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The Fresnel wave surface

By Horst KnOrrer

Translated by D. H. Delphenich

In Iceland, which is an island in the Septrional Sea with a latitude of 66 ekegre
one finds a type of crystal, or transparent stone, that is quite kexhl for its
shape and other qualities,, but above all, for its strange refractions.

This statement, which rather reminds one of a faily itdroduction, is found at the
beginning of Chapter 5 in one of the scientific books bf. GHuyghens, namely, his
Traité de Lumierd12]. The selfsame refraction property of Iceland spamibohedra
that we will discuss here is the phenomenon of dowddlaation, which has also been
observed in many other crystals: If one lets a Irgigtfall upon a polished, planar face of
such a crystal at an angle then that ray will sptd two different light rays that traverse
the crystal in different directions (and differentoaties of light, in general).
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Figure 1.

In the aforementionedraité de Lumiere Huyghens gave a first, more or less
satisfactory, explanation for that phenomenon (22, 8 27A). A systematic and
guantitative description of the refracting propestof crystals was first arrived at by J.
Fresnel between 1820 and 1830. To that end, hedimted a mathematical object — viz.,
the so-called “Fresnel wave surfacé) £ with which, we would mainly like to concern
ourselves in this study. In order to describe shatace, we would first like to carry out a
small (admittedly, quite unrealistic) Gedanken expent: Assume that one has a point-
like light source that emits monochromatic lighthis point-like light source will be
switched on for amnfinitely-shorttime interval. One will then wait for a certaimite

() In modern terminology, it is also called a “ray suefdc(See §2], § 26A).
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time intervalt in order for the light to spread and then see wherdighe (i.e., the
photons) comes out.

In the event that the experiment is performed in @wa, in which no perturbing
influences are otherwise present, the result willthee following one: After the time
interval t, the light will be found on the outer surface of a béflose center is found
where the light source was switched on, and the raditiedall is determined from the
velocity of light and the timéthat one waited after the light source was turned on.

The basis for saying that the surface that light defafesr a timet is the outer
surface of ball — or, as one sayssphere— lies in the fact that the light propagates
vacuowith a constant velocity that is independent of theation. The velocity of light
is independent of direction in many other media (viz., dbecalledoptically-isotropic
media), just as it is in the vacuum, and our Gedankerriexpat will lead to the same
results in those media; namely, the surface thatighe defines after a timewill again
be a sphere.

However, one can not generally expect that the itglad¢ light in crystals will be
independent of the direction of propagation. For exampdesne directions are
distinguished by the symmetry of the crystal. If we mmewform our experiment inside
of a crystal (say, Aragonite) then we will, in factf geother (and on first glimpse, very
surprising) result: The surface that the light definena¢ t consists of two shells that
both surround the light source, and these two shelledogether at some points. This
surface is called thd-resnel wave surfageand it plays an important role in the
investigation of refraction properties in crystafs. ( In the sequel, we would like to
discuss the geometry of that surface somewhat mootselhg explain some phenomena
of crystal optics with the help of this geometric inigestion, and in conclusion, go into
some developments in algebraic geometry that are ctathewith this and related
surfaces.

The basis for the fact that the Fresnel surfaceisisnsf two shells that surround the
light source is the following: If one gives a generaédiion to the propagation of light in
the crystal then it will follow [perhaps from Maxwellteeory of light ¢)] that only light
that is polarized in a certain manner will pass throughctlystal in that direction. More
precisely, two different polarizations are possibfel these two polarizations correspond
to two different velocities of light in that directiqeee, perhaps22], § 25).

In order to describe the Fresnel wave surface quamghativith more precision, it is
necessary to know the possible velocities of lightnyp given direction. These velocities
can be derived from Maxwell's theory of light (s&?]] § 24-26). We will take the
formulas for that theory from the books on theoréfdaysics with no further discussion
and then build our geometric discussion of the Fresne¢\warface upon them.

(® The experiment that is described here for the introduadf the Fresnel wave surface is greatly
idealized. For example, due to dispersion effects, tbidant light in a crystal will first form only afte
some time has elapsed (cf., the phenomenon of theuigar.” 2], § 22). It would then be more realistic
to take a light source that is already radiant, whichldvthen emit a stronger impulse after an infinitely-
brief time interval.

() Naturally, Fresnelq], who examined these phenomena between 1820 and 1830, didomobkn
Maxwell’s theory of light, which came about in 1860. Hwemr he worked with a theory that was
equivalent for that purpose, namely, one in which light meggrded as a wave in a luminous ether (see
also p4)).
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We assume that the point-like wave source of our Gextaaxperiment is found at
the origin of a Cartesian coordinate system. We deserdirection in space by a vector
X = (X1, X2, X3) of length 1, so:

xOS={(&, & & OR®| &+ +62 =1}

The possible velocities of light in the directigrwill then be precisely the solutions of
the equation:
2 2 2

X % X
1) (1/a12)—(1/v2)+ (1/ad)- (l/\/z)+ L&)y @Iv)

(alsov =z &, in the event that = 0, resp.)
In this, &’, a5, a¢ are the so-calledrincipal dielectric constantsf the crystal, and

we have chosen the coordinates and normalization in swely éhat the dielectric tensor
is in its principal axis form and all natural constants ggpear in it are equal to 1. We
would like to mainly consider the case in which the priacgtielectric constanta’ are
all different, say, 0 @ <az <as (*).

Up to a dilatation about the origin (by the fadipione now obtains the surfaces from
the Gedanken experiment above when one transport®$séle velocities of light in
each directiorx. In other words: Up to a dilatation, the Fresnel wawdace is equal to:

) F={vkX|xOS,vandx fulfill (1)}.

One will obtain an explicit equation for the Fresmedve surface from this by
substitution:

3) F={(& & & OR?|

(& +&+E)E+ag+ag)-[afaj+ ajd + af af afé & of aF 9% [+ a'aj:
= 0}

In order to get some insight into the geometryFofthis fourth-degree equation is
generally rather confusing, and we will mostly emplog tescription that is given by
(2), for the most part.

We next consider the set of vectar S for which+ v is the velocity of light in the
directionx for various positive values @f In the event that # a;, a,, as, this will be the
intersection of the unit sphe® with the quadratic cone:

& & &

_ 3
Rl e DU g oy W) ey W) )

= 0}.

(%) Two of the principal dielectric constants are equakhlcite; the general case that is considered here
might pertain to the crystal Aragonite, for example.
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This intersection is empty far> a; or v < a3, SoK, would then consist of only the origin
[the quadratic form that defindg, is positive-definite (negative-definite, resp.)]. leth
other cased{, n & will be a curve on the unit sphere that consists of tamponents
and will perhaps have the following form:

Figure 2.

In casev is equal to one of the valuas the set of vectors 0 S for whichv appears
as the velocity of light in the directionwill be equal to the intersection 8f with the

planeE; = {( &, &, &) OR?| & = 0}, which we will also correspondingly denote Ky .

If one considers all the curvés n & then one will get a covering of the sph&féy
a system of curves such that almost every poirfdies on exactly two cures of the
system. One also calls such a system of curves af curves. The following drawing,
which was taken fron23], shows this net of curves (as seen “from above”):

Figure 3.

One sees that there are four special point§ahat lie along only one curve of the net —
namely,K, n & — and we call them tHecal pointsof the net. The associated directions
will play an important role in what follows. Thestription of the Fresnel wave surface
F that is given by (2) can then be reformulated @ows: One get+ when one
determines the two positive valuesv; for whichx UK, n & (v1 andv, coincide for the
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focal points) for every point 0 &, and then carries the lengths v» in the directiorx.
In particular, for every radius one will get the intersection &fwith the sphere:

S={(& & & ORY | E+&+E2=1%

of radiusr around the origin, when one dilates the cufven & about the origin by the
factorr.
The intersections df with the coordinate planes:

E={(& & & OR?| & =0} (i=1273)

are especially informative.

Consider, say, the intersection Bfwith the planek;. It follows from (1) that for
every vectox [ E; n &, one of the possible velocities of light in the diiee x is equal
toa; ; E1 n & will then contain the circl& of radiusa; around the origin. From (1
n F will also contains the points (&,as, 0) and (0, Ot ay), neither of which lie along.
The intersection of; with F will then contain at least one further cuké in addition to
the circleK. SinceF, and therefore, alsB; n F, will be described by a fourth-degree
equation and it is well-known that the equation of eleihas degree two, this extra curve
K”will likewise be described by an equation of degtee Curves that are described by
an equation of degree 1 are lines, and curves that arebagelsby an equation of degree
two are conic sections)( SinceF, and therefore alsB; n F andK’, are compact, it
follows thatK’is an ellipse. The fact th&tis symmetric under reflections in the pldhe
implies that the principal axes of the elligséare precisely thés-axis and thef-axis,
and the principal axes lengths aeandas . The intersection oE; with F is then the
union of the circleK and the ellips&’, and sincea; < a; < ag, this circle is contained
within the ellipse completely:

ElﬂF

Figure 4.

(°) Conic sections are ellipses, parabolas, hyperbotakne-pairs, and of these, only the ellipses are
compact.
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Analogously, the intersection &f with E; falls upon a circle with radiug, and an
ellipse with the principal axis lengtlass andas, andE; n F is the union of a circle of
radiusaz and an ellipse with principal axis lengtéis a, . Sincea; < a; < as , the two
aforementioned conic sections will meet only in theeazshe pland; .

F

]
]
]
N

E,

Figure 5.

We have thus gained a rough impression of the geomekry Ditailed investigation
into the Fresnel wave surface were carried out inldke century by, among others,
Cauchy, Hamilton, Pliicker, Lamé, Cayley, Darboux, Webjer lere, we would mainly
like to refer to a paper of Hamilton9| nos. 28 and 29) on this topic, since it has
especially significant applications to crystal optics.

Hamilton examined the singular pointsFgfas well as special tangential plane$-to
Here, a point ofF is calledsingular when F does not have a uniquely-determined
tangential plane at that point (more precisely: whendifierential of the equation that
describes$ vanishes at that point).

Theorem (W. Hamilton 1833).

(i) F has precisely four singular points, and these singular points all libarplane
Es.

(if) There are four planes in space that contact F along a circle. Thethnesgh
the origin that are perpendicular to these planes are called the “oppicactipal
axes” (') of the crystal; they lie in the plane E).

The four singular point& are “naturally” the four points dE; n F at which the
circle of radiusa; and the ellipse with the principal axis lengths a; meet. The

(®) For a discussion of the further geometric propertieshef Eresnel wave surface, as well as
references to the classical literature, see, €4,,¢h. XIX or [19], pp. 1740gt seq.

() In modern terminology, they are also “optical normaisa”

() Statementsi) and {i) in the theorem are closely connected, since — asltdanalready remarked
([9], no. 31) — the dual surface Fas again a Fresnel wave surface (with the constahis, 1 /a,, 1 /ag).
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associated directions are also the directions thadefieed by the focal points of the net
K, n & of curves or§* ().

The second statement of the theorem says the falipvin different words: If one
brings a plane perpendicular to one of the optical pa@xes from the outside to the
surfaceF then that plane will suddenly cut out an entire curvé-oand that curve will
be a circle. This is an exceptional phenomenon; ie@éna plane contacts a surface in
at most finitely many points9).

The following picture shows the intersection fofwith the planeE,, and the two
optical principal axes, as well as the intersectiothefcontact planes of pait)(of the
theorem with the plang, :

Optical 7 ™ g
principal --- -- >
axes  \{ .- K

Figure 6.

Some plaster models of the Fresnel wave surface pvedeiced in the last century, in
which one can easily recognize some of the facts the¢ yust mentioned. G. Fischer
(Dusseldorf) has graciously placed some photographs of tneslels at my disposal.
They are reproduced on the two foregoing padeesve shall give a brief description of
these pictures heré'y:

Photo 1:

In this model, the intermediate space between ther @ame inner shell of the
Fresnel wave surfade is filled in with plaster. An octant in front andsami-

() A more precise analysis shows that the singular poirfisace so-calledrdinary double pointsi.e.,
that in a neighborhood of such a point there are coordinagesy-, ys such that n F will be described

by the equationy” + y. — y2 = 0 in those coordinates.
(*% F. zZak has recently showed, e.g., that a singulassy-gurface irfP;(C) possesses no tangential

planes that are tangential to the surface along areentive (seef], § 7).

[l Translator's note: The photographs are not includee,tdue to the limited resolution that scanning
them would allow, so the reader must refer to the maigberman book for them.

() The models that are depicted here are found in the raolettion of the Mathematical Institute at
the University of Gottingen. Many photos of interestingaces are presented in the picture volugv; [
inter alia, photos 1 and 4 of the Fresnel wave surface.
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octant in back were removed in order for one to alsalbeto see the inner shell.
The forward intersection surfaces are subsets of HmepE; — one recognizes
pieces of the circles and ellipses in the relevameplkections of the surfa¢e
One sees singular points of the surf&cén the planeE,, both in front and in
back, and in addition, the contact circles in pajtdf Hamilton’s theorem are
indicated on the surface.

Photo 2:

This picture shows enlargements of the octants thag cee away from the model
in (1). One then sees the intersection with the planand one of the singular
points ofF more clearly ).

Photo 3:

One obtains this model when one fills in the spas&@of the inner shell d¥
with plaster. One recognizes (with some difficultyptvertices on the front side
that correspond to two singular pointsFof

Photo 4:
Here, a part of model (1) and a part of model (3) areepted next to each other.

We would like to conclude the discussion of the geoyr@ftF with that and go into
some phenomena that relate to the refraction of ligltystals. We first consider the
following general situation:

Let a light ray be given that comes from the vacuora medium; one would like to
ascertain the continuation (continuations, resp.) eflight ray (rays, resp.) inside the
medium. For the sake of simplicity, we would likeassume that the boundary surface
between the vacuum and the medium is a plane andhéateiocity of light in the
medium possibly depends upon the direction of propagatidmdt on position.

There are several equivalent methods for treatingrblelem of light refraction. To
that end, it is most advantageous to apply a variatipnatiple, namely, the so-called
Fermat principle. That principle yields the following construction pnestgon:

One thinks of the originally-given ray as having been eldbd into a system of
parallel rays. One has a system of wave fronts peipdadto it. One selects one of
these wave fronts, which will then be a pldhéhat is perpendicular to the original ray.
In addition, one chooses an auxiliary pgrinside of the medium. One next determines
the paths of the light that emanates from the wawet f£ and goes through the point
One obtains the possible continuation (continuaticesy.) of the originally-given ray by
parallel displacement.

(** The lines that are indicated on the model are intéoseof F with concentric spheres (a family of
ellipsoids, resp.) (cf..2p], pp. 168).
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Mediumn K

Figure 7.

Now, Fermat’s principle (see, perhapgl][ 8 2) states that light will choose
precisely that path from the wave frdato the pointp for which:

(i) The path runs along a line segment both inside and outsedenedium, and
outside of the medium (thus) vacug it is parallel to the originally-given light
ray.

(i) Among all possible paths of that sort, the paths &nat in fact, chosen by light
have the property that the time that light requiresvbehE andp along that path
assumes a relative minimum.

In the case for which the medium is optically ispicc- so the velocity of light in the
medium is independent of the direction — one sees thatahational problem that was
just described has precisely one solution. There will ieeprecisely one path frofto
p that light chooses, and therefore the originally-givexry has a single-valued
continuation inside the medium (perhaps as in the draaboge).

Since the velocity of light in a medium is smallear it isin vacuq the light ray will
be bent from the incident direction. A more precisentjtaive analysis of this situation
with the help of Fermat’s principle leads to the kndwesnel formulas for the refraction
of light (cf., [11], 8§ 3).

In the case of a crystal, the solution of the ammeal problem above is connected
with the geometry of the Fresnel wave surface, sindescribes precisely the possible
velocities of light inside of the crystal. In geakrthe variational problem will now have
two different solutions’¢): One relative minimum for the time interval thatésjuired by
light from E to p is associated with a direction of propagation and acugl of light
inside the crystal that corresponds to a point on ther aliell ofF, and another relative
minimum corresponds to a point on the inner shek.ofFromp onward, two light rays
will emanate from the wave frot. Since each of the light rays that are parallehto
original ray behave the same under refraction by thstalryone will get two different
continuations of the original ray by parallel displaeatof the rays through

(¥ In the event that two of the principal dielectric stamts are different.
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Figure 8.

The incident ray thus splits into two different ralgattproceed inside the crystal with
differing directions and differing velocities. This is thleenomenon of double refraction
that was described in the Introduction.

A special situation arises when the boundary surfateees the crystal and the
vacuum is perpendicular to one of the optical principa@sa One can choose the
boundary surface between the crystal and the vacuum & \vibave frontE (= plane
perpendicular to the incident system of parallel ligiys). We think of the Fresnel wave
surfaceF as being laid through the poiptin such a way thaE is one of the tangential
planes that were mentioned in Hamilton’s theorenme @en sees that the time duration
for light will be the same for all points of the caat circleE n F (points ofE, resp.) to
p, and that this time duration will be an absolute minimum

Optical
principal | : i Vacuum
axis ! | !

Crystal

Figure 9. Intersection with the plake.

The variational problem then has an infinitude of sohdi in this case and
correspondingly the incident light ray splits inside thgstal into an entire cone of light
rays.

This phenomenon is calledhi{ernal) conical refraction(™) and was predicted by
Hamilton in 1832 on the basis of his investigations intogég@metry of the wave surface
F. The experimental verification of that phenomenorHaynilton’s Dublin colleague,
the experimental physicist H. Lloyd, soon proved tmabamportant confirmation of the
wave theory of light, which was in conflict at the éinwith Newton’s propagating
particle theory (see, e.g1(]). One also obtains a similar phenomenon when dseeale

14)

(*Y The phenomenon that is actually observed is somewbe complicated; see, e.@],[14.3.4.
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light ray that travels inside of a crystal in a directthat is defined by one of the singular
points of F leave the crystal into the vacuum (viz., the so-dallexternal conical
refraction”).

Figure 10.

After this foray into light refraction in crystals,would now like to go into some
more intrinsically mathematical developments thatdosely related to the Fresnel wave
surface and similar surfaces.

Some time around 1860, the Fresnel wave surface appeaeasbmpletely different
context in the theoretical papers of E. Kummer on ogyics. Kummer concerned
himself,inter alia, with the following problem: Pursue the light rays tbatanate from a
point-like light source and are then act upon by variougapapparatuses (such as
systems of mirrors and lenses). A two-parameter faofilfight rays (which we will
think of as being extended to lines) will come about adierof the reflections and
refractions have been performed. Kummer called sualoagarameter family of lines a
ray systemand he began to systematically investigate all sughsyatems 15]. In
particular, he was interested in the focal surfacesuch ray systems. These are the
surfacesB with the property that at least one line of the sysielhgo through each non-
singular point oB, and it will be tangential t8 at that point. In the optical situation, the
focal surfaces will be domains of especially high lighensity.

One can expect few concrete results for generalsyatems, and for that reason,
Kummer mainly investigated algebraic ray systems (iag/.,siystems that are described
by polynomial equations in suitable coordinates) withgtaperty that only a few lines
of the ray system will go through a general point of apa®ne also calls the number of
lines of a ray systems that go through a general pospace therder of the ray system.

(In order to make the definition meaningful, one must alkw complex lines ifC* — or

even better, in projective spag(C) (*°) — which fulfill the defining equations of the ray

system, and thus, consider the associated complesysssgm).

We now emphasize that the Fresnel wave surfaceaplsears as the focal surface of
a special second-order ray system. Kumrié}, [17] investigated the focal surfaces of
second-order ray systems in general and obtainest,alia, the following result:

(**) For a discussion of the transition from real, affspaceR"” to complex, projective spad&(C), see
perhaps3], I.3.
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Theorem (E. Kummer, 1865):

(i) The focal surface of a second-order ray system in complex projepaeelPs(C)

is a surface of degree fo(t®) with 16 ordinary double points or a degenerate
case of such a surface.

(if) Any surface of degree four iPg(C) that has 16 ordinary double points is the
focal surface of a second-order ray system.

Such surfaces are also callédmmer surface®day ¢'); the Fresnel wave surface is
then a special case of a Kummer surfafe (Twelve of its singular points lie in complex
spaces, and indeed four of them lie in the complexiboatof the planeg;, Es, and the
plane at infinity. This result was one of the grouratstfie fact that mathematics began
to take a more serious interest in the geometry ofctdmplexification of the Fresnel

wave surface, and thus in the associated surfag(@), which we would like to denote

by F. in the sequel.

The examination of the complexification of the Fedsmave surface also proved to
be meaningful on another ground. For some purposesusefsil for have an explicit
parameterization of the surfade at one’s disposal. One can show that such a
parameterization is not possible with the help ofstad functions, such as polynomials
and trigonometric or exponential functions; rathers mecessary to employ the so-called
elliptic functions. This leads one into the realnffahction theory,” and for that reason
it is also obvious that one should consider the compéextibn of F here. A
parameterization of the Fresnel wave surface was dwyekiVeber in 1878 g5], pp.

353); its result can be reformulated into a descriptidch@geometry oF:

A two-dimensional complex torus is a complex-analgtinifold of the formA = C?
/T, wherel O C?is a subgroup of the form=Z Oca + ... +Z O with vectorsa, ...,
a O C? that are linearly-independent o\er One has the involutory map A — A that

is induced by the mafC? - C? x > — x on such a complex torus. One obtains special

complex tori when one considers an elliptic cugv@.e., a complex manifold of the form
E=C/Z 0Oy O Z Oy with vectorsy, s [ C that are linearly-independent ovey and

defines the produ& =E x E.

(*°) The degree of a surfaBdis the degree of an equation that defiBes

(*) The result above is also closely connected with thesical investigations into the so-called
quadratic line complexes; for a modern presentation, seae§], ch. 6.

(*®) F. Klein, in his book on the history of mathematinstiie Nineteenth Century1@], pp. 195)
described it as follows: “For the contemporary geomeéier Fresnel surface is no longer an extraordinary
construction; it is a special case of the Kummer sarfeith 16 double points and 16 double planes, which
is characterized by its reality behavior and certamragtries, moreover.”
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Theorem (H. Weber):

There is an elliptic curve such that 5 isomorphic to Ex E / i as a complex-analytic
variety (*9).

When one makes it explicit, the m@px C -~ A - A/i OTL F. will yield the

parameterization of. by elliptic functions. One then gets the parameterinadiothe

real surfacd- by restricting oneself to the respective “real subspace

More generally, it was shown by Borchardt, Rohn, Kland others (se€l4]) that
every Kummer surface is isomorphic to a surface ofah@ A /i, but in generalA is no
longer isomorphic to a product of elliptic curves (see gBjo.ch. 6) 9. In general, if
one has been given a class of complex-analytic Ig@beaic) varieties then an obvious
guestion to ask would be: When are two varieties in tlagsdsomorphic? For example,

it turns out that two varietie& /i andA’ /i with A=C? /T, A=C?/T’are isomorphic

precisely when there is a complex-linear maCbto itself that take§ to . One also

calls the problem of gaining some glimpse into the §etllasomorphism classes of all
varieties of a certain type thmoduli problemfor varieties of that type. The moduli
problem for surfaces of typ& /i is then “essentially” reduced to a problem in linear
algebra.

The Kummer surfaces (and more generally, the surfaicggpeA /i) are a subclass
of an even larger class of surface — viz., the so-cklBdurfaces®). Examples of such

K3 surfaces are, perhaps, also non-singular fourth-degreecesurfa P3(C). A

satisfactory solution of the moduli problem 18 surfaces was first accomplished a few
years ago. It can then be shown that, e.g., thefsat algebraicK3 surfaces with a
certain polarization’) define a 19-dimensional complex-analytic varisty(*®). This
variety M (which one also calls the moduli space of tk8 surfaces with this
polarization) can be described quite explicitly. Omeldia more precise description of
this result in, say, the talk by A. Beauville to therfB@ire Bourbaki in19821].

(*) More preciselyE is a double covering @&,(C) that is branched over @, a’, a 0 C O Py(C).

Since this result was not formulated explicitly in thiaywin the classical papers, we shall sketch a
geometric proof of it here (see Appendix).
(*% Conversely, if a two-dimensional complex torus admisincipal polarization g, ch. 2, 6) therA

/i will be isomorphic to a fourth-degree surfacePg(C) with 16 ordinary double points, and thus, a

Kummer surface.

(* More precisely: The minimal de-singularization afuaiface of type / i belongs to th&3 surfaces.

(* 1. e., one singles out a system of algebraic curmethé surface that appear to be precisely
hyperplane sections for a suitable embedding of thecguitfiea projective space.

(®® 1. e., the structure of a complex-analytic variein de defined on this set “in a natural way.” The
“naturality” implies, e.g., that the map of the spaceoéfficients of homogeneous equations of degree

four in four variables that define non-singular surface®;(C) into the corresponding spadé that
associates any equation with the isomorphism clads agsociate®3 surface is holomorphic.
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From the standpoint of the moduli problem K8 surfaces, the Fresnel wave surface
then corresponds to a point in the 19-dimensidmgf’). This manner of consideration
can possibly give the impression that for a modern gezrnie¢ Fresnel wave surface is
only as interesting or interesting as any otkdrsurface that corresponds to any other
point of the spac®. Naturally, that is not entirely true: For examples construction of
the moduli spacéM is already based upon the precise knowledge of the geowiet
Kummer surfaces. The Kummer surfaces define a “skeldton¥, so-to-speak, from
which one can venture into the unknown realms of timeigeK3 surfaces. The precise
knowledge of the moduli spackl also makes it actually possible to carry out a
systematic investigation of specidB surfaces (say, ones with higher Picard numbers
[20] or ones with interesting groups of automorphis#ly fnd naturally the Fresnel
wave surface belongs to this spe&dlsurface.

This sketch of the developments that were connectddtigt Fresnel wave surface
and Kummer surfaces shows quite clearly that by abstmacgeneralization, and
defining the links to other intrinsic and extrinsic matheoadtissues, the topics and
methods that pertain to the investigation of the Filesa®e surfaces will always lead
further away from the original physical problem (vizeg tescription of the phenomena
of crystal optics). On the other hand, many of theleno mathematical methods — such
as the ones in moduli theory — have interesting andiiagplications to physics.
These statements would prove to go beyond the scope sofettture; one finds an
engaging attempt to do that in the bodl8][ Mathematics and Physiosf the Soviet
mathematician Y. Manin.
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Appendix: proof of theorem in footnote 19.

If (&1, &, &) = 0 is the equation dF, as in (3), thefir. O P3(C) will be described by
the fourth-degree homogeneous function:

O] & &1 &, &1 &) =0.

One sees théf; will be taken to itself under the “reflectiong} : P3(C) - P3(C), (&,
oar3) P (&0 &y, ..., &3 &), iInwhichg = 1 when #] andg =- 1. o, ..., 0z generate a
subgroupG of PGL(3, C) that is isomorphic toZ / 2 Z)3.

Lemma:

There is a G-invariant isomorphism:

7T Fo - P1(C) x P1(C)
such that one has:

(i) rminduces an isomorphism between/ls andP1(C) x P1(C).

(i) srbranches precisely over the divisors:
Di = {(v1, v2) OP4(C) x Py(C) |v1 = (&, 1) or v = (&7, 1)},

i=0, ..., 3,nwhichwe set a= 0.

(i) A path in a small, transversal disc to one of the components wofth the
winding number 1 around that component af will be defined by the
homomorphism:

3
7i(Py(C) x Py(C) - | JD,) - G

i=0
that belongs to the coverimg
Proof:

The idea for the construction gfcomes from the real situation: Every podit] F is
of the form¢& = v Ox with x 0 . The pointx lies in the quadratic coré, and on a
further coneK, with v # = v, in general (i.e., wher is not a focal point of the net that
goes throughk,). The valuesy |, |V | are precisely the possible velocities of lighthe t
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directionx. If we assignf O F to the pair ¢, v?) then we will get a well-defined mdp
- R xR. Informulas, this map will be described by:

X (& +& + &5 (aél +ad+ ag ) l(afaza)).

One easily proves now that this also defines a morphidi o P1(C) x P1(C) that has
the desired properties.
Now let 7 : E —» P1(C) be the doubly-branched covering Bf(C) that is branched

over the points&’, 1),i =0, ..., 3, preciselyE is an elliptic curve; we choose the origin
of the group structure i& to be the point that lies above?( 1) = (0, 1). We let;
denote the point dE that lies aboved®, 1), so 0 =ao, a1, a2, as define the groufd, of

doubly-covering points dt. Letm: E — E be multiplication by 2x — x + x, and letj
E - E be multiplication by — 1.T, will then be the kernel ah, andj will be the deck
transformation of the covering

pr=7o m:E - P1(C) is then an eight-fold branched coveringPefC) with H =T,
x <j> for its deck transformation group (thuk; operates ork by translation). The
associated homomorphism(P1(C) — {aZ, ..., a}) — H defines path oo a that
encircles that pointd®, 1) once in a small neighborhood of that point. te denote
the two-fold coveringr x pr: E x E - P1(C) x P1(C). It is branched precisely ovBy

. Ds, and its deck transformation groupHsx H. If H O H x H is the subgroup of
order 8 that is generated by, () and @, a) then one will see that there is an
isomorphisnH x H/ H 00G such that the diagram:

HxH - HxH/H

/ /

IZL(P]_((C) X P]_((C) -Do U ...00 D3) - G

commutes. As a resulg x E/H is isomorphic td=. . Furthermore, the subgrodp of
H x H that consists ofd, &), i =0, ..., 3 operates dax E by translations. Thereforé,
OExE/ 'fz is a complex torus. Sincg |) operates o like multiplication by — 1F. =

A/i. It remains to be shown that the toAus E x E / T, is once more isomorphic ©®

x E. Therefore, leg ExXE - E X E be the mapX y) — (X+Y, X-Y). qis a morphism
of complex tori, and one easily shows thatq{er'fz. With that, the assertion is proved.



