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By the generaltheory, we mean the theory of a continuum whose defbistege is described by 15
functions of position and time (i.e., a theory of 15 degref freedom). Developing the views of
GUNTHER further, one has to look at such a continuum genaralization of the Cosserat continuum (6
degrees of freedom), whose state is characterized hycetbsplacements (3) and independent elastic
rotations (3) of the geometric structure (in the caberystals: of the lattice structure). Instead of
displacements and rotations one can also use elaiifcndgions and structure curvatures in the geometric
description, both of which have a tensor charactdre dxtension of the Cosserat theory that leads to the
general theory implies that both the deformations armd dirvatures become incompatible; i.e., the
possibility of deriving them from displacement and riotafields is abandoned. The number of degrees
of freedom increases to 6+9 = 15. The connection wisfodition theory and general differential
geometry follows from the fact that the dislocation dgris equivalent, on the one hand, to the Cosserat
structure curvatures (NYE, GUNTHER), and one the otteerd, to the CARTAN's torsion (KONDO;
BILBY, BULLOUGH & SMITH).

Instead of the geometric characterization of the sittis possible to employ a static description,
which likewise needs 15 functions: 6 functions for tleedg-) stresses and 9 for what are called Cosserat
torque stresses. In the present work it is shown thattérque stresses enable us to describe the
microscopically fluctuating stresses of macroscopically continuous distabsit of dislocations in a
macroscopicway. When the constitutive law connecting stresses torque stresses with deformations
and curvatures is known, the geometric and static furstian be converted into each other.

The geometric part of the theory, which is given ira@ter Il, is the main part of the present work.
First of all, we present the theory in a new elemgnform in which the usual methods of nonlinear
continuum mechanics are taken over as much as pos3ibieconcepts developed in the linear continuum
theory of dislocations and internal stresses are coampl@corporated within this nonlinear form.
Secondly, we give a presentation of the theory thdiased on differential geometry and partly follows
from the ideas developed by KONDO and by BILBY, BULLOUGHBMITH. However, we go further in
the physical interpretation. The general (incompdgtiBlesserat continuum proves to be identical with a
medium whose geometric state is described by the RiemariarC(= metric) affine connectidny, (15
degrees of freedom). A new feature is the introductidhefmatter tensor” that forms the right-hand side
of the “Einstein equations of continuum mechanics,” whéch the generalization of the St. Venant
compatibilitiy equations. The symmetric part of theteratensor describes the inserted foreign matter (in
crystals, e.g., distributions of interstitial atomshereas the antisymmetric part characterizes sontedfi
rotational matter that is connected with the ending dbckdions inside the body.

If the torque stresses are neglected then the integraficthe Einstein equations leads to the
determination of the state when one is given thegt(e.g., forces, dislocations, etc.). In the imaar
theory, just as in the linear theory, the most imgarresource for the integration is the stress function
tensor. The nonlinear integration problem can betized by an iteration procedure. The resulting linear
summation problem has been solved previously, andowilliscussed briefly. In Chapter I, we discuss
the second boundary-value problem in more detail. Th&iloess of SCHAEFER's stress functions is
demonstrated by the example of a body bounded by two infirgieep! It is possible to reduce this
problem for any distributions of surface terms to a pastandard problems, one of potential theory, and
the other, of bipotential theory.

Chapter IV contains an elementary account of the prdyisketched concept of a para- or diaelastic
continuum, which has practical importance for solidestahysics. The lattice defects appearing
macroscopically as point defects can be characterizzthanically to a large extent as elastic dipoles
(force couples) or polarizable substances. Very geaadhkimple formulae hold for the potential energy
of these defects in an elastic field and for the foarestorques exerted on the defect by the fields.

In the discussion at the end of this work, we pointlioatintimate relationships with the general theory
of relativity. It is hoped that they will have favotaleffects on the further development of both theories.



I. Introduction and overview

The range of problems that have beeor at least should have beempproached by
the continuum mechanics of solids has expanded consigaralthe last three years.
This is consistent with the ineluctable ascent ofdsstiate physics to the status of the
branch of physics that currently deals with the mostiegdpns, next to particle physics.
The boom in solid-state physics began in the last tyywsedirs since we learned to grow
unitary lattice-oriented crystals (single crystals) aonav understand that one must first
explore the properties of these single crystals bedaeecan think of understanding the
results that have been previously associated with thyenystalline state.

Some of the important stops along this road that asresting to anyone with a
mechanical outlook are:

a) The theoretical computation of the critical comspiee stress of aideal crystal
by FRENKEL (1926) {], which was shown by SCHMID and POLANYI (1922 fo be
more than three powers of ten greater than the expetamealue of the critical
compressive stress for@al crystal at very low temperature.

b) DEHLINGER’s [B] examination of the possibility that crystal defecte #he
sources of internal stress (1920). It then becomes wlkg internal stresses are even
possible in crystals to begin with.

c) The introduction of the ideas of dislocation thearmo the theory of plastic
deformation by TAYLOR, OROWAN, and POLANYI (19343-B], which proved to be
unusually fruitful, and its first great result was themoval of the aforementioned
difficulties with the critical compressive stress.

d) The theoretical elasticity approach to singularodstions by BURGERS (1939)
[7], which led to a mathematically flawless definitioiraodislocation.

e) The creation of a continuum theory of dislocatiand internal stresses through the
work of many other authors that will be mentionedhm $equel. As we explained before
[8], this theory shall close the yawning gap between elgstitheory and
phenomenological plasticity theory, and will likewisepresent a bridge between the
latter theory and thatomictheory of plasticity that is so important in solidte physics.

The fundamental importance of crystal defects (latiegects) in solids is generally
acknowledged at present. Of the many things that are as=bevith matter transport in
the solid state — phase transitions, fracture, plastarmation, diffusion, et al. — there is
not a single one that comes about in the absencdtioklaefects. The role of lattice
defects can therefore be discussed briefly as foll@fse.g., DEHLINGER 9)):

Only by the intermediary of lattice defects can theexfeentioned phenomena follow
from lower-order processes, and therefore happen. athlls, they come about in such a
way that the free energy is as small as possiblew the energy of the internal stress
fields constitutes a very substantial shaenot the entirety- of the free energy, and the
sources of the internal stress fields are precis@\dttiice defects. Thus, they give rise
to not only more or less strong electromagnetic (raagnresp.) effects, but also to very
meaningful mechanical effects.

As a result of the development that we just sketched ibuemerges that the
continuum mechanics of solids in its earlier scope, with its branches of elasticity
theory and phenomenological plasticity theory, was from addressing the new
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problems. The most important ones that always appeéeicontinuum mechanics of
solids fall into the following three types:

(1) If one is given arbitrary external influences ore thody (forces, torques,
temperature fluctuations, etc.) as functions of posidod time, find the state of the
body, also as a function of position and time.

(2) If one is given a source distribution of internaésses — i.e., a dislocation density
with the limiting case of a singular dislocation — firge tstate of the body (perhaps
characterized by the internal stresses, lattice cuvaaumd elastic energy).

(3) If one is given an elastic field in a body, finct telastic energy of a particular
lattice defect in this field (the force that thisldieexerts on the lattice defect, resp.). The
forces between lattice defects also belong to thigjoage

Problem (1) simultaneously involves all three of the tihas of the continuum
mechanics of solids that were mentioned in e), andirietly strictly soluble only in
special cases. Problems (3), and in particular (2), wdmehtypical for the continuum
theory of dislocations and internal stresses, af@nesent sub-problems of problem (1).
Thus, they also frequently constitute the continuumbaecal component of general
physical questions that frequently go far beyond the sobpeechanics. The reader is
therefore referred to the relevant literatuté-14).

In 8 1 - 8 3 we will seek to give a brief overview of natmation in the continuum
mechanics of solids, in which we will, at the sameetinhave the opportunity of
characterizing the shortcomings of the older continuurmhar@cs. Since we shall not go
into the dynamical effects, it is clear that theirfdations of the theory that we shall
discuss here will, at the same time, also belong tofabadations of the yet-to-be-
developed dynamical theory of dislocations and intesti@sses. Frequent references
will be made to the summary report of the autt@ron thelinear approximation in the
book Kontinuumstheorie der Versetzungen und Eigenspannun@dre present work
shall therefore represent an extension toniineartheory ¢). It falls in line with the
works of KRONER and SEEGERLY] that will appear shortly, in which the non-
Riemannian geometry of KONDQO2(, 21], as well as BILBY, BULLOUGH, and
SMITH [22-26] will be extended to a nonlinear elasticity theory di$locations and
internal stresses.

81. General connections: geometry

The COSSERAT brothers, in their book that appeared in 18Q9Have developed a
theory of a body whose “points” can not only be étadly translated, but also elastically
rotated, in a measurable way. Up to that time, onegtioof a crystalline body as a field
of applications, so it remained unclear how one mighéee e.qg., the state of a crystal
whose building blocks had indeed been subjected to rotabiohapt translations.

1 If the reader feels that that the discussion of thehaust of nonlinear elasticity theory in the present
work is insufficient then let him confer the beautiftédatments of TRUESDELL and MURNAGHAN, as
well as DOYLE and ERICKSENLE-18].
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It has been known for perhaps ten years that forinespecially-prepared crystaf§ (
which are free of loading stresses and internal sgesisat under Rontgenographic or
even optical penetrating rays one can recognize a cuevtd the lattice planes, i.e., the
‘geometrical structure” of a crystal, which will corpesd to a spatially-varying rotation
of the smallest crystal domains. In many cases, @me perceive macroscopically
constantly curved lattice planes that appear to be sdopcally polygonized (CAHN,
GUINIER, CRUSSARDEt al, 1949 p§)).

Today, one can easily illustrate the emergence of araseopically stress-free
rotation of the lattice structure of a mass elemekd. BURGERS and BRAGG/[ 29
have found, there are certain arrangements of digdosathat are confined to a surface
(viz., grain-boundary arrangementsand evoke no macroscopic stress fields, only
changes in orientation between neighboring crystaladasn If a torque, say, acts on a
mass element in order to rotate its orientation thenitfiuence leaves a dislocation trail
in a particular arrangement, which rotates the eleedt at the same time, mediates the
transition to the neighboring element as a grain boundéhg formation of dislocations,
or, better yet, the rotation of the mass elemerntishequivalent to it, can be assumed to
be elastic when the removal of the rotational mdnieads to a reverse rotation that
annihilates the dislocation trail. If such momentsacall of the mass elements of the
body, although with varying strengths, then the positiarying rotation of the lattice
structure will be given in such a way as to result in aroscopically stress-free lattice
curvature.

In 1953 NYE B0} had outlined a continuum theory of (macroscopicallysstifece)
lattice curvatures, yet it was GUNTHERI] who first recognized in 1958 that such a
curved crystal, when considered continuum theoreticadigresented a justification for
the Cosserat continuum, i.e., the lattice rotationd eurvatures that were described
above have precisely the characteristics that weseribed by the COSSERATS. We
refer to them as th€osserat-Nye rotationsndcurvatures or also thestructure rotations
andcurvatures. Moreover, we call the curvatures that we just spoksofpatiblesince
they are derived from a rotation field.

The Cosserat-Nye tensor' Krepresents a suitable magnitude for the Cosserat-Nye
curvature, since it gives the relative rotation of thticla structure at two points that lie
dX apart (thusde' =K'; dX). Therefore the curvatures are also completelyacherized
by the tensor'j = K"é’ K'; dX. a'; is referred to as theislocation density tenspit

gives theBurgers vector d,lcnf a dlslocatlon that crosses a surface elementhencedb,
=qa';dF).

For the geometrical characterization of deformabladsode further need thedastic
distortion tensorgj;, which gives the relative elastic displacement betwtee surface
elements that liedxX from each other (hencds = £, dX). In the case of small distortions,
the symmetric part of the distortion tensor is id=itwith the deformation tensor that we
used in §].

2 For example, by plastic bending. These macroscopisssiree lattice curvatures must be noticeably
different from the ones that are obtained from, s#gsticbending, which have stresses that are connected
with the lattice curvatures. One obtains the polyeaiion that is mentioned below by gluing together such
pieces. In this way the dislocations will be brought iatso-called grain-boundary arrangement, whose
elastic energy is essentially negligible. The mamwpi lattice curvature is already available before
polygonization.
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We now think of the body as an ideal initial stat# s brought into a deformed final
state. We shall describe this geometrically by the ten8andK (a, resp.). Now,
should the initial state be compact, i.e., a conmectmtinuum of pre-existing bodies,
and should these properties persist throughout the deform{@ence, there are no tears
or folds, since it is only in this case that we could kpEaa continuum theory to begin
with), then, as we shall show later, the asymméemnsordin the equation:

RotB—-a=9 1)

must vanish, in general. It must be non-vanishing onlynwiges an a initial state
comprised of an ideal crystal that is originally madetfyegular’ atoms, but into which
one has introduced “irregular matter” (we shall also “sagra matter”) that remains in
the final state, moreover. The tensbis a measure of this extra matter, of which, the
most important example is that of the so-called ‘ifpreatoms” (interstitial or substitute
atoms).

Eq. (1) allows us to understand essential feature ofieéheral continuum theory of
dislocations and internal stresses: The distortiorsae and the curvature tensor (the
dislocation tensor, resp.) are regarded as “internal” tqieenthat directly describe the
geometrical state of the continuum. On the othedhtre extra matter is regarded as an
“‘external” influence that brings about distortions and cumes. This corresponds
perfectly to the picture that one must imagine forad ceystal, which the deformed state
of our body certainly represents: One can think of ageaital as an ideal crystal with
nothing that has been added or subtracted from the ouisiséhich one has created
dislocations. A real crystal that has been obtainetthis way will include only regular
atoms. One can then call the dislocatiomgetnal lattice fields.” On the contrary,
foreign atoms in an ideal crystal (or in a real aiystith dislocations) must be introduced
from the outside, so we shall call theexternal lattice fields.” The left-hand side of eq.
(1) corresponds to internal quantities, and the right-rsite corresponds to external
ones. We shall obtain an analogous representatidatioss

For finite deformations, eq. (1) is true only in the stled Lagrangiandescription,
i.e., one must understantX to mean the relative length in the initial staég [We call
the theorem that is formulated by means of eq. (1juhdamental geometrical theorem
(of general continuum mechanics). It becomes evere moteworthy when one
assumes that the elastic distortion (deformatiogp.jeand the structure curvature are
incompatible, i.e., they are no longer derivable fromsaldcement (rotation, resp.) field.
This represents a substantial extension of the origlesiserat theory. The number of
functional degrees of freedom by which the body is gé¢ocadly described thus
increases from six to fifteen (six elastic deformasionine structure curvatureg).(

The Lagrangian description is particularly unsuited te timportant task of
determining the state from the physical givens. One phaeters to use th&ulerian
representation for the geometry of the continuum.gdometrical hindsight, it is now
most remarkable that the Eulerian formulation of théemded (i.e., incompatible)
Cosserat theory is equivalent to the Riemann-Cartaygametry of solids of KONDO
[20, 21], as well as BILBY, BULLOUGH, and SMITHZ22-26]. In the opinion of the

® As one can show, the rotational part Igf follows from elastic deformations and the structure
curvatures, so they contribute no degrees of freedoheafdwn.
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author, there is no elegant formulation of the fundaaiegeometrical equations of the
nonlinear problems of continuum mechanics, any more tharetls in general
differential geometry. The equations will not becasmaple by themselves, since this is
completely inconsistent with the known complexity @inhnear problems, or else the
subsequent method of determination of the state fromhy&iqal givens would become
correspondingly favorable.

We strongly emphasize that the geometrical aspectheofcontinuum theory of
dislocations and internal stresses can be interpratec@ definitive departure from
classical elasticity theory: in the latter, geomesyEuclidian and thus trivial. The
geometrical part of the theory is therefore largelptamed in the statement that one
endows the body with an elastic displacement field thiees its points from the initial
state to the final one. In mathematical language: agdaimental geometrical equations
for elasticity, the compatibility conditions for elesdeformation are satisfied identically
with the help of the displacement vector field.

By contrast, the geometry of a body with dislocatiansl impurities is principally
non-Euclidian. It is not possible here to define arstedadisplacement field (rotation
field, resp.); the general equations (1) appear in pladdeottompatibility equations,
which demands new methods of solution.

In conclusion, the Cosserat-Nye curvature is describe@dmanian geometry, and
above all, the Cartanian notion tofsion as will be thoroughly explained in chapter II.
In particular, the identity between the Frank-Burgershpahat are used to define
dislocations in dislocation theory and the well-kno@ertan paths will be detailed. This
identity defines a foundation of the differential getmoal statement of our continuum
theory and says that the dislocation density (herise,the Cosserat-Nye curvature) and
the Cartanian torsion represent precisely the sameoptemon.

In this overview, we have brought tetateof the medium to the foreground, whereas
the previouseventthat led to thisstate is kept in the backgrour@|.[ We will make up
for this in chapter Il. For now, the following remark Khguffice: Any motion of
dislocations gives rise to a plastic distortion of thedium that can be described by a
distortion tensor, at least as far as its macroscoparacter is concerned. This is
immediately connected with the dislocation denaityrrough the relation:

Rotf =-a, (2)

which can also be regarded as the definition of the @it density. Thus, when one
denotes the sum of the elastic and plastic deform&{im the Lagrangian description) by
the total distortiorﬁ‘3 one writes, e.g., eqg. (1) in the case whre0:

Rot g4 = 0. 3

In words: The total distortion of the body resultsuch a way that neither folds nor tears
appear. Eg. (3) is a particularly simply formation tbé fundamental geometrical
theorem in the “reduced” (by way &f= 0) theory. In particular, it implies the possiyili
of vanishing elastic distortior8g], i.e., macroscopically stress-free plastic deforomat
can result. This has considerable practical importance.
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82. General connections: statics

The difference between Cosserat statics and classiastostatics resides in the
appearance of the so-callemfque stresses’. These are defined as the torques that a
surface element is endowed with, as one might aseowitth a cut surface, when no
rotations take place. As one knows, theee stresses or simply stressefc’) — that
one uses in elasticity theory are defined analogoushy.cogates forces when there is no
translation.

As the bros. COSSERAT have shown, the followlmgdamental static equatiorfs
equilibrium conditions for forces and moments) aridvia Eulerian notation“j:

Div o=-3, (4)
Div r+0=-90, (5)

(cf., e.g., GUNTHER 31]). HereF andt mean the densities of external forces and

torques. Insofar as the (force-) stress tews@s well as the torque stress tengas, in
general, asymmetriay is the vector that is equivalent to the anti-symrogdairt ofo:

It is clear that the torque stresses constitute amgement of geometrical quantities
that described structure curvatures in the last sectda.shall illustrate this fact in one
example that comes up frequently in practice.

At sufficiently high temperatures, a crystal bar issptally bent in such a manner
that ultimately all of the dislocations are in a Ny&e., grain boundary arrangement.
Upon removing the external bending moments, this banbasacroscopic stress fields,
which therefore implies (macroscopically) constattida curvatures. As a result of the
usual short-range distortional effect
of the dislocations that exists, th
energy content of this bar is great
than the energy content of a bar th
was made the same with an ide
lattice construction. One cal
understand this to mean that torq:
stresses are associated with t
lattice curvatures according to son
material law. That is, if one make
a cut somewhere then dislocatiol
will appear in the immediate
neighborhood of the cut surface, ..
we show in Fig. 1.

= b= = = = =
SREERRRRIREEARN

Fig. 1. The physical meaning of the (macroscopic) torgtresses.

It shows a fine grain boundary of step dislocations (gl near the cut surface.
The dislocations of the body are a consequence ofetiftecting effects of this surface

* As one knows, one of the great difficulties in nonlinear theorglessin the fact that the fundamental
equations of statics take on a simple form only in Eulerianinataihereas the fundamental equations of
geometry take their simplest form in Lagrangian notation.



8 2. General connections: statics 9

(i.e., by its internal stress fields) when one doespnotluce a compressive stress at any
dislocation (outside the cut surface) that exerts aefon the opposite direction that
would prevent the appearance of dislocations. The arabte cut surface give the type
of effect that one finds thermicroscopically,one considers forcesjacroscopicallyone
considers torques. They insure the appearance (or alsentbgal) of dislocations at the
cut surface without lattice rotations. We thereforeehdor the first time here) obtained
the important result:

The microscopic stress fields of the Nye dislocation arrangemeayt be
macroscopically described lgrque stress fields.

The way by which measurable torque stresses appear intlexpmeriment that we
just described persists in the absence of external inflagtiogs, in the usual elasticity-
theoretic nomenclature they are referred to as iateyn proper stresses. The fact that
they persist originates in the inelastic behavior isfodations: they need to be activated
if they are to move. If the dislocations could mow®t the crystal easily then the
removal of the external influences would immediatelsutt in their absence, as well.

Previously, we characterized the state of the deformdg ¢p@ometricallyby giving
fifteen functions: the six elastic deformations and time structure curvatures. On the
other hand, we can also recognize the gtgcally by giving fifteen functions: the six
functions that represent the symmetric part of thliessttensor and the nine torque
stresses’[. If one knows the material law that relates shesses to the deformations
and the torque stresses with the structure curvaturestigenan express both states as
functions of each othef)(

Only in the case of completely elastic deformation @aa relate the state of the body
to the external influences uniquely. This can also berthesl by fifteen functions; one
finds the corresponding quantities on the right-hand sidsgef (1), (4), and (5). They
are: extra matter (9), external force (3), and torque C®ncerning the physical reality of
the latter, which is currently recognized, cf., e.83,[[8], pp. 87.

Above all, the previous discussion of the functional degrof freedom of the state
and the external influences should give an overview ottlope of the general theory.
At the same time, they give us reason to introducesfipeessionthe theory of fifteen
degrees of freedomln the theory that follows, we shall bring this theoto a reduced
form: Since the Cosserat theory of statics has eehlsufficiently developed, and the
“energy of curvature” is not generally very large, wé mot consider the torque stresses,
but instead we will completely focus on the fifteen gemicel degrees of freedom)(

Before we present thgeneraltheory in 88 7, 8 we will give eeducedtheory in 88 4-

6, which we will also call theheory of nine degrees of freedorhhis theory is
characterized by the assumption that the extra mated the external torqu vanish

in order that the dislocation denstybe formally regarded as an external influence (and

® As one can show, if one knows the symmetric part by way of tlesses and likewise, the
antisymmetric part by way of the torque stresses then tishsia no other degrees of freedom.

The tensorgrand r are coupled by eq. (5). In order to also couple them by meansatieaial law,
one must do further analysis. It is certain that the nevenmbiconstants cannot be computed from the
Hookean constants alone.

" The torque stresses play a somewhat different role in cextan and two-dimensional problems
(beams, shells, plates) than the one that they play in diglactheory. On this, cf., perhaps ERICKSEN
and TRUESDELL 34], SCHAEFFER 85|, GUNTHER [31].
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there as a given). In the notation that we previouitpduced, the field equations of this
theory read:

Rotf=a, Divo =- 7, (6)

in which the nine degrees of freedom can be easily ideaitifiFor our material law, we
shall suffice with the law that one uses in classaasticity theory that the stresses are
related to the deformations; the torques that are prasegdlity will not be considered at
all. This reduced theory already allows for the solutba great number of problems of
practical importance and in recent times it has beendfamran increasing volume of
applications.

We shall now comment on the fundamental meaning oftiess functions in the
(general and reduced) continuum theory of dislocatiodsraernal stresses, which seem
to be indispensable in the present state of the theadyplay the same role as the vector
potential in electrodynamics.

We consider the contribution made by the external formed torques in one
calculation, which serves as a displacement (rotatiesp.) field, and, in so doing., we
handle the case where the right-hand side of eqs.) (Marishes. These equations may
then be satisfied with the help of a stress funchmsatz that was first given in full
generality [which is also the generality that was ae=slin eq. (5)] by GUNTHERS[L].

In the case where one ignores the torque stressestress function tensor suffices, in
which case eq. (4) is satisfied identically.

The problems that are posed in the physics of internedssis are often essentially
three-dimensional in character. Up until recently, stfesctions were unused in the
treatment of three-dimensional problems. This wasg@éd fundamentally in the last
year. It will be shown next, that in an infinitedxtended elastic isotropic medium with
given internal stress sources the stress functiengigen by inhomogeneous biharmonic
equations 36]. In a seminal work, SCHAEFER3%] has shown further that stress
functions also endow the treatment of three-dimensiomandary-value problems with a
thoroughly favorable aspect (to the extent that oneusarthe word “favorable” at all in
light of the complexity of three-dimensional problem£)ne has to solve three Laplace
equations that are coupled by the boundary conditions. aly moases, these equations
can be decoupled. For the computation of internal stsegbis method has certain
advantages over those used by PAPKOVITCH and NEUEBHR3B).

In view of the central significance of stress funcsian the continuum theory of
dislocations and internal stresses, it seems appropoiadedicate a separate chapter to
them (chapter Il1).

83. Para- and Diaelasticity

Para- and diaelasticity are phenomena that are foteiglassical elasticity, and they
are very closely connected with the atomic (crystalliresp.) structure of our solid
bodies. Therefore, we next discuss crystals.

Ideal crystals, which are composed arfe type of atom, exhibit neither para- nor
diaelasticity. By contrast, all real microscopigalirystalline structured solids are
diaelastic, and many are paraelastic, moreover. TWiatae of the real crystal structure
from the ideal one i.e., the lattice defectsdefines the basis for para- and diaelasticity.
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The dislocations of foreign atoms belong to the magbortant class of lattice
defects. If a crystal has many foreign atoms thanrm longer speaks of them as lattice
defects, but one speaks of mixed crystals, and, in the afaseetals, also of alloys.
Therefore, from our standpoint, there is no principietence between, e.g., regarding
the foreign atoms as extra matter and regarding theatiogsatoms. We would thus also
like to deal with the lattice defects in what follows.

The objective of the theory of para- and diaelastisityt subsequent treatment of the
particular mechanical effects that are linked withidatdefects. Thus, the concepts and
ideas are completely adapted from the established natf@isctro- and magnetostatics.
This will be so plainly expressed in the terminologgttive shall introduce that we can
thus renounce the analogy and discuss the subjectddly it& diaelastic body is thus
perceived to be one in which the application of a meicha stress produces “induced
elastic dipoles,” by which it is “elastically polarized.By contrast, a paraelastic body
involves “permanent dipoles” that can be rotated in tinectdon of the elastic field.
Permanent, and also induced, dipoles experience faradastic fields, which will drive
their migration when their mobility is sufficientlgrige. This is why, e.g., understanding
the migration of carbon atoms in iron as permaneastiel dipoles, has such great
significance in technology. The theory of paraelastigives the possibility of exploring
this migration quantitatively.

It will be proposed that the lattice defects, which appeabe macroscopically
pointlike, can be mechanically characterized by their rpgahility (dipole strength,
resp.). Both quantities are accessible to experimem@isurement. The mechanical
properties of lattice defects are largely determinethbge quantities. One obtains very
simple and far-reaching formulas for the interactiofattfice defects with each other and
with the internal stress fields of the crystal oneaotst in this way, which already allows
us to resolve a great number of important practical prosl

By far, the most important lattice defect is the @listion. The mechanical theory of
dislocations relates to the theory of para- and dstieley somewhat like the way that the
theory of magnetic fields of stationary currents raldtethe magnetostatics of material
bodies. In particular, any pointlike lattice defect daen formally described as an
(induced or permanent) infinitesimal displacement loop (npoeeisely: three mutually
orthogonal dislocation loops), which corresponds to Hmaperian assumption of
magnetic dipoles as elementary current loops. Thisaissed in detail in another place
[8]. Thus, in the treatment of para- and diaelastiaity chapter IV we shall
predominantly think of lattice defects that appear macrosatyppointlike.
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The body that is explored in this work is the so-callbserat continuum, which
differs from the bodies that usually appear in elasgtitheory by the appearance of a
measurable geometric structure. This takes the forngadh point of the medium one
finds three non-coplanar, but not necessarily mutuallyhogxnal, distinguished
directions. It is often useful to represent this santm as a cubic crystal with vanishing
lattice constants.

For the sake of simplicity, we shall choose the ahistate to be the ideal state, in
which the distinguished directions are parallel to edbhroover the entire body. Since it
is not the directions themselves, but ttiervature of the geometric structure that
determines the state of the body, this particular chaficeitial state represents no loss of
generality in our formulas. In particular, this is alage without modification when the
initial state is an undisturbed polycrystal.

In this chapter, we almost exclusively use the Eulem@tation, i.e., in terms of final
coordinates, which is particular important for applicationWe next (8 4) give the
reduced theory (nine degrees of freedom) that was defined.invBe will then go down
the path that we did earlier in the linear theory. ha tase of finite deformations, the
required separation of the distortion into strain and ioytas no longer possible through
the decomposition of the distortion tensor into symrmeémd antisymmetric parts.
Whenever we are called upon to make detailed geometmecaiderations, we shall
employ an artifice that seems somewhat unmotivatedfifds its justification in the
differential geometric statement of the theory (8 )6 presents the detailed proof of the
identity of the dislocation density and Cartanian torsiwhich was regarded as a
foundation in the general theory. In 8§ 7, we qualitéyiexplain the concepts of the
general theory, which get their mathematical form in §8.8 9, we discussnter alia,
the connection with the linear theory.

84. The elementary statement of the reduced theory

In the reduced theory, we will consider three states fmedium:

The ideal- or initial — state €),

The natural — or intermediate — sta&, (
The deformed — or final — statie) (

Let (8), (x), (k) also symbolically denote the coordinate system thatsed on the
respective state. LetX, dx*, dX be the distances between two points inside a mass

element. We shall therefore deal with things aroundséimee material points that ensue
in all three states. The squares of their intervas a

ds,=bydX dX,  dg,=ga dXdx, dg =agdxdX, (1)
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(summatié)n convention!), resp. The connection betweerhree states is given by the
relations {):

dy = A* dx, dx = A'dx’,
dy =A“dx, dx* = A dX, 2)
dy = A dX, dX = Ald¥,

in which theA-quantities refer to the transformations betweensthges. We shall refer
to them as distortions (= combinations of strains estdtions) and they are almost
precisely characterized. There are inversion relatiimtween them:

AA=0, AA=G, AAN=S, AA=],
AA=3d, AA=J. (3)

We shall now clarify the three states. They are aked in the linear theorg][ in
which one can find a greater degree of unity and more altists.

(8): The ideal state shall correspond to a stressitteal crystal (with vanishing
lattice constants). In this state the distinguishegdctions are the same everywhere
throughout the body, so the structure curvature is null.

(K): The natural state is a hypothetical state thattsined from the ideal state as
follows: First of all, a stress-freinprinted or plastic distortionAis associated with
each mass element of the body, which is realized rie@mgement of dislocations and
their migration. For the duration of the distortitim mass elements shall be enumerated
and remain distinct from each other. If one performsaebitrary variatio®y’ of an
element to another element then the mass elememaviinger pass to the other one in
an unbroken manner, in general, under the distorfjorilthe form of the individual mass
elements will indeed vary under plastic deformation,, udwever, its state and
orientation will remain the same, which was expldimedetail before§]. It is important
to remark that the distinguished directions are alldéfnition, Euclidian parallel in the
intermediate state, as well;, otherwise, it wouldloxger enter into our analysis of the
position of individual mass element. One considers-eaflied anholonomic system for
the coordinate systenx) on this stategx‘ then means something, even though there are
no coordinateg® (*°).

8 Although it seems very rash to use the same kernel sytnfuolsix different transformations, in fact,
the indices are given in such a way that the change sheuldambiguous.

® The equivalent situation is admissible when one regards theahatate as an aggregate of plastically
distorted mass elements, viz., that the isolated mas&elem@re brought into a hypothetical non-Euclidian
space in a stress-free manner, and in this space they no tmmgkine with each other in an unbroken
fashion. With this assumption, we can eliminate the posgiltiiat the mass elements will break apart
upon collision during the distortion. One can regard the individugsreéements of the aggregate as
(material) Euclidian spaces that are tangent to the comdspy points of the (material) non-Euclidian
space of the total body.

10 one adopts the non-Euclidian standpoint that was taken in footribten9one has a continuous
body, and one can describe it by a (non-Euclidian) coordinate sy&te@ne then calls this coordinate
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(K): Finally, the deformed state is obtained form theal state when one executes the
aforementioned migration of the dislocations in Eualdspace without intersections of
the bodies. The constraint that one must remain ididtaic space insures that plastic

distortionsA‘ can be composed with elastic distorti@;ﬁs (In general, we ignore the
particular choice of mass forces, which can be elitathan a trivial way.)

In summation, the distortion of a mass element feanmnitial state to a final state is
represented by the composition of a plastic distorti&fn)(and an elastic oneﬁ\f):

A=A AL @)
The reciprocal distortions are compositions:
A=A A (5)

For the fundamental geometric law of the theory weopse: Neither tears nor folds
can occur during the distortigdf from an initial state to a final one. In order forsthd

be true, it is necessary and sufficient that a maogesally constant displacement field
exists that takes the points of the initial statehtwsé of the final state (so there is also a
constant displacement field that takes them back taitial state). The existence of the
“forward displacement” implies (cf. footnote 10):

0. A -0 A =0, (6)

and likewise, the “reverse displacement” implies:

OmA =0 A= 0. (7)

In egs. (6) and (7), we have two statements forfuhdamental geometrical law before
us. The former refers to the initial state; théelarefers to the final state. We will soon
discover more ways of formulating these laws.

Relations of the type (6, 7) are valid only for tie¢al distortion, since it is only for
this notion that the connection between the bodiégsndamentally true. The basis for a
possible connecting disturbance in pure plastidodisn is the introduction of
dislocations. There are essentially two definsiari dislocations: one differential and
one integral. In the former case, the dislocaisosefined as the boundary curve between
a shifted (i.e., plastically displaced) region gblanar net and a non-shifted one, and is
described by a shift vector and a tangent vectorthe latter case, the definition comes

systemanholonomic relative to the systefn because there are no transformations that xake x* (cf.
SCHOUTEN B9]). One has only the anholonomic Pfaffian transformatigh= A dx. The condition

that X be holonomic relative t&* obviously readsﬁmAK - 0, A; = 0, which is also the condition for the
mass elements to remain distinct under plastic distortion.
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about with the help of the so-called Frank-Burgers loaogind the dislocation. The
differential definition is more appropriate to the insteneous representation, whereas the
integral definition is closer to the spirit of differt@&l geometric considerations.

We will not comment on the details here, which wergcassed ind], but simply
define the dislocation density, (a, resp.) to be the measure of the total current under

pure plastic deformation, by way of:
am[K =- gm[n d‘tK/Z = (am AK - a' A\: )/2 (8)

(In &, n refers to the direction of the curve an refers to the direction of the shift.)

When this definition is applied to a singular dislocatiiois identical with the definition
of the boundary curve abovE)( If one passes to the linear approximation, in whiah on

setsA =9 + 87, then, by neglecting the terms that are quadratic ifB)eone obtains
the definition that was given i8] in the form:

=-Rotf. (9)

a and,BP are the (second rank) dislocation density tensor hadptastic deformation
tensor, resp.

The form (8, 9) of the definition as the rotation of ghlastic distortion is very
incisive. As far as applications are concerned, (8) thexreéhas the drawback that the
initial and intermediate states appear in the indicesr gt We shall mostly use a

representation that is expressed completely in terntbeofinal state (i.e., an Eulerian
one). The conversion give¥)

ani= A A A af=— A (KD, K- KD A)I2. (10)

We will use this form for the definition when we nowtend the statement (7) of the
fundamental law by introducing the notion of dislocatioff$ws, we substitu® , A’ as

in eq. (5) into eq. (7) and multiply By /2, and obtain:

A0, A -0 K) 2+ K(Ko, A- Ap, A/2=0, (11)

and by means of (10) we obtain following statement ef fimdamental geometric
equations, as extended by the notion of dislocations:

A©@,A =0 A) /2 = aml". (12)

1 Note: the boundary curve of a surface is its “vortex line.”
12 \write A= A“Afand partial differentiate ' A = - 0_A' A, etc.). Furthermore, s&f'd = dm

([39], pp- 70).
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Upon linearizing(A‘=4 + B, A‘=d - ), it reads:
Rotf=a.

The application of this equation to practical problemsin particular, the
determination of the stresses for a given distribubibdislocations- is obstructed by the
fact that the elastidistortionsenter into eq. (12), whereas the elas@gformationsare
linked with the stresses by the material law. Withhbé of eq, (12), we succeed in
deriving an equation that includes only deformations andaisbn densities, and
proves to be suitable for the determination of thesses. For this, we apply the trick
that we mentioned in the introduction to this chaptAt.an initial point, we have the
identity:

Bri=A OmA =A, OnA" + A2 +A, (OmA" = GA)I2 -
= A, (OcA; = OmA 2 +A, (B = BmA)I2 + (13)
+ AL QA —aA)2-A, (DA - A 2.

From (12), the terms in the right-hand side are equal to
Omik + Qkmi — Qfkm = Nmik. (14)

We convert the first three of the six summands on ldfehand side by partial
differentiation, e.g.:

AkK amAK = am(AkK AK) _AK amAkK = am O« _A|K amp{: . (15)

Here, we have definagl by:

ds, = g dX‘dX, (16)
and the relation that we used:

Akl( AK = gkl’ (17)

follows easily by equating (16) with (1) while using (2). itdltely, what remains is:
Bmik = OmOu + 01Omk — Oiim)/2 + himic = T ik (18)

As in [19], we now define the expressions:
9'mik = (OmOki + 01Gmk — OkQim)/2, (19)
Omik = (Um@k + UiOmk — L4Qim)/2.

These definitions shall also be valid when one reglacwith a, b, or £ everywhere.
Moreover, we use quantitied“ andg™, which are defined by:

13 Eqg. (18) may also be obtained from the fundamental equation by meélng.oflf one assumes that
the distortions that takexl to (k) can be decomposed into only elastic distortions (no quasi-plastic
distortions, as in § 8) then one can (indeed, somewhat aryfjciafard the relation (17) as representing
the choice of connection and eq. (18) replaces eq. (12) as a coexdeession for the fundamental law.
We will pursue this further in the general theory (8 8).
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aan =4, g"gn =" (20)

Let [, be the symbol for the covariant derivative in the defxd state relative to the
metric aq (**). Ultimately, we define the Eulerian i.e., in terms of the final state —
deformations in the nonlinear theory in the usual way by:

G P
ds,, —ds;, = 2¢, dXdX, ds,,-ds, = 2¢, dXdX, (21)
ds,, —ds, = 2g¢dXdX.
We thus obtain:

G P
& = (e —bw)/2, & = (O —bw)/2, & = (@ — gu)/2 (22)

for the total deformation, the plastic deformationd ahe elastic deformation tensors,
resp. Thus, we have:
O'mik = Amik = 2 Emik- (23)

Now, let us return to eq. (18). One can easily caleulzat the expression:

Bij =4 £" ™ (8n Brnik — 0" "Brkq Brmip) (24)
vanishes identically, from which one has:

M= 18" %00 Mmik— 6" kgl mip) = 0. (25)

It remains to be showrl] that the antisymmetric part of these equations is icieint
with the following divergence condition, which follor®@m the definition of dislocation
density:

0,0 =0, (26)

which says that dislocations cannot end inside of aroauntn.

If one constructs the symmetric part of the tensor equ4#i6) ¢°) then, when one
replacesd, with O, as in footnote 13'{), one obtains théundamental equations for
determining the internal stresses in the reducedmn[19]:

=10 Mgk 10 (=280 + hmi) —
~ &"U(—26q + Mnig) (—2&mip + Nmip)]} i) = O. (27)
For hmk = O these are the well-known nonlinear compatibilityhditons for elastic

deformations 17, 40]. In linearized form §], the right-hand side of eq. (27) can be
written:

14 _ K , kp ol , 1k , Kl
For eXamplaﬂnp.%(rln_ anP,,m + anp. P..pm + anp. Pr?w - anm.pP..p'
15 When we put two indices inside round (square, resp.) bracketsitevel that one should take the
symmetric (anti-symmetric, resp.) part.
16 If one chooses to describe the final state in Cartesiardmates then one ha$.” = 0 andd, =9,
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Inc e = Oxex[d = (ax0)°=n (28)

(for Inc, one should read: “the incompatibility in”).

We now briefly suggest the use of these equatidhd g, cf., also § 8)(. With the
help of the introduction of stress functions, the equilin conditions for the stresses are
satisfied identically when one neglects bulk forc&sy: using the material lavd (&nix,
resp.) will be expressed in terms of the stress fumstim such a way that the
fundamental equations of internal stresses become egsiatiat include only stress
functions and dislocation densities. The solutionheké equations for given boundary
conditions gives the stress functions, and thus givesttaeses and elastic deformations,
as well. As we will show in § 5, if the physical sigegince of thén, is the same as the
Cosserat-Nye structure curvatures then it is trivialgeg for a given dislocation density.
With that, the problem that was expressed by (2) on pp.thel context of the reduced
theory is solved.

At this point, we would like to leave behind the elemenstagements of the theory
and go into the differential geometric considerations.

8 5. The differential geometric statement of the redticedry

The following situation is typical for the applicatiohgeneral differential geometry
in continuum mechanics: L&'(1) be a vector that connects two points inside thesma

element 1 in the initial state. LBf(2) be a vector of the same length that is parallél to

at a neighboring point 2. We IBf denote the vector that connects the same two fiaints
the final state thaB' does in the initial state, which makes it the imafjB‘o If one can

then give a value talB* for all neighboring elements in the final state thee afso
knows the total torsion that the body has experienced.
dB* will be proportional to the vectds*, and also to the distanc™ between the
points to whictB¥ is referred, i.e.:
dB=-Db7 B dxX". (29)

Analogously, if one considers a vect@tin the natural state, which we now regard as
a (material) non-Euclidian space, as in footnote 9ahfl, which has an imadgg in the
deformed state, then one obtains:
dC = - CdxX" (30)
or also t):

" Ed. note:Unfortunately, the quadratic elasticity law (54) that was usddl9] for the computation of
the stress field of screw and step dislocations contained ran efherefore, slight corrections are
necessary in the formulas of 88 5, 6 4|[in order to make them agree with the treatment of the prable
of screw and step dislocations with boundary conditions (cf., niady,| H. PFLEIDERER, et al., Z.
Naturforschundl5a (1960)).

17 We will write the distinguished index in the connection (alwagsttird one)as either an upper or
lower one, as it suits us. For the raising and lowering of indinesmust use the correct metric tensor,
€.0-,b 7k = bin b, bUtT i = G Mt Hence, we haviag, = AA byn, gk =A¢ A'ge. When in doubt, we
shall give the metric tensor explicitly.
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dC = - M C'dx™ (31)

If one picks two vector€® at two neighboring points that are separateddiy and
satisfy eq. (30), and are (non-Euclidian) parallel redato I'm¥, then the covariant
differential:

K =dC + Ty dx™ (32)
vanishes.

We will see thatl'mk, just like the elastic deformations, implies the due
curvature, which characterizes the desired extent ofitize $tate of the body. The
guantitiesI mi (' mi, resp.) are called lamear or affine connectiorfalso araffinity). The
affine connection represents the central quantities efpdat of general differential
geometry that we require. We shall now occupy ourseltbsits properties.

One can already reach important conclusions abouthidggesof the body from the
symmetry properties dfmi alone. Next, if the paftyq of 'mik that is anti-symmetric in
| andk always leads to an infinitesimal rotation of the ve&* while proceeding through
dX" then one must hav@*dGy = — Mg C' C*dX" = 0. If one examines the distortion of a
dreibein under parallel translation throudti' relative tol nyiq then one establishes that it
likewise rotates without deformation. On the otherdhahe partl m of Mmik that is
symmetric inl and k contributes a pure deformation of the dreibein. For\ergi
connection there thus exists the simple possibilityseparating the deformation and
rotation parts additively, which therefore means thatther connection in question the
differencebetween the deformations (rotations, resp.) of tw@hboring elements is
infinitesimal.

Since the connectiohmi is a triply indexed quantity, it can possess principally 27
functional degrees of freedom in three dimensions. Tinisber is reduced to 15 when
one reduces to a metric space, that being the type od spavhich the distance between
two arbitrary points can be defined. Up until now, thasethe only spaces that have
appeared in continuum mechanics (see 8§ 9).

In the textbooks on differential geometry, one leatret the most general metric
connectiod mik has the form:

I mik = 0 mik + Dk, (33)
with the abbreviations:

h ik = (Om Gk + 01 Omk — Ok Gim)/2, (34)

Pk = T mge + Mkt = T pigme (35)

The meaning ofj then follows from:
ds}, = g dXdX. (36)

(dsk is the distance between two points in the natusaéstwvhose corresponding length
in the deformed state is characterizedjldy Therefore:

& = — (& — ga)/2 (37)

is the (Eulerian) deformation tensor that we alreasbd in 8 4.
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The relative rotation between the mass elements, whickescribed by, exists
independently of the elastic deformations of the body¢clvcan be completely described
by theh' ik part of ik by means of (37). In particular, the deformations camish, i.e.,
Emk = 0, while the rotations persist. If one considersdiegbein that gets translated by
the relation (31) to be theiedre mobileof the bros. COSSERAT then one immediately
finds the relation: Théw,x of I'mk describes the relative rotation of the Cosserats (th
structure curvature that results from it, resp.).

For CARTAN [41], the partl i« of a connectio mi that is anti-symmetric ihand
k is called the torsion. It has the transformatiorpprties of a third rank tensor, although
I"mi itself transforms by a complicated formula.

We will derive the relation:

M mik = Omik (38)

in 8 6, i.e., the Cartanian torsion is identical witklatiation density. However, by (35),
the previous relation (14) follows from this immediatelfonsequently, the Cosserat
structure tensor will be directly connected with theadiations; they cannot be realized
without dislocations. NYEJ0] has described these curvatures with the help of the
tensors:

K" m=— &™hni/2, (39)

which are equivalent thm, and were introduced by the definition:
de" =K"hdx", (40)

in whichd8" is the relative rotation between two neighboring elets. GUNTHER has

established the relationship between this and the worloséetat. It is very impressive
to see the simple manner in which curvature appears moitiern differential geometric

representation when it was so complicated in the bookhbyCosserats. Since the
structure curvature is given when the dislocation densithkewise given, the main

problem is the determination of the internal stres$ed are associated with the
dislocations.

These are very closely connected with bthgx, which are a measure of the elastic
deformation. From the meaning of thig,x we can therefore confine ourselves to the
consideration of the expression:

~ (Om&a + O &mk— Ok &im). (41)

The first summand is symmetricknl, and thus gives rise to a pure deformation, namely:
dC*= C'dg. (42)

Therefore, the rest of the expression, namely) &nk — ok &m), IS anti-symmetric ik, |
and gives rise to a pure rotation. It becomes:

dC(krot): Cl(aI Emk— Ok &m) d)(n = &kh d(gfkhaf Em d)(n), (43)
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in which the expression in brackets in the right-hand sitle i interpreted as a rotation
of C' arounddx™. (In the case wherg is a displacement field — henagy, = (Jg Sm +
OmSg)/2 — this expression becomes sim@(yot s).)

The aforementioned rotations (the associated curvattesg.) are coupled directly
with the elastic deformations; they vanish under reiaraf{perhaps under fracture).
Correspondingly, one certainly has load stresseseiggometrically simpler theory in
which the deformations, as well as the rotations, &edf One must carefully
distinguish the curvatures that are associated withf(d8) the (macroscopically) stress-
free structure curvatures that were discussed above.

If one covariant differentiates the connectip (FTmik, resp.) relative to the
distinguished index (and similarly forr "), and if one takes the anti-symmetric part
(symbol jp m) of the result then one obtains the Riemann-Caifsit curvature tensor:

rnmI.k = 2[an rmI.k + rnp.k rml.p] [nni» (44)
rnmIk = 2[an rmIm - gpqrnkprmlp][n s (45)

which is a very important quantity in the theory. la ttase of a metric connectibpm
one has thall nmi is anti-symmetric in not only its first pair, but al$® second, whereas
it is symmetric in the exchange ojmwith I,k only under restrictive conditions. Due to
t?ge anti-symmetry thus obtained, the Einstein tefidpwhich is constructed by way of
):

is thus equivalent to the tens®rhmi For I, one has the divergence condition
(SCHOUTEN B9], pp. 146): ) _

O = g d'r™, (47)
which can also be written as a conditionlgr, and is also called the Bianchi identity.
The right-hand side of (47) vanishes in a linearized theor

A well-known theorem of differential geometry saysithe curvature tensolr mi
vanishes then one has the following form for the comme€ :

M ik = A0 A (48)

In the case where the identity (38) is valid, the apbimetric part of eq. (48) is the
fundamental geometric equatiof)(cf. (14) and (27)), and the equation:

r=o, (49)

18 This formula is valid only in three dimensions. The definitionhef Einstein tensor that is valid for
spaces of arbitrary dimensions is obtained from the so-called tRrsor; one can find this definition in
any textbook on differential geometry and relativity theory.

Bitis easy to show that one must still understafi be the elastic distortion, cf. §6.
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in which we have replacdd,k by way of eq. (33, 34, 37), is the fundamental equation
for the determination of proper stresses (cf., (14) and.(ZFhce again, the equation:

r=o, (50)

is the divergence condition for the dislocation dgnsihus, the relationship between the
elementary statements of the theory and the diffedegeometric ones is largely
achieved.

Eq. (49) defines a coupling between the curvatureparand the deformation part
g'mi of the connectiofi i, which leads to stresses for a given dislocation densit

Apparently, eq. (48) (eq. (49, 50), resp.) appears to be aeewrt that turns into
the fundamental geometric equation (12). We must nowhakwould give us the right
to setlnmik (F’, resp.) equal to zero. This question did not turn up amgvimethe
elementary treatment of the theory, since eq. (25) gavevolution of the shape by itself
in the presentation that was developed there. At thist,pome recognizes that the
differential geometric approach is the most genera) and it raises the question of the
physical meaning of a non-vanishing curvature tensor (Einsgrgor, resp.). KONDO,
in addressing this questio(, 21], spoke of it in connection with “curvature defect
points,” as opposed to “torsion defect points” (dislace), which begs the question of
the physical meaning of the curvature defect points.

In contrast to KONDO (although it is really only a sl distinction), BILBY
and SMITH R4], on the basis of similar notions, were led to riblationl ik = 0, which
they interpreted as the physical condition for a chjatéice to be defined at each point
of the medium. We will discuss these important quastia 8 6-9. In the meantime, in
the next section, we shall show the identity betwiberdislocation density and Cartanian
torsion, which defines the foundation of the differdrthaory of dislocations.

§ 6. The identity between dislocation density and Caatearursion(>°)

In this section we shall show that the Frank-Burgerp [d4] that is often used in the
(integral) definition of a dislocation is identicaitivthe Cartan loop that was known in
differential geometry long before the notion of a diskion was introduced. Therefore,
we shall now briefly describe the Frank definition afislocation.

20 For this section, cf., BILBYZ#)], in particular.
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Fig. 2a and 2b. The Frank definition of a dislocation anystal.

Fig. 2a shows a real crystal) (with a dislocation (which corresponds to our deformed
state). The numbers define a closed loop in it thainbegnd ends at the poiRtand
encircles the dislocation. In the ideal crystgli Fig. 2b (which has nothing to do with
our initial state) letP’ be a point of the lattice that correspondsPfoand follow the
corresponding sequence of steps (primed numbers); eac stépein corresponds to a
step inb. At the step that closes the loopaitthere remains a remaind@iP' between it
and the lattice poinP’, the so-called closure defect. Frank then defined thecditson
with the help of the “Burgers vector.”

We would now like to express the closure defect withhiglp of the connection. For
this, we consider the real crystafrom a non-Euclidian standpoint in which we will pass
over to the Cartan basis. It will be assumed that\eators at two points that adx™
apart differ from each other by:

dC* = —/mCldX™, (51)

and are of equal length, as well as parallel to eachr §BieBY, BULLOUGH, and
SMITH [23]). From this standpoint, the real crystal becomesoa-Euclidian ideal
crystal, i.e., its smallest lattice vectors aretlal same length and are parallel when they
have the samke (k= 1, 2, 3). (We do not need to omit the singular valubeatenter of
the dislocation since the loop does not exist there.)

We now give a somewhat different description of thenkrédbop that one can
immediately recognize is equivalent to the previous ometfiis, cf. SCHOUTEN [39],
pp. 127). We imagine that the ideal crystal lies overrdal crystab in such a way that
the pointP’ lies over the poinP, and the ideal lattice is tangent to the real lattice
The first step of the loop makes the poihtdver 1 in such a way thhatis now tangent to
aat 1. We symbolically call this arrangemeritXL The second step of the loop brings
b into the arrangement '(2), which is notated analogously td (1. We now wish to
calculate the position of the poiRt in the corresponding arrangement; indeed, we use a
Cartesian coordinate syster) ©n the ideal lattica at the respective location with the
point of contact (e.gn’in the arrangement(n)) as the origin. We then desire to know
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the coordinates of the real lattice, instead of the coatesx* of the ideal lattice, to the
greatest extent possible.
In the (I 1)-arrangement,P’ has the coordinatesiixkin the aforementioned

Cartesian lattice. (The subscript 1 describes the nuaflibe step.) We will see that it
is generally permissible to replade”with dx“ when one has =m.

Under the following displacement of'(1) to (2 2) the point 1in the Cartesian
lattice with its origin at 2experiences a change of COOI’din&t?XK(— gx", resp.) Under
this displacement the vectdrP' | i.e., —(l:lx", is parallel translated fogx", i.e., it has
changed byd (ljx": X (lzlx' (ijm. Therefore, the coordinates Bf (relative to the
point 2 = 2) are—(ljx"—(zjx"+ i (ljx' dx". During the next step, the latter vector is
parallel translated overglx"so one obtains the position vectorRsfrelative to 3as now
bemg-gx“—gxk—gxk+rnmkgx'gxm+rmkgx'9xm+rmkgx'gxm.(The<xnnnbunons
of degree three in théX have been omitted.)

It is clear how to proceed from here. Once we araivéhe arrangemenQ( P) we
have traversed a complete Cartan loop. In orderltulee the closure defe@tP’ we
must deal with a summation that appears to be complicated.

At this point, we make the transition to the continudmaory. We let the lattice
constants go to zero and replace the individual dislmsitivith an arrangement of
continuously distributed distributions of infinitesimalresigth. We make the loop
sufficiently small that we can regaﬂdm,k as constant in the region in question (a

conclusion that one often uses in continuum physicg)e then write the closure
defecQ'P' as:

dX dX"+dxdfX+ dx d%+
1 2 1 3 1 4
+dXdX+dx df+--
b= dx+r,* 23 2 4 . (52)
n " ' +dX dX +--.
3 4
+..

Since the first summation is precisglyd X‘, one recognizes at this point that no
n

n
difference exists between the two sums, and to ma&egorto the other, one need only
let the length of the step go to zero (one can perhapsidey the computation of the
circumference of a circle with the help of a polygon sghmumber of vertices goes to
infinity). Likewise, one sees that with the afoemtioned replacement ogkaith

dx"the second sum in (52) can vary only by a term of third romléx”, since the
dlfference betweedlx anddx is only quadratic nuix Therefore, the latter replacement
of dx with dx is completelyjustlfled

The fII’S'[ sum in (52) vanishes, and the second one becpraeisely the surface
elementAF™ that the loop bounds (sign consistent with the rigirehscrew rule). Due



§ 6. The identity between dislocation density and Gatatorsion 25

to the anti-symmetry oiF™, the symmetric part df, < obviously contributes nothing to
the closure defect, and what remains is:

Ab* = [y X AF™, (53)
Since:
Ab = o AF™ = ¢ AF, (54)

is the continuum version of Frank’s definition ofldeation we have proved the identity
(38) between dislocation density and Cartanian torsiorus,Tiwve have not actually left
the realm of distortion.

According to BILBY, BULLOUGH, and SMITH 23], one can (with somewhat less
generality) easily express the closure defect in tefhedastic distortion. If one writes

in which e, is the Cartesian

K !

n
the coordinates oP’ at the locationr(’ n) as —Zd X'e
i=1 '

basis vector of the ideal lattice at the locatiohnf, dx‘ =A¢ dX. For a closed loom(=
Q’) one then has:

bex=QP = =5 d X A, . (55)

Sincee, is Cartesian, we can put it outside of the sum,we.can completely eliminate it

from eq. (55). With the help of Stokes’s theorem, tlamdition to continuum theory
gives:

b= -§dx*A¢ =4 [[(@,A -9, AdF™, (56)
and when the path encloses a sufficiently smafasarelemenaF™:

A =1(0,A -0,A)AF™. (57)
The image of\b® in the deformed staib* = A Ab*, which becomes:

Ab* = g *AF™, (58)
ami* =A0,A -0, A) /2. (59)

One can regard this as the proof of the assertidoatnote 19 in connection with eq.
(48).

In conclusion, we still have to mention a resudittls derived in many textbooks on
differential geometry or relativity theory and cengs the Riemannian curvature tensor.
If one parallel displaces a vect6f around the boundary of a surface elentgft' once
then the vector experiences a variation:

ACK = —iRym*C AF™ (60)
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In our case of a metric connectidmi is anti-symmetric in, k, so it follows thatdC* O
C. If one displaces a dreibein instead of a single vetim one sees that it will be
rotated, but not deformed. Thus, one can easily put eqintéGhe form:

Adik = = RumiAF™ (61)
or in the Einsteinian form (cf. [8], pp. 136})
Aw' =-RAF;. (62)

Therefore, ax is the anti-symmetric tensor that describes the iootaand ¢ is the
equivalent vector.

The relation (62) leads us to an intuitive meaning ffier ihcompatibility tenson -
which is also an Einstein tensor (cf., eq. (86}hat we used several times in the earlier
linear theory of proper stresses. If one excises asiglemenfF; that bounds a ring
out of a body with proper stresses and then cutsnietien the final rotation Bw' = -

n’ AF; (MORIGUTI [43], ESHELBY [44], KRONER 8], pp. 38).

From (61) it follows: Since the lattice orientationaotrystal, which we also assume
has already been deformed, can be defined at any poimhigh case, one no longer has
a crystal), the Riemann tensor of a connection thatrdees thdattice distortion must
vanish (BILBY and SMITH 24)]).

8 7. The concepts of the general theory

In 8 4 we characterized the deformed state with the bklhe elastic distortion
tensor fieldd'. If one knows\‘then one also know§d A", and from this, the
deformations and structure curvatures also follow by wagge. (17) and (18)A priori,
there is no need for reduction in order to be solvedHeA; thus, they involve nine
functional degrees of freedom, in general. From didlon theory it is known that
dislocation lines cannot end in the interior of a bodg;expressed this by the divergence
condition (26). Thus, the dislocation density has sncfional degrees of freedom. The
number of degrees of freedom in the causes (dislocationitidsn bulk forces) is
therefore, as it must be, equal to the number of degfde=edom in the effects (perhaps
characterized by the elastic distortions), namelye.nin

By contrast, the general metric connection has fiffeentional degrees of freedom.
The reduction to nine follows in the differential gedraetheory by setting the Riemann
tensor (Einstein tensor, resp.) equal to zero. Fromstaadpoint of differential
geometry, this step seems quite arbitrary, and one mustfdhe expect states in metric
bodies that are generally different from those df . In order to describe these states,
we have the connectidinmk, which follows from the deformation componegtsi (Six
degrees of freedom) and the structure curvature compofrenésdegrees of freedom).

21 The account ing] involves the assumption thB,x does not have to be anti-symmetrid,ik. All of
the remarks that relate to this must then be codedtéhe connection is assumed to be metric. In
particular, the distortions must be replaced with ratgtio footnote 1, pp. 135 d8]f
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The important question now is that of the causeseaxetgeneral states, i.e., the physical
meaning of tensor field' that the one sets equal to the Einstein tehor

We point out that the equation that one obtains byngetihe anti-symmetric part of
the Einstein tensor equal to zero is identical with ¢ineergence condition for the
dislocation density for the deformed state. One \ilist have to deal with the fact that
dislocations can also cease to exist in the int@fi@ body. Indeed, one obviously must
generally define the dislocation density as in § 4. Ittnie emphasized that the
definition of a dislocation with the aid of the Cartlbop does not have to forbid its
vanishing in a body.

Whereas the vanishing of the dislocation density aigoliés the vanishing of the
anti-symmetric part of the Einstein tensor, this is moé for the symmetric part, in
general. For that, we write:

r = g, (63)

in which we must repladémik with g'mi.

The h” thus lead to an elastic deformation, and with thatjnternal stresses.
Therefore, no Cosserat-Nye structure curvatures appeag we haveh,x = 0. We
would now like to show that one can realize such maestresses by the insertion of
matter into a body that is originally in the ideal staThat is essentially best explained in
the context of crystals.

This matter exists as a sort of atom and is found indds&l state. For example, we
can identify it with the crystal in sec. 2b. If wesant matter into this crystal perhaps in
the form of a new planar net that vanishes in theiorténren we obtain the real crystal of
sec. 2a; we have produced a dislocation line in the idgestal. However, this is
precisely what we cannot do, since the dislocation ali#ér the structure, in the sense
that that the Cosserat-Nye curvatbgg will no longer vanish everywhere.

We can therefore insert matter into the body in othays, namely, as so-called
interstices. Then we will elastically displace tlegular atoms, from which the planar
network will naturally also become curved. This is éfi@re bound up with the
componentg)' mik, and the elastic deformations are closely coupled thghcurvature, as
we described by way of eq. (43). We thus have two kinds aifemto distinguish:
regular matter, from which the ideal state is composed, artta mattey which gives
rise to elastic deformations of the body, and withobtctv dislocations would appear.
None of the regular planar nets of a body filled vextra matter can end in its interior.

The effect produced by the extra matter then consisterapressing the neighboring
regular matter closer together, and thereby producing ®@ldesformations. Every single
lattice atom can be regarded as an elastic dipole gasilvdescribe in greater detail in
chap. IV. Such a dipole issymmetrictensor 9. (It is symmetric because no torques
appear in its neighborhood.) In the sequel, the exatemwill be described by the
symmetric tensor field of a constant distribution las&c dipoles.

We now separate the individual mass elements, so dmeyreely stretch; i.e., the
stresses vanish, and the rest of the mass elementgaradstress-free (this is also called

22 A lattice atom does not generally push in all directitmthe same degree, and from this one arrives at
the tensorial nature of extra matter. The substitubibforeign atoms and holes works in a completely
similar way. They are therefore included in the ertedter. In particular, the sign of this extra reattan
also be negative at these lattice defects.
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Q
quasi-plasti¢ deformatiorg, compared to the state with no extra matter. Omeatso

use the symmetric tensor field of this quasi-ptaggformation to characterize the extra
matter.

The inhomogeneous introduction of extra mattersitbe regular crystal structure in
such a way that the lattice constants will varynfrplace to place and one obtains the
orientation from this. Such a lattice can exisestrfree in a particular non-Euclidian
(Riemannian) space. If one were therefore compeite take such a position in a
Euclidian space, for example, that the regular atdefine the sites of an ideal lattice
then this state would not be (force-) stress-free.

On the other hand, one can now think of a substémate when introduced into an
ideal crystal, has the effect that the body cag beltorque-stress-free in a non-Euclidian
(Cartanian) space (that it is not torque-stress-&ethat position in an ideal crystal, as
above). No detailed discussion of the manner bichwthis substance evolves in time
exists, but one can think of a certain microscdfyidaictuating distribution of interstitial
masses, which corresponds to the aforementionet/adguce of macroscopic torque
stresses and microscopic force stresses that wisisomed in the first chapter. We leave
these questions open, and choose to provision&llyacterize the given substance as
rotational matter. It has six degrees of freedom (in contrast torosgopic extra matter,
which has three), and therefore only half of itlescribed by the anti-symmetric pBPt]
of B'.

The fundamental geometrical equation in chaptes Iparticularly suited for a
gualitative discussion of rotational matter, whigas written, in the Lagrangian notation:

Rotf—-a=2a
If one decomposes this accordingly:

Q Q
J0= Rot £ + Rot w+ Grada,

Q
in which & is the aforementioned quasi-plastic deformatiomsde, which

Q
macroscopically describes the extra matter, thenrthtation tensor fieldw and the
vector fielda represent the rotational matter. By the fact Diata = — Div grada, one

has that the gradient part dineans the same thing B4!, whereas the Re(x?b part of 9,
as will follow from the calculations of the nextctien, does not contribute to the
construction of the Einstein tensor.

When we extend the theory of nine degrees of freedhy the nine degrees of
freedom of the extra matter then we should, we hapgve at a theory with eighteen
degrees of freedom. In fact, this does not hapgiene in the former theory we
artificially considered the dislocation densities external influences, and therefore as
givens. In reality, this is inadmissible. Extrattea and dislocation densities must be
given independently of each other. In many casasconception of the general theory
will involve the matter tensor B(6), the dislocation density (6), and the bulkcés (3)
being given independently of each other. We thtrébate only six degrees of freedom
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to the dislocation density, since Davis precisely equivalent witB™. We thus arrive at
the correct number of fifteen degrees of freedom.

Next, we will make an even further restriction by taj®!"! = 0. This corresponds to
simultaneously requiring: Rotational matter first becemm¢eresting in a theory in which
one also considers only the torque stresses.

The mathematical statement of the general theory weashall give in the next
section will be linked with the following assumptionethitial state is the ideal crystal
(k). As before, we are brought into the intermedidattes) by means of a plastic
distortionA¢ , which one may assume to be an aggregate ofésbiaaiss elements or as a
non-Euclidian state. We now introduce extra mattgry the mass elements, which will
alter the ideal crystal lattice from the outsidEhe new intermediate state is called)(
and we give the change in form of the mass elemedér the transitiond) — («7) the
nameA; . As before, we pass from the stat€) (into the final state by an elastic

distortionA..
8 8. The mathematical statement of the generalyhe

We begin with some notations. We gt cq, 9«4, a, denote the metric tensors of
the four statest], (), (k), (k), resp., or, e.g., if we need to measure the miistdetween

two points, which is characterized by the mutuglasation d%() in the final state, we
denote them byoy, Ca, O, a. The tensors that are defined on the final state
represent the total deformatiofl { k), the resulting lattice deformatiow (- K), the

elastic deformation” — k), the plastic deformationt (-~ «), and the quasi-plastic
deformation k — «”), are then%):

£ =(@u-b)2 & =(@-c)2  &=@-c)2 (2  (64)
P Q
& = (Ca —bw)/2, & = (gk —c)/2.

Definitions of the type (19) are valid for the termdex symbols. Each of the
deformations (64) is a constituent of a distortionwhich we previously employed the
kernelA and the indices that corresponded to the intetr@edition.

Our first goal is now to describe the crydtttice in the deformed state. Since the
transition €) — («x) does not alter the crystal structure (cf. 8§ 49,must go on toA). Let

B“(1) and B*(2) be perhaps two primitive lattice vectors at tweighboring mass
elements, let their distance apartché€, and let them be Euclidian parallel and of equal
length, so thatlB“ = 0, when £) is a Cartesian coordinate system. We now haatethie
distortionA’ ‘takes &) to (), andAKk. takes k) to (K). With both operations, one is

23 0On the grounds of the additivity of the deformation one easily give a prescription for the

Q
measurement of, e.gs, : Itis the deformation that the mass element thatreamved from the final state

suffers when the extra matter is suddenly removed from itruatestant application of the forces on its
boundary.
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treating a distortion of the crystal lattice; in tivstfcase, a stress-free (quasi-plastic) one,
and in the second case, an elastic distortion. Asudt,rése total distortion of the regular
lattice is equal to:

A=ACAL (65)

If we compute the difference between the lattice vecabove, for whichiB* = 0 is true
in the final state, then we obtain, by taking intocaot that8* =A‘B', B* =AfB*:

dB* = B¥dA'=A“B'(6mA)dX", (66)
dB* = - A "B dxX™ (67)
A= AlBmA. (68)

Anik is the connection that describes the resulting distoof the lattice. It has a form
that leads to a vanishing Riemann tensor, which means,r6that the orientation of
the crystal at every point of the body is also uniquelgdnined in the deformed state.

In principle, the lattice structure in the deformedestand thus, the connectidg,
can be measured; e.g., by Rontgenography. The state diotheis not, however,
completely determined by such a measurement, since idwodglsay how big the quasi-
plastic and elastic parts of the distortion were. Tlthe internal stresses cannot be
measured Rontgenographically in the presence of extrarpatteer. Additionally, one
can experimentally determine the decomposition thatsgive elastic deformations, and
thus, the state is completely specified. (We tempgraisregard the discussion of
rotational matter in the last section.)

The lattice connectioAnik may be brought into the form:

Amik = Cmik + Nmik, (69)

in the same manner as in 8 4 or 5 (cf., e.g., eq. (18ge}, from which their subdivision
into deformation and lattice curvature parts appears obvidDne now expresses the
resulting lattice deformation, according to (64), as shen of a quasi-plastic and an
elastic deformation; i.e.:

R Q Q
Chmik=amk—2&, =amk— 25mk—2&,=9mk— 2&.,.  (70)

With this, we can put the relation (69) into thenfo

Q
Mok =9 mikt Nmic = Amik +2&,, = Brmik. (71)

Here, g'mi represents the elastic deformation part bpd represents the Cosserat-Nye
curvature part of the deformed state that origmatethe process of dislocation. It
follows rigorously that the insertion of extra neaittloes not lead to stress-free structural

Q
curvatures. If one constructs the anti-symmetraot pf eq. (71) theg, follows
naturally. The usual remaining equation:

[ imik = Omik = A (Om A = O AL)/2, (72)
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which was the expression of the fundamental geomdteiorem in the reduced theory,
can guarantee the connection on the body only up to § psifar as the dislocations are
concerned. The certainty of the connection in the poesef dislocationsand extra
matter is given by the complete eq. (71), which is theeefo be regarded as the
expression of the fundamental geometric theorem ig¢heral theory?().

The termsg' mik andhyx appear in eq. (71) exactly as they do in the reduced theory
(cf., eq. (33)). Nevertheless, there is an essedifi@grence: the Riemann tensor of the

Q
connectionl"x does not vanish, since the ter2#® mx gets added tAnx , and the

connection mk No longer has a form that is reducible to one wittamishing Riemann
tensor.
We can proceed in essentially two ways:

(a) We write eq. (71) in the form:
Q
Ank =g'mk + Nmik = 2 mi (73)

and form the Riemann tensor from both sides. Thehbafd side gives:

Anmik = 2[0mAmik — € AnkgAmipl i = 0, (74)
which becomes:
Q Q Q
[an(rm”(_ 26" mlk) —Cpq(rnkq_ 28' nkq)(rm|p - 25' m|p)][nrri| = 0, (75)
in whichc™cq,=d°. If we set:
Q
Hm|k = hm|k — 2E& mk (76)

then we can easily bring eq. (75) into a form g@tesponds to eq. (27). ltis:
1 jnm L ilk _ _ Abar_ _ e —
21677 [On(—2&mk + Hmi) — € (—2&kq + Hikg) (—2&mip + Hmip)[} 6y = 0. (77)

The method for determining the internal stressas Was discussed in connection with

eq. (27) can therefore be employed here in a pedtiunaltered way. However, along

with the internal stresses, the elastic deformati@amd thus thg'mi, and, from eq. (71),

the lattice curvature and the connectiay are known, so that the state of the body is
Q

completely determined from the dislocation denaitg the extra matter thgt.
(b) The second way is closer to the considerat@m&ONDO. We construct the
Riemann tensor directly from eq. (71). The lefinthaide reads:

rnmIkE 2[8n rmIk_gpqrnqumlp][nm] . (78)

Q
24 It entails the relatio®\ A= aq — 26 - 2§, that came from (72), and this represents a condition
that §; must satisfy in order to maintain the connection. fGatnote 13.
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One observes the essential difference betwagrandl i It resides in the appearance
of g™, instead ot"9, and says thdt,mi is associated with the metric of the intermediate
state k), whereasA,mik corresponds to the metric of the intermediate gtgte Thus, if
we now construct the Riemann tensor from the rightdhside of (71), thed\yk also
gives a non-vanishing contribution. It is:

BnmIk = 2[an BmIk —gpq BnqumIp][nrn] (79)

and after a brief reorganization, it becomes:

Q Q <
Bomik = (2) g~ 4(C™ = 07) Ankg Amip — 97 (nkaAmip + Ankgénka)lfny,  (80)
Q Q Q Q
(25) = 2[26n Emk —4 gqun kg Em’ Ip][nnﬂ- (81)

nmlk
If we multiply (78) and (80) bye"s™/4 then we obtain th&instein equation for
continuum mechanics:

r' =g, (82)

which, when symmetrized, is equivalent to eq. (any therefore it can also be regarded
as the fundamental equations for the internal stewith given dislocation densities and
extra matter. We will explicitly write out eq. (Bl the next section.

The fact that the presently unknown quantitigsx enter intoB' is relatively
inconsequential when one employs, e.g., an itexrapproach to the solution of the
Einstein equations, as was p(rgoposed for the solufeeq. (27) 19]. Since theAni are

small of the same order as tlae, one can compute the linear terms, in which ore ha

setB® = (2§)nmlk. The linear computation givesnter alia,A’,, which is the first
approximation forAn. For the second step, one next compBlgawith the help oR\’,,

etc. Here, we can do without a detailed represientéor the solution of the fundamental
equation for the determination of the internalstes, since such a solution was given by

KRONER and SEEGERL]; also, cf. § 10.

§ 9. Discussion

Up till now, we have not spoken of the bulk forcetiose considerations are trivial
compared to the problem that we just discussece dan first solve the problem stepwise
for the case of vanishing bulk forces, and thealljnconsider the bulk forces by way of
a supplementary purely elastic calculation. If thnk of this possibility as being
implicitly contained in the representation of §h&m the theory of § 8 is the theory of
twelve degrees of freedom. One can completelyn@kothis theory with the theory of

Q

fifteen degrees of freedom by adding another tdvm to Bnk in eq. (71), which
describes the rotational matter that was suggest8d/. One thus formally obtains the
asymmetric Einstein equations.
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One easily convinces oneself that the equations ofetheced theory are obtained

Q
from those of the general theory when one&st9 in them (from which, it follows that
c”¥=g" - i.e., by ignoring the extra matter. Next, one Basx = 0, so the connection
Imi IS integrable, which is consistent with eq. (71). Eq. 8®)omes identical to egs.
(77) and (27).

In regard to eq. (60), BILBY and SMITF24] have characterized the vanishing of the
Riemann tensoA,mik as a physical requirement that must satisfied if acéais to be
uniquely defined at every point of a crystal.

This postulate also remains true in general. It is touehelattice connection Ay,
but not for the general connectidr,k, for which perhaps the nanstate connection
would be appropriate, since the state is uniquely determinétgl &y compared tén .
This state connection is the one that KONDO usedhdrevent that one should confuse
one connection for the other, there would be no cdiaian between the theory of
KONDO and that of BILBY, BULLOUGH, and SMITH. In pastlar, there also exists a
lattice connection the general theory, which charamsitihe distortion of the lattice in an
intuitive way with the help of the associated law ofghlal translation. Unfortunately,
this intuitive appeal of the state connection is furtieeluced since it no longer describes
a parallel translation dattice vectors. Thus, this connection is very useful, duéé¢o t
fact that it is an additive combination of the elaggformation components and structure
curvatures, since one can thank this additivity forgbssibility of separating the elastic
deformation from the usual effect, from which the deteation of the internal stresses
can be realized.

Q

The summands that get added to the t¢ps) ., in the expression (80) for the
Riemann tensoB,mk (the corresponding term in the Einstein ter8grresp.) seems at
the moment to be a “beauty flaw,” since it depemdshe lattice torsiol\. We had the
same “flaw” in our previous definition (10) of thecal dislocation density. Most likely,
this independence vanishes when one formulateSitistein equations in the coordinates
of the initial statek), since this is bound up with some difficultieadaup till now, it has
not been verified.

The notion of quasi-plastic deformation (distortioasp.) was already used in the
linear theory (cf. REIDER [45] and KRONER [46]).hd@ reduced theory will be ruled by
the equation:

OxB=-0xf =a. (83)

The dislocation density was defined as a measurthefperturbation caused by the
connection during plastic deformation. It can ptayrole in the determination of the
stresses, if the stress-free distortighis come about as a result of the process of
dislocation or other influences, such as the imsemf matter, temperature fluctuations,
electro- and magnetostriction, etc. One can tbegefise a theory of dislocations to
construct a theory of such quasi-distortions, agfihe a quasi-dislocation density)¢

%5 This definition of the quasi-dislocation density is certainly unrelatethtothree degrees of freedom
that are connected with Dy .
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a= —-Ox . (84)

If one has both dislocations and quasi-dislocations Gerge theory) at the same time,
then one obtains the equation:

OxB=a +a. (85)

Q
In general, one must compute a from the physical givens in the problem. If one
constructs the rotation of the right-hand side and takes the symmetric part (symbol
S), then what remains is:

Q Q Q
OxexO=n+n, = (ax0)’ n = (a=0)> (86)

One easily verifies that these extended compatibility taps are identical with the
symmetric Einstein equation (82) when one linearizes thenorder to compare them,
we write eq. (82) as:

2{eMe™ [On(~28mi + hni) — PU(—201q + Nk (—26mip + hp)T} iy = B”. (87)

If one linearizes the equations then one obtains g4,,81)):

. . Q
iz{ £Jnm£”an(—2£m|k + hpk—2 Emlk)} (i) = 0. (88)

Obviously, the first summand corresponds to the term £x[J in (86), the second
Q
summand corresponds 4p and the third one tp.

Q
If we add the quantity 2&mk, which characterizes the extra matter, to the quantity
hmik that describes the dislocation in eq. (76), as if axela resulting dislocation density,
then we also effectively used the introduced of the qiiakication in the nonlinear
theory. Usually, in the nonlinear theory, coupling telamse between quantities with
Q

different meanings, e.g., products lofx withemk, etc. If one ignores these typical
nonlinear phenomena then the physical result of tidinear equations is the same as
that of the linear equations, and one can clarify thetiomdamental questions about the
linear equations. One of the objectives of this endesvtr understand from this how
the knowledge of the linear theory already involves,ata@onsiderable degree, the
knowledge of the fundamental concepts of not only the relumet also the general
nonlinear continuum theory of dislocations and intestiasses.

We conclude this discussion with a remark on the réstmi¢co metric bodies that we
also employed in the general theory. We described thmmded state through the
connectiond mk and found the following form for it:

Mmik = 9" mik + Nmik. (89)
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In this, g'mk represents the (in general, incompatible) elastic defooms andhmi
represents the (in general, incompatible) Cosserat-Nigectsre curvatures, which
collectively contribute fifteen degrees of freedom. orfardifferential geometry, it is
known that the generatetric connection has precisely the form (89). The most genera
metric continuum is thus the Cosserat continuum, whghincompatible with
deformations and curvatures.

In the preceding statement, the word “metric’ means dlstance between two
arbitrary points of the body is well defined. This demanshtisfied by, e.g., a body that
is composed of nothing but fibers, or a body that is naotisly endowed with rips, as
one might obtain by perhaps rolling a metal piece, witendoes not make the holes too
big. Such a body is no longer a continuum in the usuaésemsis assumption was what
led us to choose the (provisional) terminology of “gehireory.”
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In this chapter, we treat the integration of the Einstégjuations. The most important
device for that is the stress tensor functjon The principal meaning of the tensor field
of stress functions in the continuum theory of dislmret and internal stresses has
already been discussed in numerous referergekd. SCHAEFER #7] originated a
physical meaning for the stress functions that seemscplarly adapted to the
differential geometric aspects of the theory: Thesstrfunctions represent the reactions
(in the sense of LAGRANGE) to the constraint comdlitthat the body must remain in
Euclidian space.

In [19], it was shown that the nonlinear problem of summingrternal stresses in a
series can be iteratively replaced with the treatroéhihear summation problems. It is
clear that one can also treat the second boundary-yabi@em ¢°) (the combined
problem — given internal stresses and boundary forceg-) nesa similar linear iterative
way. Thus, one first solves the linear problem, sotti@tensor field of stress functions
X’ satisfies the boundary conditions, but not the nonlidéterential equations (it is the
Einstein equation, in which the elastic deformationsehbgen replaced by the stress
functions with the help of the material law). Onestntherefore add a second tensor field
to Af’ that satisfies the conditions for a free boundan rovides for the satisfaction of
the differential equation. We will explain this in senwhat more detail later.

Now, the linear three-dimensional boundary-value probleaiready very difficult,
so one can presently shy away from more of such probleitnsh one will require for
the iteration. Insofar as the partial problems tsdiged are all of the same type, since
they always involve the same boundary, the intermedestgits of the first computation
can be further used in the solution of the following peabl Thus, if one would like to
carry out the computation, say, with the help of Grections then one would arrive at
the same function as the complete iteration wouldiigeo If one uses the method of
series development, which has such practical importdhea most of the work is taken
up with the computation of the matrix elements; howewae can then use them for all
of the iterations. In conclusion, the modern methodsoaiputation are particularly well
suited to the demands of iterative processes. The r@noddime that is required for a
program to carry one out depends only upon the numberps; $te computation time of
the machine itself increases linearly with this numbdfrom this standpoint, the
treatment of nonlinear problems does not therefore $edm much more complicated
than the treatement of linear problems.

In the following sections, we present generalities @nstihess function Ansatz and a
brief representation of iterative processes. In ghelsecond boundary-value problem of
the linear theory will be treated.

8 10. The stress function Ansatz

The equilibrium condition for the stresses is writieterms of the coordinates of the
deformed state:

26 \We restrict ourselves throughout to the particularly irtgearsecond boundary-value problem (given
boundary forces), which also includes the case of tleebivandary.
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Oid’ = 0. 1)
They will be satisfied identically by the Ansatz:

d=-%0 ¢k.j, ¢k.j =g Un Xim, (?) (2)
or also: ) . .
& =- " 00 ¥k, (3)

as Beltrami 48] first showed. Obviously, we have the following equagidor the first
order stress function tensgg ': _ _
Og!=0, &!=0. (?) (4)

Since condition (1) implies that the symmetric tengbihas three degrees of freedom,
one can impose three conditions on the second ordenaym stress tensgy; without
restricting to the manifold of stress states thatdemeved fromy;. The conditions are
certainly not arbitrary. We are interested only in “@ghible” conditions, which are the
ones that imply no restriction of the stressesr éxample, the conditionBx« = Xyy = Xzz
= 0 are admissible (MORERA)]), as arexyy = Xyz = Xox = 0 (MAXWELL [50]), Xx =
Xoz=Xez= 0, Xy = Xoy = Xzz= 0, Yax = Yz = Xzz = 0 (BLOCH B1]). There are no other
admissible combinations with three vanishing Cartesianpooents ofy; [51]. If one
computes the stress function tensor in non-Cartessamponents then the question of
admissibility can get very difficult. We shall retumthis notion.

The stress functions satisfy certain differential ¢igna that one obtains when one
addresses the (extended) compatibility equations:

- KO Oigme= 17, (5)

with the aid of the material law. (From § 8, these @guoa are indeed the linearized
Einstein equations.) Instead of eq. (5), one takes adyamtiathe (extended) Beltrami
form ([8], pp. 55)¢"):

N o’ +1Tlv(D‘Di—a”A)a::2@/fi, A=00.  (6)

These equations are true only when (1) is valid.

It has now been known for a few years that theesh@ntioned secondary conditions
for the stress functions can be formulated in saatay that one is led to problems in
bipotential theory or potential theory. Thus, theare essentially two different
possibilities, one of which leads to a solutiortttd summation problem, while the other
seems to offer certain advantages in the treatmkbbundary value problems. Both
Anséatze are in contrast to the aforementioned Gvaones, which clarifies their results.

a) In order to describe the Ansatz of KRONER-MARGUERREG, 52|, we

introduce the abbreviations:

27 Observe: The statemefts, = d' 9, is only true for Cartesian coordinate systems, aisdanly by the
use of scalar quantities thtis equal to the Laplace operator that one usually detgyi.
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Xi = ()(u 1+2V)(k6\,) G, q'= 26(/7" =1 “) (7)
with the inverses:
_( ' _V 1K \ |_( i k |\
)ﬁJ=KXij+1_2VXkaij)/ZG’ J Klf]_1+2 ,7k ])/ZG (8)

If we impose the following secondary condition (in agglovith the known Lorentz
convention in electrodynamics): )
O.x"=0 9

(from which, it also follows thafl, ¢ = 0) then by substituting this into (3) the Beltrami
equations become equivalent to:

Nyt =1, (10)
or:

NN Y =ph, (11)

resp. In an infinite medium the general solution of @ (9) is:

,u()-__mq"(r)n rjav’; (12)

hence, it is likewise the solution of the summatgoblem for internal stresses with a
given source density’. For a finitely extended medium the secondarydi@m (9) is
not automatically satisfied, so it needs more aersition 8].

b) The Ansatz of SCHAEFER is appropriate to thattrent of boundary value
problems, i.e., to the solution of the homogengmadblem that goes with (6), which is
the usual form of the Beltrami equations:

Ao +1 1 O o= 0. (13)

One splits the stress function tengdrinto a spherical tensof)(+©F /3) & and a smalll
harmonic deviato® ' —-©F &’/ 3 thusly:

X =0"+0d. (14)
If one introduces this while applying (3) to (18)en one obtains:

NO'=0, AQ= %}DiDj@ 0 (15)
from which, it follows that:

AAQ = 0. (16)

SinceQ only contributes to the anti-symmetric partgdf, we also have:
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N ¢W=o0. (17)

The right-hand side of eq. (15) submits to an elememgegration, and a possible form
for the general solution is, e.g.:

Q=

1
2

1-v

%00 U+ v, (18)

such thaQ can be expressed in terms of @é and another harmonic functien Since
the three-dimensional boundary value problem gytrharmonic, but th® " represent
six harmonic functions, over four more harmonicchizns will be further available. For
example, it is admissible to s, = O, = O, = Vv = 0, so one then has three harmonic
functions remaining, and the Ansatz takes on theXMKLL form [36]. The degrees of
freedom that come from the excess harmonic funsteam therefore be adapted to some
problem in question as much as possible. This sdenoffer a certain advantage over
the method of PAPKOVITCH-NEUBER3J, 38], which includes onlyone excess
harmonic function. As SCHAEFERAT] has shown, his stress functions are closely
related to those of PAPKOVITCH-NEUBER; these aushose the functiong, 0,0 ".
The latter are not stress functions — in contrasthe ©" — since the equilibrium
condition cannot b&lentically satisfied by using them.

From the generally quite simple integration of tight-hand side of eq. (15) one
needs to consider no further supplementary comsiti¢chaefer's Ansatz then has a
certain advantage over that of KRONER and MARGUERRE the treatment of
boundary value problems, which we will discusshi@ following section.

Now, we shall briefly carry out the iteration presefor the case of a body that is
acted on by boundary forces and likewise includésrinal stresses, whose sources will
be regarded as the dislocatiart$and the extra matt&'. We assume that the elasticity
law takes the form: )

& = Sik O + Syhikl dA"+... (18a)

SO we specialize our attention to an isotropic nnedi
If we substitute the stress functions into the teiimsequations (lI, 87), with the help
of the law (18a), then we obtain, as 119t

A’A’)Hj:%ij+P/ij+Qlij- (18b)

Here, the primed quantities in the right-hand sile connected with the unprimed
quantities in the same way that’ relates tor’ in eq. (7). Let the® and theQ’ be
defined as in19). (They include they’, the Q", and thed", moreover, in a nonlinear
form.) Ing’, we have now included the matter tenBbrwhich was not considered in
[19]. Eq. (18b) takes exactly the same form as ed) @ [19], and the method of
determining the stress functions that was presdmtegl can be largely applied to it. We
therefore seP’! = Q’ = 0 for the iteration, and determine the linegpragimation to
the stress function tens;p}, in which we look for the particular integral ¢t equation:
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DAY=, (18¢)

and add it to a solution to the homogeneous equation:
F%ij
NAx,=0, (18d)

S Rjj
such thay, =x,+x, satisfies the boundary conditions. The method for
R

determiningy, follows in the next section.

Next, we can compue’ and Q "fromy, [19], and we come to the next iteration,
which means looking for the particular integral to thaation:

A’A)?l =P +Q’, (18e)

Ry ) ) )
andy, supplements a functigyf that satisfies the boundary conditiong; + x; is then
the quadratic approximation to the stress function teriBbe. next iteration involves:

NDY,=P) +Q", (181)

etc. Since the required elastic constants of orderethnd higher have not yet been
experimentally determined, one must meanwhile satisfysedhevith the quadratic

Q )
approximation. In the event that perhapsis given instead oB', one then encounters
minor complications that, from the remarks at the @n8 8, can be regarded as already
having been resolved)(

8 11. The treatment of the three-dimensional seconddary value problems
with the help of the stress functions

The result of the treatment of three-dimensional dam value problems with the
help of Schaefer’s stress function Ansatz depends jaayehl skillful utilization of the
freedom that comes from the excess of harmonic fume@b’. At this point, we shall
not go into the admissibility problem that is linked twthat, which can become quite
difficult when one uses curvilinear components @t. One can possibly find clues in
[51] or [36].

We write the boundary conditions as:

neg=-ne+(@xg)=-(x0e+p=Ox] e [nx (1x P =2, (19)

" Editor's note: Meanwhile, it has been proved that it is sufficientdosider the boundary conditions just
once, namely, at the last iteration.
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in which®l is the surface density of the boundary forces,raiscthe external unit normal
vector. These conditions are satisfied when one sets

nx(nx@) =nx0h + nx(nxO)a (20)
only in the event that:
(nx0) e (nx)h =2A (21)

is true. From SchaefeB], one can obtain the solution of these equations asatlaéion
of an equilibrium problem in the boundary layer (“scaleThe required expenditure of
work up to this point is trivial in comparison to the complealculation. We therefore
assume that is given.

As one sees, i@ is derived by substituting (20) into (19) then it can be ehas a

completely arbitrary way. The appearance: @ understandable when one realizes that
one can add an arbitrary field of the folcm to theg without altering the stresses. From
this, we conclude that the freedom in the choice isfclosely coupled with the freedom
that we mentioned in connection with t8; a is largely determined by giving definite

values to th® ", and conversely.

In the sequel, we would like to restrict ourselves twmli®s whose boundary is
composed exclusively of (arbitrarily many) pieces of €s&n coordinate surfacesy, z,
= const. This is no restriction in reality since aas approximate any body in this way
arbitrarily closely. If we make the required assignn@gt= Oy, =0, = 0, i.e., if we
compute with Maxwell functions then, as one easilyfi,i the boundary conditions can
be written in the following way, in which one expllgitakes (20) into account:

X = const.: Oz Xyy + OzzXyy = — Ax €))
OxXyy = OH. + 0yl dz(6yH,)  (b) (22
OXzz=OyHy + & dy (BHy)  (c)

y = const.: axxXzz + aszxx = - Ay (a-)
OyXzz= OxHx + 0, dx (BH) (D) (22)
Aylx = OxHz + 0xJ dz(6Hy)  (c)

z= const.: OyyXx + OxXyy = — A; (@)
O Xz = OyHy + 6xJ dy (6xHy)  (b) (22"

OzXyy = OxHx + ayj dx (GyHx)  (c)

(The integrals give the contribution froa) Thus, theH; (i = X, y, 2 follow uniquely
from equations of the type:

(Oxx + Opy)Hi = A for X = const. (23)

etc. Up till now, no one has succeeded in getting frompitiist to the standard problem
of potential or bipotential theory, i.e., to link up withe boundary conditions. (The
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differential equations for the Cartesi@ are indeed coupled.) Such a coupling occurs
in the special case of a body that is bounded by twoitefparallel planeg = const., as
we shall now show, since the boundary conditionsxferconst. andy = const. are not
valid here.

Next, one computes the harmonic functga— xyy from its normal derivative on the
boundary:

00— Xoy) = Oy Hy — OxHy + 8] dy (6xHy) — 8, ] dx (ByHy).  (24)

One can pose this problem, as one chooses, as arfsstond boundary value problem

in potential theory. If one chooses the first tbhae computesd.(xx — Xyy) in the volume
and therefore also has:

Xeoo— Xy =1 dZ [0 = Xi)] + (X, Y), (25)

in which we have sdfx, y) = 0 if the stresses are to vanish at infinite.
With the knowledge ofux — Xy If we integrate the boundary condition (a):

(axx + ayy) Xxx =~ Az + axx()(xx —ny) (26)

then we are in a position to compute the functign®n the boundary. Since the normal
derivatives ofyxx on the boundary are given (b), the valueygfover the entire volume
follows from solving a standard problem of bipotential theoFjus, one also knovygy,.

One ultimately obtains the stress functpnin an elementary way from the second
condition (15), which one can put into the form:

-1
Ay o :m [Op(DXx = DXyy) + 04D Xux — DX27)] (27)
sinceAQ =Ay,, From this, it follows that:

Xez= Xox +] dz[ dz OB Xx = DXyy) + (1 =V) Axd + 2gX, y) +h(X, Y). (28)

Since we must sef(x, y) andh(x, y) equal to zero, for the same reasons as we gaxeab
for f(x, y), we also have ascertaingg,. It satisfies all of the differential equationsda
boundary conditions.

A specialization of the body that was treated herhe elastic half-space< 0. If
one setsy,; = zu+ v with Au = Av = 0 then, instead of the bipotential problem, onest
solve two standard problems of potential theoryhe possibility of the problem of the
elastic half-space giving way to three standardbleras in potential theory has been
know for some timed3]. Through the exclusive use of stress functidghis, was first
realized by SCHAEFERSp] in abbreviated form, although, in contrast to treatment,
he setxyz, Xzx, andxx — Xyy equal to zero.

The fact that the three-dimensional boundary-vadigblem for arbitrary boundary
reduces to the standard problems in potential potbntial theory (or even to a
“tripotential theory”) was very advantageous frame tstandpoint of modern computing,
since these standard problems can naturally bergaroged much better as problems
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with coupled boundary conditions. Indeed it is very queatdm whether such a
reduction to a standard problem is possible in completelgrgty; indeed, it would be
a great achievement if one could realize this simplibcator at least one important type
of body. Corresponding investigations were also useful Some special force
distributions, e.g., substantially simplifying the boundeoyditions (22), when one sets
8iAj - 8in =0.

In the cases in which the reduction to standard problent izafid, one must mostly
cling to the methods of series developments of@hén terms of harmonic functions.
One then suitably replaces thg with the ®” in the boundary conditions (22), in which
perhaps the solution (18) fér is satisfactory. For a curved boundary one must adapt to
the given conditions as best as one can.

We now see that there is advantage to the stressdnmethod when computing the
internal stresses on an infinite body with a free bamn As we remarked in § 10, by

R

solving the summation problem, one next obtains stresgtifunsy; , e.g., as Maxwell

R
functions BJ; these no longer satisfy the boundary conditionewNety; be the stress
functions that one obtains by solving the boundary valoélem and which one must

add toj(ij in order to obtain the resulting stress functignshat satisfy the free boundary
R g
conditions. If one replaceg = x; + x; in these conditions then one almost immediately

R
obtains the boundary conditions for the determinatibthey;. One can thus connect
the boundary value problem directly with the summatiarblgm without having to first

ascertain the stresses that are associated wiph. thehich are quite uninteresting. One

is thus spared much elementary computation, and thgratiens (23) also fall out. It is
obviously very impractical to go from the solution of themmation problem to the
displacements for the purpose of treating boundary-valudems.

Finally, let it be particularly emphasized that thess$ function Ansatz, in contrast to
the method of displacement fields, has its simplesmulation in terms of the
coordinates of the final state. For many nonlinear problmsis undoubtedly a great
asset; e.g., in any case where the external influeareegiven as functions of the final
coordinates. Naturally, other problems will arise thaturally suggest a treatment in the
initial coordinates. However, this type of problem seéobe in the minority.
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The appearance of para- and diaelasticity is very cldsddgd with the extra matter
that was treated in the second chapter. In § 7, werkechghat the extra matter that we
had introduced could be described as an elastic dipoletyleii$ie permanent or induced
elastic dipole (- force couple tensor) is, howeveg,déntral notion in the theory of para-
and diaelasticity (8 12).

Strictly speaking, this is already included in the gengrabry. For that reason, we
now endeavor to elaborate on a theory of para- arelagiacity, since we have special
applications in mind that already are largely suggestedhay title: We regard the
paraelastic (diaelastic, resp.) continuum as the arddltilge paramagnetic (diamagnetic,
resp.) body. One the one hand, we have that in stlwpay, in contrast to the theory of
chapter Il, problems with singular internal stress sesiare interesting above all others.

Because of the particular aspects of such problems tberythof para- and
diaelasticity possesses a certain stigma in the eyescontinuum mechanics.
Unfortunately, we must restrict ourselves completelyhie linear approximation in this
chapter.

§ 12. The elastic dipolé%

The most important notion in the theory of dia- and @lasticity is that of the elastic
dipole. It was introduced by BOUSSINESQ in a differeahnection, and is usually
referred to as a force couple today. For our purposeseeznmend the former name.
It allows one to see the analogy with electromagnghienomena
much better, and it also plays an important role @ itiiended R
applications of force effects to elastic singularitie$t is very
comfortable and familiar to speak of forces that originat a
dipole.

We now give themicroscopicdefinition of a (one-axis) dipole
in an elastic continuum. For this, we associate tadividual
forces #§ of equal magnitude and opposite directions with two 7

different points whose separation distance is descripedhe i 4
vector! (Fig. 3). These forces shall now be moved togethemalo

the linea that connects them and their magnitude ineseasuch a

way that the dyadic produgtremains finite. One then defines the

elastic dipole as the limiting value:

P=lim [f. (1) -
Figure 3. On the
In contrast to the electric and magnetic dipole eastic dipole definition of the general
is a tensor of rank two, which corresponds to the that the one-axis elastic dipole
elastic fields (stress and deformation) also hawenaadr character.

2| would like to express my heartfelt thanks to Herrn DD. ESHELBY, who has made many
suggestions about the theory of para- and diaelasticithjfarorrespondence on this topic.
9 For this section, cf., the presentation in LOVE’s Manatical Theory of Elasticityf).
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(We will see that in the elastic case a dipole dgnspresents a stress field in the same
way that a magnetic dipole density represents a miagheld.) As a simple dyadic
product, the dipole in (1) is a special case of the monergé (three-axis) dipole tensor.
One must write this as a sum of up to three dyadic praducts

P=lim(If +'f" + 0", 2

In this we mean, e.gBx represents two forces located on xhkaxis, say, separated
by dx and pointing in the + and »direction, which corresponds to a force couple
without moment (Fig. 4a), whil®,y represents two forces on tkexis that arelx apart
from each other and point in the + ang-direction, which corresponds to a force couple
with a torque in the-direction

i’-——dr—-— L———-d.‘t—h—
e ]

Figure. 4a and 4b. One-axis elastic dipole without (a) atid(lj a torque.

If one has a dipole witl?,, = Pyx then the mutual moments are annulled, so the
symmetric force couple tensor is therefore momem-frét can be transformed to the
principal axis so it then has a form as in Fig. 5.

If one contents oneself with macroscopic observattban for sufficiently smallthe
passage to the limit in (2) is no longer essential. ©Game then— e.g., in Fig. 5 —
enumerate all six forces by indices and obtain, whendenotes the position vectors of
their points of application by’:

6 . .
P=3 0 (3)
i=1
as the macroscopically observed dipole.

The following generalization now becomes important: 4 emall closed surfadebe
defined inside a continuum. Suppose that a surface forcéyd@ifg) with | d2l = 0 is

defined on it. At a great distance, this acts like a thpeadle:
ij — iqAl
Pl=[ xdA. (4)

We must point out here that the definition (4) of tigoék P is valid only in a continuum
that is elastically homogeneous in the neighborhoochefdipole. In particular, the
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elastic constants inside bimust be the same as they are outside of it. If deesahe
internal elastic constants, perhaps by the applicafianfarceA, then one likewise alters
the displacement field outside §fand also by volumes that are just as small as the
domain bounded bf; In order to arrive at a meaningful definition onasty however,
demand that the field of the dipole, which vanishes anitgfin the exterior off, is
uniquely determined outside bby being giverP’ and the elastic constant§)(

For the intended applications, the situation
in the neighborhood of the dipole is mostly y
very complicated. Nevertheless, one can
make definite statements about the dipole
when one perhaps considers the elastic
displacement field at a great distance from it
that we discussed before. _

As one knows, an isolated for& at the

\

origin of an infinitely extended elastically ~——-=="»~"="=—">--">
homogeneous medium produces a / ! X
displacement field: |
. < g
5(r) = Si(x) P (5)
with:
Si(x) =Fi(F, @) /1. (6)

Figure 5. The three-axis symmetric elastic

. . . dipole principal-axis representation.
(r, 8, ¢ are spherical coordinates.) Lil&, pole prncip P

Fi(d, @) is a tensor of rank two. In an
isotropic mediums; has the formA, = Lamé constants):

1(}l+,u

:% ) +2,uU‘Uj + aﬂAjr. (7)

Si

The displacement field of an elastic dipole is then
s=P' [ Sk (8)

it vanishes at infinity like 7. Eq. (8) shows the possibility of defining anstia dipole

in terms of the displacement field that it evokes great distance away from it. We
call the definition of a dipole by means of eq. (8 macroscopiadefinition. It is also
experimentally measurable since one generally doe&know the forces that enter into
an application of the definition (2) or (4), buetdisplacement field (8) is accessible to
measurement (more precisely: the deformation fildt is associated with the
displacement (8)).

%0 At close range, the elastic field that is associatetth @i can also be regarded as a quadrupole,

octupole, etc. An elastic quadrupole is defined, in ayaldth (1), by lim(P. The generalization of the

theory to such multipoles encounters no special diffesilt We will therefore ignore it, since, up till now
no applications for multipoles have been found.
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We shall now briefly derive the most important fornsuar the interaction of a
dipole with an elastic deformation field that comes from other sources.

Let a homogeneous, not particularly isotropic, continkube of the sort that is acted
on by boundary forces so that it exhibits a homogeneouosmafion. Suppose that there
is a dipole of the type (4) at an arbitrary locatiand the stress field’ is produced by
only this dipole. The interaction energy associated the field is then:

[(ogdv=g] oav. (9)
An application of Gauss’s theorem for the domains insfdeand outside of it gives:
[ oav=] Xa; kdf - [ Xy, df, + ] x'of*dR,, (10)

because no bulk forces are preséhp(’ = 0). By {) and &) we intend that one takes
the values immediately inside and outsidd,atsp. The third integral vanishes on the
boundaryF of the body since the conditions for a free boundaeyassociated with only

the o’”. The other two integrals give] X dA, if oy~ oy, dfi = —dA, and are indeed

the conditions for the stresses on the boundary suffacThis gives the interaction

energy between a dipole and a deformation field, wisithe potential energy of a dipole
in a deformation field;, as follows:

E=-P g (11)

This formula is also valid for variable deformation fgldince it can depend only on the
deformations at the position of a dipole when one brihgsdipole into a pre-existing
field.

In the elementaryderivation of the formula (11), which was given heretfor first
time, we regarded the forge as an external force. In the following sections, wit
establish that eq. (11) is also true whenAhare internal forces; one is then dealing with
a torque stress dipole, so to speak.

Intuitively speakingE is also the energy that one gains when one takediploé
from a place where the deformation is null to a plabere the deformation i. If one
has an inhomogeneous fiedgithen eq. (11) says that one gaitts= — P’ dg; when one
displaces the dipole througlX, and the deformations at the two places differdigy
Therefore, in an inhomogeneous deformation field theefor

Ki = P* [ & (12)

acts on an elastic dipole. Furthermore, from eq. (he)formula for the torque that is
exerted on a dipole in a homogeneous deformation fieldydafidws:

L*=28Pg. (13)

In our treatment of the problem we shall not speak mefe@ffect that the dipole exerts on
the surface itself. This force effect comes about duthe fact that for a given dipole
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strength the internal energy of a dipole, hence ettressions| o”’ & dV, depends on

the position of the dipole in the body. From ESHELE3H], one can understand this
force as also being the effect of “imaginary forcesit one ascribes to the fact that the
displacement field of the dipole that is given by tkpression (8) does not satisfy the
boundary conditions. Naturally, the variable proper enefgye dipole has nothing to
do with the energy described in eq. (11). On the contiaformula (12), one must add
the “imaginary field” to&; when one wishes to consider the “force the dipoletexan
itself.”

We make the following remark concerning the validity g6.e(11) through (13):
Since the elasticity law did not enter into the ddmraof this formula, it is also valid for
arbitrary anisotropies in the elastic constants. From) thseems possible that it is also
valid in the realm of nonlinear theory, although this aisbeen verified up till now.

Egs. (11) through (13) all refer to symmetric dipoles. hath can be said at this
time about the behavior of anti-symmetric dipoles, amdHis reason, one is referred to

[46].
§ 13. The paraelastic continuum

An elastic continuum is called paraelastic when ittams a (microscopically)
regular or irregular arrangement of permanent elagi@es that can be rotated; i.e., they
can be rotated about one (elastic) field direction.

From now on, we assume that the individual dipolesdastributed so densely that
one cannot macroscopically distinguish them, so they tan also be described by a
dipole density that is everywhere independent of posa®iong as the body is regarded
macroscopically. These assumptions simplify the despesstigations with no loss of
generality.

The mobility of the dipole shall not be consideredhat moment. We can produce a
single dipole in a continuum perhaps by the following ojpana:

One cuts out a small regidhfrom the volumeV/ and deforms it homogeneously and
without resulting stresses (perhaps plastically, wittwithout a change of volume) by

P

way of &a. With the help of the surface forceé®\—one makes this deformation go away
P
in a purely elastic wayg = — &« ), such that the total deformation®becomes:

P
& + &9 =0. (14)

At this point, one put8 back in the hole and lets it merge with its neighbochoThe
total deformation of the entire medium is then nddlshall now be deformed so that an
external surface force densi acts on the separation surface. Since the elastic
constants are the same everywhere in the mediengsociated displacement field is, at
least at large distances, the same as that of sticedgpole:

pi = jf X dA . (15)
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The body now exists in a state of pure internal stsgsse the external forces, which

P
maintain the elastic deformations of the internaloedé = —&«), are now compensated
for by the forces\.
As one knows, the permanent dipole is very simply esged by the “imprinted”
P

deformationga when one once more returns to the state of eq. (W¥jh the help of
Gauss's law k™ = 0, 0kX =4)) one then has:

| xda =-[ Xo*df,=-[ d'dv=[ o'dv, (16)
hence:
i = iy 17
Pl=] o'dv, (17)
when one has:
T P ik
o'=c" gy, o'=" . (18)

Eq. (17) shows that one can also consider the dipbléo be the total dipole that
corresponds to a dipole density:

o' = dP/dv (19)

P P
in the volumeV. Due to the relationship between’ and &« it seems reasonable to

P
regardo’ as an “imprinted stress”; cf., also RIEDESD]
By substituting (18) into (17) one obtains the importastilte
If one squeezes into an arbitrarily shaped hole (vel¥inin an elastic continuum
(elastic modulc™') a piece of the same material, whose form diffiexm that of the hole
by a homogeneous deformation, then one produces interesses that are the stresses

of a permanent elastic dipole:
. . P
Pl =cd® anv (20)

at a large dlstance If one exchanges the holetamdbmtents around an inhomogeneous
deformatlomd then mstead otm showing up in eg. (20), one obviously sees the mean
value IB & dV/V of €kl :

One can therefore produce a paraelastic continuum in vamehhas removed very
many holes in a homogeneous stress-free continuum ledithem in with material of
the same type.

We would now like to establish that the formulas thatenderived in the last section
(11) to (13) are also valid for the “internal” dipol@sternal stress dipoles) that were
discussed in this section. It is now clear that theesof the continuum outside bis the
same in either case when one chooses the sameesiyrfae forces¥, the field g4, and
the positiorx' of the dipole. From this, it follows that the boundforces that act on the
continuum that was imagined in either case producesatime slisplacement when one
moves the dipole from to X + dX. Under both operations the boundary forces perform
the same work, which is equal to the variation of thstE energy content of the body;
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indeed, the same assumptions are also true in the céise t&xternal” dipole since its
binding forcesA collectively do no work sincé dA’= 0. From this, it follows that the

dipole itself experiences the same forces through dedary forces (distant effect) or
through the deformation field (near effect), resp., €q. (12) is also valid for an internal
dipole. From this, one easily comes to eq. (11) whertakes into account the work that
was done by the forde when it displaced a point with null deformation tpant with a
deformationgy. One obtains:

J~ K dx“=[ PO g dX' =P[Ok g dX =P’ g, (21)

£ =0

and the result does not depend upon the path. Thus, oréiclarof eq. (11) as the
potential energy of a dipole in a deformation field for thse of an internal dipole, as
well.

Now, let there be a difference between the statethe cases of the external and
internal dipoles. Inside df one has, e.g., a dilatation for the external dipdten the
direction of A points outward; obviously, the opposite is true for thternal dipole.
Thus, we assert that the integral (9) gives zeroheririternal dipole, which clashes with
the known theorem of COLONETTH§)] that the interaction energy (defined by eq. (9))
between internal and external stresses vanishesefbher the potential energy of the
internal dipole is not defined as it was in § 12, but we nmgdtde the work done by
external forces (which also leads to the same reeuliekternal dipoles). For these
problems, one should confer the careful analysis of HBY [55], and particularly
[44], pp. 95, et seq., and als§],[§ 19.

The method of ESHELBY for treating the forces thagioate in elastic singularities
as well as the interaction energy is more general thas since not only dipoles are
considered. The same is true for the investigations FIDRR [57], which can be
regarded as an extension of Eshelby’s work. Comparedta#se, the derivation that
we gave in 8 12 has, we believe, the advantage of reiatndicity.

We must further mention that egs. (11, 12) can also tangl in a third way. Due
to the previously observed equivalence of the elastic @ipath an infinitesimal
dislocation loop, one effortlessly obtains, e.g., (1®mfrthe Peach-Koehler formula
([55], [8], pp. 86) for the force on a line element due to a dilon through a stress field
by integrating around the loop. We would like to at leastie down the Peach-Koehler
formula, which represents the analog of the Lorentzefdn electrodynamics, and is
fundamental to dislocation theory: In a stress felthe line elementlL with Burgers
vectorb experiences the force:

dR=d¢xo°b . (22)

We now come to the issue of the mobility of dipolé®t the bodies | and Il be two
cylindrical paraelastic continua with just as many h@teshaps spherical ones) of equal

sizes. Let all of the holes |n | be characterlzedxby a> 0, and in Il let there be just as
many holes characterized by a, £yy =a, .szz = a. If both bodies were of the same
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length before the introduction of the holes then aftesvidy | will be longer than body
II. (One thinks of the production of paraelasticity lasing perhaps the result of
introducing oriented ellipsoids into a spherical hole bakh Under the partial relaxation
that follows the introduction the ellipsoids that wemented in thez-direction will be
lengthened in the-direction, along with the neighborhood of the elligispito some
extent. Corresponding statements are true forseliijs that were oriented in tkexndy-
directions.) )

If one now imposes an external stre8son the samples perhaps a homogeneous
traction o, in the x-direction— then one will measure the same final deformations for
both of them, i.e., the same elastic moduli. Thenwe pointed out, there are no integral
interactions between internal and external streseeshe approximation of linear
elasticity (COLONETTI’s theorem).

The results are thus altered when one now givediffees the freedom to rotate.
(Perhaps one temporarily thinks of the connection betwdgoles and their
neighborhood as non-existent and rotates the dipateighr maybe 90) For example,

P P

one might rotate all of thex and &y dipoles in body Il into the-direction, such that it
has the same length as body [; it is thus plastiqalty if you wish, quasi-plastically)
lengthened. The rotation of the dipole is thus nothmmgabplastic deformation. If this
rotation is the result of applied external tractiorcés then they can do work, and they
therefore impose the constraint on the dipole thatioyt be in the direction of the field.

In most of the applications only discrete orientatiane possible for the dipoles, and
the number of “flipped” dipoles depends linearly on theliagpstress. For our example,
we can thus assume that partial fracture that is ptiopat to the external stress takes the

P P P
defect &x, &y to the state: under the action of the stress, The macroscopically
observed elastic moduli are thus seen to be degradeéadnst the usual Hookean law:

Oij — CijkI &, (23)
one obtains the law: ) ) )
&= Cljk| + rF','k' ) &d. (24)

& Is the macroscopically observed deformationr%ds the paraelastic susceptibility of
the sample.

The fact that the concept of a paraelastic continuauphysically meaningful rests on
the fact that many real bodies behave like paraelast@s. We will give examples of this
in § 15.

8 14. The diaelastic continuum

An elastic continuum will be called diaelastic whernacroscopically) regular or
irregular distribution of elastic dipoles is induced tirby the action of an elastic field.
One also speaks of the elastic polarization of theiumed

We make the same simplifying assumptions about the amemgef induced dipoles
as we did in the case of permanent dipoles in a paraetasiimuum. The medium then
appears to be macroscopically homogeneous again.
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A simple example shows the essential details. # aots on a continuum with a
small spherical hole in it with a hydrostatic presgten this hole shrinks in the manner
that an application of Hooke’s law to the magnitudehef pressure would imply. Very
simple elasticity-theoretic computations in this caseashmat the elastic field of the
medium is combined with the homogeneous field that dneires in the absence of the
hole, and the field of an elastic dipole that onegmes to be at the midpoint of the hole,
and indeed, in this particularly symmetrical case, a #ieecaenter of compression (i.e.,
the dipole tensor is a spherical tensor here, ciVEQ54]). One says that an elastic
dipole is induced in the hole by the action of the stres

If the body has no hole in it, but it does have a ssaltlerical defect with varying
elastic constants (an “inhomogeneity”) then the sata@emments are true for the rest of
the body as before. The induced dipole strength is theergiéy something else, and
indeed it has the same sign as in the case of the hole twhelefect is softer, or on the
contrary, harder than the rest of the body. A homeges stress prevails in the defect.

One obtains a sensible result when a body with spddenhomogeneities is subjected
not to a hydrostatic pressure, but to an arbitrary extdamaé that would produce a

A
constant stresg’ in the absence of inhomogeneities (NIESBEB][ ESHELBY [60]).
(-
The stress field will also be homogeneous inside thectéfe’ ), and in the exterior of

A "
the defect the stress field will be combined with stfiedd o' of an elastic dipoleP,,
that one imagines to be at the midpoint of the ball.

|

In order to ascertaio" andPi:{d a complicated boundary-value problem must now be

P .
solved. Ife'is an imprinted (stress-free) deformation (§ 13), whialstnhave a defect
with the same elastic constants as the matrix, théns to appear to be a permanent
dipole of precisely the same type and strengtR’ashen one obtains, by way of

example, when the defect and everywhere else arBcalfsisotropic (cf. ESHELBY
[60], pp. 389-390):

Spur(e’ ) = A Spur’), Dev(e’) = B Dev(s"). (25)
Spur(e’) = (A + 1) Spuré’), Dev(e') = BB+ 1) Dev(e' ), (26)
with:
K -K . Gg-G
ASK=K)a-K’ > G-6)pG’ &0
K _11l+v 2K+6G_ 2 4-5v

B=¢ : (28)

T +4G 31-v' 5K +4G 15 1-v

Dev stands for “deviatorK;, G,, andK, G are the compressive and shear moduli in the
(-
defect and matrix, respu,is the Poisson number of the matrix, and finallis the elastic

deformation in the defect, hengd= c' &' ForaandSwe havei <a<1, £ <p<
1_85 . | A P

One easily verifies that’ ands’ have the same sign whereas the siga'dhence,
the induced dipole) is equal to the latter signy aren the defect is weaker than the rest
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(- A
of the body. Furthermore, if"is greater or less than' depending on whether the
defect is softer or harder, resp. The converse idarube associated stresses.

All of these statements, in particular the ones ablmaithomogeneity of the state in
the defect, are also qualitatively valid for ellipsoidigfects, and also for anisotropic
elastic constants in one or the other sub-bodies. @atargly, one then deals with
substantially more complicated formulas instead of &tfg.4nd (26).

One can now produce a diaelastic continuum in which osadraoved very many
small cavities from a homogeneous stress-free continana then filled them with
matter with other elastic properties in a stress-ivag, or simply left them empty. The
diaelasticity brings about a reduction of the effeciiwe macroscopic) moduli of the
sample in the event that the defects are softertti@rest of the body; in any other case,
one obtains an increase in the moduli. The reducti@ste¢bmes about, e.g., as follows:
We assume there are macroscopically homogeneousestddsa the sampled’ is then
independent of the elastic properties of the sample agvén only by the external
forces (by traction tests in tlzedirection one has, e.gg;; = const., with all other stress
components vanishing). As we have already establishedn¢bh@ deformation of the
(weak) defect is greater than that of the rest of thaypbut the opposite is true for the
mean stress. Consequently, the mean stresses adsthefthe body must naturally be
greater than the stressgs The surplus consists of precisely the stressestiegspond

to the polarization of the medium, which are thessteas’ , = g (cf. § 13, perhaps
eg. (20)). Thanks to this induced stress, the mean defomwitthe rest of the body is
greater than the macroscopic deformation of the bodl defects, and the mean
deformation of the defect is even greater. Hooke’s law:

d =c¥ & (28)(?)

which is valid for a continuum without defects is nogen valid for the macroscopic
deformationg , but one has the law:

ij _ (Cljkl |]kl) & (29)

withr as the diaelastic susceptibility.

In the case of hard defec,ﬁ@ Is obviously positive eq. (29).

Again, the physical reality of the concept of a did&damedium lies in the fact that
many real bodies behave diaelastically.

In the former Gedanken experiments, we have ejimemedcertain cavity stress-free
elastic continua with matter with tlsameelastic properties, dilled it with matter with
other elastic properties in atress-freeway. The continua are then purely paraelastic
(diaelastic, resp.). In general, one gam matter withother elastic properties into these
cavities. When the defects are mobile, this givestoiseparaelastic reduction of moduli,
and, at the same time, to a diaelastic reductiondass, resp.) of moduli depending on
whether the defects are softer or harder than thefése body.
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8 15. The physical reality of para- and diaelasticity

We shall now discuss some examples of the phenomwiepara- and diaelasticity.
The solid matter that one finds in Nature generallyaasystalline structure. An ideal
crystal shows neither para- nor diaelasticity. Hoave¥f one brings — say interstitial
atoms into an ideal crystal then the forces betwibenadjacent atoms will be altered;
something will generally be forced between them. Antielageformation in the
neighborhood of the interstitial atoms is produced fdiks off at large distances likeri/
One can therefore macroscopically regard the intiastttorns as an elastic dipole.

In general, the interstitial atoms do not push on déswith the same strength. For
example, a carbon atom in iron represents an eldgiae with tetragonal symmetry.
The components of this dipole may be determined experaihgrand one obtains §],
pp. 153):

P =11.2[eV], Py=P;,=4.6[eV], Py=P,,=Px=0, (30)

when one denotes the cubic axes of the iron crystal lyy z Whereas, by eq. (12), a
spherically symmetric dipole experiences a force onguph the hydrostatic part of the
deformation, the tetragonal dipole (30) responds with, a.pure shear deformatigg —
&y In addition. For example, the deformation fieldsofew dislocation is a pure shear.
The description of the carbon atoms in iron as (spHbrieymmetric) centers of
compression that was attempted in previous approximatiarssiéd to no interaction
energy between screw dislocations and the carbonsatomon. This was qualitatively
corrected by COCHARD, SCHOCK, and WIEDERSICHKI1][ by considering the
tetragonality of the distortion produced by a carbomatérom this, it emerged that that
the aforementioned interaction energy had the samer @f magnitude as that of a
carbon atom with a step dislocation, which produces a mettn field with strong
hydrostatic components. This is an example of a typesuiit that always reappears.

For many material properties of commercial iron the af the carbon atoms varies
quite widely. The elastic behavior that was largely dieed by egs. (11) to (13) helps to
clarify many observed macroscopic properties of irorheré have already been some
important results; e.g., on the meaning of the knowetating limit effects (COTTRELL
[12], SCHOCK, and SEEGER6]), and the Snoek effectq], [64], cf. also B], § 31).
For the former, the motion of the carbon atoms endéformation field of the dislocation
of the iron is decisive, since it can lead to a blockafighe flow of the body’s
responsible dislocations. For the latter, it is ttine flipping of the dipole into the field
direction by the action of a traction stress that generally give rise to a strong
mechanical damping of the body. The Snoek effect isigaigcthe verification of
paraelastic flipping behavior that was described in 8§ 13.

We will now satisfy ourselves with these examplethe effects of interstitial atoms.
The carbon atom in iron is a typical example foe thumerous other possible
combinations whose mechanical behavior is likewise lgrgeverned by eqgs. (11)
through (13).

Some other important pointlike lattice defects are ifmreatom substitutions and
cavities. These exist at the regular lattice siteslike@vise the force behavior in their
neighborhood. In a simple cubic lattice they hawicl symmetry and can therefore be
described as spherical dipoles. However, from eq. (1)harical dipole has no torque
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so these lattice defects can give rise to no parastgsti This happens in very few
symmetric lattices and all of the other ones ateradl when perhaps two such foreign
atoms or a pair of cavities appear together. Such pa¥e -+ also in a cubic lattice — at
most tetragonal symmetry and can thus lead to effeatsate similar to the ones that we
previously discussed in the example of interstitiairecf., e.g., ZENERG]).

All of the lattice defects that we discussed up till neng also diaelastic since they
represent regions in which the elastic constants hage akered (“inhomogeneities”).
Meanwhile, this diaelasticity can generally be provedyomhen there is no
paraelasticity, as well, since permanent dipole momar@syenerally stronger than the
induced ones. For example, two spherical dipoles is@mnoipic medium exert no force
on each other, because, from eq. (8), the deformagtuhdf a compression center has no
hydrostatic part. In this case, the interaction betw®en such defects ignores the
reciprocal elastic polarization of the lattice defel@RUSSARD 65|, TELTOW [66€],
ESHELBY [67]). The diaelastic effect due to foreign atom subBtih and cavities is
therefore probably important in face-centered cubiccksti

There are numerous other macroscopic pointlike lattitectiethat lead us to suspect
that they would produce elastic behavior that is simiathe aforementioned. Among
them are such interesting defects asRkeenters in alkali halogenides (JACOB&]).
Also, the mechanism for mechanical relaxation in itwat was discussed by BASG9]
ultimately rested on similar effects. We cannot go ithe multiplicity of phenomena
any further here, so we refer the reader to the so@ppear survey article of ESHELBY
[70].

Another class of applications for the theory of panad diaelasticity is that of bodies
with microscopically large defects that have differpnvperties from the surrounding
matter. For the treatement of such bodies the teesdINIESEL p9], and especially
ESHELBY [60], for spherical and ellipsoidal defects have shownbéo particularly
useful. For these applications, we also refer tathiele of ESHELBY Y0] and mention
only two more results here.

The elastic constants of macroscopically isotropityggstals may be computed
exactly from the constants of single crystals by fhet that the polarizability of a
crystallite that is composed of polycrystals vanisheébénmean{l].

b) The opposing obstruction that the crystallite presentise plastic deformation of
polycrystals, which comes about in a favorable ori@mator the crystallite to begin
flowing, is then the least favorable orientation, anglalys an essential role in less than
1% of all deformations. The method by which such a computas accomplished
follows from the remark that an initially flowing crygdlite creates elastic dipoles, which

P

corresponds to plastic deformati@n inside of a basic substance that is only elastically
deformed (cf. eq. (20)). The internal stresses thathaieproduced impede the favorable
orientation and demand the unfavorable orientationdrctiistallite to such a degree that
all crystallites can flow steadily in less than 1%abfdeformations in practice. The more
gualitative theory of this behavior that was developed b EROUGH [72] therefore
plays its greatest role for very small deformationsRQNER and DEBATIN,
unpublished).

Here, we can give only a small sample of the multiylicf paraelastic and diaelastic
phenomena, but we still hope that this brief representauffices to give an impression
of the uses and possible applications of the theoryraf @ad diaelasticity.



V. Summary and Outlook
8 16. Dislocations as elementary sources of interredsts

In the previous treatment of the continuum theory dbdaions and internal stresses
[8] the notion that “the dislocation is the elemewntsmurce of internal stresses” occupied
a central position. This idea laid the groundwork for tliewving argument:
In a linear theory of internal stresses the stremssar field satisfies the divergence
condition:
Div 0= 0, (1)

and the material law has the usual form for the liedasticity theory:
Ou = Cijkl &kl- (2)

Any symmetric tensor fiel@drthat has the form Rag satisfies relation (1). Thus, in an
infinitely extended medium there are also stressesnwio external forces act on it,
namely, the internal stresses. Obviously egs. (1) anar€23till insufficient to determine
the state of the medium. We are missing the comditimt we are dealing with a
continuum that is connected with the body in question.that point, we will make no
presentation of the circumstances surrounding statisinternal stresses. We assume
that the body, which was initially in an ideal states subjected to such operations or
processes that it ultimately remained in an alterede,staamely, a state of internal
stresses. Which type of operation or process we #&iagaabout is unimportant; the
possibilities are numerous. Therefore, since we amstagcting a continuum theory we
demand that:

a) The body, as a continuum, is connected initially andlfinal

b) One can identify the body in the initial state vtk body in the final state. We
have not especially insisted on this condition up tMnsince it is self-explanatory, so to
speak. Forthe moment, it is therefore good to distussome degree.

We would like to understand condition b) in the follogvimanner: If we direct our
attention to an arbitrary mass element of the badie initial state (perhaps we color it),
then this element will also be found again in the finates although it will be altered.
We thus exclude the possibility that the mass elemegittrdisintegrate into small pieces
that are no longer connected. Furthermore, mass elerti@at are close in the initial
state shall also be close in the final state, andlyinale will not allow the entire mass
element to vanish or for new ones to appear. On ther dtind, the introduction or
removal of mattefrom the mass element is permitted. These are the derniaaidsne
must reasonably place on a continuum theory of soliielso They may be summarized
mathematically in the form:

Rot & =0, 3)

in whichﬁ‘3 is the total distortion tensor in the linear theawyd is given by the sum of

G G
the total deformatiorg and the total rotatiom.
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One can now remove a mass element from the finaé dtaat has an elastic
deformation of —& from the relaxation and thus the rotatianthat the structure (the
lattice) sustained compared to the initial state. We tbal sum ofe and w the elastic
distortion tenso (in the linear theory), and, in place of eq. (3), witenr

RotB=-Rot (F-pP =y (4)

It so happens that one can evaluate the right-hand &ities @quation when one has
sufficient precision in one’s knowledge of the operatiand processes that take the body
from its initial state to its final one. We thus aelgl (4) to egs. (1) and (2) as the third
law. The system of equations thus obtained is theona can easily show, sufficient for
the determination of the internal stress state frbm ‘tsources”y. The associated
computation gives the incompatibility tensgr X0)° and the stress functions, and is
always the same as the computation that may haveesldo yas a result. If this were,
e.g., a plastic distortion thes? — Swould be the plastic distortion teng8r, andywould
be identical with the crystallographic dislocation dgnai If one treats an insertion of
extra matter or some other quasi-plastic distortbentf® — B is the quasi-plastic

distortion tensoj®® andyis the quasi-plastic dislocation densi(lgry(”).

We are now close to regardingas a generalized dislocation density, as well as
regarding it as the origin of internal stresses. Fitbm standpoint, the following
statement is therefore valid: The dislocation isdl@mentary source of internal stresses.
In this picture, it appears that, e.g., the elastic dipslequivalent to an infinitesimal
dislocation loop (the complete dipole tensor is edaiMato three dislocation loops), as
was shown ing].

We emphasize that this is only one possible standpointhwias its analog in the
theory of the magnetic fields of stationary curremsthe Amperian equivalence of
magnetic dipoles and infinitesimal current looff. (

Another standpoint that one can take is to understahdhdalislocation density only
relates to the part ofy that describes a plastic distortion: These are ttien
crystallographic dislocations that are used in crystadolgy, whose Burgers vectors
must principally be a lattice vector. From this standpane then has other sources of
internal stresses, namely, as long as one remains ¢chamies (therefore temperature
fluctuations and magnetic effects, etc,. and their@ata stresses may be disregarded in
the computation of the internal stresses), one hapamtlike lattice defects, which are
elementary elastic dipoles. This is the standpoint ttatdifferential geometric theory
comes to next, in which we clearly distinguish betwekea extra matter and the
dislocations. Thus, it was remarked in § 9 that the fatandpoint also has its
justification in the general theory.

Finally, it may be easily shown that there is a decoitipaf the density that leads
to no internal stresses, but only structure curvatu@se obtains internal stresses only
when the incompatibility tensoy «[0)° does not vanish. For this reason, one can, by the

31 In this section, we shall not go into the possibilitst dislocations might end inside of the body, which
is still problematic at present.

32 This standpoint was also taken by DEHLINGER[in his abstracted presentation on the special
needs of metallurgy, which especially suggests the pagsitfilapplications.
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same right as one did witjy declare thaty( x)° is the source of elementary internal
stresses. Since this standpoint also has its jusifican the general theory — here, the
vanishing ofy x[)® means the vanishing of the Einstein tensor that acied with the
Christoffel symbolgy' mk — we have shown that the basic concepts of the ltheary are
abundantly manifest in the general theory. Which ofhheet standpoints one chooses in
a special case depends upon the physical details of themroBor example, the theory
of para- and diaelasticity obviously belongs to the sestanatipoint.

8 17. The unsolved problems

In this section we shall direct our attention to s@m&blems in the general theory
whose solutions remain a disturbing void to date.

For the moment, we remain in context of the statipnheory, and we begin with
geometry. It is completely justified for one to shattin these spaces the reduced theory
(nine degrees of freedom) is practically complete. Fueddéah unsolved problems do
not remain.

Something less far-reaching is our knowledge of the threeeeegf freedom that
belong to the (macroscopic) extra matter. Above thk, problem remains that was
mentioned in § 9 of the formulation of the Einstein eémuns in the final state, for which
8ne hopes to find solutions that might describe the exiion between the deformation

& that describes extra matter and the matter teBsowithout the intermediary of
introducing any distortion tensors (as we did in (80)), aeshn the form:

) S Q
BIJ :_i gnm g[E (2£)nm[é' (5)

The problem of the last three degrees of freedom iengafly unsolved. The
appearance of dislocations that end in the interior pgreeg difficulties in the analysis.
Since the applications have not yet suggested such dislesaup till now the
requirement does seem very urgent, but from the staridpiolandamental principles, it
is naturally desirable.

On the other hand, there is actually an ongoing investigabif the problems
connected with the Cosserat torque stresses, partctharquestion of the material law
and the question of solving the field equations. Thesipiy of understanding the
internal stresses due to dislocations continuum mecHhnioathis way — not only
macroscopically, but also microscopicatlyis very attractive since at this point in time
very little can be said about the possible effects.

Certainly, the greatest deficiency in the foregoing sitmai® the absence of a
dynamical theory, which, above all, should treat tietion of dislocations and foreign
atoms (extra matter). The importance of latticeedisfin all phenomena that pertain to
solid bodies shows from the outset that this is adsta rich domain of applications for
such a theory.

The dynamical theory must go beyond the present sfatdeotrodynamics; it is
undoubtedly impossible to arrive at such a theory thatesgps the dislocations
(velocities, resp.) as a vector field, i.e., reducehbree functional degrees of freedom.
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Such a dynamical theory can make interesting effectedo light. It was FRANK
[74] (*® who first succeeded in computing the motion of an isdlalislocation, which
then gave the sound velocity as the limiting velodisttthe dislocation can attain at
most, as with a particle with non-vanishing rest mass tha velocity of light. With
increasing velocity a contraction of the stress ftelat can be described by formulas that
are completely analogous to the ones that one findseincélse of electrons that are
accelerating to higher velocities. There is alsoi of special relativity theory, in which
the velocity of light is replaced by the velocity ousd. Since one generally has various
sound velocities the multiplicity of phenomena is viarge.

On the other hand, by the irradiation of samples actas it is now possible to bring
light atoms with supersonic velocities into the bodich generally gives rise to a
“sonic Cerenkov effect.” For “slow particles” the associatedckl waves fall into the
hypersonic regime. The most recent progress in thisnegjives hope that in the
foreseeable future it might be possible to experimeneahmine (e.g., to count them)
these waves and therefore the particles produced. &b af problems that is presently
so important, that of radiation damage in solid bodwesy places an increasing number
of possible applications at our disposal, not only ferdtationary theory, but also for the
yet-to-be defined dynamical theory.

Finally, we mention another large and urgent unsolved probilamely, the ultimate
specification of the connection between the continuwarthof dislocations and internal
stresses and phenomenological plasticity theory(thigcation of domains, resp.). Only
through the selfsame application of this theory carsaree the problem that was stated
in the Introduction under (1), which one could call thesib problem of continuum
mechanics. The specification of the connection milgdn follow perhaps along the lines
defined by BILBY, GARDNER, and STRORY], to whose work we refer. KONDO
[21] also pursues the same objective in a somewhat ditferayn

8 18. Relationships with general relativity theory

Every expert on general relativity theory who studiesgéneral continuum theory of
dislocations and internal stresses will recognize great similarity between the two
theories, which will considerably enhance his understgnaif the latter one. The
general continuum theory has very much to thank genelativity for: Through the
emergence of this theory the development of higher diffelegeometry was given
considerable impetus, and it took on the present eleganttfat it presents, as well as
representing complicated relationships in the simplessw

In comparison to general relativity theory (its extensresp.) the general continuum
theory is free of any speculation. It now remainsydnl apply established laws to its
derivation. This shows us that this theory can be deghias a consistent theory of
physical reality in which the notions of connection, Eenstensor, etc., still work.

It has been know for some time that internal stressese something to with
Riemannian geometry, but previously no one did anything withkifsvledge. It is
noteworthy that we now know that Riemannian geometnyush too narrow in scope for
continuum mechanics. The number of functional degregsexdlom must be raised from

33 SAENZ has a given a summary presentatits). [
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nine to fifteen: The general metric connectionk appears in place of the Christoffel
symbols. All of the states of the continuum that @towed by ik also occur in Nature.

The questions that emerge now are: Is there any physg=ikible basis that allows
us to subject the Universe to such a drastic reductiofiRieraannian geometry? Is there
a basis for assuming that the Universe can be described dmyinection that is less
general than the most general metric connection? T&eare such basis in continuum
mechanics, and it might be quite difficult for us to fonk for the Universe.

We have already regarded the continuum in its deformeel fsteth the non-Euclidian
standpoint, in which we joined with BILBY and his co-workdrs defining the
connection by the use of a non-Euclidian law of paratkhslation. In the Riemann-
Cartan continuum thus obtained, e.g., an isolatedsiitial atom moves like a star does
in the Universe. This has certainly not been verifiedohyet. However, there is
certainly no doubt that just as the latter follow geadéses so do the interstitial atoms,
as long as they are subjected to no forces. Thesfdheg originate in the stresses on the
interstitial atoms cannot therefore be computed, angdppear to be transformed away
(in all probability) through the introduction of the néaw of parallel translation, just as
the gravitational forces are transformed away by the dottion of Riemannian
parallelism. (Here, we shall ignore the details thatlattice structure stipulates for the
real continuum in the case of interstitial mattemhis picture also shows the physical
similarity of the two theories very incisively.

We shall not go into any speculation here, since wee hasany more such
observations, because we believe that an ongoing invéstigat the connections
between general relativity and the general contintheorty of dislocations and internal
stresses can be of considerable benefit to both tlseorie

| would like to express my heartfelt gratitude to my vaten teachers, Herren
Professoren E. FUES, U. DEHLINGER, and A. SEEGERtHeir friendly interest and
for providing the impetus for this article. Herrn Pr&éEEGER deserves my special
thanks for numerous conversations on the general aadedeproblems in spaces of the
type that was treated. Moreover, the foregoing wds& grew out of many suggestions
in discussions with Herren Professoren K. KONDO, BHBEFER, W. GUNTHER,
and Herren Doktoren J. D. ESHELBY, B.A. BILBY, and R@eder.
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