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In Iceland, which is an island in the Septrional Sea with a latitude of 66 degrees, 
one finds a type of crystal, or transparent stone, that is quite remarkable for its 
shape and other qualities,, but above all, for its strange refractions. 
 

 This statement, which rather reminds one of a fairy tale introduction, is found at the 
beginning of Chapter 5 in one of the scientific books of Chr. Huyghens, namely, his 
Traité de Lumière [12].  The selfsame refraction property of Iceland spar rhombohedra 
that we will discuss here is the phenomenon of double refraction, which has also been 
observed in many other crystals: If one lets a light ray fall upon a polished, planar face of 
such a crystal at an angle then that ray will split into two different light rays that traverse 
the crystal in different directions (and different velocities of light, in general). 
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 In the aforementioned Traité de Lumière, Huyghens gave a first, more or less 
satisfactory, explanation for that phenomenon (see [22], § 27A).  A systematic and 
quantitative description of the refracting properties of crystals was first arrived at by J. 
Fresnel between 1820 and 1830.  To that end, he introduced a mathematical object – viz., 
the so-called “Fresnel wave surface” (1) – with which, we would mainly like to concern 
ourselves in this study.  In order to describe that surface, we would first like to carry out a 
small (admittedly, quite unrealistic) Gedanken experiment: Assume that one has a point-
like light source that emits monochromatic light.  This point-like light source will be 
switched on for an infinitely-short time interval.  One will then wait for a certain, finite 

                                                
 (1) In modern terminology, it is also called a “ray surface.”  (See [22], § 26A). 
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time interval t in order for the light to spread and then see where the light (i.e., the 
photons) comes out. 
 In the event that the experiment is performed in a vacuum, in which no perturbing 
influences are otherwise present, the result will be the following one: After the time 
interval t, the light will be found on the outer surface of a ball whose center is found 
where the light source was switched on, and the radius of the ball is determined from the 
velocity of light and the time t that one waited after the light source was turned on. 
 The basis for saying that the surface that light defines after a time t is the outer 
surface of ball – or, as one says, a sphere – lies in the fact that the light propagates in 
vacuo with a constant velocity that is independent of the direction.  The velocity of light 
is independent of direction in many other media (viz., the so-called optically-isotropic 
media), just as it is in the vacuum, and our Gedanken experiment will lead to the same 
results in those media; namely, the surface that the light defines after a time t will again 
be a sphere. 
 However, one can not generally expect that the velocity of light in crystals will be 
independent of the direction of propagation.  For examples, some directions are 
distinguished by the symmetry of the crystal.  If we now perform our experiment inside 
of a crystal (say, Aragonite) then we will, in fact, get another (and on first glimpse, very 
surprising) result: The surface that the light defines at time t consists of two shells that 
both surround the light source, and these two shells come together at some points.  This 
surface is called the Fresnel wave surface, and it plays an important role in the 
investigation of refraction properties in crystals (2).  In the sequel, we would like to 
discuss the geometry of that surface somewhat more precisely, explain some phenomena 
of crystal optics with the help of this geometric investigation, and in conclusion, go into 
some developments in algebraic geometry that are connected with this and related 
surfaces. 
 The basis for the fact that the Fresnel surface consists of two shells that surround the 
light source is the following: If one gives a general direction to the propagation of light in 
the crystal then it will follow [perhaps from Maxwell’s theory of light (3)] that only light 
that is polarized in a certain manner will pass through the crystal in that direction.  More 
precisely, two different polarizations are possible, and these two polarizations correspond 
to two different velocities of light in that direction (see, perhaps, [22], § 25). 
 In order to describe the Fresnel wave surface quantitatively with more precision, it is 
necessary to know the possible velocities of light in any given direction.  These velocities 
can be derived from Maxwell’s theory of light (see [22], § 24-26).  We will take the 
formulas for that theory from the books on theoretical physics with no further discussion 
and then build our geometric discussion of the Fresnel wave surface upon them. 

                                                
 (2) The experiment that is described here for the introduction of the Fresnel wave surface is greatly 
idealized.  For example, due to dispersion effects, the incident light in a crystal will first form only after 
some time has elapsed (cf., the phenomenon of the “precursor.” [22], § 22).  It would then be more realistic 
to take a light source that is already radiant, which would then emit a stronger impulse after an infinitely-
brief time interval. 
 (3) Naturally, Fresnel [5], who examined these phenomena between 1820 and 1830, did not know of 
Maxwell’s theory of light, which came about in 1860.   However, he worked with a theory that was 
equivalent for that purpose, namely, one in which light was regarded as a wave in a luminous ether (see 
also [24]). 
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 We assume that the point-like wave source of our Gedanken experiment is found at 
the origin of a Cartesian coordinate system.  We describe a direction in space by a vector 
x = (x1, x2, x3) of length 1, so: 
 

x ∈ S2 ≡ {(ξ1, ξ2, ξ3) ∈ R3 |  2 2 2
1 2 3ξ ξ ξ+ +  = 1}. 

 
The possible velocities of light in the direction x will then be precisely the solutions of 
the equation: 

(1)   
22 2
31 2

2 2 2 2 2 2
1 2 3(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )

xx x

a v a v a v
+ +

− − −
 = 0, 

 
(also v = ± ai, in the event that xi = 0, resp.) 
 In this, 2

1a , 2
2a , 2

3a  are the so-called principal dielectric constants of the crystal, and 

we have chosen the coordinates and normalization in such a way that the dielectric tensor 
is in its principal axis form and all natural constants that appear in it are equal to 1.  We 
would like to mainly consider the case in which the principal dielectric constants 2ia  are 

all different, say, 0 < a1 < a2 < a3 (
4). 

 Up to a dilatation about the origin (by the factor t), one now obtains the surfaces from 
the Gedanken experiment above when one transports the possible velocities of light v in 
each direction x.  In other words: Up to a dilatation, the Fresnel wave surface is equal to: 
 
(2)    F ≡ {v ⋅⋅⋅⋅ x | x ∈ S2, v and x fulfill (1)}. 
 
 One will obtain an explicit equation for the Fresnel wave surface from this by 
substitution: 

(3)   F = {(ξ1, ξ2, ξ3) ∈ R3 |   

 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( )( ) [ ( ) ( ) ( ) ]a a a a a a a a a a a a a a aξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + − + + + + + +
 
     = 0}. 
 
In order to get some insight into the geometry of F, this fourth-degree equation is 
generally rather confusing, and we will mostly employ the description that is given by 
(2), for the most part. 
 We next consider the set of vectors x ∈ S2 for which ± v is the velocity of light in the 
direction x for various positive values of v.  In the event that v ≠ a1, a2, a3, this will be the 
intersection of the unit sphere S2 with the quadratic cone: 
 

Kv ≡ {(ξ1, ξ2, ξ3) ∈ R3 | 
22 2
31 2

2 2 2 2 2 2
1 2 3(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )a v a v a v

ξξ ξ+ +
− − −

 = 0}. 

                                                
 (4) Two of the principal dielectric constants are equal for calcite; the general case that is considered here 
might pertain to the crystal Aragonite, for example.  
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This intersection is empty for v > a3 or v < a1, so Kv would then consist of only the origin 
[the quadratic form that defines Kv is positive-definite (negative-definite, resp.)].  In the 
other cases, Kv ∩ S2 will be a curve on the unit sphere that consists of two components 
and will perhaps have the following form: 

 
 ξ3 

ξ1 

ξ2 

Kv ∩ S2 

a2 < v < a3 

ξ3 

ξ1 

ξ2 

Kv ∩ S2 

a1 < v < a2  
Figure 2. 

 
 In case v is equal to one of the values ai, the set of vectors x ∈ S2 for which v appears 
as the velocity of light in the direction x will be equal to the intersection of S2 with the 

plane Ei ≡ {(ξ1, ξ2, ξ3) ∈ R3 | ξi = 0}, which we will also correspondingly denote by 
iaK . 

 If one considers all the curves Kv ∩ S2 then one will get a covering of the sphere S2 by 
a system of curves such that almost every point of S2 lies on exactly two cures of the 
system.  One also calls such a system of curves a net of curves.  The following drawing, 
which was taken from [23], shows this net of curves (as seen “from above”): 

 

 
Figure 3. 

 
One sees that there are four special points on S2 that lie along only one curve of the net – 
namely, 

iaK ∩ S2 – and we call them the focal points of the net.  The associated directions 

will play an important role in what follows.  The description of the Fresnel wave surface 
F that is given by (2) can then be reformulated as follows: One gets F when one 
determines the two positive values v1, v2 for which x ∈

ivK ∩ S2 (v1 and v2 coincide for the 
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focal points) for every point x ∈ S2, and then carries the lengths v1, v2 in the direction x.  
In particular, for every radius r, one will get the intersection of F with the sphere: 
 

Sr ≡ {(ξ1, ξ2, ξ3) ∈ R3 | 2 2 2
1 2 3ξ ξ ξ+ + = r2} 

 
of radius r around the origin, when one dilates the curve Kr ∩ S2 about the origin by the 
factor r. 
 The intersections of F with the coordinate planes: 
 

Ei ≡ {(ξ1, ξ2, ξ3) ∈ R3 | ξi = 0} (i = 1, 2, 3) 

 
are especially informative. 
 Consider, say, the intersection of F with the plane E1.  It follows from (1) that for 
every vector x ∈ E1 ∩ S2, one of the possible velocities of light in the direction x is equal 
to a1 ;  E1 ∩ S2 will then contain the circle K of radius a1 around the origin.  From (1), E1 
∩ F will also contains the points (0, ± a3, 0) and (0, 0, ± a2), neither of which lie along K.  
The intersection of E1 with F will then contain at least one further curve K′, in addition to 
the circle K.  Since F, and therefore, also E1 ∩ F, will be described by a fourth-degree 
equation and it is well-known that the equation of a circle has degree two, this extra curve 
K′ will likewise be described by an equation of degree ≤ 2.  Curves that are described by 
an equation of degree 1 are lines, and curves that are described by an equation of degree 
two are conic sections (5).  Since F, and therefore also E1 ∩ F and K′, are compact, it 
follows that K′ is an ellipse.  The fact that F is symmetric under reflections in the plane Ei 
implies that the principal axes of the ellipse K′ are precisely the ξ3-axis and the ξ2-axis, 
and the principal axes lengths are a2 and a3 .  The intersection of E1 with F is then the 
union of the circle K and the ellipse K′, and since a1 < a2 < a3, this circle is contained 
within the ellipse completely: 
 

 

E1 ∩ F 

ξ3 

ξ2 

 
 

Figure 4. 
 

                                                
 (5) Conic sections are ellipses, parabolas, hyperbolas, or line-pairs, and of these, only the ellipses are 
compact.  
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 Analogously, the intersection of F with E2 falls upon a circle with radius a2 and an 
ellipse with the principal axis lengths a1 and a3, and E3 ∩ F is the union of a circle of 
radius a3 and an ellipse with principal axis lengths a1, a2 .  Since a1 < a2 < a3 , the two 
aforementioned conic sections will meet only in the case of the plane E2 . 

 
ξ1 

ξ2 

E2 ∩ F 

ξ1 

ξ2 

E3 ∩ F 
 

Figure 5. 
 

 We have thus gained a rough impression of the geometry of F.  Detailed investigation 
into the Fresnel wave surface were carried out in the last century by, among others, 
Cauchy, Hamilton, Plücker, Lamé, Cayley, Darboux, Weber (6).  Here, we would mainly 
like to refer to a paper of Hamilton ([9], nos. 28 and 29) on this topic, since it has 
especially significant applications to crystal optics. 
  Hamilton examined the singular points of F, as well as special tangential planes to F.  
Here, a point of F is called singular when F does not have a uniquely-determined 
tangential plane at that point (more precisely: when the differential of the equation that 
describes F vanishes at that point). 
 
 Theorem (W. Hamilton 1833). 
 

(i) F has precisely four singular points, and these singular points all lie in the plane 
E2 . 

 
(ii ) There are four planes in space that contact F along a circle.  The lines through 

the origin that are perpendicular to these planes are called the “optical principal 
axes” (7) of the crystal; they lie in the plane E2 (

8). 
 

 The four singular points F are “naturally” the four points of E2 ∩ F at which the 
circle of radius a2 and the ellipse with the principal axis lengths a1, a3 meet.  The 

                                                
 (6) For a discussion of the further geometric properties of the Fresnel wave surface, as well as 
references to the classical literature, see, e.g., [21], ch. XIX or [19], pp. 1740, et seq.  
 (7) In modern terminology, they are also “optical normal axes.”  
 (8) Statements (i) and (ii ) in the theorem are closely connected, since – as Hamilton already remarked 
([9], no. 31) – the dual surface to F is again a Fresnel wave surface (with the constants 1 / a1, 1 / a2, 1 / a3).  
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associated directions are also the directions that are defined by the focal points of the net 
Kv ∩ S2 of curves on S2 (9). 
 The second statement of the theorem says the following, in different words: If one 
brings a plane perpendicular to one of the optical principal axes from the outside to the 
surface F then that plane will suddenly cut out an entire curve on F, and that curve will 
be a circle.  This is an exceptional phenomenon; in general, a plane contacts a surface in 
at most finitely many points (10). 
 The following picture shows the intersection of F with the plane E2, and the two 
optical principal axes, as well as the intersection of the contact planes of part (ii ) of the 
theorem with the plane E2 : 

 
ξ1 

ξ2 

E2 ∩ F 

Optical 
principal 
axes 

 
 

Figure 6. 
 
 Some plaster models of the Fresnel wave surface were produced in the last century, in 
which one can easily recognize some of the facts that were just mentioned.  G. Fischer 
(Düsseldorf) has graciously placed some photographs of these models at my disposal.  
They are reproduced on the two foregoing pages [†]; we shall give a brief description of 
these pictures here (11): 
 

Photo 1: 
 
 In this model, the intermediate space between the outer and inner shell of the 

Fresnel wave surface F is filled in with plaster.  An octant in front and a semi-

                                                
 (9) A more precise analysis shows that the singular points of F are so-called ordinary double points; i.e., 
that in a neighborhood U of such a point there are coordinates y1, y2, y3 such that U ∩ F will be described 

by the equation 2 2 2

1 2 3
y y y+ −  = 0 in those coordinates. 

 (10) F. Zak has recently showed, e.g., that a singularity-free surface in P3(C) possesses no tangential 

planes that are tangential to the surface along an entire curve (see [6], § 7).  
 [†] Translator’s note: The photographs are not included here, due to the limited resolution that scanning 
them would allow, so the reader must refer to the original German book for them. 
 (11) The models that are depicted here are found in the model collection of the Mathematical Institute at 
the University of Göttingen.  Many photos of interesting surfaces are presented in the picture volume [27]; 
inter alia, photos 1 and 4 of the Fresnel wave surface. 
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octant in back were removed in order for one to also be able to see the inner shell.  
The forward intersection surfaces are subsets of the planes Ei – one recognizes 
pieces of the circles and ellipses in the relevant plane sections of the surface F.  
One sees singular points of the surface F in the plane E2, both in front and in 
back, and in addition, the contact circles in part (ii ) of Hamilton’s theorem are 
indicated on the surface. 

 
Photo 2: 
 
 This picture shows enlargements of the octants that were cut away from the model 

in (1).  One then sees the intersection with the plane E2 and one of the singular 
points of F more clearly (12). 

 
Photo 3: 
 
 One obtains this model when one fills in the space inside of the inner shell of F 

with plaster.  One recognizes (with some difficulty) two vertices on the front side 
that correspond to two singular points of F. 

 
Photo 4: 
 
 Here, a part of model (1) and a part of model (3) are presented next to each other. 
 

 We would like to conclude the discussion of the geometry of F with that and go into 
some phenomena that relate to the refraction of light in crystals.  We first consider the 
following general situation: 
 Let a light ray be given that comes from the vacuum to a medium; one would like to 
ascertain the continuation (continuations, resp.) of the light ray (rays, resp.) inside the 
medium.  For the sake of simplicity, we would like to assume that the boundary surface 
between the vacuum and the medium is a plane and that the velocity of light in the 
medium possibly depends upon the direction of propagation, but not on position. 
 There are several equivalent methods for treating the problem of light refraction.  To 
that end, it is most advantageous to apply a variational principle, namely, the so-called 
Fermat principle.  That principle yields the following construction prescription: 
 One thinks of the originally-given ray as having been embedded into a system of 
parallel rays.  One has a system of wave fronts perpendicular to it.  One selects one of 
these wave fronts, which will then be a plane E that is perpendicular to the original ray.  
In addition, one chooses an auxiliary point p inside of the medium.  One next determines 
the paths of the light that emanates from the wave front E and goes through the point p.  
One obtains the possible continuation (continuations, resp.) of the originally-given ray by 
parallel displacement. 

                                                
 (12) The lines that are indicated on the model are intersection of F with concentric spheres (a family of 
ellipsoids, resp.) (cf., [26], pp. 168).  
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Vacuum 

Medium 

 
Figure 7. 

 
 Now, Fermat’s principle (see, perhaps, [11], § 2) states that light will choose 
precisely that path from the wave front E to the point p for which: 
 

(i) The path runs along a line segment both inside and outside the medium, and 
outside of the medium (thus, in vacuo) it is parallel to the originally-given light 
ray. 

 
(ii ) Among all possible paths of that sort, the paths that are, in fact, chosen by light 

have the property that the time that light requires between E and p along that path 
assumes a relative minimum. 

 
 In the case for which the medium is optically isotropic – so the velocity of light in the 
medium is independent of the direction – one sees that the variational problem that was 
just described has precisely one solution.  There will then be precisely one path from E to 
p that light chooses, and therefore the originally-given ray has a single-valued 
continuation inside the medium (perhaps as in the drawing above). 
 Since the velocity of light in a medium is smaller than it is in vacuo, the light ray will 
be bent from the incident direction.  A more precise quantitative analysis of this situation 
with the help of Fermat’s principle leads to the known Fresnel formulas for the refraction 
of light (cf., [11], § 3). 
 In the case of a crystal, the solution of the variational problem above is connected 
with the geometry of the Fresnel wave surface, since it describes precisely the possible 
velocities of light inside of the crystal.  In general, the variational problem will now have 
two different solutions (13): One relative minimum for the time interval that is required by 
light from E to p is associated with a direction of propagation and a velocity of light 
inside the crystal that corresponds to a point on the outer shell of F, and another relative 
minimum corresponds to a point on the inner shell of F.  From p onward, two light rays 
will emanate from the wave front E.  Since each of the light rays that are parallel to the 
original ray behave the same under refraction by the crystal, one will get two different 
continuations of the original ray by parallel displacement of the rays through p. 

                                                
 (13) In the event that two of the principal dielectric constants are different.  
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Vacuum 

Crystal 

 
Figure 8. 

 
 The incident ray thus splits into two different rays that proceed inside the crystal with 
differing directions and differing velocities.  This is the phenomenon of double refraction 
that was described in the Introduction. 
 A special situation arises when the boundary surface between the crystal and the 
vacuum is perpendicular to one of the optical principal axes.  One can choose the 
boundary surface between the crystal and the vacuum to be a wave front E (= plane 
perpendicular to the incident system of parallel light rays).  We think of the Fresnel wave 
surface F as being laid through the point p in such a way that E is one of the tangential 
planes that were mentioned in Hamilton’s theorem.  One then sees that the time duration 
for light will be the same for all points of the contact circle E ∩ F (points of E, resp.) to 
p, and that this time duration will be an absolute minimum. 

 
Optical 
principal 
axis 

Vacuum 

Crystal 

 
Figure 9.  Intersection with the plane E2. 

 
 The variational problem then has an infinitude of solutions in this case and 
correspondingly the incident light ray splits inside the crystal into an entire cone of light 
rays. 
 This phenomenon is called (internal) conical refraction (14) and was predicted by 
Hamilton in 1832 on the basis of his investigations into the geometry of the wave surface 
F.  The experimental verification of that phenomenon by Hamilton’s Dublin colleague, 
the experimental physicist H. Lloyd, soon proved to be an important confirmation of the 
wave theory of light, which was in conflict at the time with Newton’s propagating 
particle theory (see, e.g., [10]).  One also obtains a similar phenomenon when one lets a 

                                                
 (14) The phenomenon that is actually observed is somewhat more complicated; see, e.g., [2], 14.3.4. 
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light ray that travels inside of a crystal in a direction that is defined by one of the singular 
points of F leave the crystal into the vacuum (viz., the so-called “external conical 
refraction”).  

 

 
Figure 10. 

 
 After this foray into light refraction in crystals, I would now like to go into some 
more intrinsically mathematical developments that are closely related to the Fresnel wave 
surface and similar surfaces. 
 Some time around 1860, the Fresnel wave surface appeared in a completely different 
context in the theoretical papers of E. Kummer on ray optics.  Kummer concerned 
himself, inter alia, with the following problem: Pursue the light rays that emanate from a 
point-like light source and are then act upon by various optical apparatuses (such as 
systems of mirrors and lenses).  A two-parameter family of light rays (which we will 
think of as being extended to lines) will come about after all of the reflections and 
refractions have been performed.  Kummer called such a two-parameter family of lines a 
ray system, and he began to systematically investigate all such ray systems [15].  In 
particular, he was interested in the focal surfaces of such ray systems.  These are the 
surfaces B with the property that at least one line of the system will go through each non-
singular point of B, and it will be tangential to B at that point.  In the optical situation, the 
focal surfaces will be domains of especially high light intensity. 
 One can expect few concrete results for general ray systems, and for that reason, 
Kummer mainly investigated algebraic ray systems (i.e., ray systems that are described 
by polynomial equations in suitable coordinates) with the property that only a few lines 
of the ray system will go through a general point of space.  One also calls the number of 
lines of a ray systems that go through a general point in space the order of the ray system. 

(In order to make the definition meaningful, one must also allow complex lines in C3 – or 

even better, in projective space P3(C) (15) – which fulfill the defining equations of the ray 

system, and thus, consider the associated complex ray system). 
 We now emphasize that the Fresnel wave surface also appears as the focal surface of 
a special second-order ray system.  Kummer [16], [17] investigated the focal surfaces of 
second-order ray systems in general and obtained, inter alia, the following result: 

                                                
 (15) For a discussion of the transition from real, affine space Rn to complex, projective space Pn(C), see 

perhaps [3], I.3.  
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 Theorem (E. Kummer, 1865): 
 

(i) The focal surface of a second-order ray system in complex projective space P3(C) 

is a surface of degree four (16) with 16 ordinary double points or a degenerate 
case of such a surface. 

 

(ii ) Any surface of degree four in P3(C) that has 16 ordinary double points is the 

focal surface of a second-order ray system. 
 

 Such surfaces are also called Kummer surfaces today (17); the Fresnel wave surface is 
then a special case of a Kummer surface (18).  Twelve of its singular points lie in complex 
spaces, and indeed four of them lie in the complexifications of the planes E1, E3, and the 
plane at infinity.  This result was one of the grounds for the fact that mathematics began 
to take a more serious interest in the geometry of the complexification of the Fresnel 

wave surface, and thus in the associated surface in P3(C), which we would like to denote 

by FC in the sequel. 

 The examination of the complexification of the Fresnel wave surface also proved to 
be meaningful on another ground.  For some purposes, it is useful for have an explicit 
parameterization of the surface F at one’s disposal.  One can show that such a 
parameterization is not possible with the help of classical functions, such as polynomials 
and trigonometric or exponential functions; rather, it is necessary to employ the so-called 
elliptic functions.  This leads one into the realm of “function theory,” and for that reason 
it is also obvious that one should consider the complexification of F here.  A 
parameterization of the Fresnel wave surface was given by Weber in 1878 ([25], pp. 

353); its result can be reformulated into a description of the geometry of FC: 

 A two-dimensional complex torus is a complex-analytic manifold of the form A = C2 

/ Γ, where Γ ⊂ C2 is a subgroup of the form Γ = Z ⋅ ω1 + … + Z ⋅ ω4 with vectors ω1, …, 

ω4 ∈ C2 that are linearly-independent over R.  One has the involutory map i : A → A that 

is induced by the map  C2 → C2, x ֏ − x on such a complex torus.  One obtains special 

complex tori when one considers an elliptic curve E (i.e., a complex manifold of the form 

E = C / Z ⋅⋅⋅⋅ γ1 ⊕ Z ⋅⋅⋅⋅ γ2 with vectors γ1, γ2 ∈ C that are linearly-independent over R) and 

defines the product A ≡ E × E. 

                                                
 (16) The degree of a surface B is the degree of an equation that defines B.  
 (17) The result above is also closely connected with the classical investigations into the so-called 
quadratic line complexes; for a modern presentation, see perhaps [8], ch. 6.  
 (18) F. Klein, in his book on the history of mathematics in the Nineteenth Century ([13], pp. 195) 
described it as follows:  “For the contemporary geometer, the Fresnel surface is no longer an extraordinary 
construction; it is a special case of the Kummer surface with 16 double points and 16 double planes, which 
is characterized by its reality behavior and certain symmetries, moreover.” 
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 Theorem (H. Weber): 
 

 There is an elliptic curve such that FC is isomorphic to E × E / i as a complex-analytic 

variety (19). 
 

 When one makes it explicit, the map C × C → A → A / i ∞→  FC will yield the 

parameterization of FC by elliptic functions.  One then gets the parameterization of the 

real surface F by restricting oneself to the respective “real subspaces.” 
 More generally, it was shown by Borchardt, Rohn, Klein, and others (see [14]) that 
every Kummer surface is isomorphic to a surface of the form A / i, but in general, A is no 
longer isomorphic to a product of elliptic curves (see also, [8], ch. 6) (20).  In general, if 
one has been given a class of complex-analytic (or algebraic) varieties then an obvious 
question to ask would be: When are two varieties in that class isomorphic?  For example, 

it turns out that two varieties A / i and A′ / i with A = C2 / Γ, A = C2 / Γ′ are isomorphic 

precisely when there is a complex-linear map of C
2 to itself that takes Γ to Γ′.  One also 

calls the problem of gaining some glimpse into the set of all isomorphism classes of all 
varieties of a certain type the moduli problem for varieties of that type.  The moduli 
problem for surfaces of type A / i is then “essentially” reduced to a problem in linear 
algebra. 
 The Kummer surfaces (and more generally, the surfaces of type A / i) are a subclass 
of an even larger class of surface – viz., the so-called K3 surfaces (21).  Examples of such 

K3 surfaces are, perhaps, also non-singular fourth-degree surfaces in P3(C).  A 

satisfactory solution of the moduli problem for K3 surfaces was first accomplished a few 
years ago.  It can then be shown that, e.g., the set of all algebraic K3 surfaces with a 
certain polarization (22) define a 19-dimensional complex-analytic variety M (23).  This 
variety M (which one also calls the moduli space of the K3 surfaces with this 
polarization) can be described quite explicitly.  One finds a more precise description of 
this result in, say, the talk by A. Beauville to the Séminaire Bourbaki in1982 [1]. 

                                                
 (19) More precisely: E is a double covering of P1(C) that is branched over 0, 2

1
a , 2

2
a , 2

3
a  ∈ C ⊂ P1(C).  

Since this result was not formulated explicitly in this way in the classical papers, we shall sketch a 
geometric proof of it here (see Appendix). 
 (20) Conversely, if a two-dimensional complex torus admits a principal polarization ([8], ch. 2, 6) then A 

/ i will be isomorphic to a fourth-degree surface in P3(C) with 16 ordinary double points, and thus, a 

Kummer surface. 
 (21) More precisely: The minimal de-singularization of a surface of type A / i belongs to the K3 surfaces.  
 (22) I. e., one singles out a system of algebraic curves in the surface that appear to be precisely 
hyperplane sections for a suitable embedding of the surface in a projective space. 
 (23) I. e., the structure of a complex-analytic variety can be defined on this set “in a natural way.”  The 
“naturality” implies, e.g., that the map of the space of coefficients of homogeneous equations of degree 

four in four variables that define non-singular surfaces in P3(C) into the corresponding space M that 

associates any equation with the isomorphism class of its associated K3 surface is holomorphic. 
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 From the standpoint of the moduli problem for K3 surfaces, the Fresnel wave surface 
then corresponds to a point in the 19-dimensional M (24).  This manner of consideration 
can possibly give the impression that for a modern geometer the Fresnel wave surface is 
only as interesting or interesting as any other K3 surface that corresponds to any other 
point of the space M.  Naturally, that is not entirely true: For example, the construction of 
the moduli space M is already based upon the precise knowledge of the geometry of 
Kummer surfaces.  The Kummer surfaces define a “skeleton” for M, so-to-speak, from 
which one can venture into the unknown realms of the general K3 surfaces.  The precise 
knowledge of the moduli space M also makes it actually possible to carry out a 
systematic investigation of special K3 surfaces (say, ones with higher Picard numbers 
[20] or ones with interesting groups of automorphisms [4]) and naturally the Fresnel 
wave surface belongs to this special K3 surface. 
 This sketch of the developments that were connected with the Fresnel wave surface 
and Kummer surfaces shows quite clearly that by abstraction, generalization, and 
defining the links to other intrinsic and extrinsic mathematical issues, the topics and 
methods that pertain to the investigation of the Fresnel wave surfaces will always lead 
further away from the original physical problem (viz., the description of the phenomena 
of crystal optics).  On the other hand, many of the modern mathematical methods – such 
as the ones in moduli theory – have interesting and useful applications to physics (25).  
These statements would prove to go beyond the scope of this lecture; one finds an 
engaging attempt to do that in the book [18] Mathematics and Physics of the Soviet 
mathematician Y. Manin. 
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Appendix: proof of theorem in footnote 19. 
 

 If f(ξ1, ξ2, ξ3) = 0 is the equation of F, as in (3), then FC ⊂ P3(C) will be described by 

the fourth-degree homogeneous function: 
 

4
0ξ ⋅⋅⋅⋅ f(ξ1 / ξ0, ξ2 / ξ0, ξ3 / ξ0) = 0. 

 

One sees that FC will be taken to itself under the “reflections” σi : P3(C) → P3(C), (ξ1, 

…,ξ3) ֏ (εi0 ξ1, …, εi3 ξ3), in which εij = 1 when i ≠ j and εii = − 1.  σ0 , …, σ3 generate a 

subgroup G of PGL(3, C) that is isomorphic to (Z / 2 Z)3. 

 
 Lemma: 
 
 There is a G-invariant isomorphism: 
 

π : FC → P1(C) × P1(C) 

such that one has: 
 

(i) π induces an isomorphism between FC / G and P1(C) × P1(C). 

 
(ii ) π branches precisely over the divisors: 
 

Di = {(v1, v2) ∈ P1(C) × P1(C) | v1 = ( 2
ia , 1) or v2 = ( 2

ia , 1)}, 

 
i = 0, …, 3, in which we set a0 = 0. 

 
(iii ) A path in a small, transversal disc to one of the components of Di with the 

winding number 1 around that component of σi will be defined by the 
homomorphism: 

π1(P1(C) × P1(C) − 
3

0
i

i

D
=
∪ )  → G 

 
that belongs to the covering π. 
 

 Proof: 
 
 The idea for the construction of π comes from the real situation: Every point ξ ∈ F is 
of the form ξ = v ⋅⋅⋅⋅ x with x ∈ S2.  The point x lies in the quadratic cone Kv and on a 
further cone Kv′ with v′ ≠ ± v, in general (i.e., when x is not a focal point of the net that 
goes through Kv).  The values | v |, | v′ | are precisely the possible velocities of light in the 
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direction x.  If we assign ξ ∈ F to the pair (v2, v′2) then we will get a well-defined map F 

→ R × R.  In formulas, this map will be described by: 

 
x 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3 1 2 3( , ( ) /( ))a a a a a aξ ξ ξ ξ ξ ξ+ + + +֏ . 

 

One easily proves now that this also defines a morphism of FC to P1(C) × P1(C)  that has 

the desired properties. 

 Now let τ : E → P1(C) be the doubly-branched covering of P1(C) that is branched 

over the points (2
ia , 1), i = 0, …, 3, precisely.  E is an elliptic curve; we choose the origin 

of the group structure in E to be the point that lies above (2
0a , 1) = (0, 1).  We let αi 

denote the point of E that lies above (2
ia , 1), so 0 = α0, α1, α2, α3 define the group T2 of 

doubly-covering points of E.  Let m : E → E be multiplication by 2: x ֏  x + x, and let j 
E → E be multiplication by – 1.  T2 will then be the kernel of m, and j will be the deck 
transformation of the covering τ. 

 pr ≡ τ �  m : E → P1(C) is then an eight-fold branched covering of P1(C) with H ≡ T2 

× <j> for its deck transformation group (thus, T2 operates on E by translation).  The 

associated homomorphism π1(P1(C) – { 2
0a , …, 2

3a }) → H defines path on j �  αi that 

encircles that point (2ia , 1) once in a small neighborhood of that point.  We let p denote 

the two-fold covering pr × pr: E × E → P1(C) × P1(C).  It is branched precisely over D0  

…  D3, and its deck transformation group is H × H.  If Hɶ  ⊂ H × H is the subgroup of 
order 8 that is generated by (j, j) and (αi, αi) then one will see that there is an 
isomorphism H × H / Hɶ ≅ G such that the diagram: 

 

π1(P1(C) × P1(C) – D0 ∪ …∪ D3) → G 

H × H → H × H / Hɶ  

≅ 

 
 

commutes.  As a result, E × E / Hɶ  is isomorphic to FC .  Furthermore, the subgroup 2Tɶ  of 

H × H that consists of (αi, αi), i = 0, …, 3 operates on E × E by translations.  Therefore, A 

≅ E × E / 2Tɶ  is a complex torus.  Since (j, j) operates on A like multiplication by – 1, FC = 

A / i .  It remains to be shown that the torus A = E × E / 2Tɶ  is once more isomorphic to E 

× E.  Therefore, let q: E × E → E × E be the map (x, y) ֏  (x + y, x – y).  q is a morphism 
of complex tori, and one easily shows that ker q = 2Tɶ .  With that, the assertion is proved. 

 
 


