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INTRODUCTION  
 
 
 This treatise is a contribution to the study of non-conservative dynamical systems for 
which the generalized force depends upon both the position and velocity parameters.  Our 
goal is to generalize Hamilton’s principle and to geometrically represent the trajectories 
as geodesics in appropriate spaces. 
 Continuing the work of E. Cartan, A. Lichnerowicz, and then F. Gallisot, one shows 
that one can base the dynamics of systems upon a 2-form that has the Lagrange equations 
of motion for its associated system.  That 2-form is defined on the fiber bundle of tangent 
directions to the configuration space-time.  We have been able to give it a form that is 
independent of the framing of space and time thanks to the introduction of an asymmetric 
tensor, namely, the force tensor, which we will substitute for the force vector.  We have 
deduced that tensor from the force vector in order to remain in the case of classical 
mechanics.  However, it is the opposite step that must be taken, since the force tensor 
permits one to characterize the dynamical state of a system of corpuscles more 
completely.  The classical force vector is then defined to be the contracted product of the 
force tensor and the velocity vector. 
 In order to extend Hamilton’s principle to non-conservative systems, one must 
generalize the classical variational calculus.  In order to interpret the trajectories 
geometrically, one must generalize Finsler spaces.  Those generalizations must involve 
an antisymmetric tensor of order two that analytical mechanics interprets as the force 
tensor of the dynamical system considered. 
 The first part of this work is devoted to differential geometry.  Most of the results that 
will be pointed out can be interpreted in analytical mechanics immediately, and the 
second part will be devoted to that subject more especially. 
 In Chapter I, one studies the differential systems A (ω), E (ω), C (ω) that are called 
“associated,” “extremal,” and “characteristic,” respectively, for a differential form ω of 
class C ∞ that is defined on a differentiable manifold Vn .  One then gives a vector field X 
of class C ∞ on Vn .  Since the trajectories of the field X are defined by the differential 
system S (X), one studies the fundamental forms that are attached to S (X), namely: 
 
 1) The invariant forms ω ; i.e., the ones for which: 
 

θ (X) ω = 0. 
 
 2) The forms ω that define an integral invariance relation: 
 

i (X) ω = 0. 
 
 3) The forms ω that define a relative integral invariant: 
 

i (X) dω = 0. 
 
 4) The forms ω that define an absolute integral invariant: 
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i (X) ω = 0, i (X) dω = 0. 
 
 In Chapter II, we will study the restricted forms that are defined on the space V of 

non-zero vectors y that are tangent to Vn or on the space W of tangent directions to Vn , 
which are forms whose coefficients are homogeneous with respect to the components of y 

( hɺ  forms, in what follows). 

 One defines the operator dɺ  on those forms such that: 
 

dωɺ = dxα ∧ αω∂
ɺ

, in which αω∂
ɺ

 = 
yα
ω∂

∂
, 

 
where the xα are the coordinates of a point x of Vn , and the yα are the components of a 
vector y in the tangent space Tx to Vn with respect to the natural frame. 
 In particular, one studies the differential algebra H of semi-basic forms, and one 

shows that a dɺ -closed form ω is the dɺ  differential of the form 
1

p k+
i (y) ω, where p is 

the degree of ω, and the coefficients of ω are h kɺ . 
 Chapter III is devoted to the classical variational calculus.  One shows that a semi-
basic form 1-form on W admits basic extremals if and only if it is dɺ –closed.  One then 
studies the properties of Euler vectors and forms and establishes the Helmholtz 
conditions for a 2-form to be the Euler form of a function L (x, y) .  The chapter 
concludes with some considerations on the geodesics of a Finsler space that are 
connected with the variational calculus. 
 In Chapter IV, one studies the generalizations of the classical variational calculus. 
 A first generalization is based upon considering the paths that are S-close to a basic 
path of W, which are paths that are defined when one is given an antisymmetric restricted 
tensor Sαβ on W.  In order to interpret the S-extremals of a function L geometrically, one 
introduces a general Finsler space or an S-Finslerian space.  Such a space differs from a 
Finsler space by only the E convention of E. Cartan: The Riemannian torsion Sα

βγ  is not 

zero, but is defined by the tensor Sαβ . 
 A second generalization is due to Lichnerowicz and is also based upon the 
consideration of special paths that are close to a given one.  One defines non-holonomic 
functions and forms, as well as their exterior differentials. 
 Lichnerowicz’s variational spaces (viz., L spaces) are the spaces that are defined by 
the same conventions as the Finsler spaces, but when one starts with a non-holonomic 
function L. 
 In Part Two, which is devoted more especially to the analytical mechanics of non-
conservative dynamical systems, one considers time to be an (n + 1)th variable.  Instead of 
the generalized force vector X, one considers the force tensor S that is defined by: 
 

Sαβ dxα ∧ dxβ = dɺ (− Xα dxα) . 
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That tensor, along with the Lagrangian L, defines an S-Finslerian space, or an L-space, 

whose geodesics are the trajectories of the dynamical system.  One then shows that the 
system of equations of motion is the system that is associated with the 2-form: 
 

Ω = dlα ∧ dxα + 1
2 Sαβ dxα ∧ dxβ,  with  lα = Lα∂

ɺ
. 

 
That 2-form will play a fundamental role in what follows.  The existence of Ω will imply 
a theorem that generalizes a theorem of E. Cartan: The difference of the circulations of a 
velocity vector l along the two 1-cycles C0 and C1 that surround the same tube of 
trajectories T is equal to the flux of the force tensor Sαβ across the 2-chain of T whose 

boundary is C0 − C1 . 
 One then studies the case in which the form Ω will be closed on W (i.e., the existence 
of global vector potential) or admits an integrating factor (viz., the simultaneous 
existence of a vector potential and a scalar potential). 

 The form Ω corresponds to the antisymmetric matrix 
0

S I

I

− 
 
 

, where S is the matrix 

(Sαβ) and I is the identity matrix of order n + 1.  One then has a matrix notation that is 
particularly convenient to the canonical equations. 
 The form Ω defines the structure of an almost-symplectic space, or “Lee space” 
structure, on V.  In particular, one can then deduce the condition that the force tensor 

must satisfy in order for Ω to admit an integrating factor. 
 Chapter VII is dedicated to non-holonomic dynamical systems.  One introduces the 
concept of constraint tensor for them and studies, in particular, the perfect constraints, in 
the sense of Delassus, which are characterized by the condition that is called the 
“generalized principle of virtual work.”  The trajectories are interpreted as geodesics in S-
Finslerian spaces or L-spaces.  A generalization of Meusnier’s theorem shows that the 

trajectories of a dynamical system with perfect non-holonomic first-order constraints are 
characterized by the principle of least curvature.  One shows its equivalence with the 
Gauss-Appell principle and then deduces the Appell equation in its homogeneous 
formulation. 
 The last chapter relates to some problems in regard to dynamical systems for which 
the notion of force tensor is imposed in particular.  A change of frame introduces an 
antisymmetric tensor in an immediate way: viz., the centrifugal force tensor. 
 The dynamical systems with Appell constraints or gyroscopic constraints are 
characterized by a second-order antisymmetric tensor.  The non-conservative dynamical 
systems admit a Painlevé integral H = const. that is independent of time such that the 
generalized force in the configuration space Vn will have components of the form: 
 

Qk = Skm x′ m,  with Skm = − Smk 
 
that satisfy a generalization of the Maupertuis principle that permits one to determine the 
trajectories independently of the timetable. 
 That chapter will conclude with some applications to general relativity. 
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 One associates the force density vector Kα with a force tensor sαβ in a natural fashion 
such that the differential system of the streamlines is the associated system to the 2-form: 
 

Ω = dlα ∧ dxα + 1
2 sαβ dxα ∧ dxβ . 

 
The streamlines are the geodesics on an S-Riemannian space that is defined by the torsion 
forms: 

Σγ = ( )1
2 s dx dx lα β γ

αβ ∧ . 

 
The cases in which Ω is closed or admits an integrating factor relate to the classical 
models.  The considerations of the preceding chapter will then, in turn, give (among other 
things) the now-classical results of general relativity that relate to the streamlines of 
charged perfect fluids. 
 That work was brought into play thanks to A. Lichnerowicz.  I wish to acknowledge 
the profound admiration that I have for him here. 
  
 I would likewise like to express my respect and gratitude to: 
 J. Pérès, who kindly presented my initial results to the Académie des Sciences. 
 J. Favard, for the benevolent interest that he showed in my work and for the honor 
that he afforded me by accepting my request to preside on my jury. 
 Mme Y. Bruhat, who was kind enough to guide me through my second thesis. 
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PART ONE 
 

GENERALIZED VARIATIONAL GEOMETRY  



CHAPTER I 
 

REVIEW OF DIFFERENTIABLE MANIFOLDS 
 
 

 1. – Let Vn be an n-dimensional differentiable manifold of class C ∞, and let X be a 
differentiable vector field that is defined on Vn .  That field generates a local group of 
local transformations of Vn by integrating the differential system: 
 

(1.1)     
( )dx u

du
 = Xx (u) . 

 
The solution to this system that issues from the point x (0) = x will be denoted by (1): 
 

x (u) = exp (u X) x . 
 
The differentiable map exp (u X) admits a tangent linear map, which is denoted by 
exp( X)u ′ , of the vector space Tx that is tangent to Vn at x to the vector space T x (u) that is 
tangent to Vn at x (u) .  One deduces a linear map from its reciprocal image that is denoted 
by exp (u X)* and which takes the dual space ( )x uT ∗  to Tx (u) to the dual space xT ∗  to Tx . 

 Let ω be a p-form of Vn .  One calls the p-form θ (X) ω that is defined by: 
 

[θ (X) ω]x = ( )

0

exp( X)
lim x u x

u

u

u

ω ω∗

→

−
, 

 
the infinitesimal transform of ω by X or the Lie derivative of ω by X .  Let i (X) ω be the 
interior product of ω by X. 
 We will then have the fundamental formula (2): 
 
(1.2)    θ (X) ω = di (X) ω + i (X) dω . 
 
Let Y be a second differentiable vector field that is defined on Vn .  We set: 
 
(1.3)     θ (X) Y = [X, Y] 
 
and recall the formulas: 
 
(1.4) θ ([X, Y]) ω = θ (X) θ (Y) ω − θ (Y) θ (X) ω, 
(1.5) i [X, Y] ω  = θ (X) i (Y) ω  − i (Y) θ (X) ω, 
(1.6) i (Y) i (X) dω = θ (X) i (Y) ω  − i (Y) θ (X) ω − i [X, Y] ω . 
 
In what follows, we will be sometimes led to distinguish: 
                                                
 (1) A. Lichnerowicz [5], pp. 15.  
 (2) H. Cartan [1].  
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i (X) ω = 0 from i (X) ω ≡ 0. 
 
The first relation is an exterior differential equation: A solution of that equation will be a 
(p − 1)-vector Y1 ∧ … ∧ Yp−1 , where Y1 , …, Yp−1 are independent vectors in Tx such that 
one will have the numerical equality: 
 
(1.7)    i (X ∧ Y1 ∧ … ∧ Yp−1) ω = 0. 
 
The second relation i (X) ω = 0 expresses the idea that the equality (1.7) is verified for 
any vectors Y1 , …, Yp−1 in Tx ; i.e., that the point x considered is a zero of the 
form (X)i ω . 
 
 

A. – Some remarkable differential systems that are attached to an exterior form. 
 

 2. Associated system to an exterior form. – One calls a direction that is defined by a 
vector X such that: 

i (X) ω ≡ 0 
 
an associated direction to ω at x .  That identity indeed defines a direction because: 
 

i (λ X) = λ i (X) for any scalar λ . 
 
The corresponding linear differential system that is obtained by replacing X with dx in 
the equations that define the associated directions to ω at any point x of Vn is called the 
associated system A (ω) to ω .  One obtains it by equating all of the derivatives of order 

1p−  in the form ω to zero. 
 
 Examples: 
 
 1) A 1-form: 

ω = ai (x) dxi, 
with 

i (X) ω = ai X i = 0, 
 
defines an (n – 1)-dimensional planar manifold in the tangent vector space to Vn at any 
ordinary point of ω . 
 
 2) Let a 2-form be given by: 

ω = 1
2 aij dx i ∧ dx j, 

with 
i (X) ω = 1

2 aij (X i dx j – X j dxi) ≡ 0, 
which implies that: 

aij X i = 0 . 
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If n is odd then that system will have rank at most n − 1, and one will get at least one 
associated direction at any point of Vn . 
 If n is even, and if the system has rank n then there will exist no associated direction 
at an ordinary point of Vn . 
 If the system has rank 2p < n then there will be an infinitude of associated directions 
that form an (n – 2p)-dimensional planar manifold in Tx . 
 A direction X that is associated with the 2-form ω is characterized by the property: 
The flux of the tensor aij across any 2-plane in Tx that contains X is zero. 
 
 
 3. Extremal system of an exterior differential form. – Let W be a local differential 
chain in Vn of dimension p, let X be a differentiable vector field, and let ω be a p-form in 
Vn .  The point transformation exp (u X), where u is fixed, will transform the points of W 
into points of another chain that is denoted by: 
 

W (u) = exp (u X) W. 

Consider the integral I = 
W

ω∫ . 

 The Lie derivative of I by X is, by definition, the scalar: 
 

θ (X)
W

ω∫  = ( )( )0

1
lim x uW u Wu u

ω ω
→

 −  ∫ ∫ . 

 
Make the change of variables in the right-hand side that transforms the coordinates of 

( )x u into those of x. 
 We will then have: 

( )( ) x uW u
ω∫ = ( )exp( X) x uW

u ω∗
∫ , 

so 

θ (X)
W

ω∫  = ( )0

1
lim [exp ( X) ]x u xW u

u
u

ω ω∗

→
−∫  = (X)

W
θ ω∫  . 

 
 We now apply formula (1.2) and get: 
 

θ (X)
W

ω∫  = (X) (X)
W W

di i dω ω+∫ ∫ , 

 
and from Stokes’s formula, when we let ∂W denote the boundary of W, we will get: 
 

(3.1) θ (X)
W

ω∫  = (X) (X)
W W

i i dω ω
∂

+∫ ∫ , 

 
We now suppose that the chain W is closed, and seek to determine the vector field X in 
such a fashion that for any W, we will have: 
 

θ (X)
W

ω∫  = 0. 
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Let Y1 , Y2 , …, Yp be p local vector fields that are tangent to Vn .  In order to have: 
 

θ (X)
W

ω∫  = (X)
W

i dω∫  = 0, 

 
it is necessary and sufficient that one should have: 
 

i (Y1 ∧ Y2 ∧ … ∧ Yp) i (X) dω = 0 
 
for any Y1 , Y2 , …, Yp ; i.e., that: 
 
(3.2)     i (X) dω ≡ 0. 
 
By definition, a direction X that verifies the preceding identity is an extremal direction of 
ω ; such a direction is nothing but an associated direction to dω . 
 The corresponding linear differential system is, by definition, the extremal system of 
ω, which is denoted by E (ω) . 
 
 
 4. Characteristic system of a differential form. – Let X be a non-zero vector field 
on Vn .  The field X defines a direction field that we further denote by X. 
 A direction field X is, by definition, a characteristic field for the p-form ω on an open 
subset U in Vn if one has: 
 
(4.1)     i (X) ω ≡ 0 
 
and 
 
(4.2)     i (X) dω ≡ λ ω 
 
at any point x of U, where λ is a numerical function of x . 
 The identity (4.2) can be replaced with: 
 
(4.3)     θ (X) dω ≡ λ ω . 
 
 That shows that when one is given an integral manifold W of the equation: 
 

ω = 0, 
 

the manifold that is generated by the trajectories of a characteristic field that meets W will 
also be an integral manifold of that equation. 
 It is immediate that the definition of a characteristic field that was given above can be 
replaced with the following ones: 

i (X) ω ≡ 0 
and 
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(4.4)  i (X) i (Y) dω ≡ 0 for any Y such that i (Y) ω ≡ 0 .   
 
 From formula (1.6), the identity (4.4) is equivalent to: 
 

i [X, Y] ω = 0  for any Y such that i (Y) ω = 0 . 
 
 The linear differential system that corresponds to defining X at any x ∈ Vn is, by 
definition, the characteristic system C (ω) of the form ω . 
 If ω is a 1-form then the characteristic system will include the equation ω = 0, and the 
differential system that is obtained by writing out the exterior equations: 
 

i (Y) dω = 0 and i (Y) ω = 0 
 
will admit the same solutions as Y. 
   
 
 5. Integrability of the systems A (ω), E (ω), C (ω) . – By definition, a linear 
differential system is called completely integrable on a domain D of Vn if the fact that X 
and Y are two integral direction fields on D implies that the bracket [X, Y] is also an 
integral direction field on D. 
 
 1. Associated system A (ω). – By hypothesis, i (X) ω ≡ 0 and i (Y) ω ≡ 0 .  It will 
result from formula (1.6) that: 

i [X, Y] ω = i (X) i (Y) dω . 
 
In general, the associated system will not be completely integrable then. 
 That will be true when dω = 0, and also when ω has a unique associated direction at 
any x of D . 
 
 2. Extremal system E (ω). – By hypothesis, i (X) dω ≡ 0 and i (Y) dω ≡ 0.  Formula 
(1.6) will then imply that: 

i [X, Y] = i (X) i (Y) d (dω) ≡ 0 . 
 
The extremal system to ω will then be completely integrable. 
 
 3. Characteriistic system C (ω). – Its complete integrability follows directly from its 
definition. 
 
 

B. – Some remarkable forms that are attached to a differential system S (X). 
 

 6. – Let Vn+1 be an (n + 1)-dimensional differentiable manifold of class C ∞.  Let X be 
a non-zero vector field that is defined on a domain Dn+1 of Vn+1 , and let xT ∗′  be the vector 

subspace of xT ∗  that is orthogonal to X. 
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 Let x1, x2, …, xn+1 be a local coordinate system about a point x in an open subset of 
Dn+1, and let X1, X2, …, Xn+1 be the components of the vector X in the associated natural 
frame.  The differential system S (X) of the trajectories of the local group that is defined 
on U by X will then be: 

(6.1)    
1

1

dx

X
 = 

2

2

dx

X
 = … = 

1

1

n

n

dx

X

+

+ . 

 
 For a suitable Dn+1 , the relation that expresses the idea that two points x and x′ are on 
the same trajectory of S (X) is an equivalence relation R that is defined on that domain.   
Dn+1 will then be fibered, and its base In = Dn+1 / R can be identified with the space of first 
integrals of S (X). 
 Let p denote the projection of Dn+1 onto its base; any point x of Dn+1 will then 
correspond to the point y = p x in In . 
 The first integrals of S (X) are functions f (x) that are solutions to the first-order 
partial differential equation: 

θ (X) f = i (X) df = 0. 
 

Locally, df is a closed form that is orthogonal to X at the point x .  n independent first 
integrals f1 , f2 , …, fn will represent a local coordinate system for the point y = p x.  A 
local coordinate system for the point x that is adapted to the fiber structure of Dn+1 will 
then be: f1 , f2 , …, fn , and xn+1 when one supposes that xn+1 = C is not a first integral of 
S(X). 
 
 Definitions: 
 
 1. A form ω is called invariant for S (X) if: 
 

θ (X) ω ≡ 0 . 
 
 2. A form ω is called semi-basic for the space Dn+1 that is fibered by X or defines an 
integral invariance relation for the differential system S(X) if: 
 

i (X) ω ≡ 0 . 
 
 3. A form ω defines a relative integral invariant for S (X) if: 
 

i (X) dω ≡ 0 . 
 
 4. A form ω is called basic for the space Dn+1 that is fibered by X or defines an 
absolute integral invariant for S (X) if: 
 

i (X) ω ≡ 0,  θ (X) ω ≡ 0 . 
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 7. Notion of an integral invariance relation (3). – Saying that the p-form ω defines 
an integral invariance relation for S (X) that is characterized by i (X) ω ≡ 0 amounts to 
saying that X is an associated direction for ω at any point x in a domain Dn+1 of Vn+1 . 
 The identity i (X) ω ≡ 0 expresses the idea that ω locally belongs to the vector space 

( )p
xT ∗′Λ , which is the pth exterior power of xT ∗′ , and a basis for the former space is 

1 2 pi i idf df df∧ ∧ ∧… , where f1 , f2 , …, fn  are n independent first integrals of S (X) .  We 

can then write ω in the following fashion: 
 

(7.1)    ω = 1 2

1 2

1

!
p

p

i i i

i i ia df df df
p

∧ ∧ ∧⋯

… , 

 
in which the coefficients are functions of the variables: 
 

xα,  with α = 1, …, n + 1. 
 
 Let us now justify the expression “integral invariance relation.”  In order to do that, 
we consider a (p – 1)-dimensional chain W0 that is or is not closed in a domain D of Vn+1 .  
Let W1 denote the chain W1 = exp (u X) W0 that is the locus of points x1 = exp (u X) x0 , 
in which x0 is an arbitrary point of W0 , in which the parameter u has a suitable fixed 
value. 
 For a chain W0 and a suitable parameter u, let T denote a “tube of trajectories,” which 

is a p-dimensional chain in the domain D that is generated by the trajectories of the 
various points of W0 and is bounded by W0 and W1 .  The manifold that carries T admits a 

parametric representation of the form: 
 
(7.2)    xα = f α (u, v1, …, vp−1), 
 
so 

dxα = Xα du + 1
1Y dvα + … + 1

1
p

pY dvα −
− , 

 
in which Y1, …, Yp−1 are p – 1 are tangent vectors to T. 

 Now suppose that ω is a p-form that is defined on the domain D of Vn+1 to which T 

belongs. 

 The integral I = ω∫T  then reduced to the multiple integral: 

 
 I = 1 1

1 1(X Y Y )
p

p
pi du dv dvω −

−∆
∧ ∧ ∧∫ ⋯ ⋯  

  = 1 1
1 1(Y ) (Y ) (X)

p

p
p pi i i du dv dvω −

− −∆
∧ ∧∫ ⋯ ⋯ , 

 

                                                
 (3) A. Lichnerowicz [1], pp. 1-8.  
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∆p is the domain on Rp whose image under the map f is T . 

 In order to have I = 0 for any tube T – i.e., for any vectors Y1 , …, Yp−1 – it is 

necessary and sufficient that: 
i (X) ω ≡ 0, 

hence, one has the: 
 
 Theorem: 
 

 In order for the integral ω∫T  to be zero for any tube T of trajectories for the 

differential system S (X), it is necessary and sufficient that: 
 

i (X) ω ≡ 0 ; 
 
i.e., that ω should generate an integral invariance relation for S (X) . 
 
 
 8. Notions of relative and absolute integral invariant. – Let ω be a p-form that is 
defined on Vn+1 .  Let W be an orientable p-dimensional chain in Vn+1 that has ∂W for its 
boundary.  We saw (3.1) that: 
 

(X)
W

θ ω∫  = (X) (X)
W W

i i dω ω
∂

+∫ ∫ . 

 
 1. Suppose that the chain W is closed (i.e., it is a cycle).  The preceding formula 
reduces to: 

(8.1)    (X)
W

θ ω∫  = (X)
W

i dω∫ . 

 

In order for one to have (X)
W

θ ω∫  = 0 for any cycle W, it is necessary and sufficient 

(from § 7) that one must have: 
 
(8.2)     i (X) dω = 0 ; 
 
i.e., that X must be an extremal direction to ω at any point x of Vn+1 . 
 It then results that if W0 and W1 are two p-dimensional cycles in Vn+1 such that W1 = 
exp (u X) W0 then one will have: 

1W
ω∫  = 

0W
ω∫ . 

 
This equality, which one can deduce by applying Stokes’s formula to the fact that dω 
defines an integral invariance relation for S (X), justifies the term relative integral 
invariant. 
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 2. Now suppose that the chain W has a boundary ∂W ≠ 0.  In order for one to have 

(X)
W

θ ω∫  = 0 for any W, it is necessary and sufficient that one should have both: 

 
(8.3)    i (X) ω ≡ 0 and i (X) dω ≡ 0 . 
 
Under those conditions: 

1W
ω∫  = 

0W
ω∫  

 
for any p-dimensional chain W0 in Vn+1 , whether closed or not, where W1 denotes the 
chain exp (u X) W0 , as always. 
 That equality, which justifies the expression absolute integral invariant, results from 

(X)
W

θ ω∫  = 0 and also the fact that the identities (8.3) imply that the form ω can be 

expressed solely in terms of n independent first integrals of S (X) and their differentials 
[which is a consequence of (7.1)]. 
 Let us point out some theorems whose proofs are immediate: 
 
 Theorem: 
 
 1. If a form ω defines a relative integral invariant for S (X) then the form dω will 
define an absolute integral invariant for S (X). 
 
 2. If the form dω generates an integral invariance relation for S (X) then the form ω 
will define an absolute integral invariant for S (X), and conversely. 
 
 3. If the forms ω and dω generate integral invariance relations for S (X) then the 
form ω will define an absolute integral invariant for S (X), and conversely. 
 
 4. If the form ω generates an integral invariance relation for S (X), and if Y is an 
arbitrary vector field on Vn+1 then the form i (Y) ω will also generate an integral 
invariance relation for S (X). 
 
 Indeed: i (X) i(Y) ω = − i (Y) i(X) ω = 0 . 
 
 
 9. One-parameter groups that leave the system S (X) invariant.  – Let Y be a 
vector field that is tangent to Vn+1 .  That field will generate a local one-parameter group 
Gt of local transformations of Vn+1 by integrating the differential system: 
 

( )dx t

dt
= Yx(t) 

 
when one starts from an initial point x (0) = x . 
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 The system S (X) is called invariant under Gt if the vector Xx(t) is collinear with 
(exp Y) Xxt ′  for any point x where Gt is defined and for t sufficiently small. 

 One can show (4) that this will be true if and only if: 
 

θ (Y) X = [Y, X] = f X, 
 
where f is a scalar function of x .  In this case, one says that the system S (X) admits an 
infinitesimal transformation that is defined by Y.  One will then have the following 
theorem: 
 
 Theorem 1: 
 
 If a form ω generates an integral invariance relation for S (X) then so will the 
form (X)θ ω . 
  
 Theorem 2: 
 
 If a form ω defines a relative integral invariant for S (X) then so will the form 

(X)θ ω . 
 
 Theorem 3: 
 
 If a form ω defines an absolute integral invariant for S (X) then so will the forms 

(X)θ ω  and i (Y) ω . 
 
 Proof: 
 
 If will suffice to establish the second part of Theorem 3.  One has: 
 
 i (X) di (Y) ω = i (X) [θ (Y) ω – i (Y) dω], 
 i (X) di (Y) ω = i (X) θ (Y) ω + i (Y) i (X) dω = 0, 
 
which proves the property. 
 

______________ 
 

                                                
 (4) H. Cartan [2], Chap. IV, pp. 3.  



CHAPTER II 
 

FIBER BUNDLES OF TANGENT VECTORS OR 
DIRECTIONS TO A DIFFERENTIABLE MANIFOLD  

 
 

 10. Definition of the fiber bundles V and W. – Let Vn+1 be an (n + 1)-dimensional 

differentiable manifold of class C ∞.  Let V be the fiber bundle of non-zero tangent 

vectors to Vn+1 , whose structure group is GL (n + 1, R) and whose fiber is isomorphic to 

R
n+1 without its origin.  Let Z be a point of V, and let p be the canonical projection of Z 

onto its origin x ∈Vn+1 .  Let xα (α = 1, …, n + 1) be a local coordinate system of the point 
x of Vn+1 , and let yα be the components of a vector y of Tx in the associated natural frame 
Rx .  The 2n + 2 numbers xα, yα constitute a local coordinate system at a point Z of the 
fiber π −1x .  The change of coordinates on Vn+1 that is defined by the functions xα′ = 

( )f xα β′  implies the following change in the y : 
 
(10.1)      yα′ = ∂β f

 α′ yβ = A yα β
β

′ . 

 
Consider two points Z1 and Z2 in the fiber π −1 x such that the corresponding vectors of Tx 
(namely, y1 and y2) are positively collinear (y2 = λ y1 , λ > 0). 
 The relation thus-defined on V is an equivalence relation R .  The quotient space W = 

V / R is, by definition, the space of oriented directions that are tangent to Vn+1 .  The space 

W can be endowed with the structure of a (2n + 1)-dimensional differentiable manifold.  
The projection p of each direction z onto its origin x endows W with the structure of a 
fiber bundle with base Vn+1 whose fiber is homeomorphic to the sphere Sn and whose 

structure group of the group GL (n + 1, R), or more precisely, the orthogonal group O (n). 

 A local coordinate system at a point z = p−1 x is once more the set of 2n + 2 numbers 
xα, yα, where the n + 1 numbers yα are defined only up to a positive proportionality factor. 
 
 
 11. Tensors and forms defined on V or W. – An affine tensor field relative to V, in 

the usual sense, is a map t that makes any point Z in V correspond to an element of the 

affine tensor algebra that is constructed on TZ .  The tensors thus-defined relate to the 

linear group GL (2n + 2, R). 

 However, V is a fiber bundle whose base is Vn+1 , so the change of local chart on the 

base: 
xα = f α (xβ) 
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will induce the change of coframe in ZT ∗  that is defined by: 

 

,

,

dx A dx

dy B dx A dy

α α β
β

α α β α β
β β

′
′

′ ′
′ ′

 =
 = +

 

 
with Aα

β ′ = ∂β′ f 
α and Bα

β ′  = y Aγ β
β γ

′ ′
′ ′∂ . 

 The corresponding matrix is 
0A

B A

 
 
 

, in which A and B are matrices of order n + 1 

whose elements are Aα
β ′  and Bα

β ′ , respectively; 0 is the zero matrix of order n + 1.  The 

set of all those matrices is a subgroup of GL (2n + 2, R) that we shall call the 

prolongation of GL (n + 1, R) and denote by �GL (n + 1, R) .  From now on, we shall call 

a tensor that relates to �GL (n + 1, R) a tensor on V in the large sense. 

 One says that t is a tensor field of degree k on V in the restricted sense when one has: 

 
t (Z′) = λk t (Z) 

 
for two points Z (x, y) and Z′ (x, λ y) in the fiber π −1 x .  A form ω on V in the large or 

restricted sense is an antisymmetric covariant tensor field on V in the large or restricted 

sense, resp. 
 Let ω be the 1-form that is represented by: 
 

ω = aα (x, y) dxα + bα (x, y) dyα 
 
in a local coordinate domain. 
 At the point whose local coordinates are xα, λ yα, where λ is an arbitrary positive 
function of the variables xα, we will have: 
 

ω′ = aα (x, λ y) dxα + bα (x, λ y) (λ dyα + yα dλ) . 
 
In order to have ω′ = λk ω for any λ, it is necessary and sufficient that the aα should be 

h kɺ  (i.e., homogeneous of degree k with respect to the yα) , that the bα should be ( 1)h k−ɺ , 
and that: 

bα (x, y) yα = 0. 
 
One shows, more generally, that a p-form ω is restricted of degree k if the coefficients of 

the terms of degree p – h with respect to the dxα are ( )h k h−ɺ , and if: 
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( )
y

dy
α

α
ω∂

∂
 ≡ 0. 

 
By abuse of language, a restricted tensor (or a form) of degree 0 is said to be defined on 
W. 
 A semi-basic tensor field on V is a map t that makes an element of the affine tensor 

algebra that is constructed over Tπ (Z) correspond to any point Z of V.  In what follows, 

only the restricted semi-basic tensor fields of degree k will be used, and we shall refer to 

them as the h kɺ  tensors, since their components are homogeneous of degree k with 

respect to the variables yα. 
 A semi-basic covariant antisymmetric tensor field of order p is, by definition, a semi-

basic p-form.  If the tensor is h kɺ  then the form will be called h kɺ semi-basic. 

 The h kɺ semi-basic p-forms on V define a module over the ring of functions on Vn+1 

with real values, which is a module that we shall denote by p
kH . 

 The exterior algebra of restricted semi-basic forms that are defined on V is then a bi-

graded algebra that we shall denote by H (V). 

 
 
 12. Differential operators on H (V) . – Let t be a restricted tensor that is defined on 

an open subset U of V .  Let xα, yα be a local coordinate system about a point Z of U.  If t 

is h kɺ  then the Euler identity: 
 

k t = t yα
α∂
ɺ

, in which tα∂
ɺ

 =
t

yα
∂

∂
, 

 
will show that the tα∂

ɺ
 define a restricted tensor of degree k – 1. 

 Now choose a form ω ∈ ( ) ( )q
kH U .  Its expression in local coordinates is: 

 

ω = 1

1

1

!
q

q

ii
i ia dx dx

q
∧ ∧

⋯
⋯ . 

 
 The expression dxα ∧ αω∂

ɺ
 defines a semi-basic form of degree q + 1 and degree of 

homogeneity k – 1.  From now on, we shall denote it by dωɺ .  We then set: 
 

(12.1)     dωɺ  = dxα ∧ αω∂
ɺ

, 
 

by definition.  The operator dɺ  is an endomorphism of H (U) whose bi-degree is equal to 
(1, −1); i.e., it is a map of the module qkH  into the module 1

1
q
kH +

− . 
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 If we replace all of the dx with dy with the same index then the operator dɺ  will give 
an exterior differential in the fibers π −1x ; i.e., a differential with x fixed. 

 It then results that the operator dɺ  possess the following properties: 
 

  dɺ (ω1 + ω2) = 1 2d dω ω+ɺ ɺ , 

  dɺ (ω1 ∧ ω2) = 1deg
1 2 1 2( 1)d dωω ω ω ω∧ + − ∧ɺ ɺ ,  

  ( )d dωɺ ɺ  = 0 . 
 
Let X be a restricted vector field that is defined on V, and let ω be a restricted semi-basic 

q-form on V, so the interior product of X by ω : 
 

i (X) ω =
( )

X
dx

α
α

ω∂
∂

 

 
will be a restricted semi-basic (q − 1)-form on V. 

 Set: 

(X)θ ωɺ  = (X) (X)d i i dω ω+ɺ ɺ . 
 
The operator (X)θɺ  thus-defined is a derivation of degree 0; i.e.: 
 

(X)θɺ (ω1 ∧ ω2) = (X)θɺ ω1 ∧ ω2 + ω1 ∧ (X)θɺ ω2 . 
 

One verifies that the operators dɺ  and θɺ  commute.  If f (xα, yα) is an h kɺ  function that is 

defined on V then: 

(X)θɺ f = Xα fα∂
ɺ

= < X, dfɺ > . 

If ω = aα dxα then: 
(X)θɺ ω = ( β∂ ɺ aα X α + aβ α∂

ɺ
X β) dxα . 

 
 

 13. dɺ -closed forms. – A form Ω ∈ H is locally dɺ -closed if d Ωɺ = 0 on an open 

subset U of V.  From Poincaré’s theorem, there will exist a form ω ∈ H on U such that: 

 

dωɺ  = Ω . 
 
We shall recover this result and specify the expression for ω by establishing a remarkable 
identity that is verified by any form in the algebra H. 
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 Let ω be an h kɺ  semi-basic p-form that is defined on V .  Take the vector field to be 

the field y whose components are Xα = yα relative to the natural frame at the point Z 
whose local coordinates are xα, yα .  Let us specify the operator ( )yθ ωɺ .  By definition: 
 

 ( )yθ ωɺ  = ( ) ( )d i y i y dω ω+ɺ ɺ  

  = ( )[ ]
( )

d y i y dx
dx

β α
αβ

ω ω ∂ + ∧ ∂ ∂ 
ɺ

ɺ  

  = 
( ) ( ) ( )

dx dx y y dx y
dx dx dx

α α β α α βα α
αα β β

ω ωω ω∂ ∂∂∧ + ∧ + ∂ − ∧
∂ ∂ ∂

ɺ ɺ

ɺ
 

  = 
( )

dx y
dx

α α
αα

ω ω∂∧ + ∂
∂ ɺ

. 

 
The first expression on the right-hand side is equal to p ω, because ω has degree p, and 

the second expression is equal to k ω, because ω is h kɺ , so we will have the identity: 
 

(13.1)   ( ) ( )y p kθ ω ω= +ɺ  

or 
 
(13.2) ( ) ( )d i y i y dω ω+ɺ ɺ  = (p + k) ω . 
 

 Consequence. – If an h kɺ  p-form ω is dɺ –closed then the identity (13.2) will reduce 
to: 
 

(13.3)    ( )d i y ωɺ  = (p + k) ω , 
 

and ω = 
( )i y

d
p k

ω
+

ɺ  if p + k ≠ 0. 

 
 Theorem: 
 

 A dɺ -closed semi-basic p-form ω on V will be the dɺ  differential of the form  

1
( )i y

p k
ω

+
 when p + k ≠ 0. 

 

 Remark. – If ω is a p-form on Rn+1 that takes the form: 

ω = 1

1

1

!
p

p

ii
i ia dx dx

p
∧ ∧

⋯
⋯  
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in canonical coordinates is closed, and if its coefficients are homogeneous functions on xα 
of degree k then ω will be the exterior differential of the form: 
 

1
( )i y

p k
ω

+
  if p + k ≠ 0 . 

 
For p + k > 0, that result will be a consequence of the classical homotopy formula (5). 
 
 
 14. Special case of the algebra H (W). – The algebra H (W) is, by definition, the 

exterior algebra of restricted semi-basic forms on W ; i.e., they are 0hɺ . 

 If X is a restricted 0hɺ  vector field (i.e., it is defined on W) then the algebra H (W) 

will be stable under the operators i (X) and θ (X), but not under the operator dɺ .  That 

will permit one to deduce an element of H (W) from any 1hɺ  semi-basic form. 

 The 1hɺ  scalar function L (x, y) corresponds to the form on H (W): 

 

dɺL  = dxα
α∂
ɺ
L . 

 
 The 1hɺ  1-form ω = aα (x, y) dxα corresponds to the 2-form in H (W) : 
 

dωɺ  = 1
2 ( )a aα β αβ∂ − ∂ ɺɺ

 dxα ∧ dxβ . 

 

From the theorem in § 13, any dɺ -closed semi-basic p-form ω on W is the dɺ -differential 

of the (p – 1)-form 
1

p
 i (y) ω . 

 We verify that theorem by establishing, at the same time, some simpler necessary and 
sufficient conditions to have dωɺ  = 0 for p = 1 and 2. 

 First of all, in order for an 0hɺ  function f (x, y) to be such that: 
 

dfɺ = f dxα
α∂
ɺ

 = 0, 

 
it is necessary and sufficient that f should be independent of the variables yα. 
 

 Case of a 1-form. – Let an 0hɺ  semi-basic 1-form be: 
 

ω = aα (x, y) dxα . 
 

                                                
 (5) H. Cartan [2], Chap. III, pp. 18.  



22 Variational Spaces and Mechanics 

In order for ω to be dɺ –closed on an open subset U of W, it is necessary and sufficient 
that: 
 
(14.1)    a aα β αβ∂ − ∂ ɺɺ

 = 0 on U . 

 
Under those conditions: 

ω = ( )d a yα
α

ɺ . 

 Indeed: 

( )d a yα
α

ɺ = (aα + a yβ
α β∂
ɺ

) dxα . 

  
 Now, the relations (14.1) imply that: 
 
(14.2)    a yβ

α β∂
ɺ

 = 0  on U . 

 
Conversely, when one differentiates the identities (14.2) with respect to yβ, that will 
imply: 

a a yγ
α β γαβ∂ + ∂ ɺɺ ɺ

 = 0 . 

 
Upon switching α and β and subtracting, one will get the identities (14.1), so one will 
have the: 
 
 Theorem: 
 

 In order for the 0hɺ  form ω = aα (x, y) dxα to be dɺ –closed, it is necessary and 
sufficient that: 

y aβ
α β∂
ɺ

 = 0 . 

 

Under those conditions, there will exist a unique 1hɺ  function F such that: 
 

ω = dFɺ . 
 
The function F is necessarily equal to aα yα. 
 
 Case of a 2-form. – Let: 

Ω = 1
2 aαβ dxα ∧ dxβ 

 

be an 0hɺ  semi-basic 2-form.  In order for Ω to be dɺ –closed on an open subset U of W, it 
is necessary and sufficient that one should have: 
 
(14.3)    a a aα βγ γα γ αββ∂ + ∂ + ∂ɺɺ ɺ

 = 0 . 
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Under those conditions: 

Ω = dωɺ , with ω = 1
2 aαβ y

α dxβ. 

Indeed: 

dωɺ  = 1
2 aαβ dxα ∧ dxβ + 1

4 ( )y a aγ
α γβ γαβ∂ − ∂ ɺɺ

 dxα ∧ dxβ. 

 
 However, the relations (14.3) imply the identities: 
 
(14.4)    ( )y a aγ

α γβ γαβ∂ − ∂ ɺɺ
 = 0, 

and we indeed have: 

dωɺ  = Ω . 
 
 The identities (14.4) are equivalent to (14.3), moreover.  Indeed, upon differentiating 
(14.4) with respect to yγ and then cyclically permuting α, β, γ and adding, we will get the 
identities (14.3), and therefore the theorem: 
 
 Theorem: 
 

 In order for the 0hɺ  semi-basic 2-form: 
 

Ω = 1
2 aαβ dxα ∧ dxβ 

 

to be dɺ -closed, it is necessary and sufficient that one should have the identities: 
 

( )a a yγ
α γβ γαβ∂ − ∂ ɺɺ

= 0. 

 
Under those conditions, there will exist an 1hɺ  semi-basic 1-form ω such that: 
  

Ω = dωɺ , with ω = 1
2 a y dx dFα β

αβ + ɺ  

 

(in which F is an arbitrary 2hɺ  scalar function on V). 

 
 Remark. – On a well-defined neighborhood in a domain of local coordinates on 
V (xα, yα), it is sometimes convenient to set: 
 

dωɺ  = dxα ∧ αω∂
ɺ

 
 
for an arbitrary h kɺ  p-form ω .  The local operator thus-defined possesses the same 

properties as the operator dɺ  in the case of semi-basic forms.  In addition, we have the 
formula: 

ddωɺ  = − ddωɺ . 
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 A p-form ω is called ddɺ –closed if: 

ddωɺ  = 0. 
  

 If ω is a 1-form that is defined on W and ddɺ –closed then ω can be locally put into the 
form: 

ω  =dfɺ + dg, 
 

in which f (which is 1hɺ ) and g (which is 0hɺ ) are two scalar functions. 
 
 
 15. Prolonging a one-parameter group on Vn+1 to V . – Let C be a curve in Vn+1 that 

has a parametric representation of the form: 
 

xα = f α (u) 
on an open subset U of Vn+1 . 
 C corresponds to a curve π −1C in V that is defined in π −1U by: 

 

xα = f α (u) and yα = 
df

du

α

. 

 
 If we change the parameter and set u = ϕ (v) then the curve C will be represented by: 
 

xα = f α [ϕ (v)] = Fα (v), 
 
and the curve π −1C will be represented by: 
 

xα = Fα (u), yα = 
dF

dv

α

= ( )
df

v
du

α

ϕ′ . 

 
The coordinates yα are all multiplied by ϕ′ (v) .  The curve π −1C will then depend upon 
the parameterization of the curve (C).  By contrast, the curve π −1C in W is perfectly 
determined since the set xα, λ yα defines a well-defined point of W for any λ .  A curve in 
W that is deduced from a curve on Vn+1 by means of p−1 will be referred to as a basic 
curve in W from now on. 
 We denote: 

C  = p−1 C . 
 
 Let X be a vector field that is defined on U.  It will generate a local one-parameter 
group of local transformations when one integrates the differential system S : 
 
(15.1)     dxα = Xα (x) du. 
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 One and only one trajectory C of the group G passes through any point x0 of U, which 
will be denoted by x = exp (u X) x0 and will be defined on local coordinates by: 
 
(15.2)     xα = 0( , )f x uα β . 

 
The linear tangent map (exp u X)′ makes the vector y0 of 

0xT  correspond to the vector y 

of Tx such that: 

(15.3)     yα = 0 0( , )
f

x u y
x

α
β

β
∂
∂

. 

 
If y denotes, in particular, the tangent vector at x to the curve C that is defined by yα = xα

ɺ  

= 
dy

du

α

= Xα (x) then we will have: 

(15.4)     
dy

du

α

= ∂β X
α y β. 

 
That system will admit not only the vector field that is tangent to C as a solution along C, 
but also any field y that is invariant under θ (X).  Let us verify that. 
 The equalities: 

[θ (X) y]α = Xβ ∂β y
α − y β ∂β X

α = 0 
are equivalent to: 

dy

du

α

= ∂β y
α 

dy

du

β

= ∂β y
α X β = yβ ∂β X

 α 

along C. 
 We indeed recover equations (15.4). 
 Let X  denote the vector field on V that is the prolongation of the field X on Vn+1 and 
is defined by the components: 
 

Xα  and Xαɺ  = yβ ∂β X
 α . 

 
The field X  will generate a local one-parameter group G  of local transformations of W 
when one integrates the system S that is defined by: 
 

dx

du

α

= Xα (u)  and  
dy

du

α

= Xαɺ . 

 
That group G , which is called the prolongation of G to V, will admit trajectories that are 

curves in V that project onto Vn+1 along the trajectories of G.  The projections of those 
curves onto W are not basic, in general. 
 In order for the curve that passes through z0 (x0 , y0) to be basic, it is necessary and 
sufficient that y0 = λ X (x0) . 
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 If ω denotes a p-form that is defined on W (or more generally, a restricted p-form on 
V) then its Lie derivative with respect to X will be, by definition: 

 
θ (X) ω = (X)θ ω , 

and we will have the formula: 
θ (X) ω = (X) (X)i d diω ω+ . 

 

 In particular, if L (x, y) is an 1hɺ  scalar function then: 

 
θ (X) L = Xα ∂α L + y Xβ α

β α∂ ∂
ɺ
L  . 

 
_____________ 



CHAPTER III 
 

VARIATIONAL CALCULUS  
 
 

 16. Extremals of an integral. – Let L (x, y) be an 1hɺ  function of class C 2 on a 

domain U of V.  The 1-form ω = dLɺ  will then be defined on W. 

 Let f0 = p−1x0 and f1 = p−1x1 be two fibers that belong to the domain p−1π U of W, and 
let x0 and x1 be two arbitrary points of π U. 

 Consider the integral I (C) = 
C

dL∫ ɺ , where C is an arbitrary differentiable path that 

joins a point of f0 to a point of f1 .  We call a curve C such that: 
 

θ (Z) I = 0 
 
for any vector field Z that is tangent to W and verifies the relation pZ = 0 at the points x0 
and x1 an extremal of the integral I (C). 
 From (1.2) 

θ (Z) I = (Z)
C

dLθ∫ ɺ = (Z)
C
θ ω∫ = (Z) (Z)

C C
i d diω ω+∫ ∫ . 

 
The last integral is zero, because the form ω is semi-basic, and pZ = 0 at x0 and x1 . 
 If X α, Y α are the components of the vector Z in the natural frame at the point (x, y) of 
W then we will have: 

i (Z) dω =
( ) ( )

( ) ( )

d d
X Y

dx dy
α α

α α
ω ω∂ ∂+

∂ ∂
. 

 

In order for the integral (Z)
C
i dω∫  to be zero for any field Z, it is necessary and 

sufficient that the path C should be such that one will have: 
 

( )

( )

d

dxα
ω∂

∂
 = 0  and 

( )

( )

d

dyα
ω∂

∂
 = 0 

 
along C.  The preceding differential system is nothing more than the extremal system of 
the form ω, which is a completely integrable system. 
 Let us make that system more explicit.  We have: 
 

dω = 1
2 ( )L L dx dx L dy dxα β β α

βααβ αβ∂ − ∂ ∧ + ∂ ∧ɺ ɺɺ ɺ
. 

 
 The extremal system is composed of the following 2 (n + 1) equations: 
 

(16.1)   
( )

( )

d

dxα
ω∂

∂
 = ( )L L dx L dyβ β

βααβ αβ∂ − ∂ − ∂ɺ ɺɺ ɺ
= 0, 
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(16.2)   
( )

( )

d

dyα
ω∂

∂
 = L dxβ

αβ∂ ɺɺ
= 0 . 

 
Since L is 1hɺ , we will have: 

L dyβ
αβ∂ ɺɺ

= 0 

 

identically.  The matrix Lαβ∂ ɺɺ
 is singular then.  By definition, the variational problem 

under study will be called regular if the matrix Lαβ∂ ɺɺ
 has rank n.  Under those 

conditions, the system (16.2) will show that the dx are proportional to the y with the same 

index.  The extremals of the form dLɺ  will then be the basic curves of W. 
 Upon denoting an arbitrary parameter by u, we can set: 
 

yα = 
dx

du

α

= xα
ɺ . 

 
 Equations (16.1) will then be written in the form: 
 
(16.3)    ( )L x L L xβ β

βααβ αβ∂ − ∂ − ∂ɺ ɺ ɺɺ
ɺɺ ɺ  = 0 , 

 
and since: 

L xβ
αβ∂ ɺ
ɺ  = ∂α L , 

 
those equations, which define the projections of the extremals onto Vn+1 , can be further 
written: 

d
L

du α∂
ɺ

 − ∂α L = 0. 

 
Those equations are the Euler equations that relate to the integral: 
 

( , )L x x du∫ ɺ . 

 We can then state the theorem: 
 
 Theorem: 
 

 The extremals of the integral dL∫ ɺ , where L (x, y) is an 1hɺ  function on V, are basic 

paths in W that project onto Vn+1 along the extremals of the integral: 
 

( , )L x x du∫ ɺ . 
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 17. Extremal system of a 1-form ω defined on W. – Let ω be a 1-form that is 
defined on W.  Its inverse image on V, which we shall once more denote by ω, is written: 

 
ω = aα (x, y) dxα + bα (x, y) dyα  

 

locally.  Since that form is assumed to be defined on W, it will result that the aα are 0hɺ  , 

while the bα are ( 1)h −ɺ , and that bα yα = 0. 

 Since the form ω is defined on W, the same thing will be true for its exterior 
differential: 

dω = 1
2 aαβ dxα ∧ dxβ + 1

2 bαβ dyα ∧ dyβ + cαβ dxα ∧ dyβ, 

with 
aαβ = ∂α aβ − ∂α aβ , bαβ = b bα β αβ∂ − ∂ ɺɺ

, cαβ = b aα β αβ∂ − ∂ ɺ . 

 
 It will then result that: 

bαβ y
β = 0 and cαβ y

β = 0. 
 
 Now let us form the extremal system of ω .  It is defined by: 
 

(17.1) 
( )

( )

d

dxα
ω∂

∂
 = aαβ dxβ + cαβ dyβ = 0, 

 

(17.2) 
( )

( )

d

dyα
ω∂

∂
 = − aαβ dxβ + bαβ dyβ = 0 . 

 
This system, which is defined on W, is completely integrable.  One and only one integral 
curve will pass through any point (x0 , y0) of W, which is defined on a neighborhood of 
(x0 , y0) by the equations: 
 

xα = f α (x0 , y0 , u), yα = g α (x0 , y0 , u) . 
 
These curves are not basic, in general.  In order for that to be the case, it is necessary and 
sufficient that the following 2 (n + 1) differential equations in n + 1 unknown functions 
(xβ): 
 
(17.3)     a x c xβ β

αβ αβ+ɺ ɺɺ = 0, 

 
(17.4) − c x b xβ β

αβ αβ+ɺ ɺɺ = 0 

 
should be compatible. 
 That will be true if equations (17.4) are verified independently; i.e., if: 
 

bαβ = 0  and if  c xβ
βα ɺ = 0. 
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In that case, there will locally exist an 0hɺ  function F (x, y) such that bα = Fα∂
ɺ

.  The 

identities c xβ
βα ɺ  = 0 will then be written in the form: 

 
( )F a xα

αβα β∂ − ∂ɺ ɺ
ɺ = 0 

or 
A xα

αβ∂ ɺ ɺ = 0 with Aα = − ∂α F + aα . 

 
The form Aα dxα is then dɺ -closed.  There will then exist an 1hɺ  function L (x, y) such that 

Aα = Lα∂
ɺ

, or: 

aα = L Fα α∂ + ∂
ɺ

. 

 The form ω is then written: 
  

ω = L dx F dx F dyα α α
α α α∂ + ∂ + ∂
ɺ ɺ

, 
or 

ω = dLɺ + dF . 
 
 The preceding considerations are valid, in particular, for a semi-basic 1-form. Indeed, 
in that case, the bαβ will be identically zero. 
 Equations (17.4) can then be written: 
 

a xβ
α β∂
ɺ
ɺ  = 0 . 

 
Since they must be verified identically, they constitute a necessary and sufficient 
condition (14.2) for the form: 

ω = aα dxα 
 

to be dɺ -closed.  We can then state the theorem: 
 
 Theorem: 
 
 In order for a semi-basic form on W to admit basic extremals, it is necessary and 

sufficient that it should be dɺ -closed. 
 
 It results from (I, § 8) that the form ω = dLɺ  will define a relative integral invariant 
and that its differential dω will define an absolute integral invariant for the extremals of 
the form ω . 
 
 18. Euler vectors and forms. – Let C be a differentiable path in W that belongs to 
the same local coordinate domain U.  Let: 
 

xα = xα (u) and yα = yα (u) 
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be a parametric representation of C. 
 The n + 1 functions of u : 

(18.1)    Pα (L) = ( )
dy

L L L y
du

β
β

αβαβ αβ∂ + ∂ − ∂ɺ ɺɺɺ
 

 

are the covariant components of an 1hɺ  restricted vector P (L) that is defined at any point 
of C.  Those various vectors are, by definition, the Euler vectors of the path C relative to 
L. 

 The extremals of ( , )L x y du∫  are the paths in W along which the Euler vector P (L) is 

zero. 

 A 2-form π (L) is attached to the 1hɺ  function L (x, y), which is defined on W by: 
 

(18.2) π (L) = ( )d dLɺ = ( )d L dxα
α∂
ɺ

 = 1
2 ( )L dy dx L L dx dxα β α β

αβαβ αβ∂ ∧ + ∂ − ∂ ∧ɺ ɺɺɺ
. 

 
That 2-form π (L) is, by definition, the Euler form that corresponds to the function L . 
 Let us point out some properties of the Euler forms and vectors that are attached to 
the same path of W. 
 
 1. The correspondence between L and P (L) is linear:  If L1 and L2 are two functions 
that are defined on V to be 1hɺ  and have class C2 , and if k1 and k2 are two arbitrary 

constants then: 
P (k1 L1 + k2 L2) = k1 P (L1) + k2 P (L2) . 

 2. We have: 
Pα (L) yα = 0 

 
identically.  Indeed, L yα

αβ∂ ɺɺ
 = 0, since Lβ∂ ɺ  is 0hɺ , and: 

 
( )L L y yα β

αβ αβ∂ − ∂ ɺɺ
= 0, 

 
from the antisymmetric of the expression in parentheses or by the use of the Euler 
identity. 
 
 3. Suppose that L has the form: 

L = Aα (x) yα . 
 Under those conditions: 
 
(18.3)    Pα (L) = ( )A A yβ

β α α β∂ − ∂  

and 
π (L) = d (Aα dxα) . 

 
 Suppose, more particularly, that the vector A whose covariant components are Aα is 
the gradient of a function f (x) ; i.e.: 
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Aα = ∂α f . 
 We then have: 

Pα (L) ≡ 0 and π (L) ≡ 0 . 
 

 Conversely, if π (L) ≡ 0 then we will have: 
 

Lαβ∂ ɺɺ
 = 0, 

so 
L = Aα (x) yα  and  ∂α Aβ − ∂β Aα = 0 , 

 
which implies that there locally exists a function f (x) such that: 
 

Aα = fα∂
ɺ

. 

 We can then state the: 
 
 Theorem: 
 

 In order for two 1hɺ  functions L (x, y) and ( , )L x y  to admit identical Euler vectors, it 
is necessary and sufficient that one should have: 
 

L  − L = ∂α f yα 
 
locally, where f is an arbitrary function of the variables xα. 
 
 4. If f (x) is an arbitrary differentiable function of the variables xα and L (x, y) is a 

twice-differentiable 1hɺ  function then we will have: 
 
(18.4)    Pα (f L) = f Pα (L) + ( )f L f L yβ

β α α β∂ ∂ − ∂ ∂ ɺɺ
 

and 
 
(18.5)     π (f L) = f π (L) + df ∧ dLɺ . 
 
In particular, if L = ∂α g yα, g (x) is an arbitrary differentiable function of the variables xα: 
 

Pα (f L) = ( )f L f L yβ
β α α β∂ ∂ − ∂ ∂ ɺɺ

 

and 
π (f L) = df ∧ dg . 

 
 19. Helmholtz conditions. – Let Ω be a 2-form that is defined on W that has the 
following expression in a domain U with local coordinates xα, yα : 
 

Ω = aαβ dyα ∧ dxβ + 1
2 bαβ dxα ∧ dxβ. 
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If Ω is the Euler form of a 1hɺ  function L (x, y) then the aαβ will be symmetric, and Ω = 0. 
 

ω = Aα (x, y) dxα + Bα (x, y) dyα, 
such that: 

Ω = dω . 
 

Since Ω does not contain any terms in dyα ∧ dyβ, the Bα will be independent of the 

variables yα, and since ω is defined on W, the Bα will be ( 1)h −ɺ .  They will then be 

identically zero, and ω will be semi-basic.  We will then have: 
 

aαβ = Aαβ∂ ɺ  and bαβ = A Aα β β α∂ − ∂ . 

 
Since the aαβ  are symmetric, we deduce that: 
 

A Aα α ββ∂ − ∂ɺ ɺ
= 0, 

 

which are relations that show that the form ω is dɺ -closed. 

 There will then locally exist a 1hɺ  function L (x, y) such that: 
 

Aα = Lα∂
ɺ

, 

and we will indeed have: 
 

aαβ = Lαβ∂ ɺɺ
 and bαβ = L Lβααβ∂ − ∂ɺ ɺ

, 

and thus: 
 
 Theorem: 
 
 In order for the 2-form that is defined on W: 
 

Ω = aαβ dyα ∧ dxβ + 1
2 bαβ dxα ∧ dxβ 

 
 to be an Euler form, it is necessary and sufficient that Ω should be closed, since the 
coefficients aαβ are symmetric. 
 
 Upon making that condition more explicit, we will find the conditions that are called 
the Helmholtz conditions.  Indeed, the preceding problem is equivalent to the one that 
was solved by Helmholtz and Mayer that relates to the existence of a function L (xk, x′ k, 
t) such that system of n second-order differential equations: 
 

Gi (x
k, x′ k, x″ k, t) = 0 

can be put into the form: 
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i i

d L L

dt x x

∂ ∂−
′∂ ∂

= 0 . 

 
 
 20. Extremals and geodesics. – Consider the Finsler space F that is defined on the 

manifold Vn+1 by the 1hɺ  function L (xα, yα) .  With E. Cartan, set: 
 

lα = 
1

y
L

α  and lα = Lα∂
ɺ

. 

 
The geodesics of F are defined by the equations: 
 

(20.1)    
l

du

α∇
= 

1dl
l l

du L

α
α β γ
βγ+ Γ = 0, 

or by: 
 

(20.2)    
l

du
α∇

= 
1dl

l l
du L

β γα
αγ β− Γ = 0 . 

 
 A classical calculation (6) shows that: 
 

1
l l

L
β γ
αγ βΓ = Lα∂ , 

and that: 
y yβ β γ

αγΓ = 2 Gα, 

with: 

Gα = gαβ Gβ  and  2 Gβ = F yλ
βλ∂ ɺ  − ∂β F ( )21

2F L= . 

 
Equations (20.2) then show that the geodesics of F are identical to the extremals of the 
integral ∫ L du . 
 Those equations are equivalent to equations (20.1), which are written in the following 
form: 

2dl
G

du L

α
α+  = 0 

or upon reverting to the variables yα : 
 

(20.3)   2
dy

G
du

α
α+  = 

dL
y

L du
α  with yα = 

dx

du

α

. 

 
In what follows, we shall sometimes write that system in the form: 
 
                                                
 (6) E. Cartan [1] ; J. Favard [2].  
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(20.4)   
1 1

1

2x G

x

+ɺɺ
ɺ

 = 
2 2

2

2x G

x

+ɺɺ
ɺ

= … = 
1 1

1

2n n

n

x G

x

+ +

+

+ɺɺ

ɺ
. 

 
 
 21. Geodesics map between two Finsler spaces. – Consider two Finsler spaces F 

and F  that are defined on the same base manifold Vn+1 when one is given the two 1hɺ  

functions L (x, y) and ( , )L x y .  The geodesics of F are defined by equations (20.4), while 

those of F  are defined by equations that are obtained by starting with the preceding ones 
and replacing the Gα that relate to L with the Gα  that relate to L .  In order for those two 
system of equations to be equivalent, it is necessary and sufficient that there should exist 

an 1hɺ  function ( , )p x xɺ  such that: 
 
(21.1)     Gα  − Gα ≡ p xα

ɺ . 
 
The geodesics of F  are defined by the Euler equations relative to the function L : 
 

( )L x L L xβ β
αβαβ αβ∂ + ∂ − ∂ɺ ɺɺɺ

ɺɺ ɺ  = 0, 

 
or, since L xβ

αβ∂ ɺɺ
ɺ ≡ 0, by the equations: 

 

(21.2)   
1

( )
dL

L x x L L x
L du

β β β
αβαβ αβ

 ∂ − + ∂ − ∂ 
 

ɺ ɺɺɺ
ɺɺ ɺ ɺ  = 0 . 

 
In order for these geodesics to be the same as those of F, from (20.3), it is necessary and 
sufficient that the first expression in parentheses in (21.2) should be equal to Gβ.  One 

then has this result: The functions L  that define the same geodesics as L are the 1hɺ  
functions that are solutions to the system of partial differential equations: 
 
(21.3)    ( )L G L L xβ β

αβαβ αβ∂ + ∂ − ∂ɺ ɺɺɺ
ɺ = 0. 

 
As an application of the preceding considerations, we shall solve the following problem: 
 

 Problem. – If one is given an 1hɺ  function ( , )L x xɺ  then does there exists a function 

( , )L x y  of the form: 

( , )L x y = f (x) ( , )L x xɺ  
 
such that L and L  define the same geodesics? 
 
 We shall use an overbar to highlight everything that relates to the Finsler space F  
that is defined by f (x) L, where f (x) is supposed to be known. 
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 Set F  = 1
2  f 2 L2 ; hence: 

 
(21.4)  2Gβ  = F x Fα

ββα∂ − ∂ɺ ɺ
ɺ = 2 f 2 Gβ + 2f ∂α f L L xα

β∂ ɺ ɺ – f ∂β f L
2. 

 
 In order for those relations to have the form (21.1) or the equivalent form: 
 
(21.5)    2Gβ = 2 f 2 Gβ + 2 p f 2 L Lβ∂ ɺ , 

 

it is necessary and sufficient that there should exist an 0hɺ  function g (x, xɺ ) such that: 
 
(21.6)     Lβ∂ ɺ  = g (x, xɺ ) ∂β f . 

 
L will then have the form: 
 
(21.7)     L = g (x, xɺ ) ∂β f xβ

ɺ . 
 
However, in order for one to deduce (21.6) from that, it is necessary and sufficient that 
the function g should be independent of the xɺ .  We can then state the: 
 
 Theorem: 
 
 In order for the functions L (x, xɺ ) and f (x) L (x, xɺ ) to define the same geodesics, it is 
necessary and sufficient that the function L (x, xɺ ) should have the form: 
 

L = g (x) ∂α f (x) xα
ɺ  = 

( )
( )

df x
g x

du
. 

 
This theorem is an immediate consequence of formula (18.4), moreover. 
 We remark that if L has the form (21.7) then not only f L, but any function of the 
form: 

F (f) L  or G (g) L , 
 

will define the same extremals as L. 
 Furthermore, that will result directly from the definition of the extremal systems of 
the forms: 

ω = g ∂α f dxα = g df and ω  = F (f) g df . 
 
 Indeed, dω = dg ∧ df and dω  = F (f) dg ∧ df admit the same associated system. 
 
 
 22. Extremals in Hamiltonian coordinates. – Consider the Finsler space that is 

defined on the manifold Vn+1 by an 1hɺ  function L (xα, yα) . 
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 A vector y of the tangent space to Vn+1 at x can be defined by either its contravariant 
components yα with respect to the natural frame at the point x or by its covariant 
components yα = gαβ y

β. 
 The point y whose origin is x corresponds to the point Z in the space V of vector 

tangent to Vn+1 .  We call the 2 (n + 1) numbers xα and yα the Hamiltonian coordinates of 
the point Z. 
 Since the Finslerian metric is assumed to be regular, the relations yα = gαβ y

β will 
permit one to calculate the yβ as functions of the xα and the yα , such that the expressions 
obtained will be homogeneous of first degree with respect to the yα ( 1h , in what follows) 
(†). 
 Upon replacing the yα in L (xα, yα) with their expressions that are obtained in that 
way, L will become a function H of the xα, yα such that: 
 
(22.1)  H (xα, yα) = L (xα, gαβ yβ) and H (xα, gαβ y

β) = L (xα, yα) . 
 
By definition, H (xα, yα) is the Hamiltonian function that corresponds to L .  Since L is 

1hɺ , H will be 1h ; i.e.: 

(22.2)    H yα
α∂ ɺ  = H, with Hα∂ ɺ = 

H

yα

∂
∂

. 

 
 The unit vector l has the same direction as y, so its contravariant components will be 
lα = yα / L, while its covariant components will be: 
 

lα = 
y

H
α . 

 
 The relation (22.1) will then show that: 
 

lα = Hα∂ ɺ  = 
y

H
α . 

We will then have: 
 

yα = H Hα∂ ɺ = ( )21
2 Hα∂ ɺ = Kα∂ ɺ , with  K = 21

2 H , 

  
which are dual to: 

yα = L Lα∂
ɺ

= ( )21
2 Lα∂

ɺ
= Fα∂

ɺ
. 

 
 We shall now show that ∂α H = − ∂α L . 
 We differentiate the two sides of the identity: 
 

                                                
 (†) Translator: In the original, the notation was a dot beneath the h, but I do not have that option in my 
equation editor, so I substituted an underline. 
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H (xα, yα) = L (xα, gαβ yβ) = L (xα, yα) 
and get: 
 
(22.3)    dH = ∂α L dxα + L dyα

α∂
ɺ

. 

 
Now: 

L dyα
α∂
ɺ

 =  
1

H
yα dyα = 2 dH – 

1

H
yα dyα , 

 from 
yα yα  = H 2 . 

 
 The expression (22.3) for dH will then become: 
 

(22.4)    dH = − ∂α L dxα +
1

H
yα dyα  . 

 
 We then indeed deduce that ∂α H = − ∂α L , and we recover the fact that: 
 

Hα∂ ɺ  = 
1

H
yα. 

 
It will then be easy to write the fundamental formulas that relate to a Finsler space with 
the aid of the variables xα, yα , and the function H. 
 For example, we have the relations: 
 

H 2 = L2 = gαβ y
α yβ = gαβ yα yβ . 

 
 The relations y gα

αβλ∂ ɺ  = 0 imply that gαβ = Fαβ∂ ɺɺ
. 

 One then shows that when one starts with gαβ gαβ = β
γδ , one will get yα ∂λ gαβ = 0, 

which are relations that will then imply that: 
  

gαβ = Kαβ∂ ɺɺ . 
  
 Since the connection is Euclidian (∇gαβ = 0) and special, in the Lichnerowicz sense, 
we will then deduce that the torsion tensor will have components: 
 

T αβγ = − 1
2 gγ αβ∂ ɺ = − 1

2 Kαβγ∂ ɺɺ ɺ . 

 
 However, we are more especially interested in the differential system for the 
geodesics of the Finsler space; they are defined by the Euler equations: 
 

(22.5)   
d

L
du α∂

ɺ
 − ∂α L = 0,  with yα = 

dx

du

α

. 
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Now: 

Lα∂
ɺ

= 
1

y
H α  and ∂α L = − ∂α H . 

 
 Equations (22.5) can then be written in the form: 
 

yd

du H
α + ∂α H = 0 or 

dy y dH

du H du
α α− + H ∂α H = 0, 

 
so the system of equations defines the geodesics of the Finsler space in Hamiltonian 
coordinates: 

(22.6)   
dy

du
α = − ∂α H + λ yα and 

dy

du
α = Kα∂ ɺ , 

 
where λ is an 1h  function of the xα

 , yα . 
 In reality, the preceding equations define basic paths in W that project onto Vn+1 along 
the geodesics in the Finsler space considered. 
 Instead of taking xα

 , yα to be the Hamiltonian coordinates on W, with the yα being 
covariant components of an arbitrary vector in the tangent space Tx , take xα and lα , with 
lα = yα / H . 
 Those 2 (n + 1) variables are no longer independent, because the lα are the covariant 
components of a unit vector, so we will have: 
 

H (xα, lα) = 1. 
 
Take the parameter u to be the arc-length s of the geodesic, which is defined by: 
 

ds = L (xα, dxα) =  Lα∂
ɺ

(xα, yα) dxα = lα dxα. 

 
Under those conditions, equations (22.6) can be put into the form: 
 

(22.7)    
dx

ds

α

= Hα∂ ɺ  and 
dl

ds
α = − ∂α H. 

 
The preceding equations can be obtained directly.  Indeed, they constitute the extremal 
system of the form: 

ω = L dxα
α∂
ɺ

 = lα dxα . 
 
 This extremal system is the associated system to the 2-form: 
 

dω = dlα ∧ dxα. 
 Upon writing that: 

i (Z) dω ≡ 0 
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for any vector Z that is tangent to W − i.e., such that: 
 

i (Z) dH = 0, 
we find that: 

d

dxα
ω∂

∂
 = 

dH

dxαλ ∂
∂

 and  
d

dlα

ω∂
∂

 = 
dH

dlα
λ ∂

∂
, 

or 
− dlα = λ ∂α H  and  dxα = Hαλ ∂ ɺ . 

 
Since dxα / ds = lα = Hα∂ ɺ , the proportionality factor is equal to ds, we will have 
equations (22.7) 
 
 
 23. Basic paths in W in Hamiltonian coordinates. – Consider a differentiable path 
in W.  Such a path is defined parametrically by the equations: 
 

xα = xα (u) and lα = lα (u) . 
 
In order for that path to be basic, it is necessary and sufficient that there should exist a 
function f (u) such that: 
 

dx

ds

α

= f (u) lα,  where  lα = gαβ lβ = Hα∂ ɺ , 

 
upon supposing that the xα and lα that enter into Hα∂ ɺ  are expressed as functions of u . 
 A path is therefore basic if and only if one has: 
 

(23.1)    
1

1

dx

H∂ɺ
=

2

2

dx

H∂ ɺ
= … = 

1

1

n

n

dx

H

+

+∂ ɺ
 

along that path. 
 As an application of the preceding, consider the semi-basic form that is defined on W: 
 

ω = aα (xβ, lβ) dxα, 
 
and look for the conditions under which the extremals of ω will be basic curves in W.  
We have: 

dω = 1
2 (∂α aβ − ∂β aα) dxα ∧ dxβ + aβ

α∂ ɺ dlβ ∧ dxα . 

 
 Hence, one has the extremal system: 
 

(23.2)   (∂α aβ − ∂β aα)
dldx

a
du du

β
ββ

α− ∂ ɺ = λ ∂α H , 
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(23.3) 
dx

a
du

β
α

β∂ ɺ = Hαλ ∂ ɺ . 

 
 Equations (23.3) must imply that: 

dx

du

β

= Hβµ ∂ ɺ . 

 
It will then be necessary that the coefficients aα

β∂ ɺ  must have the form: 

 
(23.4)     aα

β∂ ɺ = f (x, l) α
βδ . 

 
 Upon supposing that α ≠ β, one will deduce that: 
 

2a

l l
β

α β

∂
∂ ∂

= 
f

lα

∂
∂

 = 0. 

 
 The function f will then be independent of the l, and the aα will necessarily have the 
form: 

aα = f (x) lα + gα (x) . 
 
 The converse is immediate; hence: 
 
 Theorem: 
 
 In order for a semi-basic form that is defined on W : 
 

ω = aα (xβ, lβ) dxα 
 
to admit basic extremals, it is necessary and sufficient that the aα should have the form: 
 

aα = f (x) lα + gα (x) , 
 
in which f (x) is a function of only the variables xα, and the gα (x) are the covariant 
components of a vector that is defined on Vn+1 . 
 
 The result obtained indeed agrees with the one is § 17.  Indeed, when one passes to 
the variables xα, yα, ω will be put into the form: 
 

ω = [f (x) Lα∂
ɺ

+ gα (x)] dxα = dɺ (f L + gα yα) . 

 
The preceding calculations also show that when one is given the 2-form Ω, which is 
defined on Ω by: 

Ω = 1
2 Sαβ dxα ∧ dxβ + aβ

α dlβ ∧ dxα, 
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in order for the solutions to the associated system of Ω to be basic curves in W, it is 
necessary and sufficient that the coefficients aβ

α  should have the form: 

 
aβ

α = f (x) β
αδ ; 

i.e., that one must have: 
Ω = 1

2 Sαβ dxα ∧ dxβ + f (x) dlβ ∧ dxα. 

 
 

____________ 
 



CHAPTER IV 
 

VARIATIONAL CALCULUS  
AND GENERALIZED FINSLER SPACE  

 
 

 24. S-extremals of an integral. – Recall the notations of § 16.  Let f0 and f1 be two 
fibers of W that belong to the same domain U of local coordinates on W.  Let x0 = p f0 and 
x1 = p f1 be the corresponding points of Vn+1 . 
 Let E be the set of differentiable paths in U that join a point of f0 to a point of f1 .  
Define one of those paths C by a representation of the form: 
 
(24.1)    xα = xα (u), yα = yα (u) , 
 
with 

x0 = x (u0) and x1 = x (u1). 
 
 A path C  in E that is close to C is defined by: 
 
(24.2)   xα = xα (u) + δ xα, yα = yα (u) + δ yα, 
 
in which δ xα and δ yα are differentiable functions of u that have the form: 
 

δ xα = ε Xα (u) , δ yα = ε Yα (u) , 
 
in which ε is an infinitely small number, and Xα, Yα are the components of a tangent 
vector to W at the point z (u) whose coordinates are xα (u), yα (u). 

 Suppose that T β
α  is a restricted 1hɺ  tensor that is defined on V.  Paths TC  that are 

close to C and defined by arbitrary δ xα and: 
 

(24.3)    δ yα = 
d

x T x
du

α α β
βδ δ+  

are said to be T-close to C . 

 Suppose that an 1hɺ  function L of class C 2 is given on U.  In local coordinates, it is 

expressed by L (δ xα, δ yα) .  Set: 

I (C) = 
C

L du∫ . 

 
 Upon passing from C to C , I (C) will experience a variation ∆I whose principal part 
is: 

(24.4)    δ I = ( )
C

L x L y duα α
α αδ δ δ∂ +∫ ɺ

. 

 
 For a path C  that is T-close to C, we will have: 
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δ I = ( )
C C

d x
L x LT x du L du

du

α
α α α

α α β α
δδ δ∂ + ∂ + ∂∫ ∫ɺ ɺ

. 

 
We now integrate the last integral by parts.  Since the δ xα are zero at the extremities of 
C, we will get: 

δ I = 
C

d
L LT L x du

du
β α

α α αβ δ ∂ + ∂ − ∂ 
 
∫ ɺ ɺ

. 

 
 From the fundamental lemma of the calculus of variations, in order to have δ I = 0 for 
any δ xα, it is necessary and sufficient that one should have: 
 

d
L LT L

du
β

α α αβ∂ + ∂ − ∂ɺ ɺ
 = 0 

or 

(24.5)    Pα (L) ≡ 
d

L L
du α α∂ − ∂

ɺ
= LT β

αβ∂ ɺ  

along C. 
 We refer to the projection onto Vn+1 of the basic paths that are solution to (24.5) as the 

generalized extremals of the integral 
1

0

( , )
x

x
L x x du∫ ɺ ; i.e., the solutions to the differential 

system: 

(24.6)    
,

.

d
L L LT

du

dx
y

du

β
α α αβ

α
α

 ∂ − ∂ = ∂

 =


ɺɺ

 

 
 When the tensor T β

α  is zero at any point of V, the T-extremals of I are the ordinary 

extremals of the integral: 
1

0

( , )
x

x
L x x du∫ ɺ . 

 
Now, suppose that the manifold Vn+1 is endowed with the Finslerian metric that is defined 
by ds = L (xα, dxα). 
 Under those conditions, we can transform the right-hand side of (24.5). 
 Indeed: 

LT β
αβ∂ ɺ = g l Tγ β

βγ α  =  Tαγ l 
γ  (Tαγ = g Tβ

βγ α ) . 

 
 Now, l  α Pα (L) ≡ 0, it will then result that: 
 

Tαγ l
 α l γ = 0 . 

 
That condition is satisfied if the tensor Tαγ is antisymmetric, which we shall suppose in 
what follows. 
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 In analytical mechanics, we are led to introduce the 2-form: 
 

ω = 1
2 Sαβ dxα ∧ dxβ = 1

2 dɺ  (− Xα dxα), 

 
in which the Xα are the covariant components of the generalized force vector, and the Sαβ 

are the 0hɺ  components of a tensor that is called the force tensor and is defined on W.  
We will then be led to set: 

Tαβ = L Sαβ . 
 
We shall call the solutions to the differential system: 
 

,
d

L L S y
du

dx
y

du

β
α α αβ

α
α

 ∂ − ∂ =

 =


ɺ

 

 

the S-extremals of the integral 
1

0

( , )
x

x
L x x du∫ ɺ . 

 We remark that this differential system is the associated system to the 2-form: 
 
 Ω = 1

2( )d L dx S dx dxα α β
α αβ∂ + ∧
ɺ

 

  = ( )1
2( )d dL d X dxαα+ −ɺ ɺ  

  = ( )1
2d dL X dxαα− −ɺ . 

 
 
 25. S-Finslerian spaces. – We propose to define a linear connection in the directions 

on Vn+1 whose coefficients are determined when one is given the 1hɺ  function L and the 

0hɺ  tensor Sαβ , and the geodesics on Vn+1 relative to that connection are the S-extremals 
of the integral: 

1

0

( , )
x

x
L x x du∫ ɺ  

 
that was defined before.  We shall adopt the style of presentation of A. Lichnerowicz (7). 
 Let E (Vn+1) be the principal fiber bundle of frames on Vn+1 , and let p−1 E (Vn+1) be its 
inverse image over W .  A linear connection on the direction on Vn+1 is an infinitesimal 
connection on p−1 E (Vn+1) . 
 Such a connection is defined when one is given a suitable 1-form ω of adjoint type 

with values in the Lie algebra of GL (n + 1, R). 

                                                
 (7) A. Lichnerowicz [6].  
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 Let U be a local coordinate domain in Vn+1 , while p−1U is the corresponding domain 
in V.  Let Z be a point of V such that π Z = x .  A local coordinate system for Z is the set 

of the coordinates xα of x and the components yα of a vector in Tx . 
 Now, take the coframe on xT ∗  to be the 2 (n + 1) forms dxα, dyα.  When referred to 

that coframe, the connection ω will be defined by its components αβω , which have the 

form: 
 
(25.1)    α

βω = b dx c dyα γ α γ
βγ βγ+ . 

 

 Since the connection is defined on W, the bα
βγ  will be 0hɺ , and the cα

βγ  will be ( 1)h −ɺ , 

and we will have the identities: 
c yα γ

βγ  = 0. 

 
For an arbitrary restricted vector X that is defined on V, we set: 

 
  ∇Xα = d Xα + Xα β

βω . 

 
In particular, consider the vector field that makes the point z of V correspond to the vector 

z in Tp z whose components are yα.  Set: 
 
(25.2)    θ α = ∇yα = d yα + yα β

βω . 

 
Since the linear connection ω is assumed to be regular, the 2 (n + 1) forms dxα and θ α 
define a coframe on xT ∗ .  Relative to that coframe, set: 

 
(25.3)    α

βω  = dx Cα γ α γ
βγ βγ θΓ + . 

 

The forms α
βω  are defined on W, so one will verify that the Γ are 0hɺ , the C are ( 1)h −ɺ , 

and that C yα γ
βγ  = 0. 

 The Pfaffian derivatives of a function f (x, y) relative to the coframe (dxα, θα) are 
expressed in a simple fashion with the aid of the partial derivatives of f relative to the x 
and y.  Indeed, upon denoting the Pfaffian derivatives by δα f and  fαδ

ɺ
, we will have: 

 
df = δα f dxα + f α

αδ θ
ɺ

= ∂α f dxα + f dyα
α∂
ɺ

, 

so, by identification: 
 
(25.4)    δα  = ∂α − yγ β

λα βΓ ∂ ɺ , 
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(25.5) αδ
ɺ
 = y Cγ β

α λα β∂ − ∂ ɺɺ
. 

 
Now let us specify the torsion form of that connection.  The torsion 2-form Σ is defined 
by: 

Σα = dxα β
βω ∧ = 1

2 S dx dx T dxα β γ α β γ
βγ βγ θ∧ − ∧ . 

 
Upon replacing α

βω  with its expression that we infer from (25.3), we will get: 

 
(25.6) Sα

βγ = − ( )α α
βγ γβΓ − Γ  

and 
 
(25.7) T α

βγ  = Cα
βγ . 

 
 Now, set 2F = L2, and: 

gαβ = Fαβ∂ ɺɺ
. 

 

 Since the function F is 2hɺ , we will have: 
 

2 F = L2 = gαβ y
α yβ, 

 

which shows that the gαβ are the covariant components of an 0hɺ  symmetric tensor; i.e., 
they are defined on W. 
 In order for the linear connection on the directions that is defined by ω to be naturally 
associated with a Euclidian connection on directions of the metric manifold that is 
defined on Vn+1 by the tensor gαβ , it is necessary and sufficient that one must have (8): 
 

∇gαβ = 0 
for that connection, or more explicitly: 
 
(25.8)    dgαβ − g gλ λ

α λβ β λαω ω− = 0 . 

 
 Set: 

ωαβ = g λ
αλ βω ,  Γαβγ = g λ

αλ βω ,  T αβγ = g Tλ
αλ βγ . 

 
 The relations (25.8) will then be equivalent to the following ones: 
 
(25.9)    Γαβγ + Γβαγ = δγ gαβ , 
 
(25.10)     T αβγ + T βαγ = gγ αβδ

ɺ
.  

                                                
 (8) A. Lichnerowicz [6].  
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 In order for the connection ω to be determined completely when one is given L and 
the tensor S, we shall make some supplementary hypotheses that relate to the torsion 
tensors and are analogous to the hypotheses that define the classes of special connections, 
in the sense of A. Lichnerowicz: 
 
(25.11)  1. Tαβγ = Tβαγ , 
 

(25.12)  2. Sα
βγ = − lα Sβγ ,  with lα = 

y

L

α

. 

 
If the tensor Sαβ is zero over the entire manifold W then the hypotheses that were made 
will define one and only one connection: namely, the Finslerian connection on the 
manifold.  That is the fundamental theorem of Finslerian geometry (8). 
 If the tensor Sαβ ≠ 0 then we shall show that the preceding hypotheses further 
determine one and only one connection.  The relations (25.10) and (25.11) show that one 
has: 

Tαβγ = 1
2 gγ αβδ
ɺ

. 

 
One infers from the expression for gαβ that: 
 

y gβ
γ αβ∂
ɺ

 = 0. 

Now, from (25.5): 
gγ αβδ
ɺ

= g y T gλ ρ
γ αβ λγ ρ αβ∂ − ∂
ɺ ɺ

. 

It will then result that: 
y gβ

γ αβδ
ɺ

= 0. 

That is: 
yβ Tαβγ = 0. 

 
 From (25.5), γδ

ɺ
 = γ∂

ɺ
, and therefore: 

 
(25.13)    Tαβγ = 1

2 gγ αβ∂
ɺ

= 1
2 Fαβγ∂ ɺɺ ɺ

. 

 
Tαβγ is then a tensor that is symmetric with respect to its three indices, and which 
satisfies: 
 
(25.14)    Tαβγ y

α = Tαβγ y
β = Tαβγ y

γ = 0. 
 
 Calculating the Γαβγ . – It remains for us to determine the coefficients Γαβγ .  From 
(25.9), (25.6), and (25.12), we have the relations: 
 

,

.

g

l S
αβγ βαγ γ αβ

αβγ βαγ α βγ

δΓ + Γ =
 Γ − Γ =
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 Write the four relations that are deduced from the preceding ones by cyclically 
permuting α, β, γ .  With some obvious combinations, we will get: 
 
(25.15)  Γαβγ  = 1 1

2 2( ) ( )g g g l S l S l Sγ αβ β αγ α βγ α βγ β γα α αβδ δ δ+ − + + −  . 

 
 Set: 

Γαβγ = 1
2 ( )l S l S l Sα βγ β γα α αβ+ − , 

 
to simplify, which is a tensor that is antisymmetric in the α and β . 
 Now, pass from the Pfaffian derivatives to the ordinary derivatives, so: 
 
(25.16)  Γαβγ = [βγ, α] − ( )y T T Tλ µ µ µ

λγ µαβ λγ µγα λα µβγΓ + Γ − Γ + Σαβγ , 

 
in which the [βγ, α] are the Christoffel symbols of the first kind. 
 Now, form yβ Γαβγ and yβ yγ Γαβγ , while taking (25.14) into account: 
 
(25.17)   yβ Γαβγ = yβ [βγ, α] − y y Tβ λ µ

λβ µγαΓ + yβ Σαβγ  

 
and 
 
(25.18)    yβ yγ Γαβγ = yβ yγ [βγ, α] + yβ yγ Σαβγ  . 
 
 With E. Cartan, we set: 
 

yβ yγ [βγ, α] = 2 Gα = F yλ
λα∂
ɺ

 − ∂α F .  

 On the other hand: 
yβ yγ Σαβγ  = L Sαβ y

γ = − L Xα , 
upon setting: 

Xα = Sαβ y
γ . 

 
 The relations (25.18) then take the form: 
 

yβ yγ Γαβγ  = 2 Gα – L Xα 
or 

yβ yγ α
βγΓ = 2 Gα – L Xα . 

 
 Upon substituting this in (25.17), we will get: 
 

yβ Γαβγ  = y β [βγ, α] − (2 G β − L X β ) Ταβγ + y β Σαβγ  
or 
 
(25.19)   yβ Γαβγ  = g Gβ

αβ γ∂
ɺ

 + L X β Ταβγ + y β Σαβγ , 
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upon remarking that: 
Gγ α∂
ɺ

− 2 G βTαβγ  = g Gβ
αβ γ∂

ɺ
. 

 
We then transform (25.16) with the aid of (25.19) and get: 
 
(25.20) Γαβγ = [βγ, α]  − ( )T G T G T Gλ λ λ

αβλ γ γαλ βγλ αβ∂ + ∂ − ∂ɺɺ ɺ
 

  − L Xλ ( )T T T T T Tµ µ µ
µλγ αβ µλβ γα µλα βγ+ −  

  − yλ ( )T T Tµ µ µ
µλγ αβ µλβ γα µλα βγΣ + Σ − Σ + Σαβγ . 

 
The first row in the expression for Γαβγ represents the Γαβγ coefficients of the Finslerian 
connection, which are coefficients that we shall denote by αβγΓɺ .  Upon specifying the 

various parentheses, we will find that: 
 
 Γαβγ = αβγΓɺ − L Xλ ( )T T T T T Tµ µ µ

µλγ αβ µλβ γα µλα βγ+ −  

  − 1
2 Xλ ( )l T l T l Tλ λ λ

γ αβ β γα α βγ+ −  

  − 1
2 L ( )S T S T S Tλ λ λ

γλ αβ βλ γα αλ βγ+ −  

  + 1
2 (lα Sβγ + lβ Sγα − lγ Sαβ) . 

 
 We remark that the part of Γαβγ that is antisymmetric in β and γ is: 
 

Γα [βγ] = 1
2 lα Sβγ . 

 
 Calculating the bαβγ . – The coefficients bαβγ are expressed simply as functions of the 
Γαβγ . 
 Indeed, upon identifying the coefficients of the dxγ in (25.1) and (25.3), we will get: 
 

bαβγ = Γαβγ + Tαβµ ( )G L X T yµ λ µ λ µ
γ λγ λγ∂ + + Σ
ɺ

. 

 
Upon replacing Γαβγ with its expression that one infers from (25.20), we will find: 
 

bαβγ = [βγ, α] − ( ) ( )T G T G L X T T T Tλ λ λ µ µ
γαλ βγλ α γαλ λα µλα βγβ∂ − ∂ − −ɺ ɺ

 

− ( )y T Tλ µ µ
µλβ γα µλα βγΣ − Σ + Σαβγ . 

 
The first two terms in the expression for bαβγ represent the analogous coefficient for the 

Finslerian connection that we shall denote by bαβγ
ɺ .  The coefficient of L Xλ represents the 

curvature tensor Qλγ, αβ (
9), which is the same for the two connections, moreover. 

 We can then write: 

                                                
 (9) Élie Cartan denoted this tensor by S . 
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bαβγ = bαβγ
ɺ − L Xλ Qλγ, αβ − ( )y T Tλ µ µ

µλβ γα µλα βγΣ − Σ + Σαβγ . 

 
 We can make this more explicit, moreover: 
  

bαβγ = bαβγ
ɺ − L Xλ ,Qλ

γ αβ − 1 1
2 2( ) ( )L S T S T X l T l Tλ λ λ λ

αλ βγ βλ γα λ α βγ β γα− − −  + Σαβγ . 

 
 Geodesics. – Let lα = Lα∂

ɺ
.  Let us calculate its absolute differential: 

 
 ∇lα = dlα − lβ

α βω  

  = dlα − l dxβ γ
αγ βΓ  

  = dlα − l dxβ γ
βαγΓ . 

 
 Let us make the 2-form ∇lα ∧ dxα more explicit.  We get: 
 

∇lα ∧ dxα = dlα ∧ dxα + 1
2 ( )l β

βαγ βγαΓ − Γ dxα ∧ dxγ . 

 Now: 

βαγ βγαΓ − Γ = lβ Sαγ  . 

 Since lα l
α = 1, we find: 

 
∇lα ∧ dxα = dlα ∧ dxα + 1

2 Sαβ dxα ∧ dxγ . 

 
 The 2-form thus-obtained is, as we will see, the fundamental 2-form of the dynamical 
system that is defined by L and Sαβ . 
 Along a geodesic, one will have ∇lα / du = 0, where u is an arbitrary parameter.  
Upon setting yα = d xα / du , one will get the differential system: 
 

l

du
α∇

 = 
dl

du
α − Γβαγ l β y γ = 0. 

 Now: 
Γβαγ l β y γ = l y l yβ γ β γ

βαγ βαγΓ + Σɺ . 

 However: 
Σβαγ l β y γ = Xα . 

 
 The differential system of the geodesics will then be the following one: 
 

l

du
α∇

 = 
l

du
α∇ɺ − Xα  

or 
d

L
du α∂

ɺ
− ∂α L = Xα . 
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 We indeed recover the S-extremals of the integral: 
 

1

0

( , )
x

x
L x x du∫ ɺ . 

 
 The spaces that were just constructed differ from the Finsler spaces only by Élie 
Cartan’s E convention: The Γαβγ , which are denoted by  in (10) and (11), are no longer 
symmetric in the β and γ, but are such that: 
 

Γαβγ − Γαγβ = lα Sβγ . 
 
It will then result that the map of an infinitesimal point-like cycle that is obtained by 
attaching a unit vector to each of its points by parallel displacing it from the origin of the 
cycle is no longer closed.  The vector that joins the origin to the extremity will have the 
components: 

Σα = ( )1
2 S dx dx lβ γ α

βγ ∧ . 

 
 We remark that we have been able to replace our hypothesis (25.12) with some others 
without modifying the geodesics.  We point out the following two: 
 
 1.    Sαβγ = − (Sαβ lγ − Sαγ lβ) . 
 
 One then deduces that: 

Γαβγ = [βγ, α]δ + Sαβ lγ , 
 

where the index δ indicates that one is dealing with Pfaffian derivatives. 
 
 2.    Sαβγ = − (gαγ Xβ − gαβ Xγ) , 
 
as one has for Weyl spaces.  One then deduces that: 
 

Γαβγ = [βγ, α]δ + Xα gβγ − Xβ gαγ . 
 
 However, in each of those two cases, we have found that: 
 

∇lα ∧ dxα = d lα ∧ dxα + 1
2 (Xα lβ – Xβ lα) dxα ∧ dxβ. 

 
 That 2-form is not the fundamental 2-form for a dynamical system, in general. 
 
 Particular case: S-Riemannian spaces. – Suppose that L2 is a quadratic form with 
respect to the variables y.  Under those conditions, the gαβ will be independent of the y, 

                                                
 (10) E. Cartan [1].  
 (11) A. Lichnerowicz [6].  
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and the torsion tensor T will be zero.  The coefficients of the connection will then reduce 
to: 

Γαβγ = [βγ, α] + Σαβγ . 
 
Such a space will be called S-Riemannian.  It can be used in general relativity, where Sαβ 
are, for example, the components of the electromagnetic field tensor. 
 
 
 26. A. Lichnerowicz’s generalized variational calculus (12). – As always, consider 
the differentiable manifold Vn+1 , the manifold V of non-zero tangent vectors to Vn+1 , and 

the manifold W of oriented directions tangent to Vn+1 . 
 Let C be a differentiable path in Vn+1 that is defined in a local coordinate domain U by 
the parametric representation: 

xα = xα (v), 
 
in which the functions xα (v) have class C 2 on an interval (a, b) . 
 Let (u0 , u1) denote a sub-interval of (a, b) whose length is less than ε, where ε is a 
given, arbitrarily-small positive number, and let yα (v, ε) be a set of n + 1 functions that 
are continuously-differentiable for any v that belongs to (u0 , u1) and zero for v = u0 and v 
= u1 . 
 Set: 
 
(26.1)   δxα = ε yα (v, ε) and η (ε) = max | δ xα (v) |, 
 
for 

v ∈ (u0 , u1) and α = 1, 2, …, n + 1. 
 
Upon supposing that absolute values of the derivatives with respect to v of the functions 
yα (v, ε) are bounded by a number K over (a, b), we will have: 
 

η (ε) < K ε 2. 
 
 Sub-differential of a functional. – With Lichnerowicz, let 

0
[ ( )]u

uF x vα  denote a 

functional that is attached to the arc (u0 , u) of C and satisfies the following condition: For 
every u0 in the interval (a, b), there exists an interval (u0 , u) such that for any u in that 
interval, 

0

u
uF  defines an integrable function of u. 

 One says the sub-differential δ F of the functional F to mean a function of the xα (v), 
their first derivatives ( )x vα

ɺ , and the δ xα that is linear in the δ xα and such that: 
 

0
lim

F F
ε

δ
η→

∆ −
= 0, 

 

                                                
 (12) A. Lichnerowicz [2], pp. 343-350.  
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where ∆F denotes the increase in F that corresponds to the increases (26.1) in the xα. 
 

 Example. – Let f (xα, xα
ɺ ) be an 1hɺ  function of class C 2.  Set: 

 

(26.2)    F = 
0

[ ( ), ( )]
u

u
f x v x v dvα α

∫ ɺ . 

 
The functional F admits the differential: 
 

dF = 
0

[ ( )] ( )
u

u

d
f f dx dv f x u dx u

dv
α α α

α α α
 ∂ − ∂ + ∂  

∫ ɺ ɺ
. 

 
Lichnerowicz showed (13) that the sub-differential of F is: 
 
(26.3)     δ F = f xα

α δ∂
ɺ

, 

 
where the δ xα are the increases (26.1) at the point u. 
 
 Sub-variation of an integral. – If 

0

u
uF  denotes the integral (26.2) then we set: 

 

(26.4)    J = 
1

0
0

[ , ( ), ( )]
u

u
uu

H F x u x u duα α
∫ ɺ , 

 
in which H is a continuous function of F, the xα, and the xα

ɺ . 
 With Lichnerowicz, we shall say the sub-variation δ J of the integral J to mean an 
integral for the form: 

δ J = 
1

0

[ ( ), ( ), ( )]
u

u
L x u x u x u duα α αδ∫ ɺ , 

 
in which L is a function that is linear in the δ xα, such that one will have: 
 

0
lim

J J
ε

δ
ε η→

∆ −
= 0, 

 
in which ∆J denotes the increase in J that corresponds to the increases (26.1) in xα. 
 The function H is supposed to have class C 3, so Lichnerowicz showed (14) that the 
sub-variation will have the following expression: 
 

(26.5)  δ J = 
1

0

(0) (0) (0) (0)
u

u

d
H H H f f H x du

du
α

α α α α δ ′ ′∂ − ∂ + ∂ − ∂  
∫ ɺ ɺ ɺ

, 

 
                                                
 (13) A. Lichnerowicz [2], pp. 346.  
 (14) Ibid., pp. 347-349.  
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in which H (0) is the function that is obtained by starting with H (F, xα, xα
ɺ ) and setting F 

= 0, and H′ (0) is the function of the xα, xα
ɺ  that is obtained by annulling F in the partial 

derivative of H with respect to the argument F. 
 The generalized extremals of the integral J are, by definition, the curves (C) for which 
δJ = 0 for any increases δxα that are defined by (26.1).  Those extremals are the solutions 
to the differential system: 
 

(26.2)   (0)
d

H
du α∂

ɺ
 − ∂α H (0) = (0) (0)H f f Hα α′ ′∂ − ∂

ɺ ɺ
. 

 
We remark that this differential system will remain invariant if one simultaneously 
changes H′ into – H′ and f into – f, or H′ into f and f into – H′.  We will get the same 
differential system by replacing the function H (F, xα, xα

ɺ ) with the function: 
 

H = H (0) + F H′ (0) 
 
that is obtained by replacing H (F) with its Taylor development to first order in a 
neighborhood of F = 0, while the variables xα and xα

ɺ  are supposed to be fixed. 
 

 Generalization. – Suppose that k 1hɺ  functions f A (x, y) are given on V and set, as 

before: 

F A =
0

[ ( ), ( )]
u

A

u
f x v x v dvα α

∫ ɺ , with A = 1, 2, …, k . 

 

Now, let H be an 1hɺ  function of the k functionals F A, the xα, and the xα
ɺ .  Set: 

 

J = 
0

[ , ( ), ( )]
u

A

u
H F x u x u duα α

∫ ɺ  . 

 
Some calculations that are analogous to the ones in Lichnerowicz (Lich. [2], pages 347 
and 349) will show that the sub-variation of that integral has the following expression: 
 

δ J = 
1

0

(0) (0) (0) (0)
u A A

A Au

d
H H H f f H x du

du
α

α α α α δ ∂ − ∂ + ∂ ∂ − ∂  
∫ ɺ ɺ ɺ

. 

 
The generalized extremals of the integral J are the solutions to the differential system: 
 

(26.7)   (0)
d

H
du α∂

ɺ
 − (0)Hα∂  = (0) (0)A A

A AH f f Hα α∂ ∂ − ∂
ɺ ɺ

. 
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 27. Non-holonomic differential algebra and generalized extremals: 
 
 Non-holonomic functions. – Let U be a local coordinate domain on Vn+1 , and let p−1U 
be the corresponding domain in W.  In the neighborhood of any point x of U, consider a 
set of differentiable paths that connect x to any neighboring point x′. 
 Let f (x, y) be an 1hɺ  function that is defined on V.  Set: 

F = ( , )
x

x
f x y du

′

∫ , with yα = 
dx

du

α

, 

 
where the integral is calculated along the path xx′. 
 The path xx′ in Vn+1 corresponds to a path zz′ in W by way of p−1, and one will have: 
 

(27.1)     F = ( , )
z

z
f x y dxα

α

′
∂∫ ɺ

. 

 

Now let L  be an 1hɺ  function that is defined on V and has a value at the point z′ whose 

coordinates are x′α, y′α that depends upon F, which we shall denote by L (F, x′, y′) .  
Suppose that L  is continuously differentiable with respect to all of its arguments, and let 
L (x, y) denote the limit of L  when z′ tends to z along the arc zz′. 
 Set: 

x′α = xα + ∆xα,  y′α = yα + ∆yα, 
and 

η = max ( |∆xα |, | ∆yα | ), for α = 1, 2, …, n + 1 . 
 
 The difference ∆L = L (F, x′, y′) – L (x, y) can be put into the form: 
 
(27.2)   ∆L = L′ F + ∂α L + L yα

α∂ ∆
ɺ

 + ε η, 

 
in which L′ is the limit of the partial derivative of L  with respect to F when z tends to z′, 
and ε is a function of z′ that tends to 0 when η tends to 0. 
 On the other hand, when z′ is sufficiently close to z : 
 

F = L yα
α∂ ∆
ɺ

 + ε′ η ,  ε′ → 0 with η . 
 

 Finally, we can put ∆L into the form: 
 
(27.3)   ∆L = (∂α L +L fα′∂

ɺ
) ∆xα + L yα

α∂ ∆
ɺ

+ ε″ η , 
 
with ε″ tending to 0 when η tends to 0. 
 We are led to associate the expression that we found for ∆L with the linear map on 

the vector space over R tangent to W at z that is defined by: 
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(27.4)    (∂α L +L fα′∂
ɺ

) dxα + L dyα
α∂
ɺ

. 

 
 That linear form will be denoted by dL  and will be, by definition, a non-holonomic 
differential of the function L (x, y).  We also say that the set L(x, y), dL defines a non-
holonomic differentiable function L  on V. 

 In a more condensed form, we have: 
 

(27.5) dL = dL + L′ dfɺ . 
 
That expression for dL  leads us to the following definitions for the partial derivatives of 
a non-holonomic function L : 
 Lα∂ = ∂α L + L′ fα∂

ɺ
, 

 
  Lα∂

ɺ
= Lα∂

ɺ
. 

 
 We remark that the exterior differential of dL  is not zero.  Indeed, one has: 
 

 ( )d dL  = 2d L = d (L′ dfɺ ), 
but 
 2d L = 2( )d d L  = 0. 
 
 Non-holonomic forms. – Let ϖ be a differential form that is defined on V or W whose 

coefficients at z′ close to z depend upon F.  First, let a 1-form be defined by: 
 

ϖ = a dx b dyα α
α α+ . 

By definition, set: 
dϖ = da dx db dyα α

α α∧ + ∧  

 

at the point z .  If we denote the limits of aα , bα , 
a

F
α∂

∂
, 

b

F
α∂

∂
, ϖ when z′ tends to z by aα , 

bα , aα′ , bα′ , ω, respectively, then we will get: 

 

dϖ = daα  ∧ dxα + dbα ∧ dyα + ( )df a dx b dyα α
α α′ ′∧ +ɺ  

or 
 

(27.6) dϖ = dω + dfɺ ∧ ω′ . 
 
By definition, we say that dϖ is the exterior differential of the non-holonomic form ϖ, 
which is equal to the form ω locally. 
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 The same considerations will lead one to associate a non-holonomic p-form ϖ that is 
defined on V or W (i.e., a form whose coefficients at z′ close to z depend upon F) with a 

(p+1)-form: 

dϖ = dω + dfɺ ∧ ω′  
 
that one calls the exterior differential of the non-holonomic form ϖ . 
 If ϖ1 and ϖ2 are two exterior forms of degrees p1 and p2 , respectively, that are non-
holonomic with respect to the same functional F then we will have: 
 
 d (ϖ1 + ϖ2) = dϖ1 + dϖ2 , 
 d (ϖ1 ∧ ϖ2) = dϖ1 ∧ ϖ2 + 1( 1)p− ϖ1 ∧ dϖ2 . 
 
 Those formulas are immediate consequences of (27.6). 
 
 Extremal system for a non-holonomic form. – By definition, the extremal system for a 
non-holonomic form ϖ is the associated system of its exterior differential dϖ .  For 
example, consider the semi-basic 1-form: 
 

ϖ = Lα∂
ɺ

 (F, x, y) dxα, 

 

in which L is an 1hɺ  function that is defined on V .  We have: 

 

dϖ = ( )d L dx df L dxα α
α α ′∂ + ∧ ∂
ɺ ɺ

ɺ  

or 
 
(27.7)  dϖ  = 1

2 ( )L dy dx L L dx dxβ α α
βαβ αβ βα∂ ∧ + ∂ − ∂ ∧ɺ ɺ ɺɺ ɺ ɺ

 

+ 1
2 ( )f L f L dx dxα β

α αβ β′ ′∂ ∂ − ∂ ∂ ∧ɺ ɺɺ ɺ
. 

 
The associated system to dϖ is defined by the equations: 
 
(27.8)  ( )L dy L L dxβ β

βααβ αβ∂ − ∂ − ∂ɺ ɺ ɺɺ
= ( )f L f L dxβ

α αβ β∂ ∂ − ∂ ∂ɺ ɺɺ ɺ
,  

(27.9)  Lαβ∂ ɺɺ
dxα = 0 . 

 
 Equations (27.9) show that the solutions to that system are the basic paths of W whose 
projections onto Vn+1 of the solutions to the differential equations: 
 

( )L x L L xβ β
βααβ αβ∂ − ∂ − ∂ɺ ɺ ɺɺ

ɺɺ ɺ = ( )f L f L xβ
α αβ β′ ′∂ ∂ − ∂ ∂ɺ ɺɺ ɺ

ɺ  

or 
d

L
du α∂

ɺ
− ∂α L = L f f Lα α′ ′∂ − ∂

ɺ ɺ
. 
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The curves thus-defined are the generalized extremals of the integral: 
 

J = 
1

0

( , , )
u

u
L F x x du∫ ɺ . 

Hence, one has the: 
 
 Theorem: 
 

 The generalized extremals of the integral J =
1

0

( , , )
u

u
L F x x du∫ ɺ  are the projections onto 

Vn+1 of the solutions of the extremal system of the form: 
 

ϖ = Lα∂
ɺ

(F, x, y) dxα . 

 

 Generalization. – Now suppose that one is given k 1hɺ functions f A (x, y), with A = 1, 

2, …, k, that are defined on V . 

 With the notations at the beginning of this paragraph, set: 
 

AF = ( , )
x A

x
f x x du

′

∫ ɺ  = ( , )
x A

x
f x x dxα

α

′
∂∫ ɺ

ɺ . 

 

Let L  be a function of the k functionals AF  and the 2n + 2 1hɺ variables xα, yα. 

 Let L denote the limit of L  when z′ tends to z. 
 By definition, we call the 1-form: 
 

(27.10)     dL  = dL + A
Adf L∂ɺ  

 
the differential of the non-holonomic function L , in which ∂A L is the limit of the partial 
derivative of L with respect to AF  when z′ tends to z. 
 Now let ϖ be an arbitrary p-form that is defined on V or W and whose coefficients at 

z′ are functions of the AF .  We let dϖ denote the (p + 1)-form that is defined at the point 
z by: 
 

(27.11)    dϖ = dω + A
Adf ω∧ ∂ɺ , 

with 

ω = lim
z z

ϖ
′→

 and ∂A ω = lim
Az z F

ϖ
′→

∂
∂

. 

 
 If ϖ1 and ϖ2 are two exterior forms defined on V or W whose degrees are p1 and p2 , 

respectively, and they are non-holonomic with respect to the same functionals AF  then 
we will have some immediate consequences of the definition (27.11), namely: 
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 d (ϖ1 + ϖ2) = dϖ1 + dϖ2 , 
 
 d (ϖ1 ∧ ϖ2) = dϖ1 ∧ ϖ2 + 1( 1)p− ϖ1 ∧ dϖ2 . 
 
In particular, consider the form: 

ϖ = Lα∂
ɺ

(FA, x, y) dxα . 

 Its exterior differential is: 

dϖ = dω + Adf d Lα∧ ∂
ɺ

ɺ ɺ . 

 
 The extremal system of ϖ, which is, by definition, the associated system to dϖ, is 
analogous to the system of equations (27.8) and (27.9).  Its solutions are basic paths of W 
that project onto Vn+1 along the solutions of the system: 
 

(27.12)    
d

L
du α∂

ɺ
− ∂α L = A A

A AL f f Lα α∂ ∂ − ∂
ɺ ɺ

. 

 
Those projections are the generalized extremals of the integral: 
 

J = 
1

0

( , , )
u

A

u
L F x x duα α

∫ ɺ . 

 
 
 28. Lichnerowicz spaces (15). – Recall the notations of § 25 and § 27.  Consider a 

non-holonomic function L (F, z) with F = ( , , )
z

z
f x y dxα

α

′
∂∫ ɺ

 and such that L = L (0, z) is 

an 1hɺ  function that is defined on V. 

 We propose to define a linear connections on the directions on Vn+1 that reduces to the 
Finslerian connection that is attached to L for f = 0, and is such that the geodesics of Vn+1 
relative to that connection are the generalized extremals of the integrals: 
 

J = 
1

0

[( , ( )]
u

u
L F z u du∫ . 

 
 As for the S-Finslerian spaces, set: 
 

α
βω  = b dx c dyα γ α γ

βγ βγ+  

 
with respect to the coframe in zT ∗  that is defined by the 2 (n + 1)-forms dxα, dyα, and: 

 
α
βω  = dx Cα γ α γ

βγ βγ θΓ +  

 

                                                
 (15) A. Lichnerowicz [2], pp. 352-362.  
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with respect to the coframe in zT ∗  that is defined by the 2 (n + 1) forms dxα and θ α = 

∇yα. 

 Since the connection form ω is supposed to be defined on W, the b and the Γ are 0hɺ , 

while the c and the C are ( 1)h −ɺ , and we will have: 
 

c yα γ
βγ  = C yα γ

βγ = 0 

 
identically.  The Pfaffian derivatives of a function G (x, y) relative to the coframe dxα, θα 
are expressed as functions of the partial derivatives of G (x, y) by means of the formulas 
(25.4) and (25.5).  If G  is a non-holonomic function G = G (F, x, y) then we will have: 
 

(28.1)  
,

.

G G y G G G f y G

G G y T G

λ β λ β
α α λα α α α λα α

λ β
α α λα β

δ
δ

′ = ∂ − Γ ∂ = ∂ + ∂ − Γ ∂
 = ∂ − ∂

ɺ ɺ ɺ

ɺɺ ɺ

 

 
Take the metric tensor at z (xα, yα) to be the tensor whose non-holonomic components 
are: 

gαβ = ( )21
2 Lαβ∂ ɺɺ

= ( )21
2 Lαβ∂ ɺɺ

 ≡ gαβ , 
such that 
  gγ αβ∂ = ∂γ gαβ + g fαβ γ′ ∂

ɺ
, 

  gγ αβ∂
ɺ

= gγ αβ∂ , 

 
in which the notations are those of the preceding paragraph. 
 In order for the linear connection on directions that is defined by ω to be naturally 
associated with a Euclidian connection on directions that is defined on Vn+1 by the tensor 
gαβ , it is necessary and sufficient that gαβ∇ = 0; i.e., that: 

 
(28.2)    d g g gλ λ

αβ α λβ β λαω ω− −  = 0. 

 
Let us make this more explicit with respect to the coframe (dxα, θ α) ; we obtain: 
 
(28.3)    Γαβγ + Γβαγ = gγ αβδ , 

 
(28.4)    Tαβγ + Tβαγ = gγ αβδ

ɺ
. 

 
Now consider the torsion form: 
 

Σα = dxα β
βω ∧ = 1

2 S dx dx T dxα β γ α β γ
βγ βγ θ∧ − ∧  , 

with 
 Sα

βγ = − ( )α α
β γ γ βΓ − Γ , 
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  T α
βγ  = Cα

βγ . 

 
 Impose the condition on the connection ω that it must be special in the sense of A. 
Lichnerowicz.  The torsion tensors must then verify the conditions: 
 
(28.5) 1. Sαβγ = 0. 
(28.6) 2. Tαβγ = Tβαγ . 
 
The conditions (28.5) imply that the coefficients Γαβγ are symmetric with respect to the 
last two indices. 
 The conditions (28.6) and (28.4) give us: 
 

Tαβγ = Cαβγ = 1
2 gγ αβδ
ɺ

, 

 
namely, with the same argument that was used to establish (25.13): 
 

Tαβγ = 1
2 gγ αβ∂
ɺ

, 

 
so the tensor Tαβγ is completely symmetric then. 
 
 Calculating the coefficients Γαβγ  . – The coefficients Γ are determined by means of 
the following system: 

,

0.

gαβγ βαγ γ αβ

αβγ βαγ

δΓ + Γ =
 Γ − Γ =

 

 We deduce from this that: 
Γαβγ = [β γ, α]δ, 

 
in which the [β γ, α]δ are the Christoffel symbols, when they are expressed in terms of the 
Pfaffian derivatives. 
 Let us make things more explicit with the aid of formulas (28.1): 
 
(28.7)   gγ αβδ = ∂γ gαβ + 2g f y Tλ µ

αβ λγ µαββ′ ∂ − Γɺ  . 

 
 Upon setting: 
 
(28.8)   Σαβγ = 1

2 ( )g f g f g fαγ αβ γ βγ αβ
′ ′ ′∂ + ∂ − ∂ɺ ɺ ɺ

, 

 
we will get: 
 
(28.9)  Γαβγ = [βγ, α] − ( )y T T Tλ µ µ µ

λγ µαβ λβ µγα λα µβγΓ + Γ − Γ + Σαβγ . 

 
 Set: 
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yβ yγ [βγ, α] = 2 Gα = ( ) ( )2 21 1
2 2L y Lλ

λα α∂ − ∂
ɺ

. 

 

  Let us calculate yβ yγ Σαβγ .  Since the function f is supposed to be 1hɺ , and 12 g y yα β
αβ′  

= L L′, we will get: 
yβ yγ Σαβγ = ( ) ( )f L L L L fα α′ ′∂ − ∂

ɺ ɺ
 = 2f αϕ∂

ɺ
 

upon setting: 

ϕ = 
L L

f

′
 (f  ≠ 0). 

 We then deduce that: 
  yβ yγ Γαβγ = yβ yγ [β γ, α] + yβ yγ Σαβγ  
  = 2 Gα + 2f αϕ∂

ɺ
. 

 
It is remarkable that the right-hand side is equal to 2Gα , which is defined by: 

 

2Gα = ( ) ( )2 21 1
2 2L y Lλ

λα α∂ − ∂
ɺ

. 

 Indeed: 

( )21
2 Lλ∂ = ( )21

2 L L L fλ λ′∂ + ∂  

and 

  2Gα  = 2Gα + ( )L L L L fα αλ
′ ′∂ ∂ − ∂ɺɺ ɺ

 

   = 2Gα + ( )L L f L L fα α′ ′∂ − ∂
ɺ ɺ

, 

because: 
f yλ

αβ∂ ɺɺ
 = 0 . 

 
 We conclude with the calculations that we did in paragraph 25.  Furthermore, it will 
suffice to replace L Xα with − 2f αϕ∂

ɺ
 in the results obtained. 

 We then obtain: 
 

Γαβγ = [βγ, α] − ( )T G T G T Gλ λ λ
αβλ γ αγλ βγλ αβ∂ + ∂ − ∂ɺɺ ɺ

+ Σαβγ , 

or 
 

Γαβγ = 2 ( )f T T T T T Tλ µ λ µ λ µ
αβγ µγ αβ µβ γβ µα βγλΓ + ∂ + −ɺ
ɺ  − ( )y T T Tλ µ µ µ

µλγ αβ µλβ γα µλα βγΣ + Σ − Σ + Σαβγ . 

 
In the latter expression, αβγΓɺ represents the analogous coefficients for the Finslerian 

connection that is defined by L . 
 The Γ thus-defined are the coefficients ∗Γ  of A. Lichnerowicz’s intermediate 
connection.  One verifies that they are symmetric with respect to their last two indices. 
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 Covariant derivation. − Let X be a restricted vector field that is defined on V or W.  

The components Xα are then functions of the xα, yα that are homogeneous with respect to 
the latter variables.  Under those conditions, we will have: 
 

∇Xα = dXα + Xα β
βω . 

 
 Now suppose that X is a non-holonomic vector field; i.e., that is its components Xα  
at a point z′ that is close to z are functions of L , and consequently of F.  Its absolute 
differential will be then defined by: 
 

Xα∇ = dX Xα α β
βω+ , 

 
where dXα  is the differential of the non-holonomic function Xα .  The preceding 
considerations extend immediately to some arbitrary tensor fields, whether holonomic or 
not. 
 
 Geodesics. – Set l α = yα / L  and lα = Lα∂

ɺ
.  The geodesics of the space that was 

studied previously are defined by: 
 

l

du

α∇
= 

dl
l y

du

α
α β γ
βγ+ Γ  = 0 

or by: 
l

du
α∇

= 
dl

l y
du

β γα
βαγ+ Γ  = 0 . 

 Now: 
l yβ γ

βαγΓ = l y l yβ γ β γ
βαγ βαγΓ + Σɺ .  

 We next have: 
 
 l yβ γ

βαγΣ = 1
2 ( )g f g f g f l yβ γ

βγ α βα γ αγ γ′ ′ ′∂ + ∂ − ∂
ɺ ɺ ɺ

= L fα′ ∂
ɺ

, 

 

 
d l

du
α  = ( )

d l
L f y

du
βα

α β
′+ ∂ ∂ ɺɺ

 = 
d l

L f y
du

βα
α β

′+ ∂ ∂ ɺɺ
= 

d l
f L

du
α

α ′+ ∂
ɺ

. 

 
 Finally, the geodesics of the space considered are defined by: 
 

l

du
α∇

= 
l

f L L f
du

α
α α

∇ ′ ′+ ∂ − ∂
ɺ ɺ

 = 0 

or by: 
d

L L
du α α∂ − ∂

ɺ
= L f f Lα α′ ′∂ − ∂

ɺ ɺ
. 
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The geodesics are indeed identical to the general extremals of the integral: 
 

J = 
1

0

( , ( ))
u

u
L F z u du∫ . 

 
The space thus-constructed indeed satisfies the various conditions that have been 
imposed upon it. 
 
 Generalization. – Consider a non-holonomic function of several functionals L (FA, z), 
with: 

AF = ( , )
z A

z
f x y dxα

α

′
∂∫ ɺ

= 
z A

z
df

′

∫ ɺ , where A = 1, 2, …, k , 

 

such that L = L (0, z) is an 1hɺ  function that is defined on V. 

 It is easy to extend the preceding considerations by defining a linear connection on 
the directions on Vn+1 such that the geodesics of Vn+1 relative to that connection are the 
generalized extremals of the integral: 
 

J = 
1

0

[ , ( )]
u

A

u
L F z u du∫ . 

 
 It suffices to replace Σαβγ with: 
 

Σαβγ = 1
2 ( )A A A

A A Ag f g f g fαγ αγ γ βγ αβ∂ ∂ + ∂ ∂ − ∂ ∂ɺ ɺ ɺ
 

and 2Gα  with: 

2Gα  = 2 Gα + ( ) A A
A AL L f L L fα α∂ ∂ − ∂ ∂

ɺ ɺ
 

 
in the formulas that are obtained. 
 From now on, we shall refer to spaces of the preceding type as Lichnerowicz spaces 
or L spaces. 

 An L1 space corresponds to a function L  that is non-holonomic with respect to only 

one functional F. 
 An Lk space corresponds to a function L that is non-holonomic with respect to k 
functionals FA . 
 

___________ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART TWO 
 

MECHANICAL APPLICATIONS



CHAPTER V 
 

DYNAMICAL SYSTEMS WITH  
HOLONOMIC CONSTRAINTS  

 
 

 29. Lagrange equations in the homogeneous formalism. – Let (S) be a non-
conservative dynamical system with perfect, bilateral, holonomic constraints that admit n 
degrees of freedom. 
 Let Vn+1 denote its configuration space-time. 
 Suppose that the configuration space of (S) is defined by the parameters xk, where k = 
1, 2, …, n.  The parameters xk and the time t define a local coordinate system for Vn+1 .  
Set: 

x′ k = 
kdx

dt
 

 
and let L be the Lagrangian of the system (S) for the parameters xk.  The trajectories of 

(S) in Vn+1 are defined by the n functions xk (t) that are solutions of the Lagrange 
equations: 

(29.1)     
d

dt
∂k′ L − ∂k L = Qk . 

 
The Qk are functions that are determined by the xi, the x′ i, and time t. 
 Now set: xn+1 = t. 
 A local coordinate system at a point x of Vn+1 is then xα, where α = 1, 2, …, n, n + 1. 
 (In what follows, a Latin index can take the values 1, 2, …, n ; any Greek index will 
take the values 1, 2, …, n + 1.) 
 Let u be an arbitrary real parameter; set: 
 

xα
ɺ  = dxα / du, 

so 
x′  k = 1/k nx x +

ɺ ɺ . 
 
 The trajectories of the dynamical system (S) in Vn+1 are then defined by functions 
xα(u) that are solutions of a system of differential equations that is classical deduced from 
(29.1) (16). 
 Set L (xα, xα

ɺ ) = L (xα, 1 1/ )k n nx x x+ +
ɺ ɺ ɺ . 

 L, which is (1)hɺ , is the homogeneous Lagrangian of (S), by definition.  We then 
deduce that: 

k
L∂ ɺ = k L′∂   and 1n L+∂

ɺ
= L – xk′ ∂k′ L = − H, 

 

                                                
 (16) A. Lichnerowicz [2], pp. 375-365.  
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in which H denotes the Hamiltonian that corresponds to L. 

 Equations (29.1) can then be put into the form: 
 

(29.2)    
k

d
L

du
∂ ɺ − ∂k L = 1n

kQ x +
ɺ , 

 
or, with the notations of § 18 : 
 

Pk (L) = Xk upon setting Xk = 1n
kQ x +
ɺ . 

 
 One deduces from the identity: 

Pα (L) xα
ɺ  ≡ 0 

that: 
Pn+1 (L) 1nx +

ɺ = − Pk (L) kxɺ  = − k
kX xɺ , 

or 
 
(29.3)   Pn+1 (L) = Xn+1  upon setting Xn+1 = − k

kQ xɺ . 

 
Finally, the functions xα (u) are solutions to the system of Lagrange equations that relates 
to the homogeneous Lagrangian L : 
 

(29.4)    Pα (L) = 
d

L
du α∂

ɺ
− ∂α L = Xα . 

 
The Xα , which are functions of the xα and the xα

ɺ , are homogeneous of degree 1 with 

respect to the latter variables and are ( 1)hɺ  such that: 
 

X xα
α ɺ ≡ 0. 

 
They are the components of a vector that is called the generalized force vector.  The n + 1 
equations (29.4) are not independent, so one can give one of the functions xα(u) 
arbitrarily, while the other n will be determined by equations (29.4), in general.  Recall 
that the (n + 1)th equation, which is the equation: 
 

Pn+1 (L) = X n+1, 
can be further written in the form: 

− 
d L

du t

∂−
∂

H
 = − k

kQ xɺ , 

or, upon setting t = u : 
d L

dt t

∂+
∂

H
= k

kQ x′ . 
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 That equation translates into the well-known Painlevé theorem.  The Lagrange 
equations thus-defined have a form that is independent of any particular framing that was 
adopted for the configuration space-time. 
 
 
 30. Notion of generalized force tensor. – As in Part One, we let V denote the fiber 

bundle of non-zero vectors that are tangent to the differentiable manifold Vn+1 and let W 
denote the fiber bundle of oriented directions that are tangent to Vn+1 .  The space W is 
referred to as the “state space” in mechanics or the “space-time of extension in phase.”  
Consider the “elementary work” form: 

ω = Xα dxα . 
 

That form is a semi-basic 1hɺ  form that is defined on V.  By way of the dɺ  operator, we 

make it correspond to an 0hɺ  semi-basic 2-form that is defined on W : 
 

dωɺ  = 1
2 ( )X X dx dxα β

α β αβ∂ − ∂ ∧ɺɺ
. 

 
The components of that form are the components of a restricted, twice-covariant, 

antisymmetric 0hɺ  tensor.  In what follows, we shall refer to the tensor whose 
components are: 

Sαβ = 1
2 ( )X Xα β αβ∂ − ∂ ɺɺ

 

 
as the force tensor that corresponds to the generalized force whose components are Xα . 
 The components Sαβ are such that: 
 
 1.     S xβ

αβ ɺ  = Xα . 

 
Indeed: 
  X xβ

αβ∂ ɺ ɺ = Xα , 

 

because the Xα are 1hɺ , and on the other hand, the fact that: 
 

X xβ
β ɺ ≡ 0 

will imply that: 
X xβ

α β∂
ɺ
ɺ = − Xα 

 
by partial differentiation.  Since the form dωɺ  = − Sαβ dxα ∧ dxβ is dɺ –closed, we will 
have the identities: 

S S Sα βγ γα γ αββ∂ + ∂ + ∂ɺɺ ɺ
 = 0. 
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 2. If the Xα are linear in the components of the velocity then the Sαβ will be 
independent of the xɺ .  In the space Tx that is tangent to the point x in Vn+1 , the force 
vector X that corresponds to a given velocity vector V (x) is deduced from the latter by 
the linear transformation that is defined by the matrix whose elements are the Sαβ (x). 
 

Geometric interpretation of the Lagrange equations. 
 

 31.-1. In a Finsler space. – Suppose that the differentiable manifold Vn+1 is endowed 
with the Finslerian metric: 

ds = L (xα, xα
ɺ ) du . 

 
 Suppose, on the other hand, that the function L leads to a regular variational problem; 

i.e., that the matrix Lαβ∂ ɺɺ
 has rank n on V .  The dynamical system (S) will then be 

called regular.  Let (T) be an arbitrary trajectory of that system.  A unit vector l that is 
tangent to (T) at an arbitrary point x of (T) will have the components: 
 

lα = 
x

L

α
ɺ

 or lα = Lα∂
ɺ

. 

 
The left-hand sides Pα (L) of the Lagrange equations are the components of the vector 
that is the covariant derivative of l with respect to u.  Equations (29.4) then take the form: 
 

(31.1)     
l

du
α∇

 = Xα  

or 

  
du

∇l
 = X  . 

 
Take the parameter u to be the arc-length s of (T) .  The components of the generalized 
force vector are then Xα / L, and the left-hand sides of equations (31.1) are the 
components of the curvature vector (T) at x : 
 

ds

∇l
= 

R

n
= C,  

L

X
= F . 

 Hence: 
 
 Theorem: 
 
 In a Finsler space that is defined on the configuration space-time of a dynamical 
system (S) by: 

ds = L (xα, xα
ɺ ) du , 

 
in which L is the homogeneous Lagrangian of (S), the trajectories will be the curves in 
that space such that the curvature vector is equal to the force vector at any point. 
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 Particular case. – If the force vector is zero at any point of Vn+1 then the Lagrange 
equations can be written in the form: 

l

du
α∇

= 0, 

 
and they will express the idea that the trajectories are the geodesics of the Finsler space 
that is associated with the dynamical system.  Those trajectories are the extremals of the 
form: 

ω = L dxα
α∂
ɺ

 

or the extremals of the integral: 

I = 
1

0

( , )
u

u
L x x duα α

∫ ɺ . 

 
 (Hamilton’s principle in its general form.) 
 That is equivalent to saying that those trajectories are characterized by the existence 
of one of E. Cartan’s relative integral invariants: 
 

L dxα
α∂∫ ɺ

. 

 
 32.-2 In an S-Finslerian space. – Consider the S-Finslerian space (§ 25) that is 

defined on Vn+1 when one is given the 1hɺ  scalar function L (xα, xα
ɺ ) and the restricted  

0hɺ  tensor Sαβ . 
 Recall that an S-Finslerian space differs from a Finslerian space by only the following 
convention: 

α α
βγ γβΓ − Γ  = Sβγ l

α, 

 
in which the α

βγΓ  are defined by the connection forms: 

 
α
βω  = dx C yα γ α γ

βγ βγΓ + ∇ , 

with 
y γ = xγ

ɺ . 
 
The differential system of the geodesics is: 
 

d
L

du α∂
ɺ

− ∂α L = S xβ
αβ ɺ  = Xα . 

 
It then results that the trajectories of the dynamical system S (L, Sαβ) are the geodesics of 
the S-Finslerian space that is defined by L and Sαβ . 
 Those trajectories are also the S-extremals (§ 24) of the integral: 
 

I = 
1

0

( , )
u

u
L x x du∫ ɺ . 
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Recall that an S-extremal of I is the projection onto Vn+1 of a basic path on W that is 
defined by: 

xα = xα (u), yα = yα (u) = 
dx

du

α

 

 
for which I is an extremum, where the neighboring paths are defined by: 
 

xα = xα (u) + δ xα (u),  yα = yα (u) + δ yα (u), 
 
with δ xα arbitrary, except at x0 and x1 , where they are zero, and: 
 

δ yα = 
d

x L S x
du

α α β
βδ δ+ . 

 
The theorem that is obtained in that way is a generalization of Hamilton’s theorem that 
relates to conservative dynamical systems (case where Sαβ = 0). 
 We can then state: 
 
 Generalized Hamilton theorem: 
 
 The trajectories of a dynamical system S (L, Sαβ) are the S-integrals of the integral 

1

0

u

u
L du∫ . 

 
 33.-3. In a Lichnerowicz space. – Consider the form: 
 

Ω = 1
2 Sαβ dxα ∧ dxβ . 

 
Set yα = xα

ɺ  and associate Ω with the form: 
 

Ω  = 1
2 Sαβ dyα ∧ dyβ, 

 

in which the variables xα are supposed to be fixed.  Since d Ωɺ = 0, we then deduce that 

d Ω = 0. 

 Suppose the form Ω  has rank 2r.  Apply the theorem (17): Any closed exterior 
quadratic form of rank 2r can be put into the form: 
 

dHA  ∧ dKA (with A = 1, 2, …, r), 
 
in which the functions HA and KA constitute a system of independent first integrals of the 
characteristic system of that form. 
 We then deduce that Ω can be put into the form: 

                                                
 (17) E. Cartan [2], pp. 119-120.  



Chapter V. – Dynamical systems with holonomic constraints. 73 

Ω = A
AdH dK∧ɺ ɺ  

 
in a neighborhood U of V.  The associated system to Ω  is homogeneous with respect to 

the yα, so the first integrals HA and KA will be hɺ  functions.  The sum of their degrees of 

homogeneity is two, so we can suppose that HA and KA are 1hɺ .  If that were not true then 

we could introduce a function that is hɺ  of a suitable degree and dɺ –closed, from the 
identity: 

A
AdH dK∧ɺ ɺ  = ( )

K
d H f d

f

 
∧  

 

ɺ ɺ . 

We then obtain: 
Sαβ = A A

A AH K K Hα αβ β∂ ∂ − ∂ ∂ɺ ɺɺ ɺ
 

and 
Xα = S xβ

αβ ɺ  = A A
A AK H H Kα α∂ − ∂

ɺ ɺ
. 

 
The Lagrange equations of the dynamical system S (L, Sαβ) show that the trajectories of S 
are the generalized extremals of the integral: 
 

J = 
1

0 0

( , )
u u

A
Au u

L x x K H dv du +
  ∫ ∫ɺ . 

 
Those trajectories are (§ 27) the projections onto Vn+1 of the extremals of the non-
holonomic form: 

ω = 
zA

Az
dL dK dH

′
+ ∫ɺ ɺ ɺ  

or 

ω = 
z A

A z
dL dH dK

′
− ∫ɺ ɺ ɺ , 

 
in which z (x, y) and z′ (x′, y′ ) are two neighboring points of W.  Those trajectories are 
also geodesics of the space Lr that is defined by the non-holonomic function: 

 

L  = ( , )
zA

Az
L x x K dH

′
+ ∫ ɺɺ ; 

 
i.e., by the 2r + 1 functions: L, KA, HA . 
 
 Particular case of the space L1 (

18). 

 
 In order to have r = 1, it is necessary and sufficient that the form: 
 

                                                
 (18) J. Klein [1].  
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Ω = 1
2 Sαβ dxα ∧ dxβ 

 
should be decomposable or a monomial.  In order for that to be true, it is necessary and 
sufficient (19) that the coefficients Sαβ should verify the relations: 
 

Sαβ Sγδ + Sαγ Sδβ + Sαδ Sβγ = 0. 
 

Under those conditions, one can find two 1hɺ  functions H and K such that one will locally 
have: 

Ω = dH dK∧ɺ ɺ . 
 We then have: 

Xα = K H H Kα α∂ − ∂
ɺ ɺ

= 2 H
K

Kα∂
ɺ

 (K ≠ 0). 

 
The trajectories of the corresponding dynamical system are then the geodesics of the 

space L1 that is defined by the three 1hɺ  functions L, K, and H . 

 
 Examples: 
 
 1. Suppose that there exists a velocity potential – i.e., that the Qk have the form: 
 

Qk = ∂k′ U (xα, x′ m) . 
 

Replace x′ m with 1/m nx x +
ɺ ɺ  in U .  The function U that is obtained in that way is 0hɺ , so 

we will have the identity: 
U xα

α∂
ɺ
ɺ = 0. 

 Now: 
Xk = 1n

kQ x +
ɺ  = 1 2( )n

k
x U+ ∂ ɺɺ , 

so 
Xn+1 = − k

kQ xɺ  = 1 2
1( )n

nx U+
+∂
ɺ

ɺ . 
 
 For any α = 1, …, n + 1, we will then have: 
 

Xα = 1 2( )nx Uα
+ ∂

ɺ
ɺ . 

 
The trajectories of the dynamical system considered are then the generalized extremals of 
the integral: 

J = 
1

0 0

1 1u u
n n

u u
L x U x dv du+ + +
  ∫ ∫ɺ ɺ , 

 

                                                
 (19) E. Cartan [3], page 18.  
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or the geodesics of the space L1 that is defined by the Lagrangian L and the function K = 
1nx +

ɺ , H = 1nU x +
ɺ . 

 This case includes the particular case in which the Qi are independent of the velocity.  
It will then suffice to set U = Qk x′ k ; one will then deduce that K = 1nx +

ɺ , H = k
kQ xɺ . 

 
 2. More generally, suppose that: 
 

Qk = f 2 ∂k′ U , 
 
in which f and U are two functions of xk , t, and x′ k. 
 The preceding calculations will then show that: 
 

Xα = 1 2( )nf x Uα
+ ∂

ɺ
ɺ . 

 
The trajectories of the corresponding dynamical system are then the geodesics of the 
space L1 that are defined by the Lagrangian L and the two functions: 

 
K = 1nf x +

ɺ   and H = 1nU x +
ɺ . 

 
 3. Suppose that we have: 
 

Qk = Rk (x
h, t) + Skm (xh, t) x′ m, 

with 
Skm = − Skm . 

 Set: 
Rk = Sk, n+1 = − Sn+1, k . 

 Hence: 
Xk = kS xα

α ɺ  and Xn+1 = − k
kQ xɺ = − k

kR xɺ = 1,nS xα
α+ ɺ . 

 
 Hence, for any α = 1, …, n + 1, we will have: 
 

Xα = S xβ
αβ ɺ , 

in which Sαβ is a tensor on Vn+1 . 
 In order for the corresponding Lichnerowicz space to have type L1 , it is necessary 

and sufficient that one must have: 
 

Sαβ Sγδ + Sαγ Sδβ + Sαδ Sβγ = 0 ; 
 
i.e., that the tensor Sαβ must be a bivector.  There will then exist two vector fields whose 
covariant components fα (x) and gα (x) are such that one will have: 
 

Sαβ = fα gβ  − fβ gα 
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locally.  The corresponding space L1 is defined by the Lagrangian L and the functions: 

 
H = f xα

α ɺ  and K = g xα
α ɺ . 

 
 
 34. The fundamental 2-form Ω. – When the force tensor of a dynamical system is 
zero, we have seen (§ 16) that the system of Lagrange equations: 
 

Pα (L) = 0 
is the extremal system of the form: 

ω = L dxα
α∂
ɺ

 

 
i.e., the associated system to the 2-form: 
 

dω = ( )d L dxα
α∂ ∧
ɺ

. 

 
 Now, let S (L, Sαβ ≠ 0) be a dynamical system, and consider the 2-form: 
 
(34.1)    Ω = 1

2( )d L dx S dx dxα α β
α αβ∂ ∧ + ∧
ɺ

. 

 
 The associated system to Ω is composed of 2n + 2 Pfaff equations: 
 

(34.2)    
( ) 0,

0,

L S dx

L dx

β
α αβ

β
αβ

π − + =
 ∂ = ɺɺ

 

with 
πα (L) = ( )L dx L L dxβ β

αβαβ αβ∂ + ∂ − ∂ɺ ɺɺɺ
ɺ . 

 

Since the dynamical system is supposed to be regular, the matrix Lαβ∂ ɺɺ
 will have rank 

n .  We then conclude, as in § 16, that the system (34.2) defines some basic curves of W 
whose projections onto Vn+1 are the solutions to the system: 
 

Pα (L) = 
( )L

du
απ

 = S xβ
αβ ɺ  = Xα ; 

 
i.e., the trajectories of the dynamical system considered.  One then has the theorem: 
 
 Theorem: 
 
 The trajectories of the dynamical system S (L, Sαβ) are the integral curves of the 
associated system to the 2-form: 
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Ω = 1
2( )d L dx S dx dxα α β

α αβ∂ ∧ + ∧
ɺ

, 

 
in which we suppose that xα

ɺ  = dxα / du . 
 
 Consequences. – The trajectories of the dynamical system S (L, Sαβ) are characterized 
by the property that they admit the integral invariance relation that is generated by the 
form Ω. 
 If T is a tube that is generated by a closed continuous series of trajectories of S that is 

bounded by two homotopic closed curves that surround that tube then we will have: 
 

(34.3)     Ω∫T  = 0. 

 
We shall deduce a fundamental relation from that property that directly generalizes 

Cartan’s theorem that relates to the relative integral invariant L dxα
α∂∫ ɺ

 and borrows 

from the notations of Lichnerowicz (20). 
 
 
 35. Lichnerowicz’s theorem: 
 
 Let C0 and C1 be two closed homotopic paths that surround the same tube of 
trajectories in the configuration space-time Vn+1 of a dynamical system S (L, Sαβ) .  The 
difference between the circulations of the velocity vector Lα∂

ɺ
 along the cycles C0 and C1 

is equal to the flux across the portion of the tube whose boundary is C0 – C1 of the 
generalized force tensor Sαβ : 

1 0C C
L dx L dxα α

α α∂ − ∂∫ ∫ɺ ɺ
 = 

1
0

1
2 S dx dxα β

αβ ∧∫∫T . 

 
The xα

ɺ  that appear in L and Sαβ are the components at x of the velocity vector that is 
tangent to the trajectory that passes through x. 
 
 1st Proof: 
 
 Consider two homotopic closed paths C0 and C1 in Vn+1 that surround the same tube 
of trajectories T.  Let 1

0T  be the 2-chain whose support is T and whose boundary C0 – C1. 

 Set: 
ω = L dxα

α∂
ɺ

. 

 
Upon applying the Stokes’s theorem, we will have: 
 

0 1C C
ω ω−∫ ∫  = 

1
0

dω∫T . 

                                                
 (20) A. Lichnerowicz [1], pp. 8-10.  



78 Variational Spaces and Mechanics 

 Now, from (34.3): 

( )1
0

1
2d S dx dxα β

αβω + ∧∫T  = 0. 

 
We will then deduce the formula that we proposed to prove: 
 

(35.1)   
1 0C C

L dx L dxα α
α α∂ − ∂∫ ∫ɺ ɺ

 = 
1

0

1
2 S dx dxα β

αβ ∧∫T  

 
 2nd proof (21): 
 
 Let x0 x1 be an arc of the trajectory of (S) in Vn+1, where x0 and x1 correspond to the 
values u0 and u1 , respectively, of the parameter u .  Consider the action integral: 
 

I = 
1

0

u

u
L du∫ , 

which is evaluated along the arc x0 x1 . 
 The variation δ I of I that corresponds to some arbitrary δ xα at any point of x0 x1 , 
including the extremities, and has: 

xαδ ɺ  = 
d

x
du

αδ  

is given by the classical formula: 
 

(35.2)    δ I = 
1

1

0
0

[ ] ( )
ux

x xu
L x P L x duα α

α αδ δ∂ − ∫ɺ
, 

 
or, from the Lagrange equations: 
 

(35.3)    δ I = 
1

1

0
0

[ ]
ux

x u
L x X x duα α

α αδ δ∂ − ∫ɺ
. 

 
Since Xα du = S x duβ

αβ ɺ  = Sαβ dxβ, we have: 

 

(35.4)    δ I = 
1

1

0
0

[ ]
ux

x u
L x S x dxα α β

α αβδ δ∂ − ∫ɺ
. 

 
Integrate the sides of (35.4) over the closed, continuous sequence of trajectories that 1

0T  

defines; we will get: 

1 0C C
L dx L dxα α

α α∂ − ∂∫ ∫ɺ ɺ
= 

1
0

1
2 S dx dxα β

αβ ∧∫T . 

 
As before, we deduce from that relation that: 
 

                                                
 (21) A. Lichnerowicz [1], pp. 8-10.  
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( )1
0

1
2d L dx S dx dxα α β

α αβ∂ ∧ + ∧∫∫ ɺ
T

 = 0 

 
by an application of Stokes’s formula.  We have then proved directly that the form: 
 

Ω = 1
2( )d L dx S dx dxα α β

α αβ∂ ∧ + ∧
ɺ

 

 
defines an integral invariance relation for the trajectories of (S). 
  
 
 36. Case in which the form Ω is closed. – Let Ω = 1

2( )d L dx S dx dxα α β
α αβ∂ ∧ + ∧
ɺ

. 

 We then deduce that: 
 

(36.1)  d Ω = 
1 1

3! 2
K dx dx dx S dx dx dxα β γ α β γ

αβγ γ αβ∧ ∧ + ∂ ∧ ∧
ɺ

ɺ  

with 
Kαβγ = ∂α Sβγ + ∂β Sγα + ∂γ Sαβ . 

 
In order to have d Ω = 0, it is necessary and sufficient that one should have: 
 
 1. Sγ αβ∂

ɺ
 = 0 for any α, β, γ ; i.e., that the tensor Sαβ must be independent of the xɺ . 

 
 2. Kαβγ = 0 ; i.e., that Sαβ should locally be a rotational tensor. 
 
 There will then exist a local vector field A whose covariant components are Aα such 
that: 
 
(36.2)     Sαβ = ∂α Aβ  − ∂β Aα . 
 
We let A denote the vector-potential of the dynamical system S (L, Sαβ) .  Upon 
remarking that under these conditions: 
 
(36.3)     Ω = ( )d L dx A dxα α

α α∂ +
ɺ

, 

 
we can state the theorem: 
 
 Theorem: 
 
 In order for the fundamental 2-form Ω of a dynamical system S (L, Sαβ) to be closed, 
it is necessary and sufficient that the tensor Sαβ should be derived from a vector-potential 
A (Aα) whose components are independent of the velocity; i.e., that: 
 

Sαβ = ∂α Aβ  − ∂β Aα . 
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The trajectories of the dynamical system are then characterized by the existence of the 
relative integral invariant that is defined by: 
 

ω = ( Lα∂
ɺ

 + Aa) dxα  ; 

 
i.e., they are the extremals of the integral: 
 

I = 
1

0

( )
u

u
L A x duα

α+∫ ɺ . 

 
Those trajectories are also the geodesics of the Finsler space that is defined on the 
configuration space-time Vn+1 by the function: 
 

L + A xα
α ɺ . 

 
 
 37. Example: “centrifugal force” tensor. – Consider a system of N material points 
Mk whose coordinates are Xk , Yk , Zk with respect to an orthonormal frame (R) in 
Euclidian space E3 .  Suppose that the frame (R) is in motion with respect to an 
orthonormal frame (R0) .  Let a′, b′, c′ be the components with respect to (R) of the 
velocity vector of the origin of that frame, and let p, q, r be the components with respect 
to (R) of the instantaneous rotation of (R) with respect to to R0 . 
 The absolute vis viva of the system of points Mk is then: 
 

2Ta = 2 2 2
2

1

( ) ( ) ( )
N

k k k k k k k k k
k

m X a q Z rY Y b r X p Z Z c pY q X
=

′ ′ ′ ′ ′ ′ + + − + + + − + + + − ∑ , 

 
while the relative vis viva will reduce to: 
 

2Tr = 2 2 2

1

( )
N

k k k k
k

m X Y Z
=

′ ′ ′+ +∑ . 

  
Suppose that the system considered admits n degrees of freedom xi. 
 The relative vis viva and the absolute vis viva have expressions of the form: 
 
 2Tr = aij x′ i x′ j, 
 
 2Ta = aij x′ i x′ j + 2bi x′ i + c, 
  
resp., in which the aij , bi , and c are functions of xk and time. 
 Suppose that the frame R coincides with the fixed frame R0 at the instant t. 
 The Lagrange equations that relate to R0 will then be: 
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(37.1)    ( )j j k
ij i jk

d
a x a x x

dt
′ ′ ′− ∂  = Qi . 

 
Qi denotes the i th component of the generalized force vector. 
 The Lagrange equations that relate to R are: 
 

(37.2)   ( )j j k
ij i jk

d
a x a x x

dt
′ ′ ′− ∂ = Qi − ( )j

i i j

d
b b x c

dt
′+ ∂ + . 

 
The supplementary terms that belong to the right-hand side, namely: 
 

( ) j i
i j j i i

b
b b x c

t

∂′∂ − ∂ + ∂ +
∂

, 

 
represent the set of inertial, or “centrifugal,” forces. 
 Pass to the homogeneous formalism by setting xn+1 = t, T = 1n

rT x +
ɺ .  Equations (36.5) 

will then become (§ 29): 
d

du α α∂ − ∂
ɺ
T T = Xα + (∂α ϕβ – ∂β ϕα) xβ

ɺ  

 
upon setting ϕi = bi and ϕn+1 = c. 
 The tensor ∂α ϕβ – ∂β ϕα that we call the centrifugal force tensor is derived from the 
potential vector ϕα .  It is indeed of a tensor of the preceding type (37.2). 
 Upon setting L = T + xα

αϕ ɺ , the equations of motion will become: 

 
d

L L
du α α∂ − ∂

ɺ
= Xα . 

  
Conversely, suppose that one is given a dynamical system (L, Sαβ) .  The equations of 
motion will be: 

 
d

L L
du α α∂ − ∂

ɺ
= S xβ

αβ ɺ . 

 
We say that the tensor Sαβ has centrifugal force type if there exists a global vector 
potential ϕα that depends upon only xβ, and not on the xβ

ɺ , such that: 
 

Sαβ = ∂α ϕβ − ∂β ϕα . 
 
In order for that to be true, it is necessary and sufficient that the form: 
 

Ω = 1
2( )d dL S dx dxα β

αβ+ ∧ɺ  

 
should be closed; i.e., that Sα βγ∂

ɺ
= 0, and: 
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∂α Sβγ + ∂β Sγα + ∂γ Sαβ = 0 . 
 
The same thing will be true for the electromagnetic field tensor in general relativity (§ 
50). 
 
 
 38. Case in which Ω admits an integrating factor. – By definition, Ω admits an 
integrating factor if there exists a differentiable function f (x, xɺ ) ≠ 0 such that the form 
f Ω  is closed.  The integrating factor f is such that: 

 
d (f Ω) = df ∧ Ω + f d Ω = 0 

or 

d Ω = − 
df

f
∧ Ω  

or 
 
(38.1)     d Ω = dϕ ∧ Ω , 
 
when one sets f = e−ϕ. 
 Assume the existence of ϕ and make the identity (38.1) more explicit: 
 

1 1
6 2K dx dx dx S dx dx dxα β γ α β γ

αβγ γ αβ∧ ∧ + ∂ ∧ ∧
ɺ

ɺ  

(38.2) 

= ( )1
2( )dx dx L dx dx R dx dxγ γ β α α β

γ γ αβαβϕ ϕ∂ + ∂ ∧ ∂ ∧ + ∧ɺɺ ɺ
ɺ ɺ , 

with: 
Kαβγ = ∂α Sβγ + ∂β Sγα + ∂γ Sαβ  and Rαβ = L Lαβ βα∂ − ∂ɺ ɺ  + Sαβ . 

 
 Upon identifying the various coefficients of the two sides of (38.2), we will get three 
systems of relations: 
 
(38.3) L Lγ αγαβ βϕ ϕ∂ ∂ − ∂ ∂ɺ ɺɺ ɺ ɺɺ

 = 0, 

 
(38.4) L L Rβ αγ α γ αββγϕ ϕ ϕ∂ ∂ − ∂ ∂ + ∂ɺɺ ɺ ɺɺ

 = Sγ αβ∂
ɺ

, 

 
(38.5) Rαβ ∂γ ϕ + Rβγ ∂α ϕ + Rαγ ∂β ϕ  = Kαβγ . 
 
The relations (38.3) imply that the function ϕ is independent of the x because if that were 
not true then Lαβ∂ ɺɺ

 would have the form: 

α βλ ϕ ϕ∂ ∂ ɺɺ
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and the matrix || ||Lαβ∂ ɺɺ
 would have rank 1, which is absurd, since the dynamical system 

is supposed to be regular. 
 When one integrates the relations (38.4) over xγ

ɺ , where γ is arbitrary, that will then 
imply that: 

Sαβ = L Lβ α α βϕ ϕ∂ ∂ − ∂ ∂ ɺɺ
 + Tαβ (x) , 

 
in which the Tαβ depend upon only the variables xγ . 
 Now make (38.5) more specific; after reductions, one will get: 
 

∂α Tβγ + ∂β Tγα + ∂γ Tαβ = ∂α ϕ Tβγ + ∂β ϕ Tγα + ∂γ ϕ Tαβ . 
 
Those relations express the idea that: 
 

( )1
2d T dx dxα β

αβ ∧  = ( )1
2d T dx dxα β

αβϕ ∧ ∧ ; 

i.e., that the form: 
e−ϕ Tαβ dxα ∧ dxβ 

is closed. 
 There will then locally exist a vector field A (x) whose covariant components are Aα 
such that: 

e−ϕ Tαβ  = ∂α Aβ − ∂β Aα . 
 
Therefore, if the form Ω admits an integrating factor then the tensor Sαβ will necessarily 
have components of the form: 
 
(38.6)   Sαβ = L Lα β αβϕ ϕ∂ ∂ − ∂ ∂ɺɺ

 + eϕ (∂α Aβ − ∂β Aα) 

  
then functions ϕ and Aα will depend upon only the variables xα. 
 Conversely, if the tensor Sαβ has the preceding form then we will have: 
 

e−ϕ Ω = ( ) ( )e d dL e dL d d A dxϕ ϕ α
αϕ− −+ ∧ +ɺ ɺ = ( )d e dL A dxϕ α

α
− +ɺ , 

 
in which f = e−ϕ is indeed an integrating factor for Ω. 
 Upon remarking that the forms Ω and f Ω admit the same associated system, we can 
then state the theorem: 
 
 Theorem: 
 
 In order for the fundamental 2-form Ω of a dynamical system S (L, Sαβ) to admit an 
integrating factor, it is necessary and sufficient that the force tensor should have 
components that can be put into the form: 
 

Sαβ = L Lα β αβϕ ϕ∂ ∂ − ∂ ∂ɺɺ
 + eϕ (∂α Aβ − ∂β Aα) . 
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 ϕ (x) and Aα (x) dxα are a scalar function and a 1-form, respectively, that are defined on 
the configuration space-time Vn+1 . 
 
 Under those conditions, the trajectories are characterized by the existence of the 
relative integral invariant that is defined by: 
 

ω = (e Lϕ
α

− ∂
ɺ

 + Aα) dxα ; 

 
i.e., they are the extremals of the integral: 
 

I = 
1

0

( )
u

u
e L A x duϕ α

α
− +∫ ɺ . 

 
Those trajectories are also the geodesics of the Finsler space that is defined on Vn+1 by the 
function: 

e−ϕ L + A xα
α ɺ . 

 Particular cases: 
 
 1. ϕ = 0.  In this case, Sαβ = ∂α Aβ − ∂β Aα .  The form Ω will then be closed and 
equal to: 

( )d L dx A dxα α
α α∂ +
ɺ

, 

as we found before. 
 
 2. A = 0.  In this case: 

Sαβ = L Lα β αβϕ ϕ∂ ∂ − ∂ ∂ɺɺ
. 

 
The trajectories will then be the extremals of the integral: 
 

I = 
1

0

u

u
e L duϕ−

∫ . 

 
In that case, as in the general case, there exists a Finsler space that admits the same 
geodesics as the S-Finslerian space that is defined by L and Sαβ . 
 
 
 39. Canonical equations. – Let S (L, Sαβ) be a dynamical system, and let F be the 

associated Finsler space; i.e., the Finsler space that is defined on the configuration space-
time by: 

ds = L (xα, xα
ɺ ) du . 

As in § 22, set: 
yα = gαβ y

β with yβ = dxβ / du . 
 

The Lagrangian L (xα, yα) will then correspond to the Hamiltonian H (xα, yα) such that: 
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H (xα, yα) = H (xα, gαβ y
β) = L (xα, yα) . 

 

 Recall that the function H is 1hɺ  and that: 
 
(39.1)    ∂α L = − ∂α

 H,  yα = H ∂α H . 
 
If we take the parameter u to be the arc-length s of the trajectory then yα and yα will be 
the contravariant and covariant components, respectively, of a unit vector that is tangent 
to F. 

 Upon setting lα = dxα / ds, lα = gαβ l
β = Lα∂

ɺ
, we will have: 

 
(39.2)    L (xα, lα) = H (xα, lα) = 1. 
 
The 2n + 2 numbers xα and lα are supposed to be independent, so they can be considered 
to be a local coordinate system at a point z in the fiber bundle V of tangent vectors to 

Vn+1. 
 Since the numbers xα and lα are coupled by the relation: 
 

H (xα, lα) = 1, 
 
they define a point in the state space W. 
 The trajectories in W of the dynamical system (S) are then defined by the formulas: 
 

xα = xα (s), lα = lα (s) , 
such that: 

dx

ds

α

= ∂α H and 
dl

ds
α + ∂α H = Xα . 

 
The latter equations are the Lagrangian equations of the dynamical system, when written 
in terms of the variables x and l. 
 Upon setting Xα = Sαβ ∂β H, where the Sαβ are the components of the force tensor, we 
will get the system of canonical equations in the form: 
 

(39.3)    
,

,

dx
H

ds
dl

H S H
ds

α
α

βα
α αβ


= ∂


 = − ∂ + ∂


 

or even in the form: 
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(39.4)    
,

.

dx
H

ds

dl dx
S H

ds ds

α
α

β
α

αβ α


= ∂


 − = − ∂


 

 

Since 
dx

X
ds

α

α =
dx dx

S
ds ds

α β

αβ = 0, we will see that the system of canonical equations 

admits the first integral: 
H (xα, lα) = const. 

 
 We can then state: 
 
 Theorem: 
 
 The trajectories of the dynamical system S with the Hamiltonian H (xα, lα) and force 
tensor Sαβ (x, l) are the integral curves of the system (39.3) that verify the initial 
condition: 

H [(xα)0 , (lα)0] = 1. 
 
 We remark that the system of canonical equations is once more the associated system 
of the 2-form Ω that is written here: 
 
(39.5)    Ω = dlα  ∧ dxα + 1

2 Sαβ dxα ∧ dxβ .  

 
Indeed, the associated system to Ω is obtained by writing out that the relation: 
 

i (Z) Ω = 0 
 
is verified for any vector Z that is tangent to W ; i.e., such that: 
 

i (Z) dH = 0 . 
 Upon writing that: 

 
( )dxα
∂Ω

∂
 = 

( )

( )

dH

dxαλ ∂
∂

, 

 

 
( )dlα

∂Ω
∂

 = 
( )

( )

dH

dlα
λ ∂

∂
, 

 
and upon remarking that λ = ds, we will get the canonical relations in the form (39.4). 
 The first n + 1 equations show that the integral curves of the associated system to Ω 
are basic curves on W.  From the results of 23, that should be obvious, moreover, from 
the expression (39.5) for Ω. 
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 We have that H = const. is a first integral of the canonical system.  Any first integral 
F = const. is a solution to the partial differential equation: 
 

θ (Z) F = 0, 
 
in which Z is the vector whose components are the right-hand sides of equations (39.1), 
so: 

∂α H ∂α F + (− ∂α H + Xα) ∂αF = 0, 
or rather: 

(F, H) + Xα ∂αF = 0, 
 
in which (F, H) denotes the Poisson bracket of the functions F and H relative to the 
variables xα and lα . 
 
 

 40. Canonical equations in matrix form (22). – Let 
dz

ds
 
 
 

 be the column matrix that 

is composed of the derivatives of the xα and lα with respect to s, let (gradz H) be the 
column matrix of the partial derivatives of H with respect to the xα and lα , let ES be the 

antisymmetric matrix 
0 I

I S

 
 − 

, and let JS be the antisymmetric matrix 
0

S I

I

− 
 
 

, 

where S is the matrix whose elements are Sαβ and I and 0 are the identity matrix and zero 
matrix, respectively, of order n + 1. 
 The system of canonical equations (39.3) can be put into the form: 
 

(40.1)     
dz

ds
 
 
 

 = Es (gradz H) . 

 
Since the matrix JS is the inverse of the matrix ES , the canonical system can be put into 
the equivalent form: 

(40.2)     S

dz
J

ds
 
 
 

 = (gradz H) , 

 
which corresponds to equations (39.4). 
 We remark that JS is the matrix associated with the form Ω ; i.e., the matrix of the 
coefficients of: 

( )dxα
∂Ω

∂
 and 

( )dlα

∂Ω
∂

. 

 
We can also say that JS is the matrix of the coefficients of the alternating bilinear form 

( )f Ω  that is associated with Ω; indeed, one has: 

                                                
 (22) Y. Thiry [2], pp. 206-212.  
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f (Ω) = t(dz) JS (δ z), 
 

in which t(dz) is the row matrix that has the elements dxα, dlα .  (δ z) is the column matrix 
whose elements are δ xα, δ lα , while (dz) and (δz) correspond to two arbitrary vectors d z 
and δ z , resp., in the space Tz that is tangent to the point z (xα, lα) of V . 

 In what follows, it will sometimes be convenient to set: lα = xα∗ , with α* = α + n + 1, 
and to denote an index that takes the values 1, 2, …, 2n + 2 by an uppercase Latin letter.  
When one lets aAB denote the element of the Ath row and Bth column of JS , the 2-form Ω 
can then be written: 
 
(40.3)     Ω = 1

2 aAB dxA  ∧ dxB, 

 
and the system of canonical equations (40.2) will become: 
 

(40.4)     
B

AB

dx
a

ds
= ∂A H . 

 
 
 41. Change of variables. – Consider the change of variables on V that is defined by: 

 
(41.1)     xA = XA (xB′), 
 
where the 2n + 2 functions XA are supposed to be differentiable with respect to the new 
variables xA′. 
 We deduce the following formulas by differentiating (41.1): 
 
(41.2)     dxA = ∂B′ X

A dxB′ . 
 
Let M denote the Jacobian matrix whose elements are A

BX ′  = ∂B′ X
A, where A is the row 

index and B′ is the column index.  We can then write the relations (41.2) in the matrix 
form: 

(dz) = M (dz′ ) . 
 
The bilinear form f (Ω) = t(dz) JS (δ z) transforms into: 
 

f (Ω′) = t(dz′ ) tM JS M (δ z) , 
 
in which tM is the matrix transpose of M. 
 The bilinear form f (Ω′) is once more alternating because the matrix: 
 

KS = tM JS M 
is antisymmetric. 
 The associated system to the corresponding form Ω′ is: 
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(41.3)    S

dz
K

ds

′ 
 
 

 = (gradz′ H′ ) , 

 
in which (gradz′ H′ ) is the column matrix whose partial derivatives with respect to xA′ of 
the Hamiltonian H, which is assumed to be expressed in terms of the new variables. 
 The canonical system is then written in the following form in terms of the new 
variables: 

(41.4)    
B

A B

dx
a

ds

′

′ ′  = ∂A′ H′, 

 
in which the matrix whose elements are aA′B′ is the matrix tM JS M, JS is the matrix in the 
old canonical system, M is the Jacobian matrix of the change of variables, and: 
 

H′ (xA′) = H [XA (xB′)] = H (xA). 
 
 
 42. Canonical transformations. – We say that the transformation that is defined by 
the matrix M is canonical if the matrix: 
 

KS = tM JS M 
has the form: 

KS = 
0

S I

I

′ − 
 
 

 = JS′  

in which S′ is an antisymmetric matrix. 
 We say that the transformation that is defined by the matrix M is pseudo-canonical if: 
 

KS = f JS′  
 
for any antisymmetric matrix S, where f is a scalar function of the variables xA′. 
 One easily shows that the set of canonical or pseudo-canonical transformations has a 

multiplicative structure group that locally admits the symplectic group Sp (n + 1, R) as a 

subgroup. 
 Let us try to characterize the matrices M that define the canonical transformations.  In 
order to do that, we return to the notations xα, lα , and denote the new variables by xα′, lα′ . 
 Set: 

xα = Xα (xβ′, lβ′), lα = Lα (xβ′, lβ′) , 
so 
 dxα = X Xdx dlα β αβ

β β
′ ′

′ ′+ , 

 dlα = L Ldx dlβ β
αβ α β

′ ′
′ ′+ , 

with 
  Xα

β ′  = ∂β′ X
α, Xαβ ′ = ∂β′ Xα, 

  Lαβ ′ = ∂β′ Lα
 ,  Lβ

α
′ = ∂β′ Lα

 .  
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 The matrix M then has the form: 

M = 
A B

C D

 
 
 

, 

 
in which A, B, C, D are the submatrices of M of order n + 1 whose elements are Xα

β ′ , 

Xαβ ′ , Lαβ ′ , L
β
α

′ , respectively, and the first index is the column index. 

 More explicitly: 
 

KS = 
0

t t

t t

S I A BA C

I C DB D

−   
   

   
 = 

t t t t t t

t t t t t t

ASA CA AC ASB CB AD

BSA DA BC BSB DB BD

 + − + −
 + − + − 

. 

 
In order for KS to have the form JS for any S, it is necessary that: 
 

tDA – tBC = 1 and tDB – tBD = 0 . 
 
Suppose that the matrix A is regular.  The conditions: 
 

tBSA = tBSB = 0 
 
will then be equivalent to the condition: 

tBS = 0, 
 
which will be verified for any S only when: 
 

B = 0. 

We deduce the following result from this: In order for the matrix 
A B

C D

 
 
 

, in which A is 

supposed to be regular, to define a canonical transformation, it is necessary and sufficient 
that: 
    1. B = 0  and  2. tDA = I, 
 
or rather that the variables xα must be independent of the new variables lα′ and that: 
 

∂γ′ Lα ∂γ′ X
β = β

αδ  . 
Under those conditions, the form: 
 

Ω = dlα ∧ dxα + 1
2 Sαβ dxα ∧ dxβ  

will have the form: 
Ω′ = dlα′ ∧ dxα′ + 1

2 Sα β′ ′′  dxα′ ∧ dxβ′  

 
for its transform, in which the matrix whose elements are the Sα β′ ′′  is the matrix: 
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S′ = tASA + tCA – tAC . 
 
The canonical equations of the dynamical system considered relative to the new variables 
will then be: 

 
,

,

dx
H

ds
dl

H S H
ds

α
α

βα
α α β

′
′

′′
′ ′ ′

 ′= ∂

 ′ ′ ′= −∂ + ∂


 

with H′ (xα′, lα′) = H (Xα, Lα) . 
 For a fixed tensor Sαβ , one can find some other transformations that respect the form 
of the canonical system.  The corresponding matrices A, B, C, D verify the relations: 
 
 tBSB + tDB – tBD = 0, 
 tBSA + tDA – tBC = f I, 
 
in which f is an arbitrary scalar function of the new variables. 
 
 Particular cases: 
 
 1. Change of variables that leaves the form Ω invariant. 
 
 We say that the form Ω is invariant under the change of variables that is defined by M 
if the transformed form is: 

Ω′ = dlα′ ∧ dxα′ + 1
2 Sα β′ ′  dxα′ ∧ dxβ′, 

 
in which Sα β′ ′ is obtained by replacing the xα in Sαβ with Xα (x′, l′ ) and the lα with Lα (x′, 
l′ ). 
 In order for that to be true for any S, it is necessary and sufficient that when one 
supposes that A is regular, one should have: 
 
 1. B = 0 , 
 
 2. tDA = I , 
 
 3. tASA + tCA – tAC = S for any S ; i.e., that A = I and the tC = C . 
 

 The matrices thus-obtained have the form: MC = 
0I

C I

 
 
 

, where C is a symmetric 

matrix. 
 Those matrices form a subgroup of the multiplicative group of canonical matrices that 
are isomorphic to the additive group of symmetric matrices of order n + 1. 
 The matrix C is symmetric, so we will have the identity: 
 

∂α′ Lβ − ∂β′ Lα = 0 . 



92 Variational Spaces and Mechanics 

There will then be a function F (x′ ) such that: 
 

Lα = lα′ + ∂α′ F (xβ′ ) . 
 

The change of variables considered is then defined by: 
 

xα = xα′ + aα , 
in which the aα are constants, and: 

lα = lα′ + ∂α′ F . 
 It will then result that: 

dlα ∧ dxα = dlα′ ∧ dxα′ 
and 

dxα ∧ dxβ = dxα′ ∧ dxβ′. 
 
 2. Change of variables on Vn+1 , prolonged to V. – Define a change of variables on 

Vn+1 by: 
xα = Xα (x β′ ) . 

 
From the tensorial nature of lα and Sαβ , it is obvious that this change of variables is 
canonical.  Let us verify that.  By differentiation, we will get: 
 

dxα = ∂β′ X
α dxβ′ or lα = ∂β′ X

α lβ′. 
 
The matrix A has elements X α

β ′  = ∂β′ X
α, where the α is the row index and β′ is the 

column index.  The matrix B is zero. 
 The covariant components lα transforms according to the law: 
 

lβ′  = X lα
β α′  or lα = X lβ

α β
′

′ . 

By differentiation, we get: 
dlα = X Xl dx dlγ β β

β β γ α β
′ ′

′ ′ ′ ′∂ + . 

 
The matrix D whose elements are X β

α
′ , where the index α represents the rows, is the 

inverse of the matrix whose elements are X α
β ′ , where the index α represents the columns; 

i.e., tA.  We then have: 
D = tA−1. 

 
The transformation (xα, lα) → (xα′, lα′) thus-defined is indeed a canonical transformation. 

 The matrix KS = tM JS M then has the form: 
0

t AS A I

I

 −
 
 

, because one can show 

directly from the expression for C that: 
 

tCA – tAC = 0, 
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but that results from the fact that the change of variables considered is such that: 
 

lα dxα = lα′ dxα′ or dlα  ∧ dxα = dlα′  ∧ dxα′. 
 
 Remark. – It is easy to recover the results of § 38 by the matrix method in the case 
where Ω is closed or admits an integrating factor. 
 
 
 43. Lee space defined by the 2-form Ω. – Consider the manifold V whose point z 

admits the 2n + 2 numbers xα and lα , which are assumed to be independent, as a local 
coordinate system. 
 When one is given the 2-form on V : 

 
(43.1)    Ω = dlα ∧ dxα + 1

2 Sαβ dxα ∧ dxβ, 

 
that will define an almost-symplectic structure on V, or rather, a Lee space structure (23). 

 Indeed, since the variables xα and lα are assumed to be independent, the form Ω will 

have maximum rank 2n + 2 ; the associated matrix to Ω is JS = 
0

S I

I

− 
 
 

, which is a 

regular matrix, so its inverse will be the matrix ES = 
0 I

I S

 
 − 

.  

 As in § 40, set lα = xα, with α∗ = α + n + 1. 
 The 2-form Ω is then written: 
 

Ω = 1
2 aAB dxA ∧ dxB, 

 
where aAB is the element of JS that is in row A and column B. 
 Recall that any uppercase Latin index can take the values 1, 2, …, 2n + 2. 
 Let aAB denote the elements of the matrix ES that is inverse to JS .  With Lee, 
introduce the following four tensors: 
 
 1. The curvature tensor, whose components: 
 
(43.2)    KABC = ∂A aBC + ∂B aCB + ∂C aAB 
 
are such that: 

d Ω = 1
6  KABC dxA ∧ dxB ∧ dxC . 

 
 2. The covariant curvature vector, whose components are: 
 

                                                
 (23) H. C. Lee, “A kind of even-dimensional geometry and its application to exterior calculus,” Amer. J. 
Math. 55 (1943), 433-438.  



94 Variational Spaces and Mechanics 

(43.3)     KA = KABC aBC, 
 
in which the form KA dxA is the codifferential (δ Ω) of Ω with respect to itself. 
 
 3. The first conformal curvature tensor, whose components are: 
 
(43.4)     bAB = ∂A KB − ∂B KA .  
 
 One has: 

d (δ Ω) = 1
2 bAB dxA ∧ dxB. 

 
 4. The second conformal curvature tensor, whose components are: 
 

(43.5)   CABC = KABC + 
1

2n
(KA aBC + KB aCA + KC aAB) . 

That tensor is such that: 

1
6 CABC dxA ∧ dxB ∧ dxC = d Ω –

1

n
δ Ω ∧ Ω . 

 
Let us now specify the components of the various tensors. 
 We find that for the curvature tensor, we have: 
 
(43.6)  Kαβγ = ∂α Sβγ + ∂β Sγα + ∂γ Sαβ ,  
 
(43.7)  Kα∗βγ = ∂α∗ Sβγ = ∂α Sβγ , Kαβ∗γ = ∂β∗ Sγα , Kαβγ∗ = ∂γ∗ Sαβ . 
 
 The components that admit more than one starred index are zero. 
 We find that for the curvature vector, we have: 
 

Kα = Kαβγ a
βγ + Kαβ∗γ a

β∗γ + Kαβγ∗ a
βγ∗ = ∂γ∗ Sαβ δ βγ − ∂β∗ Sγα δ βγ, 

so 
 
(43.8)    Kα = 2 Sβ αβ

β
∗∂∑  = 2 ∂β Sαβ , 

with summation over β . 
Kα∗ = Kα∗βγ a

βγ = 0. 
 We will then have: 

δ Ω = 2 ∂β Sαβ  dxα. 
 
 For the second curvature tensor, we will have: 
 

Cαβγ = Kαβγ +
1

2n
(Kα Sβγ + Kβ Sαγ + Kγ Sαβ), 

or 
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(43.9)    Cαβγ = 
1

S S S S
n

λ
α βλ αλ βγ

 ∂ + ∂ 
 

,  

 
in which S indicates that one must combine the terms in the parentheses with the ones 
that one deduces from them by cyclically permuting α, β, γ : 
 

Cα∗βγ = Kα∗βγ +
1

2n
(Kα∗ Sβγ − Kβ Sαγ + Kγ Sαβ) . 

 
If all three of α, β, γ are different then we will get: 
 
(43.10)    Cα∗βγ = ∂α∗ Sβγ  = ∂α Sβγ∗  .  
 
If β = γ then the corresponding coefficients C will be zero.  If α = β ≠ γ then we will get: 
 

(43.11)    Cα∗αγ = ∂α∗ Sαγ  + 
1

S
n λ γλ

λ
∗∂∑ . 

 
 All of the coefficients C that have more than one starred index are zero. 
 
 
 44. Necessary and sufficient conditions for Ω to admit an integrating factor. – 
The remarkable Lee spaces are the ones that Lee called “flat,” which are the ones for 
which Ω is closed, and the ones that are “conformally flat,” for which the form Ω admits 
an integrating factor.  We are then reduced to the fundamental case that was studied on § 
38. 
 In order for the form Ω to be closed, it is necessary and sufficient that the curvature 
tensor should be zero.  As we have seen, that condition is equivalent to the existence of a 
vector potential A (x) such that locally: 
 

Sαβ = ∂α Aβ − ∂β Aα . 
 
 In order for the form Ω to admit an integrating factor, it is necessary and sufficient 
that the second conformal curvature tensor should be zero.  That theorem is due to Lee, 
and was rediscovered and completed by C. Ehresmann and P. Libermann (24), who 
supposed that n > 1; that is obviously the case for the 2-form Ω of a dynamical system. 
 Now write down that the tensor CABC = 0.  From (43.10), Sβγ depends upon only the 
variables x, lβ , and lγ .  From (43.11), ∂α∗ Sαγ  has a value that is independent of α.  Then 
set: 

∂α∗ Sαγ = ϕγ , 
 
and the relations Cα∗αγ = 0 will then be verified.  Since ∂α∗γ∗ Sαγ = 0, the functions ϕγ 
depend upon only the variables x. 
                                                
 (24) C. Ehresmann and P. Libermann, C. R. Acad. Sci. 227 (1948), 420-421; ibid., 229 (1949), 697-699. 
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 Sαβ then has the form: 
 
(44.1)    Sαβ = lα ϕβ (x) – lβ ϕα (x) + Tαβ (x) . 
  
Let us now specify the conditions: 

Cαβγ = 0 . 
Upon remarking that: 

1

n
∂λ Sαλ = − ϕα (x) , 

we will get: 
 
(44.2)   S (lα ∂γ ϕβ − lα ∂γ ϕβ + ∂γ Tαβ − ϕγ Tαβ) = 0 , 
 
after reductions.  Those conditions are equivalent to: 
 
(44.3)     ∂γ ϕβ − ∂β ϕγ = 0 
 
and 
 
(44.4) S (∂γ Tαβ − ϕγ Tαβ) = 0. 
 
The conditions (44.3) express the idea that the form ϕα dxα is closed on Vn+1 ; there will 
then exist a function ϕ (x) such that locally: 
 

ϕα = ∂α ϕ . 
 
The conditions (43.4) express the idea that the 2-form: 
 

1
2 Tαβ dxα ∧ dxβ  

admits e−ϕ as an integrating factor. 
 There will then exist a vector potential Aα (x) such that locally one has: 
 

Tαβ = eϕ (∂α Aβ − ∂β Aα) . 
 
As in § 37, we find that Sαβ has the form: 
 
(44.5)   Sαβ = lα ∂β ϕ − lβ ∂α ϕ + eϕ (∂α Aβ − ∂β Aα) . 
 
We can then state the theorem: 
 
 Theorem: 
 
 In order for the fundamental 2-form of a dynamical system: 
 

Ω = dlα ∧ dxα + Sαβ dxα ∧ dxβ 
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to admit an integrating factor, it is necessary and sufficient that the force tensor Sαβ 
should verify the following conditions for any α, β, γ : 
 

 1.  
S

l
βγ

α

∂
∂

= 0 for α ≠ β and α ≠ γ . 

 

 2.    
S

l
βγ

β

∂
∂

= 
S

l
αγ

α

∂
∂

. 

 

 3.   
1

S
S S

S
x n l

βγ αλ
βγα

λ λ

∂ ∂+ ∂ ∂ 
∑  = 0. 

 
Under those conditions, there will exist a scalar function ϕ (x) and a covariant field Aα (x) 
that is defined on Vn+1 such that locally one has: 
 

Sαβ = lα ∂β ϕ − lβ ∂α ϕ + eϕ (∂α Aβ − ∂β Aα) . 
 
 

_____________ 



CHAPTER VI 
 

DYNAMICAL SYSTEMS WITH  
NON-HOLONOMIC CONSTRAINTS 

 
 

 45. – First-order constraints in the homogeneous formalism. – Let (S0) be a 
dynamical system with perfect holonomic constraints and n degrees of freedom xk.  
Recall the notations of § 29; in the inhomogeneous formalism, the equations of motion 
are: 
 
(45.1)     Pk (L) = Qk . 

 
Let a (xk, t, x′ k) be a function of 2n + 1 variables xk, t, and x′ k that is not the total 
derivative with respect to time of a function A (xk, t), and is such that a = const. is not a 
first integral of the equations of motion of (S0). 
 Imposing a first-order non-holonomic constraint on the dynamical system S0 : 
 

a (xk, t, x′ k) = 0 
 
amounts to adding a function Rk of x i, t, and x′ i to each right-hand side of equations 
(45.1) in such a fashion that the motion of the new dynamical system (S) will be defined 
in configuration space-time Vn+1 by: 
 
(45.2)     Pk (L) = Qk + Rk ; 

 
these equations admit a = 0 as a first integral (25). 
 We now pass to the homogeneous formalism, as in § 29. 
 Set: 

Yk = 1n
kR x +
ɺ ,  Yn+1 = − k

kR xɺ . 

 
The Yα are the covariant components of a vector that is called the constraint force. 
 The constraint relation will then be written: 
 

a (xα , xα
ɺ ) = 0. 
 

The function a is hɺ .  Since λ a = 0 defines the same constraint on V when λ ≠ 0, we can 

fix the degree of homogeneity of a arbitrarily. 

 In general, suppose that a is hɺ  0. 
 The homogeneous Lagrangian L defines a Finsler space structure on Vn+1 .  We 
suppose that the space is regular and that the metric tensor gαβ is such that: 
 
                                                
 (25) F. Gallisot [1], pp. 45. 
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ds2 = gαβ dxα dxβ 
 
is a positive-definite quadratic form at any point of V. 

 The trajectories of (S) in configuration space-time are then defined by the n + 1 
equations: 
 
(45.3)     Pα (L) = Xα + Yα . 
 
 The canonical equations of the trajectories in phase space W are: 
 

(45.4)    
,

,

dx
H

ds
dl

H X Y
ds

α
α

αα
α α


= ∂


 = − ∂ + +


 

 
in which the functions H, Xα , Yα are supposed to be expressed with the aid of the 
variables xα and lα . 
 The function a (xα, xα

ɺ ) corresponds to the function a (xα, lα) such that: 
 

a (xα, Lα∂
ɺ

) = a (xα, xα
ɺ ) . 

 
 Let us now translate the fact that a (xα, lα) = 0 is a first integral of equations (45.4). 
 Upon writing that: 

i (Z) d a  = 0, 
 
in which Z is the tangent vector to W whose components are the right-hand sides of 
equations (45.4), we will get: 
 
(45.5)    ( , ) ( )a H a X Yα

α α+ ∂ + = 0. 

 
( a , H) denotes the Poisson bracket of the functions a  and H. 

 We associate the constraint force Y, whose components Yα are 1hɺ  and such that: 
 

Y xα
α ɺ = 0, 

 
with the tensor Tαβ , which we call the constraint tensor, and which is defined by: 
 
(45.6)     Tαβ = 1

2 ( )Y Yα α ββ∂ − ∂ɺ ɺ
.  

 

 The components Tαβ are 0hɺ  and such that: 
 

T xβ
αβ ɺ = Yα . 
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 The considerations of the preceding chapter will then show that the system (45.4) is 
the associated system of the 2-form: 
 
(45.7)   Ω = dlα ∧ dxα + 1

2 (Sαβ + Tαβ) dxα ∧ dxβ , 

 
in which the variables lα and xα are coupled by the relation: 
 

H (xα, lα) = 1. 
 
 The trajectories of the dynamical system (S) can be considered to be the geodesics of 
the S-Finslerian space that is defined by the Lagrangian L and tensor Sαβ + Tαβ . 
 Being given the constraint relation a = 0 will not determine the constraint force; it 
will depend upon the manner by which the constraint is realized, in addition.  In what 
follows, we shall study the constraints that are realized perfectly, in the Delassus sense, 
or “perfect constraints.” 
 
 
 46. – Perfect constraints. – The constraint relation: 
 

(46.1)   a (xα, yα) = 0 ,  with yα = 
dx

du

α

, 

 
defines a cone of directions Cx at each point x of Vn+1 that is situated in the space Tx that 
is tangent to Vn+1 at x. 
 That cone will reduce to a plane if the constraint is linearly non-holonomic; i.e., if the 
relation (46.1) can be put into the form: 
 

aα (x) yα = 0 . 
 

In this case, the constraint is called perfect if the constraint force Yα is perpendicular to 
that plane in the sense of the Finslerian metric. 
 In the general case, associate each generator G of the cone Cx with the tangent plane 
along that generator. 
 If we let 0yα  denote the components of a vector that is carried by G then the equation 

of that tangent plane will be: 
 
(46.2)     0( , ) aa x y yα α

α∂
ɺ

= 0. 

 
The relation (46.2) defines what we call the linear constraint that is tangent to the given 
constraint at the point xα, 0yα  of W. 

 The constraint is called perfect if the constraint force at the point xα, 0yα  is 

perpendicular to the tangent plane to the cone Cx along the generator 0yα .  The constraint 

forces then verify the condition that is called the generalized virtual work condition: The 
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virtual work Yα δ xα done by the constraint force that corresponds to the line element 

0 0( , )x yα α  is zero is zero for any virtual displacement δ xα that is permitted by the linear 

constraint that is tangent to the given constraint at 0xα , 0yα . 

 In the case of a perfect constraint, the components of the constraint force have the 
form: 
 
(46.3)     Yα = aαλ ∂

ɺ
, 

 

in which λ is a function of the xα, yα that is 1hɺ  if a is 1hɺ  and 2hɺ  if a is 0hɺ .  Conversely, 
if the components of Y have the form (46.3) then the constraint considered will be 
perfect. 
 The statement of the generalized virtual work condition that was given above is 
equivalent to the following statement: At a given instant, the virtual work done by the 
constraint forces Yk δ xk is zero for any virtual displacement δ xk that is compatible with 
the constraint that is independent of time that coincides with the given constraint at the 
instant considered. 
 Indeed, that condition will imply that: 
 

Yk = k
aλ ∂ ɺ . 

 

 Since Y xα
α ɺ  = 0 and a xα

α∂
ɺ
ɺ  = 0, where a is supposed to 0hɺ , we deduce from this 

that: 
Yn+1 = 1n aλ +∂

ɺ
. 

 
 The perfect first-order constraints include, in particular, the linearly non-holonomic 
constraints, and even the holonomic constraints, with the condition that one must replace 
the constraint relation: 

A (xα) = 0 
with the first-order relation: 

a = A xα
α∂
ɺ
ɺ  = 0. 

 
 The constraint force in the case of a perfect constraint is determined when one is 
given the constraint relation a = 0. 
 The coefficient λ is determined when one expresses the idea that a = 0 is a first 
integral of the equations of motion. 

 In order to explain the calculations, suppose that the function a is 0hɺ  or that it can be 

expressed as a function of the variables xα and lα . 
 Those variables are coupled by the relation: 
 

H (xα, lα) = 1, 
 
in which H is the Hamiltonian that corresponds to the Lagrangian L (xα, yα) . 
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 Let F be the Finsler space that is defined on Vn+1 by: 

 
ds = L (xα, dxα) . 

 
Replace lα with Lα∂

ɺ
in a (xα, lα) .  Upon partially differentiating this, we will get: 

 
 aα∂

ɺ
 = a Lβ

αβ∂ ∂ ɺɺ
 

  = ( )a g l lβ
αβ α β∂ −  

  = a gβ
αβ∂ , 

 

because a lα
α∂
ɺ

= a lβ
β∂ = 0, since a is 0hɺ . 

 We then deduce that the components of the constraint force are: 
 
  Yα = aαλ ∂

ɺ
 and Y α = aαλ ∂ . 

 
The relation (45.5), which expresses the idea that a  = 0 is a first integral of the equations 
of motion, will then become: 
 
(46.4)   ( , )a H a X g a aα α β

α αβλ+ ∂ + ∂ ∂  = 0 . 

 
The coefficient of λ, which represents the square of the norm of the vector aα∂ , is 
positive; that relation will then determine λ . 
 
 Example of a perfect non-holonomic constraint. – One launches a projectile with an 
initial velocity V0 .  One makes a force F act on that projectile in such a fashion that the 
motion is uniform and planar. 
 With respect to an orthonormal frame Ox, Oy that is situated in the trajectory plane, 
the constraint relation is: 

a = x′ 2 + y′ 2 – ν 2 = 0 
or 

a = 
2 2

2

x y

t

+ɺ ɺ

ɺ
 – ν 2 = 0 . 

 
Making the hypothesis that the constraint is perfect amounts to supposing that the 
constraint force F is collinear with the velocity vector. 
 
 Geometric interpretation of the trajectories. – Consider a dynamical system (S) with 
a Lagrangian L that is subject to a perfect constraint that is defined by: 
 

a (xα, xα
ɺ ) = 0, 

with the function a being 0hɺ . 
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 On the other hand, suppose that the tensor Sαβ = 0, in such a way that the equations of 
the trajectories in the configuration space-time Vn+1 must be defined by the system: 
 

Pα (L) = aαλ ∂
ɺ

, in which λ is 2hɺ . 

 
The corresponding constraint tensor is: 
 

Tαβ = 1
2 ( )a aα αβ βλ λ∂ ∂ − ∂ ∂ɺ ɺɺ ɺ

. 

 
The trajectories admit the integral invariance relation that is defined by: 
 

Ω = 1
2( )d L dx da dα

α λ∂ ∧ + ∧
ɺ

ɺ ɺ . 

 
Set λ = K2 and a = H / K, which is always possible by changing the signs of a and λ, if 
necessary.  We will then have: 

aαλ ∂
ɺ

 = K H H Kα α∂ − ∂
ɺ ɺ

. 

 

Since the functions H and K are 1hɺ , the trajectories of (S) will be the generalized 
extremals of the integral: 

I = ( )1 1

0 0

u u

u u
L K H dv du+∫ ∫ . 

 
Those trajectories are also the geodesics of the space L1 that is defined by the functions 

L, K, and H, so one will have the theorem: 
 
 Theorem: 
 
 The trajectories of a dynamical system whose given forces are derived from a force 
function and which are subject to a perfect constraint a (xα, xα

ɺ ) = 0 can be considered to 
be the geodesics of a space L1 . 

 
 Case of several perfect constraints. – The preceding can be generalized immediately 
to the case of several perfect constraints that are defined by k < n compatible constraints: 
 

aA (xα, xα
ɺ ) = 0 with A = 1, 2, …, k . 

 
The equations of motion are: 

Pα (L) = Xα + A
Aaαλ ∂

ɺ
. 

 
If Xα = 0 then the trajectories can be considered to be the geodesics of a space Lk . 
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 47. Principle of least curvature. – Consider the phase space W – i.e., the fiber 
bundle of oriented directions that are tangent to the configuration space-time Vn+1 of a 
dynamical system S (L, Xα) . 
 A point z of W can be defined by the 2n + 2 numbers xα, lα, which are coupled by: 
 

L (xα, lα) = 1 . 
 
 The locus of points z of W whose coordinates verify the relation: 
 

a (xα, lα) = 0, 
 

in which a is 0hɺ , defines a submanifold U of W. 

 Consider the basic curves Γ of U that all pass through the same point z .  Their 
projections γ onto Vn+1 will all have the same tangent at the point x . 
 Compare their curvature vectors at x : 
 

C = 
ds

∇l
. 

 A basic curve Γ of U is defined by: 
 

xα = xα (s), lα = lα (s) with lα = 
dx

ds

α

. 

 
 Since the functions xα and lα of s verify: 
 

a (xα, lα) = 1 
 

identically, upon differentiating this with respect to the arc-length s of γ, we will get: 
 

(47.1)     
dl

a l a
ds

α
α

α α∂ + ∂
ɺ ɺ

= 0. 

Now: 
dl

ds

α

= 
l

ds

α∇ − 2Gα (x, l) = Cα − 2Gα . 

 
 The relation (47.1) will then become: 
 
(47.2)    a l aα

α α∂ + ∂
ɺ ɺ

(Cα − 2Gα) = 0. 

 
Let Γ′ be another basic curve in U that passes through z and whose projection γ ′ onto 
Vn+1 admits a parametric representation as a function of the arc-length s′ .  We will then 
obtain the following relation for Γ′: 
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(47.3)    a l aα
α α∂ + ∂
ɺ ɺ

(C′ α − 2Gα) = 0. 

 
Upon comparing the relations (47.2) and (47.3), we will get: 
 
(47.4)     aα∂

ɺ
(C′ α − Cα) = 0 

 
at the point z.  That relation translates into a generalization of Meusnier’s theorem that we 
can state in the following way: 
 
 Theorem: 
 
 All of the curves in an (n + 1)-dimensional Finsler space whose line elements (x, l) all 
verify the same relation: 

a (x, l) = 0 
 

and are tangent to the same point x admit curvature vectors at that point whose 
extremities are in an (n – 1)-dimensional planar manifold in Tx (viz., the tangent to Vn+1 
at x) that is the intersection of the normal plane to l at x and the plane perpendicular to 
the vector whose components are aα∂

ɺ
 at x. 

 
 That theorem generalizes immediately to the case in which U is a submanifold of W 
that is defined k < n relations: 
 

aA (xα, xα
ɺ ) = 0 with A = 1, 2, …, k . 

 
The relation (47.4) is replaced with the k relations: 
 
(47.5)     Aaα∂

ɺ
(Cα − C′ α) = 0 . 

 
 Proof of the least-curvature theorem. – Extend Synge’s theorem (26) that relates to 
dynamical systems with linearly-non-holonomic constraints that are independent of time 
to an arbitrary Lagrangian L (xα, lα) that is subject to k perfect constraints: 
 

aA (xα, lα) = 0 . 
 
 Let S be a given dynamical system.  Its trajectories in phase space belong to a 
submanifold U of W that is defined by the k relations: 
 

aA (x, l) = 0 . 
 
 Let (S0) be the free dynamical system that is associated with (S) ; i.e., the one that is 
deduced from (S) by suppressing the k constraints. 

                                                
 (26) J. L. Synge [1]. 
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 Then consider the three basic paths Γ, Γ′, Γ″ that pass through the same point z (x, l) 
of W: 
 
 1. The path Γ is the trajectory of (S) that passes through z . 
 
 2. The path Γ′ is an arbitrary basic curve in U that passes through z . 
 
 3. The path Γ″ is the trajectory of (S0) that passes through z . 
 
 Let γ, γ ′, γ ″ be the projections of Γ, Γ′, Γ″, resp. onto Vn+1 , and let C, C′, C″, resp., 
be the curvature vectors of those curves at the point x .  Let the curvatures of γ and γ ′ 
relative to γ″ be c and c′ , which are the norms of the vectors C – C″ and C′ – C″, resp.; 
we will then have: 
 c2  = (Cα − Cα′′ ) (C

α – C″ α), 

 c′ 2 = (C α′ − Cα′′ ) (C′ α – C″ α) . 

 
From a classical identity, we can write: 
 
(47.6)   c′ 2 − c2 = (Cα − Cα′ ) (Cα – C′ α) – 2 (Cα – C′ α)(Cα − Cα′ ) . 

 
 Now: 

Cα′  = Xα and Cα = Xα + A
Aaαλ ∂

ɺ
, 

 
since the constraints are assumed to be perfect. 
 We will then have: 
 
(47.7)   (Cα – C′ α)(Cα − Cα′ ) = A

Aaαλ ∂
ɺ

 (Cα – C′ α). 

 
However, from Meusnier’s theorem, that expression is zero.  The relation (47.6) will then 
reduce to: 
 
(47.8)    c′ 2 − c2 = (Cα − Cα′ ) (Cα – C′ α) . 

  
Since the space F is properly Finslerian, the right-hand side of this, which is the square of 

the normal of the vector C – C′, will be positive.  We then deduce the following 
inequality from this: 
 
(47.9):     c′ 2 ≥ c2, 
 
which will then give the theorem: 
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 Theorem of least curvature: 
 
 Let a dynamical system S (L, Xα) be subject to perfect, first-order, non-holonomic 
constraints.  Let S0 (L, Xα) be the associated free system, and let F be the Finsler space 

that is defined on the configuration space-time by the Lagrangian L. 
 Among all curves in F that are tangent to the same point x and satisfy the constraint 

relations, the trajectory of (S) is the one that has the least curvature at x with respect to 
the associated free trajectory. 
 
 
 48. Consequences of the principle of least curvature. – 
 
 1. Gauss-Appell principle. – Consider the function: 
 

(48.1)    2R = 
l l

X X
ds ds

α
αα

α
 ∇ ∇ − −  

  
. 

 
That function of the xα, xα

ɺ = dxα / ds = lα, xα
ɺɺ = dlα / ds is equal to the square of the 

relative curvature at a point x of an arbitrary curve γ in configuration space-time Vn+1 with 
respect to the free trajectory γ″ that is tangent to it at x. 
 In the phase space W, the trajectory of the dynamical system (S) that passes through 
z(xα, lα) is the curve in the submanifold U of W (viz., the constraint space) for which the 
function R is a minimum at z . 
 The principle of least curvature then translates analytically in the following way, 
where u is a new arbitrary parameter: 
 The trajectories of the system (S) are defined by the functions xα = xα (u) for which: 
 

Rα∂
ɺɺ

 = 0, 

 
when one takes the constraint relations into account, and the function R is defined by: 
 

R = 
2

1

2

l l
X X

L du du

α
αα

α
 ∇ ∇ − −  

   
 . 

 
 In the preceding form, the principle of least curvature seems to be a generalization of 
least constraint.  In fact, the preceding function R is the one that Appell (27) introduced, 
when it is extended to configuration space-time. 
 
 2. Converse. – Suppose that a dynamical system S (L, Xα) is subject to k first-order 
non-holonomic constraints whose constraint relations are: 
 

                                                
 (27) P. Appell [1], t. II, pp. 392.  
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aA (xα, xα
ɺ )  = 0, A = 1, 2, …, k . 

 
Suppose that the functions a are homogeneous of order 0 with respect to: 
 

xα
ɺ  = dxα / dx . 

 
Now show that the constraints are perfect constraints if the trajectories of (S) in the 
configuration space verify the principle of least curvature. 
 Partially differentiate R with respect to xα

ɺɺ , while taking into account the fact that: 
 

l

ds

α∇
= xα
ɺɺ + 2Gα (x, l), with xα

ɺɺ  = dlα / ds . 

We then get: 

(48.2)     Rα∂
ɺɺ

 = 
l

ds
α∇ − Xα . 

 
Let Γ and Γ′ be two curves of W that pass through the same point z (x, l) .  Upon passing 
from Γ to Γ′, the function R will experience a variation at z that takes the form: 
 

(48.3)     δ R = 
l

X x
ds

αα
α δ∇ − 

 
ɺɺ . 

 
If Γ is the trajectory of (S) that passes through z then be must have δR = 0 for all of the  

xαδ ɺɺ  that are permitted by the constraints; i.e., the ones for which: 
 
(48.4)     a xα

α δ∂
ɺ
ɺɺ = 0, 

 
and that verify the relation: 
 
(48.5)     L xα

α δ∂
ɺ
ɺɺ = 0, 

 
in addition, which is a consequence of L (xα, lα) = 1. 
 We will then have: 

(48.6)    
l

ds
α∇ − Xα = A

Aa Lα αλ µ∂ + ∂
ɺ ɺ

 

 
along Γ.  The contracted product with lα will then give µ = 0. 
 Equations (48.6) then show that the constraints considered are perfect constraints.  
We can then state: 
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 Theorem: 
 
 In order for a dynamical system that is subject to first-order constraints to verify the 
principle of least curvature, it is necessary and sufficient that those constraints should be 
perfect. 
 
 3. Appell equations. – For the free system S0 (L, Xα), the equations of the trajectories 
in configuration space-time can be put into the form that was indicated by Appell: 
 
(48.7)     Rα∂

ɺɺ
 = 0. 

 
Those equations are a direct consequence of the relations (48.2) 
 If we let A denote the energy of acceleration in Vn+1 – i.e., if we set: 
 

A = 
1

2

l l

ds ds

α
α∇ ∇

, 

 
then we can put the Appell equations (48.7) into the form: 
 
(48.8)     Aα∂

ɺɺ
 = Xα . 

 
For the bound system (S), the Appell equations of the trajectories in Vn+1 are deduced 
from (48.6).  They are written in the form: 
 
(48.9)    Rα∂

ɺɺ
 = A

Aaαλ ∂
ɺ

, A = 1, …, k, 

 
when the k perfect constraints are defined by the relations: 
 

aA (xα, xα
ɺ ) = 0. 

 
We deduce from those relations by derivation that: 
 
(48.10)    A Aa x a xα α

α α∂ + ∂
ɺ ɺɺ
ɺ ɺɺ  = 0. 

 
Suppose that these relations permit us to calculate k of the xα

ɺɺ  (for example, the first k) as 
functions of the other ones.  R will then become a function of the xα, xα

ɺ , and the n + 1 – 
k second derivatives ( )x α

ɺɺ , where (a) = k + 1, …, n + 1. 
 Since we must have: 

δ R = 0  for any ( )x α
ɺɺ , 

 
we will get the n + 1 – k Appell equations: 
 

( )Rα∂
ɺɺ

= 0, 
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which will define the trajectories of (S) in Vn+1 when they are combined with the k 
constraint relations: 

aA (xα, xα
ɺ ) = 0. 

 
 Like the Lagrange equations or the canonical equations, the Appell equations have a 
form that is independent of any way that one frames the configuration space-time. 
 

____________ 



CHAPTER VII 
 

APPLICATIONS  
 
 

 49. Dynamical systems that admit a Painlevé first integral. – Let (S) be a 
dynamical system with perfect bilateral constraints and n degrees of freedom that are 
characterized by the parameters xk. 
 Suppose that there exists a one-parameter group on the configuration space-time of 
(S) that takes t to t + h and leaves (S) invariant. 
 Under some general hypotheses, one can pass to the quotient and define a 
configuration space Vn that corresponds to Vn+1 .  The Lagrangian L = T + U, as well as 

the functions Qk will then be independent of time. 
 The Lagrangian L corresponds to the homogeneous Lagrangian L (§ 29) that is 

independent of xn+1 = t.  The last Lagrange equation will then reduce to: 
 

1n

d L

du x +

∂
∂ɺ

= − k
kQ xɺ . 

 
Suppose that the generalized force Qk has zero power; i.e., that k

kQ xɺ = 0 over the entire 

trajectory. 
 Under those conditions, the system of Lagrange equations of (S) will admit the first 
integral: 

1n

L

x +

∂
∂ɺ

= − H = h, where h is a constant. 

 
Consider the set of trajectories (T) of (S) that correspond to a well-defined value of h.  
The fundamental 2-form Ω can be written as follows for those trajectories: 
 

Ω = k
k

d L dx∂ ∧ɺ + 1
2 Sαβ dxα  ∧ dxβ. 

 
From the well-known descent process (28), one can replace the Lagrangian L with a 
Lagrangian L1 that is independent of time 1nx +

ɺ .  That Lagrangian is defined by: 
 

L1 = L [xk, kxɺ , ϕ (xk, kxɺ , h)] – h ϕ (xk, kxɺ , h), 
 

in which ϕ = 1nx +
ɺ  is obtained by solving 

1n

L

x +

∂
∂ɺ

= h for 1nx +
ɺ .  One indeed verifies that for 

the trajectories (T), one has: 

1k
L∂ ɺ  = 

k
L∂ ɺ . 

Now, set: 

                                                
 (28) Y. Thiry [1], Chap. I.  
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Xk = k
kQ xɺ  

 
and suppose that the Xk are independent of 1nx +

ɺ ; since: 
 

1
k

n

X

x +

∂
∂ɺ

 = Qk − ∂m′ Qk x
′ m, 

 
that will amount to supposing that the components of the generalized force Qk are 
homogeneous and of first degree with respect to the components of the velocity x′ k (viz., 
h′ 1) . 
 Under those conditions, the 2-form Ω will become: 
 

Ω1 = 1
k

k
d L dx∂ ∧ɺ + 1

2 Sjk dx j ∧ dxk. 

 
The trajectories of the dynamical system (S) that correspond to a well-defined value of h 
can then be obtained in the configuration space Vn independently of the time 
parameterization as solutions to the associated system of Ω1 . 
 We can then state the following theorem, which takes the form of a generalization of 
Maupertuis’s principle: 
 
 Theorem: 
 
 Let S be a dynamical system with n degrees of freedom xk that admits the Painlevé 
first integral: 

H = − h = const. 

 
and is such that the generalized force has components of the form: 
 

Qk = Skm x′ m,  with  Skm = − Smk , 
 
in which the Skm are h′ 0 functions of xk and x′ k . 
 The trajectories of S have a well-defined total energy E and are defined in 
configuration space Vn independently of the law of traversal as the S-extremals of the 
integral: 

I = 
1

0
1( , , )

x
h k

x
L x x h du∫ ɺ , 

 
in which u is an arbitrary parameter, kxɺ = dxk / du, and h = − E .  The Lagrangian L1 is 
defined by starting from the homogeneous Lagrangian L with: 
 

L1 = L (xk, kxɺ , ϕ) – h ϕ , 
 
with 1nx +

ɺ = ϕ (xk, kxɺ , h), which is a relation that is equivalent to H = − h . 
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 Particular cases: 
 
 1. Ω1 is closed. – Under those conditions, there exists a vector potential whose 
components Al (x

k) are such that: 
Skl = ∂k Al − ∂l Ak . 

 
The trajectories of S have constant energy E = − h, and are then the extremals of the 
integrals: 

I = 
0

0
2

x

x
L du∫ , 

with L2 = L1 + k
kA xɺ . 

 Those trajectories are also geodesics in the Finsler space that is defined on Vn by ds = 
L2 du . 
 If we take: 

L = 1
01 ( )

2

i j
i n

ij n

x x
a b x T u x

x
+

+ + + +
ɺ ɺ

ɺ ɺ
ɺ

 

 
then we will get the following expression for L2 : 
 

L2 = 02( ) ( )i j i
ij i iT U h a x x b A x+ − + +ɺ ɺ ɺ . 

 
Under those conditions, we know that the trajectories T in Vn can be considered to be the 
projections onto Vn of geodesics of a Riemannian space in n + 1 variables, where the (n + 
1)th variable x0 is no longer time. 
 
 2. Ω1 admits an integrating factor. – That will be true if the components of the force 
tensor have the form: 

Slk = ∂i L1 ∂k ϕ − ∂k L1 ∂l ϕ + eϕ (∂l Ak − ∂k Al) , 
 
in which ϕ, Ak are n + 1 arbitrary functions of the variables xk .  The trajectories T are 
then the extremals of the integrals: 
 

I = 
1

0
1( )

x
k

kx
e L A x duϕ− +∫ ɺ . 

 Examples: 
 
 1. Appell constraints (29). – Suppose that the dynamical system S is subject to the 
Appell constraint that is defined by: 
 

a (xk, x′ k) = 0,  in which a is h′ 1, 
 
and the constraint force has components of the form: 

                                                
 (29) P. Appell, C. R. Acad. Sci. 152 (1911), pp. 1197.  
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Qk = λ ∂k′ a ,  λ is h′ 1. 
 
We are indeed under the conditions for applying the generalized Maupertius’s principle, 
because Qk x′ k = λ a = 0 along any trajectory. 
 
 2. Gyroscopic coupling. – Let S be a dynamical system that is composed of n linear 
oscillators.  Since the position of an oscillator over its support Dk , which is supposed to 
be fixed, is defined by its abscissa xk , the Lagrange system of equations will have the 
form: 

2
k k kx xλ′′ + = 0 . 

 
A gyroscopic coupling between those n oscillators translates into the presence of a 
generalized force vector in the right-hand side of this that has components of the form 
(30): 
 

Qk = 
1

n

km m
m

S x
=

′∑ . 

 
The tensor Skm , which is supposed to be antisymmetric, depends upon only the xk ; by 
definition, it is the “gyroscopic coupling” tensor. 
 
 
 50. Applications to general relativity. – Let V4 be the space-time of general 
relativity that is endowed with the Riemannian metric that is defined by: 
 

ds2 = gαβ (x) dxα dxβ . 
 
If u is an arbitrary parameter then set: 
 

L2 = g x xα β
αβ ɺ ɺ , xα

ɺ = dxα / du , 

and 

lα = Lα∂
ɺ

= 
x

g
L

β

αβ
ɺ

= gαβ l
β. 

 
 Suppose that an energetic distribution is defined on a domain D in V4 that corresponds 
to the energy-impulse tensor Tαβ .  Set (31): 
 

Tαβ = r lα lβ − θαβ and α
α βθ∇  = r Kβ , 

 
in which the θαβ depend upon both the x and the l. 

                                                
 (30) Y. Rocard, “Dynamique générale des vibrations,” Masson, 1943, pp. 114-124.  
 (31) A. Lichnerowicz [3], Chap. II,  17.  
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 The Kα are 0hɺ  and define the force density vector that is associated with the energy 

tensor θαβ and the scalar r (which is a pseudo-density) . 
 The conservation equations: 

Tα
α β∇  = 0 

 
give, on the one hand, the equation of continuity, and on the other, the differential system 
of the streamlines, which are tangent to the unit velocity vector lα everywhere. 
 The differential system can be put into the form: 
 

(50.1)  
l

ds
α∇

= (Kα lβ – Kβ lα) lβ or 
l

du
α∇

= (Kα lβ – Kβ lα) xβ
ɺ . 

 
Set: 

Xα = (Kα lβ – Kβ lα) xβ
ɺ = L Kα – K Lα  with K = K xα

α ɺ . 

 
 The force vector Xα is associated with the antisymmetric tensor: 
 
  sαβ = 1

2 ( )X Xα α ββ∂ − ∂ɺ ɺ
 

  = Kα lβ – Kβ lα + 1 1
2 2( ) ( )L K K x l K l Kλ

α α β β α λ α λβ β∂ − ∂ + ∂ − ∂ɺ ɺɺ ɺ
ɺ  . 

 
 When the force density vector Kα is independent of the velocity, the tensor sαβ will 
reduce to Kα lβ – Kβ lα . 
 In the general case, we will have the identities: 
 

s xβ
αβ ɺ  = Xα and s s sα βγ γα γ αββ∂ + ∂ + ∂ɺɺ ɺ

= 0. 

 
The symmetric tensor θαβ , which is a pseudo-tensor, then corresponds to an 
antisymmetric tensor sαβ that is called the force tensor, such that the differential equations 
of the streamlines will be: 
 
(50.2)   lβ ∇β lα = sαβ l

β or lβ (∇β lα − ∇α lβ) = sαβ l
β 

 
The general results that were previously obtained permit one to state the following 
equivalent theorems: 
 
 Theorem: 
 
 1. The differential system of the streamlines of an arbitrary energy tensor schema is 
the associated system to the 2-form: 
 
(50.3)    Ω = dlα ∧ dxα + 1

2 sαβ dxα ∧ dxβ . 
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The lα are the covariant components of the unit velocity vector: lα = Lα∂
ɺ

, with L2 = 

g x xα β
αβ ɺ ɺ , where the sαβ are the components of the force tensor that is associated with the 

energy tensor for the schema in question. 
 
 2. The form Ω defines an integral invariance relation for the streamlines. 
 
 3. Let C0 and C1 be two homotopic cycles in dimension one that surround the same 
tube of streamlines.  The difference between the circulations of the unit velocity vector 
around C0 and C1 is equal to the flux of the force tensor across the portion of the tube 
that is bounded by C0 and C1 . 
 
 4. The streamlines are the s-extremals of the integral: 
 

I = 
1

0

u

u
L du∫ . 

 
 5. The streamlines are the geodesics of the s-Riemannian space that is defined by L 
and the force tensor sαβ (§ 25). 
 
 Recall the definition of such a space: 
 One considers a Riemannian metric on V4 that is defined by: 
 
  ds2 = gαβ (x) dxα dxβ , 
 
and the Euclidian connection on the directions will correspond to the torsion forms: 
 

(50.4)    Σα = ( )1
2 s dx dx lβ γ α

βγ ∧ , 

 
in which the expression in the parentheses represents the 2-form that is associated with 
the force tensor. 
 Under these conditions, the connection will be defined by: 
 
(50.5)   Γαβγ = [βγ, α] + (lα sβγ + lβ sγα − lγ sαβ) , 
 
which will reduce to: 

Γαβγ = [βγ, α] − sαβ lγ  
 

when the Kα are independent of the xγ
ɺ .  

 
 Example: 
 
 Charged perfect fluid schema (32). – The most interesting results that are obtained in 
general relativity are the ones that correspond to a fundamental 2-form Ω that is either 
                                                
 (32) A. Lichnerowicz [3], Chap. IV, §§ 34-37. 



Chapter VII – Applications. 117 

closed or admits an integrating factor.  Let us study the schema that encompasses all of 
the other ones, namely, the homogeneously-charged perfect fluid. 
 The energy-impulse tensor of such a schema is defined in a domain D of V4 by: 
 

Tαβ = (ρ + p) lα lβ – p gαβ + ταβ . 
 
ρ is the proper density, p is the proper pressure, and ταβ is the impulse-energy tensor of 
the electromagnetic field that is defined by the tensor Fαβ . 
 The differential system of the streamlines is: 
 

l

ds
α∇

 = ( )
p

g l l F l
p p

ββ β λ
α α βλ

µ
ρ ρ
∂ 

− + + + 
, 

 
in which µ is the proper charge density of the fluid. 
 We can further write those equations in the form: 
 

(50.6)   
l

ds
α∇

= 
l

p

β

ρ +
(∂α p lβ − ∂β p lα + µ Fαβ) .   

 
 Suppose that there exists a state equation ρ = f (p), so the index F of the fluid can be 
defined by: 

F = eϕ  with  ϕ = 
0

p

p

dp

pρ +∫ . 

We then deduce that: 
p

p
α

ρ
∂

+
= ∂α ϕ . 

 
On the other hand, suppose that the fluid is charged homogeneously. 

 Under those conditions, k = 
F

p

µ
ρ +

 will be constant over the entire domain D of V4 . 

 Let us make a final hypothesis: There exists a global vector potential A in D such 
that: 

Fαβ = ∂α Aβ − ∂β Aα . 
 
Under those conditions, the force tensor will have components of the form: 
 
(50.9)   sαβ = lβ ∂α ϕ − lα ∂β ϕ + k e−ϕ (∂α Aβ − ∂β Aα) . 
 
 Those components characterize a 2-form Ω that admits an integrating factor [relations 
(38.6) of § 38] . 
 We have thus obtained following classical results directly: 
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 Theorem: 
 
 For any motion of a homogeneously-charged perfect fluid, the streamlines are the 
extremals of the form: 

ω = (F lα + k Aα) dxα 
or the integral: 

I = 
1

0

( )
u

u
F L k A x duα

α+∫ ɺ . 

 
Those streamlines are characterized by the existence of a relative integral invariant that is 
defined by: 

ω = (F lα + k Aα) dxα. 
 
Those streamlines are also geodesics in the Finsler space that is defined on V4 by: 
 

ds = (F L + k Aα xα
ɺ ) du . 

 Particular cases: 
 
 1. Pure matter schema: sαβ = 0, Ω = dlα  ∧ dxα. 
 
 2. Matter-electromagnetic field schema (homogeneous case): 
 

sαβ = k Fαβ  and Ω = d (lα + k Aα) ∧ dxα. 
 
 3. Holonomic medium schema: 
 

sαβ = lβ ∂α ϕ − lα  ∂β ϕ , 
 

Ω = lα ∧ dxα + dϕ ∧ dL , 
 
which admits eϕ as an integrating factor. 
 

 
_____________ 
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