
“Relativitätsprinzip und beschleunigte Bewegung,” Ann. Phys. (Leipzig) (4) 44 (1914), 701-748. 

 

 

The principle of relativity and accelerated motion 
 

By Friedrich Kottler 

 
(Confer Plates XV and XVI, Tables and 2) 

 

Translated by D. H. Delphenich 

_________ 

 

 

 In the present article, an attempt will be made to adapt the Lorentz transformation from uniform 

rectilinear motion to certain accelerated motions.  That means that an observer that takes part in 

such accelerated motions is put into a position by means of a suitable comoving reference system 

to regard himself as being at rest, and phenomena that do not take part in the motion are attributed 

to apparent accelerations.  On epistemological and physical grounds, one then replaces the 

reference system above with a reference body.  However, in order to do that, if the observer is not 

to perceive his own motion in the changes in the rest form then it is necessary that he should move 

like a Born rigid body.  Of the two types of such bodies that Herglotz gave, however, when one 

demands the constancy of the “proper coordinates,” as well as the “non-simultaneous” points of 

the body, only the latter is to be used, and their worldlines are known to be the paths of a one-

parameter group of orthogonal transformations of Minkowski’s S4 .  That immediately implies the 

moving 4-frame of the world-line of the observer as the desired generalization of the comoving 

system.  Maxwell’s basic equations remain invariant when one does that, from which one 

concludes that when once force equilibrium comes about in the reference body, it will continue to 

exist for the entire motion. 

 The nature of those accelerated motions is illuminated by the fact that they represent the 

relativistic generalization of the ones in Newtonian mechanics that are performed with constant 

acceleration, so the uniform rectilinear motions, free fall, uniform rotation, and combinations of 

them.  In that way, the aforementioned conservation of equilibrium will become understandable.  

Now, in order to explain the creation of those distinguished motions for the electron, a model of 

that will be presented that corresponds to the usual representations of electromagnetic mechanics 

and therefore, like them (to the extent that Maxwell’s equations are applicable to its interior), it 

suffers from the same defect that has been known since Abraham and Poincaré, namely, how to 

explain its cohesion.  The hypothesis that is appealed to here asserts the addition of elastic stresses 

that neutralize the Maxwell stresses, such that under force equilibrium, when one also considers 

the external field, the individual particles of the charge are regarded as indifferent to each other.  

That will then imply the stated motions as the ones that the electron performs in a spatially and 

temporally constant external electromagnetic field.  In that way, it is assumed that the motion 

proceeds from minus infinity to plus infinity.  If only part of the motion were realized, such as in 
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deflection experiments with cathode rays, then it would be self-evident to assume that 

deformations of the body occur under the transition into motion, as they do in the motion of the 

Born body, but they are not regarded as a pressure mechanism, but simply as distinguished 

motions, since, in particular, the ones for the bodies of the second type will be preserved 

“intrinsically,” as will be shown.  For the model of the electron above, it also follows that those 

motions can proceed without radiation which remains a known foundation of the theory of 

magnetization electrons.  However, if the solution of the problem of the natural cohesion of 

electricity is to be possible without auxiliary elastic stresses then one would expect that it would 

be only a change in the basic equations. 

 Upon pursuing the proposed generalization of the Lorentz transformation further, it will be 

shown in the example of uniform rotations, which are counted among the distinguished motions, 

that the reference system is distinguished from the comoving system of the older mechanics by 

only second-order quantities, just as in the usual Lorentzian case, which is why first-order 

rotational effects cannot at all be consulted as a judgement against the principle of relativity, as 

has been attempted lately.  The fact that such things should occur, and that the observer can 

perceive his own motion accelerated motion, moreover, is obvious, as was indeed known in the 

older mechanics. 

 Finally, we will go into the question of how the moving observer represents the universe.  That 

will show the invariance of the speed of light for his immediate vicinity, but not further beyond it.  

It will be shown how the speed of light depends upon the force-potential of the apparent 

acceleration when it is referred to the proper system in the example of Born’s hyperbolic falling 

motion. 

 In an Appendix, formulas from differential geometry will be given that seem unavoidable in 

the further construction of Minkowski’s kinematics, as well as a discussion of the connection 

between Minkowski world-lines and Hamilton’s velocity hodographs (1). 

 

 

Notations. 

 

 x(1), x(2), x(3), x(4) are coordinates of S4 (
2).  Lower indices will never be coordinate indices in 

what follows.  For example, c1 will mean a vector whose components are c1
(1), c1

(2), c1
(3), c1

(4). 

 x, y, z, t are coordinates and time in S3 , in which the usual notations of three-dimensional vector 

analysis will be employed. 

 The index 4 does not denote a timelike direction in the moving 4-frame; i.e., c1
(1), c1

(2), c1
(3), 

c1
(4) are the direction cosines of the fourth axis of the 4-frame, but it is, however, spacelike. 

  

 
 (1) For what follows, cf., in particular, G. Herglotz, “Relativitätsprinzip und starrer Körper,” Ann. Phys. (Leipzig) 

(4) 31 (1910), pp. 393.  F. Kottler, “Über die Raumzeitlinien der Minkowskischen Welt,” Wien. Ber. IIa October 

1912, §§ 6-8.  In the latter paper, one already finds the results in § 5, Point 7 and Appendix 1 to 2 in the present one. 

 (2) That notation originates in the absolute differential calculus.  F. Kottler, loc. cit., §§ 1-3. 
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§ 1. – The trajectories of a one-parameter group of orthogonal transformations 

of Minkowski S4 . 

 

 1. – Any finite transformation that depends upon one parameter can be constructed from 

successive applications of its fundamental infinitesimal transformation.  For a (proper) orthogonal 

one, the latter has the following form: 

 

 

 

 

(1)  

 

 

  
 

 

 The  (h) and k 
(h) in this are constants that must satisfy only the conditions that: 

 

 (a).  

 

 as well as  (4), are pure imaginary, while the others are real,  (b).

 

 (c).  

 

The parameter of the transformation is u . 

 

 2. – Equations (1) obviously associate each point with a direction of advance, along which it 

reaches its consecutive positions along the trajectory, which are associated uniquely by means of 

the transformation.  One then obtains the trajectory by integrating (1) in the form: 

 

(2)     x = x (a, b, c, u) . 

 

The a, b, c in this are certain integration constants that might perhaps characterize the initial 

position for u = 0. 

 Those initial positions fill up a triply-extended manifold that successively goes over to 1 other 

manifolds u = const. under the transformation (1) that are all congruent to each other. 

 

 3. – Each transformation (1) possesses this distinguished property in general, and only one of 

them, so (2) just represents an “intrinsic displacement” (Insichverschiebung) or “motion” of S4 .  

The family of 3 trajectories that belongs to (1) can be displaced into itself.  As one would derive 

directly from the natural equations of differential geometry, each curve of the family will then 

possess the property: 

 

(1)
(1) (1) (2) (1) (3) (1) (4)

2 3 4

(2)
(2) (2) (1) (2) (3) (2) (4)

1 3 4

(3)
(3) (3) (1) (3) (2) (3) (4)

1 2 4

(4)
(4) (4) (1) (4) (2) (4) (3)

1 2 3

* ,

* ,

* ,

*

dx
x x x

du

dx
x x x

du

dx
x x x

du

dx
x x x

du

   

   

   

   


= + + + +




= + + + +

 = + + + +


 = + + + +


( ) ( ) ,h k

k h = −

(1) (2) (3)

4 4 4, , ,  

(4)

0 .
i



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 The three radii of curvature (1) along a curve of the family are constant along a curve of the 

family (but not, say, from one curve to another). 

 

That is, the intrinsic form of the curve is the same everywhere. 

 

 4. – The transformation (1) then produces an entire family of 3 such curves.  Conversely, in 

order for a given family of 3 curves of constant curvature to belong to a transformation (1), it is 

necessary that certain conditions are fulfilled.  If one takes the example of the plane then the 

transformation that is analogous to (1) will have 1 for its trajectories.  The condition for a family 

of 1 circles to be trajectories of a one-parameter group of orthogonal transformations is known 

to be that the circles must be concentric.  Generally speaking, one has equidistance (2) as the 

characteristic property for a family of 3 curves of constant curvature in S4 to belong to a 

transformation (1).  Namely, if x0 = x (a, b, c, u0) and X0 = X (A, B, C, U0) are two arbitrary points 

of two arbitrary curves of the family then if x0 runs through then curve x (a, b, c, u) and X0 runs 

through the curve X (A, B, C, u) then any two associated points will always yield the same 

separation distance.  The fact that two points are associated will then be given by the fact that u0 

and U0 both experience the same increment u .  Namely, since we start from the initial positions 

x0 (X0 , resp.), which belong to the different parameter values u0 (U0, resp.), once we have attached 

a finite transformation to them, we cannot regard points with the same parameter values as being 

associated, but points with parameter values u (U, resp.), where: 

 

u = u0 + u (U = U0 + u, resp.), 

such that the difference: 

u – u0 = U – U0 

 

can be treated as constant.  If one imagines that the curve X (A, B, C, u) is displaced into itself 

(whereby, from paragraph 3, nothing will change in the external appearance of the family of 

curves) then one can obviously arrive at U0 = u0 , and the statement above will find its justification 

in that way.  The condition of equidistance, and therefore the fact that a transformation (1) can be 

associated, will then read: 

 

 
 

for the given family of curves of constant curvature, which might also be X0 and x0 and u . 

 

 5. – In regard to the integration of the differential equations (1) and the representation of finite 

equations for the trajectories, one must obviously appeal to the simplest, but typical, cases.  In fact, 

one can always reduce the matrix k
(h) to certain canonical forms by an orthogonal transformation 

 
 (1) Appendix I.  

 (2) In the broader sense; hence, it is not merely normal equidistance, as in Herglotz, loc. cit.  

4 4
( ) ( ) 2 ( ) ( ) 2

0 0 0 0

1 1

{ ( , , , ) ( , , , )} { ( , , , ) ( , , , )}h h h h

h h

X A B C U u x a b c u u X A B C U x a b c u
= =

+  − +  = − 
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of S4 ; i.e., one for which as many k
(h) as possible vanish (1).  In what follows, the integration will 

only be performed in that canonical form, and the investigation will also be further linked with it.  

Naturally, one is still free to adapt the results that are obtained in that way to an arbitrary form for 

k
(h) by means of the inverse orthogonal transformation.  One ascertains that canonical form most 

concisely with the help of the theory of elementary divisors (2).  In that way, one considers the 

characteristic determinant: 

 
in which: 

 
and 

 
 

are the two invariants under orthogonal transformation of the determinant: 

 

 
and determines the roots of: 

D ()   4 + E  2 + E 2 = 0 . 

 Let those roots be: 

− 1 = 2 (− 3 = 4 , resp.), 

 

so their uniqueness or multiplicity, resp. (and in the latter case, their multiplicities as roots of all 

the subdeterminants of varying degrees) will be a necessity for a classification.  When one recalls 

conditions (a), (b), (c) of paragraph 1 and omits everything that is inessential, one will then find 

the canonical forms: 

 

 (I) All roots are simple.  One has nothing but elementary divisors.  Notation [1111] : 

 

− 1 = + 2 = i  , − 3 = + 4 = 1, 

 

dx(1) = −  x(2) du , dx(2) =  x(1) du , dx(3) = i  x(4) du , dx(4) = i x(3) du . 

 

 (II) 3 = 4 = 0 (double root).  All subdeterminants of degree three must then [as a result of 

condition (a)] vanish at least simply.  The double root  = 0 then possesses two simple elementary 

divisors: − 1 = + 2 = i  , [11 (11)] : 

 
 (1) An example of a reduction to canonical form: the transformation of a second-degree surface to its principal 

axes.  

 (2) P. Muth, Theorie und Anwendung der Elementarteiler, Leipzig, Teubner, 1899. 

(1) (1) (1)

2 3 4

(2) (2) (2)

4 2 21 3 4

(3) (3) (3)

2 2 4

(4) (4) (4)

2 2 3

( ) ,D E

   

   
  

   

   

= = + +E

(1) 2 (1) 2 (1) 2 (2) 2 (2) 2 (3) 2

2 3 3 3 4 4( ) ( ) ( ) ( ) ( ) ( )     = + + + + +E

(1) (3) (1) (4) (1) (2)

2 4 3 2 4 3E      = + +

( ) , , 1,2,3,4h

k h k =
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dx(1) = −  x(2) du , dx(2) =  x(1) du , dx(3) =  du , dx(4) = i du . 

  

 (III) 1 = 2 = 0 , − 3 = 4 = 1, as before, it differs only by the various reality properties of 

x(1), x(2) [x(3), x(4), resp.].  [(11) 11]: 

 

dx(1) =  du , dx(2) =  , dx(3) = − i x(4) du , dx(4) = i x(3) du . 

 

 (IV) 1 = 2 = 3 = 4 = 0 (quadruple root).  The subdeterminants of degree three must vanish 

at least simply.  The root  = 0 will then have a triple and a simple elementary divisor [(31)]: 

 

dx(1) = (− x(3) – i x(3)) du , dx(2) =  , dx(3) = x(1) du ,  dx(4) = i (x(1) + ) du . 

 

 (V) 1 = 2 = 3 = 4 = 0 (quadruple root).  The subdeterminants of degree three must vanish 

at least triply, the ones of degree two, at least doubly, and the ones of degree one, simply.  One has 

four elementary divisors [(1111)]: 

 

dx(1) = , dx(2) =  , dx(3) =  du , dx(4) = i du . 

 

 The specializations of the “displacement”  (1),  (2),  (3),  (4) that appear in these cases were 

made with hindsight of condition (c) and the essential nature of its preservation. 

 The integration of (1) will now be easy.  It will imply a parametric representation of the type 

(2) when certain integration constants are chosen in a suitable way.  For the results, cf., Tab. 1, 

col. 2. 

 

 

§ 2. – Kinematics of worldlines of constant curvatures. 

 

 1. – The curves that were found will now yield the desired accelerated motions directly when 

we interpret them as worldlines in the Minkowski sense.  For that, it is only necessary that the 

tangent to such a curve should always have a timelike direction, which is why the integration 

constants are subject to relevant conditions (Tab. 1, col. 7). 

 

 2. – Minkowski kinematics is now a pure differential geometry of worldlines.  In fact, the 

abandonment of the distinguished role that time plays in ordinary kinematics is necessary if one is 

to have every right to call kinematics the “geometry of motion.”  Now, since that is the case for 

Minkowski, one will attempt to call upon the formulas of differential geometry for S4 for the sake 

of physical understanding. 

 

 3. – Minkowski’s equations of motion for a mass-point read: 

 

 

2 ( )
( )

0 2
, 1,2,3,4.

h
hd x

m K h
d

= =
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In them, m0 is the rest mass, d = 𝑑𝑡 √1 − 𝔳2/𝑐2 is the element of proper time, and v is the ordinary 

Newtonian velocity, i.e.: 

 
 

Finally, K is the Minkowski four-force, which is referred to the element of rest volume.  If K is 

the ordinary Newtonian force then, as is known, one has: 

 

 

 

 

 

 

 Now, it is known that these equations of motion admit the following interpretation: 

 

 4. – In S4 , with the metric: 

 

 d 2 = − (dx (1))2 − (dx (2))2 − (dx (3))2 − (dx (4))2 

  =  − dx2 − dy2 − dz2 + c2 dt2, 

 

the arc-length along the worldline is: 

d = c d . 

 

The Minkowski equations of motion then read: 

 

 
 

 However, the left-hand side of this is known to be (up to sign) nothing but the unit vector of 

the principal normal, divided by the radius of the first curvature (1).  It then proves to be similar 

to the three-dimensional centripetal force about the center of curvature of a Newtonian trajectory, 

which makes its magnitude inversely proportional to the radius of curvature. 

 

 5. – From § 1, we know that the first curvature of the worldline that we consider is constant.  

It then follows from this that: 

 

 The magnitude of the Minkowski four-force is constant under a motion of this type. 

 

 That magnitude, when divided by m0 , so: 

 
 (1) Appendix.  However, the law of arc-length employs ds2 = dx2 + dy2 + dz2 – c2 dt2, there so i c d, as the arc-

length of the worldline. 

, , .x y z

dx dy dz

dt dt dt
= = =v v v

2

2 2

0

.
d x K

d m c
=

(1)

2 1
, etc.,

1 /

xK
v c

=
−

K

(4)

2 1

( )
.

1 /

i
K

c v c
=

−

Kv
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is called the proper acceleration of the mass-point, because when the point is transformed to rest, 

its acceleration in the new system will represent the magnitude and direction of precisely the 

Minkowski four-force, divided by m0 , whose fourth component will obviously vanish in it. 

 

 6. – The interpretation of the second and third curvatures is not as simple as that of the first 

curvature, which represents the previous 1 / c2 times the proper acceleration.  Since they vanish 

for a planar (rectilinear, resp.) motion for the worldlines in S4 that correspond to the Newtonian S3, 

one would suspect that one is dealing with the consecutive position that the accelerations assume.  

Classical mechanics poses considerations of that sort when it constructs the Hamiltonian 

hodograph of the velocity: 

vx = vx (t), vy = vy (t), vz = vz (t) 

 

as a curve.  The acceleration then points parallel to the tangent, so the alternating positions of the 

acceleration will obviously be given by the ordinary three-dimensional curvature (torsion, resp.) 

of the Hamiltonian hodograph. 

 Now, one easily finds from the formulas of four-dimensional differential geometry (1) that: 

 

 The second (third, resp.) curvature at a point of the worldline is equal to the curvature (torsion, 

resp.) of the associated Hamiltonian hodograph times 1/c of the proper acceleration when that 

hodograph is considered in a system in which the point is momentarily at rest. 

 

 7. – In order to arrive at an intuitive picture of the nature of the motions considered, we would 

like to assume, for the moment, that the velocity v is small enough that we can set the speed of 

light c =  in comparison to it.  Newtonian kinematics is obviously true then.  The system in which 

the point is at rest is the ordinary Newtonian comoving system where the proper acceleration 

coincides with the ordinary acceleration, so the hodograph, as viewed from the comoving system 

also coincides with the ordinary one.  One obtains: The motions are performed with constant 

acceleration, and the Hamiltonian hodograph is either a common helix or a circle or a line or a 

point.  That is, however, nothing but constant acceleration as in Galilean free fall or uniform 

rotation about an axis.  The worldlines of constant curvatures are nothing but the relativistic 

generalization of free fall (possibly a throw) or uniform rotation (possibly a screw) or both of them 

together. 

 

 8. – Pursuing that generalization in more detail obviously has great significance for the study 

of accelerated motion from the standpoint of the principle of relativity.  In order to do that, we 

imagine that the worldlines are given in their simplest form, as in Tab. 1.  Let superfluous 

translations be omitted from the outset by a Lorentz transformation.  We shall now interpret them 

in space: 

 
 (1) Appendix 2, in which the imaginary arc-length is employed, though.  

0

| |
,

K

m
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x(1) = x,  x(2) = y,  x(3) = z, 

 

and let (1 / i c) x(4) be time t .  Result: Tab. 2, col. 1.  We now apply the concepts of ordinary 

Newtonian mechanics and determine the Newtonian trajectory, the velocity v, and the acceleration 

𝔳̇.  Result: Tab. 2, col. 2, 3, 7.  We further consider the Minkowski equation of motion in that S3 .  

We have: 

 
and obviously: 

 
moreover. 

 We calculate the differential quotient in the left-hand side: 

 

 
  

 We split 𝔳̇ into two vectors  𝔳̇|| (𝔳̇±, resp.) that are parallel (normal, resp.) to v : 

 

 
 We obviously find that: 

 

 

 

 

 

 

 

 That is nothing but the well-known fact that longitudinal and transverse masses are different.  

We further split K as we did with 𝔳̇ : 

K = K + K|| . 

 It then follows that: 

 

 

 

 

 If one now forms the resultant 𝔳̇ then one will get: 

 

(1) (2) (3)

2 2 2 2 2 2
, , ,

1 / 1 / 1 /

yx zdx dx dx

d d dc c c  
= = =

− − −

vv v

v v v

0
2 2

,
1 /

d
m

dt c
=

−

v
K

v

( ) ( )

2 2

2 2

3 32 2 2 2
2 2 2 2

( ) ( )
(1 / )

.
1 / 1 / 1 / 1 /

v v
c

d c c

dt c c c c

− +

= + =
− − − −

v v
v v v v
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or 

 
 

 That equation shows that when a force K acts upon a mass-point m0 , the acceleration that it 

produces does not point parallel to the force (1).  Rather, the mass-point experiences a type of 

resistance in the direction of motion that represents a second-order effect and is proportional to 

the force component in the direction of motion.  It is only in the case where the force acts always 

parallel or always normal to the motion that the acceleration and force are parallel. 

 

 

 9. – Therefore, assume that we throw a body horizontally with a certain velocity in a 

gravitational field (Tab. 2, IIIa).  Initially, the force is normal to the direction of motion, but that 

will no longer be the case when the body begins to describe the Galileian parabola, where a sort 

of frictional resistance will act against it (col. 8).  If we decompose it into a vertical (horizontal, 

resp.) component then the vertical component (whose magnitude naturally increases with | v |) will 

reduce the free-fall acceleration, while the horizontal one will exhaust the velocity that it was 

thrown with.  If we then let the body fall for an infinitely-long time then it will have attained the 

free-fall velocity of c (there is certainly no higher one) at the conclusion, while the horizontal 

velocity would be 0.  Thus, the horizontal velocity varies in relativistic mechanics in that way.  

The path is also no longer a parabola accordingly, but a catenary that is more strongly curve 

towards the vertical. 

 

 10. – If we think of a rotating mass-point that describes a circular path then the centripetal 

force will continually be perpendicular to the motion, the resistance in the direction of motion will 

vanish here, the velocity will remain uniform and constant, and the circular motion will therefore 

be carried over to relativistic mechanics unchanged. (Tab. 2, IIa and b) 

 

 11. – Now, let a constant gravitational field act suddenly in the direction of the rotational axis 

at, say, time t = 0.  The rotating system will begin to fall.  In the Newtonian sense, it would describe 

a ballistic parabola on the circular cylinder that is constructed about the rotational axis, as long as 

one constructs perpendicular to the plane.  That is because, in fact, the angular velocity, multiplied 

by the radius, would represent the horizontal ballistic velocity for the cylinder that was constructed 

(2).  From what was said before, we now know that the ballistic velocity will be gradually reduced 

as a result of the resistance in the direction of motion that now enters in, and a catenary will enter 

in place of the parabola.  If we once more bend the plane into a cylinder then we will next see that 

 
 (1) However, that is the case for the aforementioned case of proper acceleration. 

 (2) A representation by winding it up on the plane! Of course, the cylinder is thought of as being composed of 

infinitely many layers. 
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in order to preserve the central motion on the previous circles, a continually-decreasing centripetal 

force is now required, since the rotational velocity will decrease as a result of falling.  Furthermore: 

 If a uniformly-rotating system is suddenly brought into a constant gravitational field then the 

rotation will slow down while it falls until ultimately it will come to a state of complete rest when 

the free-fall velocity has attained the speed of light after an infinitely-long time. (Tab. 2, I). 

 

 

§ 3. – Dynamics of worldlines of constant curvatures. 

 

 The foregoing arouses the desire to investigate the creation of those motions for a mass-point 

and a body, as much as is possible.  One will succeed in doing that with the assistance of a 

hypothesis in the following electromagnetic model of matter: 

 

 1. – We imagine an electric charge that is distributed in space with constant volume density , 

which corresponds to Thomson’s picture of the positive atomic nucleus.  Let  be the mass density 

of the charge, which is likewise assumed to be constant.  Let 0, 0 be the corresponding rest 

values.  Assume that the matter, or the electric charge that takes its place here, is at rest.  If we 

apply (and we must indeed do this for the time being) Maxwell’s equations to the interior of the 

matter then we will encounter the well-known difficulty that any theory of electromagnetic 

mechanics must face when one does not postulate, as Abraham did, the “rigidity” of electricity 

from the outset.  Namely, one asks the question: “What are the forces that hold our charge 

together?” 

 

 2. – With going into the nature of those forces, we make the assumption about the four-

dimensional stress tensor T (hk) of matter that: 

 

 
 

 Nordström (1) made that assumption as being the simplest Ansatz for the matter tensor in the 

case of an incoherent mass-current.  The following properties characterize the Nordström tensor: 

 The relative stresses: 

 

 

 

 

 

… 

 

 
 

 (1) G. Nordström, Phys. Zeit. 11 (1910), pp. 441.  

( ) ( ) ( ) ( )
( )

0 .
h k h k

hk dx dx dx dx
T

d d d d
 

   
= =

(3)
(33) (34)

(4)
,zz z z

dx
T T p

dx
− = − g v

(1)
(11) (14)

(4)
,xx x x

dx
T T p

dx
− = − g v

(2)
(12) (14)

(4)
,xy x y

dx
T T p

dx
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and likewise the relative energy current: 

 

 
 

vanish for it; i.e., however, since the relative stresses represent homogeneous linear functions of 

the elastic rest stresses (1): The rest stresses vanish. 

 If one assumes that the ordinary theory of elasticity is valid for the case of rest then that further 

says that: The rest deformations vanish. 

 The Nordström tensor then expresses the idea that nothing but “apparent” deformations of the 

type of Lorentz contractions and their corresponding stresses will appear in a moving body, which 

will vanish in a suitable reference system.  Clearly, the energy current is therefore convective.  If 

the rest stresses were non-zero then generally energy would flow into or out of a closed surface in 

a medium as a result of the fact that the resultant of the relative surface stresses are not normal to 

the velocity in general, so the work done by the relative stresses under notion would not vanish. 

 

 3. – Now, one can glimpse a formally relativistically-correct generalization of the Newtonian 

rigid body in the result that the rest deformations vanish, so the charge of the particle (as seen from 

a comoving system) is invariably linked with its normal position inside of the body.  Just as 

Newtonian mechanics considers a rigid body to be a mass-point, so is the Nordström Ansatz an 

extension of the dynamics of mass-points to the body (2). 

 

 4. – Of course, what always happens (always under the tentative assumption that Maxwell’s 

equations are valid inside of matter) is that the Maxwell stresses are neutralized, such as by elastic 

stresses that take over, which is similar to what Poincaré did by way of his well-known hydrostatic 

cohesion pressure for the Lorentz electron with a surface charge and lately also Nordström (3) by 

localizing the cohesion pressure on the surface, although what we had to worry about (4) in order 

to get complete vanishing of the relative stresses in the interior will not be discussed here since 

were are merely treating a model for the motions that were considered here (5).  Later on, we shall 

see that this model also has the distinguishing property that those motions can proceed without 

radiation (cf., § 5, paragraph 6). 

 

 
 (1) M. Laue, Das Relativitätsprinzip, 2nd ed., pp. 193. 

 (2) The Nordström tensor is realized in the completely-static system of von Laue (loc. cit., pp. 208, et seq.) as the 

mean value over the total volume.  In our analysis, however, that tensor must obviously be valid for every volume 

element. 

 (3) G. Nordström, Ann. Phys. (Leipzig) 42 (1913), pp. 540. 

 (4) Naturally, that vanishing is true only for the stationary state that is subject to the effect of constant external 

fields (cf., para. 5).  If that field should suddenly change then the stresses (and therefore the rest deformations) would 

have to appear again.  

 (5) The effort expended in exhibiting such elastic stresses (completely ignoring the fact that the Maxwell stresses 

are known to be inconceivable as elastic stresses in an isotropic medium) would hardly be worth it.  Obviously, a 

future alteration of Maxwell’s equations for the interior would first depend upon an explanation for the natural 

cohesion of electric charge. 

(1)
(41) (44)

(4)
, etc.s z

c dx
T T W

i dx

 
− = − 

 
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 5. – Assuming that, we would like to examine how the stated model behaves in a constant 

external electromagnetic field.  Let F (hk) be the six-vector of the field.  With Lorentz, we then 

write the ponderomotive force as: 

 

 
 

and accordingly, since the divergence of the Nordström tensor can be written: 

 

 
 

due to the continuity equation (viz., conservation of mass), it follows that the equations of motion 

for matter are: 

 
Integrating this once gives: 

 
in which the q are integration constants. 

 However, since F(hk) = − F(kh), that is precisely the form of the differential equations for an 

infinitesimal orthogonal transformation, which is what we started from [§ 1, equation (1)]. 

 

 6. – Our model gives us, in fact, the dynamical realization of the motion along worldlines of 

constant curvatures.  The results of integration in § 1 can be adapted immediately when we set: 

 

 
Correspondingly, a classification by way of the elementary divisors of the simplest type gives the 

motions as being generated by the simplest types of constant electromagnetic fields.  In particular, 

the cases in § 1 are: 

 

 I. [1111]  | H | = Hz , | E | = Ez , electric and magnetic fields parallel, 

 

 II. [11 (11)] | H | = Hz , | E | = 0, only a magnetic field, 

 

 III. [(11) 11] | H | = 0, | E | = Ez , only an electric field, 

 

 IV. [(31)]  | H | = Hy , | E | = Ex , electric and magnetic field perpendicular and  

  of equal magnitude, 
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 V. [(1111)] | H | = | E | = 0,  no field . 

 

The cases: 

| H | = Hy > | E | = Ex  (| H | = Hy > | E | = Ex , resp.) 

 

can obviously be obtained from case II (III, resp.) by a Lorentz transformation when one switches 

the z-direction with the y-direction (x-direction, resp.) in it beforehand. [Invariance of H2 – E2 (EH, 

resp.)] 

 The results are summarized in Tab. 2, col. 12. 

 

 7. – One might perhaps ask whether the results that were found could be applied to the 

deflection experiments with cathode rays, since the behavior of the external field in them would 

certainly suggest that.  Before making that application, one must be warned that here the motion 

took place in the field for all eternity, while there, that is certainly the case only for a small piece 

of it.  Qualitatively, one can generally say that the essence of such an application would be in the 

fact that the Galilei parabola would have to be replaced with the catenary, which, of course, does 

not even have to be noticeable in practice. 

 Schott (1) considered the motions of the Lorentz electron from another non-relativistic 

viewpoint as an electric mass-point in a constant electromagnetic field and found the same results. 

 

 

§ 4. – The family of worldlines of constant curvatures in the representation  

by the moving 4-frame of a line. 

 

 If we take a second look at the foregoing then we will see that in § 1 the worldlines of constant 

curvatures were based upon the orthogonal transformation of S4 as the associated family of 

trajectories, their kinematically-distinguished three and four-dimensional role was discussed in § 

2, and finally in § 3, they were derived from a hypothetical electromagnetic model. 

 

 1. – We shall now move on to examine the physically-distinguished role of these accelerated 

motions in regard to the generalization of the Lorentz transformation.  Since the transition from 

one point of a curve to the next happens by means of an orthogonal transformation under which 

the basic equations remain covariant, we suspect that there must be a distinguished “comoving” 

system in which they remain invariant.  There is, in fact, such a system; it is the moving 4-frame 

of the worldline. 

 

 2. – In differential geometry, it is defined as follows: 

 

 One axis is the respective tangent.  Let its direction cosines be: 

 

 
 (1) G. A. Schott, Electromagnetic radiation, Cambridge, 1912, pp. 63, et seq. and Appendix G, pp. 295, et seq.  
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(which is written as the unit vector c1). 

 The principal normal is perpendicular to the tangent in the osculating plane.  Let its direction 

cosines be denoted by: 

 
 

 The binormal is perpendicular to the osculating plane in the osculating space.  Let its direction 

cosines be denoted by: 

 
 

 Finally, the trinormal is perpendicular to the osculating space: 

 

 
The axis frame: 

[c1, c2, c3, c4] 

 

is called the moving 4-frame.  Its position varies from place to place along the curve.  When one 

compares the position of a 4-frame at a certain point on the curve with the one at the next point, 

one will find that the consecutive positions emerge from the foregoing ones by an infinitesimal 

orthogonal transformation (Frenet formulas). (1) 

 

 3. – Now, what is the nature of that infinitesimal orthogonal transformation for our curves of 

constant curvatures?  Answer: It is nothing but the infinitesimal transformation itself that has the 

curves for its trajectories. 

 In order to show that, we imagine any radius vector that remains fixed in the moving 4-frame.  

Let x be an arbitrary point of an arbitrary curve of the family, let c1, c2, c3, c4 be its 4-frame at the 

position that is characterized by giving the parameter u, so when we define: 

 

(3)  

 

we will have that: 

X – x 

 

is such a radius vector, as long as the  are free of u, so they remain constant for the point X during 

all of its “intermediate motion.”  If we now let the point x range along its recorded trajectory then 

the 4-frame will “move with it” and also the radius vector that points from x to X and is fixed in it.  

X then describes a curve of constant curvatures (2), and it must obviously prove to be identical to 

a trajectory of the family if both transformations are to be identical.  Indeed, there is only one curve 

of constant curvatures through the initial position of X that continually remains equidistant from 

 
 (1) Appendix 1.  

 (2) As one shows with the help of the Frenet formulas.  

(1) (2) (3) (4)

1 1 1 1, , ,c c c c

(1) (2) (3) (4)

2 2 2 2 2, , , (unit vector : ).c c c c c

(1) (2) (3) (4)

3 3 3 3 3, , , (unit vector : ).c c c c c

(1) (2) (3) (4)

4 4 4 4 4, , , (unit vector : ).c c c c c

( ) ( ) (1) ( ) (2) ( ) (3) ( ) (4) ( )

1 2 3 4 , 1,2,3,4,h h h h h hX x c c c c h= + + + + =
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it, which is just the trajectory that belongs to the transformation that goes through that initial 

position of X.  However, if one constructs: 

 

(X(1) – x(1))2 + (X(2) – x(2))2 + (X(3) – x(3))2 + (X(1) – x(1))2 = ((1))2 + ((2))2 + ((3))2 + ((4))2 

 

then one will, in fact, find equidistance. 

 

 4. – However, we have likewise found a distinguished representation for the total family that 

belongs to the transformation, as it is represented in the moving 4-frame of one curve of the family: 

 

X (u) = x (u) + (1) c1 (u) + (2) c2 (u) + (3) c3 (u) + (4) c4 (u) . 

 

With constant , the total family of trajectories represents an orthogonal transformation that 

belongs to the curve x (u) . 

 

 5. – In that way, 3 points of S4 are linked to each other by the common parameter value u.  

That association (§ 1), once it is chosen arbitrarily, will not be perturbed by the transformation.  

Associated points will each remain characterized by having equal u. 

 From the discussions in § 1, however, a different arbitrary association is given.  In particular, 

we emphasize the association: 

 

X (u) = x (u) + (1) c1 (u) + (2) c2 (u) + (3) c3 (u) + (4) c4 (u) , 

 

with  that are clearly constant at any rate when all of the points that are associated with x lie in 

the normal space [c2 , c3 , c4] .  [That is nothing but Born’s rigid body of the second kind (§ 5).] 

From the discussions in § 1, that is once more entirely the same family of curves as before, since 

a worldline of constant curvatures certainly has the same “intrinsic form” everywhere. 

 

 6. – Conversely, might ask whether, in fact, all of the families of curves that were exhibited in 

§ 1 admit that representation.  As an example, we choose (IIb), Tab. 1: 

 

x(1) = a cos  (u – u0),  x(2) = a sin  (u – u0),  x(3) = x0
(3), x(4) = i u . 

 

One extracts the direction cosines of the 4-frame from cols. 13-16: 

 

 
 

 

 

(1) (2) (3) (4)0 0
1 1 1 1

2 2 2 2 2 2

sin ( ) sin ( ) 1
, , 0, ,

1 1 1

a u u a u u
c c c c

i a i a a

   

  

− −
= − = = =

− − −

(1) (2) (3) (4)

2 0 2 0 2 2cos ( ), sin ( ), 0, 0,c u u c u u c c = + − = + − = =
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 If (1), (2), (3), (4) mean four completely arbitrary constants (1) then one can determine the 

four constants A, X0
(3), U0 , U – u from: 

 

 

 

 

 

 

 

 

 

and obtain: 

 

X(1) = A cos  (U – U0), X(2) = A sin  (U – U0), X(3) = X0
(3), X(4) = i U , 

 

which is a new point that obviously describes the trajectory: 

 

X (A, X0
(3), U0 , U) 

 

of the family (IIb) when u varies.  The  will then remain constant, since U – u (in the equations 

above) is certainly treated as a constant (§ 1). 

  

 

§ 5. – The moving 4-frame as a “comoving” system in the Lorentzian sense. 

 

 We now focus on a certain worldline x (u) and let an observer move along it; e.g. (IIb) (Tab. 

1): It might rotate with constant angular velocity around the z-axis.  We associate it with each 

moving 4-frame at the instantaneous position x (u) as a distinguished reference system. 

 

 1. – What does that mean physically? Clearly, the observer must initially be imagined to be at 

rest as long as it only observes itself.  It is then a comoving system in which the proper time  [or 

the imaginary arc-length i c t of the world line x (u)] is definitive for the determination of time.  

Now, such an observer cannot sit at a material point, but rather, it must occupy an entire reference 

body.  What body is that? It is a body that participates in the motion of the observer (in a certain 

sense), namely, a Born rigid body of the second kind.  In fact, the reference body is given uniquely 

by an axis-frame that is fixed in it, and by our assumption, the axis-system of the observer was the 

 
 (1) Naturally, (1) must be pure imaginary and (2), (3), (4) pure real. 
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moving 4-frame, so its three spatial axes are c2, c3, c4 .  However, they are fixed directions in the 

Born rigid body of the second kind (1), since its worldlines (from 4) are given by: 

 

(4)    X = x + (2) c2 + (3) c3 + (4) c4  (the  = const.), 

 

So in particular, (2) = 1, (3) = (4) = 0 or (3) = 1, (2) = (4) = 0 or (4) = 1, (2) = (3) = 0 represent 

fixed directions in it. 

 

 2. – Except for x, the points: 

X = x + (2) c2 + (3) c3 + (4) c4 

 

are obviously “simultaneous” with the observer at x.  He measures the spatial “coordinates” (2), 

(3), (4), where the index 4 does not characterize the temporal coordinate this time.  Now, if the 

observer moves then the reference body will move with it, so (2), (3), (4) will remain constant, 

by definition: The reference body is always at rest when seen in the proper system of the observer. 

 

 3. – Now, what is going on with the “non-simultaneous” positions of the reference body?  

Assuming that the observer can perceive them (and he will, in fact, be able to make observations 

of only non-simultaneous processes with the help of light, strictly speaking, due to the time delay), 

if he is also to observe a state of rest, he must likewise demand the constancy of the proper 

coordinates.  As the Ansatz (3) shows for non-simultaneous points of the reference body, namely: 

 

X = x + (1) c1 + (2) c2 + (3) c3 + (4) c4 , 

 

that is, in fact, fulfilled.  Naturally, in so doing, we must endow the observer with a time coordinate, 

which is obviously: 

i c  , 

such that we have to set: 

(1) = i c (T – t) , 

 

where T is the time of the observed point as evaluated by the proper time of the observer.  

Obviously one has: 

T =  

 

for “simultaneous” points, such that the Ansatz (4) is justified. 

 

 4. – The reference system that was introduced is then, in fact, a comoving one.  Now, in what 

precisely are the distinguished properties of that system based for the worldlines of constant 

curvatures? Indeed, one can introduce the moving 4-frame as a proper system for an arbitrary 

motion x (u) and define a reference body of the kind in (4).  However, such a representation would 

 
 (1) G. Herglotz, Ann. Phys. (Leipzig) 31 (1910), in particular, pp. 402, et seq. F. Kottler, loc. cit., § 8. 
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not be reciprocal initially; i.e., if one were to consider things from X to x and use the moving 4-

frame of X as a basis then that would make: 

 

x (u) = X (u) +  (1) C1 (u) +  (2) C2 (u) +  (3) C3 (u) +  (4) C4 (u) , 

 

where the  would no longer be constant, and the x would be distinguished for our reference body.  

The  are found to be constant only for worldlines of constant curvatures.  However, one would 

naturally have to demand that equivalence of all points of the reference body in order to extend the 

Lorentz transformation, since the observer does not really need to be linked with a definite point 

of the body (1). 

 

 5. – Secondly, however – and this is essential – the infinitesimal orthogonal transformation 

would no longer be constant from one place to another for the observer.  As we know, that is only 

the case for worldlines of constant curvatures. 

 The physical significance of that situation for our worldlines is illuminated by the following: 

Assume that electromagnetic forces act between the points of our body.  How do they vary during 

the motion? Answer: Not at all!  That is because when one refers them to a moving 4-frame in the 

body, they are represented in terms of the proper coordinates  above for the positions of the points 

of the body.  However, they remain constant as long as the points of the body participate in the 

motion unchanged.  Therefore, the electromagnetic forces between the points also remain constant.  

For that to be true, it is generally necessary that these forces should be in equilibrium; otherwise, 

the motion would indeed be perturbed, so the  could no longer be constant.  Once more, in order 

for that to be true, in general, forces of a different nature than purely electromagnetic ones would 

be required.  However, as a result of the generally-valid picture, they must transform precisely like 

the electromagnetic one.  We express what we have found as follows: 

 

 When any sort of force equilibrium prevails in our reference body, it will remain preserved 

during the entire duration of the motion. 

 

 6. – In particular, it follows from that for our hypothetical electromagnetic model (§ 3) that the 

motion will proceed without radiation, since the reciprocal actions of the charged particles are zero 

once, and therefore always.  As is known, an open problem of the theory of magnetization electrons 

is why no damping due to radiation has been noticed throughout the centuries.  However, from the 

hypothesis above, the uniform rotation that is ascribed to them belongs to the distinguished 

radiation-free accelerated motions! (2). 

 

 7. – In conclusion, a thorough proof of the constancy of the electromagnetic field in the moving 

4-frame shall still be presented, even though from what was said, it should be superfluous.  We 

shall base it upon the fact that any field can be thought of as being decomposed into the elementary 

 
 (1) For proper systems in general, cf., Appendix 3.  

 (2) On that, cf., the “stationary states” of the electrons of the atomic model of N. Bohr, Phil. Mag. 26 (1913), esp., 

pp. 4. 
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fields of point-like charges.  However, we can calculate the elementary field – say, at X due to x – 

with the help of the Schwarzschild formulas.  We then imagine that we are given: 

 

X = x + (1) c1 + (2) c2 + (3) c3 + (4) c4 . 

 

The points are obviously no longer simultaneous then, since they must act upon each other.  

Therefore, let: 

 

(X(1) – x(1))2 + (X(2) – x(2))2 + (X(3) – x(3))2 + (X(4) – x(4))2 = ((1))2 + ((2))2 + ((3))2 + ((4))2 = 0 . 

 

 If one would like to look for the position X that X has “simultaneously” with x then one would 

find that: 

X = x + (2) c2 + (3) c3 + (4) c4 , 

 

in which the (2), (3), (4) are different from the (2), (3), (4).  We are not accustomed to such 

behavior for the usual Lorentzian reference system, since for it the three spatial coordinates of a 

point at rest will remain the same in each of its positions (the simultaneous ones, as well as the 

effective ones), so only the time coordinate will vary.  However, we cannot just expect a complete 

analogy with the Lorentz systems.  Clearly, that will be hidden to the observer at x, since he 

certainly can see only the effective (1) position 𝑋̅ in reality, and naturally that position will keep 

the same spatial coordinates Γ̅(2), Γ̅(3), Γ̅(4) and the same time coordinate difference  Γ̅(1). 

 The Schwarzschild formulas read (2): 

 
in which: 

 de is the charge at x, 

 

 R = − X + x is the radius vector from the reference point to the light point, 

 

 

 

  are scalar products, 

 

 

 

 

 Now, one has (3): 

 
 (1) I.e., the position that transmits the field to him.  

 (2) F. Kottler, loc. cit., § 4. However, V = 
𝑑𝑥

𝑑𝜏
⋅

1

𝑖𝑐
 = 

𝑑𝑥

𝑑𝑠
 there. 

 (3) Appendix 1.  
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for the arc-length s = i c t, where R1 is the radius of first curvature (referred to the imaginary arc-

length s).  Therefore, since: 

R = − (1) c1 − (2) c2 − (3) c3 − (4) c4 , 

the field will be: 

 

 

 

 

 

 

so: 

c1, c2, c3, c4 

are, in fact, constant in the reference system. 

 If one calculates the axes of the reference system at X : 

 

C1, C2, C3, C4 

 

with the help of the Frenet formulas then one will find that, as predicted, they are expressed 

linearly with constant coefficients in terms of the c1, c2, c3, c4 .  Therefore, the field that originates 

at x, and likewise from each of the other points, is also constant in the proper system of X, with 

which, the proof is complete. 

 

 

§ 6. – Motions relative to a reference body. 

Generalization of Einstein’s law of addition of velocities. 

 

 1. – From the foregoing, the system: 

c1, c2, c3, c4 

 

then represents the generalization of the comoving Lorentzian system to our accelerated motions.  

If we introduce into: 

X = x + (1) c1 + (2) c2 + (3) c3 + (4) c4 , 

e.g. (1): 

(3) = X, (4) = Y, (2) = Z, (3) = i c (T − ) , 

 

then the generalized Lorentz transformation will take the form: 

 
 (1) In that way, either (1) = 0 (“simultaneous” position) or: 

 

2 2

2
1 2 2 2

1

1 1
,
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X – x = i c (T − ) c1 + Z c2 + X c3 + Y c4 . 

 

Obviously, in the “coordinates” X, Y, Z, T, the equilibrium phenomena are represented in the 

moving reference body by constant quantities.  To the comoving observer, as long as his immediate 

neighborhood participates in the motion, it will seem to be at rest in that coordinate system.  Only 

to the extent that one adopts that viewpoint is there a relativity of acceleration.  By contrast, for 

processes that are not “rigidly” coupled to the motion that is mapped out, there is just as little of a 

relativity of acceleration as there is in classical mechanics, where it is known that in such a case 

“fictitious” accelerations (Coriolis, Foucault pendulum, etc.) will appear. 

 In order to shed more light upon that fact, we would like to treat two of our five types of 

accelerated motions in more detail, namely, the limiting case of uniform translation (V) and the 

case of uniform rotation (II.b).  In the former, we will see how the well-known notions are 

classified in the representation that is given here.  In the latter, we will see how the generalized 

Lorentz transformation that was cited here coincides with closely-related representations and 

experiments (Sagnac effect). 

 

 2. – Uniform rectilinear translation (Tab. 1, V).  The tangent continually coincides with the 

straight worldline.  Naturally, the three normals are arbitrary, so we choose the “principal normal” 

(which is naturally an arbitrary terminology here) to be the normal to the plane of the tangent and 

time axis. (This has the consequence that the z-direction of translation will likewise be represented 

by the z-axis in the primed system.) One gets, perhaps: 

 

 c3
(1) = 1, c3

(2) = 0, c3
(3) = 0, c3

(4) = 0, 

 

 c4
(1) = 0, c4

(2) = 1, c4
(3) = 0, c4

(4) = 0, 

 

 c2
(1) = 0, c2

(2) = 0,  

 

 

 c1
(1) = 0, c1

(2) = 0,  

 

Therefore, when one takes: 

 

(3) = X, (4) = Y, (2) = Z, (1) = i c (T − ), 

one will have: 

 

 

 

 

 

 

 

 

(3) (4)

2 2
2 2 2 2

1
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= =
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v

v v

(3) (4)

1 1
2 2 2 2

1
, .

1 / 1 /

zc c
i c c c

= =
− −

v

v v



Kottler – The principle of relativity and accelerated motion. 25 

 

 

 

 

 

(5)  

 

 

 

 

 

 

 If one considers (Tab. 2): 

 

 x = x0 , y = y0 , z = z0 + vz t,  

 

then when one sets x0 = y0 = z0 = 0, as one is free to do, one will get the usual form of the Lorentz 

formulas: 

 X = X, Y = Y,  

 

The system: 

X, Y, Z, T 

 

is then, in fact, identical to Lorentz’s comoving system in this case. 

 Upon differentiating (5), we will get Einstein’s law of the addition of velocities: 

 

 dX – dx = dX, 

 

 dY – dy = dY, 

 

 dZ – dz = 

 

  

 dT – dt = 

 

Obviously, one has: 

dT = dt 

 

(but not also dT = d, however!), since T and t are universal times.  Thus, as before, we further 

have: 

 dX = dX, dY = dY, dZ =  dt = dT =  

  

which implies the known formulas: 

2 21 /
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 3. – Uniform rotation (Tab. 1, II.b). Let the worldline of the observer be: 

 

x(1) = a cos  t, x(2) = a sin  t,  x(3) = x0
(3), x(3) = i c t . 

 

Tab. 1, cols. 13-16 gives the generalized proper system as: 

 

 

  

  

 

 c2
(1) = + cos  t, c2

(2) = + sin  t, c2
(3) = 0, c2

(3) = 0, 

 

  
 

 c0
(1) = 0 , c4

(2) = 0, c4
(3) = 1, c4

(3) = 0 . 

 

 For the sake of establishing the nature of this reference system (1), we introduce the following 

reference system at the position x (t) along his circular periphery: One axis points from away the 

center of the circular path (viz., the R-axis), a second one points along the tangent to the path (viz., 

the -axis), the third is parallel to the axis of rotation (viz., the Z1-axis), and we once more let the 

X(4) = i c t-axis function as the time axis.  Let the origin be the position of the observer himself (B, 

Fig. 1). 

 
Figure 1. 

 
 (1) That happens more concisely by drawing the 3-frame c1, c2, c3 along the worldline (i.e., helix).  
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 One infers from the figure that for an arbitrary point P with the coordinates X, Y, Z, T that: 

 

 R = + X cos  t + Y sin  t – a , 

 

  = − X sin  t + Y cos  t , 

 

 Z = z0 + Z1 , 

 

 T = T . 

 

The observer B has the instantaneous velocity: 

a  

 

in the direction of the -axis.  That suggests that one can make it vanish by a Lorentz 

transformation, so instead of the system R, , Z, T, one introduces the system R, , Z, T : 

 

 

 

 

(6)  

 

 

 

 

 

 That is, in fact, the same thing that the moving 4-frame yields, because if one can write (1) = 

i c (T – ), (2) = R, (3) = , (4) = Z then that will give: 
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 If one forms R (, resp.) from that as one did above then that will give: 

 

 R = R,  = Z – z0 = Z1 = Z, T – t =  

 

 

and those are, in fact, the inverse formulas for equations (6). 

 We further derive the addition law for velocities from (6.a): 

 

  
 

  
 

  
 

  
 dZ = dZ, 

 

  
 

from which, when one further considers (6.a) and the fact that: 
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 dY –  dt (X – x) =  

 

 

 dZ = dZ , 

 

  

 dT  =  

 

so 

  

  
   

 

 

 

 

If one introduces the vectors in X, Y, Z-space: 

 

 R = (X, Y, Z), r = (x, y, z), 

 

 u = (0, 0, ), t1 = (− sin  t, cos  t, 0), 

 

 n1 = (+ cos  t, + sin  t, 0), z1 = (0, 0, 1) 

 

then when one considers the fact that [u r] = a  t1 , one can write, with the usual vector notation: 
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(7)  

 

 

 

 

 

 

 

 If one imagines that c = , for the moment, then what will result is that: 

 

 
 

which is the addition law for velocity that is known from classical mechanics, and in which d R 

/ dT means the differential quotient that one evaluates in the comoving system, so it is the relative 

velocity of the point X, Y, Z relative to the rotating system (1). (The displacement of the origin of 

the system from the center to the periphery obviously has no influence on the value of d R / dT.) 

 

 If one restricts oneself to first-order terms in a  / c then the result will again be the classical 

law of addition, as one would expect. 

 

 We emphasize the further consequences: 

 

 When seen from the rotating system , R, Z, a point at rest in the rest system X, Y, Z will 

describe a circular path in the opposite sense and with (absolute) angular velocity  that is equal 

to that of the observer B, unlike in classical mechanics; rather, that would be the case only when 

one restricted oneself to first-order quantities, 

 

 4. – The invariance of the speed of light can be show for the point B of the rotating system.  

That no longer needs to be true for the other points of the rotating system when they are considered 

by B. 

 In fact, instead of (7), one can write: 

 

 
 (1) Abraham-Föppl, Theorie der Elektrizität, Teubner, Leipzig, 1904, § 9. 
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 One recognizes the form of the Einstein addition law for a rectilinear translation in the 

direction t1 with a magnitude of a  on the right-hand side of that.  However, the left-hand side is 

not, as in the Einstein law, the absolute velocity as seen from the rest system, but that absolute 

velocity, minus the velocity: 

[u, R – r] 

 

by which the motion of a point that is fixed in the moving system differs from rectilinear 

translation.  One then distinguishes them by replacing the velocity: 

 

 
 

that one sees in the rest system (which is composed of 1. a translation a  in the direction t1, 2. 

relative motion in the primed system, 3. the difference between the rotation and the translation: [u, 

R – r]) with: 

 
 

then one can obviously adapt the formulas that are true for rectilinear translation to that case, and 

with that, one will obtain the formula above. 

 The invariance of the speed of light is true for translation.  That is also confirmed in the 

formulas above (their inverses, resp.) Therefore, that invariance can no longer be true for rotations, 

except when it does not differ appreciably from translation; that is confirmed by the formulas 

above when one sets R = r. 

 

 The observer will also find the value c for the speed of light in the rotating system as long as 

he restricts his experiment to the immediate vicinity. 

 

 By contrast, for the processes at a greater distance, the speed of light will be influenced by the 

rotation of the reference body, except when the line of sight of the observer points parallel to the 

axis of rotation.  The path of the light rays will be curved when seen from the rotating system. 

 The fact that the transformation formulas differ from those of the ordinary relativity principle 

of classical mechanics only by a  / c directly implies that the effect that Sagnac (1) observed, 

 
 (1) G. Sagnac, C. R. Acad. Sci. Paris 27/X (1913) and 22/XII (1913); H. Witte, Verh. d. Deutsch. Phys. Ges. 

(1914), no. 3. 
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namely, that two light rays in a rotating cylinder will interfere at a point B when one of them has 

traversed a polygonal circuit that starts from B with the use of several reflections from the walls 

of the cylinder in one sense, while the other had traversed it in the opposite sense, will have first-

order in a  / c, so it cannot be compensated for by the transformations, and it is thus independent 

of the distinction that exists between the old relativity principle and the new one. 

 It is obvious, moreover, that the observer on the accelerated reference body cannot conceal his 

accelerated motion as long as he experiments with processes that are moving relative to the 

reference body.  It is probably pointless to mention that formulas that differ from the ones in the 

older mechanics by second-order terms cannot vary essentially from the ones that are true there as 

long as no second-order effects are found. 

 

____________ 

 

 

Appendix 

 

1. – From the differential geometry of worldlines (1). 

 

Line through two consecutive points of a curve:  tangent  (unit vector c1) 

 

Plane through three consecutive curve points:  osculating plane 

 

Space through four consecutive curve points:  osculating space 

 

Normal to the tangent in the osculating plane:  principal normal (c2) 

 

Normal to the osculating plane in the osculating space: binormal  (c3) 

 

Normal to the osculating space:    trinormal  (c4) 

 

Arc-length of the curve:  distance between two consecutive points (ds) 

 

Angle between two consecutive tangents:  first contingency angle (d1) 

 

Angle between two consecutive osculating planes: second contingency angle (d2) 

 

Angle between two consecutive osculating spaces: third contingency angle (d3) 

 

First curvature:    

 

 

 
 (1) Cf., G. Brunel, Math. Ann. 19 and G. Landsberg, Crelle’s Journ. 114 and Kottler, loc. cit., §§ 7-8. 

1

1

1 d

R ds


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Second curvature:    

 

 

Third curvature:    

 

 

 [All three are continually taken to be positive.  In three-dimensional differential geometry, one 

cares to take the first curvature (which is called curvature there, for short) to always be positive, 

but the second curvature (which is called torsion there) is taken to be positive or negative according 

to whether the screw sense of the curve is negative or positive, resp.  With that, the moving 3-

frame will always have the same screw sense as the coordinate system then, which is no longer the 

case for our moving 4-frame. Cf., Landsberg, loc. cit. (1)] 

 

 Moving 4-frame:  c1 , c2 , c3 , c4 . 

 

 Consecutive 4-frame: c1 + dc1 , c2 + dc2 , c3 + dc3 , c4 + dc4 . 

 

 The transition from the former to the latter is mediated by an infinitesimal orthogonal 

transformation (except for the translation of the origin by ds in the direction of the tangent) that is 

given by the Frenet formulas: 

 

 
  

 In order to bring these into the usual form [(1), § 1], one merely imagines that a radius vector 

has been decomposed (by scalar multiplication) into one part along the axes c1 , c2 , c3 , c4 and one 

along the axes c1 + dc1 , c2 + dc2 , c3 + dc3 , c4 + dc4 , where both systems of axes are placed at the 

same origin. 

 

 Meaning of the Frenet formulas: 

 

 A rotation in the plane [c1 c2] from c1 to c2 through an angle of  

 
 

     [c2 c3]  c2  c3
     

 
 (1) Naturally, the principal normal of a worldline points to the convex side. (Curvature hyperbola, instead of 

curvature circle in the real representation)  
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     [c3 c4]  c3  c4
    

 

 Invariants of the transformation {cf., E (du)2 [E (du)2, resp.] (§ 1)}: 

 

 

 
 Both of them must remain unchanged when one goes to other coordinate systems than c1 , c2 , 

c3 , c4 . 

 

 Worldlines of constant curvatures: 

 

 Due to the constancy of R1, R2, R3 along the curve, the infinitesimal orthogonal transformation 

always the same when referred to the moving 4-frame. 

 

 Family of such worldlines that belongs to an orthogonal transformation: These are 

characterized by the identity of the two invariants: 

 

 
 

from curve to curve.  In regard to that, one notes that the parameter s is not universal, unlike the 

parameter u that was used in § 1.  However, if x (s) [X (S), resp.] are two worldlines, referred to 

their arc-lengths, and any association of s with S is chosen then it is easy to show that: 

 

dS = A ds, 

 

where A is constant along the entire curve X (S).  If s used as a universal parameter in that sense 

then it would mean the arc-length of either a single curve of the family or none of them! 

 

 Proper time:  On formal grounds, the arc-length of the worldline will always be taken to be 

equal to the proper time  times i c here: 

s = i c   

 

(Otherwise, one often chooses  = c t to be the real arc-length of the worldline.) 

  

 Reality relationships in this representation: 
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 As the cosines of a timelike direction: 

 

c1
(1), c1

(2), c1
(3) are pure imaginary, c1

(4) is real. 

 

 As the cosines of spatial directions: 

 

 
 Furthermore: 

 

As a rotation in a plane, the timelike directions include: 

 

 
 

As rotations in the ordinary sense in merely spacelike planes: 

 

 
 

Calculating the curvatures and the moving 4-frame. 

 

 Let the parameter representation of the worldline be given by: 

 

x(1) = x(1) (t), x(2) = x(2) (t), x(3) = x(3) (t), x(4) = x(4) (t) . 

 

 One forms the first four differential quotients: 

 

 
and with them, the matrix: 

 

(1) (2) (3) (4)

2 2 2 2
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 Denote its successive principal subdeterminants as follows: 

 

 
 

and finally, denote the subdeterminants of the last rows of each of these principal subdeterminants 

as follows: 

 

  
 

 One then has: 

  

  

  
and 
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2. – The connection between Minkowski’s worldlines and Hamilton’s velocity hodographs. 

 

 Let t be time, so x(4) = i c t, and the matrix will become: 

 

  
which will make: 

  
 

  
 

  
 

If one goes to the limit c =  then one will note that the following limiting values exist: 
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However, if one considers the curve in S3 (Hamilton’s velocity hodograph): 

 

vx = vx (t) , vy = vy (t) , vz = vz (t) , 

 

and constructs the matrix D from the first three differential quotients: 

 

 
 

which is definitive here for the calculation of the curvatures 1 / R1 (1 / R2 , resp) and the moving 

3-frame, then one will find that if D, D, D are once more the three principal subdeterminants 

of the matrix D then obviously: 

  

  

  
 

Naturally, one will find the same connection when one has v = 0 (so in the proper system; however, 

one must then substitute the first, second, third proper acceleration for 𝔳̇, 𝔳̈, 𝔳⃛, resp.) or when v is 
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small compared to the speed of light, such that v / c can be neglected without one needing to appeal 

to Newtonian mechanics (i.e., c = ) in those two cases. 

 In particular, if all three of 1 / R1, 1 / R2, 1 / R3 are constant then  𝔳̇, 1 / R1, 1 / R2 will be 

constant.  The motion then proceeds with constant acceleration, which will make the Hamiltonian 

hodograph a common helix (corresponding to our type I and meaning free fall and uniform rotation 

around the line of falling) or a circle (II: uniform rotation) or a line (III: free fall) or a point (V: 

uniform translation).  An arbitrary uniform translation can enter into all of those.  Since R1 and R2 

have unequal order in c, IV has no Newtonian analogue. 

 

3. Proper systems. 

 

 A proper system for an arbitrarily-moving material point is obviously one whose time axis 

coincides with the instantaneous tangent to the worldline of a point, regardless of how the spatial 

axes are oriented.  An observer that moves with the point has every right as a naïve realist to 

believe that he is at rest, as long as nothing to the contrary take place. 

 However, such a reference system has no physical reality.  Namely, from the standpoint of 

physical reality, one must replace the system of spatial axes with a reference body with respect to 

which the first three spatial axes can be defined.  Now, if the material point above is to be replaced 

with a material body then if one is to be able to speak of a “proper system,” here as well, in the 

sense that an observer that is found on the reference body can believe that he is at rest, then it 

would be necessary for the body to be represented as being “at rest” with respect to that proper 

system; i.e., that the proper coordinates of each point must be constant, regardless of where the 

observer stands on the body.  However, that is nothing but the Born rigid body, because one will 

have that: Any two of its worldlines can be related to each other in such a way that two 

corresponding points will remain connected by a constant segment of a line that meets each of the 

two curves normally (viz., equidistance).  If one then introduces any system at one of those points 

whose time axis coincides with the tangent there then the “simultaneous” position of the second 

moving point will obviously be given by the aforementioned relationship, and the distance that is 

thus determined will then remain constant during the entire motion.  For any position of the first 

point, if one then chooses not only the second point, but also yet a third point on a third worldline 

and a fourth point that lies on a worldline that is “simultaneous with the first one” then, 

corresponding to the demand above, one will have a proper system with three spatial axes – 

namely, the three directions from the first point to the other three – that obviously can be made 

orthogonal by a suitable choice of points and is fixed in the reference body. 

 That alone is what we call a proper system, insofar as the reference body in whose frame it 

appears rests in it.  Herglotz (1) has shown that it follows from the definition of equidistance that 

the worldlines of the Born body must be “parallel curves” (Scheffers’s terminology) to any of 

them (first kind) or trajectories of a “motion” of S4 (second kind). 

 As far as the Born body of the first kind is concerned, its proper system can be easily given 

(2), in which it will be represented by constant proper coordinates.  Here, one might only say that 

 
 (1) G. Herglotz, loc. cit.  

 (2) F. Kottler, loc. cit., § 7. 
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one finds the three spatial axes when one demands that they remain rigidly linked with the tangent 

and also that they are not allowed to rotate around it.  If one then refers them to the moving 4-

frame – i.e., one sets their direction cosines, which might be denoted by b2
(h), b3

(h), b4
(h), (h = 1, 2, 

3, 4), resp., equal to: 

 

b2 = 2
(2) c2 + 2

(3) c3 + 2
(4) c4 (and analogously for b3 and b4), 

 

then naturally the  cannot be constant, since, as we saw, the c2, c3, c4 perform the rotations: 

 

d2 (d3 , resp.) 

 

about the tangent c1 .  Those rotations must then be compensated by a suitable change in the , 

under which the  must experience the opposite orthogonal transformation (1) to the axes c2, c3, 

c4. 

 However, we still cannot admit the Born body of the first kind as a reference body for an actual 

proper system either when the observer does not notice his own motion, as long as he does not 

direct his attention to external processes (Foucault pendulum, etc.).  That is because here as well 

physical reality does not permit us to focus upon the simultaneous positions of the world, like 

Newton and Galilei.    Indeed, we see with the help of light, and everything that we see will lag 

behind our point in time by a latency time when we do not set the speed of light equal to infinity, 

unlike Newton and Galilei.  However, when an observer on the Born body of the first kind 

considers his non-simultaneous neighborhood, obviously his proper coordinates will be arbitrarily 

variable, and he must perceive his motion from that. 

 It is only for the Born body of the second kind that the proper coordinates of non-simultaneous 

positions are also constant, as we indeed infer from the representation in § 4: 

 

X = x + (1) c1 + (2) c2 + (3) c3 + (4) c4 . 

 

Therefore, we can say exactly that when we also consider the latency time for the immediate 

neighborhood, there will be only a few accelerated motions for which an observer that does not 

have access to physical experiments can believe that he is at rest. 

 For those accelerated motions, we have further found that once equilibrium comes about during 

the motion, it must remain preserved for all eternity, which in fact follows from the fact that the 

proper coordinates of the points of the body are constant. 

 Of course, such a “universe,” as it presents itself to the reference body, exhibits abnormal 

phenomena for non-equilibrium processes, such as apparent acceleration, changes in the speed of 

light, etc., when compared to the usual universe. 

 

 
 (1) Which is naturally the contragredient reciprocal.  
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 4. – In order to show the latter, we would like to present the arc-length of the “universe” as it 

presents itself to an observer that exhibits a Born hyperbolic falling motion.  We write (1): 

 

X = x + i c (T – ) c1 −  c2 + X c3 + Y c4 

 

and employ the Frenet formulas, which read: 

 

 
here.  That gives: 

 , 

 

  , 

 

  + dX  c3 , 

 

  + dY  c4 . 

Naturally, one has: 

dx = ds  c1  

in this, and we would now like to set: 

T =  , 

 

which clearly includes an association with the aid of which we can dictate the time sequence of 

events as it presents itself to the observer.  That gives: 

 

  dX =  c1   i c dT   

 

  − c2   dZ, 

 

      c3   dX, 

 

      c4   dY. 

That further gives: 

 
However, from Tab. 1, col. 8, one has: 

 

 
 (1) Here, the assumption that (2) = − Z is made in order for the proper acceleration to point along the positive Z-

axis, since the Minkowski force K = − m0 (c2 / R1) c2 . 
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in which c2 / b is the Minkowski proper acceleration; one will then have: 

 

 
 

Hence, the speed of light that is perceived by the observer will become: 

 

 
 

However, + Z c2 / b is nothing but the “potential” of the Minkowski force: 

 

K = − m0 Grad  , 

 

when it is considered as an apparent force in the proper system; hence (1): 

 

c = c +  / c . 

 

 
(Received on 9 April 1914) 
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 (1) Cf., A. Einstein, Ann. Phys. (Leipzig) 38 (1912), 356-359. 

2

2 2 2 2 2( ) ( ) ( ) ( ) .
Z c

dS dX dY dZ c dT
b

 
   = + + − + 

 

2 1
.

Z c
c c

b c


 = + 


