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The isotropic integration problem of elastostatic e treated with the help of the tensor of stress
functions. It will be proved that it is biharmonic whea volume forces or incompatibilities are present.
In particular, the stress functions of MAXWELL and MBRA prove to be harmonic. It will be shown
that the MAXWELL stress functions, and thus the toti@ss state of an elastic body, can be described by
three harmonic stress functions, with which — in cont@agte PAPCOVITCH-NEUBER functions — it is
not the compatibility conditions, but the equilibrium diions that are fulfilled identically. The stated
stress functions also seem suitable for the pradtieaiment of elastic problems.

Preface

The notation of M. LAGALLY* was chosen for the necessary tensor calculations. |
particular:

i,j,8 are Cartesian unit vectors,
alb is the scalar product,

axb is the vectorial product, and
ab is the dyadic product

of two vectorsa andb. Corresponding statements are true for the mulapba of

tensors, as well as tensors and vectors. Thestiedar of a tensor will always be denoted
by the indeX.

8§ 1. Introduction. Distortion functions and stress functions.

One can formally decompose any symmetric tensor fiadd of rank 2 into two
special symmetric tensor fields according to the forrfula

1

1928.
2

LAGALLY, M. Vorlesungen uber Vectorrechnungeipzig: Akademische Verlagsgesellschaft

A proof of the decomposition formula will be given in appendix. Whether it was already
expressed in this form is not known to me. In any,ce@esequences of (1) have already been used before;
cf., the cited papers, footnote 2, pp. 179, footnote 31 . footnote, pp. 186.
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r=Z(0a +ald) + Oxg xO. (1)

In this, a(r) is a vector field that is determined byg(r) a symmetric tensor field of rank
2 of that nature, as well. The tensar=4(Ca + alJ) has the same character as the

deformation tensoe of the elasticity theory, sinceis derived from the displacement
vector field in the same way that is deriveda. Therefore, tensors of this type were

previously referred to aseformatorsand in order to describe the connection between
anda the operation Def (read: “deformation of") is definedhithe help of:

Defa =1 (Oa + alJ).

Tensors of the forng; = [x¢ x[J are also not new in elasticity theory. It is known
that the compatibility equations of St. VENANT can betten in the fornTxe %[ =0
(cf., M. LAGALLY, loc. cit). This equation may also be translated into words: The
incompatibility of £ is null. Tensors of the formix¢ %[ will thus be referred to as
incompatibility tensors.For the treatment of such tensors, the operatikr{read: “the
incompatibility of”) will now be introduced by way of

Ink ¢ =0x¢ x[.

This formula plays a role in the mathematical treattinoé symmetric tensor fields that is
similar to that of the known decomposition formula,vidyich one decomposes a vector
field into a gradient and a rotor field, does in thettreant of vector fields. Due to this,
the identity relations:

Ink Def=0, DivInk=0 (2)

are easy to verify. In them, Div is the operation &diyence”as it is applied to a tensor.
Due to (2),¢ is determined in (1) only up to a deformator. For thasee, one can
prescribe certain auxiliary conditions on the comptseh¢ that will play an important
role in what follows.

One recognizes the importance of the decomposition ¢i)efasticity theory
immediately when one writes down the elastic diff¢ied equation for the distortions
(the stresses; resp.). In the simplest case, one has the comigitdmuations:

Ink £=0, (3)
and the equilibrium conditions:
Div =0, (4)

! One finds the operators Def and Div explained in FRANMISES, among others. The operator

Ink was introduced by H. SCHAEFERc. cit, under the name of “symmetric rotation.” | cannoteagr
with this terminology, since the physical meanindgndf ¢ is not that of a rotation @gf. One obtains such a
thing only by the application of a differential operapbrfirst order. A component representation of the
incompatibility tensors in included in § 8.
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in which, from HOOKE's law, one has:

o= 26[ e+-5! , £:i(a— a! j (5)
m-2 2G m+1

(m = transverse contraction numbé&r = shear modulus).

From eq. (3) to (5), it follows — perhaps along times of the BELTRAMI equations
[cf. (9)] — thatg,, & are harmonic, so the componentscodnd £ are biharmonic. One
does not use this knowledge very much in the smiudf boundary-value problems, since
the total of the biharmonic stress (distortion,prgsensor would be greater than the
tensors that are allowed by (3) to (5). Thuskabwn integration theorems begin with
either eq. (3) or eq. (4) being satisfied identycal New functions will always be
introduced for that purpose, which will be refertedasdistortion functionsvhen (3) is
satisfied identically with them, as comparedstoess functionsvhen (4) is fulfilled
identically. From (2), the Ansatz for the distortifunctionsv; has the form:

£ = Def[f(Vi)],
and with stress functiorts :
o= Ink[f(S)],

wheref can be any function, or also a differential op@rafl he distortion functions obey

certain differential equations, whose fulfillmest equivalent to that of the equilibrium

conditions. Corresponding statements are tru¢htdifferential equations of the stress
functions, whose fulfillment guarantees that of tbenpatibility conditions.

From the definitions of distortion (stress, resfuipctions, the former can also
describe states of elastic bodies that are subjegblume forces, but not, by contrast,
strain states that are provoked by incompatibslitieThe converse is true for strain
functions. For that reason, we further remarlka Bimply-connected body that is stressed
with proper stresses, it is fundamental that thepatibility equations are not fulfilled.
One can scarcely do without the stress functionshi® treatment of such proper stresses
(cf., also § 6).

The most important distortion functions are themponents of the displacement
vector s(t) = (u, v, w), with the help of which, from (2), eq. (3) willebsatisfied

identically with the Ansatze = Def s. Moreover, the harmonic and biharmonic

displacement function$, which will be partially defined in the followingaragraph,
belong to this class of distortion functions.

The optimal formulation of the integration problerhelastostatics with the help of
distortion functions has already been found. Imary, one may say: For two-
dimensional isotropic problems (so it is also tfmeaxial symmetry) one always arrives
at the representation of the stress state thatsot@yo (5) with the help of a biharmonic
function (MAGUERRE, LOVE)®, or also with two harmonic functions (specialized

! BIEZENO-GRAMMEL, Technische DynamilBerlin, Springer 1939. The authors use the collective
term “displacement functions” for functions, from whione obtains the components of displacements by
differentiation.
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PAPKOVITCH-NEUBER functions}. The three-dimensional problem may be treated
completely with the aid of a triharmonic functidlr also with three harmonic functions
(BURGATTI , PAPKOVITCH-NEUBER Y. The latter representation has proved to be
especially advantageous due to its symmetry. The thstertibn functions are the
components of a harmonic vectdk) and will be introduced by way of:

u=b,+0F/0x v=b +0F/0y, w=b,+0F/0

6
F=——"0 (X0, + Yo, + ), ©
m-1
such that the distortion state will be described by
E= Def(b—m—mgrad(cm )j (8)
m-1
For g, one then calculates with (5):
i0 =0b+b0+ ! O (bl —m—/ZDD(tm)—m—/ztmbl : (6")
G m-1 m-1 (m-1)(m- 2)

From now on, it will be assumed that we have adrige similar simple results with the
help of stress functions. This assumption has beefirmed for a long time for the two-
dimensional problem (AIRY functions). By contrashe formulation of the spatial
integration problem of elastostatics with the afdstress functions was achieved so
simply. SLOBODJANSKI* and BLOCH?®, achieved the presentation of a biharmonic
tensor of stress functions whose utilization isstbontradicted by the fact that the stress
tensor for them is the result of four differentas. The Ansatze of MAXWELL,
MORERA °, and BLOCH* lead to non-obvious simultaneous differential ¢ipues of
fourth order for the stress functions whose intégnaseems hopeless All of these
Anséatze began from (2) with the demand that (4atssfied identically by:

o=1nk y. @)

! PAPKOVITCH, P. F., C. R. Acad. Sci. Pali85, 513, 754, 836 (1932). —- NEUBER, H., Z. angew.
Math. u. Mech14, 203 (1934). Kerbspannungslehréerlin, Springer, 1937.

2 GEBBIA, M, Ann. di Math. (111)10, 157 (1904).

3 Cf, e.q., MALKIN, I., Z. angew. Math. u. Mech0, 182 (1930).

*  SLOBODJANSKI, M. G., “Stress functions for the sphtproblem of elasticity theory.” Utsch.
spisski Mosk. (Russ24, 184 (1938).

> BLOCH, W. |, “Die Spannungsfunktionen in der Elastizité¢strie,” Prikl. Mat. i Mech. (Russiy,
415 (1950). Here, further groups of three stress functidhbevgiven that come about by specializifig
in (9), but seem to offer no advantage over the AngitsAXWELL and MORERA.

®  MORERA, G., Accad. Lincei Rend. Roma, Ser1Y1892). The relations between the MAXWELL
and MORERA stress functions will be mentioned in thisivee of MORERA and BELTRAMI. Cf., also
FINZI, B., Accad. Lincei, Rend. Roma, Ser. 14, 578 (1934).

" One finds these differential equations, in part, iIVEQA. E. H, A Treatise on thélathematical
Theory of Elasticitypp. 136, Cambridge 1952.
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As will be shown in the sequel, for a certain choidethe aforementioned auxiliary
conditions for the tensor, its stress functigfi9 are biharmonic. The reduction from six

to three biharmonic stress functions follows as tha seep. They may be completely
exhibited by three harmonic stress functions.
§ 2. The differential equations of the stress functjofmpatibility equations).
The set of all stress states that are described Wiifteeential equations:
Ink €= 0, Divo=0 (8)

will now be considered. As is known, the equationdr®k0, when expressed in terms of
the stresses, reads, with Dm= 0 (Beltrami):

m
m+1

Ao +

DOOo, =0. 9)

The equation Diw = 0 will now be satisfied identically by means of thesAtz:

o=Ink y=Axy- 000y + y MO + 00y [ + 000y —Axi | (10)
From this, one easily calculates:
g=00vI-Ax.
Thus, from (9), one has:
m m
ANy - NOODy + y MO) + 0000y @ + O0Ax = 0. (11)
m+1 m+1

The necessary and sufficient conditions ydo be biharmonic thus read:

M ooogm + -

- A(OOy + y [MO) +
(BEo+x ) m+1 m+1

O0Ay =0. (12)

One now asks whether these auxiliary conditionsHercomponents gf are superfluous
—i.e., is it possible that the totality of stressestatcan be obtained from stress functions
x for which the auxiliary equations (12) are not necessaFg? the response to this
guestion, one considers perhaps the stronger auxiliaditzors:

(m+2)0y -Ax =0, (13)

whose fulfillment is likewise guaranteed by (12), as easily verifies. As one now
shows, however, (13), and therefore also (12), becomefluqes auxiliary conditions.

1 Inthis §, all of the NABLA operators to the rightjpfvill also act by differentiation.
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Let an arbitrary given stress statebe described by = Ink ¥. Then, from (2),
Ink(¥ + Defa) yields the same stress tensor. Now, one can aldetgsminer such that

(13) is fulfilled for:
x=x + Defa. (14)

Namely, one obtains equations tor

m+2

Aa+gDDEb:—(m+ 200 +0x =1(x) (15)

from (13) and (14) that have the same type as the inhomoge&ferential equations
for the displacements. The right-hand side here keawvn function of position, so a
particular integral always exists that therefore dedivéne desireds. Thus, the
extraneous nature of the conditions (13) is proved, amgl from (12), also not only for
the stress states according to (8), but due to the anusaroff in (15), indeed for the
general stress states that were considered in § 6.

The result of the computations up to now is then: \Whehtotality of tensorg that
fulfill the auxiliary conditions (12), one can describe atgess state that obeys (8) by
means of (10). All of these tensors are biharmonic.

8 3. Reduction from six to three biharmonic functions.
Obviously, all biharmonic tensorgthat differ only by a biharmonic deformator
describe the same stress state; i.e., they alllf(il2). The multiplicity of these tensors is

further restricted by additional conditions. It wibw be shown that a condition, among
others, that is in addition to (12) can be posed by thginements:

Xox = Xyy = Xzz= 0. (16)

Once again, letrbe given by Inky’, soAAx’= 0. One then also has= Ink(y’+ Defa),
and the question is then whether one can deterimsueh that:

9 , 9
L
oy

RS

== Xops (17)

da, _
ox Ko

(o]

4

whena = (ay, ay, a;), in which Defa shall likewise be biharmonic. In fact, (16) would
then be fulfilled fory = y’+ Defa and y would be biharmonic. From (17), one obtains:

ac=~ [ x,dx+ Ay, 2), (18)
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and correspondlg,, a,. A(y, 2) is arbitrary to begin with. Furthermore, it follevirom
(17) and (18), sincg«x , Xy Xzzare biharmonic, that:

DA[ x,,dx =aly, 2), (19)

wherea(y, 2) is a given function. If one applié€\ to (18) then this yields, with (19):
AANay = — a(y, 2) + AAA(Y, 2),

where one can always determiAesuch thatax will be biharmonic. Corresponding
equations are true fay, a, .

However, that means: For a given biharmogicone can always determine a
biharmonic vecton such that (16) is true fgy = y’ + Defa, whereAAy = 0. In other

words: One may impose auxiliary conditions on the carapts of the MORERA stress
function tensor:

0 Xxy sz
Xxy 0 Xyz
sz Xyz 0

that makeysy , Xy» Xzx biharmonic.
The proof is analogous for the MAXWELL tensor:

Xo 0 O
o x, O
0 0 yx,

The result thalx , Xyy, Xzz are biharmonic then follows directly. It is knowmat the
MAXWELL Ansatz:

aZny 62)( 62)( 62)( 62)( 62)(
K== _ zz, - — 72z _ xx, Oiz:_ XX _ W, 20
FET 52 oy W= " a7 ot o 29
2 2 0°
Oy = %, @Z:m, OEX:A. (21)
oxoy 0yoz 0z0Xx

(21) easily yields that the MAXWELL Ansatz for:

U = X TAK Y B(Z, X, @, =x,, +C(y,2¥ D(x y)} 22)

Y= X *E@Z,X)* F(Y, 2),

leads to the same stresses when one subjectshéevide arbitrary functiong(x, y),
etc., from (20), to the conditions:
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2 2 2 2 2 2
0C, 0 .o  9ELIB., 0AID., 23)
0z" oy x> 0z dy*  0x

Since the components ofare biharmonic, one next has, due to (21)

My =a(xy)+ 0z 3, Ay, =¢y+ dx y} (24)

My, =e(z Y+ f(y 2

as the differential equations for the stress funstigR Xy, X2z . From (20), it easily
follows that the otherwise unknown functica(, y), etc., must satisfy the conditions:

2 2 2 2 2 2
a_g+a f:o, a_?+a_?:o, a—?+a—? =0. (25)
07" ay x> 0z ay*  0x

Substituting (22) into (24) yields:

DAY= DAA(X, y) +AAB(zZ, X) +a(X, y) +Db(z Y),
AAYyy = DAC(Y, 2) + AAD(X, Y) +c(y, 2) +d(x, ),
AAY,, = DAE(z, X) + AAF(y, 2) +e(z X) +1(y, 2).

Due to the identical forms of the conditions (23) and,(8&g always determinés B in
such a way thatl., ¢y, . become biharmonic. Since the MAXWELL Ansatz yields
the same stresses fgr and y, one can also express the results of the calculason
follows:

All stress states that obey (8) may be described thighhelp of three biharmonic
stress functions of MAXWELLian type by means of (20) &2d).

8 4. Reduction of the three biharmonic to three harmonic stressdus.ct

The starting point for the further simplifications defined by the biharmonic
MAXWELL stress functions. One can repeat the lastmaation for the MAXWELL
functions once again, when one employs eq. (9), adstd the equatiodAc = 0. In
precisely the same way above, one obtains:

m m

AXox + ag=0, Axy+ g=0, Ax,+ g =0, 26

< m+1 ! Ay m+1 ! X m+1 ! (26)
Xy L 0Ky O

a=-0+ 2+ +—5F . 27

ETANT e oy ez 27)

! One thinks ofAA as being applied to (20) and (21).
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If one assumes, for the moment, that is known then one obtains the general
representation of the stress functigns

X = Ykx + particular integral of (26),
Xyy = Wy + particular integral of (26),
Xzz= W2+ particular integral of (26),

where the stress function&x, ¢y, ¢.are harmonic. SinCRB«, Xy, X2z are, on the other
hand, biharmonic, there is a closely-associated Ansatzedbrmxg. + ydyy + 2¢;,, in
which the functiong are harmonic. From this, one easily finds that (26)(2Mil can be
satisfied by means of:

Xxx :wxx+H’ ny:wyy+H’ Xzz:l// zz+H’

H:mlz(xaw oy awzzj. (28)

xx+y yy+Z
m-1{ 0X oy 0z

With (28), the biharmonic MAXWELLian stress funat® lead back to three harmonic
stress functions. Collectively, the stress stdtanoelastic body may then be described
by:

o= |nk(¢/+ﬂtﬂ---¢/|j, (29)
m-1
in which ¢ is the harmonic tensor:
Yo O O
=10y, O
0 0 g,

With that, we have found a representation of thesst state by means of the stress
functions that approaches the PAKOVITCH-NEUBER esentation (§ of the
distortion state by means of distortion functionsimplicity, as the comparison of (28)
with (6) shows.

By substituting (29) into (6), one shows that @).are also fulfilled by aarbitrary
biharmonic tensory by means of the Ansatz (29). With the help of)(1@hen
developed, (29) reads, when one then gets0:

o= - 000y-y 0 - ——oqog)l + M2
m-1 m-1

O0c QO ) +Ay, (30)

equations that certainly satisfy the equilibriumndibions identically. If one now

replacesAy in (30) with m—/zt OAO | then one obtains an expression for
(m=-1)(m-2)

that indeed no longer fulfills the equilibrium catmins identically, although they do
satisfy the compatibility conditions. Since ongéss®y = 0 in the absence of volume
forces and incompatibilities, both Ansatze comenrfrithe same one, in practice. In this
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special case, these special distortion and stressidnadhen become equal. One then
remarks thaty only enters into the second Ansatz in the farfg, which can be set
equal to a vector Gb. One thus obtains precisely the PAPKOVITCH-NEUBERs#tz

(6") with the distortion functions. An interpretatiohtbese functions as stress functions
is obviously not possiblke

8 5. The boundary conditions.

From the considerations up to now, one might say: éf lmas found any biharmonic
stress functiony by which the boundary conditions are fulfilled there abtains the
correct stress tensor from these stress functi@e does need to observe the auxiliary
conditions (12) in all of the calculations.

In the majority of cases, one will make a developime harmonic functions for the
stress functions, or also an integral theorem oHBEIRIER type. In these cases, what
remains is to calculatgZor d¢// on on the boundary, perhaps from the prescribed values
of the boundary forcel(xr). It suffices to calculate with the derivatives oy, resp.)

that are given on the boundary using the boundary constition
n Onk y =2

For the AIRY stress functiof, the determination of the boundary valueFoénd
OF / on is achieved by undetermined integrations around the boundexy It is very
apparent that correspondingly the determination of thendbary values ok, dx/ on, ¢,
oyl on are achieved by means of undetermined integrations o@dyotlndary surface.
For boundary surfaces that are pieces of Cartesian ocatedsurfaces, one finds the
integrations in question for the MAXWELL functions almosimediately. These
suggestions might suffice, for the moment.

8 6. The stress functions in the presence of volume forces or induititiest

As is known, the determination of the stresses #natprovoked by simultaneous
volume and boundary forces may always be divided insmramation problem and a
boundary problem; the latter can be resolved as aboke.qiiestion is then whether the
summation problem, namely, to determine the particuleegmals that belong to the
volume forces, may be resolved with the help of stfasctions. In principle, that is
indeed possible in the cases in which the volume forces &gotential, so the method
seems very artificial in comparison to its usefulness, it therefore acquires no
significance, whatsoever. In the absence of genelame forces, the stress functions
may no longer be defined, at all.

! By a completely difficult argument, H. SCHEFHERg. cit, came to the PAPKOVITCH-NEUBER
functions along a detour from the stress function tenso
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There are no such complications for the appearanagcofmpatibilities. Here, one
again satisfies (4) by means of the Ansatz (7), by wbioh enters into the extended
compatibility equations Inke = n. The physical meaning of the incompatibility tensor
n(v), like that of the stress function tensor, has st been clarified sufficiently. An

uncomplicated calculation yields, whgns subject to the conditions (12):

Ay = ZG(/7+ ! nllj. (34)
m-1

A reduction to three stress functions is no longessible now. The corresponding
reduction in 8§ 3 is, in fact, based upon the faet ¥’ was biharmonic from the outset,
which is no longer the case now. The stresses (Miaper stresses) that are attributed to
n give the particular integral:

x(r):%mh—r' I[n(t’)+ 1_1m (r')l}dr', (32)

m

in which the integral is taken over the volumelaf elastic medium. The solution of the
summation problem is thus found. The boundaryevalwblem can perhaps be solved as
in 8 4. If one adds the MAXWELL stress functiorigis obtained to the particular
integrals (32) then one obtains the resulting stfaaction tensor, and thus, the stress
state.

One can show that the elastic energy that is &sdcwith proper stresses in an
infinitely extended mediuri is given by*:

in which the connection between and 77 is mediated by (32f. (33) once more
underscores the close coupling of stress functamks incompatibilities. This suggests
the conjecture that precisely the stress functwosld enable one to treat the problem of
proper stresses effectively, as was already suggd@s 1.

8 7. Generalization to anisotropic media

In the calculation at the end of § 4, the assumpdif biharmonic stress components
could be replaced by a law of the form:

! The starting point for the derivation of this formusatie energy expressi(%m o---dr, in which

o=1Ink ), and after two partial integrations, one introduceseak;.

2 For the close connection between these quantifiesalso SCHAEFER, H., Z. angew. Math. u.
Mech.33, 356 (1953). There, the problem of stress functions eatett by analogy with potential theory,
and in particular, he sought to find the covariant forfinth@ integration circumstances that would be
appropriate to the auxiliary conditions. The possibitityntroducing biharmonic stress functions was not
known, there.
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f iii o =0, (34)
0x 0y 0z

wheref shall be subject to only the restriction that tHéedentiations of with respect to
0/0x, 0/dy, d/oz are commutable. This then yields, as above, that tlkessfunction
tensor’ y satisfies the equations:

0 9 0
29 91 =0 35
(ax ay azj)( (35)

Now, for any crystal, one has eq. (34), wherg a scalar, linear, homogeneous of order
six, differential operator, and is characteristic af @rystal systenf. Egs. (35) can
perhaps serve as the foundations for the generalizatite @onnection (32) betwegn
and/ to the case of anisotropic media.

8 8. The incompatibility tensor in component representation.
In conclusion, let the components of the incompatybi@nsor:

o=1Ink y

be given in Cartesian and curvilinear orthogonal coordgaf hey are:

2

— aZXW_aZXzz+ a XVZ

= 2
* 02> oy dyoz
X, X . 50X
- — 27 __ XX + 2 ZX
Py o2 07 00X
2 2 2
= O 0Ny 0N

ay>  ox X0y

_aXyZ+asz+26XXy +62Xxx
ox dy 0z ) 0z

I O P AN
ox ay 0z 0D x

_aXXy+aXyZ+26sz +62Xzz.
0z 0X oy ) 00Xy

0= -

9
1)
__0
Oyz dy
oy 2
Y 0z

' First the MAXWELLian one, but then, as before, athe general tensoy. The auxiliary

conditions that enter in place of (12) are still not know
2 For the operatdt, cf., e.g., KRONER, E., Z. Physil86, 402 (1953).
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Fur curvilinear orthogonal coordinates, one has

Ou =" éjlm éjl’S{)ﬁ‘mS_ (rr[:n)ys)(lp_rfm)(lp,s_rtsl)(tr,m+rtsr[:rl)( pr+rtsr prrvX tp_rtsrx Ir
+ rtsmr E[JIXpr+rtsn'r ’:t)(lp}’

where the quantitie§ ; are the CHRISTOFFEL three-index symbols &t are the

components of the anti-symmetric LEVI-CIVITA tensobifferentiations are suggested
in the usual way by a comma.

Appendix
Proof of the decomposition formuld)

For this, one starts perhaps with the known representaf a symmetric tensor field
7 by three vector fields, :

r=tui+t) + {38,

wheret, is the vector with the Cartesian componemiszyx, Tz, and correspondingly for
t2, t3. If, for example,r is the stress tensor then there the well-known stress vectors.
One now decomposes the vector figlgmto their gradients and rotor fields:

t, =g + Ux by, t, = Hap + [x by, t3 = Uag + Ux bs.
Thus, the vectors are defined only up to a gradient. One then obtaing for
r=0(agi +ay + agk) + 0 x (agi + ayj + agk),

and when one sets the bracket expression equal to a wg@orasymmetric tensgf of

rank 2, resp.), one has:
r=0a+ OxB. (a)

The right-hand side of this equation represents a synumetrsor. Here, one must be
able to splittxginto a partal] that extend$la to a symmetric tensor. In generah

cannot be symmetric, since one can prescribe no condibiorthe components af
without the reducing the generality of the representgapn What then remains is:

r=0a+al+0Oxy (b)

1 This formula is completely due to M. BREKA. It represents the essential result of his papbe“T

compatibility equations and stress functions in tenman’f [Czech. J. physics (Rus8,)36 (1953)].
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where [0xy is a symmetric tensor. By the demand of the symmefryix); as one
confirms by checking, one must prescribe thahust satisfy ¥ — y I) I = 0, which
implies thaty— y | = dx[. One then has; 2 = (dx0), , y=ox0 -1 (dx0) |, and:

Oxy =0xox0 - 20x 1 (ox0), .

If one decomposed into a symmetric party and an anti-symmetric patf then one
obtains:

Oxy =0xd %0, (c)

since P x), =0, and the two parts @f drop out, as one easily shows with the help of
the formulasd® =& x|, (F x0), =-20 3% 8 x| x 0 =08 -0 B 1. In this,8" is the
vector with the componentsd;,, —J;,, —J5, . Eq. (1) is proved with (b) and (c).
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