
“Newton’sche Gesetz und Metrik,” Sitz. d. Akad. d. Wiss. in Wien 131, Abt. 2a (1922), 1-14. 

 
 

Newton’s law and metrics 
 

By 
 

Friedrich Kottler  in Vienna 
 

(Presented at the session on 26 January 1922) 
 

Translated by D. H. Delphenich 
 
 

 The opinion that Newton’s law of attraction is necessarily connected with the 
geometry of our space was, and still is, often professed, especially by astronomers.  The 
goal of the following study is to contradict that opinion.  It will be shown how Newton’s 
theory of gravitation must considered in a schema that is free of any metric, 
corresponding to the modern local-action or field physics, and how the metric will then 
be introduced into that schema by an arbitrary convention. 
 
 

1. 
 

 Some instances in which the aforementioned opinion occurs in the literature might 
serve as an introduction. 
 In one of his early works “Gedanken von der wahren Schätzung der lebendigen 
Kräfte, etc. [†]” (1747), § 10 to 11, I. Kant  remarked: “It is apparent that the three-fold 
measurement of space originates in the law by which the forces in substances act upon 
each other.”  Moreover: “The triple measurement thus seems to arise because the 
substances act upon each other in the existing world in such a way that the strengths of 
the effects vary inversely to the squares of their separations.  Because of that, I believe 
that the substances in the existing world − of which, we are a part − have essential forces 
of such a kind that in conjunction with each other they will propagate their effects 
according to twice the inverse ratio of their distances.  Secondly, I believe that the totality 
that emerges by means of that law has the property that it has three dimensions.  Thirdly, 
I believe that this law is arbitrary, and that God allows one to choose another – for 
example, the inverse-cube ratio.  Fourth and finally, I believe that an extension of other 
properties and measurements would flow from another law.” 
 In 1824, P. S. Laplace (1) remarked that, due to its simplicity, generality, and 
agreement with physical experiments, Newton’s law must be regarded as rigorous, and 
further remarked that its most important property is that, insofar as the measurements of 

                                                
 [†]  Translation: “Thoughts on the true appraisal of vis viva, etc.” 
 (1) P. S. Laplace, “Exposition du système du monde,” Oeuvres, v. VI, book V, chap. V, pp. 472 (cited 
in R. Bonalo, Die nichteuklidische Geometrie, Leipzig, 1908, pp. 56, et seq.) 
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the ratios of the reciprocal distances and velocities of all bodies in the universe would 
diminish, the celestial bodies would describe paths that would be exactly similar to the 
ones that they do describe, in such a way that the universe would always provide the 
observer with the same view when one progressively contracts it to the smallest-
conceivable space.  That implies the Euclidian character of astronomical space (viz., the 
existence of similar figures!). 
 Whereas Kant , in remarkable contradiction to his later a priori foundation of 
geometry (1), and with a certain premonition of Einstein’s theory, then regarded geometry 
as a consequence of Newton’s law, in such a way that it could be assumed to be arbitrary, 
Laplace, like most mathematicians from Euclid up to the his own era, decided upon the 
absolute validity of geometry, and consider Newton’s law to be a consequence of it and 
certain simple physical axioms. For Laplace, the latter corresponded to the intuitions of 
the theory of action-at-a-distance; i.e., Newton’s integral law, and not Laplace’s 
differential equation (as in the theory of local action), is in the foreground of all 
consideration, such that the law in question would be obtained from simple assumptions 
about the so-called central force with the aid of astronomical experiment.  Later, J. 
Bertrand  (2) reinforced the inverse-square law with his well-known theorem: The paths 
that a material point describes under the influence of a central force that is only a function 
of the distance are closed only when the force is either proportional to the distance or 
inversely-proportional to the square of the distance.  [As is known, Newton (3) himself 
justified the exponent 2 by the remark that deviations of that exponent from the value 2 
would have precession of the perihelia of the planets as a consequence, and therefore 
paths that were not precisely closed.] 
 Laplace and his followers placed Euclidian geometry at the foundation of all of this.  
The conversion of Newton’s law to non-Euclidian spaces (4) likewise came about from 
the metric viewpoint: From an external viewpoint, the attraction of different concentric 
“balls” that are endowed with equal homogeneous density to each other should be 
directly proportional to the masses that they were endowed with and inversely 
proportional to the area of their surfaces.  (It is known that due to the smallness of the 
possible curvature of our space, the generalization of Kepler’s laws that one obtains from 
this will imply no clue as to how one might resolve the question of its Euclidian or non-
Euclidian character with the help of planetary astronomy.) 
 So much for the intuitions of the physics of action-at-a-distance, upon whose floor 
most astronomers still stand to this day when they deal with Newton’s (integral) law or 
its generalizations.  J. Zenneck (5) assumed the standpoint of field physics, with 
Maxwell’s theory as its model.  He based the exponent 2 in Newton’s law on the fact that 
from the standpoint of the theory of field action, it is the only law that is consistent with 
the assumption of a general (i.e., external to matter) source-free distribution of field 
strengths, so it is only with the precise validity of that law that the concept of lines of 

                                                
 (1) I. Kant , “Prolegomena zu einer jeden künftigen Metaphysik,” (1738), § 38: “Here (i.e., in the law of 
attraction), we then have Nature, from which arises laws that the mind recognizes to be a priori, and indeed 
chiefly from general principles of the determination of space.” 
 (2) J. Bertrand, C. R. 77 (1873), pp. 846.  
 (3) I. Newton, Principia mathematica, lib. I, sect. IX.  
 (4) E. Schering, Gött. Nachr. (1870), pp. 311; (1873), pp. 149. – W. Killing , Crelle’s Journal 98 (1885), 
in particular, pp. 7, et seq. and pp. 24, et seq. 
 (5) J. Zenneck, Math. Encycl. 126 (1917), pp. 15.  
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force in a gravitational field will have any meaning.  On just that basis, J. Lense (1) 
believed that Newton’s law could be regarded as a natural consequence of the 
requirement that the force flux that flowed through a closed surface from the outside 
should have only the masses that existed inside of that surface to thank for its origin.  
Both authors employed the fact that Laplace’s differential equation, which is fundamental 
for Newton’s law, has the form of a divergence, which then defines the link to the 
methods of field physics (2).  The connection between the latter and the metric of space 
remains unaffected. 
 

2. 
 

 We now turn to the examination of the connection between field physics and metrics.  
The separation of the concepts of force flux and force proves to be fundamental in that, 
while the former belongs to field physics and the latter, to metrically-oriented mechanics. 
 Corresponding to the basic ideas of field physics, one must describe all processes by 
field quantities; they are, moreover, nothing but certain mathematical functions of 
position that characterize the presence of the field.  Not they themselves, but their (mostly 
mechanical) effects define a measurement, and are therefore admissible in a metric 
picture. 
 A further consequence of the field physics picture is that the processes that take place 
inside of an arbitrary closed surface will be determined by the field that originates inside 
of it.  Thus, field physics takes it must convenient starting point from the formulation of 
certain integral laws that couple an integral over the interior of a closed surface with an 
integral over the latter.  The essence of the integrals must be found in nothing but 
invariant statements.  It then happens that field physics is supported by the theory of 
integral invariants or integral forms (3). 
 The coefficients of an integral form define what one calls a vector of rank one, two, 
etc. in mathematical physics.  That is the connection between field physics and vector 
analysis. Vectors are special cases of tensors, namely, alternating tensors, which change 
sign when one switches any two of their indices.  In contrast to the analysis of vectors, 
the analysis of general, non-alternating tensors (viz., the absolute differential calculus) is 
necessarily coupled with a metric. 
 One now imagines an arbitrary, continuous, three-fold extended manifold M3 and 
determines it points by any three numbers (i.e., coordinates) x1, x2, x3 .  Let the field be 
given at every point of this “space” by the second-rank vector with the components: 
 

F23 = − F32, F31 = − F13, F12 = − F21 . 
 
The force flux through an infinitely-small surface is determined by the integral form: 
 

F23 dx2 dx3 + F31 dx3 dx1 + F12 dx1 dx2 .   (1) 

                                                
 (1) J. Lense, Wien Ber. 126 (1917), pp. 15.  
 (2) Cf., also H. Liebmann, Nichteuklidische Geometrie, Leipzig 1905, pp. 224.  
 (3) This theory goes back to H. Poincaré, Nouvelles methods de la mécanique céleste III, cf., H. 
Poincaré, “Analysis situs,” Journal de l’école polytechique (1895). – E. Goursat, Journ. de math. 4 (1908), 
331. – F. Kottler , Wiener Ber. 121 (1912), 1661, et seq. 
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The total force flux that goes through a two-sided, closed, nowhere-singular, outer 
surface is given by: 

23 2 3F dx dx∫∫ + F31 dx3 dx1 + F12 dx1 dx2 ,   (2) 

 
in which the surface integral is taken over the closed outer surface.  If one represents the 
points of it as functions of two parameters u, v then (2) will go to a double integral: 
 

2 3 3 1 1 2
23 31 12

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x x x x x x
F F F

u v u v u v

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∫∫  du dv ,  (2a) 

 
which is taken over the domain of u and v.  One must pay attention to the sequence of 
differentials in the products dx2 dx3, etc. in (2).  Inverting that sequence will demand that 
one invert the sign of the term in question. 
 The vectorial nature of F finds its expression in the formulas that couple the 
transformed F′ to the old F when one transforms x into the new coordinates x′: 
 

F23 = 
3

, 1 2 3

xx
F

x x
µλ

λµ
λ µ=

′∂′∂′
∂ ∂∑  , etc.    (3) 

 
The force flux is then determined by a covariant vector of rank 2. 
 From the theorems of Gauss and Green (which are valid for any metric), (2) can be 
converted into a three-fold integral: 
 

23 31 12

1 2 3

F F F

x x x

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∫∫∫  dx1 dx2 dx3 ,    (4) 

 
which is taken over the interior of the outer surface.  The expression inside the integral is 
an integral form of rank 3: 

F123 dx1 dx2 dx3 .       (5) 
Its only coefficient is: 

F123 = 23 31 12
1 2 3

F F F
x x x

∂ ∂ ∂− +
∂ ∂ ∂

,    (6) 

 
whose defining law comes to light immediately, and which is the prototype for the well-
known operation div in ordinary vector analysis, and its further consequences include 
Laplace’s differential expression. 
 One now addresses the presentation of the integral laws that were mentioned to begin 
with, which couple the internal phenomena with the field on the surface.  Whether the 
former is the origin of the latter or vice versa is irrelevant from the standpoint of field 
physics.  Newtonian physics, by contrast, assumes that the substance (i.e., mass) of the 
field that is found inside of the outer surface is the source of the effect.  As is known, this 
one-sided causal picture is converted into a functional correlation for field physics. 
 One describes the internal processes by a three-fold integral: 
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123µ∫∫∫ dx1 dx2 dx3 .     (7) 

 
 The third-rank vector µ123 characterizes the singular locations in the field, which one 
regards as its causes or sources in the older conception; i.e., the matter.  Now, the field is 
determined by its singularities (or the latter are determined by the field) with the help of 
the integral theorem: 
 

23 2 3F dx dx∫∫ + F31 dx3 dx1 + F12 dx1 dx2 = 123µ∫∫∫ dx1 dx2 dx3 .  (8) 

 
This is Faraday’s law of force flux, which Faraday expressed by means of the well-
known geometric concept of lines of force.  With the help of the conversion (4), upon 
passing to the limit (1), it will imply the differential equation: 
 

F123 = 23 31 12

1 2 3

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

 = µ123 .    (9) 

 
 This is the nucleus of Laplace’s differential equation and the origin of Newton’s law 
of attraction. 
 

3. 
 

 The foregoing can be extended formally.  Vectors are geometric quantities, so they 
are, in any event, subject to the law of duality.  It then happens that one can express one 
and the same substratum by two different vectors, e.g., a vector of rank p and a 
contravariant vector of rank n – p in an n-dimensional space.  Grassmann called the one 
vector the complement of the other one. 
 In order to arrive at this, one considers the bundle of lines and planes at any point x of 
the three-fold extended manifold M3 ; in the infinitesimal vicinity of it, one has linearity 
in space, and therefore projective geometry.  A contravariant vector of rank one then 
determines a line of that bundle by the ratios of its components, etc.  Instead of that 
bundle, one can also consider a projective plane E that one cuts the bundle with; we 
prefer the latter representation.  The contravariant vectors of rank 1 (which are affixed to 
the point x of the original three-fold extended manifold M3) then determine any system of 
triangular coordinates of the points in that plane by their components.  However, one can 
determined a point in the plane E by means of any two lines that intersect at it, in addition 
to its point coordinates.  One will then obtain the two-rowed sub-determinants from the 
matrix of line coordinates of the two lines, and they must obviously be the components of 
a covariant vector of rank 2 that belongs to the original contravariant vector of rank 1 by 
means of the law of duality. 

                                                
 (1) The questions of the admissibility of the passage to the limit and the validity of the differential 
equation (9) inside of matter remain undisturbed here.  H. Weyl made it clear in the 4th edition of Raum-
Zeit-Materie, 275, et seq. that (9) is not applicable inside of matter.  The integral law (8) remains untouched 
by that. 
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 Up to now, the proportionality factor with which the homogeneous triangular 
coordinates are multiplied, which is left arbitrary in projective geometry, has not been 
considered. 
 Correspondingly, one must leave the proportionality factor on the definition of the 
complement (and thus, of the dual vector) arbitrary, if one is to avoid the introduction of 
metric viewpoints. 
 If one then seeks the contravariant vector that is complementary (or dual) to the 
covariant vector of the force flux with the components: 
 

F23, F31, F12 , 
 

and whose components are denoted by: 
 

1F
∗

, 2F
∗

, 3F
∗

, 
 
then they will be proportional to the former in the prescribed sequence, from the 
theorems of projective geometry that were just invoked.  The arbitrary proportionality 
factor, which must naturally be the same for all vectors at the location x of the triply-
extended manifold M3, is not some scalar, but, as one easily sees, any covariant vector 
ε123 of rank 3.  One then has (1): 
 

F23 = ε123 
1F

∗

,  F31 = ε123 
2F

∗

,   F12 = ε123 
3F

∗

,   (10) 
 

for the complement F
∗

 of F.  One easily convinces oneself of the validity of the relations 
(10) by transforming to new coordinates x′, in which one likewise postulates relations of 

the form (10) for the new F′ ( F
∗
′ , resp.).  In order for that to be true, ε123 must actually 

transform like a vector of rank 3: 
 

ε123 = 1 2 3
123

1 2 3

( , , )

( , , )

x x x

x x x
ε

′ ′ ′∂′
∂

.    (11) 

  

1F
∗

, 2F
∗

, 3F
∗

 then represents a contravariant vector of rank 1; i.e., one has: 
 

                                                
 (1) If the complement of a covariant vector of rank p with the components 

1 2i i i p
F

⋯

 is given by the 

relations: 

1 2i i i p
F

⋯

 = ε12…n 
1 2i i ip p nF + +

∗
⋯

, 

 
 in which, i1 i2 ip ip+1 … in must be a positive permutation of 1 2 … n.  Analogous statements are true for the 
complement of its contravariant vector.  The complement of the complement of a vector is equal to either 
the same vector or its opposite. 
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1F
∗

= 
3

1

1

x
F

x
λ

λ λ

∗

=

∂
′∂∑ , etc.     (12) 

 
The force flux can then be determined in the same way from the covariant vector of rank 

2 or its complement F
∗

.  If one then sets: 
 

µ123 = ρ ε123 ,      (13) 
 
in which ρ is a scalar factor, then one can also write: 
 

1 2 3
123 123 123

1 2 3

( ) ( ) ( )F F F
x x x

ε ε ε
∗ ∗ ∗∂ ∂ ∂+ +

∂ ∂ ∂
 = ρ ε123 ,   (14) 

 
in place of (9).  One recognizes the prototype of the usual notation for the divergence (the 
Laplace differential expression, resp.) in this. 
 As we promised at the beginning of this paper, we have then brought Newton’s 
theory of gravitation into the schema (9) [(14), resp.], which is free of any metric and is 
equivalent to the integral law (8).  That is then the nucleus of Newton’s theory from the 
standpoint of field physics, and is nothing but the mathematical expression for the 
concept of local action. 
 It remains for us to show how the metric will be introduced into this schema by an 
arbitrary convention. 
 

4. 
 

 Force flux is a field concept, and as such, its measurement is not practicable.  Only its 
mechanical effects – i.e., the force – can be measured. 
 It is know from Lagrangian mechanics how one can define (measure, resp.) force in 
arbitrary coordinates x1, x2, x3 .  One measures force by the work that it can perform.  In 
this, the work that infinitely-small displacement of a mass point from the location x to the 
location x + dx performs will be given by a linear differential form: 
 

dA = p1 dx1 + p2 dx2 + p3 dx3 .    (15) 
 
With Lagrange, one calls the coefficients p of this differential form the generalized force.  
The form is then given by a covariant vector of rank 1. 
 Now, it is known that force is ordinarily represented by a line segment in mechanics.  
Thus, it shall be a contravariant vector of rank 1.  This contradiction usually remains 
unnoticed, since one employs Cartesian orthogonal coordinates for the usual calculation 
of work in physics, as well as in engineering.  Moreover, it is well-known that 
contravariance and covariance coincide in such coordinates. 
 In truth, the representation of a force by a line segment is based upon the introduction 
of a metric.  Indeed, when one recalls the development of the mechanics and analysis in 
the context of the laws of levers, one can almost say that metric geometry, and in 
particular, the concept of orthogonality, arise from the work product (15) in mechanics. 
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 From the previously-developed viewpoint of field physics, the train of thought that is 
implicit in this is, however, the following one: Originally, only the covariant vector F of 

rank 2 or the complementary contravariant vector F
∗

 of rank 1 have any meaning as field 
quantities (i.e., force flux).  One needs to measure force flux by the work done by the 

force p, which is a covariant vector F
∗

 of rank 1.  One must define a covariant vector p of 

equal rank from the contravariant vector F
∗

.  One achieves that with the help of a polar 
correlation, namely, generalized orthogonality. 
 For this, one imagines any conic section as being drawn in the projective plane E that 
was treated in no. 3.  A line with the line coordinates p1, p2, p3 will belong to the point of 

the plane E whose point coordinates are 1F
∗

, 2F
∗

, 3F
∗

 by means of the polar system of 
that conic, and that line will represent the desired covariant vector – i.e., the force that 
belongs to the force flux. 
 In order to express this in formulas, one must give the conic section by means of its 
quadratic form in the point coordinates ξ1, ξ 2, ξ 3 of the plane E.  Let: 
 

,
ik i k

i k

a ξ ξ∑  (aik = aki)    (16) 

 
be the form.  Naturally, the aik are, in general functions of the location x at which one 
consider the linear bundle (plane E, resp.); i.e., the metric that is introduced generally 
changes from point to point on the three-fold extended manifold M3 . 
 With the help of this orthogonality, one has a covariant vector of rank 1 in: 
 

3

1
1

k
k

k

a F
∗

=
∑ ,  

3

2
1

k
k

k

a F
∗

=
∑ ,  

3

3
1

k
k

k

a F
∗

=
∑ , 

 

which belongs to the contravariant vector F
∗

 of equal rank.  A scalar proportionality 
factor still remains arbitrary.  However, since the definition of force is still free of it, one 
can really set: 

pi = 
3

1

k
ik

k

a F
∗

=
∑ ,  i = 1, 2, 3.   (17) 

 
By introducing the form that is reciprocal to (16), one will get: 
 

kF
∗

 = 
3

1

ik
i

i

a p
=
∑   k = 1, 2, 3,   (18) 

 

in which the aik = aki fulfill the known relations: 
3

1

il
ik

i

a a
=
∑  = l

kδ  = 
1

0 .

k l

k l

=
 ≠

  

  (19) 
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 From (15) and (17), one will then have: 
 

dA = 
3

, 1
ik k i

i k

a F dx
∗

=
∑      (20) 

 
for the work that is done by the force flux F.  One can glimpse the historical origin of the 
angle measure (orthogonality, projection, et al.) in this work product of mechanics.  By 
the defective duality of the Euclidian metric, the measurement of length is independent of 
it.  However, since nothing has been required of the aik, one can identify them with the 
coefficients of the quadratic form, which establish the arc length, and therefore, the angle 
measure in M3 .  Accordingly, let: 

ds2 = 
3

, 1
ik i k

i k

a dx dx
=
∑      (21) 

 
be that form.  As we mentioned, we have a clue for this identification in the laws of 
levers. 
 We summarize them: First of all, the covariant vector F of rank 2 was the force flux, 

from which arises the complementary contravariant vector F
∗

 of rank 1, and from that 
arises the polar reciprocal (or briefly, the reciprocal) covariant vector p of rank 1 of 
force: 

F23 = ε123 
1F

∗

= ε123 
3

1

1

k
k

k

a p
=
∑ ,  etc.   (22) 

 
by means of orthogonality.  In this, we have set: 
 

µ123 = ρ ε123 . 
 
It is unnecessary to base the arbitrary tensor ε123 on the metric (21) that we introduced 
just now.  When one establishes that for ρ = 1 the integral: 
 

123µ∫∫∫ dx1 dx2 dx3 , 

 
when taken over a closed domain, shall give its volume, that will come about in the same 
way as when it is measured on the basis of (21).  It follows from this that: 
 

ε123 = a ,     (23) 

 
in which a is the always-positive [for a positive-definite form (21)] determinant: 
 

a = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

. 
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Upon transforming to new coordinates x′, a  actually behaves like a vector of rank 3, as 

long as the functional determinant satisfies: 
 

1 2 3

1 2 3

( , , )

( , , )

x x x

x x x

′ ′ ′∂
∂

> 0. 

 

In the opposite case, one must set 123ε ′  = − a′  in order to remain in agreement with (11).  

One should never lose sight of this rule when one defines the Grassmann complement 
with the help of a vector of rank 3 that is defined by (23), as is customary. 
 We finally have: 

F23 = 1a F
∗

 = 
3

1

1

k
k

k

a a p
=
∑ ,  etc. 

 

µ123 = a ρ . 

 
According to the chosen normalization (23), ρ means the (volume) density of matter, so 
the integral: 

123µ∫∫∫ dx1 dx2 dx3 

 
will give the total mass that is found in the domain (1). 
 Finally, Laplace’s equation (14) will be: 
 

3 3 3
1 2 3

1 1 11 2 3

k k k
k k k

k k k

a a p a a p a a p
x x x= = =

∂ ∂ ∂     + +     ∂ ∂ ∂     
∑ ∑ ∑  = a ρ . (24) 

 
In the case where (15) is a complete differential, the force p will be conservative and 
representable by a potential ϕ: 
 

pk = 
kx

ϕ∂
∂

,  k = 1, 2, 3. 

 
One will then obtain the familiar form: 
 

                                                
 (1) H. Weyl, loc. cit., pp. 98, referred to vectors like F as (linear) tensors, in order to distinguish them 

from the notation a F
∗

, which he referred to as (linear) tensor densities, and “believed that the difference 

between quantity and intensity (to the extent that it has any physical meaning) has been captured more 
rigorously.” From what we have done here, this difference is very well present, but must be grasped in a 

completely different way.  F or F
∗

are intensities, while the p are quantities. 
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3 3

1 1

1 ik

i ki k

a a
x xa

ϕ
= =

 ∂ ∂
 ∂ ∂ 

∑ ∑  = ρ,    (25) 

 
from (24); i.e., the second-order Beltrami differential parameter, which will reduce to the 
classical Laplace form: 

2 2 2

2 2 2
1 2 3x x x

ϕ ϕ ϕ∂ ∂ ∂+ +
∂ ∂ ∂

= ρ     (25a) 

 
for a Euclidian ds2 (21) in Cartesian coordinates. 
 
 

5. 
 

 If one reviews what we have done up to now then one will see directly that the aik or 
the form (21) can still remain completely open.  The metric cannot be derived from a 
mechanical viewpoint then; it is, moreover, a result of an arbitrary convention, as 
Poincaré has emphasized so often. 
 One can choose any metric, so the associated form of Newton’s law would then drop 
out of (25), which would then naturally not have the simple form of the inverse-square of 
the distance, and one could then seek to compare the result with experiment.  If the 
chosen metric is not in glaring contradiction to the approximate Euclidian nature of space 
then one will certainly be able to arrive at agreement with experiment to within the error 
in observation.  The fact that space is approximately Euclidian does not need to amaze 
one; any manifold is Euclidian in an infinitesimal region.  One can then glimpse in that 
fact at most an indication of the immensity of space, or perhaps the smallness of Man. 
 It is not our problem here to discuss how the choice of our metric actually comes 
about.  It has been known since Helmholtz, Riemann, and Lie that the assumption of the 
unchanging mobility of the fixed bodies (viz., the requirement of homogeneity and 
isotropy in space) reduces the choice to the Euclidian or non-Euclidian space forms of 
constant curvature.  The close decision between Euclidian and non-Euclidian space forms 
is, however, subject to only more open possibilities, and as is known, cannot be resolved 
experimentally to this day. 
 From the foregoing then, pure field physics is in no way connected with the metric of 
space.  That seems to contradict Einstein’s theory, which, as is known, derives gravitation 
from the metric on space and time.  The task of clarifying that contradiction will have to 
be addressed in a later work.  For Einstein, it is not the field that brings in the metric, but 
light, and only by its help can we comprehend our environment. 
 
 

___________ 


