The space

W can be endowed with the structure of a 21)-dimensional differentiable manifold.
The projectionp of each directiorz onto its originx endowsW with the structure of a
fiber bundle with bas&/..; whose fiber is homeomorphic to the sph&eand whose

structure group of the groupL (n + 1,R), or more precisely, the orthogonal graddgn).

A local coordinate system at a point p ™ x is once more the set o2 2 numbers
x?, y?, where then + 1 numbery“ are defined only up to a positive proportionality factor.

11. Tensors and forms defined o or W. — An affine tensor field relative 13, in
the usual sense, is a mathat makes any point Z i correspond to an element of the
affine tensor algebra that is constructedTgn The tensors thus-defined relate to the
linear groupGL (2n + 2,R).

However,V is a fiber bundle whose baseMs.1 , so the change of local chart on the

base:
X7 =1 (xP)
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will induce the change of coframe Ty’ that is defined by:

X = A ¥,
dy’ = B df + A dy,
with A7 =0pf“andBj =y, A .
A O
The corresponding matrix (SB Aj’ in whichA andB are matrices of order + 1

whose elements aréy; and B , respectively; Gs the zero matrix of order + 1. The
set of all those matrices is a subgroup@if (2n + 2, R) that we shall call the
prolongation of GL(n + 1,R) and denote bﬁ;vl_ (n+1,R). From now on, we shall call
a tensor that relates ﬁ_(n + 1,R) atensor oV in the large sense

One says thdtis a tensor field of degrdeonV in the restricted sensghen one has:
t (Z2) =t (2)

for two points Z %, y) and Z (x, Ay) in the fiberz*x . A form wonV in the large or

restricted sense is an antisymmetric covariantotefisld onV in the large or restricted

sense, resp.
Let wbe the 1-form that is represented by:

w= aa (X! y) an + ba (X! y) dy’

in a local coordinate domain.
At the point whose local coordinates afe A y“, whereA is an arbitrary positive
function of the variables®, we will have:

W=as(% AY)dX +bs (X, Ay) (Ady +y?d]) .

In order to havew’ = A wfor any, it is necessary and sufficient that theshould be
hk (i.e., homogeneous of degrewith respect to thg?) , that theb, should beh(k-1),
and that:

ba (x,y) Y = 0.

One shows, more generally, thab-form wis restricted of degrdeif the coefficients of
the terms of degrge— hwith respect to thex” are h(k-h), and if:
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By abuse of language, a restricted tensor (or a forrdegfee O is said to lokefined on
W.

A semi-basidensor field onV is a map that makes an element of the affine tensor

algebra that is constructed ovEfz) correspond to any point Z f In what follows,
only the restricted semi-basic tensor fields of degredl be used, and we shall refer to
them as thehk tensors, since their components are homogeneous ofedegrith

respect to the variablgs.
A semi-basic covariant antisymmetric tensor fielaferp is, by definition, a semi-

basicp-form. If the tensor id1k then the form will be calledh k semi-basic

The hk semi-basig-forms on) define a module over the ring of functions \én;
with real values, which is a module that we shall deixytH,”.

The exterior algebra of restricted semi-basic fotimas are defined oW is then a bi-
graded algebra that we shall denotd-bf)).

12. Differential operators onH (V) . — Lett be a restricted tensor that is defined on
an open subsd of V. Letx? y“ be a local coordinate system about a point B.oif t
is hk then the Euler identity:

kt=0d,ty", inwhich d.t= :

will show that thed,t define a restricted tensor of degkee 1.
Now choose a forrmOH?(U). Its expression in local coordinates is:

a):ilq_,_i dx O--- O dxe
ql

The expressiodx” 00 d,w defines a semi-basic form of degiege- 1 and degree of
homogeneitk — 1. From now on, we shall denote it . We then set:

(12.1) dw =d¥'00,w,

by definition. The operatod is an endomorphism &f (U) whose bi-degree is equal to
(1,-1); i.e., it is a map of the modulg into the moduleH ;.
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If we replace all of thelx with dy with the same index then the operatbmill give
an exterior differential in the fibers x ; i.e., a differential withx fixed.

It then results that the operatdrpossess the following properties:

d(@ + w) = da + da,
d(w Dw) = de Dw, + (-1)™* @, O dw,,
d(dw) =0.

Let X be a restricted vector field that is definedyrand letewbe a restricted semi-basic
g-form onV, so the interior product of X bg:

s Ow

will be a restricted semi-basiq £ 1)-form on).
Set:
O(X)w = di(X) w+i(X)dw.

The operatod(X) thus-defined is a derivation of degree 0; i.e.:
O(X) (@ D) =60(X) D+ alE(X)a.

One verifies that the operatods and & commute. Iff (x*, y?) is anhk function that is
defined onV then:
O(X)f=X%9,f =<X, df >,
If w=a,dx’then:
6(X) w= (0,84 X “+ag 0, X" dxX".

13. d -closed forms.— A form Q O H is locally d -closedif dQ= 0 on an open
subsetU of V. From Poincaré’s theorem, there will exist a fard H onU such that:

dw=Q.

We shall recover this result and specify the exgossfor wby establishing a remarkable
identity that is verified by any form in the algalbt.
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Let wbe anhk semi-basiq-form that is defined oy . Take the vector field to be

the fieldy whose components aX = y“ relative to the natural frame at the point Z
whose local coordinates ax& y”. Let us specify the operaté{(y) w. By definition:

o) = di(y)w+i(y) dw
= d{yﬂ 0w }i(y)[d% 19,4

a(dx’)
_ ow 0,w B
=& Da(dx")+ 6(d>(’ t Yo, o( d>€)
ow
= dx’ Da(dx") yo,w

The first expression on the right-hand side is étua w becausevhas degre@, and
the second expression is equaki@ becausevis hk, so we will have the identity:

(13.1) 0(y)w=(p+Kw
or
(13.2) di(y)w+i(y)dw = (p+k w.

Consequence- If an hk p-form wis d —closed then the identity (13.2) will reduce
to:

(13.3) di(yw=p+k w,
and w= dl(y)wlfp+k¢0.
p+k

Theorem:

A d-closed semi-basic p-fornw on V will be the d differential of the form

1 .
— w when k# 0.
ALt p+

Remark. — If wis ap-form onR™* that takes the form:

—Ia1 dx: O--- 0 d¥
pr
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in canonical coordinates is closed, and if its coeffisieme homogeneous functionsxdn
of degreek thenwwill be the exterior differential of the form:

1
p+k

i(y)w if p+kzO0.

Forp + k> 0, that result will be a consequence of thesita$ homotopy formule).

14. Special case of the algebrd (W). — The algebrdd (W) is, by definition, the
exterior algebra of restricted semi-basic forma\ni.e., they arehO.

If X is a restrictedhO vector field (i.e., it is defined ow) then the algebral (W)

will be stable under the operataréX) and 8 (X), but not under the operatar. That
will permit one to deduce an elementrbfW) from anyhl semi-basic form.

The hl scalar functiorC (x, y) corresponds to the form ¢h(W):
dg =a,Ldx".
The hl 1-form w= a, (%, y) dx’ corresponds to the 2-form i (W) :
dw =4(0,a,-0,a,) dx"0d¥.

From the theorem in &3, any d -closed semi-basip-form wonW is the d -differential
of the p — 1)-form% i(Y) w.

We verify that theorem by establishing, at the sd@ime, some simpler necessary and
sufficient conditions to havdw = 0 forp=1 and 2.
First of all, in order for amO functionf (x, y) to be such that:

df =9, fdx" =0,
it is necessary and sufficient tliathould be independent of the variabjés
Case of a 1-form- Let anh0O semi-basic 1-form be:

w=ag (X, y) dx’.

() H. Cartan ], Chap. llI, pp. 18.
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In order forwto be d—closed on an open subdétof W, it is necessary and sufficient
that:

(14.1) d,a;-0,8a, =0 onu .

Under those conditions:

w=d(a, ¥).
Indeed:

d(a, ¥)=(as+ 0,2, y’) dx".
Now, the relations (14.1) imply that:
(14.2) d,a,y =0 onU .

Conversely, when one differentiates the identities (1) respect toy’, that will
imply:
0,8,+0,,8 Y =0.

Upon switchinga and 5 and subtracting, one will get the identities (14.1)pse will
have the:

Theorem:

In order for the hO form w = a, (x, y) dx’ to be d—closed, it is necessary and
sufficient that:

y’9,a,=0.
Under those conditions, there will exist a unichiefunction F such that:
w= dF.
The function F is necessarily equal tpy4.

Case of a 2-form- Let:
Q = laggd¥ 0d¥

be anh0 semi-basic 2-form. In order f€X to be d —closed on an open subséof W, it
is necessary and sufficient that one should have:

(14.3) adaﬂy+6ﬁaw+6y 35 =0.



Chapter Il — Fiber bundles of tangent vectors or direstion 23

Under those conditions:
Q = dw, with W= Lasy” dé.
Indeed:
dw = tadX’ 0d¥ + 1y"(d,a,-0, a,) dx” Od¥X.

However, the relations (14.3) imply the identities

(14.4) y'(0,85-0,8,) =0,
and we indeed have:
dw=Q.

The identities (14.4) are equivalent to (14.3)reowver. Indeed, upon differentiating
(14.4) with respect tg” and then cyclically permuting, 3, yand adding, we will get the
identities (14.3), and therefore the theorem:

Theorem:

In order for thehO semi-basic 2-form:

Q = laggd¥ 0d¥
to be d -closed, it is necessary and sufficient that oreukhhave the identities:
(0,az-0,38,)y=0.
Under those conditions, there will exist af semi-basic 1-fornawsuch that:

Q = dw, with w=2a, Y d¥ + dF

2 Zap
(in which F is an arbitraryh2 scalar function on).

Remark. — On a well-defined neighborhood in a domain afalocoordinates on
Y (x?, y9), it is sometimes convenient to set:

dw=dx¥"00,w

for an arbitraryhk p-form w. The local operator thus-defined possesses time sa

properties as the operatdr in the case of semi-basic forms. In addition, haee the
formula:

ddw = - ddw.
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A p-form wis calleddd —closedif:
ddw = 0.

If wis a 1-form that is defined i and dd —closed therwcan be locally put into the
form:

w =df +dg,

in whichf (which is h1) andg (which is h0) are two scalar functions.

15. Prolonging a one-parameter group oWn.1to V . — LetC be a curve iV, that
has a parametric representation of the form:

x7 =1 (u)
on an open subsét of Vi1 .
C corresponds to a curve 'C in V that is defined it *U by:

df“
du

xX=f%u) and y'=

If we change the parameter andset g (v) then the curv€ will be represented by:
X?=17[¢ (V)] =F"(v),
and the curver 'C will be represented by:

dF?® _ df?
dv du

X=F7 (), Vy'= P'(v).

The coordinateg” are all multiplied by’ (v) . The curverr *C will then depend upon
the parameterization of the curv€)( By contrast, the curver *C in W is perfectly
determined since the set, A y? defines a well-defined point &% for anyA. A curve in
W that is deduced from a curve ®h.; by means op ™ will be referred to as basic
curvein W from now on.

We denote:

C=p'cC.

Let X be a vector field that is defined @h It will generate a local one-parameter
group of local transformations when one integréteddifferential systers:

(15.1) dX® = X7 (x) du.
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One and only one trajecto€yof the groupG passes through any pokgtof U, which
will be denoted by = exp (1 X) x and will be defined on local coordinates by:

(15.2) x7=f9(xf,u).

The linear tangent map (expX)' makes the vectof, of T, correspond to the vectgr
of Tx such that:

(15.3) Yo =

of“
axﬂ (XO’U) >{)}

If y denotes, in particular, the tangent vector tat the curveC that is defined by” = x°

i X7 (x) then we will have:

dy” a. B
15.4 —— =03 X )
(15.4) qq % y

That system will admit not only the vector fieldaths tangent t& as a solution alon@,
but also any fielgy that is invariant undef (X). Let us verify that.
The equalities:
[6(0X) Y17=XP0py"—yP05X"=0
are equivalent to:
dya - dyﬂ - £ — a
90 =0pY’ & =0py" X =y’ X
alongC.
We indeed recover equations (15.4).
Let X denote the vector field owthat is the prolongation of the field X 8.1 and

is defined by the components:
X7 and X7 =yPazX“.

The field X will generate a local one-parameter graBpof local transformations oV
when one integrates the syst&ithat is defined by:

ﬁzX"(u) and %:X”.
du du

That groupG , which is called th@rolongationof G to V, will admit trajectories that are

curves inV that project ontd/n:1 along the trajectories @. The projections of those
curves ontdV are not basic, in general.

In order for the curve that passes throaglx, , o) to be basic, it is necessary and
sufficient thatyo = A X (xo) .
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If wdenotes g-form that is defined oV (or more generally, a restrict@eform on
)) then its Lie derivative with respect to X will be, dgfinition:

8(X) w= 6(X) w,
and we will have the formula:
d(X) w= i(>_()da)+di()?) w.

In particular, ifC (x, y) is anhl scalar function then:

O(X) L=X"0a L +y?0,X0,L .
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VARIATIONAL CALCULUS

16. Extremals of an integral.— LetL (x, y) be anh1 function of classC % on a
domainU of V. The 1-formw= dL will then be defined oV.

Letfy = p X andf, = p™x; be two fibers that belong to the domainzU of W, and
let Xo andx; be two arbitrary points offU.

Consider the integrdl (C) = chL’ whereC is an arbitrary differentiable path that

joins a point of, to a point of; . We call a curv€ such that:
8(2)1=0

for any vector field Z that is tangent ¥é and verifies the relatiopZ = 0 at the pointgo
andx; anextremalof the integral (C).
From (1.2)

8(2) | :jce(Z)dL:jCe(Z)w:jci (Z)da)+jcdi(Z)a).

The last integral is zero, because the f@eym semi-basic, angZ = 0 atx, andx; .
If X 9, Y “ are the components of the vector Z in the naftmate at the pointx( y) of
W then we will have:
0(dw) v 0(dw) .
o(dx") o(dy’)

i (2) dw=X"

In order for the integraIJ'Ci(Z)da) to be zero for any field Z, it is necessary and
sufficient that the pat@@ should be such that one will have:

0(dw) _

d0(dw) _
o(dx’)

0 d =
T By

0

alongC. The preceding differential system is nothing entiran the extremal system of
the forma which is a completely integrable system.
Let us make that system more explicit. We have:

dew=3(0,,L-0,L)dx" Od¥ +9,, Ldy O df.

The extremal system is composed of the followir{g 2 1) equations:

d(dw)

(16.1) 5(%)

= 0,,L-0,L)dX" -0, Ldy’=0,
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3(dw) ;
16.2 —Z2 =9 .Ldx¥=0.
(16.2) aody”) ¥
SinceL is h1, we will have:
0,,Ldy’=0

identically. The matri>{

aaﬁLH is singular then. By definition, the variatioqabblem

under study will be calledegular if the matrix‘

aaﬂLH has rankn. Under those

conditions, the system (16.2) will show that thxeare proportional to thgwith the same

index. The extremals of the fordL will then be thébasic curvesf W.
Upon denoting an arbitrary parametenbyve can set:

dx* _ .,
=—= X"
Y du
Equations (16.1) will then be written in the form:
(16.3) 0,,L% =(0,,L-0,L)% =0,

and since:
0,,L% =0al,

those equations, which define the projections efdktremals ont®,.; , can be further
written:

ia[,L -d,L=0.
du

Those equations are the Euler equations that reldbe integral:

j L (x, X) du.
We can then state the theorem:

Theorem:

The extremals of the integréldL, where L(x, y) is an h1 function onV, are basic
paths in W that project onta,M along the extremals of the integral:

jL(x, %) du.
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17. Extremal system of a 1-formw defined on W. — Let w be a 1-form that is
defined onW. Its inverse image oW, which we shall once more denote dayis written:

w=ag (X, y) dx7 + by (X, y) dy’

locally. Since that form is assumed to be defined\bit will result that thea, areh0 ,

while theb, are h(-1), and thab, y* = 0.
Since the formw is defined onW, the same thing will be true for its exterior
differential:
dw= Lazsdx" Od¥ + Lbypdy” Ody’ + copdX’ Ody,
with
asp=0q83~0a83, bap=0,b;,-0,b,, Cap=0,b;,-0,4a,.

It will then result that:
bosyY’=0  and coy’=0.

Now let us form the extremal systemaf It is defined by:

odw) _ _
(17.1) D) = ag ¥ + cpdy’ = 0,
0(dw) _ _

This system, which is defined &M is completely integrable. One and only one irdég
curve will pass through any pointy(, yo) of W, which is defined on a neighborhood of
(%o, Yo) by the equations:

X=f7(x0,Yo,U), Y'=97(x,Yo,U).

These curves are not basic, in general. In oatethfit to be the case, it is necessary and
sufficient that the following 2n(+ 1) differential equations in + 1 unknown functions

OA):

(17.3) a,; X +6,%=0,
(17.4) —Cu X +h,¥=0

should be compatible.
That will be true if equations (17.4) are verifiedependently; i.e., if:

bas=0 and if Cy X' =0.

'Ba
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In that case, there will locally exist @m0 functionF (x, y) such thatb, = 0,F. The
identities ¢, %* = 0 will then be written in the form:

(0,,F-0,3,)X=0
or
0,A, X'=0 with A;=-0sF+as.

The formA, dxX” is thend -closed. There will then exist aml functionL (x, y) such that
Ag=0,L,or
ag=0,L+0,F.
The formwis then written:

w=0,Ldx"+d,FdX +0, Fdy,
or
w= dL+ dF.

The preceding considerations are valid, in paldicdor a semi-basic 1-form. Indeed,

in that case, thbys will be identically zero.
Equations (17.4) can then be written:

0,8, =0.

Since they must be verified identically, they cdogt a necessary and sufficient

condition (14.2) for the form:
w=ay dxX

to be d -closed. We can then state the theorem:
Theorem:

In order for a semi-basic form on W to admit basiktremals, it is necessary and
sufficient that it should be -closed

It results from (I, 88) that the formw= dL will define a relative integral invariant
and that its differentiallcw will define an absolute integral invariant for teetremals of
the formw.

18. Euler vectors and forms.— Let C be a differentiable path W that belongs to
the same local coordinate domalin Let:

x7=x%(u) and y'=vy7()
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be a parametric representatiorof
Then + 1 functions ofu :

18.1 Ps(L) =0 Ld—yﬂ+a L-a ,L)y”
(18.1) a(l)=0, du(aﬂ b)Y

are the covariant components of i restricted vectoP (L) that is defined at any point

of C. Those various vectors are, by definition, Ender vectorsof the pathC relative to
L.

The extremals of L (X, y) du are the paths W along which the Euler vectér (L) is

zero.
A 2-form 77(L) is attached to tha1 functionL (x, y), which is defined oiV by:

(182) m(L)=d(d)=d(@,Ld¥) = d,,Ldy" OdX +1(d,,L-9,,1) dX O df.

That 2-formsz(L) is, by definition, theeuler formthat corresponds to the function
Let us point out some properties of the Euler ®@nd vectors that are attached to
the same path oW.

1. The correspondence betwéeandP (L) is linear: IfL; andL, are two functions
that are defined oY to be h1l and have clas€, , and ifk; andk, are two arbitrary

constants then:
P (k]_ L, + ko L2) =k P (Ll) +k, P (Lz) .
2. We have:

Pa(L)y"=0

identically. Indeedd, ;L y* =0, sinced, L is h0, and:
(aaﬂL_aaﬁL)ya yﬂ: 0,

from the antisymmetric of the expression in pares#is or by the use of the Euler
identity.

3. Suppose that has the form:
L=A,(X Y.

Under those conditions:

(18.3) Pa(L) = (0,A,-0,A) Y
and
(L) =d (A dX) .

Suppose, more particularly, that the veddowhose covariant components #gis
the gradient of a function(x) ; i.e.:
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Ap=0,f.
We then have:
Pa(L)=0 and 7m(L)=0.
Conversely, ifrr(L) = 0 then we will have:

9,,L =0,

SO
L:Aa(x)y" and aaAﬁ—aﬁAa:O,
which implies that there locally exists a functiofx) such that:

Ag=0,f.
We can then state the:

Theorem:

In order for twoh1 functions L(x, y) and L (x, y) to admit identical Euler vectors, it
is necessary and sufficient that one should have:

locally, where f is an arbitrary function of theriables X.

4. 1Iff () is an arbitrary differentiable function of the \abriesx” andL (x, y) is a
twice-differentiableh1 function then we will have:

(18.4) Po(fL) =fPa(L) + (9,f0,L-0,f0,L)y
and
(18.5) (fL)=f L) +df OdL.

In particular, ifL =d,g Y, g (X) is an arbitrary differentiable function of theriablesx”:

Po(fL)=(0,f0,L-0,f0d,L)y”
and
7(fL) =df Odg.

19. Helmholtz conditions.— Let Q be a 2-form that is defined A that has the
following expression in a domal with local coordinatex?, y* :

Q =agdy’ 0d¢ + Lbsdx¥ O d¥



Chapter 11l — Variational calculus. 33

If Q is the Euler form of &1 functionL (x, y) then theags will be symmetric, an@@ = 0.

w=As (X, y) dX + By (X, y) dy’,
such that:
Q=dw.

Since Q does not contain any terms @y’ O dy’, the B, will be independent of the
variablesy?, and sincew is defined onw, the B, will be h(-1). They will then be
identically zero, andvwill be semi-basic. We will then have:

agpp=0,A, and bog=0,A;-0,A,.
Since thea,s are symmetric, we deduce that:
0,A,=0,A;=0,

which are relations that show that the fosnis d -closed.
There will then locally exist &1 functionL (x, y) such that:

Ag=0,L,
and we will indeed have:

agp=0,L and bep=0,L-0,4L,
and thus:

Theorem:

In order for the 2-form that is defined on W:
Q =agdy’ DA€+ Lbsd¥ O d¥

to be an Euler form, it is necessary and sufficigmat Q should be closed, since the
coefficients gz are symmetric.

Upon making that condition more explicit, we will fitlle conditions that are called
the Helmholtz conditions Indeed, the preceding problem is equivalent to the loate t
was solved by Helmholtz and Mayer that relates tcettistence of a functiob (X, x’,

t) such that system ofsecond-order differential equations:

Gi (Xk, X,k, X”k, t) — 0
can be put into the form:
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20. Extremals and geodesics- Consider the Finsler spaEethat is defined on the
manifold Vi1 by the h1 functionL (x%, y?) . With E. Cartan, set:

I":iy" and l,=9,L.

The geodesics df are defined by the equations:

are  di* 1
20.1 = +=Tr21%17=0,
(20.1) du du L #
or by:
(20.2) Jo e _Lrsyyv-g.

du du L 7*
A classical calculatiorf shows that:

1

IrfylﬂIV: oL,
and that:

r2y’y'=2G"
with:

G'=g”Gs and 2Gs=0,Fy -9sF  (F=31L).

Equations (20.2) then show that the geodesids aife identical to the extremals of the
integralf L du.

Those equations are equivalent to equations (2@Hirh are written in the following
form:

d* 2

+—G" =0
du L
or upon reverting to the variablg$:
dy” dL : dx”
20.3 ——+2G" =y — with =—.
( ) du y Ldu v du

In what follows, we shall sometimes write that eystin the form:

() E.cCartan]]; J. FavardZ].
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X1+2G1 B X2+2G2 B B Xn+l+2Gn+1

1 )-(2

(20.4) .
X

o N+1

X

21. Geodesics map between two Finsler spacesConsider two Finsler spacgés
and F that are defined on the same base mani¥ald when one is given the twh1
functionsL (x, y) and L(x, y). The geodesics &f are defined by equations (20.4), while

those of F are defined by equations that are obtained byirsgawith the preceding ones

and replacing th&“ that relate td. with the G* that relate toL . In order for those two
system of equations to be equivalent, it is necgsmad sufficient that there should exist

an h1 function p(x, ¥ such that:

(21.1) G* -G=px.

The geodesics of are defined by the Euler equations relative tofinetion L :
aﬂﬁf e +(aaﬂL—6aﬂ[) X =0,

or, sinced ;L X" =0, by the equations:

—(.; 1dL. - —
(21.2) aaﬂl_(xﬂ—IE xﬂj+(a,,ﬂL—aaﬂ L) =0.

In order for these geodesics to be the same as tifés from (20.3), it is necessary and
sufficient that the first expression in parentheise&21.2) should be equal 8°. One

then has this result: The functions that define the same geodesicsLaare thehl
functions that are solutions to the system of phdifferential equations:

(21.3) 0,,LG” +(0,,L-0,,L) %= 0.
As an application of the preceding consideratisresshall solve the following problem:

Problem.— If one is given arh1 function L(x, X) then does there exists a function
L(x,y) of the form:
Lxy)=f() L(xX)

such that. and L define the same geodesics?

We shall use an overbar to highlight everythinat ttelates to the Finsler spaée
that is defined by (x) L, wheref (X) is supposed to be known.
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SetF =1 f?L®; hence:
(21.4) 2G, =0, F X7 -0,F = 2f 2Gp+ X 0,f Lo, L X" —f ot L.
In order for those relations to have the form (21rkhe equivalent form:

(21.5) 2G,=2f*Gg+2pfiLo,L,

it is necessary and sufficient that there should exi$tO functiong (x, x) such that:
(21.6) 0,L =g (x x)0sf.

L will then have the form:

(21.7) L=g(x x)asf x*.

However, in order for one to deduce (21.6) from that necessary and sufficient that
the functiong should be independent of the We can then state the:

Theorem:

In order for the functions [x, x) and f(x) L (x, x) to define the same geodesics, it is
necessary and sufficient that the functiofx,Lx) should have the form:

L=g()0af ()X :g(x)¥.

This theorem is an immediate consequence of formuld)l®oreover.
We remark that it has the form (21.7) then not orfly, but any function of the
form:
F@L or G@L,

will define the same extremals s
Furthermore, that will result directly from the detfiion of the extremal systems of
the forms:
w=90,fdx¥=gdf and @ =F (f) g df.

Indeeddw=dg0dfanddw = F (f) dg [0 df admit the same associated system.

22. Extremals in Hamiltonian coordinates.— Consider the Finsler space that is
defined on the manifolf,.; by anh1 functionL (x?, y*) .
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A vectory of the tangent space 6.1 atx can be defined by either its contravariant
componentsy” with respect to the natural frame at the poinbr by its covariant
componenty, = guos Y.

The pointy whose origin isx corresponds to the point Z in the spatef vector
tangent toVp.1. We call the 2r{ + 1) numberx® andy, the Hamiltonian coordinatesf
the point Z.

Since the Finslerian metric is assumed to be regtharrelationsy, = gaz y2 will
permit one to calculate th€ as functions of the” and they, , such that the expressions
obtained will be homogeneous of first degree with resjpetttey, (h1l, in what follows)
(.

Upon replacing thg“ in L (x% y“) with their expressions that are obtained in that
way, L will become a functioid of thex?, y, such that:

(22.1) HX,y) =L (X% g%y) and HX dasy) =L (X% y7).

By definition, H (X%, y,) is theHamiltonian functionthat corresponds tb . SinceL is
h1, H will be h1;ie.:
a . a aH
(22.2) 0°Hy, =H, with H:a—.
Yo

The unit vectot has the same direction gsso its contravariant components will be
|“=y?/ L, while its covariant components will be:

PERLN
H
The relation (22.1) will then show that:
19= 94 = Yo
H
We will then have:
y'=HO"H=09"(4H?)=0°K,  with K=1H?,

which are dual to:
Ya=Lo,L=10,(:L°)=9,F.

a

We shall now show that, H =-0d,L .
We differentiate the two sides of the identity:

(") Translator: In the original, the notation was & leneath thé, but | do not have that option in my
equation editor, so | substituted an underline.
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H (X% ya) =L (X% g%yp =L (x% y9)

and get:
(22.3) dH=0,Ld¥ + d,Ldy".
Now:
1 1,
d,Ldy" = ﬁYad)FZZdH—ﬁy dya,
from

yaya:HZ-

The expression (22.3) faH will then become:
(22.4) dH=-9,Ld¥ +%y" dy, .
We then indeed deduce tligtH = -0, L , and we recover the fact that:
, 1
0“H = —y~.
oY

It will then be easy to write the fundamental fotasuthat relate to a Finsler space with
the aid of the variable€’, y,, and the functiom.
For example, we have the relations:

H2=L*=90sY Y =9"Yays.

The relationsy d,g,, = 0 imply thatg,s = 0,,F .

One then shows that when one starts @fthgas = 57, one will gety 8" g% = 0,
which are relations that will then imply that:

g% = 97K .

Since the connection is Euclidiand® = 0) and special, in the Lichnerowicz sense,
we will then deduce that the torsion tensor will haveagonents:

T By = — %aygaﬂ:_ %adﬂyK .

However, we are more especially interested in tiéerdntial system for the
geodesics of the Finsler space; they are defined by the éfjlations:

(22.5) iat,L -0,L=0, with  y9= ﬁ.
du du
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Now:
aaL:%ya and aaL:_aaH

Equations (22.5) can then be written in the form:

iﬁ+aaH:0 or %—id—H+H6aH=O,
du H du H du

so the system of equations defines the geodesics ofitkier-space in Hamiltonian
coordinates:

(22.6) Moo g H+Ay, and o= gok,
du du

whereA is anh1 function of thex’, y, .

In reality, the preceding equations define baaitg inW that project ontd/,+1 along
the geodesics in the Finsler space considered.

Instead of taking”, y, to be the Hamiltonian coordinates W) with they, being
covariant components of an arbitrary vector intdnegent spacé, , takex® andl,, with
la=YalH.

Those 214 + 1) variables are no longer independent, becthedg are the covariant
components of a unit vector, so we will have:

H(x% 1) =1.
Take the parameterto be the arc-lengthiof the geodesic, which is defined by:
ds=L (x7 dxX’) = 9,L (X% y") dx’ =1, dx’.
Under those conditions, equations (22.6) can benpaithe form:

(22.7) ﬁza‘}’H and ﬂ:—aaH.
ds ds

The preceding equations can be obtained diredttgleed, they constitute the extremal
system of the form:

w=0,Ldx" =lzdx".
This extremal system is the associated systehet@-form:
dw=dl, 0dx".

Upon writing that:
I (Z)dw=0
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for any vector Z that is tangent¥é— i.e., such that:

i (Z)dH =0,
we find that:
adw:AadH and 6da):)l6dH,
odx” odx” odl, odl,
or
-dlz=4d,H and dx’= 10H..

Sincedx” / ds = 17 = 3“H, the proportionality factor is equal s we will have
equations (22.7)

23. Basic paths inW in Hamiltonian coordinates. — Consider a differentiable path
in W. Such a path is defined parametrically by the equations:
xXT=x7( and ly=l4(u).

In order for that path to be basic, it is necessad sufficient that there should exist a
functionf (u) such that:

O:]I—szf(u)l", where 19=g% 1= 0H,
S

upon supposing that thé andl, that enter intdd“H are expressed as functionsuaf
A path is therefore basic if and only if one has:

dx _dx¥ _  _ dx™
OH o°H T 9™H

(23.1)

along that path.
As an application of the preceding, consider the s&sie form that is defined i

w=a, (¥, 15 dx,

and look for the conditions under which the extremalsvafill be basic curves iW.
We have:

dw=1(0,a5-0pay) dX Od¥+ 0%a, dlz0dxX .
Hence, one has the extremal system:

(23.2) 0 a5—0 aa)ﬁ—af’ D jouH
' a% " Op du a\‘”du o
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dx? 4
23.3 0%a,—= A0°H..
(23.3) y
Equations (23.3) must imply that:
du '

It will then be necessary that the coefficieafsiﬂ must have the form:
(23.4) aﬁaﬂ: f(x1) Jg.
Upon supposing that # £, one will deduce that:

0°a; _ of
al,al, al

=0.

a

The functionf will then be independent of theand thea, will necessarily have the
form:

a=fX)Ilz+g9s(x) .
The converse is immediate; hence:
Theorem:
In order for a semi-basic form that is defined on W
w=a, (%, 15 dx’
to admit basic extremals, it is necessary and @efit that the ashould have the form:
a=f(¥la+09s (%),

in which f(x) is a function of only the variables’,xand the g (X) are the covariant
components of a vector that is defined qn V

The result obtained indeed agrees with the onelig. 8indeed, when one passes to
the variablex?, y?, wwill be put into the form:

w=[f(X)0,L+gs(¥)] dx"=d(fL+gay").
The preceding calculations also show that when onevengihe 2-formQ, which is

defined o by:
Q= 1S, d" Od¥ + a?dlz0dX,
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in order for the solutions to the associated systeQ &b be basic curves WV, it is
necessary and sufficient that the coefficieafsshould have the form:

af=f(x)
i.e., that one must have:
Q=1S,dX" Od¥ +f (X) dig 0 d¥.




CHAPTER IV

VARIATIONAL CALCULUS
AND GENERALIZED FINSLER SPACE

24. Sextremals of an integral.— Recall the notations of . Letf, andf; be two
fibers of W that belong to the same domalrof local coordinates oW. Letx, =p fy and
x; = p f1 be the corresponding points\éf.; .

Let E be the set of differentiable pathsUhthat join a point ofy to a point off; .
Define one of those patl&sby a representation of the form:

(24.1) XT=xT (), YTy,
with
Xo = X (Uo) and  x; =X ().
A path C in E that is close t& is defined by:
(24.2) XT=x7(u) +ox%,  y'=y7(u) + Y,
in which x” anddy” are differentiable functions efthat have the form:
X' =eX (U, oY =Y (u),

in which £ is an infinitely small number, and®, Y are the components of a tangent
vector tow at the pointz (u) whose coordinates axé (u), y* (u).

Suppose thal” is a restrictedh1 tensor that is defined o. PathsC, that are
close toC and defined by arbitrargx” and:

(24.3) oy’ = diax” +T70X
u

are said to b@-closeto C .
Suppose that ah1 functionL of classC ? is given onU. In local coordinates, it is
expressed by (0x7, Jy?) . Set:
1 (C) = jc L du.

Upon passing fror€ to C, | (C) will experience a variatioAl whose principal part
is:

(24.4) ol = jc(aawx”m,,wy“) du.

For a pathC that isT-close toC, we will have:
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ol = j(a Lox® +0, LT”5>(’)du+j a, 149X 4.
du

We now integrate the last integral by parts. Simeedx” are zero at the extremities of
C, we will get:

Sl = jc(aaL+aﬂLTf—%aaLj5x”du.

From the fundamental lemma of the calculus ofatams, in order to havél = 0O for
any ox’, it is necessary and sufficient that one shoulgeha

0,L+0,LT/ —iagL =0
du
or
(24.5) P (L) = iaﬂl_—aal_ = 0,LT/f
du
alongC.

We refer to the projection ont%., of the basic paths that are solution to (24.5has
generalized extremaisf the integraljle(x, X) du; i.e., the solutions to the differential
X

system:
diagL—aaLzaﬂLTf,
24.6
( ) Vo = dx"
du

When the tensoT ” is zero at any point of, the T-extremals of are the ordinary
extremals of the integral:

Lo L (x, %) du.

Now, suppose that the manifold., is endowed with the Finslerian metric that is dedi
byds=L (x? dx).

Under those conditions, we can transform the 4igirid side of (24.5).

Indeed:

0, LTS =g, VTS =Tayl ¥ (Tay= 95, T7) -
Now, | “ P, (L) = 0, it will then result that:
Tyl 917=0.

That condition is satisfied if the tensdg, is antisymmetric, which we shall suppose in
what follows.
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In analytical mechanics, we are led to introduce the2:fo
W= 1S dX 0d¥ = 3d (- X, dx¥),

in which theX, are the covariant components of the generalized fecwr, and th&ys

are thehO components of a tensor that is called fixee tensorand is defined ol
We will then be led to set:
Taﬁ =L Saﬁ.

We shall call the solutions to the differential system:

d

—d,L-0,L=S :
dU a a aﬂf
e

y

T du

the S-extremal®f the integraljXl L (X, X) du.
X

We remark that this differential system is theoasgted system to the 2-form:

Q =d@,Ld¥)+1S, dk O dk
= d(dy)+d(-1 X, dx)
= d(-dL-4 X, dx).

25. SFinslerian spaces— We propose to define a linear connection indinections
on Vy+1 whose coefficients are determined when one isngilte h1 functionL and the

hO tensorS,z, and the geodesics dh.; relative to that connection are tBeextremals
of the integral:

LO L (x, X) du

that was defined before. We shall adopt the stfjfresentation of A. LichnerowicZ)(
Let E (Vq+1) be the principal fiber bundle of framesgni , and lep™ E (Vq+1) be its
inverse image oveW . A linear connection on the direction ¥R is an infinitesimal
connection om * E (V1) .
Such a connection is defined when one is giveunitalde 1-formw of adjoint type

with values in the Lie algebra GiL (n + 1, R).

() A. Lichnerowicz BJ.
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Let U be a local coordinate domain V.1, while p*U is the corresponding domain
in V. Let Z be a point of such thatzZ =x. A local coordinate system for Z is the set

of the coordinatex” of x and the componentg of a vector ifTy .
Now, take the coframe ofi” to be the 2r{ + 1) formsdx“, dy”. When referred to

that coframe, the connectic@ will be defined by its componentsj;, which have the
form:

(25.1) Wf=bE, dx + &, dy .

Since the connection is defined \8h the b}, will be h0, and thecj, will be h(-1),

and we will have the identities:
a —
c; Y =0.

For an arbitrary restricted vect®rthat is defined oW, we set:
OX7=d X"+ off X”.

In particular, consider the vector field that makespbmt z of V correspond to the vector
zin Ty ,whose components ay€ Set:

(25.2) 07=0y"=dy + aff y*.

Since the linear connectio@is assumed to be regular, ther2H 1) formsdx” and 8
define a coframe off,”. Relative to that coframe, set:

(25.3) of, = T8 dx +C2 0.

The formsaj; are defined oW, so one will verify that thé€ are h0, theC are h(-1),
and thatCz y" = 0.

The Pfaffian derivativesof a functionf (x, y) relative to the coframed¢’, &) are
expressed in a simple fashion with the aid of the patgalatives of relative to thex
andy. Indeed, upon denoting the Pfaffian derivative®blyand J,f , we will have:

df = fdX' + 0, f87=0,fdX + a,f dy”,
so, by identification:

(254) 5@ = aa_ yy rﬂ a

Aa ™ g
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(25.5) o,=0,-y'C’ o

Aa ¥ 3t
Now let us specify the torsion form of that connectidrhetorsion 2-formZ is defined

by:
S7=of OdX’ =4S, dX¥ O dX- T dk0e".

Upon replacinge; with its expression that we infer from (25.3), we \gé:

(25.6) S[;'y: - (r;;y —rfﬁ)
and
(257) T,GD;{/ = Cﬂ”;

Now, set Z =L?, and:
gaﬂ: aaﬂ F .

Since the functiofr is h2, we will have:

2F=L"=0ay"Y,

which shows that thg.s are the covariant components of BB symmetric tensor; i.e.,
they are defined ow.

In order for the linear connection on the directidre is defined byvto be naturally
associated with a Euclidian connection on directionghef metric manifold that is
defined onv,:1 by the tensoggg, it is necessary and sufficient that one must h3ve (

Dgaﬂ: 0
for that connection, or more explicitly:
(25.8) dQas — (Ua(lf Sy _0)2 %.=0.
Set:
Wop= 9o 6021 Cagy= 9 6021 Tap= O T/jy'

The relations (25.8) will then be equivalent to théofeing ones:

(25.9) Capy+ T pay= 6y Gas,

() A. Lichnerowicz BJ.
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In order for the connectiowto be determined completely when one is gilzeand
the tensor§ we shall make some supplementary hypotheses tha¢ telahe torsion
tensors and are analogous to the hypotheses that definlasises adpecial connections
in the sense of A. Lichnerowicz:

(25.12) 2. Si=-1"Sy, with |”:yT.

If the tensorSs is zero over the entire manifolly then the hypotheses that were made
will define one and only one connection: namely, Fheslerian connectionon the
manifold. That is the fundamental theorem of Finsteg'aometrye().

If the tensorS;z # 0 then we shall show that the preceding hypotheses further
determine one and only one connection. The relationt@{2&nd (25.11) show that one
has:

Taﬂy: %5y ga/] :
One infers from the expression fgy;z that:

y?d, g,, = 0.
Now, from (25.5):
3, 905= 0,055~ Y' T} 0, G-
It will then result that:
yﬂa-y ga/]: 0
That is:
Yy’ Tap,= 0.

From (25.5),9, = 0,, and therefore:
(25.13) Tapy =30, gaﬂ:%am F.

Tapy Is then a tensor that is symmetric with respecttdothree indices, and which
satisfies:

(25.14) Togy Y = Tap Y’ = Tapy’ = 0.

Calculating thel 45,. — It remains for us to determine the coefficielntg,. From
(25.9), (25.6), and (25.12), we have the relations:

{ r”ﬂy +r/””V = a-y Oap>
Casy =T gy zlasﬂy'
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Write the four relations that are deduced from the pliageones by cyclically
permutinga, G, y. With some obvious combinations, we will get:

(25.15) gy = %(51, Oop +5[; gay_éa gﬂy)+%(|a Sﬁy+ L %ﬂ a J’ 5/”)

Set:
Fasy=350,Ss + 1S, = |, Sp)

to simplify, which is a tensor that is antisymmetndhea andg .
Now, pass from the Pfaffian derivatives to the ondirgerivatives, so:

(25.16) Capy= 1BV Al =Y (T3, Tuap + T4 Ty =T Tup) + Zasy,

in which the By, a] are the Christoffel symbols of the first kind.
Now, formy” I ,5,andy’ y'T 43, , while taking (25.14) into account:

(25.17) Y Tam =Y By al =y Y' T4 T 0+ Y Zap
and
(25.18) Y'Y Tag =YY 1By Al + Y Y Sapy .

With E. Cartan, we set:

Y'Y [Bral=2Ga=0,,Fy -04F
On the other hand:
_ ngyzaﬂy:LSaﬂyy:_Lxm
upon setting:
Xg = Saﬁ yy.
The relations (25.18) then take the form:

ygyyraﬂy = ZGa—L Xg

or
Yy rg=2G"-LX".
Upon substituting this in (25.17), we will get:
Y Tas =yP 1By a] = (2GP LX) Top+y P Zap,
or

(25.19) Y Tapy = 0,50,G° +L X7 Topy+y P 3ap,
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upon remarking that:
9,G,~2G"Tap, = 9,,0,G".

We then transform (25.16) with the aid of (25.19) and get:

(25.20) Cagy=[BY A _(Tam ayGA + Tynﬂ a[;d - -I;M 04 d)
—LX (T, Ta+ T T - T T

y ap B

Y T+ TE =20 T + Zapy.

The first row in the expression for,s, represents the g, coefficients of the Finslerian
connection, which are coefficients that we shathade by I Upon specifying the

various parentheses, we will find that:

apy *

Cagy=Top—L X (T, T+ T T = T T

y ap B
A A A
=1 (T4 +1,T0=1,T,

SLES TS T8 D
+3(la S +15Se—1,Sp)

We remark that the part bf,5, that is antisymmetric i and yis:
Fatsy =21a Sy

Calculating the g, . — The coefficient®,z, are expressed simply as functions of the

raﬁy .
Indeed, upon identifying the coefficients of th&in (25.1) and (25.3), we will get:

baﬁy: raﬁy"‘ Taﬁy (ayG” +L X/]-l;l;/ + )/'Zj’y) .
Upon replacing 43, With its expression that one infers from (25.2@g, will find:

ag, = [BY a] = (T, %G” =T 0,G") - LX”(IM T~ T })
-y’ (CosTh = Z e T )+ Zagy .

The first two terms in the expression twyp, represent the analogous coefficient for the
Finslerian connection that we shall denotetb[);. The coefficient of. X represents the

curvature tenso®;, 45 (°), which is the same for the two connections, meeeo
We can then write:

() Elie Cartan denoted this tensor ®y
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baﬁy b -L X Q/U/ ap— y (Zy,w I ZMH'I'[),’;)+ 2 oy -
We can make this more explicit, moreover:
bagy= B, =L X1 Q) =3L(Su T = S TV =3 X(UW B -3 T) +Zap.

Geodesics- Letl, = 0,L . Let us calculate its absolute differential:

Dla :dla_ C(JBI
=dig- Fijlﬂdxy

:dla_ ﬂaylﬂdxy.
Let us make the 2-forml, O dx” more explicit. We get:

Olg OdX =dl, Odx* +317(T ydx Odx” .

pay "1 pa
Now:
U ey =T 5 = 1880y -

Sincel 19 = 1, we find:
Ol, Odx? =dl, Odx* +%SaﬁdX”Dde.

The 2-form thus-obtained is, as we will see, the furetdat 2-form of the dynamical

system that is defined hlyandS,; .

Along a geodesic, one will havél, / du = 0, whereu is an arbitrary parameter.

Upon settingy” =d X7/ du, one will get the differential system:

e =S rg,17yr=0
Now:
Cpayl Py V=T 1Py +5,, 17y
However:
Zﬁay| ﬁy”:Xa.

The differential system of the geodesics will therthe following one:

al, _ al, _X,
du du

_adL_aaL:Xa.
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We indeed recover tigextremals of the integral:
["Leo® du.
X

The spaces that were just constructed differ ftbe Finsler spaces only by Elie
Cartan’sE convention: The .3, , which are denoted by id°% and {Y), are no longer
symmetric in thegG andy; but are such that:

Cagy=Tayp=la Sy
It will then result that the map of an infinitesih@oint-like cycle that is obtained by
attaching a unit vector to each of its points bsapel displacing it from the origin of the

cycle is no longer closed. The vector that jolms origin to the extremity will have the
components:

>7= (1S, d¢ O dX) f.

We remark that we have been able to replace quothgsis (25.12) with some others
without modifying the geodesics. We point out fibkowing two:

1. Soy =~ (Susly = Say ) -

One then deduces that:
[ apy = BV a]5+Sa[;|y,

where the indeX indicates that one is dealing with Pfaffian detives.
2. Sepy == (Qay X5 = 9ap X))
as one has for Weyl spaces. One then deduces that:
Fagy= [BY: A1° + Xa Opy= X5 Gay -
However, in each of those two cases, we have fthatd
Ol OdX =d l, OdX" +3 (X 15— Xs12) dX O d¥.
That 2-form is not the fundamental 2-form for aasnical system, in general.

Particular case: S-Riemannian spacesSuppose that? is a quadratic form with
respect to the variablgs Under those conditions, tlggs will be independent of the,

(*9 E. Cartan]].
(*) A. Lichnerowicz ).
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and the torsion tensdrwill be zero. The coefficients of the connectiodl thien reduce
to:

Capy=[BY a] + Zapy .

Such a space will be call&Riemannian. It can be used in general relativity, &Sgs
are, for example, the components of the electromaxgineid tensor.

26. A. Lichnerowicz’s generalized variational calculug*?). — As always, consider

the differentiable manifol&/,.1 , the manifoldy of non-zero tangent vectors V.1, and
the manifoldw of oriented directions tangent Q. .
Let C be a differentiable path M., that is defined in a local coordinate domdilby
the parametric representation:
X7 =x7(v),

in which the functions” (v) have clas€ 2 on an intervald, b) .

Let (U, u;) denote a sub-interval o&,(b) whose length is less than where¢ is a
given, arbitrarily-small positive number, and yét(v, £) be a set oh + 1 functions that
are continuously-differentiable for amthat belongs tou,, u;) and zero fow = up andv
=Uuz.

Set:

(26.1) XK'=y (v, & and 77 (& = max [0x7 (V) |,

for
vO(uw,u) and a=1,2, ...n+1

Upon supposing that absolute values of the derivatives esfbect tos of the functions
y? (v, &) are bounded by a numbiérover @, b), we will have:

n (& <K e

Sub-differential of a functional— With Lichnerowicz, let FUL;[x”(v)] denote a
functional that is attached to the aug,(u) of C and satisfies the following condition: For
everyuo in the interval §, b), there exists an intervallf, u) such that for any in that
interval, F,' defines an integrable function of

One says theub-differentialdoF of the functionaF to mean a function of the’ (v),
their first derivativesx? (v), and thedx” that is linear in thex” and such that:
. AF -0OF
m——=

li
£-0 /7

01

(*3 A. Lichnerowicz P], pp. 343-350.
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whereAF denotes the increasekthat corresponds to the increases (26.1) ixthe

Example— Letf (x?, x*) be anh1 function of clas<C . Set:
(26.2) F= j F[x(V), 3¢ (V)] dv.
The functionaF admits the differential:

dF = ﬁ)[a”f —%%f}dx"dwaa f X( Q] d&( W.

Lichnerowicz showed") that the sub-differential d¥ is:
(26.3) OF=20,fdox",
where thed x“ are the increases (26.1) at the paint

Sub-variation of an integrak If F_ denotes the integral (26.2) then we set:
(26.4) J= jH [F,x7(u), 5 (U] du,

in whichH is a continuous function &%, thex’, and thex” .
With Lichnerowicz, we shall say theib-variationd J of the integrall to mean an
integral for the form:

5= '[uulL[x”(u), €(0,5% (Y] dy,
in whichL is a function that is linear in th#x?, such that one will have:

. AJ-0J _
lim =
£-0 8/7

01

in whichAJ denotes the increasedrthat corresponds to the increases (26.%J.in
The functionH is supposed to have claGs®, so Lichnerowicz showedj that the
sub-variation will have the following expression:

(26.5) 3= ju“l[aaH (0)—%60H (0)+H'(0)d, f - fo,H' (0)} 3% du,

(¥ A. Lichnerowicz P], pp. 346.
(%) Ibid., pp. 347-349.
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in whichH (0) is the function that is obtained by starting wikitF, x, x?) and settind

= 0, andH’ (0) is the function of th&”, x” that is obtained by annulling in the partial
derivative ofH with respect to the argumelt

The generalized extremals of the integrate, by definition, the curve€) for which
A = 0 for any increasedk” that are defined by (26.1). Those extremals are tiicod
to the differential system:

(26.2) %6ﬁH(O) ~9,H (0)=H'(0)a,f - fa,H'(0).

We remark that this differential system will remamvariant if one simultaneously
changedH’ into —H’andf into —f, or H"into f andf into —H’. We will get the same
differential system by replacing the functibin(F, x%, x*) with the function:

H=H (0) +F H’(0)

that is obtained by replacing (F) with its Taylor development to first order in a
neighborhood oF = 0, while the variableg” and x* are supposed to be fixed.

Generalization— Suppose that hl functionsf * (x, y) are given orV and set, as
before:

FAZ[4DC(W), € (W] oy, with A=1,2, ..k.

Now, letH be anhi function of thek functionalsF A, thex?, and thex?. Set:
J= j H[F, x7(u), ¥ (4] du .

Some calculations that are analogous to the onéglimerowicz (Lich. 2], pages 347
and 349) will show that the sub-variation of thaegral has the following expression:

0J= J:[aaH (0)—%60H (0)+0,H (0)o,f*—f"9,,H (O)} Ox” du.
The generalized extremals of the integrate the solutions to the differential system:

(26.7) %GQH(O) -0,H(0)=0,H(0)d,f"-f",,H(0).



56 Variational Spaces and Mechanics

27. Non-holonomic differential algebra and generalized extrenist

Non-holonomic functions- LetU be a local coordinate domain ®g.1 , and letp*U
be the corresponding domain\it In the neighborhood of any poixtof U, consider a
set of differentiable paths that conngt¢b any neighboring point”.

Letf (x, y) be anhl function that is defined oW. Set:
dx’

F:j: f(x,y)du,  with y":m,

where the integral is calculated along the path
The pathxx in Vi1 corresponds to a pattt in W by way ofp™*, and one will have:

(27.1) F={"0,f(xy)dX .

Now let L be anhl function that is defined ol and has a value at the poiitwhose

coordinates are( “, y“ that depends upoR, which we shall denote by (F, X, ¥) .
Suppose that. is continuously differentiable with respect to all sfarguments, and let

L (x, y) denote the limit oL whenz tends taz along the are?z.
Set:
X7 =x"+ A7, y 7=y + Ay
and
n=max (px7|, |ay"|), for a=1,2,..n+1.

The differencé\L = L (F, X, ¥) —L (x, y) can be put into the form:

(27.2) AL=L'F+d,L+0d,LAY" +e&n,

in whichL’is the limit of the partial derivative df with respect td= whenz tends taz,
andgis a function o that tends to O whemtends to O.
On the other hand, whehis sufficiently close ta :
F=0,LAY" +¢&'n, & - 0 withn.
Finally, we can puf\L into the form:

(27.3) AL =@ L+L'd,f)AXT+ 0, LAY + "7,

with £”tending to O whemy tends to O.
We are led to associate the expression that we famflLf with the linear map on

the vector space ov& tangent toN atzthat is defined by:
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(27.4) 0oL +L'0, ) dX+d,Ldy".

That linear form will be denoted byl and will be, by definition, @on-holonomic
differential of the functionL (x, y). We also say that the sefx, y), dL defines anon-
holonomic differentiable functioh on V.

In a more condensed form, we have:

(27.5) dL=dL+L" df .

That expression fodL leads us to the following definitions for the partial datives of
a non-holonomic function. :
d,L=0,L+L 0,f,

We remark that the exterior differential dE is not zero. Indeed, one has:

d(dl) =d?’CL=d (L' df),
but
d?L= d(d*L) =0.

Non-holonomic forms- Let wbe a differential form that is defined ®or W whose
coefficients at’ close toz depend upok. First, let a 1-form be defined by:

w=a, dx¥ + 10 dy.
By definition, set:
dew= da, Od¥ + dp O df

93, db,
" OF ' OF

at the poinz. If we denote the limits o&, , b, , wwhenz’tends taz by a,,

bs, &,, b, w respectively, then we will get:

H a !

dw=da, Odx" + db, Ody" +df O(a, dX + B dy)
or

(27.6) do=dw+ df D .

By definition, we say thatiw is theexterior differential of the non-holonomic form
which is equal to the forrwlocally.
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The same considerations will lead one to associateénalonomicp-form wthat is
defined ony or W (i.e., a form whose coefficients atclose toz depend upoir) with a
(pt+1)-form:

do=dw+ df 0w

that one calls thexterior differential of the non-holonomic formm.
If c and @, are two exterior forms of degrepsandp, , respectively, that are non-
holonomic with respect to the same functiohahen we will have:

d(m+ m) =dm +dap
d(@Om) =dm O + (-1)* @x Odap .

Those formulas are immediate consequences of (27.6).
Extremal system for a non-holonomic forrBy definition, theextremal system for a

non-holonomic formw is the associated system of its exterior differérd@ . For
example, consider the semi-basic 1-form:

w=09,L (F,xYy)dx,
in whichL is anh1 function that is defined o¥i. We have:

dw=d(@,Ldx¥)+ dfda, L' dX
or

(27.7) dw =0,,Ldy’ OdX +3(9,,L-0,, 1) dX O d
+3(9,fa,L'-0,fa,L)dx" OdxX'.

The associated systemdaris defined by the equations:

(27.8) 0,,Ldy’ = 0,,L-0,L)dX=(0,f0,L-0,f0,L)dx’,
(27.9) 9,Ldx"=0.

Equations (27.9) show that the solutions to tiatesn are the basic pathsWwiwhose
projections ontd/.1 of the solutions to the differential equations:

0,,L% =(0,;,L-0,,L)%=(0,fa,L'-0,f,L)%

or

i6£,L—aaL: L'o,f—-fo,L".
du
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The curves thus-defined are the generalized extremaie aftegral:

J= ju“lE(F,x,X)du.

Hence, one has the:

Theorem:

The generalized extremals of the integraij\jlf(F,x, X) du are the projections onto

Vnh+1 Of the solutions of the extremal system of the:form

w=09,L (F,xvy)dx.

Generalization— Now suppose that one is giviern1functionsf * (x, y), with A= 1,
2, ...,k that are defined oy .
With the notations at the beginning of this paagady; set:

FA= [ 1A% du= [0, FA(x 9 d¥ .

Let L be a function of th& functionalsF* and the 8 + 2 hlvariablesx?, y“.

Let L denote the limit ofL whenz’tends taz.
By definition, we call the 1-form:

(27.10) dL =dL+ df*,L

the differential of the non-holonomic functidn, in whichda L is the limit of the partial
derivative ofL with respect toF * whenz’tends taz.
Now let wbe an arbitraryp-form that is defined o or W and whose coefficients at

z’ are functions of thé". We letdwdenote thel{ + 1)-form that is defined at the point
zby:

(27.11) do=dw+ df* 00w,

with

ow
FA°

w=limw and 0xw=Im
If cx andap are two exterior forms defined dhor W whose degrees apeg andp:,

respectively, and they are non-holonomic with respe the same functionalE” then
we will have some immediate consequences of thaiteh (27.11), namely:
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d(m + ) =do +dw
d(@Om) =dm O + (-1)* @ Oda .

In particular, consider the form:

w=0,L (F xy) d<.
Its exterior differential is:

dw=dw+ df*0da, L.

The extremal systenof @, which is, by definition, the associated systenddn is
analogous to the system of equations (27.8) and (27.9olitSons are basic paths \of
that project ontd/n+1 along the solutions of the system:

d

27.12 —
(27.12) a0

d,L-0,L=0,L0,f"-f"d,,L.
Those projections are the generalized extremals ontbgral:

J= ju“li(FA,x“,sa)du.

28. Lichnerowicz spaceg'®). — Recall the notations of 25 and §27. Consider a
non-holonomic functiorl (F, 2) with F = IZ d,f(x,y,)dX and such that = L (0,2) is

an h1 function that is defined oM.

We propose to define a linear connections on iteetibns onvy.; that reduces to the
Finslerian connection that is attached_tor f = 0, and is such that the geodesic¥,of
relative to that connection are the generalizeceexils of the integrals:

J= j L[(F, z(W] du.
As for theS-Finslerian spaces, set:
af =g dX' + ¢ dy
with respect to the coframe " that is defined by the 21 ¢ 1)-formsdx’, dy”, and:

of = T4, dx +C 8"

(*® A. Lichnerowicz P], pp. 352-362.
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with respect to the coframe iR that is defined by the h(+ 1) formsdx” and 87 =

Oy°.

Since the connection foramis supposed to be defined @ theb and the™ are hO,
while thec and theC are h(-1), and we will have:

Coy ¥ = Ca ¥'=0

identically. The Pfaffian derivatives of a functi@n(x, y) relative to the coframex”, &
are expressed as functions of the partial derivab¥é€z (x, y) by means of the formulas

(25.4) and (25.5). IG is a non-holonomic functio® = G (F, x, y) then we will have:

£9,G6=0,G+ G, f- yrX.9, G
5,6=0,G-yT£9,G

Aa ™~ p

5G=0.G-y'ra,
(28.1)

Take the metric tensor at(x’, y°) to be the tensor whose non-holonomic components
are:

0p= 055 (31°)7 0,5 (51°) = gas,
such that
ay GHﬂ: aygaﬁ"' g;ﬂayf |
0y Tap= 0, Yo
in which the notations are those of the precedamggraph.
In order for the linear connection on directiohattis defined bywto be naturally

associated with a Euclidian connection on directithat is defined oW1 by the tensor
g, it is necessary and sufficient tHag,, = O; i.e., that:

(28.2) d 0y~ 9y~ G =0

Let us make this more explicit with respect to ¢cbérame @x°, ) ; we obtain:
(28.3) Cagyt T pay= 0, Tus,

(28.4) Tapy+ Tpay= 0, Gy

Now consider the torsion form:

7= of Od¥ =4S, X O dX- J dk06”,
with
S5 =T, =Tye)



62 Variational Spaces and Mechanics

a — a
Tﬂy - Cﬂy'

Impose the condition on the connectiarthat it must be special in the sense of A.
Lichnerowicz. The torsion tensors must then vehfy tonditions:

(28.5) 1. Sop =

The conditions (28.5) imply that the coefficieffitgs, are symmetric with respect to the

last two indices.
The conditions (28.6) and (28.4) give us:

Tapy = Capy= 5y Oap
namely, with the same argument that was used to esdtgBb.13):
Tapy = 6 y Yap s
So the tensor 4, IS completely symmetric then.

Calculating the coefficientB,3,. — The coefficients” are determined by means of
the following system:
{ Capy T pay =6, Bap:
Cosy =T 5oy =0.
We deduce from this that:
Cagy= BV, al’,

in which the B y; a]° are the Christoffel symbols, when they are expresstatms of the
Pfaffian derivatives.
Let us make things more explicit with the aid of fornsu{28.1):

(287) 5 ga/] aygaﬁ"' gaﬂaﬂf 2)/] r/ly uaB

Upon setting:

(28.8) Zapy=3(9,,0,f+0,,0,f-0,0,f),
we will get:
(28.9) Capy= 18 Al =Y (T4, s +Thip o =T Tg)) + Zay

Set:
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VY (B al=2G,=0,,(3%)y -0, (11?).

Let us calculatg” y'2,5,. Since the functiohis supposed to bkl and3g,, Y Y
=L L’ we will get:
ygyyzU/ﬁV: fo,(LL)-(LL)a,f =f Zag¢
upon setting:

We then deduce that:
ygyyraﬁy: ygyy[ﬁy’ al + ygyyzaﬁy
=2G,+f%,¢.
It is remarkable that the right-hand side is equa?®) , which is defined by:

Zéa: am (%EZ)yﬂ _aa (_;EZ)

Indeed:
9,(3%)=0,(2L%)+LL'0,f
and
2G, =2Ga+0,(LL'd,)-LL'd, T
=25,+0,(LL")f-LL9,f,
because:

We conclude with the calculations that we did in geaph25. Furthermore, it will
suffice to replacé X, with — f20,,¢ in the results obtained.
We then obtain:
Capy= By a] - (Taﬂ/l ayG/]+-I:7y/16 G- Ta aaa)"'zﬂﬁy’
or

Capy=Con * 120, T T+ T T~ T B) ~Y @y T + Zuas T~ Zaa To) * Zay -

In the latter expressionfaﬂy represents the analogous coefficients for the &iiizsi

connection that is defined hy.

The I thus-defined are the coefficients” of A. Lichnerowicz’s intermediate
connection. One verifies that they are symmetiib vespect to their last two indices.
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Covariant derivation— Let X be a restricted vector field that is definedYoor W.

The componentX“ are then functions of the€', y? that are homogeneous with respect to
the latter variables. Under those conditions, wéhaive:

OX7=dX" + af) X”.

Now suppose that is a non-holonomic vector field; i.e., that is itsmponentsX

at a pointz’ that is close ta are functions ofL , and consequently d¥. Its absolute
differential will be then defined by:

0K = dX“ +af, X*,
where dX“ is the differential of the non-holonomic functioK®. The preceding
considerations extend immediately to some arbitraryoteinsids, whether holonomic or

not.

Geodesics— Setl “=y?/ L andl, = d,L. The geodesics of the space that was
studied previously are defined by:

are  die
= +M 217y =0
au_ au Y
or by:
O dl
—e=—a4r Py’ =0.
au_ du Y
Now:

Fﬂaylﬂyyz rﬂaylﬂyy+zﬂwlﬂyy.
We next have:

Zﬂaylﬂyy: %(g'ﬂyatr f+ g},gay f- gayay f) lﬂyy: L'd,f,

dl
a+9,L'0,fy’=
du  Ja- % y

OII"+fat,L’.

du du

Finally, the geodesics of the space considered are ddfyned

Dl”z DI"+fagL'—L’agf =0
du du

or by:
d

—od,L-0,L=L'9,f-fo,L".
du
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The geodesics are indeed identical to the general extrefrde integral:
J= ju“T(F,z(u)) du.

The space thus-constructed indeed satisfies th®sugarconditions that have been
imposed upon it.

Generalization— Consider a non-holonomic function of severatfionals L (F*, 2),
with:

FA= Jja” fA(x, y) dX = J‘Zz'de’ whereA=1, 2. .. K.

such that. =L (0, 2) is anh1 function that is defined oW.

It is easy to extend the preceding consideratimngefining a linear connection on
the directions oVn.1 such that the geodesics éf;; relative to that connection are the
generalized extremals of the integral:

J= ju“lt[FA, z(4)] du.

It suffices to replac g, with:

Zaﬁ}/: %(aAgaya[;fA-'-aAgayay fA_aAgﬂyaa fA)
and 2G, with:
2G, =2G,+d,(Lo,L)f*-La,La,f"

in the formulas that are obtained.
From now on, we shall refer to spaces of the ghagetype ad.ichnerowicz spaces

or L spaces

An £, spacecorresponds to a functioh that is non-holonomic with respect to only
one functionaF.

An Ly spacecorresponds to a function that is non-holonomic with respect ko
functionalsF, .




PART TWO

MECHANICAL APPLICATIONS



CHAPTER V

DYNAMICAL SYSTEMS WITH
HOLONOMIC CONSTRAINTS

29. Lagrange equations in the homogeneous formalism: Let (S be a non-
conservative dynamical system with perfect, bilatdralpnomic constraints that admit
degrees of freedom.

Let Vi+1 denote its configuration space-time.

Suppose that the configuration spacefi§ defined by the parametets wherek =
1, 2, ...,n. The parameters and the time define a local coordinate system ¥t .
Set:

ok O

dt

and let£ be the Lagrangian of the syste8) for the parameters. The trajectories of
(9 in Va1 are defined by the functions X (t) that are solutions of the Lagrange

equations:

(29.1) %akfﬁ—akﬁ = Q.

The Qk are functions that are determined bysthéhex’', and timet.
Now set:X™! =t.
A local coordinate system at a poxf V.1 is thenx?, wherea=1, 2, ...n,n + 1.
(In what follows, a Latin index can take the valueg,l1,..,n ; any Greek index will
take the values 1, 2, .n,+ 1.)
Letu be an arbitrary real parameter; set:

x? =dx?/ du,
o)
X/k = )-(k / Xn+l.
The trajectories of the dynamical syste8) i V.1 are then defined by functions
x“(u) that are solutions of a system of differentiali@ipns that is classical deduced from

(29.1) ¢9).
SetL (X%, x7) =L (x7, X/ x™) x™1,
L, which is h(1), is the homogeneous Lagrangian 8, (by definition. We then
deduce that:
o.L=0,L and 9, L=L-X0cL=-"H,

(*%) A. Lichnerowicz P], pp. 375-365.
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in which’H denotes the Hamiltonian that corresponds.to
Equations (29.1) can then be put into the form:

d

(29.2) -

o,.L-0L=0Q X",

or, with the notations of &8:
Pc(L) =X  upon setting X = QX"

One deduces from the identity:

Pa (L)X =0
that:
Pres (L) X" = = P (L) X = = X, %,
or
(29.3) Pre1 (L) = Xne1 upon setting Xn+1 = —Q X*.

Finally, the functionx” (u) are solutions to the system of Lagrange equationselzes
to the homogeneous Lagrangian

u

The X, which are functions of the” and thex?, are homogeneous of degree 1 with
respect to the latter variables and én&) such that:

X, X'=0.

They are the components of a vector that is calledeheralized force vectorThen + 1
equations (29.4) are not independent, so one can give otie ofunctionsx‘(u)
arbitrarily, while the othen will be determined by equations (29.4), in general. Recall
that the o + 1)" equation, which is the equation:

Pn+1 (L) - X n+1,
can be further written in the form:
dH oL K
2 9 -
du ot R
or, upon setting =u:
dH + oL _

4 XK.
dt ot <



Chapter V. — Dynamical systems with holonomic constsai 69

That equation translates into the well-known Painléweorem. The Lagrange
equations thus-defined have a form that is independent of amguper framing that was
adopted for the configuration space-time.

30. Notion of generalized force tensor As in Part One, we lét denote the fiber

bundle of non-zero vectors that are tangent to itfiereintiable manifoldvy.; and letw
denote the fiber bundle of oriented directions thattangent to/,+1 . The spacé&V is
referred to as the “state space” in mechanics or thecéspiae of extension in phase.”
Consider the “elementary work” form:

w= Xy dx .

That form is a semi-basibl form that is defined ov. By way of thed operator, we
make it correspond to am0 semi-basic 2-form that is defined @n:

dw = $(0,X, -0, X,) dxX O dX.

The components of that form are the components oéstricted, twice-covariant,
antisymmetric hO tensor. In what follows, we shall refer to thenser whose

components are:
Sup=3(0,X,5-0,%,)

as theforce tensothat corresponds to the generalized force whosgooents ar,, .
The componentS,z are such that:

1. Sy ¥ =Xa.

Indeed:
0;Xy ¥=Xq,

because thX, are h1, and on the other hand, the fact that:

X, ¥=0
will imply that:
aaxﬂ Xﬂ: - Xg

by partial differentiation. Since the formiw = — Syz dX 0 dX’ is d —closed, we will
have the identities:

0455 + 0,55 +0, 3 =0
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2. If the X7 are linear in the components of the velocity then $he will be
independent of thex. In the spacdy that is tangent to the poirtin V.1, the force
vector X that corresponds to a given velocity vectb(x) is deduced from the latter by
the linear transformation that is defined by the mattwse elements are tBgs ().

Geometric interpretation of the Lagrange equations.

31.-1. In a Finsler space- Suppose that the differentiable manifold; is endowed
with the Finslerian metric:

ds=L (x? x%)du.

Suppose, on the other hand, that the fundtitgads to a regular variational problem;
i.e., that the matri>ﬂ a[wLH has rankn onV . The dynamical systeng)( will then be

calledregular. Let (T) be an arbitrary trajectory of that system. A umitter! that is
tangent to ) at an arbitrary point of (T) will have the components:

)'(H

1= " or lg=9,L.

The left-hand side®, (L) of the Lagrange equations are the components ofeatin
that is the covariant derivative bWith respect ta. Equations (29.4) then take the form:

(31.1) Hl, =Xy
du

or
O ox
du

Take the parameterto be the arc-lengteof (T) . The components of the generalized
force vector are therX, / L, and the left-hand sides of equations (31.1) are the
components of the curvature vectoy atx :

D_n_g¢ X-F.
ds R L

Hence:
Theorem:
In a Finsler space that is defined on the configiara space-time of a dynamical
systen(S) by:
ds=L (x? x%)du,

in which L is the homogeneous Lagrangian9f the trajectories will be the curves in
that space such that the curvature vector is etjuéhe force vector at any point.
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Particular case— If the force vector is zero at any point\¢f; then the Lagrange
equations can be written in the form:

al, -0,
du

and they will express the idea that the trajectoniestlze geodesics of the Finsler space
that is associated with the dynamical system. Thagectories are the extremals of the
form:

w=0,Ldx"
or the extremals of the integral:
| = J'uulL(x”,X”)du.

(Hamilton’s principle in its general form.)
That is equivalent to saying that those trajeesdare characterized by the existence
of one of E. Cartan’s relative integral invariants:

[o,Ldx.

32.-2 In an S-Finslerian space.— Consider theS-Finslerian space (85) that is
defined onV,.1 when one is given thél scalar functiorL (x°, x?) and the restricted
h0 tensorSy.

Recall that ars-Finslerian space differs from a Finslerian spacedy the following
convention:

a a — a
Mo =T =S 1%,
in which the ng are defined by the connection forms:

wf =T8¢ dx+Co Oy,
with
yy: )'(y.

The differential system of the geodesics is:

d

S 0aL=0al =8, ¥ =X,

It then results that the trajectories of the dyreinsystens (L, Syp) are the geodesics of
the S-Finslerian space that is definedlbyandS,s .
Those trajectories are also thextremals (84) of the integral:

| = ju“lL(x, %) du.
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Recall that arS-extremal ofl is the projection ont&/,.1 of a basic path olV that is
defined by:

X = X7 (u), y":y”(u):%

for whichl is an extremum, where the neighboring paths are deffiye

X7 =x7 (u) + ox7 (u), y =y7 (u) + ay? (u),

with dx? arbitrary, except at, andx; , where they are zero, and:
_d 5.
5y"—d—5x +LSo¥X.
u

The theorem that is obtained in that way is a genetaiz of Hamilton’s theorem that
relates to conservative dynamical systems (case Vigre0).

We can then state:

Generalized Hamilton theorem:

The trajectories of a dynamical systenfLSS,s) are the S-integrals of the integral
j “Ldu.

33.-3. In a Lichnerowicz space- Consider the form:

Q=1Ssd¥0d¥.
Sety? = x” and associat@ with the form:
Q = 1Sypdy’ Ody,

in which the variables” are supposed to be fixed. Sind€ = 0, we then deduce that
dQ=0.

Suppose the formQ has rank 2 Apply the theorem*(): Any closed exterior
guadratic form of rankr2can be put into the form:

dHa OdK®  (withA=1, 2, ...r),
in which the function$ia andK” constitute a system of independent first integrals of the

characteristic system of that form.
We then deduce th& can be put into the form:

() E. Cartan?], pp. 119-120.
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Q =dH, OdK*

in a neighborhood) of V. The associated system @ is homogeneous with respect to

they”, so the first integralsl, andK” will be h functions. The sum of their degrees of
homogeneity is two, so we can suppose khaandK” are h1. If that were not true then

we could introduce a function that s of a suitable degree and—closed, from the
identity:

dH, OdK* = d(H f)Dd(éj.
We then obtain:
Sap=0,H,0,K"-0,K"d,H,

and
Xog=S,; ¥ =K"9,H,-H,0,K".

The Lagrange equations of the dynamical syss€m S, show that the trajectories 8f
are the generalized extremals of the integral:

J= ju“l[l_(x, %)+ KAL: HAdv} du.

Those trajectories are (87) the projections ontd/,.; of the extremals of the non-
holonomic form:

w= dL+dK*[" dH,
or
w= dL-dH, [ dK*,

in whichz (x, y) andz’ (x’, y”) are two neighboring points &Y. Those trajectories are
also geodesics of the spatethat is defined by the non-holonomic function:

L = L9+ K[ dH, ;
i.e., by the 2+ 1 functionsL, K*, Ha .

Particular case of the spaa®; (*9).

In order to have = 1, it is necessary and sufficient that the form:

(¥ J. Klein [1].
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Q= 1Spd¥ 0d¥

should be decomposable or a monomial. In order fortthhe true, it is necessary and
sufficient () that the coefficientS,; should verify the relations:

Sup S+ Say S+ SesSpy = 0.

Under those conditions, one can find twi functionsH andK such that one will locally
have:
Q=dHOdK.
We then have:

Xa=Kd,H-Ha,K = Kzaﬁ% (K #0).

The trajectories of the corresponding dynamical systeenthen the geodesics of the
spacel; that is defined by the threel functionsL, K, andH .

Examples:

1. Suppose that there exists a velocity potential -that theQx have the form:
Qc=0xU (Xa, X'm) .

Replacex’™ with x™/ x™ in U . The functiorl that is obtained in that way is0, so
we will have the identity:
a,Ux“=0.
Now:
X=Q X" = (x")%,U,
o)
Xne1 == Q X = (X™)%0,,,U.

Foranya =1, ...,n+ 1, we will then have:
Xo= (X"1)?0,U.

The trajectories of the dynamical system considaredhen the generalized extremals of
the integral:

J= J'UUI[L+X”*1J'UUU X”*ldv} du,

(*) E. Cartan3], page 18.
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or the geodesics of the spafethat is defined by the Lagrangiarand the functiorK =

)-(n+l H = U )-(n+l
This case includes the particular case in whichGhare independent of the velocity.
It will then suffice to set) = Qxx’* ; one will then deduce thit= x™*, H = Q, x*.

2. More generally, suppose that:
Qu=f?0c U,

in whichf andU are two functions o, t, andx’®.
The preceding calculations will then show that:

Xq = (f X™)?0.U .

The trajectories of the corresponding dynamical systeenthen the geodesics of the
spacel; that are defined by the Lagrangiamand the two functions:

K=fx" and H=U x"",

3. Suppose that we have:

Q=R ¢, 1) + Sem (X", 1) x"™,

with
Sim=—Sm.
Set:
R« = S(,n+1 == Sn+1,k .
Hence:

X=S, ¥ and Xuwm=-QX=-RX=8S,,¥X.
Hence, foranyr=1, ...,n+ 1, we will have:

Xa= S, ¥,
in which Syz is a tensor oW1 .
In order for the corresponding Lichnerowicz space tehgpel; , it is necessary
and sufficient that one must have:

Sup St Say St Sus S =0 ;

I.e., that the tensds,s must be a bivector. There will then exist two vecteldf whose
covariant componenftg (X) andg, (X) are such that one will have:

Spp=fa0s — 500
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locally. The corresponding space is defined by the Lagrangidnand the functions:

H=f,x" and K=g,x".

34. The fundamental 2-formQ. — When the force tensor of a dynamical system is
zero, we have seen ®) that the system of Lagrange equations:
P,(L)=0
is the extremal system of the form:
w=0,Ldx"
i.e., the associated system to the 2-form:
dw=d(d,L)Odx" .

Now, letS(L, Suz# 0) be a dynamical system, and consider the 2-form:

(34.1) Q=d(0,L)0d¥ +5 S, d& O dk.
The associated system@ois composed ofi2+ 2 Pfaff equations:

(34.2) -1, (L) +S,,d¥ =0,
' AR dx? =0,
with
(L) = 0,,Ld%’ +(9,,L-0,,L) dX.

Since the dynamical system is supposed to be rreghéamatrix” 0,,L H will have rank

n. We then conclude, as in1§, that the system (34.2) defines some basic cui/dg
whose projections ontd,.; are the solutions to the system:

7, (L)

P, (L) = =S, ¥ =Xa;

i.e., the trajectories of the dynamical system mered. One then has the theorem:
Theorem:

The trajectories of the dynamical systenfLSS,p are the integral curves of the
associated system to the 2-form:
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Q=d@,)0d¢ +1S, dt0 df,

in which we suppose that” = dx”/ du.

Consequences. The trajectories of the dynamical syst8ifh, S5 are characterized
by the property that they admit the integral invariarelation that is generated by the
form Q.

If 7is a tube that is generated by a closed continuous sdrieajectories o$ that is

bounded by two homotopic closed curves that surround thathebeve will have:
(34.3) jTQ =0.

We shall deduce a fundamental relation from that prgpewat directly generalizes
Cartan’s theorem that relates to the relative imtegrvariant j d,Ldx" and borrows

from the notations of LichnerowicZY.

35. Lichnerowicz's theorem:

Let G and G be two closed homotopic paths that surround theesambe of
trajectories in the configuration space-timg.\of a dynamical system (8, S5 . The
difference between the circulations of the veloeggtord,L along the cycles £&and G

is equal to the flux across the portion of the twidgose boundary is G- C; of the
generalized force tensop®.

[Lo,Ldx [ o,LdX = ([ 4S, dOdf.

G G

7-012 apf

The x” that appear in L and 43 are the components at x of the velocity vectot tha
tangent to the trajectory that passes through x.

1% Proof:

Consider two homotopic closed pathsandC; in Vi that surround the same tube
of trajectoriesZ. Let 7, be the 2-chain whose supporfZiand whose boundaGp — C;.

Set:
w=0,Ldx".

Upon applying the Stokes’s theorem, we will have:

jcoa)—jqa) = I%lda).

(*® A. Lichnerowicz [L], pp. 8-10.
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Now, from (34.3):
[ (dw+is, d¥ O df) =0.

2 “ap
We will then deduce the formula that we proposed to prove:

(35.1) jcla[,de“ —jcoaﬁde' = j%ésaﬂ d¥ O df

2" proof (*%):

Let Xo x; be an arc of the trajectory d¥)(in Vi+1, wherexy, andx; correspond to the
valuesup andu, , respectively, of the parameter Consider the action integral:

I:LulLdu,

which is evaluated along the a&x; .
The variationd| of | that corresponds to some arbitrafy” at any point o, x; ,
including the extremities, and has:

is given by the classical formula:
(35.2) J1 =[9,Lox]% - j P(D)JX du,
or, from the Lagrange equations:

(35.3) o1 =[0,LoxT: - [ X, 6% du.
SinceXg du=S,; ¥ du = Sgzdx’, we have:
(35.4) o1=[0,LoxT: ~[ 8, 6% dX.

Integrate the sides of (35.4) over the closed,iooatis sequence of trajectories tiat
defines; we will get:

[Lo,Ldx [ o,Ldf=] 1S, dfOdX.

G G

7-012 af

As before, we deduce from that relation that:

(* A. Lichnerowicz [], pp. 8-10.
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(do,LOd¥ +1S, d&0O d%) =0
72 5

by an application of Stokes’s formula. We have thenguiairectly that the form:
Q=d,L)0dX +1 §, dXx [ d%

defines an integral invariance relation for the trajeesoof ).

36. Case in which the formQ is closed— LetQ = d(d,L) OdxX +1 §, df O dX.
We then deduce that:

1

(36.1) dQ =
with

1 .
K, dx* O dX O dX+20, g dkO dkO

Kagy=0a Sy +05Sa+ 0y S

In order to havel Q = 0, it is necessary and sufficient that one shoaigh

1. 9,S,; =0foranya, § y; ie., that the tens@.z must be independent of the

2. Kgpy=0i.e., thaGys should locally be a rotational tensor.

There will then exist a local vector fieARl whose covariant components #&gsuch
that:

(36.2) Sop=0a Az ~0pAa.

We let A denote the vector-potential of the dynamical systerfL, S;5) . Upon
remarking that under these conditions:

(36.3) Q=d@,LdX + A dX),
we can state the theorem:
Theorem:
In order for the fundamental 2-for@ of a dynamical system(8, S, to be closed,

it is necessary and sufficient that the tensgyshould be derived from a vector-potential
A (Ap) whose components are independent of the velocity; i.e., that:

SaﬁzaaAﬁ —aﬁAa.
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The trajectories of the dynamical system are thenachenized by the existence of the
relative integral invariant that is defined by:

w=(0,L +Ay) dxX;

i.e., they are the extremals of the integral:
|:ﬁ@+&fnm

Those trajectories are also the geodesics of theldfi space that is defined on the
configuration space-timé,.; by the function:

L+ A X.

37. Example: “centrifugal force” tensor. — Consider a system of material points
Mg whose coordinates an& , Yk, Z« with respect to an orthonormal framRB) (in
Euclidian spaceEs . Suppose that the fram&)(is in motion with respect to an
orthonormal frameRp) . Leta’, b, ¢’ be the components with respect ®) of the
velocity vector of the origin of that frame, and e q, r be the components with respect
to (R) of the instantaneous rotation &) (with respect to t&, .

The absoluteis vivaof the system of pointdly is then:

N
2T, = ka[(x;+ d+qZ-rY)°+(Y+ bt rX—- pd*+( 7+ 'e¢ p¥ qZ)(Z]
k=1
while the relativeris vivawill reduce to:
N
2T = Y m(X2+ Y2+ Z)).
k=1

Suppose that the system considered admisgrees of freedom
The relativevis vivaand the absolutes vivahave expressions of the form:

2T, = a; x"' x'},
2Ta=ay x' x1+ 2o x" + ¢,
resp., in which they, bi, andc are functions o and time.

Suppose that the frankecoincides with the fixed frami&, at the instant.
The Lagrange equations that relat&gavill then be:



Chapter V. — Dynamical systems with holonomic constsai 81

(37.1) %(a” )(j)_ai A XX =Q.

Q: denotes thé" component of the generalized force vector.
The Lagrange equations that relat®tare:

(37.2) S, X)-0, 3% ¥=Q- b +3,( X+ 9.
The supplementary terms that belong to the right-hand isaoheely:
(0;b, -0, h) X' +0 c+%—?,

represent the set of inertial, or “centrifugal,” forces
Pass to the homogeneous formalism by seilifig=t, 7= T x". Equations (36.5)

will then become (89):
d

5507 ~0,T = Xa+ (0a $s—-05 4) g

upon settingg; = b and¢@n.1 =cC.
The tensob, ¢z —0ds ¢, that we call theentrifugal force tensois derived from the
potential vectow,. It is indeed of a tensor of the preceding type (37.2).

Upon settind- =7 +¢, X7, the equations of motion will become:

iaé,L_aa,L:>(a.
du

Conversely, suppose that one is given a dynamical sydte®s) . The equations of
motion will be:
d

—0,L-0,L=85, ¥,
du

We say that the tensds,s has centrifugal force typef there exists a global vector
potentialg, that depends upon ont§, and not on the, such that:

Sup=0a Pp~ 0p Pa-

In order for that to be true, it is necessary andaafit that the form:
Q=d(d)+1S, df O df

should be closed:; i.e., thaf S; = 0, and:
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00 S+ 05Sa+0ySp=0.
The same thing will be true for the electromagnetddfitensor in general relativity (8
50).

38. Case in whichQ admits an integrating factor. — By definition, Q admits an
integrating factor if there exists a differentiable fumef (X, x) # 0 such that the form
fQ is closed. The integrating factiois such that:

d(fQ)=df0Q+fdQ=0

or

dQ:—%DQ
or
(38.1) dQ=d¢0Q,

when one sets=¢e*.
Assume the existence gfand make the identity (38.1) more explicit:

1K, O0d¢ OdX+10, S, dkO dkO db
(38.2)
= @,¢dx +0,¢ dx)0(0,, LAX D dk+1 B, kO ¥,
with:
Kagy=0q Spy* 05 S + 0y S and  Rap=0,,L-0,, L +Sy.

Upon identifying the various coefficients of the twdes of (38.2), we will get three
systems of relations:

(38.3) 6y¢6ﬁﬂL—6ﬂ¢6ﬁyL =0,
(384) ap¢agy|— _aa¢aﬂy|— +ay¢ Raﬂ = ay SH/J”
(38.5) Rop0y @+ Rp 00+ Ray05 ¢ =Kppy.

The relations (38.3) imply that the functigns independent of thebecause if that were
not true therﬂﬂﬁL would have the form:

20,40 ,¢
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and the matriq|d L || would have rank 1, which is absurd, since the dynamicagrsyst

is supposed to be regular.
When one integrates the relations (38.4) oxerwhereyis arbitrary, that will then
imply that:
Sup = a/;¢ag|—_aa¢a[‘;|- +Tap(X)

in which theT,z depend upon only the variabbes
Now make (38.5) more specific; after reductions, onegeil

Those relations express the idea that:
d(4T, d¥ OdX) = dg O(1T,, dX O dX);
i.e., that the form:
e”? Topdx® Od¥
is closed.
There will then locally exist a vector fiel (X) whose covariant components @
such that:
e? Top =0aAs—0pA,.

Therefore, if the fornf2 admits an integrating factor then the tenSgywill necessarily
have components of the form:

(38.6) Sup=0,L0,6-0,L0,8 +€ (3,Az=05A)

then functionsp andA, will depend upon only the variablz$
Conversely, if the tens@,z has the preceding form then we will have:

e?Q=e’d(d)+ e’ did ¢+ ¢ A &) =d(e?’dL+ A df),
in whichf = e is indeed an integrating factor fQr.
Upon remarking that the fornf3 andf Q admit the same associated system, we can
then state the theorem:
Theorem:
In order for the fundamental 2-for@ of a dynamical system (g, S;p to admit an
integrating factor, it is necessary and sufficightat the force tensor should have

components that can be put into the form:

Sp=0,L0,6-0,L0,8 +€ (3,Az=05As) .
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¢ (X) and A, (X) dx” are a scalar function and a 1-form, respectively, that are defined on
the configuration space-time, .

Under those conditions, the trajectories are charaed by the existence of the
relative integral invariant that is defined by:

w=(e70,L +Ay) dxX;
i.e., they are the extremals of the integral:
1= ["(e’L+ A X) du

Those trajectories are also the geodesics of th&dfispace that is defined ¥p.; by the
function:

e?L+A X.
Particular cases:

1. ¢ =0. Inthis caseSys = 04 Ag— 93 Ay. The formQ will then be closed and
equal to:
d(@,LdX + A dX),
as we found before.

2. A =0. Inthis case:
Sy = adL6ﬂ¢—6ﬁLag¢.

The trajectories will then be the extremals ofititegral:
| = jule‘¢ L du.

In that case, as in the general case, there existimsler space that admits the same
geodesics as tigFinslerian space that is defined lbandS;z.

39. Canonical equations— LetS (L, S;p) be a dynamical system, and Jetbe the
associated Finsler space; i.e., the Finsler sgmtdag defined on the configuration space-
time by:

ds=L (x? x%)du.
As in 8§22, set:
Va=0apy’ with y?=d¥/du.

The Lagrangiam (x?, y?) will then correspond to the Hamiltoni&h(x?, y,) such that:
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H (X% ya) =H (X% dag¥) =L (x, ¥7) .
Recall that the functioH is h1 and that:

If we take the parameterto be the arc-length of the trajectory theg” andy, will be
the contravariant and covariant components, respégtioba unit vector that is tangent

to F.
Upon settind” = dx” / ds |, = gaz1# = 9,L , we will have:

(39.2) L (X% 1% =H (X% 1) = 1.

The 21 + 2 numberx“ andl, are supposed to be independent, so they can be considered
to be a local coordinate system at a paim the fiber bundle) of tangent vectors to
Vn+1.

Since the numberg’ andl, are coupled by the relation:

H(x% 1) =1,

they define a point in the state spade
The trajectories iV of the dynamical systens$) are then defined by the formulas:

X7=x7(), la=la(9),
such that:
O _ 571 and %+6aH:XU.
ds ds

The latter equations are the Lagrangian equations afyth@mical system, when written
in terms of the variablesandl.

Upon settingX, = S, 8°H, where theS,s are the components of the force tensor, we
will get the system of canonical equations in the form:

9

(39.3) gls
So =9, H+S,0"H,

ds

or even in the form:
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S
39.4
(39:4) dl, dx’ _
—E=S,——= -d, H.
ds ds

d¢ . d¥ d¥

ds % ds ds
admits the first integral:

Since X, = 0, we will see that the system of canonical equations

H (x 1) = const.
We can then state:
Theorem:

The trajectories of the dynamical system S with the Hamiltonié&:{ H,) and force
tensor 3z (X, 1) are the integral curves of the systgB0.3) that verify the initial
condition:

H [(xD0, (a)o] = 1.

We remark that the system of canonical equations is onre the associated system
of the 2-formQ that is written here:

(39.5) Q=dl, OdX¥' + 1S,dx" Od¥.

Indeed, the associated systen@s obtained by writing out that the relation:
i(2)Q=0
is verified for any vector Z that is tangento; i.e., such that:
i(Z2)dH=0.
Upon writing that:

00 _ ,3(dH)
adx) ~ " adx)’

0Q _ ,0(dH)
ad.) ~ ")’

and upon remarking that= ds we will get the canonical relations in the ford94).

The firstn + 1 equations show that the integral curves ofag®ociated system £»
are basic curves oW. From the results d@3, that should be obvious, moreover, from
the expression (39.5) f@l.
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We have thaH = const. is a first integral of the canonical systesmy first integral
F = const. is a solution to the partial differentiquation:

0(Z)F=0,

in which Z is the vector whose components are the-hght sides of equations (39.1),
Sso:
aaHaaF-I' (_aaH +XQ) aaF: 0,
or rather:
(F, H) + X, 0°F =0,

in which F, H) denotes the Poisson bracket of the functibnsndH relative to the
variablesx” andl, .

40. Canonical equations in matrix form(*%). — Let (g—zj be the column matrix that
S

is composed of the derivatives of th& andl, with respect tos, let (grad H) be the
column matrix of the partial derivatives Bfwith respect to th&” andl,, let Es be the

| S -l
antisymmetric matrix( Sj’ and letJs be the antisymmetric matri{I 0 j

whereS s the matrix whose elements &g andl and 0 are the identity matrix and zero
matrix, respectively, of order+ 1.
The system of canonical equations (39.3) can be puthatorm:

(40.1) (d_zj =Es(grad H) .
ds

Since the matriXs is the inverse of the matrks, the canonical system can be put into
the equivalent form:

(40.2) Jg (d_zj =(gradH) ,
ds

which corresponds to equations (39.4).
We remark thatls is the matrix associated with the fon; i.e., the matrix of the
coefficients of:
0Q 0Q
—_— and )
o(dx") o(dl,)

We can also say thdt is the matrix of the coefficients of the alterngtibilinear form
f (Q) that is associated wi; indeed, one has:

(* Y. Thiry [2], pp. 206-212.
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f(Q) =d2) Js (32,

in which'(d2) is the row matrix that has the elemet§, dl, . (d2) is the column matrix
whose elements a@x’, dl,, while [d2) and ) correspond to two arbitrary vectats

anddz, resp., in the spad that is tangent to the poin{(x?, 1,) of V.

In what follows, it will sometimes be convenient &t:$, = x°“, with o = a+n + 1,
and to denote an index that takes the values 1, 2n.+,2by an uppercase Latin letter.
When one letgas denote the element of thé"Aow and B' column ofJs, the 2-formQ
can then be written:

(40.3) Q =lang dX* Od¥,
and the system of canonical equations (40.2) will become:

dx®
40.4 a,—=0aH.
( ) AB ds A

41. Change of variables— Consider the change of variables\othat is defined by:

(41.1) X = XA (),

where the 8 + 2 functions X are supposed to be differentiable with respect to the ne

variables<®.
We deduce the following formulas by differentiating (41.1):

(41.2) dxX* = 9g X* d¥ .

Let M denote the Jacobian matrix whose elements¥dre= 0z X*, where A is the row

index and Bis the column index. We can then write the relati@is2) in the matrix
form:
(d2 =M (dz) .

The bilinear fornf (Q) ='(d2) Js (J2) transforms into:
f(Q") =(dz’) M M (d2) ,

in which'M is the matrix transpose bf.
The bilinear fornf (Q") is once more alternating because the matrix:

Ks="M JsM
IS antisymmetric.
The associated system to the corresponding €o'ris:
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(41.3) Ks(d—zj =(grag H") ,
ds

in which (grag H’) is the column matrix whose partial derivatives wighpect to¢* of
the HamiltoniarH, which is assumed to be expressed in terms of the agables.

The canonical system is then written in the followiognf in terms of the new
variables:

dx®
41.4 A —— =0a H’,
( ) A'B ds A

in which the matrix whose elements aggs is the matriXM Js M, Js is the matrix in the
old canonical systenM is the Jacobian matrix of the change of variabled, an
H (") = H [X* ()] = H (Y.
42. Canonical transformations.— We say that the transformation that is defined by
the matrixM is canonical if the matrix:
Ks="M JM

S -1
Ke= =Jo
=7 o)

in which S”is an antisymmetric matrix.
We say that the transformation that is defined bynba&ix M is pseudo-canonicatf:

has the form:

Ks =f JS'

for any antisymmetric matri®, wheref is a scalar function of the variabbes.
One easily shows that the set of canonical or pseadonical transformations has a

multiplicative structure group that locally admits tlyenplectic groupSp(n + 1,R) as a

subgroup.
Let us try to characterize the matriddghat define the canonical transformations. In
order to do that, we return to the notatiafid, , and denote the new variablesxyl,- .
Set:

X7 = XX 1), lo=La OF, 1p) ,
SO
— a B ap
dx’ = X4 dx” +X“ dl,,
= B B
dia= L, dx” +L% dl,,
with

X% =0gX%  X¥=9X,
Laﬂr:aﬁ’La, Lﬂa: :aﬁ,La.
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The matrixM then has the form:
A B
M= ,
C D
in which A, B, C, D are the submatrices &f of ordern + 1 whose elements aoeg,,

X%, Los s L# | respectively, and the first index is the column index.
More explicitly:

KS:[‘A tcj[s —|j( A Bj :[tASA+‘CA—‘ AC ' ASB' CB' AE
‘B 'DJ){II 0)LC D '‘BSA+'DA-"BC ' BSB' DB' B
In order forKsto have the fornds for anyS it is necessary that:
‘DA-BC=1and 'DB-BD=0.
Suppose that the matriis regular. The conditions:
'‘BSA='BSB=0

will then be equivalent to the condition:
'BS=0,

which will be verified for anys only when:
B=0.
: . (A B) . . ,
We deduce the following result from this: In ordarthe matrlx( c D j in whichA is
supposed to be regular, to define a canonicalfoenation, it is necessary and sufficient
that:
1. B=0 and 2. 'DA=I,

or rather that the variable§ must be independent of the new varialbjeand that:

0" La0, X =" .
Under those conditions, the form:

Q =dl, 0dX + 1S, dX Od¥
will have the form:
Q' =dly OdX" + 1S, d¥" OdX

for its transform, in which the matrix whose eletseare theS,, is the matrix:
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S’='ASA+'CA -'AC.

The canonical equations of the dynamical system considelative to the new variables
will then be:

dx”

——=0"H/,

ds

Al =-0,H'+S,,0" H,
ds

with H” (X%, 1) =H (X% Lo) .
For a fixed tenso,z, one can find some other transformations that respedotm
of the canonical system. The corresponding matA¢&s C, D verify the relations:

'BSB+'DB -'BD =0,
'BSA+'DA-'BC=f1,

in whichf is an arbitrary scalar function of the new variables.
Particular cases:
1. Change of variables that leaves the fdhmvariant.
We say that the for2 is invariant under the change of variables that is definéd by

if the transformed form is:
Q' =dly OdX" +4S,, d¥" Odx¥,

in which S, is obtained by replacing thé€ in S;zwith X (x’, 1) and thel, with L (X’
" In order for that to be true for ar§y it is necessary and sufficient that when one
supposes that is regular, one should have:

1. B=0,

2. DA=I,

3. 'ASA+'CA —'AC= Sfor anyS; i.e., thatA =1 and théC=C..

| O
The matrices thus-obtained have the folfa: = (C I j whereC is a symmetric

matrix.

Those matrices form a subgroup of the multiplicagix@up of canonical matrices that
are isomorphic to the additive group of symmetric matradesdern + 1.

The matrixC is symmetric, so we will have the identity:

aa'Lﬁ—aﬁ'La: 0.
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There will then be a functiof (x”) such that:
Lo=lg+04F ().
The change of variables considered is then defined by:

x7=x"+a’,
in which thea“ are constants, and:
lg=lg+0,F.
It will then result that:
dl, Odx? =dl, Odx*
and
dx Odx¥é =dx® O d¥.

2. Change of variables on,M , prolonged toV. — Define a change of variables on

V1 bDY:
e X7 = X" (x#).

From the tensorial nature &f andSyz , it is obvious that this change of variables is
canonical. Let us verify that. By differentiatiome will get:

dx¥ =0 X7 d¥ or 19=ap X",

The matrixA has elementX$ = dz X where thea is the row index ang?’ is the
B 4

column index. The matri is zero.
The covariant componenigtransforms according to the law:

|ﬁ' = XZ,
By differentiation, we get:
- B B
dlg=0,X;1,dx” +X [ dl,.

or  lg=XZ1l,.

IO’

The matrixD whose elements ar¥?

inverse of the matrix whose elements &g, where the index represents the columns;
i.e.,'A. We then have:

where the indexx represents the rows, is the

The transformationx(, 1) - (x*, 1) thus-defined is indeed a canonical transformation.
. 'AS A - |
The matrixKs = 'M JsM then has the forrr{ | 0 j because one can show
directly from the expression f@ that:

'CA -'AC=0,
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but that results from the fact that the change abées considered is such that:
lo X =1, dX" or  dly Odx"=dl, Odx".

Remark. — It is easy to recover the results d8&by the matrix method in the case
whereQ is closed or admits an integrating factor.

43. Lee space defined by the 2-for. — Consider the manifol?? whose pointz

admits the 8 + 2 numberx? andl,, which are assumed to be independent, as a local
coordinate system.

When one is given the 2-form oh:
(43.1) Q =dl, 0dX + 1S, dX O,

that will define aralmost-symplectic structur@nV, or rather, d.ee space structur@é”).
Indeed, since the variable$ andl, are assumed to be independent, the fQrmuill

S [ L
have maximum rankr2+ 2 ; the associated matrix € is Js = ( - j which is a

. L . o |
regular matrix, so its inverse will be the matex= ( | Sj :

As in 840, setl,=x% witha" = a+n+ 1.
The 2-formQ is then written:

Q = Llans dX* Od¥,

whereaag is the element alsthat is in row A and column B.

Recall that any uppercase Latin index can take the valugs..., 2 + 2.

Let a*® denote the elements of the matfx that is inverse tals . With Lee,
introduce the following four tensors:

1. Thecurvature tensqgrwhose components:
(43.2) Kasc = 0a @gc + 0g acs + Oc ans

are such that:
dQ =1 Kagc dX* Odx® Odx°.

2. Thecovariant curvature vectomwhose components are:

(* H. C. Lee, “A kind of even-dimensional geometry arsdaipplication to exterior calculus,” Amer. J.
Math. 55 (1943), 433-438.
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(43.3) Ka = Kagc &,

in which the formKa dx* is the codifferentialdQ) of Q with respect to itself.
3. Thefirst conformal curvature tenspwhose components are:

(43.4) bag = 0a Kg — 08 Ka .

One has:
d (0Q) = Lbag dX* Odx¥.

4. Thesecond conformal curvature tensarhose components are:

1
(43.5) Casc = Kasc + on (Ka agc + Kg aca + Kc apg) -
That tensor is such that:
LCpac dX* O OdX =dQ Lsona.
n

Let us now specify the components of the various tensors
We find that for the curvature tensor, we have:

(43.6) Kagy=0a Spy+ 05 Sa + 0y S,

(43.7) Kapy=0a09,=0" S, Kagy=0mSa, Kagn =00 Sop.

The components that admit more than one starred srgezero.
We find that for the curvature vector, we have:

Ka:Kaﬁyaﬂy+Kamyam“Kaﬁmaﬁﬁzamsaﬁéﬁy—amaaéﬁy,
SO

(43.8) Ka=2>.0,S,, =20° Sy,
B
with summation ovefs.
Kao = Kaog @ = 0.
We will then have:
0Q =20 SypdxX.

For the second curvature tensor, we will have:

1
Copy = Kaﬁy"'% (Ka Spy+ Kig Say + Ky Sep),

or
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1
(43.9) Coapy = S(aasﬂﬂ +Eaﬂ S %yj

in which S indicates that one must combine the seimthe parentheses with the ones
that one deduces from them by cyclically permutang, y:

1
Cotpy = KaElBy"'% (Ko Sgy = Kp Say + Ky Sgp)

If all three ofa, G, yare different then we will get:

If 8= ythen the corresponding coefficie@swvill be zero. Ifa = # ythen we will get:
1
(43.11) Coray= 0o Say + EZamsw.
A

All of the coefficientsC that have more than one starred index are zero.

44. Necessary and sufficient conditions fof to admit an integrating factor. —
The remarkable Lee spaces are the ones that Lksel ¢8at,” which are the ones for
which Q is closed, and the ones that are “conformally’flat which the formQ admits
an integrating factor. We are then reduced tduhdamental case that was studied on §
38.

In order for the fornQQ to be closed, it is necessary and sufficient thatcurvature
tensor should be zero. As we have seen, thattemmas equivalent to the existence of a
vector potentiaA (x) such that locally:

Sa/;:aaAﬂ—aﬁAa.

In order for the fornQ2 to admit an integrating factor, it is necessarg aufficient
that the second conformal curvature tensor shoelddoo. That theorem is due to Lee,
and was rediscovered and completed by C. EhresraadnP. Libermann?{), who
supposed that > 1; that is obviously the case for the 2-fdnof a dynamical system.

Now write down that the tens@ec = 0. From (43.10)Ss, depends upon only the
variablesx, 1z, andl,. From (43.11)d.1 S,y has a value that is independentiof Then
set:

0ot Soy = @y,

and the relation€ ., = 0 will then be verified. Sincésnn Sy = 0, the functionsp,
depend upon only the variabbes

(**) C. Ehresmann and P. Libermann, C. R. Acad.22(1948), 420-421ipid., 229 (1949), 697-699.
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Sypthen has the form:

(44.1) Sup=la @p(X) —1pha (X) +Tap(X) .
Let us now specify the conditions:

Caﬂy: 0 .
Upon remarking that:

1
ﬁa” Su=-0s(),
we will get:

after reductions. Those conditions are equivalent to:

(44.3) 0ydp—0ppy=0
and
(44.4) S OyTa,B_ ¢yTaﬁ) =0.

The conditions (44.3) express the idea that the fggrdx” is closed oV ; there will
then exist a functiog (x) such that locally:

Pa=0s¢.
The conditions (43.4) express the idea that the 2-form:

1T pdX Od¥’

admitse™ as an integrating factor.
There will then exist a vector potents} (xX) such that locally one has:

Top=€’ (0, As—05A,) .
As in 837, we find thatSyz has the form:
(44.5) Sp=la0sd— 10,0 +€ 0aAz—0A,) .
We can then state the theorem:
Theorem:
In order for the fundamental 2-form of a dynamical system:

Q =dl, DdX" + Sy dxX’ ¥
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to admit an integrating factor, it is necessary and sufficient thatfdhee tensor &
should verify the following conditions for anyg, y:

0S
1. aTﬂy:O for azf and azy.
) 0, _ 35,
al,

3. a/i S —
{ax n; ﬂyj

Under those conditions, there will exist a scalar timmcg (x) and a covariant field, (x)
that is defined oW1 such that locally one has:

Sp=la0pd—130,0+€ 0aAz—03A,) .




CHAPTER VI

DYNAMICAL SYSTEMS WITH
NON-HOLONOMIC CONSTRAINTS

45. — First-order constraints in the homogeneous formalism- Let &) be a
dynamical system with perfect holonomic constraims a degrees of freedonx".
Recall the notations of 89; in the inhomogeneous formalism, the equations of motion
are:

(45.1) Py ([,) = Qk .

Let a (X5 t, x’%) be a function of & + 1 variables, t, andx’* that is not the total
derivative with respect to time of a functién(, t), and is such tha = const. is not a
first integral of the equations of motion &).

Imposing a first-order non-holonomic constraint ondigeamical systerfy :

a(tx"=0

amounts to adding a functid® of x ', t, andx’' to each right-hand side of equations
(45.1) in such a fashion that the motion of the new ohyoal system$) will be defined
in configuration space-timé,., by:

(45.2) P« (£) = Qc+R«;

these equations adnait= 0 as a first integraf).
We now pass to the homogeneous formalism, a2 §
Set:

Ye= R X, Y1 =—R X

TheY, are the covariant components of a vector thatlisccgheconstraint force
The constraint relation will then be written:

ax?, x?)=0.

The functiona is h. Sincel a = 0 defines the same constraint¥when/ # 0, we can
fix the degree of homogeneity afarbitrarily.

In general, suppose thais h 0.
The homogeneous Lagrangiandefines a Finsler space structure \4p: . We
suppose that the space is regular and that the metsimrtep is such that:

(® F. Gallisot [1], pp. 45.
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ds’ = ggp dX" d¥’

is a positive-definite quadratic form at any poindof

The trajectories ofY) in configuration space-time are then defined by rthe 1
equations:

(45.3) Pa(L) =Xg+ Ya.

The canonical equations of the trajectories in pkpaedV are:

dx’

—— _=0H ,
(45.4) do:s
L =-0"H+ X, +Y,,
ds

in which the functionsH, X, , Y, are supposed to be expressed with the aid of the
variablesx? andl, .
The functioma (x?, x“) corresponds to the functica(x’, |,) such that:
ax?, o,L)=ax’, x7).
Let us now translate the fact tha{x’, |,) = 0 is a first integral of equations (45.4).
Upon writing that:
i(2)da =0,

in which Z is the tangent vector ¥ whose components are the right-hand sides of
equations (45.4), we will get:

(45.5) (@ H)+0°a(X, +Y,)=0.

(a, H) denotes the Poisson bracket of the functiansndH.
We associate the constraint force Y, whose compsivgrare hl and such that:

Y, X'=0,
with the tensofil ;z, which we call theonstraint tensqrand which is defined by:
(45.6) Tap=300,Y,=0,Y;).
The component$,z are hO and such that:

T %¥=Ya.



100 Variational Spaces and Mechanics

The considerations of the preceding chapter will then ghawthe system (45.4) is
the associated system of the 2-form:

(45.7) Q=dl, 0dxX" + 1(Syp+ Tap) dX* 0¥,

in which the variablek, andx“ are coupled by the relation:
H X 1) = 1.

The trajectories of the dynamical systeéghgan be considered to be the geodesics of
the S-Finslerian space that is defined by the Lagrangiand tensoB,5+ Tsz.

Being given the constraint relatian= 0 will not determine the constraint force; it
will depend upon the manner by which the constraint iszeshl in addition. In what
follows, we shall study the constraints that areizedlperfectly, in the Delassus sense,
or “perfect constraints.”

46. — Perfect constraints— The constraint relation:

(46.1) ax’,y)=0, with  y7= %

defines a cone of directiol@ at each poink of V.1 that is situated in the spaggthat
is tangent t0/,:1 atx.

That cone will reduce to a plane if the constrarinearly non-holonomic; i.e., if the
relation (46.1) can be put into the form:

a;(x)y'=0.

In this case, the constraint is calleérfectif the constraint forceY, is perpendicular to
that plane in the sense of the Finslerian metric.

In the general case, associate each geneBatdithe coneC with the tangent plane
along that generator.

If we let y; denote the components of a vector that is carrie@ then the equation
of that tangent plane will be:

(46.2) d,a(x, ¥)y'=0.

The relation (46.2) defines what we call thear constraint that is tangent to the given
constraintat the poin®, y¢ of W.

The constraint is callegberfect if the constraint force at the point”, yg is

perpendicular to the tangent plane to the ddnalong the generatoy, . The constraint
forces then verify the condition that is calkbe generalized virtual worgondition: The
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virtual work Y, dx done by the constraint force that corresponds to theeli@ment
(X7, ¥5) is zero is zero for any virtual displacememt” that is permitted by the linear

constraint that is tangent to the given constraingatys .

In the case of a perfect constraint, the componentkeotonstraint force have the
form:

(46.3) Y,= 9, a,

in which A is a function of the, y? that ish1 if ais hl and h2 if ais h0. Conversely,
if the components of¥ have the form (46.3) then the constraint considered beil
perfect.

The statement of the generalized virtual work conditio&t was given above is
equivalent to the following statement: At a given instéimg, virtual work done by the
constraint forced, dX* is zero for any virtual displacemedi that is compatible with
the constraint that is independent of time that coirgcidiéh the given constraint at the
instant considered.

Indeed, that condition will imply that:

Yk :)Iaka.

SinceY, ¥ = 0 andd, ax’ = 0, wherea is supposed th0, we deduce from this

that:
Y1 =A anﬂa .

The perfect first-order constraints include, in particuthe linearly non-holonomic
constraints, and even the holonomic constraints, thithcondition that one must replace
the constraint relation:

AX)=0
with the first-order relation:
a=0d,AX" =0.

The constraint force in the case of a perfect camitis determined when one is
given the constraint relatican= 0.

The coefficientA is determined when one expresses the ideaahatO is a first
integral of the equations of motion.

In order to explain the calculations, suppose thafuhetiona is h0 or that it can be

expressed as a function of the variabféandl, .
Those variables are coupled by the relation:

H(x% 1) =1,

in whichH is the Hamiltonian that corresponds to the Lagrangiéd, y°) .
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Let F be the Finsler space that is definedvan by:
ds=L (x, dx) .

Replacd, with d,Lin a(x? l,) . Upon partially differentiating this, we will get:

d,a=0"ad, L
=0a(9ys =l 1)
= aﬂa ga/]’

becaused, al’= 8”al,; =0, sinceais hO.
We then deduce that the components of the constoaicd &re:
Yo=Add,a and Y%= ]9a.

The relation (45.5), which expresses the idea @hat O is a first integral of the equations
of motion, will then become:

(46.4) (@8, H)+0"a X, +Ag,0°a’a=0.

The coefficient ofA, which represents the square of the norm of the vedtar, is
positive; that relation will then determivie.

Example of a perfect non-holonomic constraitOne launches a projectile with an
initial velocity Vo . One makes a forde act on that projectile in such a fashion that the
motion is uniform and planar.

With respect to an orthonormal frar@x, Oy that is situated in the trajectory plane,
the constraint relation is:

a:x’2+y’2—v2: 0
or

)-(2+'2
= t_zy -v%=0.

Making the hypothesis that the constraint is perfecowts to supposing that the
constraint forcd- is collinear with the velocity vector.

Geometric interpretation of the trajectories.Consider a dynamical syste) (ith
a Lagrangiar that is subject to a perfect constraint that is defmed

a(x?, x?) =0,
with the functiora being hO.
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On the other hand, suppose that the teSge+ 0, in such a way that the equations of
the trajectories in the configuration space-tMqge must be defined by the system:

P, (L) =40, a, in whichA is h2.
The corresponding constraint tensor is:
Tap=$(0,20,4-0,10,3).
The trajectories admit the integral invariance refathmat is defined by:
Q=d(d,L)0d¥ +1 dal d.

Set) = K? anda = H / K, which is always possible by changing the signa ahd , if
necessary. We will then have:
Ad,a=Ka,H-HJIK.

Since the function$d and K are hl, the trajectories ofg will be the generalized
extremals of the integral:

| = j“l(L+Kju”lH dv) du.

Up

Those trajectories are also the geodesics of theeghaihat is defined by the functions
L, K, andH, so one will have the theorem:

Theorem:

The trajectories of a dynamical system whose given forces areddrovm a force
function and which are subject to a perfect constrai(t’ax?) = 0can be considered to
be the geodesics of a spate.

Case of several perfect constraintsThe preceding can be generalized immediately
to the case of several perfect constraints that direedebyk < n compatible constraints:

an(x?, x7)=0 with A=1,2, ..k.

The equations of motion are:
Pa(L) =Xz + A"0, a,.

If X, = 0 then the trajectories can be considered to bgdbdesics of a spack .
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47. Principle of least curvature.— Consider the phase spadé-— i.e., the fiber
bundle of oriented directions that are tangent tocthefiguration space-timeg,.1 of a
dynamical systers (L, X,) .

A pointz of W can be defined by then2 2 numbers?, 19, which are coupled by:

L% 19=1.
The locus of pointg of Wwhose coordinates verify the relation:
ax%19 =0,

in whicha is h0, defines a submanifold of W.

Consider the basic curvds of U that all pass through the same paint Their
projectionsyontoV,.1 will all have the same tangent at the paint
Compare their curvature vectorsxat

c=1
ds
A basic curvd™ of U is defined by:
xT=x(s), 19=19(9) with I":ﬁ.
ds
Since the functions” andl” of s verify:
a9 =1

identically, upon differentiating this with respect to #re-lengths of y; we will get:

a

=0.

(47.1) 9.al" +3,ad
ds

Now:
di _ d“

-2G7(x,1) =C" - 2G“.
ds ds

The relation (47.1) will then become:
(47.2) d,al”+0,a(C’-2G" =0.
Let I'" be another basic curve W that passes throughand whose projectiopr” onto

Vh+1 @dmits a parametric representation as a functioneoatb-lengths”. We will then
obtain the following relation folr':
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(47.3) d,al”+9,a(C’?-2G% =0.
Upon comparing the relations (47.2) and (47.3), we will get:
(47.4) 9,a(C’’-C%=0

at the pointz. That relation translates into a generalizatioMetisnier’s theorem that we
can state in the following way:

Theorem:
All of the curves in afn + 1)-dimensional Finsler space whose line eleméxty all
verify the same relation:
axl=0
and are tangent to the same point x admit curvature vectors at that point whos
extremities are in aiin — 1)-dimensional planar manifold iny{viz., the tangent tovi

at x) that is the intersection of the normal plané & x and the plane perpendicular to
the vector whose components &g at X.

That theorem generalizes immediately to the casehioh U is a submanifold o¥V
that is definedk < n relations:

an(x?, x7)=0 with A=1,2, ..k.
The relation (47.4) is replaced with tkeelations:
(47.5) 9,a,(C"°-C’%=0.
Proof of the least-curvature theorem.Extend Synge’s theorer®®) that relates to

dynamical systems with linearly-non-holonomic coaisiis that are independent of time
to an arbitrary Lagrangian (x, 19) that is subject t& perfect constraints:

an(x%19=0.

Let S be a given dynamical system. Its trajectories in @hgsace belong to a
submanifoldU of W that is defined by thke relations:

an(x,)=0.

Let (S) be the free dynamical system that is associatdd ®jt; i.e., the one that is
deduced from&) by suppressing theconstraints.

(*® J. L. SyngeT].
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Then consider the three basic pdth§’, " that pass through the same parfx, I)
of W

1. The path is the trajectory of) that passes through
2. The path™ is an arbitrary basic curve ththat passes through
3. The pathi™” is the trajectory of%) that passes through
Let y; ', y" be the projections df, I'", ", resp. ontd/p+1 , and letC, C’, C", resp.,
be the curvature vectors of those curves at the point_et the curvatures gfand y’
relative toy” bec andc’, which are the norms of the vect@s-C" andC’—C", resp.;
we will then have:
¢® =(Cs-Cl) (C"-C"9),
C/2 — (Cra _ C;) (C,a_C”a) )

From a classical identity, we can write:
(47.6) c’?-c®=(C,-C,)(C'=C'N -2 C"—C")(Cs-C.).

Now:
C =Xg4 and Cg,=Xg+ 1%9,a,,

a

since the constraints are assumed to be perfect.
We will then have:

(47.7) C-C9(C,-C.)=12%,a, (C"-C).

However, from Meusnier’s theorem, that expressioris.z The relation (47.6) will then
reduce to:

(47.8) c’?-c?=(C,- C.)(C"-C"9).

Since the spacg is properly Finslerian, the right-hand side of this, Wwhgthe square of

the normal of the vecto€ — C’, will be positive. We then deduce the following
inequality from this:

(47.9): c'?2¢%

which will then give the theorem:
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Theorem of least curvature:

Let a dynamical system (§, X,) be subject to perfect, first-order, non-holonomic
constraints. Let &L, X,) be the associated free system, andAdte the Finsler space
that is defined on the configuration space-time by the Lagrangian L

Among all curves i that are tangent to the same point x and satisfy the constraint

relations, the trajectory ofS) is the one that has the least curvature at x with respect to
the associated free trajectory.

48. Consequences of the principle of least curvature.

1. Gauss-Appell principle- Consider the function:

(48.1) :R:(D'H—xaj(w—x”j.

ds ds

That function of thex?, x*=dx? /ds=19 %“=dl?/ dsis equal to the square of the
relative curvature at a poiwtof an arbitrary curverin configuration space-timé,.1 with
respect to the free trajectopfthat is tangent to it at

In the phase spad#, the trajectory of the dynamical syste8) that passes through
z(x?, 19) is the curve in the submanifold of W (viz., the constraint space) for which the
functionR is @ minimum atk .

The principle of least curvature then translatesyaically in the following way,
whereu is a new arbitrary parameter:

The trajectories of the syste® @re defined by the functiomx§ = x? (u) for which:

0;,R =0,

a

when one takes the constraint relations into acc@makthe functioir is defined by:

R:%(Dl”—xaj O -X71.
2L\ du du

In the preceding form, the principle of least curvaggems to be a generalization of
least constraint. In fact, the preceding functidis the one that Appelf{) introduced,
when it is extended to configuration space-time.

2. Converse— Suppose that a dynamical syst8ifL, X,) is subject td first-order
non-holonomic constraints whose constraint relatames

(") P. Appell [1], t. Il, pp. 392.
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an (X9, x7) =0, A=1, 2, ..k.
Suppose that the functioasare homogeneous of order 0 with respect to:
x? =dx?/dx.

Now show that the constraints are perfect conswgainthe trajectories ofS) in the
configuration space verify the principle of least curvature
Partially differentiatdRr with respect tax”, while taking into account the fact that:

I gs 267 (x, 1), with %7 =dl?/ ds.
S

We then get:

(48.2) a.R = e

- Xa.
ds i

Letl andl be two curves oW that pass through the same pail, |) . Upon passing
fromT to [, the functiorR will experience a variation atthat takes the form:

(48.3) OR= (DI” —Xajcf'x”.
ds

If " is the trajectory of) that passes throughthen be must haveR = 0 for all of the
oX? that are permitted by the constraints; i.e., the oveshich:

(48.4) 0,a0%" =0,
and that verify the relation:
(48.5) d,Lox"=0,

in addition, which is a consequencelafx’, 1) = 1.
We will then have:

(48.6) Ol

ds

_Xa: AAadaA'i'/jadL

alongl". The contracted product withwill then giveu = 0.
Equations (48.6) then show that the constraints conslicene perfect constraints.
We can then state:
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Theorem:

In order for a dynamical system that is subject to first-order caimgs to verify the
principle of least curvature, it is necessary and sufficient thatetlosstraints should be
perfect.

3. Appell equations= For the free systef (L, X,), the equations of the trajectories
in configuration space-time can be put into the formwes indicated by Appell:

(48.7) d.R =0.

Those equations are a direct consequence of the nslt8.2)
If we let A denote the energy of acceleratioVip, — i.e., if we set:

_ 101, oe
2 ds ds’

then we can put the Appell equations (48.7) ineoftim:
(48.8) 0;A =Xq.

For the bound systen®), the Appell equations of the trajectoriesMr.1 are deduced
from (48.6). They are written in the form:

(48.9) ,R =1%0d,4a,, A=1, ..k

when thek perfect constraints are defined by the relations:
an (X7, x7) =0.

We deduce from those relations by derivation that:

(48.10) d,a, X +0, a, % =0.

Suppose that these relations permit us to calcklatehe X (for example, the first) as
functions of the other one®R will then become a function of thé, x*, and then + 1 —

k second derivative&'™ , where &) =k + 1, ...,n + 1.
Since we must have:

OR=0 for anyx® ,
we will get then + 1 —k Appell equations:

0,R=0,

(@)
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which will define the trajectories ofS( in Vn«1 when they are combined with tlke
constraint relations:
an (X%, x7) =0.

Like the Lagrange equations or the canonical equatibasAppell equations have a
form that is independent of any way that one framesdahéguration space-time.




CHAPTER VII

APPLICATIONS

49. Dynamical systems that admit a Painlevé first integral— Let & be a
dynamical system with perfect bilateral constraintd ardegrees of freedom that are
characterized by the parametgts

Suppose that there exists a one-parameter group on thgucatibn space-time of
(S that taked tot + h and leavesS) invariant.

Under some general hypotheses, one can pass to the njuatié define a

configuration spac¥, that corresponds t@,.1 . The Lagrangiaif =T + U, as well as
the functionx will then be independent of time.

The Lagrangianl corresponds to the homogeneous Lagrangiiai@ 29) that is
independent of™*! =t. The last Lagrange equation will then reduce to:

d aL .
dwans

Suppose that the generalized fo@ehas zero power; i.e., th, X‘= 0 over the entire

trajectory.
Under those conditions, the system of Lagrange equatib® will admit the first
integral:

% =-"H =h, whereh is a constant.
X

Consider the set of trajectorie§) (of (S that correspond to a well-defined valuehof
The fundamental 2-for2 can be written as follows for those trajectories:

Q =do,LOdX + 1S,dX" Td¥é

From the well-known descent proce$8),(one can replace the Lagrangiarwith a
LagrangiarL; that is independent of tim&™*. That Lagrangian is defined by:

Lo =L [X %, ¢ (& X, )] =h ¢ (& %, h),

in which ¢ = x™" is obtained by solvin%él' =h for x™. One indeed verifies that for
Xn+1

the trajectoriesT), one has:
Now, set:

(*® Y. Thiry [1], Chap. I.
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xk = Qk Xk
and suppose that th& are independent of"™; since:

oX, -
O = Q= O QX™,
a)-(nﬂ Qk m

that will amount to supposing that the components ofgeeralized forcey are
homogeneous and of first degree with respect to thexenemts of the velocity © (viz.,
h'1) .

Under those conditions, the 2-fofnwill become:

Q= da, L, OdX +1S, dx’ OdX"

The trajectories of the dynamical syste®hthat correspond to a well-defined valuehof
can then be obtained in the configuration spa&eindependently of the time
parameterization as solutions to the associated systOm.

We can then state the following theorem, which takeddrm of a generalization of
Maupertuis’s principle:

Theorem:

Let S be a dynamical system with n degrees of dreefl that admits the Painlevé
first integral:

‘H =-h = const.
and is such that the generalized force has compsradrthe form:

Qk = Sm x™ with Sim=— Sk,

in which the &, are h’0 functions of kand x*.

The trajectories of S have a well-defined total rgneE and are defined in
configuration space \Vindependently of the law of traversal as the $eexals of the
integral:

| = L?Ll(xh,xk,h) du,

in which u is an arbitrary parameters* = dX / du, and b= - E. The Lagrangian Lis
defined by starting from the homogeneous Lagrangiath:

Li=L (X %, ¢)—h ¢,

o, N+l

with x™= ¢ (X %, h), which is a relation that is equivalentt¢=-h.
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Particular cases:

1. Q; is closed.— Under those conditions, there exists a vector patewhose
componentgy (X) are such that;

Sa =0k A -0 Ac.

The trajectories o have constant enerdy = — h, and are then the extremals of the
integrals:

I:j:deu,

withLy =L + A X.
Those trajectories are also geodesics in the Finsémeshat is defined ow, by ds=
L, du.
If we take:
X X

L= aﬁm+b¥' +(T,+9 X*

then we will get the following expression fos :

L= \/2(T,+U-h)g X% +(p+ A %
Under those conditions, we know that the trajectori@sV, can be considered to be the
projections ontd/,, of geodesics of a Riemannian spaca 1 variables, where thae ¢
1)" variablex, is no longer time.

2. Q; admits an integrating factor That will be true if the components of the force
tensor have the form:

Sk=0iL1d p—0cL10 @ +€ (0 Ac— kA,

in which ¢, A, aren + 1 arbitrary functions of the variabl@s. The trajectoried are
then the extremals of the integrals:

_* —p .
| _ij(e L+ A ¥X) du.
Examples:

1. Appell constraintg*®). — Suppose that the dynamical syst®ns subject to the
Appell constraint that is defined by:

a(Xx"=0o, in which aish’1,

and the constraint force has components of the:form

(* P. Appell, C. R. Acad. Scl52(1911), pp. 1197.
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Qc=A0va, Aish’1.

We are indeed under the conditions for applying the gemedaMaupertius’s principle,
becaus&) x’* = A a= 0 along any trajectory.

2. Gyroscopic coupling— Let S be a dynamical system that is composed lirfiear
oscillators. Since the position of an oscillator ro® supportDi , which is supposed to
be fixed, is defined by its abscissa, the Lagrange system of equations will have the
form:

X+ A X%=0.

A gyroscopic coupling between thoseoscillators translates into the presence of a
generalized force vector in the right-hand side of the&d has components of the form

%:
Q= ZSK X,.

The tensorSm , which is supposed to be antisymmetric, depends upon anly thoy
definition, it is the “gyroscopic coupling” tensor.

50. Applications to general relativity. — Let V4 be the space-time of general
relativity that is endowed with the Riemannian metrat ik defined by:
ds’ = gap () dX¥ d¥ .
If uis an arbitrary parameter then set:

2 _ ) .o
L* = g,, X', x“=dx"/du,
and

X
la= 0,L= 0y~ = Qs 1

Suppose that an energetic distribution is defined on a ddniaiV, that corresponds
to the energy-impulse tensdgz. Set {Y):

Taﬂ:r|a|ﬁ—€aﬁ and Daeg :rKﬁ,

in which the&,s depend upon both theand thd.

(% Y. Rocard, “Dynamique générale des vibrations,” Mas&843, pp. 114-124.
(Y A. Lichnerowicz B], Chap. II, 17.
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TheK, are hO and define the force density vector that is associatédtiae energy
tensoré,z and the scalar (which is a pseudo-density) .
The conservation equations:
0,77 =0

give, on the one hand, the equation of continuity,@nthe other, the differential system
of the streamlines, which are tangent to the unit viglagictorl? everywhere.
The differential system can be put into the form:

Ol Ol
50.1 2= (Kylg—Kglp) 1P or 2 = (Kylg—Kglg) X2 .
(50.1) = Kalg—Kglo) T Kalg—Kglo)
Set:

The force vectoK, is associated with the antisymmetric tensor:

Sop = %(a[‘;xa _atzxﬂ)
=Kalg—Kgla+3L(0,K, —0,K,)+3x'(1,0,K, =1,0 K,) .

When the force density vect#t, is independent of the velocity, the tensgs will
reduce tK, lg— Kgzlg .
In the general case, we will have the identities:

Ss¥ =Xs and 9,8, +0,5,+0,5,=0.

The symmetric tensorf,z, which is a pseudo-tensor, then corresponds to an
antisymmetric tensas,s that is called théorce tensorsuch that the differential equations
of the streamlines will be:

(50.2) 1P 0pla=smp1P or  1A(Oply—Oalp) =sgpl?

The general results that were previously obtainednji one to state the following
eqguivalent theorems:

Theorem:

1. The differential system of the streamlines of dnteary energy tensor schema is
the associated system to the 2-form:

(50.3) Q=dl, 0dx" +1s,dx" Od¥.



116 Variational Spaces and Mechanics

The |, are the covariant components of the unit velocity vector 0,L, with L* =
U, X' %’ , where the g are the components of the force tensor that is associated with the
energy tensor for the schema in question.

2. The formQ defines an integral invariance relation for the streamlines.

3. Let G and G be two homotopic cycles in dimension one that surround the same
tube of streamlines. The difference between the circulations afmiheelocity vector
around G and G is equal to the flux of the force tensor across the portion ofuthe
that is bounded bydand G .

4. The streamlines are the s-extremals of the integral:
| = j “Ldu.

5. The streamlines are the geodesics of the s-Riemarspace that is defined by L
and the force tensors(8 25).

Recall the definition of such a space:
One considers a Riemannian metricvarthat is defined by:

ds = gop (X) dX A,
and the Euclidian connection on the directions will espond to the torsion forms:

(50.4) 2= (is, ¥ OadX) f,

in which the expression in the parentheses representsftiten2hat is associated with
the force tensor.
Under these conditions, the connection will be defiog

(50.5) Cagy=[Bral + (lass+1pSe—1ySap)

which will reduce to:
Capy= [BY a] — saply

when theK, are independent of the'.
Example:

Charged perfect fluid schenf¥). — The most interesting results that are obtained i
general relativity are the ones that correspond tondaental 2-fornfQ that is either

(*? A. Lichnerowicz B], Chap. IV, §§ 34-37.
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closed or admits an integrating factor. Let us studysithema that encompasses all of
the other ones, namely, the homogeneously-charged ptufdct
The energy-impulse tensor of such a schema is defiredamairD of V, by:

Top=@+P) lalg—P Qap+ Top.

p is the proper density is the proper pressure, angk is the impulse-energy tensor of
the electromagnetic field that is defined by the teRsgt
The differential system of the streamlines is:

O, _ s s 0P U A
ds_(g” II”)(p+p+,0+mel :

in which g is the proper charge density of the fluid.
We can further write those equations in the form:

a, _ 1”
(50.6) ds o+ p(aap lp=0psp la+ 1t Faop) .

Suppose that there exists a state equatieri (p), so the indeX of the fluid can be
defined by:

F=¢’ with p=[" 22
PO+ P
We then deduce that:
0,p _
prp 07?
On the other hand, suppose that the fluid is charged homogsly.
Under those conditiong&,= ,:TFp will be constant over the entire dom&iof V, .

Let us make a final hypothesis: There exists a globabvepotentialA in D such
that:
Faﬂ: aaAﬂ_ aﬂAa .

Under those conditions, the force tensor will have paments of the form:
(50.9) Saﬁ:|ﬁ6a¢_|aaﬁ¢+ke_¢ (0o As=0pAd) .
Those components characterize a 2-féxhat admits an integrating factor [relations

(38.6) of 838] .
We have thus obtained following classical resultsctlye
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Theorem:
For any motion of a homogeneously-charged perfect fluid, the streamlingbeare
extremals of the form:

w=(Flz+k Ay dX
or the integral:

| = ju“l(F L+k A, %) du.

Those streamlines are characterized by the exmsteha relative integral invariant that is
defined by:

w=(Fla+k Ay dxX’.
Those streamlines are also geodesics in the Fisgéare that is defined & by:

ds=(FL+kA, x?) du.
Particular cases:

1. Pure matter schemsyz = 0,Q =dl, Odx".
2. Matter-electromagnetic field schema (homogesaaise):
ssp=kFzg and Q=d(l,+kAy) Odx".
3. Holonomic medium schema:
Saop=1p0ap—la 059,
Q=1,0dx"+d¢ OdL,

which admits’ as an integrating factor.




L o

S D

E

L A

=

BIBLIOGRAPHY

P. APPELL Traité de Mécanique Rationell&authier-Villars, 1941.

E. CARTAN,Les espaces de Finsler. Adlermann, 1934.

E. CARTAN,Lecons sur les invariants intégrautermann, 1922.

E. CARTAN,Les systémes differéntiels extérieltermann, 1945.

H. CARTAN, “Notions d’algebre différentielleColloque de topologie de Bruxellel950, Masson,
1951.

H. CARTAN, Variétés différentiables-Groupes de L@ours E.N.S., 1953-1954.

J. FAVARD, Cours de Géométrie différentiell&authier-Villars, 1957.

J. FAVARD,Espaces de Finsle€ours de la Faculides Sciences de Paris, 1955-1956.

F. GALLISOT, “Les formes extérieures en Mécaniquelie@is), Durand, Chartres, 1954,

J. KLEIN, C. R. Acad. Sci. Par288(1954), 2144-2146.

J. KLEIN, C. R. Acad. Sci. Parl0(1955), 2208-2210.

A. LICHNEROWICZ, “Les relations intégrales d'invance,” Bull. des Sci. Mattbs2 (1946).

A. LICHNEROWICZ, “Les espaces variationels généealj” Ann. de I'E.N.S63 (1946).

A. LICHNEROWICZ, Théories relativistes de la gravitation et de I'électromagnétisiasson,
1955.

A. LICHNEROWICZ, Théories globale des connexions et des groupes d’holoncedie,
Cremonese, Rome, 1955.

A. LICHNEROWICZ,Géométrie des groupes de transformatibonoud, 1958.

A. LICHNEROWICZ,Les espaces de Finsletours de College de France, 1959-1960.

J. PERESMécanique générajéMasson, 1953.

G. REEB, “Sur les espaces de Finsler et les espdee€artan,” Colloque de Géométire
différentielles Strasbourg, 1953.

J. L. SYNGE, University Toronto Studies, Appl. Mat). (1936).

Y. THIRY, “Etude mathématique des équations d’'une thémitaire & quinze variables de champ,”
(Thesis), J. math. pures et agp(1951), 30.

Y. THIRY, “Remarques sur les équations canoniques Netanique,” Scuolo Normale Superiore,
Pisa, 1959.



