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By the general theory, we mean the theory of a continuum whose deformed state is described by 15 
functions of position and time (i.e., a theory of 15 degrees of freedom).  Developing the views of 
GÜNTHER further, one has to look at such a continuum as a generalization of the Cosserat continuum (6 
degrees of freedom), whose state is characterized by elastic displacements (3) and independent elastic 
rotations (3) of the geometric structure (in the case of crystals: of the lattice structure).  Instead of 
displacements and rotations one can also use elastic deformations and structure curvatures in the geometric 
description, both of which have a tensor character.  The extension of the Cosserat theory that leads to the 
general theory implies that both the deformations and the curvatures become incompatible; i.e., the 
possibility of deriving them from displacement and rotation fields is abandoned.    The number of degrees 
of freedom increases to 6+9 = 15.  The connection with dislocation theory and general differential 
geometry follows from the fact that the dislocation density is equivalent, on the one hand, to the Cosserat 
structure curvatures (NYE, GÜNTHER), and one the other hand, to the CARTAN’s torsion (KONDO; 
BILBY, BULLOUGH & SMITH). 

Instead of the geometric characterization of the state, it is possible to employ a static description, 
which likewise needs 15 functions: 6 functions for the (force-) stresses and 9 for what are called Cosserat 
torque stresses. In the present work it is shown that the torque stresses enable us to describe the 
microscopically fluctuating stresses of macroscopically continuous distributions of dislocations in a 
macroscopic way.  When the constitutive law connecting stresses and torque stresses with deformations 
and curvatures is known, the geometric and static functions can be converted into each other. 

The geometric part of the theory, which is given in Chapter II, is the main part of the present work.  
First of all, we present the theory in a new elementary form in which the usual methods of nonlinear 
continuum mechanics are taken over as much as possible.  The concepts developed in the linear continuum 
theory of dislocations and internal stresses are completely incorporated within this nonlinear form.  
Secondly, we give a presentation of the theory that is based on differential geometry and partly follows 
from the ideas developed by KONDO and by BILBY, BULLOUGH & SMITH.  However, we go further in 
the physical interpretation.  The general (incompatible) Cosserat continuum proves to be identical with a 
medium whose geometric state is described by the Riemann-Cartan (= metric) affine connection Γmlk (15 
degrees of freedom).  A new feature is the introduction of the “matter tensor” that forms the right-hand side 
of the “Einstein equations of continuum mechanics,” which are the generalization of the St. Venant 
compatibilitiy equations.  The symmetric part of the matter tensor describes the inserted foreign matter (in 
crystals, e.g., distributions of interstitial atoms), whereas the antisymmetric part characterizes some kind of 
rotational matter that is connected with the ending of dislocations inside the body. 

If the torque stresses are neglected then the integration of the Einstein equations leads to the 
determination of the state when one is given the actions (e.g., forces, dislocations, etc.).  In the nonlinear 
theory, just as in the linear theory, the most important resource for the integration is the stress function 
tensor.  The nonlinear integration problem can be linearized by an iteration procedure.  The resulting linear 
summation problem has been solved previously, and will be discussed briefly.  In Chapter III, we discuss 
the second boundary-value problem in more detail.  The usefulness of SCHAEFER’s stress functions is 
demonstrated by the example of a body bounded by two infinite planes: It is possible to reduce this 
problem for any distributions of surface terms to a pair of standard problems, one of potential theory, and 
the other, of bipotential theory. 

Chapter IV contains an elementary account of the previously sketched concept of a para- or diaelastic 
continuum, which has practical importance for solid-state physics.  The lattice defects appearing 
macroscopically as point defects can be characterized mechanically to a large extent as elastic dipoles 
(force couples) or polarizable substances.  Very general and simple formulae hold for the potential energy 
of these defects in an elastic field and for the forces and torques exerted on the defect by the fields. 

In the discussion at the end of this work, we point out the intimate relationships with the general theory 
of relativity.  It is hoped that they will have favorable effects on the further development of both theories. 



I.  Introduction and overview 
 

The range of problems that have been − or at least should have been − approached by 
the continuum mechanics of solids has expanded considerably in the last three years.  
This is consistent with the ineluctable ascent of solid-state physics to the status of the 
branch of physics that currently deals with the most applications, next to particle physics.  
The boom in solid-state physics began in the last twenty years since we learned to grow 
unitary lattice-oriented crystals (single crystals) and now understand that one must first 
explore the properties of these single crystals before one can think of understanding the 
results that have been previously associated with the polycrystalline state. 

Some of the important stops along this road that are interesting to anyone with a 
mechanical outlook are: 

a)  The theoretical computation of the critical compressive stress of an ideal crystal 
by FRENKEL (1926) [1], which was shown by SCHMID and POLANYI (1929) [2] to be 
more than three powers of ten greater than the experimental value of the critical 
compressive stress for a real crystal at very low temperature. 

b) DEHLINGER’s [3] examination of the possibility that crystal defects are the 
sources of internal stress (1920).  It then becomes clear why internal stresses are even 
possible in crystals to begin with. 

c) The introduction of the ideas of dislocation theory into the theory of plastic 
deformation by TAYLOR, OROWAN, and POLANYI (1934) [4-6], which proved to be 
unusually fruitful, and its first great result was the removal of the aforementioned 
difficulties with the critical compressive stress. 

d) The theoretical elasticity approach to singular dislocations by BURGERS (1939) 
[7], which led to a mathematically flawless definition of a dislocation. 

e) The creation of a continuum theory of dislocations and internal stresses through the 
work of many other authors that will be mentioned in the sequel.  As we explained before 
[8], this theory shall close the yawning gap between elasticity theory and 
phenomenological plasticity theory, and will likewise represent a bridge between the 
latter theory and the atomic theory of plasticity that is so important in solid-state physics. 

 
The fundamental importance of crystal defects (lattice defects) in solids is generally 

acknowledged at present.  Of the many things that are associated with matter transport in 
the solid state – phase transitions, fracture, plastic deformation, diffusion, et al. – there is 
not a single one that comes about in the absence of lattice defects.  The role of lattice 
defects can therefore be discussed briefly as follows (cf., e.g., DEHLINGER [9]): 

Only by the intermediary of lattice defects can the aforementioned phenomena follow 
from lower-order processes, and therefore happen at all.  Thus, they come about in such a 
way that the free energy is as small as possible.  Now the energy of the internal stress 
fields constitutes a very substantial share − if not the entirety − of the free energy, and the 
sources of the internal stress fields are precisely the lattice defects.  Thus, they give rise 
to not only more or less strong electromagnetic (magnetic, resp.) effects, but also to very 
meaningful mechanical effects. 

As a result of the development that we just sketched out, it emerges that the 
continuum mechanics of solids in its earlier scope, i.e., with its branches of elasticity 
theory and phenomenological plasticity theory, was far from addressing the new 
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problems.  The most important ones that always appear in the continuum mechanics of 
solids fall into the following three types: 

(1) If one is given arbitrary external influences on the body (forces, torques, 
temperature fluctuations, etc.) as functions of position and time, find the state of the 
body, also as a function of position and time. 

(2) If one is given a source distribution of internal stresses – i.e., a dislocation density 
with the limiting case of a singular dislocation – find the state of the body (perhaps 
characterized by the internal stresses, lattice curvature, and elastic energy). 

(3) If one is given an elastic field in a body, find the elastic energy of a particular 
lattice defect in this field (the force that this field exerts on the lattice defect, resp.).  The 
forces between lattice defects also belong to this category. 

Problem (1) simultaneously involves all three of the branches of the continuum 
mechanics of solids that were mentioned in e), and is currently strictly soluble only in 
special cases.  Problems (3), and in particular (2), which are typical for the continuum 
theory of dislocations and internal stresses, often represent sub-problems of problem (1).  
Thus, they also frequently constitute the continuum-mechanical component of general 
physical questions that frequently go far beyond the scope of mechanics.  The reader is 
therefore referred to the relevant literature [10-14]. 

In § 1 - § 3 we will seek to give a brief overview of new situation in the continuum 
mechanics of solids, in which we will, at the same time, have the opportunity of 
characterizing the shortcomings of the older continuum mechanics.  Since we shall not go 
into the dynamical effects, it is clear that the foundations of the theory that we shall 
discuss here will, at the same time, also belong to the foundations of the yet-to-be-
developed dynamical theory of dislocations and internal stresses.  Frequent references 
will be made to the summary report of the author [8] on the linear approximation in the 
book Kontinuumstheorie der Versetzungen und Eigenspannungen.  The present work 
shall therefore represent an extension to the nonlinear theory (1).  It falls in line with the 
works of KRÖNER and SEEGER [19] that will appear shortly, in which the non-
Riemannian geometry of KONDO [20, 21], as well as BILBY, BULLOUGH, and 
SMITH [22-26] will be extended to a nonlinear elasticity theory of dislocations and 
internal stresses. 

 
§1.  General connections: geometry 

 
The COSSERAT brothers, in their book that appeared in 1909 [27], have developed a 

theory of a body whose “points” can not only be elastically translated, but also elastically 
rotated, in a measurable way.  Up to that time, one thought of a crystalline body as a field 
of applications, so it remained unclear how one might present, e.g., the state of a crystal 
whose building blocks had indeed been subjected to rotations, but not translations. 

                                                
 1 If the reader feels that that the discussion of the methods of nonlinear elasticity theory in the present 
work is insufficient then let him confer the beautiful treatments of TRUESDELL and MURNAGHAN, as 
well as DOYLE and ERICKSEN [15-18]. 
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It has been known for perhaps ten years that for certain specially-prepared crystals (2), 
which are free of loading stresses and internal stresses, that under Röntgenographic or 
even optical penetrating rays one can recognize a curvature to the lattice planes, i.e., the 
‘geometrical structure” of a crystal, which will correspond to a spatially-varying rotation 
of the smallest crystal domains.  In many cases, one can perceive macroscopically 
constantly curved lattice planes that appear to be microscopically polygonized (CAHN, 
GUINIER, CRUSSARD, et al., 1949 [28]). 

Today, one can easily illustrate the emergence of a macroscopically stress-free 
rotation of the lattice structure of a mass element.  As BURGERS and BRAGG [7, 29] 
have found, there are certain arrangements of dislocations that are confined to a surface 
(viz., grain-boundary arrangements) and evoke no macroscopic stress fields, only 
changes in orientation between neighboring crystal domains.  If a torque, say, acts on a 
mass element in order to rotate its orientation then this influence leaves a dislocation trail 
in a particular arrangement, which rotates the element and, at the same time, mediates the 
transition to the neighboring element as a grain boundary.  The formation of dislocations, 
or, better yet, the rotation of the mass element that is equivalent to it, can be assumed to 
be elastic when the removal of the rotational moment leads to a reverse rotation that 
annihilates the dislocation trail.  If such moments act on all of the mass elements of the 
body, although with varying strengths, then the position-varying rotation of the lattice 
structure will be given in such a way as to result in a macroscopically stress-free lattice 
curvature. 

In 1953 NYE [30] had outlined a continuum theory of (macroscopically stress-free) 
lattice curvatures, yet it was GÜNTHER [31] who first recognized in 1958 that such a 
curved crystal, when considered continuum theoretically, represented a justification for 
the Cosserat continuum, i.e., the lattice rotations and curvatures that were described 
above have precisely the characteristics that were described by the COSSERATS.  We 
refer to them as the Cosserat-Nye rotations and curvatures, or also the structure rotations 
and curvatures.  Moreover, we call the curvatures that we just spoke of compatible since 
they are derived from a rotation field. 

The Cosserat-Nye tensor Ki
,j represents a suitable magnitude for the Cosserat-Nye 

curvature, since it gives the relative rotation of the lattice structure at two points that lie 
dxi apart (thus dθ i  = Ki

,j dxj).  Therefore, the curvatures are also completely characterized 
by the tensor α i,j = K k

kδ j
i − Ki

,j dxj. α i,j is referred to as the dislocation density tensor; it 

gives the Burgers vector dbj of a dislocation that crosses a surface element dFi (hence, dbj 
= α i,j dFi). 

For the geometrical characterization of deformable bodies we further need the elastic 
distortion tensor β ij, which gives the relative elastic displacement between two surface 
elements that lie dxi from each other (hence, dsj = βij dxi).  In the case of small distortions, 
the symmetric part of the distortion tensor is identical with the deformation tensor that we 
used in [8]. 

                                                
 2 For example, by plastic bending.  These macroscopic stress-free lattice curvatures must be noticeably 
different from the ones that are obtained from, say, elastic bending, which have stresses that are connected 
with the lattice curvatures.  One obtains the polygonization that is mentioned below by gluing together such 
pieces.  In this way the dislocations will be brought into a so-called grain-boundary arrangement, whose 
elastic energy is essentially negligible.  The macroscopic lattice curvature is already available before 
polygonization. 
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We now think of the body as an ideal initial state that is brought into a deformed final 
state.  We shall describe this geometrically by the tensors ββββ and K (αααα, resp.).  Now, 
should the initial state be compact, i.e., a connected continuum of pre-existing bodies, 
and should these properties persist throughout the deformation (hence, there are no tears 
or folds, since it is only in this case that we could speak of a continuum theory to begin 
with), then, as we shall show later, the asymmetric tensor δδδδ in the equation: 

 
Rot ββββ – αααα = δδδδ     (1) 

 
must vanish, in general.  It must be non-vanishing only when uses an a initial state 
comprised of an ideal crystal that is originally made up of “regular” atoms, but into which 
one has introduced “irregular matter” (we shall also say “extra matter”) that remains in 
the final state, moreover.  The tensor δδδδ is a measure of this extra matter, of which, the 
most important example is that of the so-called “foreign atoms” (interstitial or substitute 
atoms). 

Eq. (1) allows us to understand essential feature of the general continuum theory of 
dislocations and internal stresses: The distortion tensor and the curvature tensor (the 
dislocation tensor, resp.) are regarded as “internal” quantities that directly describe the 
geometrical state of the continuum.  On the other hand, the extra matter is regarded as an 
“external” influence that brings about distortions and curvatures.  This corresponds 
perfectly to the picture that one must imagine for a real crystal, which the deformed state 
of our body certainly represents: One can think of a real crystal as an ideal crystal with 
nothing that has been added or subtracted from the outside, in which one has created 
dislocations.  A real crystal that has been obtained in this way will include only regular 
atoms.  One can then call the dislocations “internal lattice fields.”  On the contrary, 
foreign atoms in an ideal crystal (or in a real crystal with dislocations) must be introduced 
from the outside, so we shall call them “external lattice fields.”  The left-hand side of eq. 
(1) corresponds to internal quantities, and the right-hand side corresponds to external 
ones.  We shall obtain an analogous representation in statics. 

For finite deformations, eq. (1) is true only in the so-called Lagrangian description, 
i.e., one must understand dxi to mean the relative length in the initial state [8].  We call 
the theorem that is formulated by means of eq. (1) the fundamental geometrical theorem 
(of general continuum mechanics).    It becomes even more noteworthy when one 
assumes that the elastic distortion (deformation, resp.) and the structure curvature are 
incompatible, i.e., they are no longer derivable from a displacement (rotation, resp.) field.  
This represents a substantial extension of the original Cosserat theory.  The number of 
functional degrees of freedom by which the body is geometrically described thus 
increases from six to fifteen (six elastic deformations, nine structure curvatures) (3). 

The Lagrangian description is particularly unsuited to the important task of 
determining the state from the physical givens.  One thus prefers to use the Eulerian 
representation for the geometry of the continuum.  In geometrical hindsight, it is now 
most remarkable that the Eulerian formulation of the extended (i.e., incompatible) 
Cosserat theory is equivalent to the Riemann-Cartanian geometry of solids of KONDO 
[20, 21], as well as BILBY, BULLOUGH, and SMITH [22-26].  In the opinion of the 
                                                
 3 As one can show, the rotational part of hij follows from elastic deformations and the structure 
curvatures, so they contribute no degrees of freedom of their own. 
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author, there is no elegant formulation of the fundamental geometrical equations of the 
nonlinear problems of continuum mechanics, any more than there is in general 
differential geometry.  The equations will not become simple by themselves, since this is 
completely inconsistent with the known complexity of nonlinear problems, or else the 
subsequent method of determination of the state from the physical givens would become 
correspondingly favorable. 

We strongly emphasize that the geometrical aspects of the continuum theory of 
dislocations and internal stresses can be interpreted as a definitive departure from 
classical elasticity theory: in the latter, geometry is Euclidian and thus trivial.  The 
geometrical part of the theory is therefore largely contained in the statement that one 
endows the body with an elastic displacement field that takes its points from the initial 
state to the final one.  In mathematical language: as fundamental geometrical equations 
for elasticity, the compatibility conditions for elastic deformation are satisfied identically 
with the help of the displacement vector field. 

By contrast, the geometry of a body with dislocations and impurities is principally 
non-Euclidian.  It is not possible here to define an elastic displacement field (rotation 
field, resp.); the general equations (1) appear in place of the compatibility equations, 
which demands new methods of solution. 

In conclusion, the Cosserat-Nye curvature is described by Cartanian geometry, and 
above all, the Cartanian notion of torsion, as will be thoroughly explained in chapter II.  
In particular, the identity between the Frank-Burgers paths that are used to define 
dislocations in dislocation theory and the well-known Cartan paths will be detailed.  This 
identity defines a foundation of the differential geometrical statement of our continuum 
theory and says that the dislocation density (hence, also the Cosserat-Nye curvature) and 
the Cartanian torsion represent precisely the same phenomenon. 

In this overview, we have brought the state of the medium to the foreground, whereas 
the previous event that led to this state is kept in the background [8].  We will make up 
for this in chapter II.  For now, the following remark shall suffice: Any motion of 
dislocations gives rise to a plastic distortion of the medium that can be described by a 
distortion tensor, at least as far as its macroscopic character is concerned.  This is 
immediately connected with the dislocation density αααα through the relation: 

 
Rot ββββP = − αααα,     (2) 

 
which can also be regarded as the definition of the dislocation density.  Thus, when one 
denotes the sum of the elastic and plastic deformations (in the Lagrangian description) by 
the total distortion ββββG one writes, e.g., eq. (1) in the case where δδδδ = 0: 
 

Rot ββββP = 0.      (3) 
 

In words: The total distortion of the body results in such a way that neither folds nor tears 
appear.  Eq. (3) is a particularly simply formation of the fundamental geometrical 
theorem in the “reduced” (by way of δδδδ = 0) theory.  In particular, it implies the possibility 
of vanishing elastic distortion [32], i.e., macroscopically stress-free plastic deformation 
can result.  This has considerable practical importance. 
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§2.  General connections: statics 
 

The difference between Cosserat statics and classical elastostatics resides in the 
appearance of the so-called torque stresses τij.  These are defined as the torques that a 
surface element is endowed with, as one might associate with a cut surface, when no 
rotations take place.   As one knows, the force stresses − or simply stresses (σ ij) − that 
one uses in elasticity theory are defined analogously: one creates forces when there is no 
translation. 

As the bros. COSSERAT have shown, the following fundamental static equations (= 
equilibrium conditions for forces and moments) are valid in Eulerian notation (4): 

 
Div σσσσ = − F,      (4) 

Div ττττ +  
� 

σ = − M,     (5) 

 
(cf., e.g., GÜNTHER [31]).  Here F and M mean the densities of external forces and 

torques.  Insofar as the (force-) stress tensor σσσσ, as well as the torque stress tensor ττττ, is, in 
general, asymmetric,   

� 

σ  is the vector that is equivalent to the anti-symmetric part of σσσσ. 
It is clear that the torque stresses constitute an arrangement of geometrical quantities 

that described structure curvatures in the last section.  We shall illustrate this fact in one 
example that comes up frequently in practice. 

At sufficiently high temperatures, a crystal bar is plastically bent in such a manner 
that ultimately all of the dislocations are in a Nye − i.e., grain boundary − arrangement. 
Upon removing the external bending moments, this bar has no macroscopic stress fields, 
which therefore implies (macroscopically) constant lattice curvatures.  As a result of the 
usual short-range distortional effect 
of the dislocations that exists, the 
energy content of this bar is greater 
than the energy content of a bar that 
was made the same with an ideal 
lattice construction.  One can 
understand this to mean that torque 
stresses are associated with the 
lattice curvatures according to some 
material law.  That is, if one makes 
a cut somewhere then dislocations 
will appear in the immediate 
neighborhood of the cut surface, as 
we show in Fig. 1. 

Fig. 1.  The physical meaning of the (macroscopic) torques stresses. 
 
It shows a fine grain boundary of step dislocations (symbol ⊥) near the cut surface.  

The dislocations of the body are a consequence of the reflecting effects of this surface 
                                                
 4 As one knows, one of the great difficulties in nonlinear theory resides in the fact that the fundamental 
equations of statics take on a simple form only in Eulerian notation, whereas the fundamental equations of 
geometry take their simplest form in Lagrangian notation. 
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(i.e., by its internal stress fields) when one does not produce a compressive stress at any 
dislocation (outside the cut surface) that exerts a force in the opposite direction that 
would prevent the appearance of dislocations.  The arrows at the cut surface give the type 
of effect that one finds there: microscopically, one considers forces; macroscopically, one 
considers torques.  They insure the appearance (or also the removal) of dislocations at the 
cut surface without lattice rotations.  We therefore have (for the first time here) obtained 
the important result: 

The microscopic stress fields of the Nye dislocation arrangement may be 
macroscopically described by torque stress fields. 

The way by which measurable torque stresses appear in the cut experiment that we 
just described persists in the absence of external influences; thus, in the usual elasticity-
theoretic nomenclature they are referred to as internal or proper stresses.  The fact that 
they persist originates in the inelastic behavior of dislocations: they need to be activated 
if they are to move.  If the dislocations could move about the crystal easily then the 
removal of the external influences would immediately result in their absence, as well. 

Previously, we characterized the state of the deformed body geometrically by giving 
fifteen functions: the six elastic deformations and the nine structure curvatures.  On the 
other hand, we can also recognize the state statically by giving fifteen functions: the six 
functions that represent the symmetric part of the stress tensor and the nine torque 
stresses (5).  If one knows the material law that relates the stresses to the deformations 
and the torque stresses with the structure curvatures then one can express both states as 
functions of each other (6). 

Only in the case of completely elastic deformation can one relate the state of the body 
to the external influences uniquely.  This can also be described by fifteen functions; one 
finds the corresponding quantities on the right-hand side of eqs. (1), (4), and (5).  They 
are: extra matter (9), external force (3), and torque (3).  Concerning the physical reality of 
the latter, which is currently recognized, cf., e.g., [33], [8], pp. 87. 

Above all, the previous discussion of the functional degrees of freedom of the state 
and the external influences should give an overview of the scope of the general theory.  
At the same time, they give us reason to introduce the expression: the theory of fifteen 
degrees of freedom.  In the theory that follows, we shall bring this theory into a reduced 
form: Since the Cosserat theory of statics has not been sufficiently developed, and the 
“energy of curvature” is not generally very large, we will not consider the torque stresses, 
but instead we will completely focus on the fifteen geometrical degrees of freedom (7). 

Before we present the general theory in §§ 7, 8 we will give a reduced theory in §§ 4-
6, which we will also call the theory of nine degrees of freedom: This theory is 
characterized by the assumption that the extra matter δδδδ and the external torque M vanish 

in order that the dislocation density αααα be formally regarded as an external influence (and 

                                                
 5 As one can show, if one knows the symmetric part by way of the stresses and likewise, the 
antisymmetric part by way of the torque stresses then this state has no other degrees of freedom. 
 6 The tensors σσσσ and ττττ are coupled by eq. (5).  In order to also couple them by means of a material law, 
one must do further analysis.  It is certain that the new material constants cannot be computed from the 
Hookean constants alone. 
 7 The torque stresses play a somewhat different role in certain one- and two-dimensional problems 
(beams, shells, plates) than the one that they play in dislocation theory.  On this, cf., perhaps ERICKSEN 
and TRUESDELL [34], SCHAEFFER [35], GÜNTHER [31].  
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there as a given).  In the notation that we previously introduced, the field equations of this 
theory read: 

Rot ββββ = αααα,  Div σσσσ  = − F,    (6) 

 
in which the nine degrees of freedom can be easily identified.  For our material law, we 
shall suffice with the law that one uses in classical elasticity theory that the stresses are 
related to the deformations; the torques that are present in reality will not be considered at 
all.  This reduced theory already allows for the solution of a great number of problems of 
practical importance and in recent times it has been found in an increasing volume of 
applications. 

We shall now comment on the fundamental meaning of the stress functions in the 
(general and reduced) continuum theory of dislocations and internal stresses, which seem 
to be indispensable in the present state of the theory, and play the same role as the vector 
potential in electrodynamics. 

We consider the contribution made by the external forces and torques in one 
calculation, which serves as a displacement (rotation, resp.) field, and, in so doing., we 
handle the case where the right-hand side of eqs. (4, 5) vanishes.  These equations may 
then be satisfied with the help of a stress function Ansatz that was first given in full 
generality [which is also the generality that was assumed in eq. (5)] by GÜNTHER [31].  
In the case where one ignores the torque stresses, one stress function tensor suffices, in 
which case eq. (4) is satisfied identically. 

The problems that are posed in the physics of internal stresses are often essentially 
three-dimensional in character.  Up until recently, stress functions were unused in the 
treatment of three-dimensional problems.  This was changed fundamentally in the last 
year.  It will be shown next, that in an infinitely extended elastic isotropic medium with 
given internal stress sources the stress functions are given by inhomogeneous biharmonic 
equations [36].    In a seminal work, SCHAEFER [35] has shown further that stress 
functions also endow the treatment of three-dimensional boundary-value problems with a 
thoroughly favorable aspect (to the extent that one can use the word “favorable” at all in 
light of the complexity of three-dimensional problems).  One has to solve three Laplace 
equations that are coupled by the boundary conditions.  In many cases, these equations 
can be decoupled.  For the computation of internal stresses, this method has certain 
advantages over those used by PAPKOVITCH and NEUBER [37, 38]. 

In view of the central significance of stress functions in the continuum theory of 
dislocations and internal stresses, it seems appropriate to dedicate a separate chapter to 
them (chapter III). 

 
§3.  Para- and Diaelasticity 

 
Para- and diaelasticity are phenomena that are foreign to classical elasticity, and they 

are very closely connected with the atomic (crystalline, resp.) structure of our solid 
bodies.  Therefore, we next discuss crystals. 

Ideal crystals, which are composed of one type of atom, exhibit neither para- nor 
diaelasticity.  By contrast, all real microscopically crystalline structured solids are 
diaelastic, and many are paraelastic, moreover.  The deviation of the real crystal structure 
from the ideal one − i.e., the lattice defects − defines the basis for para- and diaelasticity. 
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The dislocations of foreign atoms belong to the most important class of lattice 
defects.  If a crystal has many foreign atoms then one no longer speaks of them as lattice 
defects, but one speaks of mixed crystals, and, in the case of metals, also of alloys.  
Therefore, from our standpoint, there is no principal difference between, e.g., regarding 
the foreign atoms as extra matter and regarding them as alloy atoms.  We would thus also 
like to deal with the lattice defects in what follows. 

The objective of the theory of para- and diaelasticity is a subsequent treatment of the 
particular mechanical effects that are linked with lattice defects.  Thus, the concepts and 
ideas are completely adapted from the established notions of electro- and magnetostatics.  
This will be so plainly expressed in the terminology that we shall introduce that we can 
thus renounce the analogy and discuss the subject by itself.  A diaelastic body is thus 
perceived to be one in which the application of a mechanical stress produces “induced 
elastic dipoles,” by which it is “elastically polarized.”  By contrast, a paraelastic body 
involves “permanent dipoles” that can be rotated in the direction of the elastic field.  
Permanent, and also induced, dipoles experience forces in elastic fields, which will drive 
their migration when their mobility is sufficiently large.  This is why, e.g., understanding 
the migration of carbon atoms in iron as permanent elastic dipoles, has such great 
significance in technology.  The theory of paraelasticity gives the possibility of exploring 
this migration quantitatively. 

It will be proposed that the lattice defects, which appear to be macroscopically 
pointlike, can be mechanically characterized by their polarizability (dipole strength, 
resp.).  Both quantities are accessible to experimental measurement.  The mechanical 
properties of lattice defects are largely determined by these quantities.  One obtains very 
simple and far-reaching formulas for the interaction of lattice defects with each other and 
with the internal stress fields of the crystal one obtains in this way, which already allows 
us to resolve a great number of important practical problems. 

By far, the most important lattice defect is the dislocation.  The mechanical theory of 
dislocations relates to the theory of para- and diaelasticity somewhat like the way that the 
theory of magnetic fields of stationary currents relates to the magnetostatics of material 
bodies.  In particular, any pointlike lattice defect can be formally described as an 
(induced or permanent) infinitesimal displacement loop (more precisely: three mutually 
orthogonal dislocation loops), which corresponds to the Amperian assumption of 
magnetic dipoles as elementary current loops.  This is discussed in detail in another place 
[8].  Thus, in the treatment of para- and diaelasticity in chapter IV we shall 
predominantly think of lattice defects that appear macroscopically pointlike. 

 
 



 

II.  The geometrical theory 
 
The body that is explored in this work is the so-called Cosserat continuum, which 

differs from the bodies that usually appear in elasticity theory by the appearance of a 
measurable geometric structure.  This takes the form: At each point of the medium one 
finds three non-coplanar, but not necessarily mutually orthogonal, distinguished 
directions.  It is often useful to represent this continuum as a cubic crystal with vanishing 
lattice constants. 

For the sake of simplicity, we shall choose the initial state to be the ideal state, in 
which the distinguished directions are parallel to each other over the entire body.  Since it 
is not the directions themselves, but the curvature of the geometric structure that 
determines the state of the body, this particular choice of initial state represents no loss of 
generality in our formulas.  In particular, this is also true without modification when the 
initial state is an undisturbed polycrystal. 

In this chapter, we almost exclusively use the Eulerian notation, i.e., in terms of final 
coordinates, which is particular important for applications.  We next (§ 4) give the 
reduced theory (nine degrees of freedom) that was defined in § 1.  We will then go down 
the path that we did earlier in the linear theory.  In the case of finite deformations, the 
required separation of the distortion into strain and rotation is no longer possible through 
the decomposition of the distortion tensor into symmetric and antisymmetric parts.  
Whenever we are called upon to make detailed geometrical considerations, we shall 
employ an artifice that seems somewhat unmotivated, but finds its justification in the 
differential geometric statement of the theory (§ 5).  § 6 presents the detailed proof of the 
identity of the dislocation density and Cartanian torsion, which was regarded as a 
foundation in the general theory.  In § 7, we qualitatively explain the concepts of the 
general theory, which get their mathematical form in §8.  In § 9, we discuss, inter alia, 
the connection with the linear theory. 

 
§4.  The elementary statement of the reduced theory 

 
In the reduced theory, we will consider three states for a medium: 
 
The ideal − or initial − state (k), 

The natural – or intermediate – state (κ), 
The deformed – or final – state (k). 
 

Let (k), (κ), (k) also symbolically denote the coordinate system that is used on the 

respective state.  Let dxk, dxκ, dxk be the distances between two points inside a mass 

element.  We shall therefore deal with things around the same material points that ensue 
in all three states.  The squares of their intervals are: 
 

 2
( )dsk = btl dxk dxl,  ds(κ )

2 = gκλ  dxκ dxλ, ds(k)
2 = akl dxk dxl, (1) 
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(summation convention!), resp.  The connection between the three states is given by the 
relations (8): 

    dχκ = Aκ
k dxk,  dxk = Aκ

k dxκ,     

    dχk =Aκ
k dxκ,  dxκ = Ak

κ dxk,           (2) 

    dχk = kAk dxk,  dxk = kAk dxk,       

 
in which the A-quantities refer to the transformations between the states.  We shall refer 
to them as distortions (= combinations of strains and rotations) and they are almost 
precisely characterized.  There are inversion relations between them: 
 

A Aκ
κ
l

k = δ lk , A Aκ
κ
l

k =δλ
κ , Aκ

k Al
κ =δl

k , Aκ
k Ak

λ =δκ
λ ,   

l
kA Ak k  = l

kδ , k
kA Ak l = δ kl .           (3) 

 
We shall now clarify the three states.  They are also used in the linear theory [8], in 

which one can find a greater degree of unity and more illustrations. 
 
(k):  The ideal state shall correspond to a stress-free ideal crystal (with vanishing 

lattice constants).  In this state the distinguished directions are the same everywhere 
throughout the body, so the structure curvature is null. 

(κ):  The natural state is a hypothetical state that is attained from the ideal state as 
follows:  First of all, a stress-free imprinted or plastic distortionAκ

k is associated with 

each mass element of the body, which is realized by an arrangement of dislocations and 
their migration.  For the duration of the distortion, the mass elements shall be enumerated 
and remain distinct from each other.  If one performs an arbitrary variationAκ

k of an 

element to another element then the mass element will no longer pass to the other one in 
an unbroken manner, in general, under the distortion (9).  The form of the individual mass 
elements will indeed vary under plastic deformation, but, however, its state and 
orientation will remain the same, which was explained in detail before [8].  It is important 
to remark that the distinguished directions are all, by definition, Euclidian parallel in the 
intermediate state, as well; otherwise, it would no longer enter into our analysis of the 
position of individual mass element.  One considers a so-called anholonomic system for 
the coordinate system (κ) on this state; dxκ then means something, even though there are 
no coordinates xκ (10). 

                                                
 8 Although it seems very rash to use the same kernel symbol A for six different transformations, in fact, 
the indices are given in such a way that the change should be unambiguous. 
 9 The equivalent situation is admissible when one regards the natural state as an aggregate of plastically 
distorted mass elements, viz., that the isolated mass elements are brought into a hypothetical non-Euclidian 
space in a stress-free manner, and in this space they no longer combine with each other in an unbroken 
fashion.  With this assumption, we can eliminate the possibility that the mass elements will break apart 
upon collision during the distortion.  One can regard the individual mass elements of the aggregate as 
(material) Euclidian spaces that are tangent to the corresponding points of the (material) non-Euclidian 
space of the total body. 
 10 If one adopts the non-Euclidian standpoint that was taken in footnote 9 then one has a continuous 
body, and one can describe it by a (non-Euclidian) coordinate system xk.  One then calls this coordinate 
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(k):  Finally, the deformed state is obtained form the ideal state when one executes the 
aforementioned migration of the dislocations in Euclidian space without intersections of 
the bodies.  The constraint that one must remain in Euclidian space insures that plastic 
distortionsAκ

k can be composed with elastic distortionsAκ
k .  (In general, we ignore the 

particular choice of mass forces, which can be eliminated in a trivial way.) 
 
In summation, the distortion of a mass element from an initial state to a final state is 

represented by the composition of a plastic distortion (Aκ
k ) and an elastic one (Aκ

k ): 

 
kAk = Aκ

k Aκ
k .     (4) 

 
The reciprocal distortions are compositions: 
 

kAk = Aκ
k Ak

κ .     (5) 

 
For the fundamental geometric law of the theory we propose: Neither tears nor folds 

can occur during the distortionkAk from an initial state to a final one.  In order for this to 

be true, it is necessary and sufficient that a macroscopically constant displacement field 
exists that takes the points of the initial state to those of the final state (so there is also a 
constant displacement field that takes them back to the initial state).  The existence of the 
“forward displacement” implies (cf. footnote 10): 

 
∂m  Al

κ
 − ∂l A

κ
m= 0,      (6) 

 
and likewise, the “reverse displacement” implies: 
 

∂m lAk  − ∂l mAk = 0.      (7) 
 
In eqs. (6) and (7), we have two statements for the fundamental geometrical law before 
us.  The former refers to the initial state; the latter refers to the final state.  We will soon 
discover more ways of formulating these laws. 

Relations of the type (6, 7) are valid only for the total distortion, since it is only for 
this notion that the connection between the bodies is fundamentally true. The basis for a 
possible connecting disturbance in pure plastic distortion is the introduction of 
dislocations.  There are essentially two definitions of dislocations: one differential and 
one integral.  In the former case, the dislocation is defined as the boundary curve between 
a shifted (i.e., plastically displaced) region of a planar net and a non-shifted one, and is 
described by a shift vector and a tangent vector.  In the latter case, the definition comes 

                                                                                                                                            
system anholonomic relative to the system xk, because there are no transformations that take xk to xk (cf. 

SCHOUTEN [39]).  One has only the anholonomic Pfaffian transformation dxκ = Aκ
k

dxk.  The condition 

that xκ be holonomic relative to xk obviously reads ∂m  Al
κ  − ∂l Aκ

m
= 0, which is also the condition for the 

mass elements to remain distinct under plastic distortion.  
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about with the help of the so-called Frank-Burgers loops around the dislocation.  The 
differential definition is more appropriate to the instantaneous representation, whereas the 
integral definition is closer to the spirit of differential geometric considerations. 

We will not comment on the details here, which were discussed in [8], but simply 
define the dislocation density αmlκ (αnκ, resp.) to be the measure of the total current under 

pure plastic deformation, by way of: 
 

αmlκ = − εmln αnκ/2 ≡ (∂m Aκ
l  − ∂l A

κ
m )/2.   (8) 

 
(In αnκ, n refers to the direction of the curve and –κ refers to the direction of the shift.)  

When this definition is applied to a singular dislocation it is identical with the definition 
of the boundary curve above (11).  If one passes to the linear approximation, in which one 
setsAκ

l = Pκ κδ β+l l , then, by neglecting the terms that are quadratic in the β’s, one obtains 

the definition that was given in [8] in the form: 
 

αααα  ≡ − Rot ββββP.      (9) 
 
αααα and ββββP are the (second rank) dislocation density tensor and the plastic deformation 
tensor, resp. 

The form (8, 9) of the definition as the rotation of the plastic distortion is very 
incisive.  As far as applications are concerned, (8) therefore has the drawback that the 
initial and intermediate states appear in the indices of αmlκ.  We shall mostly use a 

representation that is expressed completely in terms of the final state (i.e., an Eulerian 
one).  The conversion gives (12): 

 
αml

κ ≡ k
m lA A Aκ
m l αmlκ ≡ − ( ) / 2k

l m m lA A A A Aκ κ
κ κ∂ − ∂k k

k .  (10) 

 
We will use this form for the definition when we now extend the statement (7) of the 
fundamental law by introducing the notion of dislocations.  Thus, we substitutelAk , mAk as 

in eq. (5) into eq. (7) and multiply by / 2kA
k , and obtain: 

 
( ) / 2 ( ) / 2k k

m l l m l m m lA A A A A A A Aκ κ κ κ
κ κ κ∂ − ∂ + ∂ − ∂k k

k = 0,   (11) 

 
and by means of (10) we obtain following statement of the fundamental geometric 
equations, as extended by the notion of dislocations: 
 

Aκ
k(∂mAl

κ − ∂l Am
κ ) / 2 = αml

κ.     (12) 
 

                                                
 11 Note: the boundary curve of a surface is its “vortex line.” 

 12 Write Aκ
k =  Aκ

k Ak
κ and partial differentiate (A Aκ

κ ∂k m l
 = − A Aκ

κ∂ k

m k
, etc.).  Furthermore, setmA ∂m m

= ∂m 
([39], pp. 70). 
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Upon linearizing (Aκ
k
=δκ

k + βκ
k , Al

κ =δl
κ − βl

κ ), it reads: 
 

Rot ββββ = αααα. 
 
 The application of this equation to practical problems − in particular, the 
determination of the stresses for a given distribution of dislocations − is obstructed by the 
fact that the elastic distortions enter into eq. (12), whereas the elastic deformations are 
linked with the stresses by the material law.  With the help of eq, (12), we succeed in 
deriving an equation that includes only deformations and dislocation densities, and 
proves to be suitable for the determination of the stresses.  For this, we apply the trick 
that we mentioned in the introduction to this chapter.  At an initial point, we have the 
identity: 
  Bmlk ≡ Akκ   ∂mAl

κ ≡ Akκ (∂mAl
κ  + ∂l Am

κ )/2 +Akκ (∂mAl
κ  − ∂l Am

κ )/2 − 
− Alκ (∂kAm

κ  − ∂mAk
κ )/2 +Alκ (∂kAm

κ  − ∂mAk
κ )/2 +       (13) 

+ Amκ (∂l Ak
κ  − ∂kAl

κ )/2 − Amκ (∂l Ak
κ  − ∂kAl

κ )/2.   
 
From (12), the terms in the right-hand side are equal to: 
 

αmlk + αkml – αlkm ≡ hmlk.    (14) 
 

We convert the first three of the six summands on the left-hand side by partial 
differentiation, e.g.: 

Akκ ∂mAl
κ = ∂m( Akκ Al

κ ) −Al
κ ∂mAkκ  = ∂m gkl − Alκ ∂mAk

κ . (15) 
 
Here, we have defined gkl by: 

ds(κ )
2 ≡ gkl dxk dxl,     (16) 

and the relation that we used: 
Akκ Al

κ = gkl,      (17) 
 

follows easily by equating (16) with (1) while using (2).  Ultimately, what remains is (13): 
 

Bmlk = (∂mgkl + ∂lgmk − ∂kglm)/2 + hmlk ≡ Γmlk.  (18) 
 
As in [19], we now define the expressions: 

g′mlk ≡ (∂mgkl + ∂lgmk − ∂kglm)/2,       (19) 
gmlk ≡ (∇mgkl + ∇lgmk − ∇kglm)/2.    

 
These definitions shall also be valid when one replaces g with a, b, or ε everywhere.  
Moreover, we use quantities ahk and ghk, which are defined by: 

                                                
 13 Eq. (18) may also be obtained from the fundamental equation by means of (17).  If one assumes that 
the distortions that take (κ) to (k) can be decomposed into only elastic distortions (no quasi-plastic 
distortions, as in § 8) then one can (indeed, somewhat artificially) regard the relation (17) as representing 
the choice of connection and eq. (18) replaces eq. (12) as a complete expression for the fundamental law.  
We will pursue this further in the general theory (§ 8). 
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ahkahl ≡δl
k ,  ghkghl ≡δl

k .   (20) 
 
Let ∇n be the symbol for the covariant derivative in the deformed state relative to the 
metric akl (14).  Ultimately, we define the Eulerian − i.e., in terms of the final state – 
deformations in the nonlinear theory in the usual way by: 
 

ds(k)
2 − 2

( )dsk  ≡ 2εkl

G

dxkdxl,  ds(κ )
2 − 2

( )dsk  ≡ 2εkl

P

dxkdxl,  (21) 

ds(k)
2  − ds(κ )

2  ≡ 2εkldxkdxl. 
We thus obtain: 

εkl

G

= (akl – bkl)/2, εkl

P

= (gkl – bkl)/2, εkl = (akl – gkl)/2 (22) 
 
for the total deformation, the plastic deformation, and the elastic deformation tensors, 
resp.  Thus, we have: 

g′mlk = a′mlk − 2 ε′mlk .     (23) 
 
Now, let us return to eq. (18).  One can easily calculate that the expression: 
 

Bij ≡ 1
2εinmεilk(∂n Bmlk – gpqBnkq Bmlp)   (24) 

 
vanishes identically, from which one has: 
 

Γij ≡ 1
2εinmεilk(∂n Γmlk – gpq Γnkq Γmlp) = 0.  (25) 

 
It remains to be shown [19] that the antisymmetric part of these equations is identical 
with the following divergence condition, which follows from the definition of dislocation 
density: 

∇nαnκ = 0,     (26) 

 
which says that dislocations cannot end inside of a continuum. 

If one constructs the symmetric part of the tensor equation (25) (15) then, when one 
replaces ∂n with ∇n, as in footnote 13 (16), one obtains the fundamental equations for 
determining the internal stresses in the reduced theory [19]: 

 
Γ(ij) ≡ 1

2{  εinmεilk [∇n(−2εmlk + hmlk) –      
− gpq(−2εnkq + hnkq) (−2εmlp + hmlp)]} (ij) = 0.  (27) 

 
For hmlk = 0 these are the well-known nonlinear compatibility conditions for elastic 
deformations [17, 40].  In linearized form [8], the right-hand side of eq. (27) can be 
written: 
                                                
 14 For example, ..

kl
n mP∇ = ∂nP,,m

kl + ′ a np.
kP.. m

pl + ′ a np.
l P..m

kp − ′ a nm.
pP.. p

kl . 

 15 When we put two indices inside round (square, resp.) brackets, we intend that one should take the 
symmetric (anti-symmetric, resp.) part. 
 16 If one chooses to describe the final state in Cartesian coordinates then one has a′nk.

p = 0 and ∇n = ∂n. 
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Inc εεεε ≡ ∇×εεεε×∇ = (αααα×∇)S ≡ ηηηη                (28) 
 

(for Inc, one should read: “the incompatibility in”). 
We now briefly suggest the use of these equations ([8, 19], cf., also § 8)(*).  With the 

help of the introduction of stress functions, the equilibrium conditions for the stresses are 
satisfied identically when one neglects bulk forces.  By using the material law εkl (εmlk, 
resp.) will be expressed in terms of the stress functions in such a way that the 
fundamental equations of internal stresses become equations that include only stress 
functions and dislocation densities.  The solution of these equations for given boundary 
conditions gives the stress functions, and thus gives the stresses and elastic deformations, 
as well.  As we will show in § 5, if the physical significance of the hmlk is the same as the 
Cosserat-Nye structure curvatures then it is trivially given for a given dislocation density.   
With that, the problem that was expressed by (2) on pp. 4 in the context of the reduced 
theory is solved. 

At this point, we would like to leave behind the elementary statements of the theory 
and go into the differential geometric considerations. 

 
 

§ 5.  The differential geometric statement of the reduced theory 
 
The following situation is typical for the application of general differential geometry 

in continuum mechanics: Let Bk(1) be a vector that connects two points inside the mass 

element 1 in the initial state.  Let Bk(2) be a vector of the same length that is parallel to it 

at a neighboring point 2.  We let Bk denote the vector that connects the same two points in 
the final state that Bk does in the initial state, which makes it the image of Bk.  If one can 

then give a value to dBk for all neighboring elements in the final state then one also 
knows the total torsion that the body has experienced. 

dBk will be proportional to the vector Bk, and also to the distance dxm between the 
points to which Bk is referred, i.e.: 

dBk = − b′ml.
k Bl dxm.    (29) 

 
Analogously, if one considers a vector Cκ in the natural state, which we now regard as 

a (material) non-Euclidian space, as in footnote 9, 10, and which has an image Ck in the 
deformed state, then one obtains: 

dCk = − Γml.
k Cl dxm     (30) 

or also (17): 

                                                
 * Ed. note: Unfortunately, the quadratic elasticity law (54) that was used in [19] for the computation of 
the stress field of screw and step dislocations contained an error.  Therefore, slight corrections are 
necessary in the formulas of §§ 5, 6 of [19] in order to make them agree with the treatment of the problems 
of screw and step dislocations with boundary conditions (cf., most likely, H. PFLEIDERER, et al., Z. 
Naturforschung 15a (1960)). 
 17 We will write the distinguished index in the connection (always the third one) as either an upper or 
lower one, as it suits us.  For the raising and lowering of indices one must use the correct metric tensor, 
e.g., b′mlk = bkh b′ml.

k, but Γmlk = gkh Γml.
h.  Hence, we have bkh =  Ak

kAh
h  bkh, gki =Ak

κ Ai
ι gκι.  When in doubt, we 

shall give the metric tensor explicitly. 
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dCk = − Γmlk C
ldxm.    (31) 

 
If one picks two vectors Ck at two neighboring points that are separated by dxm and 
satisfy eq. (30), and are (non-Euclidian) parallel relative to Γml.

k, then the covariant 
differential: 

δCk = dCk + Γml.
k Cl dxm     (32) 

vanishes. 
We will see that Γmlk, just like the elastic deformations, implies the structure 

curvature, which characterizes the desired extent of the final state of the body.  The 
quantities Γmlk (h′mlk, resp.) are called a linear or affine connection (also an affinity).  The 
affine connection represents the central quantities of the part of general differential 
geometry that we require.  We shall now occupy ourselves with its properties. 

One can already reach important conclusions about the shape of the body from the 
symmetry properties of Γmlk alone.  Next, if the part Γm[lk] of Γmlk that is anti-symmetric in 
l and k always leads to an infinitesimal rotation of the vector Ck while proceeding through 
dxm then one must have Ck dCk = − Γm[lk] C

l Ck dxm ≡ 0.  If one examines the distortion of a 
dreibein under parallel translation through dxm relative to Γm[lk] then one establishes that it 
likewise rotates without deformation.  On the other hand, the part Γm(lk) of Γmlk that is 
symmetric in l and k contributes a pure deformation of the dreibein.  For a given 
connection there thus exists the simple possibility of separating the deformation and 
rotation parts additively, which therefore means that for the connection in question the 
difference between the deformations (rotations, resp.) of two neighboring elements is 
infinitesimal. 

Since the connection Γmlk is a triply indexed quantity, it can possess principally 27 
functional degrees of freedom in three dimensions.  This number is reduced to 15 when 
one reduces to a metric space, that being the type of space in which the distance between 
two arbitrary points can be defined.  Up until now, these are the only spaces that have 
appeared in continuum mechanics (see § 9). 

In the textbooks on differential geometry, one learns that the most general metric 
connection Γmlk has the form: 

Γmlk ≡ h′mlk + hmlk,     (33) 
with the abbreviations: 

h′mlk ≡ (∂m gkl + ∂l gmk − ∂k glm)/2,   (34) 
hmlk ≡ Γ[ml]k + Γ[km]l − Γ[lk]m.     (35) 

 
The meaning of gkl then follows from: 
 

 ds(κ )
2 ≡ gkl dxkdxl.     (36) 

 
(ds(k) is the distance between two points in the natural state, whose corresponding length 
in the deformed state is characterized by dxk.  Therefore: 
 

εkl = − (akl – gkl)/2    (37) 
 
is the (Eulerian) deformation tensor that we already used in § 4. 
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The relative rotation between the mass elements, which is described by hmlk, exists 
independently of the elastic deformations of the body, which can be completely described 
by the h′mlk part of Γmlk by means of (37).  In particular, the deformations can vanish, i.e., 
ε′mlk = 0, while the rotations persist.  If one considers the dreibein that gets translated by 
the relation (31) to be the trièdre mobile of the bros. COSSERAT then one immediately 
finds the relation: The hmlk of Γmlk describes the relative rotation of the Cosserats (the 
structure curvature that results from it, resp.). 

For CARTAN [41], the part Γ[ml]k of a connection Γmlk that is anti-symmetric in l and 
k is called the torsion.  It has the transformation properties of a third rank tensor, although 
Γmlk itself transforms by a complicated formula. 

We will derive the relation: 
Γ[ml]k ≡ αmlk    (38) 

 
in § 6, i.e., the Cartanian torsion is identical with dislocation density.  However, by (35), 
the previous relation (14) follows from this immediately.  Consequently, the Cosserat 
structure tensor will be directly connected with the dislocations; they cannot be realized 
without dislocations.  NYE [30] has described these curvatures with the help of the 
tensors: 

Kn
.m ≡ − εnlk hmlk /2,    (39) 

 
which are equivalent to hmlk, and were introduced by the definition: 
 

dθn ≡ Kn
.m dxm,     (40) 

 
in which dθn is the relative rotation between two neighboring elements.  GÜNTHER has 
established the relationship between this and the work of Cosserat.  It is very impressive 
to see the simple manner in which curvature appears in its modern differential geometric 
representation when it was so complicated in the book by the Cosserats.  Since the 
structure curvature is given when the dislocation density is likewise given, the main 
problem is the determination of the internal stresses that are associated with the 
dislocations. 

These are very closely connected with the h′mlk, which are a measure of the elastic 
deformation.  From the meaning of the h′mlk we can therefore confine ourselves to the 
consideration of the expression: 

− (∂m εkl + ∂l εmk − ∂k εlm).    (41) 
 
The first summand is symmetric in k, l, and thus gives rise to a pure deformation, namely: 
 

 dCk
(def)= Cl dεkl.    (42) 

 
Therefore, the rest of the expression, namely, – (∂l εmk − ∂k εlm), is anti-symmetric in k, l 
and gives rise to a pure rotation.  It becomes: 
 

dCk
(rot )= Cl(∂l εmk − ∂k εlm) dxm = εlkh C

l(ε fkh ∂f  εgm dxm),  (43) 
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in which the expression in brackets in the right-hand side is to be interpreted as a rotation 
of Cl around dxm.  (In the case where εgm is a displacement field – hence, εgm = (∇g sm + 
∇m sg)/2 – this expression becomes simply d(rot s).) 

The aforementioned rotations (the associated curvatures, resp.) are coupled directly 
with the elastic deformations; they vanish under relaxation (perhaps under fracture).  
Correspondingly, one certainly has load stresses in the geometrically simpler theory in 
which the deformations, as well as the rotations, are fixed.  One must carefully 
distinguish the curvatures that are associated with (43) from the (macroscopically) stress-
free structure curvatures that were discussed above. 

If one covariant differentiates the connection Γml.
k (Γmlk, resp.) relative to the 

distinguished index k (and similarly for Γml.
k), and if one takes the anti-symmetric part 

(symbol [n m]) of the result then one obtains the Riemann-Christoffel curvature tensor: 
 

Γnml.
k  ≡ 2[∂n Γml.

k + Γnp.
k Γml.

p] [n m],   (44) 
Γnmlk  ≡ 2[∂n Γmlm − gpqΓnkp Γmlp] [n m],   (45) 

 
which is a very important quantity in the theory.  In the case of a metric connection Γnml 
one has that Γnmlk is anti-symmetric in not only its first pair, but also its second, whereas 
it is symmetric in the exchange of n,m with l,k only under restrictive conditions.  Due to 
the anti-symmetry thus obtained, the Einstein tensor Γij, which is constructed by way of 
(18): 

Γij ≡ 1
4 ε jmnε ilk Γnmlk,     (46) 

 
is thus equivalent to the tensor Γnmlk.  For Γij, one has the divergence condition 
(SCHOUTEN [39], pp. 146): 

∇iΓij = εmlk αklΓ mj,     (47) 
 
which can also be written as a condition on Γnmlk, and is also called the Bianchi identity.  
The right-hand side of (47) vanishes in a linearized theory. 

A well-known theorem of differential geometry says: If the curvature tensor Γnmlk 
vanishes then one has the following form for the connection Γmlk : 

 
Γmlk = Akκ m lAκ∂ .     (48) 

 
In the case where the identity (38) is valid, the anti-symmetric part of eq. (48) is the 
fundamental geometric equation (19)(cf. (14) and (27)), and the equation: 
 

Γ(ij) = 0,      (49) 
 

                                                
 18 This formula is valid only in three dimensions.  The definition of the Einstein tensor that is valid for 
spaces of arbitrary dimensions is obtained from the so-called Ricci tensor; one can find this definition in 
any textbook on differential geometry and relativity theory. 
 19 It is easy to show that one must still understand  Aκ

k to be the elastic distortion, cf. §6. 
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in which we have replaced Γmlk by way of eq. (33, 34, 37), is the fundamental equation 
for the determination of proper stresses (cf., (14) and (27)).  Once again, the equation: 
 

Γ[ij] = 0,      (50) 
 
is the divergence condition for the dislocation density.  Thus, the relationship between the 
elementary statements of the theory and the differential geometric ones is largely 
achieved. 

Eq. (49) defines a coupling between the curvature part hmlk and the deformation part 
g′mlk of the connection Γmlk, which leads to stresses for a given dislocation density. 

Apparently, eq. (48) (eq. (49, 50), resp.) appears to be a requirement that turns into 
the fundamental geometric equation (12).  We must now ask what would give us the right 
to set Γnmlk (Γij, resp.) equal to zero.  This question did not turn up anywhere in the 
elementary treatment of the theory, since eq. (25) gave the evolution of the shape by itself 
in the presentation that was developed there.  At this point, one recognizes that the 
differential geometric approach is the most general one, and it raises the question of the 
physical meaning of a non-vanishing curvature tensor (Einstein tensor, resp.).  KONDO, 
in addressing this question [20, 21], spoke of it in connection with “curvature defect 
points,” as opposed to “torsion defect points” (dislocations), which begs the question of 
the physical meaning of the curvature defect points. 

In contrast to KONDO (although it is really only a superficial distinction), BILBY 
and SMITH [24], on the basis of similar notions, were led to the relation Γnmlk = 0, which 
they interpreted as the physical condition for a crystal lattice to be defined at each point 
of the medium.  We will discuss these important questions in § 6-9.  In the meantime, in 
the next section, we shall show the identity between the dislocation density and Cartanian 
torsion, which defines the foundation of the differential theory of dislocations. 

 
 

§ 6.  The identity between dislocation density and Cartanian torsion (20) 
 
In this section we shall show that the Frank-Burgers loop [42] that is often used in the 

(integral) definition of a dislocation is identical with the Cartan loop that was known in 
differential geometry long before the notion of a dislocation was introduced.  Therefore, 
we shall now briefly describe the Frank definition of a dislocation. 

 

                                                
 20 For this section, cf., BILBY [26], in particular. 
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a       b 

 
Fig. 2a and 2b.  The Frank definition of a dislocation in a crystal. 

 
Fig. 2a shows a real crystal (a) with a dislocation (which corresponds to our deformed 

state).  The numbers define a closed loop in it that begins and ends at the point P and 
encircles the dislocation.  In the ideal crystal (b) in Fig. 2b (which has nothing to do with 
our initial state) let P′ be a point of the lattice that corresponds to P, and follow the 
corresponding sequence of steps (primed numbers); each step in a then corresponds to a 
step in b.  At the step that closes the loop in a there remains a remainder′ Q ′ P between it 
and the lattice point P′, the so-called closure defect.  Frank then defined the dislocation 
with the help of the “Burgers vector.” 

We would now like to express the closure defect with the help of the connection.  For 
this, we consider the real crystal a from a non-Euclidian standpoint in which we will pass 
over to the Cartan basis.  It will be assumed that two vectors at two points that are dxm 
apart differ from each other by: 

dCk = −Γml�
kCldxm,     (51) 

 
and are of equal length, as well as parallel to each other (BILBY, BULLOUGH, and 
SMITH [23]).  From this standpoint, the real crystal becomes a non-Euclidian ideal 
crystal, i.e., its smallest lattice vectors are all the same length and are parallel when they 
have the same k (k = 1, 2, 3).  (We do not need to omit the singular value at the center of 
the dislocation since the loop does not exist there.) 

We now give a somewhat different description of the Frank loop that one can 
immediately recognize is equivalent to the previous one (for this, cf. SCHOUTEN [39], 
pp. 127).  We imagine that the ideal crystal lies over the real crystal b in such a way that 
the point P′ lies over the point P, and the ideal lattice b is tangent to the real lattice a.  
The first step of the loop makes the point 1′ cover 1 in such a way that b is now tangent to 
a at 1.  We symbolically call this arrangement (1′ 1).  The second step of the loop brings 
b into the arrangement (2′ 2), which is notated analogously to (1′ 1).  We now wish to 
calculate the position of the point P′ in the corresponding arrangement; indeed, we use a 
Cartesian coordinate system (κ) on the ideal lattice a at the respective location with the 
point of contact (e.g., n′ in the arrangement (n′ n)) as the origin.  We then desire to know 
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the coordinates of the real lattice, instead of the coordinates xk of the ideal lattice, to the 
greatest extent possible. 

In the (1′ 1)-arrangement, P′ has the coordinates− d
1

xκ in the aforementioned 

Cartesian lattice.  (The subscript 1 describes the number of the step.)  We will see that it 
is generally permissible to replaced

m
xκ with d

n
xκ  when one has n = m. 

Under the following displacement of (1′ 1) to (2′ 2) the point 1′ in the Cartesian 
lattice with its origin at 2′ experiences a change of coordinates− d

2
xκ (− d

2
xk, resp.)  Under 

this displacement the vector ′ 1 ′ P  , i.e., − d
1

xk, is parallel translated to− d
2

xk, i.e., it has 

changed by d d
1

xk= − Γml.
k d

1
x l d

2
xm.  Therefore, the coordinates of P′ (relative to the 

point 2′ = 2) are − d
1

xk − d
2

xk+ Γml.
k d

1
x l d

2
xm.  During the next step, the latter vector is 

parallel translated over− d
3

xkso one obtains the position vector of P′ relative to 3′ as now 

being − d
1

xk − d
2

xk − d
3

xk+ Γml.
k d

1
x l d

2
xm+Γml.

k d
1

x l d
3

xm+Γml.
k d

2
x l d

3
xm.  (The contributions 

of degree three in the dxk have been omitted.) 
It is clear how to proceed from here.  Once we arrive at the arrangement (Q′ P) we 

have traversed a complete Cartan loop.  In order to calculate the closure defect′ Q ′ P we 
must deal with a summation that appears to be complicated. 

At this point, we make the transition to the continuum theory.  We let the lattice 
constants go to zero and replace the individual dislocations with an arrangement of 
continuously distributed distributions of infinitesimal strength.  We make the loop 
sufficiently small that we can regard Γml.

k as constant in the region in question (a 
conclusion that one often uses in continuum physics).  We then write the closure 
defect ′ Q ′ P  as: 

∆bk = 

1 2 1 3 1 4

2 3 2 4
.

3 4

l m l m l m

l m l m

k k
ml l mn

n

d x d x d x d x d x d x

d x d x d x d x
d x

d x d x

 + + +
 

+ + +  + Γ  
+ + 

 
+  

∑

⋯

⋯

⋯

⋯

. (52) 

 
Since the first summation is preciselyd

n
xκ

n
∑ , one recognizes at this point that no 

difference exists between the two sums, and to make one go to the other, one need only 
let the length of the step go to zero (one can perhaps consider the computation of the 
circumference of a circle with the help of a polygon whose number of vertices goes to 
infinity).  Likewise, one sees that with the aforementioned replacement of d

n
xκ with 

d
n

xkthe second sum in (52) can vary only by a term of third order ind
n

xk, since the 

difference betweend
n

xκ andd
n

xkis only quadratic ind
n

xk.  Therefore, the latter replacement 

of d
n

xκ with d
n

xkis completely justified. 

The first sum in (52) vanishes, and the second one becomes precisely the surface 
element ∆Fml that the loop bounds (sign consistent with the right-hand screw rule).  Due 
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to the anti-symmetry of ∆Fml, the symmetric part of Γml.
k obviously contributes nothing to 

the closure defect, and what remains is: 
 

∆bk ≡ Γ[ml].
k ∆Fml.     (53) 

Since: 
∆bk ≡ αml.

k ∆Fml ≡ αnk ∆Fn    (54) 
 

is the continuum version of Frank’s definition of dislocation we have proved the identity 
(38) between dislocation density and Cartanian torsion.  Thus, we have not actually left 
the realm of distortion. 

According to BILBY, BULLOUGH, and SMITH [23], one can (with somewhat less 
generality) easily express the closure defect in terms of elastic distortion.  If one writes 

the coordinates of P′ at the location (n′ n) as 
1

n

i
i

d xκ
κ

=
−∑ e , in which eκ is the Cartesian 

basis vector of the ideal lattice at the location (n′ n), dxκ =Ak
κ dxk.  For a closed loop (n′ = 

Q′ ) one then has: 

bκ 
eκ = ′ Q ′ P = k

k
i

i

d x Aκ
κ−∑ e .   (55) 

 
Since eκ is Cartesian, we can put it outside of the sum, i.e., we can completely eliminate it 

from eq. (55).  With the help of Stokes’s theorem, the transition to continuum theory 
gives: 

bκ = − dxkAk
κ∫ = 1

2 (∂mAl
κ −∫∫ ∂l Am

κ )dFml ,  (56) 

 
and when the path encloses a sufficiently small surface element ∆Fml: 
 

∆bκ = 1
2 ( ) ml

m l l mA A Fκ κ∂ − ∂ ∆ .    (57) 
 
The image of ∆bκ in the deformed state ∆bk ≡ Aκ

k ∆bκ, which becomes: 
 

∆bk ≡ αml.
k∆Fml,     (58) 

αml.
k =Aκ

k(∂mAl
κ − ∂l Am

κ ) / 2.     (59) 
 
One can regard this as the proof of the assertion in footnote 19 in connection with eq. 
(48). 

In conclusion, we still have to mention a result that is derived in many textbooks on 
differential geometry or relativity theory and concerns the Riemannian curvature tensor.  
If one parallel displaces a vector Ck around the boundary of a surface element ∆Fml once 
then the vector experiences a variation: 

 
∆Ck = − 1

2Rnml.
k Cl ∆Fnm.    (60) 
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In our case of a metric connection, Rnmlk is anti-symmetric in l, k, so it follows that ∆Ck ⊥ 
Cl.  If one displaces a dreibein instead of a single vector then one sees that it will be 
rotated, but not deformed.  Thus, one can easily put eq. (60) into the form: 
 

∆αlk = − Rnmlk ∆Fnm     (61) 
 
or in the Einsteinian form (cf. [8], pp. 130) (21): 
 

∆ω i = − Rij
 ∆Fj .     (62) 

 
Therefore, ωlk is the anti-symmetric tensor that describes the rotation and ωi is the 
equivalent vector. 

The relation (62) leads us to an intuitive meaning for the incompatibility tensor ηηηη − 
which is also an Einstein tensor (cf., eq. (86)) − that we used several times in the earlier 
linear theory of proper stresses.  If one excises a surface element ∆Fj that bounds a ring 
out of a body with proper stresses and then cuts the ring then the final rotation is ∆ω i = − 
ηij

 ∆Fj  (MORIGUTI [43], ESHELBY [44], KRÖNER [8], pp. 38). 
From (61) it follows:  Since the lattice orientation of a crystal, which we also assume 

has already been deformed, can be defined at any point (in which case, one no longer has 
a crystal), the Riemann tensor of a connection that describes the lattice distortion must 
vanish (BILBY and SMITH [24]). 

 
 

§ 7.  The concepts of the general theory 
 
In § 4 we characterized the deformed state with the help of the elastic distortion 

tensor fieldAκ
k .  If one knowsAκ

k then one also knowsAκ
k∂m Al

m, and from this, the 
deformations and structure curvatures also follow by way of eqs. (17) and (18).  A priori, 
there is no need for reduction in order to be solved for theAκ

k ; thus, they involve nine 
functional degrees of freedom, in general.  From dislocation theory it is known that 
dislocation lines cannot end in the interior of a body; we expressed this by the divergence 
condition (26).  Thus, the dislocation density has six functional degrees of freedom.  The 
number of degrees of freedom in the causes (dislocation densities, bulk forces) is 
therefore, as it must be, equal to the number of degrees of freedom in the effects (perhaps 
characterized by the elastic distortions), namely, nine. 

By contrast, the general metric connection has fifteen functional degrees of freedom.  
The reduction to nine follows in the differential geometric theory by setting the Riemann 
tensor (Einstein tensor, resp.) equal to zero.  From the standpoint of differential 
geometry, this step seems quite arbitrary, and one must therefore expect states in metric 
bodies that are generally different from those of § 4, 5.  In order to describe these states, 
we have the connection Γmlk , which follows from the deformation components g′mlk (six 
degrees of freedom) and the structure curvature components (nine degrees of freedom).  

                                                
 21 The account in [8] involves the assumption that Rnmlk does not have to be anti-symmetric in l, k.  All of 
the remarks that relate to this must then be corrected if the connection is assumed to be metric.  In 
particular, the distortions must be replaced with rotations in footnote 1, pp. 135 of [8]. 
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The important question now is that of the causes of these general states, i.e., the physical 
meaning of tensor field Bij that the one sets equal to the Einstein tensor Γij. 

We point out that the equation that one obtains by setting the anti-symmetric part of 
the Einstein tensor equal to zero is identical with the divergence condition for the 
dislocation density for the deformed state.  One will thus have to deal with the fact that 
dislocations can also cease to exist in the interior of a body.  Indeed, one obviously must 
generally define the dislocation density as in § 4.  It must be emphasized that the 
definition of a dislocation with the aid of the Cartan loop does not have to forbid its 
vanishing in a body. 

Whereas the vanishing of the dislocation density also implies the vanishing of the 
anti-symmetric part of the Einstein tensor, this is not true for the symmetric part, in 
general.  For that, we write: 

Γ(ij) = B(ij),     (63) 
 
in which we must replace Γmlk with g′mlk. 

The h(ij) thus lead to an elastic deformation, and with that, to internal stresses.  
Therefore, no Cosserat-Nye structure curvatures appear, since we have hmlk = 0.  We 
would now like to show that one can realize such internal stresses by the insertion of 
matter into a body that is originally in the ideal state.  That is essentially best explained in 
the context of crystals. 

This matter exists as a sort of atom and is found in the ideal state.  For example, we 
can identify it with the crystal in sec. 2b.  If we insert matter into this crystal perhaps in 
the form of a new planar net that vanishes in the interior then we obtain the real crystal of 
sec. 2a; we have produced a dislocation line in the ideal crystal.  However, this is 
precisely what we cannot do, since the dislocation will alter the structure, in the sense 
that that the Cosserat-Nye curvature hmlk will no longer vanish everywhere. 

We can therefore insert matter into the body in other ways, namely, as so-called 
interstices.  Then we will elastically displace the regular atoms, from which the planar 
network will naturally also become curved.  This is therefore bound up with the 
components g′mlk, and the elastic deformations are closely coupled with the curvature, as 
we described by way of eq. (43).  We thus have two kinds of matter to distinguish: 
regular matter, from which the ideal state is composed, and extra matter, which gives 
rise to elastic deformations of the body, and without which dislocations would appear.  
None of the regular planar nets of a body filled with extra matter can end in its interior. 

The effect produced by the extra matter then consists of compressing the neighboring 
regular matter closer together, and thereby producing elastic deformations.  Every single 
lattice atom can be regarded as an elastic dipole, as we will describe in greater detail in 
chap. IV.  Such a dipole is a symmetric tensor (22). (It is symmetric because no torques 
appear in its neighborhood.)  In the sequel, the extra matter will be described by the 
symmetric tensor field of a constant distribution of elastic dipoles. 

We now separate the individual mass elements, so they can freely stretch; i.e., the 
stresses vanish, and the rest of the mass elements undergo a stress-free (this is also called 

                                                
 22 A lattice atom does not generally push in all directions to the same degree, and from this one arrives at 
the tensorial nature of extra matter.  The substitution of foreign atoms and holes works in a completely 
similar way.  They are therefore included in the extra matter.  In particular, the sign of this extra matter can 
also be negative at these lattice defects. 
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quasi-plastic) deformation  εtl

Q

compared to the state with no extra matter.  One can also 
use the symmetric tensor field of this quasi-plastic deformation to characterize the extra 
matter. 

The inhomogeneous introduction of extra matter alters the regular crystal structure in 
such a way that the lattice constants will vary from place to place and one obtains the 
orientation from this. Such a lattice can exist stress-free in a particular non-Euclidian 
(Riemannian) space.  If one were therefore compelled to take such a position in a 
Euclidian space, for example, that the regular atoms define the sites of an ideal lattice 
then this state would not be (force-) stress-free. 

On the other hand, one can now think of a substance that, when introduced into an 
ideal crystal, has the effect that the body can only be torque-stress-free in a non-Euclidian 
(Cartanian) space (that it is not torque-stress-free at that position in an ideal crystal, as 
above).  No detailed discussion of the manner by which this substance evolves in time 
exists, but one can think of a certain microscopically fluctuating distribution of interstitial 
masses, which corresponds to the aforementioned equivalence of macroscopic torque 
stresses and microscopic force stresses that was mentioned in the first chapter.  We leave 
these questions open, and choose to provisionally characterize the given substance as 
rotational matter.  It has six degrees of freedom (in contrast to macroscopic extra matter, 
which has three), and therefore only half of it is described by the anti-symmetric part B[ij] 
of Bij. 

The fundamental geometrical equation in chapter I is particularly suited for a 
qualitative discussion of rotational matter, which was written, in the Lagrangian notation: 

 
Rot ββββ – αααα = δδδδ. 

If one decomposes this accordingly: 
 

δδδδ = Rot 
Q

εεεε  + Rot 
Q

ωωωω + Grad a, 

 

in which 
Q

εεεε  is the aforementioned quasi-plastic deformation tensor, which 

macroscopically describes the extra matter, then the rotation tensor field 
Q

ωωωω  and the 
vector field a represent the rotational matter.  By the fact that Div αααα = − Div grad a, one 

has that the gradient part of δδδδ means the same thing as B[ij], whereas the Rot
Q

ωωωω  part of δδδδ, 
as will follow from the calculations of the next section, does not contribute to the 
construction of the Einstein tensor. 

When we extend the theory of nine degrees of freedom by the nine degrees of 
freedom of the extra matter then we should, we hope, arrive at a theory with eighteen 
degrees of freedom.  In fact, this does not happen since in the former theory we 
artificially considered the dislocation densities as external influences, and therefore as 
givens.  In reality, this is inadmissible. Extra matter and dislocation densities must be 
given independently of each other.  In many cases, our conception of the general theory 
will involve the matter tensor Bij (6), the dislocation density (6), and the bulk forces (3) 
being given independently of each other.  We thus attribute only six degrees of freedom 
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to the dislocation density, since Div αααα is precisely equivalent with B[ij].  We thus arrive at 
the correct number of fifteen degrees of freedom. 

Next, we will make an even further restriction by taking B[ij] = 0.  This corresponds to 
simultaneously requiring: Rotational matter first becomes interesting in a theory in which 
one also considers only the torque stresses. 

The mathematical statement of the general theory that we shall give in the next 
section will be linked with the following assumption: the initial state is the ideal crystal 
(k).  As before, we are brought into the intermediate state (κ) by means of a plastic 
distortion  Ak

κ , which one may assume to be an aggregate of isolated mass elements or as a 
non-Euclidian state.  We now introduce extra matter into the mass elements, which will 
alter the ideal crystal lattice from the outside.  The new intermediate state is called (κ′), 
and we give the change in form of the mass element under the transition (κ) → (κ′) the 
name  Ak

′ κ .  As before, we pass from the state (κ′) into the final state by an elastic 

distortionA ′ κ 
k . 

 
§ 8.  The mathematical statement of the general theory 

 
We begin with some notations.  We let btl, ckl, gκ′λ′, akl, denote the metric tensors of 

the four states (k), (κ), (κ′), (k), resp., or, e.g., if we need to measure the distance between 

two points, which is characterized by the mutual separation (dxk) in the final state, we 
denote them by bkl, ckl, gkl, akl.  The tensors that are defined on the final state and 
represent the total deformation (k →  k), the resulting lattice deformation (κ → k), the 

elastic deformation (κ′ → k), the plastic deformation (k → κ), and the quasi-plastic 

deformation (κ → κ′ ), are then (23): 
 

εkl

G

= (akl – bkl)/2,  εkl

R

= (akl – ckl)/2, εkl = (akl – ckl)/2, (?) (64) 

εkl

P

= (ckl – bkl)/2,  εkl

Q

= (gkl – ckl)/2. 
 
Definitions of the type (19) are valid for the three-index symbols.  Each of the 
deformations (64) is a constituent of a distortion for which we previously employed the 
kernel A and the indices that corresponded to the intended transition. 

Our first goal is now to describe the crystal lattice in the deformed state.  Since the 
transition (k) → (κ) does not alter the crystal structure (cf. § 4), we must go on to (κ).  Let 

Bκ(1) and Bκ(2) be perhaps two primitive lattice vectors at two neighboring mass 
elements, let their distance apart be dxµ, and let them be Euclidian parallel and of equal 
length, so that dBκ = 0, when (κ) is a Cartesian coordinate system.  We now have that the 
distortionAκ

′ κ takes (κ) to (κ′ ), andA ′ κ 
k  takes (κ′ ) to (k).  With both operations, one is 

                                                
 23 On the grounds of the additivity of the deformation one can easily give a prescription for the 

measurement of, e.g., εkl

Q

: It is the deformation that the mass element that was removed from the final state 
suffers when the extra matter is suddenly removed from it under constant application of the forces on its 
boundary. 
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treating a distortion of the crystal lattice; in the first case, a stress-free (quasi-plastic) one, 
and in the second case, an elastic distortion.  As a result, the total distortion of the regular 
lattice is equal to: 

 Aκ
k = Aκ

′ κ A ′ κ 
k .     (65) 

 
If we compute the difference between the lattice vectors above, for which dBk = 0 is true 
in the final state, then we obtain, by taking into account that Bκ =Al

κ Bl, Bk =Aκ
k Bκ: 

 
dBκ = Bκ

  dAκ
k =Al

κ Bl(∂mAκ
k )dxm,   (66) 

dBκ = − Aml 
kBl dxm,    (67) 

Aml 
k = Aκ

k∂mAl
κ .     (68) 

 
Amlk is the connection that describes the resulting distortion of the lattice.  It has a form 
that leads to a vanishing Riemann tensor, which means, from § 6, that the orientation of 
the crystal at every point of the body is also uniquely determined in the deformed state. 

In principle, the lattice structure in the deformed state, and thus, the connection Amlk , 
can be measured; e.g., by Röntgenography.  The state of the body is not, however, 
completely determined by such a measurement, since it would not say how big the quasi-
plastic and elastic parts of the distortion were.  Thus, the internal stresses cannot be 
measured Röntgenographically in the presence of extra matter, either.  Additionally, one 
can experimentally determine the decomposition that gives the elastic deformations, and 
thus, the state is completely specified.  (We temporarily disregard the discussion of 
rotational matter in the last section.) 

The lattice connection Amlk may be brought into the form: 
 

Amlk = c′mlk + hmlk ,     (69) 
 
in the same manner as in § 4 or 5 (cf., e.g., eq. (13), et seq.), from which their subdivision 
into deformation and lattice curvature parts appears obvious.  One now expresses the 
resulting lattice deformation, according to (64), as the sum of a quasi-plastic and an 
elastic deformation; i.e.: 

c′mlk = a′mlk −2 ′ ε mlk

R

 = a′mlk − 2ε′mlk −2 ′ ε mlk

Q

= g′mlk − 2 ′ ε mlk

Q

. (70) 
 

With this, we can put the relation (69) into the form: 
 

Γmlk ≡ g′mlk +  hmlk = Amlk +2 ′ ε mlk

Q

 ≡ Bmlk .  (71) 
 

Here, g′mlk represents the elastic deformation part and hmlk represents the Cosserat-Nye 
curvature part of the deformed state that originates in the process of dislocation.  It 
follows rigorously that the insertion of extra matter does not lead to stress-free structural 

curvatures.  If one constructs the anti-symmetric part of eq. (71) then′ ε mlk

Q

follows 
naturally.  The usual remaining equation: 
 

Γ[ml]k ≡ αmlk = Akκ (∂mAl
κ − ∂l Am

κ )/2,   (72) 
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which was the expression of the fundamental geometric theorem in the reduced theory, 
can guarantee the connection on the body only up to a point, as far as the dislocations are 
concerned.  The certainty of the connection in the presence of dislocations and extra 
matter is given by the complete eq. (71), which is therefore to be regarded as the 
expression of the fundamental geometric theorem in the general theory (24). 

The terms g′mlk and hmlk appear in eq. (71) exactly as they do in the reduced theory 
(cf., eq. (33)).  Nevertheless, there is an essential difference: the Riemann tensor of the 

connection Γmlk does not vanish, since the term 2 ′ ε 
Q

mlk gets added to Amlk , and the 
connection Γmlk no longer has a form that is reducible to one with a vanishing Riemann 
tensor. 

We can proceed in essentially two ways: 
 
(a) We write eq. (71) in the form: 

Amlk = g′mlk  + hmlk − 2 ′ ε 
Q

mlk   (73) 
 
and form the Riemann tensor from both sides.  The left-hand side gives: 
 

Anmlk = 2[∂m Amlk – cpqAnkq Amlp] [nm] = 0,  (74) 
which becomes: 

[∂n(Γmlk − 2 ′ ε 
Q

mlk) – cpq(Γnkq − 2 ′ ε 
Q

nkq)(Γmlp − 2 ′ ε 
Q

mlp)] [nm] = 0,  (75) 
 

in which cpq cqr
 ≡δr

p .  If we set: 

Hmlk = hmlk − 2 ′ ε 
Q

mlk     (76) 
 
then we can easily bring eq. (75) into a form that corresponds to eq. (27).  It is: 
 

1
2{ ε jnmε ilk [∇n(−2εmlk + Hmlk) − cpq(−2εnkq + Hnkq) (−2εmlp + Hmlp)]} (ij) = 0. (77) 

 
The method for determining the internal stresses that was discussed in connection with 
eq. (27) can therefore be employed here in a practically unaltered way.  However, along 
with the internal stresses, the elastic deformations, and thus the g′mlk, and, from eq. (71), 
the lattice curvature and the connection Amlk are known, so that the state of the body is 

completely determined from the dislocation density and the extra matter thatεkl

Q

. 
(b) The second way is closer to the considerations of KONDO.  We construct the 

Riemann tensor directly from eq. (71).  The left-hand side reads: 
 

Γnmlk ≡ 2[∂n Γmlk – gpq Γnkq Γmlp] [nm] .   (78) 
 

                                                

 24 It entails the relation Akκ Al
κ = akl  –  2εkl  − 2εkl

Q

that came from (72), and this represents a condition 
that εkl must satisfy in order to maintain the connection.  Cf., footnote 13. 
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One observes the essential difference between Anmlk and Γnmlk: It resides in the appearance 
of gpq, instead of cpq, and says that Γnmlk is associated with the metric of the intermediate 
state (κ′ ), whereas Anmlk corresponds to the metric of the intermediate state (κ).  Thus, if 
we now construct the Riemann tensor from the right-hand side of (71), then Amlk also 
gives a non-vanishing contribution.  It is: 
 

Bnmlk  ≡ 2[∂n Bmlk – gpq Bnkq Bmlp] [nm]   (79) 
 

and after a brief reorganization, it becomes: 
 

Bnmlk = (2ε
Q

)nmlk−  4[(cpq – gpq) Ankq Amlp – gpq(ε
Q

′ n kqAmlp + Ankqε
Q

′ n kq)] [nm], (80) 

 (2ε
Q

)nmlk ≡ 2[2∂nε
Q

′ m lk − 4 gpqε
Q

′ n kq ε
Q

′ m lp] [nm].  (81) 
 
If we multiply (78) and (80) by ε jnmε ilk/4 then we obtain the Einstein equation for 
continuum mechanics: 

Γij = Bij,      (82) 
 
which, when symmetrized, is equivalent to eq. (77), and therefore it can also be regarded 
as the fundamental equations for the internal stresses with given dislocation densities and 
extra matter.  We will explicitly write out eq. (82) in the next section. 

The fact that the presently unknown quantities Amlk enter into Bij is relatively 
inconsequential when one employs, e.g., an iterative approach to the solution of the 
Einstein equations, as was proposed for the solution of eq. (27) [19].  Since the Amlk are 

small of the same order as the ε
Q

kl , one can compute the linear terms, in which one has 

setBnmlk
0 = (2ε

Q

)nmlk.  The linear computation gives, inter alia,Amlk
0 , which is the first 

approximation for Amlk.  For the second step, one next computesBnmlk
1 with the help ofAmlk

0 , 
etc.  Here, we can do without a detailed representation for the solution of the fundamental 
equation for the determination of the internal stresses, since such a solution was given by 
KRÖNER and SEEGER [19]; also, cf. § 10. 
 
 

§ 9.  Discussion 
 
Up till now, we have not spoken of the bulk forces, whose considerations are trivial 

compared to the problem that we just discussed.  One can first solve the problem stepwise 
for the case of vanishing bulk forces, and then finally consider the bulk forces by way of 
a supplementary purely elastic calculation.  If we think of this possibility as being 
implicitly contained in the representation of § 8 then the theory of § 8 is the theory of 
twelve degrees of freedom.  One can completely reconcile this theory with the theory of 

fifteen degrees of freedom by adding another term h
Q

mlk to Bmlk in eq. (71), which 
describes the rotational matter that was suggested in § 7.  One thus formally obtains the 
asymmetric Einstein equations. 
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One easily convinces oneself that the equations of the reduced theory are obtained 

from those of the general theory when one setsε
Q

kl = 0 in them (from which, it follows that 
cpq = gpq) − i.e., by ignoring the extra matter.   Next, one has Bnmlk = 0, so the connection 
Γmlk is integrable, which is consistent with eq. (71).  Eq. (82) becomes identical to eqs. 
(77) and (27). 

In regard to eq. (60), BILBY and SMITH [24] have characterized the vanishing of the 
Riemann tensor Anmlk as a physical requirement that must satisfied if a lattice is to be 
uniquely defined at every point of a crystal. 

This postulate also remains true in general.  It is true for the lattice connection Amlk , 
but not for the general connection Γmlk , for which perhaps the name state connection 
would be appropriate, since the state is uniquely determined by it, as compared to Amlk .  
This state connection is the one that KONDO used.  In the event that one should confuse 
one connection for the other, there would be no contradiction between the theory of 
KONDO and that of BILBY, BULLOUGH, and SMITH.  In particular, there also exists a 
lattice connection the general theory, which characterizes the distortion of the lattice in an 
intuitive way with the help of the associated law of parallel translation.  Unfortunately, 
this intuitive appeal of the state connection is further reduced since it no longer describes 
a parallel translation of lattice vectors.  Thus, this connection is very useful, due to the 
fact that it is an additive combination of the elastic deformation components and structure 
curvatures, since one can thank this additivity for the possibility of separating the elastic 
deformation from the usual effect, from which the determination of the internal stresses 
can be realized. 

The summands that get added to the term (2ε
Q

)nmlk in the expression (80) for the 
Riemann tensor Bnmlk (the corresponding term in the Einstein tensor Bij, resp.) seems at 
the moment to be a “beauty flaw,” since it depends on the lattice torsion Aκ

k .  We had the 
same “flaw” in our previous definition (10) of the local dislocation density.  Most likely, 
this independence vanishes when one formulates the Einstein equations in the coordinates 
of the initial state (k), since this is bound up with some difficulties, and, up till now, it has 
not been verified. 

The notion of quasi-plastic deformation (distortion, resp.) was already used in the 
linear theory (cf. REIDER [45] and KRÖNER [46]).  The reduced theory will be ruled by 
the equation: 

∇×ββββ = − ∇×ββββP ≡ αααα .    (83) 
 

The dislocation density was defined as a measure of the perturbation caused by the 
connection during plastic deformation.  It can play no role in the determination of the 
stresses, if the stress-free distortions ββββP come about as a result of the process of 
dislocation or other influences, such as the insertion of matter, temperature fluctuations, 
electro- and magnetostriction, etc.  One can therefore use a theory of dislocations to 
construct a theory of such quasi-distortions, and define a quasi-dislocation density (25): 
 

                                                
 25 This definition of the quasi-dislocation density is certainly unrelated to the three degrees of freedom 
that are connected with Div αααα . 
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Q

αααα  ≡ −∇×ββββQ.     (84) 
 

If one has both dislocations and quasi-dislocations (= general theory) at the same time, 
then one obtains the equation: 

∇×ββββ = αααα  + 
Q

αααα .    (85) 
 

In general, one must compute αααα, 
Q

αααα  from the physical givens in the problem.  If one 
constructs the rotation of the right-hand side and then takes the symmetric part (symbol 
S), then what remains is: 
 

∇×εεεε ×∇ = ηηηη +
Q

ηηηη , ηηηη = (αααα    ×∇)S,  
Q

ηηηη  = (
Q

αααα ×∇)S.  (86) 
 

One easily verifies that these extended compatibility equations are identical with the 
symmetric Einstein equation (82) when one linearizes them.  In order to compare them, 
we write eq. (82) as: 
 

1
2{ ε jnmε ilk [∇n(−2εmlk + hmlk) – gpq(−2εnkq + hnkq)(−2εmlp + hmlp)]} (ij) = Bij. (87) 

 
If one linearizes the equations then one obtains (cf., (80, 81)): 
 

1
2{ ε jnmε ilk∇n(−2εmlk + hmlk −2ε

Q

mlk)} (ij) = 0.   (88) 
 
Obviously, the first summand corresponds to the term ∇× εεεε    ×∇ in (86), the second 

summand corresponds to ηηηη, and the third one to
Q

ηηηη . 

If we add the quantity − 2ε
Q

mlk , which characterizes the extra matter, to the quantity 
hmlk that describes the dislocation in eq. (76), as if we have a resulting dislocation density, 
then we also effectively used the introduced of the quasi-dislocation in the nonlinear 
theory.  Usually, in the nonlinear theory, coupling terms arise between quantities with 

different meanings, e.g., products of hmlk withε
Q

mlk , etc.  If one ignores these typical 
nonlinear phenomena then the physical result of the nonlinear equations is the same as 
that of the linear equations, and one can clarify the most fundamental questions about the 
linear equations.  One of the objectives of this endeavor is to understand from this how 
the knowledge of the linear theory already involves, to a considerable degree, the 
knowledge of the fundamental concepts of not only the reduced, but also the general 
nonlinear continuum theory of dislocations and internal stresses. 

We conclude this discussion with a remark on the restriction to metric bodies that we 
also employed in the general theory.  We described the deformed state through the 
connection Γmlk and found the following form for it: 

 
Γmlk = g′mlk + hmlk.     (89) 

 



§ 9.  Discussion                                                                            35 

In this, g′mlk represents the (in general, incompatible) elastic deformations and hmlk 
represents the (in general, incompatible) Cosserat-Nye structure curvatures, which 
collectively contribute fifteen degrees of freedom.  From differential geometry, it is 
known that the general metric connection has precisely the form (89).  The most general 
metric continuum is thus the Cosserat continuum, which is incompatible with 
deformations and curvatures. 

In the preceding statement, the word “metric” means: The distance between two 
arbitrary points of the body is well defined.  This demand is satisfied by, e.g., a body that 
is composed of nothing but fibers, or a body that is continuously endowed with rips, as 
one might obtain by perhaps rolling a metal piece, when one does not make the holes too 
big.  Such a body is no longer a continuum in the usual sense.  This assumption was what 
led us to choose the (provisional) terminology of “general theory.” 

 
 



                                     

III.  The Integration of the Fundamental Equations 
 

In this chapter, we treat the integration of the Einstein equations.  The most important 
device for that is the stress tensor function χχχχ.   The principal meaning of the tensor field 
of stress functions in the continuum theory of dislocations and internal stresses has 
already been discussed in numerous references [8, 19].  SCHAEFER [47] originated a 
physical meaning for the stress functions that seems particularly adapted to the 
differential geometric aspects of the theory: The stress functions represent the reactions 
(in the sense of LAGRANGE) to the constraint condition that the body must remain in 
Euclidian space. 

In [19], it was shown that the nonlinear problem of summing the internal stresses in a 
series can be iteratively replaced with the treatment of linear summation problems.  It is 
clear that one can also treat the second boundary-value problem (26) (the combined 
problem – given internal stresses and boundary forces – resp.) in a similar linear iterative 
way.  Thus, one first solves the linear problem, so that the tensor field of stress functions 
χχχχ0 satisfies the boundary conditions, but not the nonlinear differential equations (it is the 
Einstein equation, in which the elastic deformations have been replaced by the stress 
functions with the help of the material law).  One must therefore add a second tensor field 
to χχχχ0 that satisfies the conditions for a free boundary and provides for the satisfaction of 
the differential equation.  We will explain this in somewhat more detail later. 

Now, the linear three-dimensional boundary-value problem is already very difficult, 
so one can presently shy away from more of such problems, which one will require for 
the iteration.  Insofar as the partial problems to be solved are all of the same type, since 
they always involve the same boundary, the intermediate results of the first computation 
can be further used in the solution of the following problem.  Thus, if one would like to 
carry out the computation, say, with the help of Green functions then one would arrive at 
the same function as the complete iteration would provide.  If one uses the method of 
series development, which has such practical importance, then most of the work is taken 
up with the computation of the matrix elements; however, one can then use them for all 
of the iterations.  In conclusion, the modern methods of computation are particularly well 
suited to the demands of iterative processes.  The amount of time that is required for a 
program to carry one out depends only upon the number of steps; the computation time of 
the machine itself increases linearly with this number.  From this standpoint, the 
treatment of nonlinear problems does not therefore seem to be much more complicated 
than the treatement of linear problems. 

In the following sections, we present generalities on the stress function Ansatz and a 
brief representation of iterative processes.  In § 11 the second boundary-value problem of 
the linear theory will be treated. 

 
§ 10.  The stress function Ansatz 

 
The equilibrium condition for the stresses is written in terms of the coordinates of the 

deformed state: 

                                                
 26 We restrict ourselves throughout to the particularly important second boundary-value problem (given 
boundary forces), which also includes the case of the free boundary.  
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∇iσij = 0.      (1) 
 
They will be satisfied identically by the Ansatz: 
 

σij = − ε ilk ∇l ϕk. 
j, ϕk .

j = ε ilk ∇n χkm , (?)  (2) 
or also: 

σij = − ε jnm ε ilk∇n∇l χmk ,    (3) 
 
as Beltrami [48] first showed.  Obviously, we have the following equations for the first 
order stress function tensor ϕk .

j: 
∇jϕk .

j = 0, ϕk .
j = 0. (?)   (4) 

 
Since condition (1) implies that the symmetric tensor σij has three degrees of freedom, 
one can impose three conditions on the second order symmetric stress tensor χij without 
restricting to the manifold of stress states that are derived from χij.  The conditions are 
certainly not arbitrary.  We are interested only in “admissible” conditions, which are the 
ones that imply no restriction of the stresses.  For example, the conditions χxx = χyy = χzz 
= 0 are admissible (MORERA [49]), as are χxy = χyz = χzx = 0 (MAXWELL [50]), χxz = 
χyz = χzz = 0,  χxy = χyy = χzz = 0,  χxx = χxz = χzz = 0 (BLOCH [51]).  There are no other 
admissible combinations with three vanishing Cartesian components of χij [51].  If one 
computes the stress function tensor in non-Cartesian components then the question of 
admissibility can get very difficult.  We shall return to this notion. 

The stress functions satisfy certain differential equations that one obtains when one 
addresses the (extended) compatibility equations: 

 
− ε jnm ε ilk∇n∇lεmk = ηij,    (5) 

 
with the aid of the material law.  (From § 8, these equations are indeed the linearized 
Einstein equations.)  Instead of eq. (5), one takes advantage of the (extended) Beltrami 
form ([8], pp. 55)(27): 
 

∆′σ ij + 
1

1+ ν (∇ i∇ j – aij∆)σk
k = 2Gηij,  ∆′ ≡ ∇l∇l. (6) 

 
These equations are true only when (1) is valid. 

It has now been known for a few years that the aforementioned secondary conditions 
for the stress functions can be formulated in such a way that one is led to problems in 
bipotential theory or potential theory.  Thus, there are essentially two different 
possibilities, one of which leads to a solution of the summation problem, while the other 
seems to offer certain advantages in the treatment of boundary value problems.  Both 
Ansätze are in contrast to the aforementioned covariant ones, which clarifies their results. 

a) In order to describe the Ansatz of KRÖNER-MARGUERRE [36, 52], we 
introduce the abbreviations: 

                                                
 27 Observe: The statement ∇l∇l  = ∂l 

∂l is only true for Cartesian coordinate systems, and it is only by the 
use of scalar quantities that ∆′ is equal to the Laplace operator that one usually denotes by ∆. 
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′ χ ij  ≡ χ ij −
ν

1+ 2ν χ k
kaij

 
 

 
 /2G ,  η′ ij ≡ 2G η ij +

ν
1−ν ηk

kaij 
 

 
   (7) 

with the inverses: 

χij ≡ ′ χ ij +
ν

1− 2ν ′ χ k
kaij

 
 

 
 /2G, η ij ≡ ′ η ij −

ν
1+ 2ν ηk

kaij 
 

 
 / 2G . (8) 

 
If we impose the following secondary condition (in analogy with the known Lorentz 
convention in electrodynamics): 

∇ι χ′ ij = 0      (9) 
 
(from which, it also follows that ∇ι  ϕ ij = 0) then by substituting this into (3) the Beltrami 
equations become equivalent to: 

∆′∆′χ′ ij = ηij,      (10) 
or: 

∆′∆′χ ij = η′ ij,      (11) 
 
resp.  In an infinite medium the general solution of (10) and (9) is: 
 

χ′ ij(r) = −
  

1
8π η ij ( ′ r )∫∫∫ |r − ′ r |d ′ V ;   (12) 

 
hence, it is likewise the solution of the summation problem for internal stresses with a 
given source density ηij.  For a finitely extended medium the secondary condition (9) is 
not automatically satisfied, so it needs more consideration [8]. 
 

b) The Ansatz of SCHAEFER is appropriate to the treatment of boundary value 
problems, i.e., to the solution of the homogeneous problem that goes with (6), which is 
the usual form of the Beltrami equations: 

 

∆′σ ij + 1
1+ ν ∇i∇j σk

k = 0.     (13) 

 
One splits the stress function tensor χij into a spherical tensor (Ω + k

kΘ /3) ai and a small 

harmonic deviator Θ ij − k
kΘ aij / 3 thusly: 

 
χij = Θ ij + Ωaij.     (14) 

 
If one introduces this while applying (3) to (13), then one obtains: 
 

 ∆′Θ ij = 0, ∆Ω = 
1

1− ν ∇i∇jΘ ij,    (15) 

from which, it follows that: 
∆∆Ω = 0.      (16) 

 
Since Ω only contributes to the anti-symmetric part of ϕ ij, we also have: 
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∆′ ϕ (ij) = 0.      (17) 
 
The right-hand side of eq. (15) submits to an elementary integration, and a possible form 
for the general solution is, e.g.: 

Ω =
1
2

1− ν xi∇jΘ ij+ v,     (18) 

 
such that Ω can be expressed in terms of the Θ ij and another harmonic function v.  Since 
the three-dimensional boundary value problem is triply harmonic, but the Θ ij represent 
six harmonic functions, over four more harmonic functions will be further available.  For 
example, it is admissible to set Θxy = Θxy = Θxy = v = 0, so one then has three harmonic 
functions remaining, and the Ansatz takes on the MAXWELL form [36].  The degrees of 
freedom that come from the excess harmonic functions can therefore be adapted to some 
problem in question as much as possible.  This seems to offer a certain advantage over 
the method of PAPKOVITCH-NEUBER [37, 38], which includes only one excess 
harmonic function.  As SCHAEFER [47] has shown, his stress functions are closely 
related to those of PAPKOVITCH-NEUBER; these authors use the functions Ω, ∇iΘ ij.  
The latter are not stress functions – in contrast to the Θ ij – since the equilibrium 
condition cannot be identically satisfied by using them. 

From the generally quite simple integration of the right-hand side of eq. (15) one 
needs to consider no further supplementary conditions. Schaefer’s Ansatz then has a 
certain advantage over that of KRÖNER and MARGUERRE for the treatment of 
boundary value problems, which we will discuss in the following section. 

Now, we shall briefly carry out the iteration process for the case of a body that is 
acted on by boundary forces and likewise includes internal stresses, whose sources will 
be regarded as the dislocations αkl and the extra matter Bij.  We assume that the elasticity 
law takes the form: 

εkl = sijkl σij + sghijkl σijσgh +…   (18a) 
 
so we specialize our attention to an isotropic medium. 

If we substitute the stress functions into the Einstein equations (II, 87), with the help 
of the law (18a), then we obtain, as in [19]: 

 
∆′∆′χij = ′ η 0

ij + P′ ij + Q′ ij.   (18b) 
 
Here, the primed quantities in the right-hand side are connected with the unprimed 
quantities in the same way that η′ ij relates to ηij in eq. (7).  Let the Pi and the Qij be 
defined as in [19]. (They include the χij, the Qij, and the αkl, moreover, in a nonlinear 
form.)  Inη0

ij , we have now included the matter tensor Bij, which was not considered in 
[19].  Eq. (18b) takes exactly the same form as eq. (44) in [19], and the method of 
determining the stress functions that was presented here can be largely applied to it.  We 
therefore set P′ ij = Q′ ij = 0 for the iteration, and determine the linear approximation to 
the stress function tensorχ0

ij , in which we look for the particular integral of the equation: 
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∆′∆ χ0

Sij

= ′ η 0
ij ,     (18c) 

 
and add it to a solution to the homogeneous equation: 
 

∆′∆ χ0

Rij

= 0,     (18d) 
 

such thatχ0
ij = χ0

Sij

+ χ0

Rij

 satisfies the boundary conditions.  The method for 

determiningχ0

Rij

follows in the next section. 

Next, we can compute′ P 0
ij and ′ Q 0

ij fromχ0
ij  [19], and we come to the next iteration, 

which means looking for the particular integral to the equation: 
 

∆′∆ χ1

Sij

= ′ P 0
ij  + ′ Q 0

ij ,    (18e) 
 

andχ0

Rij

supplements a functionχ1
ij that satisfies the boundary conditions. χ0

ij + χ1
ij is then 

the quadratic approximation to the stress function tensor.  The next iteration involves: 
 

∆′∆ χ1

Sij

= ′ P 0
ij  + ′ Q 0

ij ,    (18f) 
 
etc.  Since the required elastic constants of order three and higher have not yet been 
experimentally determined, one must meanwhile satisfy oneself with the quadratic 

approximation.  In the event that perhaps ε
Q

kl  is given instead of Bij, one then encounters 
minor complications that, from the remarks at the end of § 8, can be regarded as already 
having been resolved (∗). 
 

§ 11.  The treatment of the three-dimensional second boundary value problems 
with the help of the stress functions 

 
The result of the treatment of three-dimensional boundary value problems with the 

help of Schaefer’s stress function Ansatz depends largely on a skillful utilization of the 
freedom that comes from the excess of harmonic functions Θ ij.  At this point, we shall 
not go into the admissibility problem that is linked with that, which can become quite 
difficult when one uses curvilinear components for Θ ij.  One can possibly find clues in 
[51] or [36]. 

We write the boundary conditions as: 
 

n • σσσσ = − n • (∇ × ϕϕϕϕ) = − (n×∇ • ϕϕϕϕ = (n×∇ • [n× (n×    ϕϕϕϕ)] = A,  (19) 

 

                                                
∗ Editor’s note:  Meanwhile, it has been proved that it is sufficient to consider the boundary conditions just 
once, namely, at the last iteration. 



  § 11.  The treatment of the three-dimensional second boundary value problems             41                                    

in which A is the surface density of the boundary forces, and n is the external unit normal 

vector.  These conditions are satisfied when one sets: 
 

n×(n×ϕϕϕϕ) = n×∇h + n×(n×∇)a   (20) 

only in the event that: 
(n×∇) • (n×∇)h = A     (21) 

 
is true.  From Schaefer [35], one can obtain the solution of these equations as the solution 
of an equilibrium problem in the boundary layer (“scale”).  The required expenditure of 
work up to this point is trivial in comparison to the complete calculation.  We therefore 
assume that h is given.  

As one sees, if a is derived by substituting (20) into (19) then it can be chosen in a 

completely arbitrary way.  The appearance of a is understandable when one realizes that 

one can add an arbitrary field of the form ∇a to the ϕϕϕϕ without altering the stresses.  From 

this, we conclude that the freedom in the choice of a is closely coupled with the freedom 

that we mentioned in connection with the Θ ij; a is largely determined by giving definite 

values to the Θ ij, and conversely. 
In the sequel, we would like to restrict ourselves to bodies whose boundary is 

composed exclusively of (arbitrarily many) pieces of Cartesian coordinate surfaces x, y, z, 
= const.  This is no restriction in reality since one can approximate any body in this way 
arbitrarily closely.  If we make the required assignment Θxy = Θyz = Θzx = 0, i.e., if we 
compute with Maxwell functions then, as one easily verifies, the boundary conditions can 
be written in the following way, in which one explicitly takes (20) into account: 

 
x = const.:  ∂zzχyy + ∂zzχyy = − Ax  (a)                 

∂xχyy = ∂zHz + ∂y ∫ dz (∂yHz) (b)        (22′) 
∂xχzz = ∂yHy + ∂x ∫ dy (∂zHy)  (c)     

 
y = const.:  ∂xxχzz + ∂zzχxx = − Ay  (a)                 

∂yχzz = ∂xHx + ∂z ∫ dx (∂zHx) (b)      (22′′) 
∂yχxx = ∂xHz + ∂x ∫ dz (∂xHz)  (c)     

 
z = const.:  ∂yyχxx + ∂xxχyy = − Az  (a)                 

∂zχzz = ∂yHy + ∂x ∫ dy (∂xHy) (b)      (22′′′) 
∂zχyy = ∂xHx + ∂y ∫ dx (∂yHx)  (c)     

 
(The integrals give the contribution from a.)  Thus, the Hi (i = x, y, z) follow uniquely 
from equations of the type: 
 

(∂xx + ∂yy)Hi = Ai for x = const.   (23) 
 
etc.  Up till now, no one has succeeded in getting from this point to the standard problem 
of potential or bipotential theory, i.e., to link up with the boundary conditions. (The 



42 III.  The Integration of the Fundamental Equations 

differential equations for the Cartesian Θ ij are indeed coupled.)  Such a coupling occurs 
in the special case of a body that is bounded by two infinite parallel planes z = const., as 
we shall now show, since the boundary conditions for x = const. and y = const. are not 
valid here. 

Next, one computes the harmonic function χxx – χyy from its normal derivative on the 
boundary: 

∂z(χxx – χyy) = ∂y Hy − ∂x Hx + ∂x ∫ dy (∂x Hy) − ∂y ∫ dx (∂y Hx). (24) 
 
One can pose this problem, as one chooses, as a first or second boundary value problem 
in potential theory.  If one chooses the first then one computes ∂z(χxx – χyy) in the volume 
and therefore also has: 

χxx – χyy = ∫ dz [∂z(χxx – χyy)] + f(x, y),  (25) 
 
in which we have set f(x, y) = 0 if the stresses are to vanish at infinite. 

With the knowledge of χxx – χyy, if we integrate the boundary condition (a): 
 

(∂xx + ∂yy) χxx = − Az + ∂xx(χxx – χyy)   (26) 
 
then we are in a position to compute the functions χxx on the boundary.  Since the normal 
derivatives of χxx on the boundary are given (b), the value of χxx over the entire volume 
follows from solving a standard problem of bipotential theory.  Thus, one also knows χyy. 

One ultimately obtains the stress function χzz in an elementary way from the second 
condition (15), which one can put into the form: 

 

∆χzz =
−1

1− ν [∂yy(∆χxx − ∆χyy) + ∂zz(∆χxx − ∆χzz)]  (27) 

 
since ∆Ω = ∆χzz.  From this, it follows that: 
 

χzz = χxx + ∫ dz ∫ dz [∂yy(∆χxx − ∆χyy) + (1 – v) ∆χxx] + zg(x, y) + h(x, y). (28) 
 
Since we must set g(x, y) and h(x, y) equal to zero, for the same reasons as we gave above 
for f(x, y), we also have ascertained χzz .  It satisfies all of the differential equations and 
boundary conditions. 

A specialization of the body that was treated here is the elastic half-space z ≤ 0.  If 
one sets χzz = zu + v with ∆u = ∆v = 0 then, instead of the bipotential problem, one must 
solve two standard problems of potential theory.  The possibility of the problem of the 
elastic half-space giving way to three standard problems in potential theory has been 
know for some time [53].  Through the exclusive use of stress functions, this was first 
realized by SCHAEFER [35] in abbreviated form, although, in contrast to our treatment, 
he set χyz , χzx , and χxx – χyy equal to zero. 

The fact that the three-dimensional boundary-value problem for arbitrary boundary 
reduces to the standard problems in potential or bipotential theory (or even to a 
“tripotential theory”) was very advantageous from the standpoint of modern computing, 
since these standard problems can naturally be programmed much better as problems 
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with coupled boundary conditions. Indeed it is very questionable whether such a 
reduction to a standard problem is possible in completely generality; indeed, it would be 
a great achievement if one could realize this simplification for at least one important type 
of body.  Corresponding investigations were also useful for some special force 
distributions, e.g., substantially simplifying the boundary conditions (22), when one sets 
∂i Aj − ∂j Ai = 0. 

In the cases in which the reduction to standard problems is not valid, one must mostly 
cling to the methods of series developments of the Θij in terms of harmonic functions.  
One then suitably replaces the χij with the Θij in the boundary conditions (22), in which 
perhaps the solution (18) for Ω is satisfactory.  For a curved boundary one must adapt to 
the given conditions as best as one can. 

We now see that there is advantage to the stress function method when computing the 
internal stresses on an infinite body with a free boundary.  As we remarked in § 10, by 

solving the summation problem, one next obtains stress functionsχ
R

ij , e.g., as Maxwell 

functions [8]; these no longer satisfy the boundary conditions.  Now, letχ
R

ij  be the stress 

functions that one obtains by solving the boundary value problem and which one must 

add toχ
S

ij  in order to obtain the resulting stress functions χij that satisfy the free boundary 

conditions.  If one replaces χij =χ
R

ij + χ
S

ij  in these conditions then one almost immediately 

obtains the boundary conditions for the determination of theχ
R

ij .  One can thus connect 

the boundary value problem directly with the summation problem without having to first 

ascertain the stresses that are associated with theχ
S

ij , which are quite uninteresting.  One 

is thus spared much elementary computation, and the integrations (23) also fall out.  It is 
obviously very impractical to go from the solution of the summation problem to the 
displacements for the purpose of treating boundary-value problems. 

Finally, let it be particularly emphasized that the stress function Ansatz, in contrast to 
the method of displacement fields, has its simplest formulation in terms of the 
coordinates of the final state.  For many nonlinear problems this is undoubtedly a great 
asset; e.g., in any case where the external influences are given as functions of the final 
coordinates.  Naturally, other problems will arise that naturally suggest a treatment in the 
initial coordinates.  However, this type of problem seems to be in the minority. 

 
 



    

IV.  Para- and Diaelasticity (28) 
 

The appearance of para- and diaelasticity is very closely linked with the extra matter 
that was treated in the second chapter.  In § 7, we remarked that the extra matter that we 
had introduced could be described as an elastic dipole density.  The permanent or induced 
elastic dipole (- force couple tensor) is, however, the central notion in the theory of para- 
and diaelasticity (§ 12). 

Strictly speaking, this is already included in the general theory.  For that reason, we 
now endeavor to elaborate on a theory of para- and diaelasticity, since we have special 
applications in mind that already are largely suggested by that title: We regard the 
paraelastic (diaelastic, resp.) continuum as the analog of the paramagnetic (diamagnetic, 
resp.) body.  One the one hand, we have that in such a theory, in contrast to the theory of 
chapter II, problems with singular internal stress sources are interesting above all others. 

Because of the particular aspects of such problems the theory of para- and 
diaelasticity possesses a certain stigma in the eyes of continuum mechanics.  
Unfortunately, we must restrict ourselves completely to the linear approximation in this 
chapter. 

 
§ 12.  The elastic dipole (29) 

 
The most important notion in the theory of dia- and paraelasticity is that of the elastic 

dipole.  It was introduced by BOUSSINESQ in a different connection, and is usually 
referred to as a force couple today.  For our purposes, we recommend the former name.  
It allows one to see the analogy with electromagnetic phenomena 
much better, and it also plays an important role in the intended 
applications of force effects to elastic singularities:  It is very 
comfortable and familiar to speak of forces that originate in a 
dipole. 

We now give the microscopic definition of a (one-axis) dipole 
in an elastic continuum.  For this, we associate two individual 
forces ±f of equal magnitude and opposite directions with two 

different points whose separation distance is described by the 
vector l (Fig. 3).  These forces shall now be moved together along 

the linea that connects them and their magnitude increases in such a 
way that the dyadic product lf remains finite.  One then defines the 

elastic dipole as the limiting value: 
 

P ≡ lim lf.    (1) 
 
In contrast to the electric and magnetic dipole, the elastic dipole 

is a tensor of rank two, which corresponds to the fact that the 
elastic fields (stress and deformation) also have a tensor character.  
                                                
 28 I would like to express my heartfelt thanks to Herrn Dr. J.D. ESHELBY, who has made many 
suggestions about the theory of para- and diaelasticity, for his correspondence on this topic. 
 29 For this section, cf., the presentation in LOVE’s Mathematical Theory of Elasticity [54].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  On the 
definition of the general 
one-axis elastic dipole 
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(We will see that in the elastic case a dipole density represents a stress field in the same 
way that a magnetic dipole density represents a magnetic field.)  As a simple dyadic 
product, the dipole in (1) is a special case of the more general (three-axis) dipole tensor.  
One must write this as a sum of up to three dyadic products: 

 
P ≡ lim(l′f′ + l′′f′′  + l′′′f′′′).    (2) 

 
In this we mean, e.g., Pxx represents two forces located on the x-axis, say, separated 

by dx and pointing in the + and – x-direction, which corresponds to a force couple 
without moment (Fig. 4a), while Pxy represents two forces on the x-axis that are dx apart 
from each other and point in the + and – y-direction, which corresponds to a force couple 
with a torque in the z-direction. 
 

 
Figure. 4a and 4b.  One-axis elastic dipole without (a) and with (b) a torque. 

 
 If one has a dipole with Pxy = Pyx then the mutual moments are annulled, so the 
symmetric force couple tensor is therefore moment-free.  It can be transformed to the 
principal axis so it then has a form as in Fig. 5. 
 If one contents oneself with macroscopic observations then for sufficiently small l the 
passage to the limit in (2) is no longer essential.  One can then − e.g., in Fig. 5 – 
enumerate all six forces by indices and obtain, when one denotes the position vectors of 
their points of application by x(i): 

P =
i=1

6

∑  x(i) f(i)     (3) 

 
as the macroscopically observed dipole. 

The following generalization now becomes important: Let a small closed surface f be 
defined inside a continuum.  Suppose that a surface force density A(x) with ∫ dA = 0 is 

defined on it.  At a great distance, this acts like a total dipole: 
 

Pij = xi dAj

f∫ .     (4) 

 
We must point out here that the definition (4) of the dipole P is valid only in a continuum 
that is elastically homogeneous in the neighborhood of the dipole.  In particular, the 
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elastic constants inside of f must be the same as they are outside of it.  If one alters the 
internal elastic constants, perhaps by the application of a force A, then one likewise alters 
the displacement field outside of f, and also by volumes that are just as small as the 
domain bounded by f.  In order to arrive at a meaningful definition one must, however, 
demand that the field of the dipole, which vanishes at infinity in the exterior of f, is 
uniquely determined outside of f by being given Pij and the elastic constants (30).   

For the intended applications, the situation 
in the neighborhood of the dipole is mostly 
very complicated.  Nevertheless, one can 
make definite statements about the dipole 
when one perhaps considers the elastic 
displacement field at a great distance from it 
that we discussed before. 

As one knows, an isolated force Pi at the 
origin of an infinitely extended elastically 
homogeneous medium produces a 
displacement field: 

 
sj(x) = Sij(x) P

i  (5) 

with: 
Sij(x) = Fij(ϑ, ϕ) / r.        (6) 

 
(r, ϑ, ϕ are spherical coordinates.)  Like Sij, 
Fij(ϑ, ϕ) is a tensor of rank two.  In an 
isotropic medium, Sij has the form (λ, µ = Lamé constants): 
 

Sij =
1

8πµ −
λ + µ

λ + 2µ∇ i∇ j + aij ∆
 
  

 
  
r .   (7) 

 
The displacement field of an elastic dipole is then: 
 

sk = Pij ∇i Sjk ;      (8) 
 
it vanishes at infinity like 1/r2.  Eq. (8) shows the possibility of defining an elastic dipole 
in terms of the displacement field that it evokes at a great distance away from it.    We 
call the definition of a dipole by means of eq. (8) the macroscopic definition.  It is also 
experimentally measurable since one generally does not know the forces that enter into 
an application of the definition (2) or (4), but the displacement field (8) is accessible to 
measurement (more precisely: the deformation field that is associated with the 
displacement (8)). 

                                                
 30 At close range, the elastic field that is associated with A can also be regarded as a quadrupole, 

octupole, etc.  An elastic quadrupole is defined, in analogy with (1), by lim lP.  The generalization of the 
theory to such multipoles encounters no special difficulties.  We will therefore ignore it, since, up till now, 
no applications for multipoles have been found. 

 

z 

x 

y 

Figure 5.  The three-axis symmetric elastic 
dipole principal-axis representation. 
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We shall now briefly derive the most important formulas for the interaction of a 
dipole with an elastic deformation field εkl that comes from other sources. 

Let a homogeneous, not particularly isotropic, continuum K be of the sort that is acted 
on by boundary forces so that it exhibits a homogeneous deformation.  Suppose that there 
is a dipole of the type (4) at an arbitrary location, and the stress field σij is produced by 
only this dipole.  The interaction energy associated with the field is then: 

 

′ σ ijε ij dV
K∫ =εij ′ σ ij dV

K∫ .     (9) 

 
An application of Gauss’s theorem for the domains inside of f and outside of it gives: 
 

′ σ ij dV
K∫ = xi ′ σ ( i )

jkdfkf∫ − xi ′ σ (a )
jkdfkf∫ + x i ′ σ ( i)

jkdFkF∫ , (10) 

 
because no bulk forces are present (∇iσ′ ij = 0).  By (i) and (a) we intend that one takes 
the values immediately inside and outside of f, resp.  The third integral vanishes on the 
boundary F of the body since the conditions for a free boundary are associated with only 
the σ′ ij.  The other two integrals give − ∫ xi dAj, if ′ σ ( i)

jk − ′ σ (a)
jk dfk = − dAj, and are indeed 

the conditions for the stresses on the boundary surface f.  This gives the interaction 
energy between a dipole and a deformation field, which is the potential energy of a dipole 
in a deformation field εij, as follows: 

E = − Pij εij.     (11) 
 
This formula is also valid for variable deformation fields, since it can depend only on the 
deformations at the position of a dipole when one brings the dipole into a pre-existing 
field. 

In the elementary derivation of the formula (11), which was given here for the first 
time, we regarded the force A as an external force.  In the following sections, we will 
establish that eq. (11) is also true when the Ai are internal forces; one is then dealing with 
a torque stress dipole, so to speak. 

Intuitively speaking, E is also the energy that one gains when one takes the dipole 
from a place where the deformation is null to a place where the deformation is εij.  If one 
has an inhomogeneous field εij then eq. (11) says that one gains dE = − Pij dεij when one 
displaces the dipole through dxi, and the deformations at the two places differ by dεij.  
Therefore, in an inhomogeneous deformation field the force: 

 
Ki = Pjk ∇j εki     (12) 

 
acts on an elastic dipole.  Furthermore, from eq. (11), the formula for the torque that is 
exerted on a dipole in a homogeneous deformation field easily follows: 
 

Lk = 2εikl Pl
j εki .         (13) 

 
In our treatment of the problem we shall not speak of force effect that the dipole exerts on 
the surface itself.  This force effect comes about due to the fact that for a given dipole 
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strength the internal energy of a dipole, hence, the expression 12 ∫ σ′ ij ′ ε ij dV, depends on 

the position of the dipole in the body.  From ESHELBY [35], one can understand this 
force as also being the effect of “imaginary forces” that one ascribes to the fact that the 
displacement field of the dipole that is given by the expression (8) does not satisfy the 
boundary conditions.  Naturally, the variable proper energy of the dipole has nothing to 
do with the energy described in eq. (11).  On the contrary, in formula (12), one must add 
the “imaginary field” to εki when one wishes to consider the “force the dipole exerts on 
itself.” 

We make the following remark concerning the validity of eqs. (11) through (13): 
Since the elasticity law did not enter into the derivation of this formula, it is also valid for 
arbitrary anisotropies in the elastic constants.  From this, it seems possible that it is also 
valid in the realm of nonlinear theory, although this has not been verified up till now. 

Eqs. (11) through (13) all refer to symmetric dipoles.  Not much can be said at this 
time about the behavior of anti-symmetric dipoles, and for this reason, one is referred to 
[46]. 

 
§ 13.  The paraelastic continuum 

 
An elastic continuum is called paraelastic when it contains a (microscopically) 

regular or irregular arrangement of permanent elastic dipoles that can be rotated; i.e., they 
can be rotated about one (elastic) field direction. 

From now on, we assume that the individual dipoles are distributed so densely that 
one cannot macroscopically distinguish them, so that they can also be described by a 
dipole density that is everywhere independent of position as long as the body is regarded 
macroscopically.  These assumptions simplify the deeper investigations with no loss of 
generality. 

The mobility of the dipole shall not be considered at the moment.  We can produce a 
single dipole in a continuum perhaps by the following operations: 

One cuts out a small region B from the volume V and deforms it homogeneously and 
without resulting stresses (perhaps plastically, with or without a change of volume) by 

way of ε
P

kl .  With the help of the surface forces – Ai one makes this deformation go away 

in a purely elastic way (εkl = −ε
P

kl ), such that the total deformation of B becomes: 
 

ε
P

kl  + εkl = 0.     (14) 
 
At this point, one puts B back in the hole and lets it merge with its neighborhood.  The 
total deformation of the entire medium is then null.  It shall now be deformed so that an 
external surface force density Aj acts on the separation surface.  Since the elastic 
constants are the same everywhere in the medium, the associated displacement field is, at 
least at large distances, the same as that of an elastic dipole: 
 

Pij = xi dAj

f∫ .     (15) 



§ 13.  The paraelastic continuum                                             49 

The body now exists in a state of pure internal stress since the external forces, which 

maintain the elastic deformations of the internal region (εkl = −ε
P

kl ), are now compensated 
for by the forces Aj. 

As one knows, the permanent dipole is very simply expressed by the “imprinted” 

deformation ε
P

kl  when one once more returns to the state of eq. (14).  With the help of 
Gauss’s law (∇kσ jk = 0, ∇k x

i =δk
i ) one then has: 

 

xi dAj

f∫ = − xiσ jkdfkf∫ = − σ ij dV
B∫ = σ

P
ij dV

B∫ ,  (16) 

hence: 

Pij = σ
P

ij dV
B∫ ,      (17) 

when one has: 

σ ij = cijkl εkl, σ
P

ij = cijkl ε
P

kl .    (18) 
 
Eq. (17) shows that one can also consider the dipole Pij to be the total dipole that 
corresponds to a dipole density: 

σ
P

ij = dPij/dV      (19) 
 

in the volume V.  Due to the relationship between σ
P

ij  and ε
P

kl  it seems reasonable to 

regard σ
P

ij  as an “imprinted stress”; cf., also RIEDER [45]. 
By substituting (18) into (17) one obtains the important result: 
If one squeezes into an arbitrarily shaped hole (volume V) in an elastic continuum 

(elastic moduli cijkl) a piece of the same material, whose form differs from that of the hole 
by a homogeneous deformation, then one produces internal stresses that are the stresses 
of a permanent elastic dipole: 

Pij = cijkl ε
P

kl V     (20) 
 

at a large distance.  If one exchanges the hole and its contents around an inhomogeneous 

deformationε
P

kl  then instead of ε
P

kl  showing up in eq. (20), one obviously sees the mean 

value ε
P

kl
B∫ dV / V of ε

P

kl . 

One can therefore produce a paraelastic continuum in which one has removed very 
many holes in a homogeneous stress-free continuum and filled them in with material of 
the same type. 

We would now like to establish that the formulas that were derived in the last section 
(11) to (13) are also valid for the “internal” dipoles (internal stress dipoles) that were 
discussed in this section.  It is now clear that the state of the continuum outside of f is the 
same in either case when one chooses the same surface f, the forces Aj, the field εkl, and 
the position xi of the dipole.  From this, it follows that the boundary forces that act on the 
continuum that was imagined in either case produces the same displacement when one 
moves the dipole from xi to xi + dxi.  Under both operations the boundary forces perform 
the same work, which is equal to the variation of the elastic energy content of the body; 
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indeed, the same assumptions are also true in the case of the “external” dipole since its 

binding forces Aj collectively do no work since dA j

f
∫ = 0.  From this, it follows that the 

dipole itself experiences the same forces through the boundary forces (distant effect) or 
through the deformation field (near effect), resp., i.e., eq. (12) is also valid for an internal 
dipole.  From this, one easily comes to eq. (11) when one takes into account the work that 
was done by the force Kk when it displaced a point with null deformation to a point with a 
deformation εkl.  One obtains: 

 

Kkdxk

ε ij =0

ε ij

∫ = ∫ Pij∇k εij dxk = Pij ∫∇k εij dxk = Pij εij,  (21) 

 
and the result does not depend upon the path.  Thus, one can think of eq. (11) as the 
potential energy of a dipole in a deformation field for the case of an internal dipole, as 
well. 

Now, let there be a difference between the states in the cases of the external and 
internal dipoles.  Inside of f, one has, e.g., a dilatation for the external dipole when the 
direction of Aj points outward; obviously, the opposite is true for the internal dipole.  
Thus, we assert that the integral (9) gives zero for the internal dipole, which clashes with 
the known theorem of COLONETTI [56] that the interaction energy (defined by eq. (9)) 
between internal and external stresses vanishes. Therefore, the potential energy of the 
internal dipole is not defined as it was in § 12, but we must include the work done by 
external forces (which also leads to the same result for external dipoles).  For these 
problems, one should confer the careful analysis of ESHELBY [55], and particularly 
[44], pp. 95, et seq., and also [8], § 19. 

The method of ESHELBY for treating the forces that originate in elastic singularities 
as well as the interaction energy is more general than ours since not only dipoles are 
considered.  The same is true for the investigations of REIDER [57], which can be 
regarded as an extension of Eshelby’s work.  Compared to that case, the derivation that 
we gave in § 12 has, we believe, the advantage of relative simplicity. 

We must further mention that eqs. (11, 12) can also be obtained in a third way.  Due 
to the previously observed equivalence of the elastic dipole with an infinitesimal 
dislocation loop, one effortlessly obtains, e.g., (12) from the Peach-Koehler formula 
([55], [8], pp. 86) for the force on a line element due to a dislocation through a stress field 
by integrating around the loop.  We would like to at least write down the Peach-Koehler 
formula, which represents the analog of the Lorentz force in electrodynamics, and is 
fundamental to dislocation theory:  In a stress field σσσσ the line element dL with Burgers 
vector b experiences the force: 

dK = dL × σσσσ • b .     (22) 

 
We now come to the issue of the mobility of dipoles.  Let the bodies I and II be two 

cylindrical paraelastic continua with just as many holes (perhaps spherical ones) of equal 

sizes.  Let all of the holes in I be characterized byε
P

xx  = a > 0, and in II let there be just as 

many holes characterized byε
P

xx  = a, ε
P

yy  = a, ε
P

zz = a.  If both bodies were of the same 
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length before the introduction of the holes then afterward body I will be longer than body 
II.  (One thinks of the production of paraelasticity as being perhaps the result of 
introducing oriented ellipsoids into a spherical hole in a ball.  Under the partial relaxation 
that follows the introduction the ellipsoids that were oriented in the z-direction will be 
lengthened in the z-direction, along with the neighborhood of the ellipsoids, to some 
extent.  Corresponding statements are true for ellipsoids that were oriented in the x and y-
directions.) 

If one now imposes an external stress σij on the samples − perhaps a homogeneous 
traction σxx in the x-direction − then one will measure the same final deformations for 
both of them, i.e., the same elastic moduli.  Then, as we pointed out, there are no integral 
interactions between internal and external stresses in the approximation of linear 
elasticity (COLONETTI’s theorem). 

The results are thus altered when one now gives the dipoles the freedom to rotate.  
(Perhaps one temporarily thinks of the connection between dipoles and their 
neighborhood as non-existent and rotates the dipole through maybe 90o.)  For example, 

one might rotate all of the ε
P

xx  and ε
P

yy  dipoles in body II into the z-direction, such that it 
has the same length as body I; it is thus plastically (or, if you wish, quasi-plastically) 
lengthened.  The rotation of the dipole is thus nothing but a plastic deformation.  If this 
rotation is the result of applied external traction forces then they can do work, and they 
therefore impose the constraint on the dipole that rotation be in the direction of the field. 

In most of the applications only discrete orientations are possible for the dipoles, and 
the number of “flipped” dipoles depends linearly on the applied stress.  For our example, 
we can thus assume that partial fracture that is proportional to the external stress takes the 

defect ε
P

xx ,ε
P

yy  to the stateε
P

zz under the action of the stress σzz.  The macroscopically 
observed elastic moduli are thus seen to be degraded.  Instead of the usual Hookean law: 

 
σij = cijkl εkl ,     (23) 

one obtains the law: 
σij = (cijkl + rP

ijkl ) εkl .    (24) 
 
εkl is the macroscopically observed deformation andrP

ijkl  is the paraelastic susceptibility of 
the sample. 

The fact that the concept of a paraelastic continuum is physically meaningful rests on 
the fact that many real bodies behave like paraelastic ones.  We will give examples of this 
in § 15. 

 
§ 14.  The diaelastic continuum 

 
An elastic continuum will be called diaelastic when a (microscopically) regular or 

irregular distribution of elastic dipoles is induced in it by the action of an elastic field.  
One also speaks of the elastic polarization of the medium. 

We make the same simplifying assumptions about the arrangement of induced dipoles 
as we did in the case of permanent dipoles in a paraelastic continuum.  The medium then 
appears to be macroscopically homogeneous again. 
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A simple example shows the essential details.  If one acts on a continuum with a 
small spherical hole in it with a hydrostatic pressure then this hole shrinks in the manner 
that an application of Hooke’s law to the magnitude of the pressure would imply.  Very 
simple elasticity-theoretic computations in this case show that the elastic field of the 
medium is combined with the homogeneous field that one obtains in the absence of the 
hole, and the field of an elastic dipole that one imagines to be at the midpoint of the hole, 
and indeed, in this particularly symmetrical case, a so-called center of compression (i.e., 
the dipole tensor is a spherical tensor here, cf. LOVE [54]).  One says that an elastic 
dipole is induced in the hole by the action of the stress. 

If the body has no hole in it, but it does have a small spherical defect with varying 
elastic constants (an “inhomogeneity”) then the same statements are true for the rest of 
the body as before.  The induced dipole strength is then generally something else, and 
indeed it has the same sign as in the case of the hole when the defect is softer, or on the 
contrary, harder than the rest of the body.  A homogeneous stress prevails in the defect. 

One obtains a sensible result when a body with spherical inhomogeneities is subjected 
not to a hydrostatic pressure, but to an arbitrary external force that would produce a 

constant stress σ
A

ij  in the absence of inhomogeneities (NIESEL [59], ESHELBY [60]).  

The stress field will also be homogeneous inside the defect (σ
I

ij ), and in the exterior of 

the defect the stress field will be combined with stress field σ
A

ij  of an elastic dipole Pind
ij  

that one imagines to be at the midpoint of the ball. 

In order to ascertain σ
I

ij  andPind
ij  a complicated boundary-value problem must now be 

solved.  Ifε
P

ij is an imprinted (stress-free) deformation (§ 13), which must have a defect 
with the same elastic constants as the matrix, then if it is to appear to be a permanent 
dipole of precisely the same type and strength asPind

ij  then one obtains, by way of 
example, when the defect and everywhere else are elastically isotropic (cf. ESHELBY 
[60], pp. 389-390): 

 

Spur(ε
P

ij ) = A Spur(ε
A

ij ),   Dev(ε
P

ij ) = B Dev(ε
A

ij ),  (25) 

Spur(ε
I

ij ) = (Aα + 1) Spur(ε
A

ij ),  Dev(ε
I

ij ) = (Bβ + 1) Dev(ε
A

ij ), (26) 
with: 

A =
KI − K

(K − KI )α − K
,  B =

GI − G
(G − GI )β − G

,   (27) 

α =
K

K + 4G
=

1
3

1+ v
1− v

,  β =
2
5

K + 6G
K + 4G

=
2

15
4− 5v
1− v

.  (28) 

 
Dev stands for “deviator,” KI , GI , and K, G are the compressive and shear moduli in the 

defect and matrix, resp., v is the Poisson number of the matrix, and finallyε
I

ij is the elastic 

deformation in the defect, henceσ
I

ij = cijkl ε
I

ij .  For α and β we have  13  ≤ α ≤ 1, 6
15  ≤ β ≤ 

8
15 . 

One easily verifies that ε
I

ij  andε
A

ij  have the same sign whereas the sign of ε
P

ij (hence, 
the induced dipole) is equal to the latter signs only when the defect is weaker than the rest 
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of the body.  Furthermore, if ε
I

ij is greater or less than ε
A

ij  depending on whether the 
defect is softer or harder, resp.  The converse is true for the associated stresses. 

All of these statements, in particular the ones about the homogeneity of the state in 
the defect, are also qualitatively valid for ellipsoidal defects, and also for anisotropic 
elastic constants in one or the other sub-bodies.  Quantitatively, one then deals with 
substantially more complicated formulas instead of eqs. (25) and (26). 

One can now produce a diaelastic continuum in which one has removed very many 
small cavities from a homogeneous stress-free continuum, and then filled them with 
matter with other elastic properties in a stress-free way, or simply left them empty.  The 
diaelasticity brings about a reduction of the effective (or macroscopic) moduli of the 
sample in the event that the defects are softer than the rest of the body; in any other case, 
one obtains an increase in the moduli.  The reduction effect comes about, e.g., as follows: 
We assume there are macroscopically homogeneous stresses σij in the sample. σij is then 
independent of the elastic properties of the sample and is given only by the external 
forces (by traction tests in the z-direction one has, e.g., σzz = const., with all other stress 
components vanishing).  As we have already established, the mean deformation of the 
(weak) defect is greater than that of the rest of the body, but the opposite is true for the 
mean stress.  Consequently, the mean stresses of the rest of the body must naturally be 
greater than the stresses σij.  The surplus consists of precisely the stresses that correspond 

to the polarization of the medium, which are the stressesσ ind
ij = cijkl ε

P

kl  (cf. § 13, perhaps 
eq. (20)).  Thanks to this induced stress, the mean deformation of the rest of the body is 
greater than the macroscopic deformation of the body with defects, and the mean 
deformation of the defect is even greater.  Hooke’s law: 

 
σij = cijkl εkl ,      (28)(?) 

 
which is valid for a continuum without defects is no longer valid for the macroscopic 
deformation εkl , but one has the law: 
 

σij = (cijkl + rD
ijkl ) εkl ,      (29) 

 
with rD

ijkl  as the diaelastic susceptibility. 
In the case of hard defectsrD

ijkl  is obviously positive eq. (29). 
Again, the physical reality of the concept of a diaelastic medium lies in the fact that 

many real bodies behave diaelastically. 
In the former Gedanken experiments, we have either jammed certain cavity stress-free 

elastic continua with matter with the same elastic properties, or filled it with matter with 
other elastic properties in a stress-free way.  The continua are then purely paraelastic 
(diaelastic, resp.).  In general, one can jam matter with other elastic properties into these 
cavities.  When the defects are mobile, this gives rise to a paraelastic reduction of moduli, 
and, at the same time, to a diaelastic reduction (increase, resp.) of moduli depending on 
whether the defects are softer or harder than the rest of the body. 
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§ 15.  The physical reality of para- and diaelasticity 
 
We shall now discuss some examples of the phenomena of para- and diaelasticity.  

The solid matter that one finds in Nature generally has a crystalline structure.  An ideal 
crystal shows neither para- nor diaelasticity.  However, if one brings – say − interstitial 
atoms into an ideal crystal then the forces between the adjacent atoms will be altered; 
something will generally be forced between them.  An elastic deformation in the 
neighborhood of the interstitial atoms is produced that falls off at large distances like 1/r3.  
One can therefore macroscopically regard the interstitial atoms as an elastic dipole. 

In general, the interstitial atoms do not push on all sides with the same strength.  For 
example, a carbon atom in iron represents an elastic dipole with tetragonal symmetry.  
The components of this dipole may be determined experimentally, and one obtains ([8], 
pp. 153): 

Pxx = 11.2 [eV], Pyy = Pzz = 4.6 [eV], Pxy = Pyz = Pzx = 0,  (30)  
 

when one denotes the cubic axes of the iron crystal by x, y, z.  Whereas, by eq. (12), a 
spherically symmetric dipole experiences a force only through the hydrostatic part of the 
deformation, the tetragonal dipole (30) responds with, e.g., a pure shear deformation εxx – 
εyy in addition.  For example, the deformation field of screw dislocation is a pure shear.  
The description of the carbon atoms in iron as (spherically symmetric) centers of 
compression that was attempted in previous approximations thus led to no interaction 
energy between screw dislocations and the carbon atoms in iron.  This was qualitatively 
corrected by COCHARD, SCHÖCK, and WIEDERSICH [61] by considering the 
tetragonality of the distortion produced by a carbon atom.  From this, it emerged that that 
the aforementioned interaction energy had the same order of magnitude as that of a 
carbon atom with a step dislocation, which produces a deformation field with strong 
hydrostatic components.  This is an example of a type of result that always reappears. 

For many material properties of commercial iron the role of the carbon atoms varies 
quite widely.  The elastic behavior that was largely described by eqs. (11) to (13) helps to 
clarify many observed macroscopic properties of iron.  There have already been some 
important results; e.g., on the meaning of the known stretching limit effects (COTTRELL 
[12], SCHÖCK, and SEEGER [62]), and the Snoek effect ([63], [64], cf. also [8], § 31).  
For the former, the motion of the carbon atoms in the deformation field of the dislocation 
of the iron is decisive, since it can lead to a blockage of the flow of the body’s 
responsible dislocations.  For the latter, it is the the flipping of the dipole into the field 
direction by the action of a traction stress that can generally give rise to a strong 
mechanical damping of the body.  The Snoek effect is precisely the verification of 
paraelastic flipping behavior that was described in § 13. 

 We will now satisfy ourselves with these examples of the effects of interstitial atoms.  
The carbon atom in iron is a typical example for the numerous other possible 
combinations whose mechanical behavior is likewise largely governed by eqs. (11) 
through (13). 

Some other important pointlike lattice defects are foreign atom substitutions and 
cavities.  These exist at the regular lattice sites and likewise the force behavior in their 
neighborhood.  In a simple cubic lattice they have lattice symmetry and can therefore be 
described as spherical dipoles.  However, from eq. (13), a spherical dipole has no torque 
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so these lattice defects can give rise to no paraelasticity.  This happens in very few 
symmetric lattices and all of the other ones are altered when perhaps two such foreign 
atoms or a pair of cavities appear together.  Such pairs have – also in a cubic lattice – at 
most tetragonal symmetry and can thus lead to effects that are similar to the ones that we 
previously discussed in the example of interstitial atoms (cf., e.g., ZENER [64]). 

All of the lattice defects that we discussed up till now are also diaelastic since they 
represent regions in which the elastic constants have been altered (“inhomogeneities”).  
Meanwhile, this diaelasticity can generally be proved only when there is no 
paraelasticity, as well, since permanent dipole moments are generally stronger than the 
induced ones.  For example, two spherical dipoles in an isotropic medium exert no force 
on each other, because, from eq. (8), the deformation field of a compression center has no 
hydrostatic part.  In this case, the interaction between two such defects ignores the 
reciprocal elastic polarization of the lattice defects (CRUSSARD [65], TELTOW [66], 
ESHELBY [67]).  The diaelastic effect due to foreign atom substitution and cavities is 
therefore probably important in face-centered cubic lattices. 

There are numerous other macroscopic pointlike lattice defects that lead us to suspect 
that they would produce elastic behavior that is similar to the aforementioned.  Among 
them are such interesting defects as the F-centers in alkali halogenides (JACOBS [68]).  
Also, the mechanism for mechanical relaxation in iron that was discussed by BASS [69] 
ultimately rested on similar effects.  We cannot go into the multiplicity of phenomena 
any further here, so we refer the reader to the soon-to-appear survey article of ESHELBY 
[70]. 

Another class of applications for the theory of para- and diaelasticity is that of bodies 
with microscopically large defects that have different properties from the surrounding 
matter.  For the treatement of such bodies the results of NIESEL [59], and especially 
ESHELBY [60], for spherical and ellipsoidal defects have shown to be particularly 
useful.  For these applications, we also refer to the article of ESHELBY [70] and mention 
only two more results here. 

The elastic constants of macroscopically isotropic polycrystals may be computed 
exactly from the constants of single crystals by the fact that the polarizability of a 
crystallite that is composed of polycrystals vanishes in the mean [71]. 

b)  The opposing obstruction that the crystallite presents to the plastic deformation of 
polycrystals, which comes about in a favorable orientation for the crystallite to begin 
flowing, is then the least favorable orientation, and it plays an essential role in less than 
1% of all deformations.  The method by which such a computation is accomplished 
follows from the remark that an initially flowing crystallite creates elastic dipoles, which 

corresponds to plastic deformation ε
P

kl  inside of a basic substance that is only elastically 
deformed (cf. eq. (20)).  The internal stresses that are thus produced impede the favorable 
orientation and demand the unfavorable orientation in the crystallite to such a degree that 
all crystallites can flow steadily in less than 1% of all deformations in practice.  The more 
qualitative theory of this behavior that was developed by GREENOUGH [72] therefore 
plays its greatest role for very small deformations (KRÖNER and DEBATIN, 
unpublished). 

Here, we can give only a small sample of the multiplicity of paraelastic and diaelastic 
phenomena, but we still hope that this brief representation suffices to give an impression 
of the uses and possible applications of the theory of para- and diaelasticity. 



    

V. Summary and Outlook 
 

§ 16.  Dislocations as elementary sources of internal stresses 
 
In the previous treatment of the continuum theory of dislocations and internal stresses 

[8] the notion that “the dislocation is the elementary source of internal stresses” occupied 
a central position.  This idea laid the groundwork for the following argument: 

In a linear theory of internal stresses the stress tensor field satisfies the divergence 
condition: 

Div σσσσ = 0,      (1) 
 
and the material law has the usual form for the linear elasticity theory: 
 

σij = cijkl εkl.           (2) 
 

Any symmetric tensor field σσσσ that has the form Rot ϕϕϕϕ satisfies relation (1).  Thus, in an 
infinitely extended medium there are also stresses when no external forces act on it, 
namely, the internal stresses.  Obviously eqs. (1) and (2) are still insufficient to determine 
the state of the medium.  We are missing the condition that we are dealing with a 
continuum that is connected with the body in question.  At this point, we will make no 
presentation of the circumstances surrounding states with internal stresses.  We assume 
that the body, which was initially in an ideal state, was subjected to such operations or 
processes that it ultimately remained in an altered state, namely, a state of internal 
stresses.  Which type of operation or process we are talking about is unimportant; the 
possibilities are numerous.  Therefore, since we are constructing a continuum theory we 
demand that: 

a) The body, as a continuum, is connected initially and finally. 
b)  One can identify the body in the initial state with the body in the final state.  We 

have not especially insisted on this condition up till now, since it is self-explanatory, so to 
speak.  For the moment, it is therefore good to discuss it to some degree. 

We would like to understand condition b) in the following manner: If we direct our 
attention to an arbitrary mass element of the body in the initial state (perhaps we color it), 
then this element will also be found again in the final state, although it will be altered.  
We thus exclude the possibility that the mass element might disintegrate into small pieces 
that are no longer connected.  Furthermore, mass elements that are close in the initial 
state shall also be close in the final state, and finally, we will not allow the entire mass 
element to vanish or for new ones to appear.  On the other hand, the introduction or 
removal of matter from the mass element is permitted.  These are the demands that one 
must reasonably place on a continuum theory of solid bodies.  They may be summarized 
mathematically in the form: 

Rot ββββG = 0,     (3) 
 
in which ββββG is the total distortion tensor in the linear theory, and is given by the sum of 

the total deformation 
G

εεεε  and the total rotation 
G

ωωωω . 
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One can now remove a mass element from the final state that has an elastic 
deformation of – εεεε from the relaxation and thus the rotation ωωωω that the structure (the 
lattice) sustained compared to the initial state. We call the sum of εεεε and ωωωω the elastic 
distortion tensor ββββ (in the linear theory), and, in place of eq. (3), we write: 

 
Rot ββββ = − Rot (ββββG – ββββ) ≡≡≡≡ γγγγ.    (4) 

 
It so happens that one can evaluate the right-hand side of this equation when one has 

sufficient precision in one’s knowledge of the operations and processes that take the body 
from its initial state to its final one.  We thus add eq. (4) to eqs. (1) and (2) as the third 
law.  The system of equations thus obtained is then, as one can easily show, sufficient for 
the determination of the internal stress state from the “sources” γγγγ.  The associated 
computation gives the incompatibility tensor (γγγγ ×∇)S and the stress functions, and is 
always the same as the computation that may have also led to γγγγ as a result.  If this were, 
e.g., a plastic distortion then ββββG – ββββ would be the plastic distortion tensor ββββP, and γγγγ would 
be identical with the crystallographic dislocation density αααα.  If one treats an insertion of 
extra matter or some other quasi-plastic distortion then ββββG – ββββ is the quasi-plastic 

distortion tensor    ββββQ and γγγγ is the quasi-plastic dislocation density 
Q

αααα  (31). 
We are now close to regarding γγγγ as a generalized dislocation density, as well as 

regarding it as the origin of internal stresses.  From this standpoint, the following 
statement is therefore valid: The dislocation is the elementary source of internal stresses.  
In this picture, it appears that, e.g., the elastic dipole is equivalent to an infinitesimal 
dislocation loop (the complete dipole tensor is equivalent to three dislocation loops), as 
was shown in [8]. 

We emphasize that this is only one possible standpoint, which has its analog in the 
theory of the magnetic fields of stationary currents in the Amperian equivalence of 
magnetic dipoles and infinitesimal current loops (32). 

Another standpoint that one can take is to understand that the dislocation density only 
relates to the part of γγγγ that describes a plastic distortion: These are then the 
crystallographic dislocations that are used in crystallography, whose Burgers vectors 
must principally be a lattice vector.  From this standpoint, one then has other sources of 
internal stresses, namely, as long as one remains in mechanics (therefore temperature 
fluctuations and magnetic effects, etc,. and their associated stresses may be disregarded in 
the computation of the internal stresses), one has the pointlike lattice defects, which are 
elementary elastic dipoles.  This is the standpoint that the differential geometric theory 
comes to next, in which we clearly distinguish between the extra matter and the 
dislocations.  Thus, it was remarked in § 9 that the first standpoint also has its 
justification in the general theory. 

Finally, it may be easily shown that there is a decomposition of the density that leads 
to no internal stresses, but only structure curvatures.  One obtains internal stresses only 
when the incompatibility tensor (γγγγ ×∇)S does not vanish.  For this reason, one can, by the 
                                                
 31 In this section, we shall not go into the possibility that dislocations might end inside of the body, which 
is still problematic at present. 
 32 This standpoint was also taken by DEHLINGER [73] in his abstracted presentation on the special 
needs of metallurgy, which especially suggests the possibility of applications. 
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same right as one did with γγγγ, declare that (γγγγ ×∇)S is the source of elementary internal 
stresses.  Since this standpoint also has its justification in the general theory – here, the 
vanishing of (γγγγ ×∇)S means the vanishing of the Einstein tensor that is associated with the 
Christoffel symbols g′mlk – we have shown that the basic concepts of the linear theory are 
abundantly manifest in the general theory.  Which of the three standpoints one chooses in 
a special case depends upon the physical details of the problem.  For example, the theory 
of para- and diaelasticity obviously belongs to the second standpoint. 

 
§ 17.  The unsolved problems 

 
 In this section we shall direct our attention to some problems in the general theory 

whose solutions remain a disturbing void to date. 
For the moment, we remain in context of the stationary theory, and we begin with 

geometry.  It is completely justified for one to say that in these spaces the reduced theory 
(nine degrees of freedom) is practically complete.  Fundamental unsolved problems do 
not remain. 

Something less far-reaching is our knowledge of the three degrees of freedom that 
belong to the (macroscopic) extra matter.  Above all, the problem remains that was 
mentioned in § 9 of the formulation of the Einstein equations in the final state, for which 
one hopes to find solutions that might describe the connection between the deformation 

ε
Q

kl  that describes extra matter and the matter tensor Bij, without the intermediary of 
introducing any distortion tensors (as we did in (80)), perhaps in the form: 

 

Bij = 1
4 εjnm εilk (2ε

Q

)nmlk.    (5) 

 
The problem of the last three degrees of freedom is essentially unsolved.  The 

appearance of dislocations that end in the interior poses great difficulties in the analysis.  
Since the applications have not yet suggested such dislocations up till now the 
requirement does seem very urgent, but from the standpoint of fundamental principles, it 
is naturally desirable. 

On the other hand, there is actually an ongoing investigation of the problems 
connected with the Cosserat torque stresses, particularly the question of the material law 
and the question of solving the field equations.  The possibility of understanding the 
internal stresses due to dislocations continuum mechanically in this way − not only 
macroscopically, but also microscopically − is very attractive since at this point in time 
very little can be said about the possible effects. 

Certainly, the greatest deficiency in the foregoing situation is the absence of a 
dynamical theory, which, above all, should treat the motion of dislocations and foreign 
atoms (extra matter).  The importance of lattice defects in all phenomena that pertain to 
solid bodies shows from the outset that this is certainly a rich domain of applications for 
such a theory. 

The dynamical theory must go beyond the present state of electrodynamics; it is 
undoubtedly impossible to arrive at such a theory that expresses the dislocations 
(velocities, resp.) as a vector field, i.e., reduces to three functional degrees of freedom. 
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Such a dynamical theory can make interesting effects come to light.  It was FRANK 
[74] (33) who first succeeded in computing the motion of an isolated dislocation, which 
then gave the sound velocity as the limiting velocity that the dislocation can attain at 
most, as with a particle with non-vanishing rest mass and the velocity of light.  With 
increasing velocity a contraction of the stress field that can be described by formulas that 
are completely analogous to the ones that one finds in the case of electrons that are 
accelerating to higher velocities.  There is also a sort of special relativity theory, in which 
the velocity of light is replaced by the velocity of sound.  Since one generally has various 
sound velocities the multiplicity of phenomena is very large. 

On the other hand, by the irradiation of samples in reactors it is now possible to bring 
light atoms with supersonic velocities into the body, which generally gives rise to a 
“sonic Čerenkov effect.”  For “slow particles” the associated Mach waves fall into the 
hypersonic regime.  The most recent progress in this regime gives hope that in the 
foreseeable future it might be possible to experimentally examine (e.g., to count them) 
these waves and therefore the particles produced.  The class of problems that is presently 
so important, that of radiation damage in solid bodies, now places an increasing number 
of possible applications at our disposal, not only for the stationary theory, but also for the 
yet-to-be defined dynamical theory. 

Finally, we mention another large and urgent unsolved problem, namely, the ultimate 
specification of the connection between the continuum theory of dislocations and internal 
stresses and phenomenological plasticity theory (the unification of domains, resp.).  Only 
through the selfsame application of this theory can we solve the problem that was stated 
in the Introduction under (1), which one could call the basic problem of continuum 
mechanics.  The specification of the connection might then follow perhaps along the lines 
defined by BILBY, GARDNER, and STROH [25], to whose work we refer.  KONDO 
[21] also pursues the same objective in a somewhat different way. 

 
§ 18.  Relationships with general relativity theory 

 
Every expert on general relativity theory who studies the general continuum theory of 

dislocations and internal stresses will recognize the great similarity between the two 
theories, which will considerably enhance his understanding of the latter one.  The 
general continuum theory has very much to thank general relativity for: Through the 
emergence of this theory the development of higher differential geometry was given 
considerable impetus, and it took on the present elegant form that it presents, as well as 
representing complicated relationships in the simplest ways. 

In comparison to general relativity theory (its extension, resp.) the general continuum 
theory is free of any speculation.  It now remains only to apply established laws to its 
derivation.  This shows us that this theory can be regarded as a consistent theory of 
physical reality in which the notions of connection, Einstein tensor, etc., still work. 

It has been know for some time that internal stresses have something to with 
Riemannian geometry, but previously no one did anything with this knowledge.  It is 
noteworthy that we now know that Riemannian geometry is much too narrow in scope for 
continuum mechanics.  The number of functional degrees of freedom must be raised from 

                                                
 33 SAÉNZ has a given a summary presentation [75]. 
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nine to fifteen: The general metric connection Γmlk appears in place of the Christoffel 
symbols.  All of the states of the continuum that are allowed by Γmlk also occur in Nature. 

The questions that emerge now are: Is there any physically sensible basis that allows 
us to subject the Universe to such a drastic reduction to a Riemannian geometry?  Is there 
a basis for assuming that the Universe can be described by a connection that is less 
general than the most general metric connection?  There is no such basis in continuum 
mechanics, and it might be quite difficult for us to find one for the Universe. 

We have already regarded the continuum in its deformed state from the non-Euclidian 
standpoint, in which we joined with BILBY and his co-workers in defining the 
connection by the use of a non-Euclidian law of parallel translation.  In the Riemann-
Cartan continuum thus obtained, e.g., an isolated interstitial atom moves like a star does 
in the Universe. This has certainly not been verified, as of yet.  However, there is 
certainly no doubt that just as the latter follow geodesic lines so do the interstitial atoms, 
as long as they are subjected to no forces.  The forces that originate in the stresses on the 
interstitial atoms cannot therefore be computed, and they appear to be transformed away 
(in all probability) through the introduction of the new law of parallel translation, just as 
the gravitational forces are transformed away by the introduction of Riemannian 
parallelism.  (Here, we shall ignore the details that the lattice structure stipulates for the 
real continuum in the case of interstitial matter.)  This picture also shows the physical 
similarity of the two theories very incisively. 

We shall not go into any speculation here, since we have many more such 
observations, because we believe that an ongoing investigation of the connections 
between general relativity and the general continuum theory of dislocations and internal 
stresses can be of considerable benefit to both theories. 

 
I would like to express my heartfelt gratitude to my venerated teachers, Herren 

Professoren E. FUES, U. DEHLINGER, and A. SEEGER for their friendly interest and 
for providing the impetus for this article.  Herrn Prof. SEEGER deserves my special 
thanks for numerous conversations on the general and detailed problems in spaces of the 
type that was treated.  Moreover, the foregoing work also grew out of many suggestions 
in discussions with Herren Professoren K. KONDO, H. SCHAEFER, W. GÜNTHER, 
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