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§ 1.

Definitions and general properties of algebraic ray systems.

The ray systems that will be regarded as algebraidaligrmined in the sequel will
be the ones whose general theory | have developed makthematical journal published
by Borchardt in Bd. 57, page 188t seqg, namely, the ones that consist of a doubly-
infinite family of straight lines, in such a way thiédite analytical representation of an
arbitrary ray of the system will include two independenialdes. Such a ray system
shall be calle@lgebraicwhen all of the equations that determine the rayslgebraic.

A finite number of rays go through each arbitrary poinspace in any algebraic ray
system; this number shall be called dnder of the system. A ray system in whighays
go through any arbitrary point of space shall be calley @ystem obrder n.

The determination of the rays of a ray system of order that go through an
arbitrarily-given point of the space depends upon an equafia@egreen, which can
never have more than roots, except in the case where all of its coefficieate
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individually equal to zero, in which case, infinitely margys will give satisfactory
values. For an"™-order ray system, one can never have morerhadividual rays going
through a point, but there can be points through whichiiafy many rays of the system
go, and which generally define a conical surface as a caomtin Those points, through
which go, notn distinct rays, but infinitely many rays that define a cahsurface, shall
be calledsingular pointsof the ray system, and the cone that includes ah@fays that
go through such a point shall be called tag conethat belongs to this singular point.
The case can also occur where not just a simply-iafii@imily of rays of the system go
through certain points of space and define a ray cong, thotibly-infinite family of rays;
i.e., all of the straight lines that go through this pbrlong to the same ray system. The
rays that go through such a point will, however, theinded complete system of rays for
it, and indeed, a first-order ray system, since one fahis system would go through
each point of space, and each such first-order rayrsystauld detach from the™-order
system, such that one would have only one ray systenwef lorder instead of the"-
order ray system, and in which such points would no lboageur.

If one draws an arbitrary plane through an algebmacsystem then a finite number
of rays of the system will lie in it, in general;2mumber shall determine thassof the
system. Namely, a ray system shall be said to lotae$k whenk rays of the system lie
in any arbitrary plane. The determination of kheys of a ray system of clakshat lie
in any chosen plane depends upon an equation of degndech can have no more than
k roots, except when all of its coefficients are zerd any arbitrary values of the
unknown quantities, and therefore infinitely many of thewill satisfy it. There can
therefore also be planes in which infinitely many rayshe system lie, which, as a
singly-infinite family of straight lines in the planejll define the family of all tangents to
a curve that lies in this plane. Such a plane, whicludies a singly-infinite family of
rays, shall be called singular planeof the system, and the curve that is enveloped by it
will be called aplanar ray curve. A doubly-infinite family of lines that lie in a plane,
which therefore encompasses all of the straight khaslie in this plane, will yield a ray
system in its own right, and indeed a ray system of ozdev, since no ray will go
through an arbitrary point of space, and of class oneg siny arbitrary plane will cut out
a ray that lies in the plane of this ray system, irhsuavay that the class of the system
will be reduced by one unit.

In the theory of algebraic ray systems, it is gfezsal importance to distinguish the
simple, irreducible ray systems from the compositéucile ones that consist of two or
more simple ray systems. Four quantities are neged$sarthe determination of an
arbitrary straight line in space so, in the absenaerbre precise determination, all lines
in space will thus define a four-fold infinite system; ghloit be a two-fold infinite ray
system then one would require two equations in order termdane the position of a
straight line. However, two equations, which are nsags for the algebraic
determination of a doubly-infinite ray system, do not madly represent a pure, simple
ray system, but one that is endowed with additional stres, which can be other ray
systems, or also a ray cone or isolated rays. Hee finds the same situation that one
encounters in the theory of space curves, which caepresented by two equations —
i.e., as the intersection of two surfaces — thatiargeneral, not pure, but endowed with
additional structures, namely, with other curves olatea points. The exclusion of the
additional structures can be achieved for ray systamsag it is for space curves, only
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by adding to the two required equations, yet another equaabilepends upon them. A
simple or irreducible, ray system will be defined as one that is repredebyenothing
but algebraic equations, such that all of the rays ithabntains will satisfy these
equations. Acomposite- or reducible— ray system is, accordingly, one in which a part
of the rays that comprise i and indeed, a part that itself includes a two-fold infinite
family of rays— defines a ray system that is definable by algebraic msatn its own
right. If two ray systems partially cover it in sughvay that the rays that are common to
both systems constitute a two-fold infinite family thdrey will not be irreducible.
Therefore, if one desires to unite the one definigel@aic equation with the other one
then one can represent the part that is common o blyethese equations alone.

| shall choose, y, zto be the quantities that determine each ray of teeesy which
essentially includes two independent variables, just Hwiaforementioned treatment of
the coordinates of the starting point of the ray, andct®nes of the angle that the ray
defines with the three rectangular coordinate axes: &iz., {. Since all of the algebraic
equations that will be used in what follows to determine thy system will be
homogeneous relative t§ 7, ¢, one can also think of there being quantities among them
that are merely proportional to the three stated caosineh that the equatiaf? + 72 +
¢?=1is superfluous. A definite starting point for aj)saas was assumed in the treatise
cited, shall not be used in what follows. The lack oéquation irx, y, zthat represents
the starting point of all rays would make the ray eystbe triply-infinite if no other
condition appeared in place of it; in order for it ®@dnly two-fold infinite, it must fulfill
the condition that when one chooses an arbitrary pdiatgiven ray to be the starting
point, the given ray will always be included amongrihrays that go through this point.
This condition can also be expressed as follows: #the equations of the system, which
can be always be represented as rational equations sixtlggantitiesx, y, z ¢, 1, ¢,
must still be equations of the same ray system whemeptagcesx, y, zwith x + pé, y +
pn, z+ p¢, and for any arbitrary value of the quantiy for any arbitrary value of the
quantityp, thex + pé&, y + pn, z+ pd will then be the coordinates of an arbitrary point on
the rayx, y, z ¢, n, ¢, and for this arbitrary point of the ray, the equatiohshe ray
system will then give precisely the same valuesffay, {'that they give for the point v,
z, such that every point of this ray can be assumee ticststarting point. By means of
this condition, a single equation of a ray system galherally imply an entire series of
other equations for the system along with it; if one casvwey, zintox + pé, y + pn, z
+ p¢, and arranges the rational equation inXkeoé, y + pn, z+ p{ in powers ofo then
all of the terms that include the various powergafust vanish individually. The new
equations that arise in this way shall be calledddw@ved equation®f the given ones,
and indeed thdirst derived equationwill be the one that comes from setting the
coefficient of o equal to zero in the equation that is ordered in powlers the second
derived equatioris the one that comes from setting the coefficint’ equal to zero,
etc. In each derived equation that followsy, z will belong to a space where dimension
is one less than before, while the dimension of theespiaat relates té, 7,  will be one
unit higher than before in each successive derived equdfitime original equation is of
degreemin x, y, z then it will imply m derived equations, in general, but they can also be
fulfilled identically in certain cases, and thus eitladlrof them or all of the ones that
follow a certain one might not be present at athe Gerived equations will be completely
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absent when the quantitigsy, z are present in the original equation only in the specific
connection:

u=yd—zn, Vv=z{-x{, W=X7-Y,

such that these can represent one equation among tpgasittiesu, v, w, ¢, 1, {.

Thefocal surfaceof an algebraic ray system ordeand clask will be defined to be
the geometric locus of all points of space for which dithen rays that go through that
point coincide. On the other hand, the focal surfacealso be defined to be the surface
that contacts all of the planes for which two of kheys of the system that lie in them
unite into a single ray. All rays of the system ewhtthe focal surface twice, but
conversely, not all of the straight lines that cahfacal surfaces twice will belong to one
and the same ray system. One can encounter the roaseover, in which several
completely different ray systems have one and thesdaoal surface, or what amounts
to the same thing that the complete ray system that is defined by athefdoubly-
contacting straight lines is a reducible one that etssif several different ray systems of
lower orders and lower classes.

Any singular point of the ray system from which a rape@emanates is likewise a
singular point— namely, anode - of the focal surface. All of the rays of this cone,
which, as rays of the system, contact the focal serfaae, will then have one of these
two contact points in common at the center of thecaye, which must then be a node
since infinitely many of the tangents to the focal swfadl emanate from it and contact
that surface in yet a second point, and since each taasigelane of the ray cone will be
a tangential plane of the focal surface at this poirite ray cone itself is the enveloping
cone that lies in the focal surface at this node|sar @ part of this enveloping cone, when
it is reducible and consists of several cones of lowgregeor even planes.

The focal surface of the algebraic ray system cao degenerate into curves, and
indeed, either in such a way that just one sheet ofotted surface becomes a curve, or
such that both sheets of the focal surface become culveplace of the demand that
each ray of the two sheets must contact the focEmtwice, one must, in turn, demand
that it must go through the curve or through both curkesteke the place of the focal
surface. A curve through which all rays of a systemi@l be called &ocal curve. Any
point of a focal curve is likewise a singular point af thy system, since infinitely many
rays emanate from it and define a ray cone. If Bbtets of the focal surface degenerate
into a focal curve then all rays of the system gl through these two curves. The two
focal curves can, however, also coalesce into desogg; in that case, all of the rays of
the system will cut this focal curve twice.

The system that is polar reciprocal to a ray systérardern and clask is a ray
system of ordek and clas:; n rays that all go through a point in the first systertt wi
correspond ton lines in the polar system that lie in one and the sdamepandk rays
that lie in a plane will correspond torays in the polar system that go through one and
the same point. The focal surface of the polar recareystem will become the polar
reciprocal surface of the focal surface of the givesiesy, because the condition that a
straight line should contact a surface twice will remarieserved in the polar reciprocal
system.

For the simplest possible analytical representatioth@fray system namely, the
one in which all ray systems of a specified order andscilre exhausted it is
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convenient to represent all of the ray systems gmtinto each other by collinear
transformations of a single one, which can always beser in such a way that it
includes 15 constants less than the most general sysa¢isuttsumes all collinear ones.
This simpler system, in turn, exhibits all of the essg¢properties of the entire group of
systems that are collinear to it. The order and atdsthe ray system then remain
unchanged under a collinear transformation, and alsajngular points and singular
planes of the system remain essentially unchangeck she ray cone that is associated
with them, along with the planar ray curves, keep thmesalegree and the same
singularities under such a transformation. The feoalaces of the collinear systems are
only collinear surfaces with the same degree and the sargularities. The transition
from a certain ray system whose determining datx.arez, ¢, 77, ¢, to the most general
collinear system with the determining datay, Z, &, /7, {, comes about when one
substitutes the following values fyy, z, & 7, {

X:_p’ y:ﬂ, Z:L,

S S S
§=sp —ps, n=sq —gs, J=sr—rs,

where:
p=aX +ay +aZ +as, p=aé’+a +ad,
q=bxX +byy + b, Z +bs, q =bé’+ by + 4,
r=cX +qy +cZ +cs, r'=cé’+cg +cd,
S:d)(+dly+d22'+d3, S':dgz'+d1/7'+d2('.
8 2.

First-order ray systems.

Since only one ray goes through each arbitrary pqigt z of any first order ray
system, the ratios of the three quantites;, ¢ that determine the direction of this ray
must be single-valued, algebraic, and therefore ratibumadtions of the three coordinates
X, ¥, z of the starting point. One can then choose the tuat®ons:

P{+Qn+R{=0, US+Vrp+W(E=0,

which are linear and homogeneous with respeét tp ¢, and in whichP, Q, R, U, V, W

are entire rational functions of y, z to be the most general form of the two original
equations of any first-order ray system. As a necesaadylikewise sufficient, condition
for these two equations to, in fact, determine a firdepray system, one can add that
these two equations must be consistent with all of texived equations; i.e., that all of
these equations must yield the same values of thes i@tigy : ¢ for arbitrary values of
thex, y, z The complete solution to the problem of finding fa#it-order ray systems,
when regarded from a purely algebraic standpoint, coristetermining the six entire
rational functiond, Q, R, U, V, Win all possible ways such that they satisfy the given
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condition. However, it seems simpler and more appatgpto find the solution to this
problem in the following more geometric way:

The focal surface of any algebraic ray system imddfio be the geometric locus of
all points of space through which two infinitely-closgg®f the system go, but only one
ray goes through a point for a first-order ray systam,when two of them go through it,
infinitely many of them must go through it, as well, isdollows that any point of the
focal surface must be a singular point of the system fivhich a ray cone emanates. It
follows further from this that only focal curves can wcdere, instead of the focal
surface; if a ray cone emanated from each point affface then the ray system would
necessarily be triply-infinite. Therefore:

|. First-order ray systems have only focal curves, instead of fockicas:.

There are now two cases to distinguish: First, the i@ which the first-order ray
system has a single space curve that enters botts sifdbe focal surface at once as its
focal curve, which will be cut twice by every ray of hstem, and secondly, the one in
which two separate focal curves are present, each ohwangccut once by all rays of the
system.

If a single focal curve is present that is cut twicealbyays of the system then it must
be assumed that it is irreducible. If it consists@feral curves then one must consider
only the ray systems that are associated with eat¢heoindividual irreducible curves.
The rays of the system that go through any arbitramtdispace will be those straight
lines that go through that point and cut the focal cumeet so they will give the
directions to the virtual double points of the focal cumeen they are considered from
that point. The orders of the complete ray systdms are associated with this focal
curve then agree precisely with the number of virtual dopbiets of this curve. Since
the third-degree space curves always have one and onlirtured double point, it then
follows that the ray systems that have a third-degresesparve for their focal curve and
consist of all straight lines that cut it twice wik first-order systems. If one cuts such a
system with an arbitrary plane then the focal curve el cut in three points, and the
three connecting lines for these three points willhgerays of the system that lie in this
plane, and the system must then be of class thriees: T

II. The set of all straight lines that cut a third-degree space dwwe defines a ray
system of order one and class three.

In order to represent this general type of first-ordgrsystem by equations, | set:

p:ax’+a1y’+azz’+ag, r:cx’+cly’+czz’+c3,
q:bx’+b1y’+bzz’+b3, S:d)(+dly+d22'+d3.

The three equations:
r’—gqs=0, sp—qr=0, ¢’ —pr=0,

then represent, in turn, the most general equationdlftriral-degree space curves, and
indeed only them, with no concomitant straight linéw letx, y, z be the coordinates
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of an arbitrary point in space, so for all valuesppx + o¢, y + pn, z + p{ will then be
the coordinates of points on the straight line that dbesugh the poink, y, z in the
direction that is determined b§ 7, {. In order for this straight line to cut the curve
twice, one must have that for two valuesopk =x + o,y =y + pn, Z =z + pd will
then be the three equations that are quadrafitivat one obtains when one substitutes
these valueg', y, Z into the three equations of the curve, so all threberhtmust have
two roots. This condition gives the equations for thesgsgyem as:

Pé+Qn+R{=0, US+Vn+W(=0,
where:
P =a (" —q9 +b(ps—ar) +c (" —pr),
Q =ay(r’ —q9 +by(ps—ar) +cu(q’ —pr),
R =a(r’ —q9 +ba(ps—ar) + c2(q’ —pr),
U=b (r*-gs +c (ps—ar) +d (o> —pr),
V =hy(r* —q9 +cu(ps—ar) + du(qf —pr),
W = p(r* —g9) + C2(ps—ar) + dx(of —pr).

Any two such equations for the ray system, which are quadnat, y, z, will have
only one derived equation, since the second two derived ensawndl be fulfilled
identically, and these two derived equations will be felilby the original two equations
themselves. The original two equations will be fuléllidentically for all of the points of
the focal curve, and the two derived ones that agrdeeaith other, which are of degree
two in theé, 7, ¢, will then give, in turn, each point of the second-degey cone that is
associated with the focal curve.

The third-degree space curves are the only ones thatjistvene virtual double
point; all space curves of higher degree will have moen tbne. Therefore, any
complete ray system that consists of all straigtesl that cut a space curve of higher
degree twice must necessarily have an order that igighn one. It is still not proved
that the ray systems with a third-order focal curve heeanly third-order systems that
have a focal curve that enters both sheets of thd océace at once. Therefore, one
could possibly encounter the case in which the complgteystem with an irreducible
focal curve of higher degree could be composed of sesepalrate ray systems of lower
order for which first-order ray systems could also occirprecise examination of this
problem is all the more indispensable since, as we wilslater, the complete ray
systems with an irreducible focal surface often, in,fdecompose into ray systems of
lower order.

Thus, let an irreduciblen™degree, space curve be given as the focal curve of a
complete ray system that consists of all straigtgsl that cut this curve twice. All rays
that go through one and the same point of the focakowill define a ray cone of degree
n — 1 on which the entire focal curve lies; this ray cailebe an irreducible cone. If it
decomposed into two or more cones of lower degreesthgenreducible focal curve,
which must be cut by all of the rays of this cone, wouldehtavie partially on one cone
and patrtially on the other one, which is impossible,eset irreducible space curve that
lies partially on irreducible surface must lie upon itnpdetely. Since this ray cone is
irreducible, all of the straight lines that lie in itust be rays of one and the same
irreducible system, and since the same thing is truelifof the cones that emanate from
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the continuously-following points of the focal curvewitl then follow that this entire
family of ray cones must belong to one and the saraeducible ray system. All of the
rays that lie in this family of ray cones will, howeyeompletely exhaust all of the
straight lines that cut the focal curve twice, and onlthe case where the focal curve has
real double points does one add all of the straight linesdo through such a double
point to them, which will define a ray system of ordee @nd class zero, in its own right.
Thus:

[I1. The set of all straight lines that cut an irreducible space curveetwlways
defines a single irreducible ray system, if one excludes thetha¢go through a real
double point of the focal curve and cut it at no other point.

Since, furthermore, any space curve of degree higherthihaa will still always have
more than one virtual double point, even when it hasdeable points, and since the
number of virtual double points will determine the degreehef tay system that is
associated with this curve, one can now infer withaoety:

V. Except for the ray systems with a third-degree focal curve, tui@eo other
first-order ray systems that have an irreducible focal curve thaingsl to both sheets of
the focal surface at once.

We shall thus investigate first-order ray systems llaae two distinct focal curves,
and whose rays all cut the one focal curve, as vgetha other one. Either of the two
focal curves, one of which will have degmeewhile the other will have degreeis to be
regarded as an irreducible curve; if one of the two cuceesisted of curves of lower
degree then the ray system itself would decompose everal special ray systems. An
n"-degree ray cone emanates from an arbitrary point ofotta curve of degrem that
goes through the™-degree focal curve and which is irreducible, since rthelegree
curve that lies on it is an irreducible one. All bétrays that lie on such a cone will then
belong to one and the same irreducible system. Ifnome lets the center of this cone
move continuously along the"-degree curve then one will obtain a continuous family
of n™-degree ray cones whose rays must all belong to onehendame irreducible
system. However, all rays of this family of ray esrwill collectively subsume straight
lines that intersect both focal curves at once, vithdne exception of those straight lines
that go through an intersection point of the two farales, when such a thing exists.
Any arbitrary straight line that goes through the intetise point of both focal curves
will fulfill the condition of cutting both focal curvesp it will belong to the complete ray
system that has these two curves as its focal curifes.straight lines that go through an
intersection point will, however, define a first-ordey iystem in their own right that
may be separated from the complete ray system. Ihometakes an arbitrary point of
space and constructs the two cones of degmeesid n from it, each of which goes
through one of the two focal curves, then these twoscanlé intersect inm [h straight
lines that cut the two focal curves at once. The detapay system will then be of order
m [h; however, if the two focal curves intersecthapoints then one can remondirst-
order ray systems from the complete ray system, drad vemains will be an irreducible
ray system of ordemn —y. A first-order ray system with two different focalrees can
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then exist only under the condition that one imas—x/ = 1; i.e., that the two focal curves
have a number of intersection points that is smdilerone than the product of their
degrees.

In order to now investigate whether, or under which dantl, two space curves of
ordersm andn, resp., can hav@n— 1 intersection points without collapsing into a single
curve, | draw one of the cone surfaces of degred. through the curve of degregsuch
that its center lies on the curve itself. T&-degree curve, which, by assumption, cuts
the n‘h-degree curve imn— 1 points, must then cut this cone of degreel in at least
mn- 1 points. The number of intersection points ofitfledegree curve with the cone of
degreen — 1 will be, howeverm(n — 1), so one must then hang¢n — 1)> mn— 1 if the
m"-degree curve is to not lie completely in the cone afrelen — 1. The latter is,
however, impossible, since the same thing would tletrde for each of the infinitely
many cones of degree— 1 that one can construct for th&degree curve, so the™
degree curve must lie on each of these cones, and thecefocde completely with the
n"-degree curve. The condition(n — 1)= mn— 1 is, however, not fulfilled except when
m=1, and, as aresuj,=n— 1. Since this condition for the existence of foster ray
systems with two distinct focal curves at once idfigeht, one will then have the
theorem:

V. The ray systems that have a straight line and"&degree space curve that cuts it
at n —1 points for their focal curves are all ray systems of order one aagbah, and
there are no other first-order ray systems that have two didteeti curves except for
them.

One recognizes that, in fact, two such focal curvdisalways yield a first-order ray
system from the fact that the rays that go throughraitrary point of space must lie in
the plane that goes through the straight focal line,irstetisect only at one point that is
not the intersection point of the two curves. Thé faat this system has clasgollows
from the fact that an arbitrary plane cuts the sttaigtal line in one and the other of
points, and that the straight lines that go from an intersection pointiert intersection
points with then™-degree focal curve will comprise theays of the system that lie in the
plane.

As the simplest special case of this general typarsttdrder ray system, we can
mention: The ray systems of order one and class bake Have two straight, non-
intersecting focal lines, and furthermore, the rayesyst of order one and class two
whose focal curves are a conic section and a straighthat does not lie in the same
plane as that conic section but intersects it, etc.

In order to represent this type of first-order ray sysby equations, | shall take the
straight focal line to be the-axis; the most general equations for all of tfedegree
curves that cut theaxis inn— 1 points are then:

Ax,y) + alx,y) =0, ZyYn(X,y) + X, y) =0,

where @ @, ¢, yn are homogeneous functionsxfandy’, of degreegu + 1, v+ 1, v,
resp., whilew + v + 1 =n. Thisn™degree curve has asymptotes, which are parallel to
the z-axis, and which yield’ infinitely-distant intersection points of the curve lwihez-
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axis. In fact, one has = o for ¢x(X, y') = 0, and when the values ofy’ / X' that this
equation yields are substituted into the equa#goty y') + @a(X, y') = 0 that will givev
associated values af andy' that are not infinite, in general. The first equatihjch
does not include, and which then represents the projection of the cante thex'y'-
plane, shows that this projection hag-fold point at the origin of the coordinates, so,
along with the v infinitely-distant intersection pointsy generally finitely-distant
intersection points of the curve with th@xis will be present. One obtains the equations
of the ray system that has theaxis and this curve for its focal curves when one subject
the general straight line at the poity, z that goes in the directiod, 7, { to the
conditions that it cut the-axis, as well as the™degree curve. The first condition
immediately gives:

yé—z7=0

as the one equation of the ray system. The secondtioondemands that i, y', Z are
replaced with the coordinates of any point of the dtaige x + o,y + pn, z+ pd in
the equations of the focal curve then they would botkabsfied for the same values of
p. By means of the first equation of the ray systene, basy + pn = y/Ix(x + p¢), so if
one were to set:

X =x+p5 Y=K+pg), Z=2+p

then the two equations of the curve would give:

(x+08) dx,y) +x@(x y) =0
X(Z+pd) galx,y) + (x+ 08) ¢fx y) =0,

and the elimination gb from them would yield:

(Zdx,y) ¢a(x y) —@(X, y) Ux Y) E=¢alxy) (@xy) + axy)) ¢

as the second equation of the ray system.

From the first-order ray systems, which were completghausted in the foregoing,
one can likewise obtain all first-class ray systenienvone forms the polar reciprocal
system. Since a straight focal line becomes a sitrdagal line under it, but a curved
focal line becomes a developable focal surface, it ofib¥v that all ray systems of class
one can have only straight lines for their focal dirsmd only developable surfaces for
their focal surfaces.

The ray system of order one and class three thatahbasd-order focal curve will
have a ray system of order three and class onesfguoiaar reciprocal, and will have a
developable surface of degree four for its focal surfaaedonsists of all of the straight
lines that contact this surface twice. An arbitragngl cuts a fourth-degree curve with
three cusps out of this focal surface, and one of therfact, has only a single double
tangent, which gives the ray that lies in that plambe lines of intersection of the three
planes that make up the enveloping cone of this fourth-delgreslopable surface that
emanate from an arbitrary point of space will be thedhays of the system that go
through these arbitrary points and contact the focahseatiwice.
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The ray system of order one and claskat has a straight focal line and a focal curve
of degreen that intersects ih — 1 times will have a ray system of orageand class one
for its polar system, and will have a straight fdga and a developable focal surface of
classn that will be contacted by the focal linerat 1 points. We separate out- 1 ray
systems of order zero and class one from all thegktréines that cut the straight focal
lines and contact the developable focal surface. Athefstraight lines that go through
an arbitrary point of the straight focal line and conthe developable focal surface will,
in fact, lie onn planes, of which, the — 1 of them that contact the developable surface at
its n— 1 contact points with the straight focal line siatigooints of the straight focal line
will remain themselves invariant will thus give the- 1 particular ray systems of order
zero and class one. If one cuts the system with atraagbplane then a curve of class
will be cut out of the focal surface, which will bentacted byn of the intersection points
of this plane with the straight lines going to the gimaifocal line. However, these
straight lines that cut the focal line and contactftial surface will belong ta — 1 of
then — 1 special ray systems of order zero and class ormlgone of them will remain
as the ray of the system of ordeand class one that lies in this plane. The rayseof th
system that go through an arbitrary point of space nlusiean the plane that goes
through the straight focal line. This plane cuts owusase of classn from the focal
surface, and tha tangents themselves that go through this arbitrary palhb& then
rays of then™-order system that go through this point.

8§ 3.
Second-order ray systemsin general.

Since two rays go through each arbitrary point in arskooder algebraic ray system,
the ratiosé : 77 : {'that determine the directions of the rays that goudindhe poink, y, z
will be determined from the equations of the ray systsntwo-valued algebraic
functions ofx, y, z Therefore, among the three quantitées;, ¢, one of them must
necessarily be a homogeneous linear one, and a homogeqneuiratic equation will
come about, so one will have two equations of the form:

(1) P+ Qn+R{=0,
(2) AE2+BrP +Cl%+2Dn+ EJE+ FEn =0,

in whichP, Q, R, A, B, C, D, E, F are entire rational functions af y, z These two
equations generally imply two sequences of derived equati@isntast be fulfilled,
along with the two original ones, if this is to actyakpresent a ray system, and one
obtains all possible second-order ray systems wherdete&mines the nine quantities
that appear as coefficients in these two equations ae eational functions ox, y, zin
all possible ways such that all of these derived equatwihbe fulfilled by the values of
the ratios¢ : 7 : {'that are given by the original two, and indeed, for &litaary values of
XY, Z

If one denotes the coordinates of any arbitrary pdarigaa ray that goes through
Yy, zin the directior¥, 7, { byx, Yy, Z then one will have:
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X =Xy -y:Z-z=¢:n:¢,

and one can then replaéen, { with the proportional quantities —x, y —y, Z — zin the
homogeneous equations (1) and (2), from which, the firsttiequaill represent a plane
that goes through the pomty, z, and the second one will represent a second-degree cone
whose center lies & y, z. The two rays of a second-order system that go thraygghnt
of space will be determined from the two equations (H) @) as the two intersection
points of a plane and a second-degree cone whose deatar this plane. Equation (1),
as the equation of the plane that both of the ragsgb through the poing, vy, z lie in,
can be varied in an infinitude of ways, since a second-dexgnee will be completely
determined by not just two given edges, but by five of thatialiy. In fact, one can
also multiply the first equation by an arbitrary exgres of the formlJ¢é + Vp + W{ and
add the product to the second equation without changing ttensyof these two
equations and without changing the fact that the secondi@guapresents a second-
degree cone that includes the same two rays.

The first derived equation of (1), which one obtainsmee replaces, y, zwith x +
pé&y + pn, z+ pd, and sets the coefficients pfequal to zero in the resulting equation,
becomes, when arranged in powerg.of

dP dP dP dQ, d drR d dP d
3 — P+ — % | —+— N +| —+F—|E+| —+—[¥n=0;
) dxg dy,7 dzZ ( dz d'j,7Z ( dx d ¢ [ dy 7

when it is not just the identity O = 0, this will thakelwise represent a second-degree
cone that has its center at the poinyg, z, and on which lie the rays that go through that
point and which will be cut out by the plane that equationrépyesents. Equation (2)
can then always be replaced by the first derived equatfigl), with the exception of the
case in which equation (1) has no derived equation, atralhat particular case, where
the first derived equation of (1) vanishes identically, wilehave the equations:

E = 0’ @ = O, d_FQ: O,

dx dy dz
dQ,dR_,  dr dP_,  dP dQ_,
dz dy dx dz dy dx

which must be true for all arbitrary values»xgfy, z. Another differentiation of these six
equations with respect tq y, andz will show that all of the second partial differexiti
guotients of the three quantiti®s Q, R must be equal to zero, so these three quantities
can only be linear functions &fy, z. Their complete determination gives:

P=ay-az b
4) Q=az-az
R=gx-ay- b,

wherea, a;, ap, b, by, b, are arbitrary constants. Thus:
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VI. The second-order ray systems will be, in general, completelyndetzl by a
linear equation of the form:

P&+ Qn+ R{=0,

and its derived equations, and only in the one special case where thaisdoeation has
the form:

(xy—az-b)é+@z—-ax—-)n+t@mx—ay—-hby) (=0

must one add a second quadratic equatiod,ir, { that is independent of it in order to
determine the ray system.

The focal surface of a second-order ray system gl tbe determined in such a way
that two infinitely-close rays of the system must gmtigh each point of it. The plane
(1) and the cone (2), whose intersection gives ther&ys that go through the pomaty,

z, must then contact each other if the paint, z lies on the focal surface. As is known,
this condition will be expressed by the equation:

F
5 B
() b

oTm T >
v O O m

Q

which is therefore the equation of the focal surfa&nce one can also take the first
derived equation of (1) in place of equation (2), withegkeeption of the special case that
was given in Theorem VI, one can then also represemdhation of the focal surface in

the following form:

, 4P dP dQ dR dP |
dx dy dx dx dz
dP,dQ ,dQ  dQ dR .
(6) dy dx dy dz dy =0.
drR,dP dQ dR , dR
dx dz dz dy dz
P Q R 0

However, these equations do not generally repteékerfocal surface concisely, since
they are ordinarily endowed with superfluous fastidrat give certain ancillary structures
to the focal surface that one must be freed ofyihde shown in the sequel. These focal
curves are also included in those cases where dtend-order ray system has focal
curves instead of focal surfaces, which are, i, fdouble curves of the surface that is
given by equations (5) or (6), since the fact thaay goes through a double curve of a
surface, as an intersection in two infinitely-clgs®nts of the surface, is to be deemed a
point of contact, and therefore the condition thay ray of the system must contact the
focal surface twice will also be fulfilled in suehway that it contacts it only once, and in
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addition, goes through a double curve of it, or in suchytiat it cuts the double curve
twice.

Since there are second-order ray systems that haVvdoal surfaces that do not
degenerate into focal curves, the second-order ray sysebdivide into the following
three distinct types:

1. Ray systems that have only focal curves.

2. Ray systems that have one focal curve and onedodake.

3. Ray systems that have no focal curves, but only focéaces.

These distinct types will now be considered individuall
§4.
Second-order ray systemsthat havefocal curvesinstead of focal surfaces.

If a second-order ray system has a single irreduciloi@l frurve that is cut twice by
all rays then two rays that emanate from an arbitpaigt in space will necessarily lie in
the directions of two apparent double points of the fouale that is considered for that
point. The focal curve must then be a space curve wadhapparent double points, and it
also cannot have more than two apparent double poetaube otherwise more than two
rays would emanate from each point of space, whicim ffbeorem IIl must belong to
an irreducible system. The fourth-order space curves dhs¢ from the complete
intersection of two second-order surfaces are, howé&wemwn to be the only curves that
have two— and no more than twe apparent double points. The one irreducible focal
curve of a second-order ray system must then be rsgdgsne such space curve, and
such a focal curve must also always belong to a second-caglesystem. If one
intersects such a system with an arbitrary plane fbenpoints will be cut out of the
focal curve, and the six straight lines that go throughtevo of these four points will be
the six rays of the system that lie on this plaodt will be of class six. Therefore:

VII: The set of all straight lines that cut a space curve twice thad¢fised by the
intersection of two second-degree surfaces defines a ray systemeoftwo and class
six, and there are no other second-order ray systems that have a siadiecible focal
curve.

If =0 andy = 0 are two second-degree surfaces whose intersedties the focal
curve then the ray of the system that emanates therpointx, y, z in the directioré, 1,
¢ must cut both surfaces at the same two points, steifeplaces, y, zwithx + o,y +
pn z+pdate=0andy = 0 then these two points must give equations in thme $&/0
values ofp that are quadratic ip. The two condition equations that are necessary for
this are two of the equations that determine the sys@ne of them, namely:

dy _ dg d A @ @,
1) [w Yy dxjf{w Yy dyjn{fp Loy dlz 0,
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however, succeeds in determining the ray system coehpldiecause its first derived
equation gives the other one for the determination oh#wessary equation for any two
rays that emanate from any point in space. Equationigt)gives yet another derived
equation that is of degree three and which, in turn, gigearother third-degree cone on
which the two rays that emanate from a point mustali¢hird derived equation comes
about because it is fulfilled identically. Equation, (@3 well as its first derived equation,
is fulfilled identically for all pointsx, y, zthat lie on the focal curve= 0, ¢ = 0, so that
would not yield a way of determining 1, {— i.e., the directions of the rays that go
through such a point — so only the second derived equatiorewilin as the equation of
the third-degree cone of rays that emanate from any pbthe focal surface.

The second-order ray systems that have two diffeosatl turves will be obtained by
the same method that was carried out completely in § 2héo corresponding type of
first-order ray system, so we can discuss it moreflgrinere. Here, just as in the
previously-treated cases, all straight lines that cuttte irreducible focal curves of
degreesm andn, with the exclusion of the ones that go through dhby intersection
points of these two curves, must belong to one andatine &reducible ray system of the
two straight lines that go through the intersectiompof the two focal curves, but define
just as many first-order ray systems of class zerbeasumber of intersection points that
are present. It then follows from this in the sanagy that these two curves of degrees
andn can be focal curves of a second-order ray system damyhey intersect atn— 2
points. The necessary condition for two irreduciblecepaurves of orders andn to
intersect atmn — 2 points without coinciding in just one of them istunn, obtained in
the same way a® (n — 1)> mn— 2 andm (m— 1)= mn- 2, and because this condition
will be fulfilled only in the following two cases firstly, whenm andn are both equal to
two, and secondly, when one of the two numbers is equald- it will then follow that:

VIII: Second-order ray systems with two distinct focal curves can come abput onl
when either both focal curves are conic sections that cut it inppits or when one of
them is a straight line and the other one is &ndegree curve that cuts this straight line
at n -2 points.

The fact that two conic sections that lie in diffgrplanes and intersect at two points
will, in fact, give a second-order ray system as tf@sal curves follows from the fact
that the two second-degree cones that go through theseotic sections at an arbitrary
point of space will intersect in four straight lineaptof which will always go through
the two intersection points of the conic section, anturn, will belong to two special
first-order systems such that the other two straiglkes must belong to a second-order
ray system. If one draws an arbitrary plane through suray system then each of these
two second-degree focal curves will intersect at twiatpand the four straight lines that
connect the two intersection points of the one faoave with the two intersection points
of the other one will be the four rays of the systéat lie in this plane, so the system
will then have class four. Therefore:

IX: The set of all straight lines that go through two conic sections thasedeeach
other twice and lie in two distinct planes defines a ray systendef bwo and class four,
with the exception of the ones that go through just the intersection gentselves.
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Ray systems of this kind can also be regarded as spasid of the ones that were
given in Theorem VII that have a single focal curvelegree four. Namely, if one lets
one of the two second-degree surfaces whose intensestioe fourth-degree focal curve
go to a system of two planes then two conic sectiaisintersect at two points will enter
in place of that curve. The class of the system bdllreduced by two units, in such a
way that the rays that lie in the planes of the twoic sections will define two ray
systems of class one and order zero, which will drop Qute thus obtains the analytical
representation of this kind of ray system immediatedynfthat of present kind when one
replacesy with pg, wherep andq are two linear functions of, y, z The original linear
equation iné, n, ¢, which determines the ray system completely along wsthwo
derived ones, will then be:

P{+Qn+R{=0,

where
dq dp dp
P = —+ —_— = ’
Pax Pax Poax
d d
2) Q= gp394pqIP_ pg ¥
dy dy dy
dq dp ap
R= op— + po—r - .
vp dz A dz pq_dz

One recognizes the fact that a straight focal lit@cawith ann™-degree focal line
that cuts it atn — 2 points, will always, in fact, yield a second-orday rsystem
immediately from the fact that the plane that isndrahrough an arbitrary point of space
and the straight focal line will cutrays out of the""-degree cone through thE-degree
focal curve at the same point of spate, 2 of which will consistently go through the-

2 fixed intersection points of the two focal curves, anlll in turn, definen — 2 first-
order ray systems, such that only two rays will remainich will belong to a second-
order ray system. This ray system will be of classo an arbitrary plane will cut thm&-
degree focal curve atpoints, and the straight lines that go from thepeints to the one
intersection point of the plane with the straighaabline will be then rays of the system
that lie in that plane. Hence:

X: The set all straight lines that go through a givaraight line and an frdegree
curve that cuts it at n 2 points defines a ray system of order two and cmssith the
exception of the ones that go through just the2nntersection points.

If one chooses the straight focal line to be #haxis then one can express @it
degree curve that cuts it at— 2 points in the most general way by means of tlee tw
following equations:

(3) f+f1+f,=0, zf+g+0:=0,

where@ @, @, f, g, g1 are complete and homogeneous functions of walydy that have
degreesy, 14— 1, v, v + 1, v, respectively. The first of these equations represiets
projection of the curve onto thg-plane, which is then a plane curve of degreeith an

M — 2-fold point at the coordinate origin, which then corresigoto — 2 intersection
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points of the curve with theaxis. One will have = « for the v values of they / x that
satisfy the equatioh= 0, from the second equation, and the first equatidingiwe two
values ofx andy to each of these values wf/ x, which are finite, in general. These
values will give 27 asymptotes to the curve that are parallel tozthgis, so they will
have, in turn, 2 infinitely-distant intersection points with the sgyfat focal lines, and the
total number of all of these intersection points wikrefore bey + 2v — 2. Since the
curve itself is of degregr + 2v, it corresponds completely to the conditions thatewer
posed.

One obtains the first equation of the ray system wiosal curves are that curve and
the z-axis immediately when one requires that both of tlys that emanate from the
arbitrary pointx, y, z must cut the-axis:

(4) y&—xn=0.

Since this equation of the system, which is lineaj, ip, ¢, has no derived equations,
a second equation of the system must be determined | stiv@r way, which one finds
when one replaces y, zwithx+ p &y + pn, z+ p {in the two equations of the focal
curve and then eliminateg If one then observes that from the first equabdrihe
system one has:

y+pn= {(x +pd
then one will obtain:

X+p0 &> P+x(x+p&f1+xX =0,
XZ+pf+x+pég+xxu=0,

and the elimination gb will yield:

(5) f{-zfé-q &’ f-xf{-2fé-qadxfd+gd @+ xf{+gd@=0

as the second equation of the ray system.

8§ 5.
Second-order ray systemsthat have one focal curve and one focal surface.

If a ray system has one focal curve and one foc&aithen all rays of the system
must go through focal curve and likewise contact the fegehce. The focal curve, as
well as the focal surface, are both assumed to bdudible, because if one of them
consisted of two separate components then the ragmsysself would also have to
consist of two separate components. For the exammafiall second-order ray systems
that belong to that type, it is preferable to distingtightwo main cases, viz., the one for
which the focal curve lies on the focal surface andtieefor which it does not.

I will first examine the case for which the focalrea does not lie on the focal
surface.
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If the focal surface has a degree that is higher thantlven an arbitrary ray of the
system that goes through the focal curve and contaet®thl curve once must also cut
that curve at one or more points, in addition to #u that it must contact it. If one now
considers one of these intersection points to bet#ineng point of the rays of the system
then since it is a point of the focal surface, two ibdily-close rays of the system will go
through it in the direction of a tangent to the foeaface, and along with to the former
ray, three rays of the same system will also goutnothat point, so the ray system
cannot be of order two without that point being a siagpbint of it. However, the point
considered cannot be singular for any ray of the systece stherwise infinitely-many
singular points would lie on the focal surface, whichuldoyield a second focal curve of
the system when connected continuously. The focal suidan therefore not have a
degree that is higher than two; however, it cannot tmvewer degree, either, since
otherwise there could be no contact with the rayb@tlystem. Therefore:

Xl: If a second-order ray system has one focal surface and one focal curdedsat
not lie on it then the focal surface must be a second-degree surface.

Since the focal surface has degree two, all of the cdythe systems that emanate
from an arbitrarily-chosen point of the focal curvelwifine a ray cone of degree two
that is the enveloping cone of the focal surface tldrgs to that point. If one
temporarily excludes the case in which the focal suraeeconic surface of degree two
— so this enveloping cone decomposes into two plandsen all of the rays of this
enveloping cone will belong to the same irreducible system likewise also all rays of
the continuous family of ray cones, which one obtawhgn one lets the starting point
vary continuously. Therefore, all straight lines tigat through the focal curve and
contact the second-degree focal surface will be raysnefand the same irreducible
system. If the focal curve of the system has degrdeen all of the straight lines that
emanate from an arbitrary point of space and simulisiggo through the curve and
contact the focal surface will, firstly, lie on th&-degree cone that has that point for its
center and goes througfi-degree focal curve, and secondly, the rays of theuniele
system that emanate from that point and all2ersecting lines of these two cones will
be on the second-degree cone at that point thatrieBeofocal surface. The ray system
can then have order two only wher 1, and thus, when the focal curve is a straight line.
The fact that a second-degree focal surface and strfaicditline that lies upon it actually
give a second-order ray system, and the fact that also of class two follow quite
simply from the fact that two tangents to a conidieaccan be drawn from an arbitrary
point. Therefore:

XIl: The set of all of the straight lines that contact an arbitrary, non-conical
second-degree surface and go through a straight line that does not lie omésdafiay
system of order two and class two.

If one chooses the straight focal line to bezagis and takes:

p=aX+by+cZ+2dyz+2ezx+ 2fxy+2gx+2hy+2iz+k=0
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to be the equation of the focal surface then oneoltihin the following two equations of
the ray system by the same method as in the previongsliet! cases:

yé-xn=0,
M [d_¢g+d_¢,7+d_¢(j = (@& +b P +c{?+2dn {+ 26 E+ 218N
dx dy dz

which both have no derived equations, and therefore mardse ray system in its purest
form. The two points at which the straight focalel cuts the second-degree focal
surface are two singular points of this ray systemmfrghich plane pencils of rays
emanate that lie in the tangential planes that cothe surface at those two points.

It now remains for us to examine the case that wasougly excluded in which the
focal surface is a second-degree cone. In this caseaylemne that emanates from any
arbitrary point of then"-degree focal curve consists of two plane pencils of tiagslie
in the tangential planes that go through each of thesepoints, and these two plane
pencils can either belong to one and the same raynsystalso two different ones, since
the complete ray system can decompose into two ragragshere, in such a way that one
of these two pencils of rays belongs to one systahtlae other one belongs to the other
system.

If the two pencils of rays belong to one and the seapesystem, and if theé™-degree
focal curve do not go through the center of the corazdl surface then the ray system
will necessarily have ordem2so the proof that was given for the case of non-ednic
second-degree, focal surfaces remains completely valldsircase. In order for the ray
system to be of order two, one must then hawel, and one obtains only a special case
of the ray system that was presented in Theorem Mbwever, if then™-degree focall
curve goes through the center of the conical focal sairfa® or more times then the
order of the system will be reduced by two units with esath passage, because two
coincident rays of the system would then emanate faomh point of space that would
contact the conical focal surface at the center, swlaut the focal surface at the same
point, which would, in themselves, define two coincidargtforder ray systems that
emanate from the center of the cone. Howevehgiffocal curve goes through the cone
— 1 times(so it will be ann — 1-fold point of the focal curve) then the order of tag
system will be reduced byn2- 2 units, and it will be a second-order ray system. The
focal curve must then necessarily be a plane cumeause only an™degree planar
curve can have an — 1-fold point. The rays of such a system that eteaftam an
arbitrary point of space lie, firstly, in the two tangal planes to the conical focal surface
that go through that point, and secondly, innfiedegree conic surface that goes through
the focal curve, which has an— 1-fold edge, due to the— 1-fold point of the focal
curve. Each of the two planes cuts outrike1-fold edges from the conic surface, along
with one straight line. The twice-excised— 1-fold edges of the cone give 2 2
coincident straight lines that emanate from each pafispace to the center of the focal
surface, and thus,n2- 2 coincident ray systems of order one and class Z€he. two
remaining straight lines that are cut out of the donthe two planes are the two rays that
emanate from each point of space and belong to thederder ray system that has this
n"-degree curve for its focal curve and the second-degreefepits focal surface. An
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arbitrary plane cuts the focal curverapoints and the focal surface in a conic section,
and two tangents to this conic section go through eadesérn points, so 8 rays of the
system will lie in a plane, and the system will beclaiss 2. Therefore, in the special
case where the plane in which thiedegree focal curve lies is a tangential plane to the
conical focal surface, one of the two plane pencilsag$ that emanate from each point
of the focal surface will remain in the plane of theve itself for all points of the focal
curve, and that plane will contamcoincident rays systems of order zero and class one,
by whose omission the class of the systems wouledheced byn units. One then has
the following theorem:

XIIl: The set of all straight lines that contact a second-degree cone and go through
an ri"-degree plane curve that has @m—1)-fold point at the center of the cone defines a
ray system of order two aralass2n; however, in the special case in which the plane of
the focal curve is a tangential plane of the conical focal surface, theystgm will only
be of class n.

If one chooses the center of the cone to be thedowde origin and the plane of the
focal curve to be they-plane then the focal surface will become:

p=axX +by +cZ+2dyz+ 2czx+ 21fxy,

and the focal curve will:
z=0, ¢Uxy) +ua(xy) =0,

where (%, y) and ¢4(x, y) are entire, homogeneous functionsxaindy, such that the
former is of degrea and the latter is of degre@e- 1. One then obtains the following two
equations of the ray system by the method that was usadiglin the previous cases:

[d_¢5+d_¢,7 +d_¢(j = 4p(@E? +rP + c7% + 2dnd + 2¢0E + 28n),
dx dy dz
(2)

WYX{— 28, y{—2) + { Yy(X{— 2, y{—z7) = O,

which therefore still do not represent them, having lmdesmsed of ther?— 2 coincident
ray systems of order one and class zero that emé&oatethe center of the cone. One
can exhibit an equation of the forR¥ + Q7 + R{ = 0 from these two equations that,
together with its derived equations, represents the stgersypurely and completely, and
since the expression for the functidasQ, R will then be very complicated, | would not
like to develop them here.

Once one has ascertained completely the second-@ylaystem that comes about
for a second-degree conical focal surface anci"adegree focal curve, when the two
planar pencils of rays that emanate from both poihtseofocal curve belong to one and
the same irreducible ray system, one must then exaimnease in which these pencils
of rays belong to two different ray systems that duake the same focal surface and
focal curve. In this case, the two planes of the rancipbe and thus, the two tangential
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planes of the conical focal surfaces that go throughrhitrary pointx, y, z of the focal
curve— can be expressed rationally in terms of the coordiraftésat point. However,
each of the two tangential planes to the cgre0 that are drawn through a poxty, z

contains only the one irrational quant'\t,r(/?o; should they be rational for each point of the

focal curve then one would need to ha\)@ =M / N for all points of the focal curve,

whereM andN are entire, rational functions gfy, z, the one equation of the focal curve
must then be of the fori 29— M 2 = 0. This equation interprets geometrically as the
statement that the focal curve must lie on a suitfaatecontacts the second-degree cgne
= 0 in a curve without cutting it. The focal curve dden likewise cut that cone
nowhere, but only contact it, and when it is of degreie will contact the cona times,
because at each contact point two of theirRersection points of the"-degree curve
with the second-degree surface must unite into a coptint. Then™-degree focal
curve can also go through the center of the cone thevhich case, the number of actual
contact points will be diminished since each passagheoturve through the center of
the cone is to be counted as a contact, since twosaai#on points then combine into
one. If the curve goes through the center of catenes then it will have only —
contact points; the focal curve will then lie on a cosurface of degree— u/ that has the
same center as the second-degree cone of the focaleswafal which contacts it at
straight lines. The complete ray system that ctsitall the straight lines that cut the
focal curve and contact the focal surface, which isrdér 2, will be of order & — 24,
when all of the rays that go through only the centerisolated, which by themselves
define 2 coincident rays systems of order one and class aewijt will subsume only
the two ray systems that each contain one of thefawdlies of plane pencils of rays that
emanate from the focal curve. If one of these taywsystems should now be of order
two then two of the rays in it that emanate from ebiti@ry point of space cannot lie in
the same one of the two tangential planes to the ddoia surface that go through that
point, but one of them must line in one tangential plartele the other lies in the other
tangential plane. If both of them lie in the sameg&tial plane then that plane must, as
the plane of the two rays that go through the arbitpaint x, y, z of space, be rationally
expressible in terms of, y, z, which is not the case, since it necessarily costée

irrational quantity\/?o, which will not be rational for any point of space, buaty for all

points of the focal curve. An arbitrary tangentiand of the focal curve now cuts the
n"-degree focal curve at — u points, besides the points that coincide with the center,
and a plane pencil of rays that lies in that tangeptzie will belong to each of these-

M points. However, only one of theae- 1/ pencils of rays can belong to the second-
order ray system. If two or more of them belonged &b $lgstem then two or more rays
of the system that lie in that plane would go througkrewoint that lies in that
tangential plane, which is impossible, since the tws & the system that that emanate
from a point will always lie in two different tangerit@anes that go through that point.
If one now moves this one plane pencil of rays thall dbelong to the second-order
system along the entire focal curve, and with it, thegéntial plane in which it lies, as
well, then the tangential plane can never return feosition that it had previously
occupied under all of this motion, because otherwigerdy pencils of the system would
lie in that plane. The tangential plane can thenrgora the second-degree cone just
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once, and in the same sense. It follows further flointhat any tangential plane can cut
the second-degree conical focal surface to the focakcatrwnly two points. If more
than two points were cut out then the plane penaiys that belongs to the second-order
system and whose center traverses the entire foced,cand in turn, must gradually
come to all of the points that will be cut from ataeer tangential plane to the focal curve,
and with them, the tangential plane in which it liesistmeither turn back or go around
the focal surface several times.— mmust then be necessarily equal to 2, so the focal
curve must then lie on a second-degree cone that ceti@ctonical second-degree focal
surface in two straight lines, so when its degree is egua] it must go through the
center of the focal surface— 2 times and contact it at two points. Since tlhesglitions
are not only necessary, but also sufficient, as @sdyeverifies, one has the following
theorem:

X1V: The set of all straight lines that contact a second-degree cone andskkeuti
an r"-degree curve that goes through the center of the con2 times and contacts the
cone twice defines two distinct ray systems of ordeatwioclass n, with the exception of
the straight lines that go through just the center.

| will pass over the analytical representation o$ thind of second-order ray system,
since it offers no difficulties, although it is comglted.

All second-order rays systems that have one focéaeirand one focal curve that
does not lie on it are now exhausted with that, and the casle to be examined is then
the one where the focal curve lies completely orfdhal surface.

| assume that the focal curve that lies on thelfeudace is an-fold curve on it,
where the case = 1 is not excluded, for which the focal curve is a senquirve that lies
on the focal surface. An arbitrary ray of the systbat goes through thefold curve of
the focal surface and contacts the focal surface, iiti@dmust cut it at some point
when the focal surface has a degree higher thar2. However, because it is a point of
the focal surface, two infinitely-close rays of thgstem must go through such an
intersection point in the direction of a tangent, alsd the ray that cuts the focal surface
at this point, as well. The system cannot be of orderwhen the degree of the focal
surface is higher than + 2; the degree of the focal surface can also naingelower,
because otherwise no ray that went through the fagakccould contact it at another
point. If the focal curve is a curved line then eveargight line that goes through two
points of it will cut out Z points from the focal surface, but since the degrethaitf
surface is equal to + 2, this can only happen for the values 1 orv = 2, while in the
other cases the focal curve must be a straigbtd line in the focal surface of degreer
2. A curvilinear focal curve can thus exist on a focafaza only when it is a simple
curve on a third-degree focal surface, or a double cureefaurth-degree surface. The
fact that these two special cases do not, however,agseeond-order ray system will be
show as follows.

A ray cone emanates from each point of the focalectivat envelops the focal curve.
If three ray cones go through the same point thenlibeia singular point of the second-
order system, because three rays of the system ¢hat three different ray cones must
go through it. Now, if the ray cones that emanate fatirpoints of the focal curve are of
degree two or more than three of them will interseatight or more points, and if they
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have a common intersection curve then that curve iteedt be a focal curve of the
system since three rays of the system would go throughdats points, and since the
system should have only one focal curve, that curve neugtdntical with the previous
focal curve, and it must therefore also go through ceoteéhe ray cone, but this is
possible only in the case where the centers of the ttores lie along a line, and that line
will be a focal line, which is contrary to the assuimpt The eight or more singular
points of the ray system must likewise be nodes ofdbal surface when just as many
rays of the system emanate from every other poitthefocal surface as the number of
times that its tangential plane intersects the faxale. However, a fourth-degree
surface with a double curve of degree higher than one cdravet eight nodes, but at
most four of them, when the double curve has degreedamnebnone of them when it is of
degree three. The ray cone that emanates from anyqfdime focal curve cannot then
be of degree two or higher in either of the preserds;dsut can be only a plane pencil of
rays. An entire family of plane pencils of rays chowever, exist only when the focal
surface is enveloped by all planes of that pencil of rays] thus, when it is a
developable surface. However, the only fourth-degree deakelle surface that has a
curve double curve is the one whose edge of regressidrdegeee three, and if it were
assumed to be the focal surface and its edge of regressi®@ assumed to be the focal
curve then that would not give a ray system, at atlabse none of the straight lines that
go through the edge of regression can contact the swuafagepoint that lies outside of
that edge of regression. The third-degree surface, whichbmaus developable, can be
only a conic surface, because other third-degree developaifdees do not exist. A
plane pencil of rays must emanate from each poinheffécal curve that lies on this
third-degree cone whose rays contact a certain strizghdf the plane. The focal curve,
which is curved, by assumption, must cut all straight lefeone, and thus also the ones
that will be met at all points of the rays of theeaay pencil; one of these rays must then
also meet the point at which the focal curve cutstitaght line, but since it is a point of
the focal curve, a second pencil of rays will go frotiné&t does not include the one ray of
the first ray pencil that goes through its centerabse its plane cannot go through the
center of the first one. One more ray of the systeust then go through this second
point of the focal curve, in addition to the plane pkoftrays, which is impossible.

Since these two special cases yield no second-ordesystems, all that remains is
the general case in which a focal surface of deg@mntains am — 2-fold straight line as
its focal line. This case always gives a second-om@eisystem. Since the rays of the
system that emanate from an arbitrary point of space catishe straight focal line, they
will then lie in a plane that goes through the focad,l but that plane cuts just one conic
section out of the surface, in addition to the 2-fold straight line, and it has only two
tangents that go through the given point, which are weerays of the system that go
through it. If one intersects the system with anteaby line then a curve of degradhat
has am — 2-fold point will be cut out of the focal surface, amdce the number of the
tangents that go through this multiple point is-22, the system then has class—22.
Therefore:

XV: The set of all straight lines that go through @n-2)-fold straight line of a
degree surface and contact that surface defines a ray system of ood@ndvelasn —
2.
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If one takes then — 2-fold straight line to be theaxis then one can put the most
general equation of that™-degree surface into the following form:

3) P+20+ @+ 2P+ ) +Zx =0,

where@ @, @, Y, Yn, xy are entire homogeneous functionx@indy alone, and indeeg

Y, x are of degre@a — 2, @ and ¢4 are of degre@ — 1, andg is of degreen. One then
obtains the following two equations for the ray systemmfthe method that was used in
the previously-treated cases:

(4) yE—xn=0, U&2+2Vén+W =0,
where:

U=g -op+2Z(@—-@ @) +7Z (@] - @ x)
VaXx(Wa—hor Yp - @ +z(@x -+ @ x— ¢h)),
W=xX (¢ + )’ — (9+ 20 + @) ).

In the examination of the ray systems with one lfscaface and a focal curve that
lies on it, it was always assumed that the contaattpafi the focal surface with the
individual rays of the systems were different from ititersection points of the rays with
the focal curve, so it still remains for us to invedegthose ray systems whose focal
surfaces are contacted by all rays at the same poinhiah they cut the focal curve.
Such a ray system consists of a family of plane pemfilrays that emanate from all
points of the focal curve, and each of which lies tarential plane to the surface and
consists of all of the tangents to it that go throtig contact point. Since such a ray
system is determined completely by the simply-infinitanifa of tangential planes that
contact the focal surface along the focal curve, oneattar the focal surface in infinitely
many ways without changing the ray system, when thatfamdy of tangential planes
thus remains unchanged. If one chooses the developafaleestivat is enveloped by this
simply-infinite, continuous family of tangential plane each case then the ray system
that consists of the continuous family of plane paengflrays that lie in these planes will
necessarily be irreducible when this developable surfat¢henfocal curve that lies on it
are irreducible, so it must then be the complete seoothelr ray system itself that
subsumes all rays of all of these ray pencils. Hssociated, firstly, with the fact that
only two planes of this family of enveloping planes & ttevelopable surface will go
through an arbitrary point of space, and then with tbetfeat a pencil of rays lies in each
of these planes, so if more than two planes wereotthgpugh each arbitrary point of
space then more than two rays of the system wouldyalsbrough that point. Secondly,
it is also requisite for this that no more than onep@ncil should lie in each plane of the
family, so the focal curve that lies in the developabidace, along which, the centers of
all ray pencils lie, should cut all straight lines oé tevelopable surface only once.
These two conditions are also sufficient for such asg¢order ray system to actually
exist. The condition for two enveloping planes of tevelopable focal surface to go
through each point of space replies that this developatée $arface must necessarily be
a second-degree cone. The condition that the foce¢ ¢hat lies on this cone should cut
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each straight line of it only once will be fulfilled the most general way by a focal curve
that is cut out of that cone by aff-degree surface that has an- 1-fold node at the
center of the cone. Although such a focal curve willally intersect any ray atpoints,
one does not count tme— 1 intersection points that coincide with the centehe cone,
since the ray pencils that belong to it will unite imioly ray systems of order one and
class zero, which will then drop out. The focal cuthen becomes a curve of degree 2
with a Zh — 2-fold point at the center of the cone. An arbity@ane cuts this curve ah?2
points, and one ray of the intersecting plane liesacheof the & plane pencils of rays
that emanate from that point, so the system wilh thave classr2 Therefore:

XVI: The set all straight lines that contact a second-degree cone attak goints
of a curve that is cut out from aff-legree surface with afm —1)-fold point that lies at
the center of the cone defines a ray system of order two and?alagéth the exception
of straight lines that only go through the center of the cone

If one takes the center of the cone to be the caataiorigin then the equation of the
n"-degree surface that hasmr 1-fold node will have the forrg(x, v, 2) + ¢a(x, y, 2) =
0, wherey and ¢4 are entire, homogeneous functionxgy, z, one of which has degree
n, while the other of which has degnee 1. Let the equation of the cone be:

@=axX + by +cZ + 2yz+ 2ezx+ Xxy= 0.
If one now sets, to abbreviate:

¢ =@x+fy+cadé+ (fx+by+dan+ (ex+dy+cad,
@' =af?+bif +cd?+ 200+ 6{E+ Aén

then one will obtain the following two equations of tlay system:
¢~ qpp'=0,
YX@ —$py¥ —n@zy =P + ouh (X¢ —Spyy —n@ zg —{g = 0.

| will skip over the equations that one can define frbwseé two equations, which are
linear with respect td, 7, {, because they are complicated.

All ray systems of the kind that were presented inphisgraph must be exhausted
by the method of investigation that was applied to the pmldf establishing the ray
systems with one focal curve and one focal surfacs tlagre can be no ray systems of
the stated kind that are not obtained as special casalspdimiting cases, of them.

(5)
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§ 6.

General properties of second-order ray systemsthat have focal surfaces,
but no focal curves.

If a ray system has no focal curve then its focdbse will be contacted by each ray
twice, and both contacts will then be generally propmertacts at those points of the
surface that are endowed with only one well-defined tangeoiane, and not merely
intersections of the rays with the surface at double panidouble curves on it. Since
the focal surface is contacted by all rays of theesgdivice, it cannot have a degree that
is lower than four, although for ray systems of otder it can also not have a degree that
is higher than four. Now, since two infinitely-closgys of the second-order system
emanate from each point of the focal surface in thecdon of a tangent, two more
infinitely-close rays would then emanate from suchraersection point of the former
ray with the focal surface, in addition to that raseif, and therefore at least three rays.
Any such point must then be a singular point of the secoteroay system, and any ray
of the system must go through a singular point of fis¢esn. Since this cannot happen
for a ray system with no focal curve, it will thesllbw that:

XVII: The focal surfaces of all second-order ray systems that have no foeakcur
are fourth-degree surfaces.

| take this occasion to remark that the proof of theotém assumes that the two
contact points of any ray with the focal surface tave different points, in general. |If
these two contact points of any ray combine into @nell rays of the system then that
would give a ray system whose rays each contact tfa $oirface at just one point, but in
such a way that each ray goes through three infinitesectmints of the focal surface.
The ray systems of this kind that can exist on third-dedpeal surface can, however,
never be of order two, because not just two, but thnéiajtely-close rays will emanate
from each point of the focal surface.

The complete system of all straight lines that acina fourth-degree surface twice is
a ray system of order twelve and class twenty-eigfd.is known, 12 straight lines will
go through an arbitrary point of space that will contadburth-degree surface twiee
hence, 12 rays of the systenand an arbitrary plane will cut a fourth-degree curveobut
the focal surface whose 28 double tangents will be theafajge system that lie in that
plane. If a fourth-degree surface is the focal suréd@second-order ray system then it
must separate an autonomous second-order ray systemhisooomplete ray system of
order 12 and class 28, such that a ray system of orderlll@mstains that can itself be
further composed of ray systems of lower order. Thaay® of the complete that
emanate from an arbitrary point of space will be deieed by an equation of degree 12
whose coefficients are rational functions of therdomtesx, y, z of the starting point. If
the fourth-degree surface is to be the focal surfaeeseicond-order ray system then this
equation must be reducible and contain a second-degree fawbse coefficients are
rational functions ok, y, z. Conversely, if this equation contains such a seckmgiee
then the fourth-degree focal surface must belong to andearder ray system. A
complete examination of the conditions under which thelfth-degree equation would
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contain a second-degree rational factor would then yieldeglbnd-degree ray systems
that have no focal curves. It then seems simplemao@ appropriate to apply another,
more geometric, method to the complete investigatidhem, which mainly amounts to
just a discussion of the linear equatié + Qn + R{ = 0, which must be true for all
second-order ray systems.

Let the three entire, rational functio®sQ, R in the equation:

) P{+Qn+R{=0

be n"-degree functions of the coordinatey, z, to which, the fourth coordinatewhich
makes things homogeneous, will be added, suchH@t andR are entire, homogeneous
functions of degrea of the four coordinates, vy, z t, of which, it will also always be
assumed that all three do not have a common facterwas shown above, equation (1)
must still be the equation of the same ray system vamensimultaneously converks
into X + o¢, y intoy + pn, andzinto z + p{ for every arbitrary value gb. For the sake of
brevity, let:

P(x+p¢y+pn,z+p4) =P,

Qix+péy+pnz+pg)=Q),

RX+ 08 y+pn,z+p) =R/,

so one has the general equation:
(2) P$+Qn+R¢=0,

which must be true for any value pf and which likewise represents the equations (1),
along with all of its derived equations.

The last of these derived equations, which one obtaieswhe develops equation
(2) in powers ofpo and sets the coefficients pf, which is the highest power gf equal
to zero, must be fulfilled identically for a ray sysiethat have no focal curves and can
thus yield no determination of the quantiti&ss, {. This latter equation, in fact, no
longer includes, y, z, andt, but onlyé, 77, {in n + 1 dimensions, along with constants.
Therefore, if one replaces 7, { with x’— x y’—y, z’— zthen it will represent a cone of
degreen + 1, on which the two rays of the systems that goutlindhe point, y, z must
lie, and which remain congruent and parallel to themsddrea! points in space. All ray
of the systems are thus parallel to the rays of bitrarily-chosen, but well-defined, one
of these cones. If one cuts this well-defined cone aitinfinitely-distant plane then all
rays of the system can be regarded as going through thisinbnéely-distant
intersection curve, so it will be an infinitely-castt focal curve of the system. The last
derived equation cannot exist for the ray systems that ha focal curve, but must be
fulfilled identically. It can thus be represented as:

P($ 7.4 0)$+P(6 1.4, 0)$+P(S 1. {,0) =0,

and since thismust be satisfied identically, one canaewerté, 7, {into X, y, z, which
will then yield:
Px+Qy+Rz=0 fort =0,
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and one can also express the condition for the thregionsP, Q, R in such a way that
the Sin the equation:
3) Px+Qy+Rz+St=0

must likewise be an entire, homogeneous function ofedagof X, y, z t.
Now, letx, vy, z & n, z be the determining data of an arbitrary line of theesyst
which will be regarded as a fixed line, so, for all valukethe varying parametet:

@) qX =N +A L~y ~(E+An) (-2 =0

will be the equation of a family of planes that go tlgb the fixed line. In addition to
this fixed ray that goes through the arbitrary point efftked line whose coordinates are
X+ pé,y+ pn, z+ pd, there is a second ray of the system, and, as wamsibove:

) P'X'-3+Q'(y-Y+R'(z2-2=0

is the plane in which these two rays that go through tih@ pe- o¢, y + pn, z + pd will

lie. Now, should this second ray lie in the plane (4hwhe plane through the fixed line
then the plane (3) itself must be the same as thee &), so the two equations must
exist:

PA=Q, P (¢+An)=-R¢
one of which will already follow from the other, usinguation (2). The equation:
(6) PA=Q’

is then the necessary and sufficient condition fordteond ray that goes through the
pointx + p& y + pn, z + pd to lie in the plane (4). Equation (6) is of degrewith
respect tqo, so it givesn values forp. The one fixed ray, y, z & 7, { will then be cut
by n of the rays of the system that lie in the arbitialgne that goes through it, such that
preciselyn + 1 rays will lie in that plane. One then has théofihg theorem:

XVIII: If the three entire rational functions P, Q, R in the linear equatamnaf
second-order ray systeméR Q7 + R{= 0 are of degree n then the ray system will be of
class n +1.

If one considers thd in equation (6) to be a function pfthenA will be a rational
fractional function ofp whose numerator and denominator are of degreelf the
guantityA remains unchanged under an infinitely-small change-in.e., ifd1 /dpo=0 —
then two infinitely-close rays of the system will lire a plane (4) that is determined by
one such value of; this plane is therefore a tangential plane to twalfsurface of the
ray system. The conditiad¥ / dpo = O gives:

@Q_,

dpP
(7) Qd_,o P dp
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which is an equation of degrea 2 2 inp. 2n — 2 tangential planes of the focal surface
will then go through the fixed line that contacts thafasze outside of the fixed ray itself.
No other tangential planes can exist in addition to tRase 2 tangential planes that go
through the fixed ray and whose contact point does aah lthe fixed ray itself, so two
infinitely-close rays of the system will lie in eatdngential plane that must then cut the
fixed ray that lies in the tangential plane at twoniinély-close points. The number of
tangential planes to the focal planes that go througHixled ray will then be precisely
2n — 2. Now, the class of a surface is known to be detexd by the number of its
tangential planes that go through an arbitrary fixedgdttdine, so it is generally equal to
the number of these tangential planes. Howevehatf fixed straight line contacted the
surface once then the class would be two units largartieganumber of tangential planes
that go through the fixed straight line and whose comaictt does not lie upon that fixed
straight line itself, and if it contacted the surfas&ée then the class would be four units
larger than that number. In the present case, thd fixy is straight line that contacts the
focal surface twice, and through which 2 2 tangential planes to that surface go, so the
focal surface will then have class 2 2. Since, from Theorem XVIII, the ray system has
classn + 1, it then follows:

XIX: The class of the fourth-degree focal surface that belongs to a secondayder
system is always twice as large as the class of that ray system

Then values ofp that are given by equation (6), when considered to betifuns of
A, generally vary simultaneously with i.e., then intersection points of the rays that lie
in the plane (4) with the one fixed ray will change positalong that fixed line when this
plane is rotated around it. However, it can also kectise that a certain number of the
roots of equation (6) are completely independent, ab a certain number of thaseays
will always intersect them in the same points whenplame (4) is rotated around the
fixed ray. Such a family of rays that all go througé same fixed point on the fixed ray
defines a ray cone whose center is a singular poitheofystem. The condition for
equation (6) to havd independent rootg is that one must have = 0 andQ' = 0 for
these values of, and in turn, by means of equation (2), one must also Rawe0. It
then follows from this that:

XX: If the three equations'” 0, Q' = 0, R = 0 are fulfilled simultaneously for a
certain value ofo then the ray x, y, Z, 1, { will go through a singular point of the ray
system whose coordinates are Y& y + pn, z + p4.

The rayx, vy, z,¢é 1, { that is assumed to be fixed can also be arranged sthéha
three equations:

P=0,Q=0R=0

are fulfilled identically, not merely for a single Wwedkefined value ojp, but also for every
any arbitrary value op. Equation (6) is then fulfilled identically for alllatrary values
of the p andA, thus, so one draws an arbitrary plane through this rgypaint of that ray
will be an intersection point of it with another rehat lines in that plane. This is not
possible, except when either that plane contains are datmily of rays of the system that
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cut the fixed ray at all points, or when this ray cossigttwo rays that coincide in such a
way that any point of this ray can be regarded as ttexsiction point of the two
coincident rays. In the first case, an entire @yecmust emanate from each point of that
ray, and that ray must be a focal line of the rayesystbut since the second-order ray
systems that have focal curves were exhausted complatéthe previous paragraphs,
and are excluded here, all that remains is the othericaghich that ray consists of two
coincident rays of the system. Thus:

XXI1: Those rays for which the three equatioris=F0, Q' = 0, R = 0 are fulfilled
identically for each arbitrary value gb consist of two rays of the system that coincide.
For that reason, they shall be callddublerays.

If one replaces + oé, y + pn, z + pd with simplyx, y, z thenx, y, z will no longer
mean just the coordinates of the starting point of thexyy, z,¢, 77, ¢, but they will be
the coordinates of any point on that straight line foy arbitrary value ojp; one must
accordingly replac®’, Q', R with P, Q, R. Theorem XXXI then yields that:

XXI1: If the three A-degree surfaces:
P=0,Q=0,R=0

include common straight lines then they will be double rays of the ystgns, and
conversely, every any double ray of the system will be a comnadghstine to these
three surfaces.

If the threen™degree surface® = 0, Q = 0, R = 0 have any common point
whatsoever — let it be a common intersection poirthe$e three surfaces or suppose that
it belongs to a common intersection curve of them - tihat point must be either a
singular point of the system from which a ray cone mates or it must lie on a double
ray. Namely, if any simple ray; vy, z ¢, 1, { of the system goes through that point then,
by assumption, one will hav = 0, @ = 0, R = 0 for the well-defined valug = 0 for
such a simple ray, so from Theorem XXy, z will be a singular point with a ray cone.
However, when no simple ray of the system goes thrakighpoint, a double ray must
necessarily go through it. There can then be no pbspaxce at all through which no ray
of the system goes in an algebraic ray system, so it Ineusue that either just as many
rays go through each point of space as the order slygtem would give, which can also
be united with multiply-coincident rays, or infinitelyamy rays that define a ray cone
must go through it. If follows further from this thatethhree surfaces can have no
intersection curve that is common to all three, ®p @oint of it must either be a singular
point with a ray cone, so the intersection curve fscal curve, which is a case that is
excluded here, or a double ray must go through each pothiabturve, and thus the
three surfaces must contain an entire family of comstoaight lines that collectively
define a ruled surface that is common to all three vaould give a common factor of the
three function®, Q, R, which is likewise excluded. One then has:
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XXIIl: The three surfaceBP = 0, Q = 0, R = 0 have no other common lines of
intersection than the double rays of the system, and all common pointersgéatibn of
them that do not lie on these double rays are singular points of the ramsytom
which ray cones emanate.

One obtains the precise determination of the numbealloflouble rays that are
contained in a ray system of order two and atasdl in the following way. Let:

(8) axX +pBy +yzZ +ot=0

be an arbitrary plane that is considered to be fixedwalhdbe chosen in such a way that
it contains no singular points of the ray system and wdrileen + 1 rays of the system

. + . . .
lie at infinity, nor do any of the(nTl)n intersection points of any two of theset 1
rays. Letx, vy, zbe the coordinates of any of these intersection pointso rays, so for
these points the fixed plane (8) must be the same apldhe of the two rays that
emanate fronx, y, z, which would have the equation:

9) PX-X+Q(-y+R(Z-2=0,

as was shown above. The condition for these twoeplam be identical gives the three
equations:

(10) E:g:—R and ax+pfy+yz+0t=0,
a B vy

which must then be satisfied by the coordinates oﬁ%@ intersection points of any

two rays of the system that lie in the plane (8).addition, the same equations are also
satisfied by the coordinates of the intersection pahtdl double rays of the system with
the plane (8). One will then ha®®=0,Q=0,R=0,andax+ fy+yz+ot=0.
However, it can happen that no other points besideaftiiementioned ones satisfy these
three equations (10); P, Q, andR are not all three equal to zero then the plane of the
two rays of the system that go through the pxjigt z will be determined completely and
will be identical with the plane (8), in such a wagtithhis point will necessarily be an
intersection point of two rays that lie in the plattowever, if one ha® = 0,Q =0, and

R = 0 simultaneously for a poixt y, zthen, from Theorem XXII, this point will be either

a singular point of the system or a point on a doubleanag,because, by assumption, the
plane (8) goes through no singular point of the systelngfadhe points that satisfy the
three equations (10) will necessarily be only interseqtimints of the plane (8) with the
double rays of the system. The three equations (10) waeltdi preciselyn? points that
satisfy them, since two of them are of degnesnd one of them has degree one, as long
as a certain number of them do not necessarily liefiaity. In order to ascertain these
infinitely-distant points, | make use of equation (3):

Px+Qy+Rz+St=0,
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which must be satisfied by the thr#®degree function®, Q, R in such a way tha is
likewise an entire function of degre@e One easily infers from this equation tiatQ,
andR must be put into the following forms:

P=yg-za-ty,
(11) Q=zp-x@—tiyn,
R=x@ -y -t iy,

where@ @, @ are entire, rational, homogeneous functions, gf z that have degree—
1, andy, ¢, Y are entire, rational, homogeneous function,of, z t that have the
same degree. When combined with the equation+ Sy + yz+ ot = 0, these
expressions yield:

BP2—yPi=x(ap+ By + y@) +t (W — Byr + o9,
(12) yP —aP=y(ap+pp + yp) +t(agp— W +dn),
aP1—-pBP=z(ap+pp + yp) +t (BY — ayn + o).

For all infinitely large values that satisfy theg@requations (10), one then has:

t=0, ax+pBy+yz=0, ap+pap+yp=0,

and because one of these equations has dagrek, while the other two have degree
one, there are exactly— 1 infinite values and, in turm? — n + 1 finite well-defined
values of the coordinatesy, z that satisfy the three equations (10). Since offhen +

(n+1)

1 points thus determineeﬂT of them will be the intersection points of any twgsa

that lie in the plane (8), what will remain arfe—n + 1 - points

n(n+l) _ (n-1)(n-2)
2 2

that will be the intersection points of the double rafyghe system with the plane (8), and
as a result, that will give the number of these douys itself. Therefore:

XXIV: Any ray system of order two and class A has precisely{n — 1)(n — 2)/2
double rays.

The ray systems of class two and three then hawmuble rays at all, those of class
four have one, those of class five have three, thbskass six have six, etc.

If a double ray is cut by any other ray of the systeem tine two coincident rays of
the double ray will go through that intersection pointaddition to the other ray, and
thus, at least three rays, from which, it followstttras point must be a singular point of
the system with a ray cone. The double ray itselftrhatong to the rays of this cone,
and must be a double edge of it, so two straight liretsatife coincident at all points and
not merely infinitely-close with a single interseatipoint can lie only on a double edge
of the cone. Therefore:



KUMMER: On algebraic rays systems; in particular, onsoofdirst and second order 33

XXV: Any intersection point of a double ray with any other ray of a second-order
system is a singular point of the ray system with a ray cone that tasble edge at the
double ray.

The fact that, conversely, any double edge of a ray oa&so a double ray of the
system follows from the fact that a plane that swir through the double edge will cut
out two completely coincident rays of the system.

A double ray, unlike a simple ray, will thus cut somieeotray of a system at each of
its points, because otherwise each of its points would ba be a singular point with a
ray cone and the double ray would have to be a focabliribe system, and there are
only isolated well-defined singular points on any double mayreover, through which all
rays of the system that intersect them will go. Athight lines that cut a well-defined
simple ray will define a ruled surface that must alwdgsompose for a double ray into
cone surfaces whose centers lie at the singular poinke double ray.

If one draws a plane through a fixed ray in the rulecaserivhose generating straight
lines are the rays of the system that cut that fbedthen the intersection curve will
consist of only the fixed line itself and generatingightalines of the surface that lie in
that plane and which are timerays of the system that lie in the plane and cutfikesl
ray; however, the fixed ray itself will be cut thremeés, namely, once as the straight line
through which all generating straight lines of the surfameand two more times, as well,
because the motion of the straight line will geneth&eruled surface, so in its motion
along the fixed ray it will go through that surface twioamely, when its intersection
point comes to one of the two points at which the firegl contacts the focal surface.
The planes that are drawn through the fixed ray therh@ustraight line out of the ruled
surface as a triple one, and theays of the system that lie in the plane, as wdtictv
cut the fixed ray, so:

XXVI: The ruled surface that is defined by all of the rays of a systernmtbegect a
fixed ray is a surface of degreetr8B.

When the fixed ray that is cut from all generatingigtnt lines of thim + 3-degree
surface goes through a singular point of the ray systesmgone that belongs to this point
will define a subset of that ruled surface.

If a ray system has a ray cone of degye@d one draws though a plane through a ray
of the system that does not belong to that ray codetlae center of thg™-degree ray
cone then it will contain one more ray in additiorgtrays that cut from the ray cone, and
thus, at leasy + 1 rays, and since + 1 rays of the system will lie in each plane, @&rth
follows that:

XXVII: A ray system of order two and class-ri can include no ray cone whose
degree is higher than n.

I will now consider the ray cone into which the dilsurface of degrea + 3
decomposes when the fixed ray in it is a double ray o$yeeem. If one draws a plane
through a double ray then— 1 rays of the system will lie in it, along with doulpdy,
and which will cut the double ray at only at singular paintf the number of singular
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points that are contained on a double ray is equathen the ruled surface that define all
of these rays of the system that cut that double rdycamsist ofh ray cones, each of
which has the double ray for a double edge. dwetp, ..., gn then be the degree of these
h ray cones, sg@; — 2 rays will go through the first singular point in abiary plane
that goes through the double ray,— 2 rays will go through the second point, etc. The
number of all of the rays that cut the double ray amahlithis plane will then be equal to
g+01+tg+ ... +gn— 2, and because this number must be equaltdl, one will has
be:

g1tg+...+gh=n-1="2.

On the other hand, because thiesmnes collectively define only a special case of a
ruled surface of degree+ 3 that consists of all rays of the system thatacgtven ray,
one has:

Og1+Q+ ...+0h=n+3.

The numbeih of the singular points that lie on a double ray mush the equal to
two. This likewise implies that the two ray coneatthelong to the two singular points
of a double ray must have degree at least three; if btieem would then have degree
less than three then, since the two have degree collectively, the other one would
need to have a degree higher timanvhich is impossible, from Theorem XXVII. The
condition for each of these cones to have the doalldor its double edge would not be
sufficient to establish that, because a ray cone ofedetwvo would also fulfill that
condition if it consisted of two planes that interseicalong the double line, and thus
consisted of two ray pencils that laid in both planed amanated from the singular
points. One then has the theorem:

XXVIII: Two singular points with ray cones of degree at least three lie on any
double ray of a second-order system.

Each of the ruled surfaces of degree 3 that is defined by a ray of the system that
intersects an arbitrary fixed ray must always go throtghatl singular points of the ray
system, and indeed, it must go through any singular pointsamigty cone of degreg
preciselyg times in such a way that such a point must gdad point of the surface. A
ray cone of degreg will, in fact, be cut by the fixed line of the ruled sagé of degreg
at g points, and thg rays of the ray cone that go through thgg®ints will likewise bey
generating straight lines of the surface that go througlsitigular point. Two such ruled
surfaces whose fixed guiding lines do not lie in the saraeepWill always have + 3
rays of the system in common with each other, nantkdse lines that go through the
+ 3 intersection points of the fixed guiding rays o# ttme surface with the other one;
three such ruled surfaces will generally have no ddythe system in common. Three
lines of the system go through each common point @&etlsuch surfaces because a
generating straight line that goes through this peinénce, a ray of the systenwill lie
in each of these surfaces (so with the exceptionasiticases in which two of these three
lines are identical, so a common ray to two of thestases), will cut the third one, such
that only two different rays of the system will gadbgh the common point of three
surfaces, each common point of these three surfacsesbaua singular point of the ray
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system. If the three surfaces had a common inteogectirve then it would have to be a
focal curve of the ray system, because three diffessrs of the system must go through
any arbitrary point.

The number of all intersection points of threet 3-degree surfaces that have no
common intersection curve ia ¢ 3. The number of those intersection points that are
not singular points of the ray systeme., ones at which only one common ray to two of
these surfaces will cut the third onds equal to 3{ + 3f, because any two surfaces of
degreen + 3 will have rays in common that cut the third surfatdegreen + 3. If one
now generally letsn. denote the number of those singular points of thesyatem from
which ray cones of degregemanate then one will hawve, singular points with plane
pencils of rays, through which each of the three susfgoes just once, so each of them
will contain only one of its intersection points. Eaiflthe three surfaces goes through
each of them, singular points with ray cones of degree two twice, whjores 2
intersection points that lie in each of these singptints; therefore, %, intersection
points of the three surfaces lie at thesesingular points. Generally, each singular point
with a ray cone of degreg is a union ofg® intersection points of the three surfaces,
because each of them goes througf fimes. On the other hand, the number of all
intersection points of the three surfaces is then dqual

3n+3+m+2m+3Fm+ ...,

which is a series that is established only up to the témm, because ray cones of degree
higher tham cannot exist. When both expressions for the numbgrt@fection points
are set equal to each other that will give:

XXIX: If my generally denotes the number of all singular points of the ray system
from which ray cones of degree g emanate then one will have:

nn+3f=m+2Zm+3Fm+..+n°m,.

| now consider the double curve of one such ruled surfadegveen + 3 that it must
have, in addition to the triple straight line thasliat the fixed ray. Thegenerating lines
that lie in an arbitrary plane that goes through fixed aegng with the fixed ray,

tn(n—l)

intersect it a points, which are intersection points of that planéhwhe double

curve. One adds to them the intersection points gbtdree with the double curve that lie
on the fixed ray itself, and their number is equal ton2-(1). As is known, any
generating straight line of a ruled surface of degree3 will be, in fact, cut by + 1
other generating straight lines, and these intersepoamts will be points of the double
curve. Of them, the two intersection points are tactented with the two generating
straight lines that lie at the fixed ray, so what remaie preciselyn — 1 intersection
curves of any generating straight line with the doubleecufizach of the two generating
straight lines that lie on the fixed ray thus contains 1 intersection points with the
double curve, from which, it follows that the fixed raylwgo through 2 it — 1) point of
the double curve. The number of all points of the double ctivaklie in the plane
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n(n-1)

considered- thus, the degree of that curve is therefore + 2 - 1) =

(n=-1)(n+4)
s

I now add a second ruled surface of the same kind andieotise intersection points
of the double curve of the first surface with the secaundace, whose number must be

equal to(n_l)(rh;d')(n+ 3), since the curve has degr n—1)2(n+ 4) and the surface has

degreen + 3. These intersection points are again singular pohthe ray system, in
general, since two rays that lie in the first surfand mtersect in the double curve go
through each of them, along with a ray that lies exgticond surface, as well. Only those
intersection points for which the ray that lies ie #econd surface is identical with one of
the two that lie in the first surface (so only two uist rays go through it) are non-
singular points of the ray system. Since the secondfas + 3 generating lines in
common with the first one, and since each of them thigslouble curve in — 1 points,
the number of those intersection points of the doubleecafwthe first surface with the
second surface that are not singular points of theystem is equal ton(— 1)( + 3),
while all the remaining intersection points must distt&themselves on the; singular
points with plane pencils of rays, the singular points, with ray cones of degree two,
and in general, on they singular points with ray cones of degmge Each of the two
ruled surfaces goes through a singular point witi@egree ray cong times, so the

9(g-1)
2

double curve of the first surface must, in turn, go throbgh point times, since

any two passages of the surface will give a brancheofittuble curve that goes through
that point. Since that point is likewisegdold point of the second surface, it will unite

2 —
9(9-1) intersection points of the double curve of thetfisurface with the second

2 —
surface. Theny points with ray cones of degrgehen containwmg intersection
points. If one now takeg =1, 2, 3, ...n and adds the number that was found for those
intersection points that do not exist at singulains of the system then one will get the
number of all intersection points of the doubleveuof the first surface with the second
surface as:
2 —
(N—1) 1+ 3) + 2, + O + 24my + ... +wmq.

This number, when set equal to the one that wangbove, will give the theorem:

XXX: If my generally denotes the number of all singular poiot the ray system
from which ray cones of degree g emanate then dhbawve:

(n—l)(nw;Z)(n+ 3)_ My + Oy + 24y + ... + n (2_1)rm.
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Many other theorems of the same kind can be developadimilar way, although
the two that were given are completely sufficiemt the use that we would like to make
of them in what follows for the exhibition of all secbarder ray systems that have no
focal curves. Inregard to the possible exceptionsawalidity of these two theorems, it
must be remarked that the only possible exception is th&asmase in which two or
more of the singular points of the ray system combme one, although no exceptions
will, in fact, exist for that case either when igmsnerally considered to be a limiting case,
and when, in turn, the same kind of enumeration of pagnapplied to it as in the general
case.

If one considers the relationship of the ray conehéofocal surface, for which it is
always an enveloping cone, then it is obvious for thecomes of degree two and higher
that the center must be the node of the focal surf&imstly, the center of any ray cone
must be a point of the focal surface, since an intaosecf infinitely-close rays of the
system exists in it, and secondly, it is a contagttgor infinitely-many tangents to the
focal surface that do not lie in a plane. The casehich the ray cone has degree ene
hence, it is a plane pencil of rays — demands speamsideration, since in that case any
point of the contact conic section of the singulagéantial planes in which the ray pencil
must lie can possibly be its center. As is known, si&ight lines emanate from an
arbitrary non-singular point of a fourth-degree surfaeg¢ dloes not also lie in the contact
conic section of the singular tangential plane of thafase with a singular tangential
plane, each of which contact the surface at that ahdnother point, and one of these six
doubly-contacting straight lines must be the ray of dwsd-order ray system that goes
that point of the focal surface and has fourth-degrelairfor its focal surface. If one
lets the point of the focal surface from which theigedsubly-contacting straight lines
emanate come infinitely close to the contact conitiageof the singular tangential plane
then each of these six lines will become one of tkensdes of the fourth-degree focal
surface that lie in each singular tangential plane,enthibse of these six lines that is a ray
of the second-order ray system go through a well-definedbbthe six nodes, and since
the same must be the case for all continuously fafigwoints of the contact conic
section, a ray pencil will emanate from one of thagenodes that is the ray pencil of the
second-order ray system that lies in this singular tarjgriane whose center therefore
also lies at a node of the focal surface. One therh®afollowing two theorems:

XXXI1: The center of any ray cone is likewise a node of the fourth-degree focal
surface.

and

XXXI1: A planar ray pencil that emanates from a node lies in any singular
tangential plane to the fourth-degree focal surface.

In order to also examine the positions of n—1)2(n—2) double rays, which, from

Theorem XXIV, each ray system of order two and class 1 must possess, | now
consider two of these double rays, which shall not liehexdame plane. Let the two
singular points, which must lie in one of these doualerbea andb, while the two that
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lie in the other one areandd. From Theorem XXVIII, a ray cone will emanaterfrahe
point a that will have degree at least three, but since @dehsection point of a double
ray is a singular point in it, this second double ray nmdude at least three singular
points, if this ray cone does not perhaps have a secarndededge, which goes through
one of the two singular points of the second double edb&hwgoes througle, and
which would be a third double ray that links the two poantndc. It will be likewise
excluded thab, as well as yet a fourth double ray, must go throudteea or d, and it
follows further from this, from Theorem XXIV, that tihay system must have at least six
double rays, and therefore must have class at leastMixeover, since, as was shown
above, the two ray cones that belong to the two samqudints of the same double ray in
a system of class + 1 are always of degree+ 3, the two ray cones that belong to the
pointsa andb must collectively have degree at least eight, soaindem must have
degree at least four. In order for it to cut out no osiregular points from singular rapgl
thanc andd, it must also necessarily have degree only four, antivitig@ointsc andd at
which it can cut the double ray, and nowhere else, mustitbeut by two double edges of
it, which in turn must be two double rays of the systeah ¢jo from this singular point to
Cc, in one case, and, in the other. Since the two ray conesaa&ndb have degrees at
least eight, and one of them has degree four, the otieemust have degree at least four,
from which, it likewise follows that it also can le&awno higher degree, and that also two
double rays can go from it to the two poiotandd. Since, as was shown, each of the
two ray cones a andb must have degree precisely four, the ray system must dlass
six; it then contains no other double rays besidesixh#osible rays that were ascertained
already, which define the six edges of a tetrahedrono dauble rays that do not lie in a
plane can thus be present only in this system of owderahd class six, while in all other
second-order ray systems any two of double rays thaprasent must lie in the same
plane, and thus intersect, which is not possible untessdll go through a single point.
Therefore:

XXXII1: All double rays in any second-order ray system must always intensec
one and the same point, with the exception of a single system ofsizlashose six
double rays define the six edges of a tetrahedron.

It is also easy now to determine the degree of allcanes whose centers lie on
double rays. For the special ray system whose six doaptedefine a tetrahedron, it
was already shown that its singular points, througtcivttiree double rays go, belong to

a ray cone of degree four. In all other ray systamshich allw double rays
must go through a single point, one has, in addition tsetlad a singular point with
W double rays, only ones which go through a double ray and tbaego

through no double ray, and the latter have still noarbgiven any attention. A singular
point lies on any double ray with that one double ray, alitiga singular point through
which all double rays will go. The ray cone of thoseyslar points that contain only one
double ray (which, as was just shown before, cannot hdegree that is less than three)
must now have a degree that is precisely three.h#dta higher degree then, since it has
only a double edge, it would cut each of the other double haysate present in more
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than two points, and if it were the single double rathefsystem then that system would
have to be of class four, and the two ray coneshaea¢ this ray for their double edge
would need to have degree six collectively, so eacthe@htwould have degree three,
since neither of the two can have a degree thatssties three. Now, since one of the
two singular points that lie on the same double rayways of degree three, the other
one must be of degreg and both of them will collectively have degmee 3. None of
the singular points through which no double rays go can aalegree higher than two,
since if one of them had a higher degree then it woultheuéxisting double ray in more
than two points, since it can have no double edges, bateach such ray must contain
more than two singular points, or when no double rayasgmt at all, so the ray system
has class only two or three, and this ray cone, frbeofem XXVII cannot have a degree
higher than two. | summarize all of these considematan the degree of the ray cone in
the following theorem:

XXXIV: All of the singular points of a second-order ray system, through which go
(g - 1)@ — 2)/2double rays, have ray cones of degree g, and conve(gelyl)@ — 2)/2
double rays go through each center of any ray cone of degree g. The nurdbablef
rays that go through a singular point is always a trigonal numbet:, 3, 6, ...

The class of a second-order ray system that hasaal €urve cannot rise to any
arbitrary level, as is already obvious from the fabtt its focal surface has degree just
four, and that no ray system on a fourth-degree surfatéhaee a class that is higher
than 28. It is now easily inferred from the theordat tvas just proved that such second-
order rays system can no longer exist from class @ghtp. Namely, for class eight or
higher, 15 or more double rays must be present, which gt ghrough one and the
same singular point, and the ray cone that belongs toaspoint must have a degree that
is seven or higher. Each ray cone is, however,narleping cone of the focal surface
that emanates from a node of that surface or a sobskat cone, when it is reducible,
and that all-enveloping cone will have degree just siafor fourth-degree surface; ray
cones of degree higher than six can therefore not ekisis:

XXXV: There exists no second-order ray system that has no focal curves ared whos
class is higher than seven.

The fact that second-order ray systems of class thwee, four, five, six, and seven
that have no focal curves actually exist can be showa $pecial examination of them,
which I will now commence.

87.
Ray systems of order two and class two that have no focal curves.

From Theorem XVIII, for ray systems of order twadasiass two, the three functions
P, Q, Rin the first equation that are linear in ey, ¢, will be of degree one ixy y, z for
every ray system of second ordernse 1. It will then follow from Theorem XXVII that
ray systems of class two will have no other singyamts than the ones that are
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associated with a planar ray pencil. The number cdetlgengular points is obtained
immediately from the equation in Theorem XXIX, whiclkvesm, = 16 forn = 1. From
Theorem XXXI, these 16 singular points with planar p@ycils must also be nodes of
the focal surface and the 16 planar ray pencils must li& singular tangential planes of
the focal surface. One then has the theorgm (

XXXVI. Ray systems of order two and class two H&singular points with planar
ray pencils; their focal surfaces are fourth-degree surfaces WEhnodes andl6
singular tangential planes.

As was just shown for the caserof 1 before us, the first (linear) equation of the ray
system might have no derived equation, so it must hasefathm that was given in
Theorem VI.

(1) y—aiz-bt){+ (@z—axx—bit) n+ (@ x—ay—-bt) {=0.

All that remains for us to do is then to find the setequation of this ray system, which
one does not derive, so it must be of second degree & the, and must therefore have
the following form:

2 AE? +BIf + C{% + 2Dnd + 2E{E + Fén = 0,

If one determines the quantitidsB, C, D, E, F as functions ok, y, z in such a way
that this second equation likewise has no derived equatem one will obtain the
following general expressions for them with no diffigult

A=cy-2dyz ¢72-2 fyw2 gz It
B=cZ-2dzx+ ¢ k-2 fzt2 gx [t
C=cX-2d,xy+ cy-2 fxt-2 gyt h?,
D=-dxX+dxy+dzc cyz( e ,p %t fyt g&t %
E=-dy+dyz dxy czx( e 2 yt,fzt gxt’t
F=-d,Z+d zx+d,yz- g xy+ (e ¥ zt+ fxt g yt ,ft

3)

Since the equations (1) and (2) that this determines ha\aerived equations, and
therefore no further restricting condition is preseéhgse two equations will give ray
systems of order two and class two for all arbitraripes of their constants; they also
represent the most general ray system of order twocksd two, as we will likewise
show. If one sets:

a,y—-az-bt= g
(4) az-gx bt=7
ax-ay-ht=r¢

for the sake of brevity then, as was shown above intBe3focal surface of this system
will be expressed by the following equation:

[D.H.D.: The focal surface is therkammer surfacein the modern terminology.]
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m T >
w
O

(5)

-

b r, O

In this form, it is clearly of sixth degree, but it indes the facto?, which will drop out
when the associated determinant is developed, such Hh#tad will remain is an
equation of degree four, as it must be.

Everything now comes down to finding the simplest formtifigr equations of the ray
systems of order two and class two, and insofar asatreelso to be regarded as the
most general ones, one hopes to obtain all of theystgms of order two and class two
from collinear transformations of this one form. Tattend, | consider the obviously
very special case, in which all of the constants in #gug2) are zero, with the single
exception ok, e, &, and | see,—e = e—e =0, € —e= &, such that one has+
+ & = 0; | will leave equation (1) unchanged. The two equatdnisis ray system are:

ré+rin+ra{ =0,
(6) oxné+ ay{é+a{én=0,
where o+ +%=0.

The focal surface of this system is:

0 J,z gy r
0, 0 o

e ,Z X on|_ 0.
gy ox 0

or, when developed:
(8) O X%+ QY2+ 022 =20 B YZh - 23202 X B r—23AXyrn=0,

which can also be put into the simple irrational form:

(9) NOXT +.[Ayr, +/d,zr, = 0.

These equations represent the most general fourth-degréee with 16 nodes,
insofar as all other surfaces of this type will only dmlinear transformations of the
surface that is represented by each of these equatiori8)(AR), as | have confirmed in
a communication to the Monatsberichten der Akademi&enyear 1864, page 246; the
form that was chosen here agrees completely withrikelwmat was given there, up to the
constants that | have chosen somewhat differently, hie the interests of symmetry. It
follows immediately from this thatquationg6) represent the most general ray system of
order two and class two, insofar as all ray systeohsthis type are only collinear
transformations of the equations that are includedthat system. Since the focal
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surfaces of all of these ray systems are collinettieédocal surface of the ray system (6),
this system itself must also be collinear to thethaé is defined by equations (6).

In order to ascertain the positions of the 16 singulantp®f the system and the 16
planar ray pencils that are associated with them, keptéle equations of the 16 singular
tangential planes and the coordinates of the 16 nodes @dcal surface in their entirety:

Singular tangential planes:

1 x=0, 9 ﬂ—ﬂ—ﬂzo,
b, b a
2. y=0, 10, £2_&X_&l_g
b b a
3. 2=0, 11, SX_ &Y _&l_g
b b &
4. t=0, 12 ﬂ+ﬂ+iz:0,
a a g
(10)
5. aay—-a1z—-bt=0, 13. ﬂ—‘iz—‘g—tzo,
b, b a
6. az—azx—bltzo, 14. %—%—ﬂzo,
a
7. aax—ay—-b,t=0, 15. ﬂ—ﬂ—‘g—ztzo,
b b &
8. bx+by+b,z=0, 16. ﬂ+ﬂ+£izzo.
a a &
Nodes:
1 x=0, y:—E, Z=m,
a a
2 y=0, z:—E, X=E,
a a
3 Z:0, X:_E, y:E,
& &
4. t=0, X=Y-2
a a g
5. y=0, z=0, t=0,
6. z=0, x=0, t=0,
7. X=0, y=0, t=0,
8. x=0, y=0, t=0,

(11)
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9. x =0, y:_é‘?bt, 7= E%b'[,
€8, &'a
10. - y=0, z=-20 x= £
&a &8,
11. z=0, X:_‘gl’bzt’ y=£,bzt,
&8 &a
12 t= 0, ﬁ: ﬂ: ‘922 ,
da da 3,
13. x=0, y=- gzbt’ . Elbt,
€8, £q
14. y=0, z:—iblt’ X:£2b1t,
&a &8,
15.  z=0, x= - &bt y= S0t
&8 &a
6. t=0, ex_ ey _ ez
da da o3,

where the quantities, &, & — or their quotients, moreover are determined by the
equations:

(12) cra+6=0, dab  dab 330 _ g
& & &,

in a double-valued way, argl &, &, are the associated second values. One then has the
guadratic equation:
(13) Jabe? + (dBb+ danbi— R apby) & £+ Jabe® =0

for the ratios : &, and it follows from this that:
(14) EE g€ &, =dAb:dab i sab.

If one denotes the nodes, and also the singular taag@tdanes, simply by the
numbers at the top of the column then one can reprédeesix singular tangential planes

that go through a node, and likewise the six nodes that &esingular tangential plane,
by the following table:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Lfr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(5 u.|{9 10 11 12 13 14 15 161 2 3 4 5 6 7 8
im. 113 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4
Iv.|8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9
v..7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10
vl 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11

Here, the first column means: In the singular tangeptane 1, there lie nodes 1, 9,
13, 8, 7, 6, and vice versa: Through the node 1, there gonth@asi tangential planes 1,
9, 13, 8, 7, 6. All sixteen columns have the correspgndiauble meaning. The order of
the points and planes is deliberately chosen in suctyahatthe reciprocity relationship
that exists between them will become obvious in this wahe fact that each of the
sixteen points always lies in the planar ray penl is associated with the ray system
that is defined by (6) comes from the fact that thergusisas many nodes as singular
tangential planes.

From the fact that the six singular tangential platie$ go through a node of the
focal surface all have an equal status, and the fattathaix of them indeed have the
same right to include a ray pencil in a system of onder and class two that that go
through their common intersection point (since oneheft includes such a ray pencil)
one can infer that each fourth-degree surface with 16 neidlekkewise be the focal
surface for six different ray systems of order two alags two at once. In fact, the same
focal surfaces (7), (8), or (9) are associated witHdhewing six distinct ray systems of
order two and class two:

| {(azy—aiz— b)é+(az ax Pp+( ax ay HF=0,
' w1 + 8,Y(E + 3,260 =0,

(i_izf_'tjg{ﬂ_Q(_iltjn{f'_)ﬁ_ﬂ_f_'ztjg:o,
Il bb b a b b a b b 3

ex)é +&Y{¢+ &, =0,

(‘gzy_iz_ﬂjg+(ﬂ_2(_g_ltj,7+[ﬂ_g_z_ﬁtj( _o,
a b b a b 3

exnd +&y{&E+¢e,2n =0,

(e

bt¢ +a 77— ay =0,
V. [ GayraazG,ah-0.ant 6 -0 e ~(0,ax0, 250, s
—(51a1x+52ay—51q95/7 =0,
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bt7+ax - aZ =0,
V. [5ay+52azx+(5atr52q9)302—5@%—(52wélaza b
—(0,ax+day-0,b97{ =0,

bt{ +a,y — ax =0,
VI. (Qa1x+5ay+(5qu—5 ab%ajiz—éz agn-(0 axd, axo, hnd
~(d3,y+0,32-3 )1 =0,

whered+ & + & = 0 andg, &, &, &, &, & are determined by the equations that are
given in (12).

One obtains the remaining five ray systems that sseaated with the same focal
surface from the one that was given first by applyingitalsie collinear transformation,
under which the equation of the focal surface will be caedeinto an equation with the
same analytical form that differs from the given @my by the values of the constants,
such thata goes over t@&, a; into a, a; into a,, etc., although the two equations of the

ray system will be essentially different. Therealso an entire cycle of collinear
transformations of the equation of the focal surfate itself, under which the values of
the constants, ai, ap, b, by, by, J, &, & will also remain unchanged, although that is
precisely why the ray systems will also remain unchdngach that one of these ray
systems cannot be used for the purpose of deriving thanmemdive of them. In order
to derive system IV from system I, | make the follogvimear substitution:

L _ by bz t
X = —a;z—ht, X=—- =———-——+—
y—a b b b
y:y’ yZYl
Z =2 Z2=7,
. __ X ay az,
t' =bx+by+hyz t=—- —+ 5=———;
LY+ b2 b b b
it follows from this that:
az—azx—blt:h—zl+%—a2—f,
b b b
_bX _hy at
ax—ay—-bt=——-—+—,
Ay T T Ty T

in which we have set:
ab+a by +a b, =h.

By this substitution, the equation of the focal surfaceoinverted into an equation of the
same form, with the altered constants.
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'—D ':E ':—E
a b’ % b’ % b’
__1 _ % o9
U___’ — T - T

b & b b b

while J, &, & remain unchanged. From the formulas that were giwe8 1 for the
collinear transformation of the ray system, one has:

=X+ y+b z)(an +ad)-(ay+taz-bt)O{+h 7+b),
n=0x+hy+bz)7-y ®O{+h 7+b{),
=X+ y+bz) -z [0 +h 7+b{).

If one now substitutes the values»efy, z t, & 7, { in the two equations for ray
system | then one will obtain, after carrying out taéculations:

bté&+azmng—-ay =0,

I / t’ T (A } I [ [ I rcr
(Gaiy+ad e 0,4h-0,80% £2-0 a7 -0, 00 8 Ay 0, BaE
— (5aZ+8,4 %= B)E =0,

as the two equations of a ray equation whose fadace has the form of equation (9),
with the constants, b', etc. Since these equations agree completely tiviibe of ray
system 1V, it will then follow that ray system IVilwhave the same focal surface (9) as
ray system I. It then follows immediately fromghhat systems V and VI will have the
same focal surface; they will then arise from IV g®rmuting the symbols, y, z, g as,

a, b, by, by, while the focal surface remains unchanged. RBatems Il and Ill can be
derived from | in the same way by linear transfaiiores; one obtains them, however,
much more simply when one remarks that the equatiadhe focal surface can also be
put into the following form:

J grx(ﬂ_ﬂ_ﬂ}, J giy(z_zx_f_ﬂ} J o f_lx_f_y_f_ztj “o
b, b a b b a b b a3

If one also carries out the same change of corsstantvhich equation (9) goes into this
form on ray system | then one will obtain ray sygsidl, and, if one permutes the roots of
the quadratic equation by whieh&, & are given such that they go overetpg, , €, then

one will obtain ray system Il from this.

The planar ray pencils that are associated with @d these six ray systems of order
two and class two will be determined completelythy table (15) that was given above;
that table is then arranged such that the numdmygeathe line mean the 16 singular
points and the numbers in the rows I, 11, lll, N, VI give the planes in which the planar
ray pencil that is associated with the point ligsdach of the six ray systems.
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The complete system of all straight lines that aoina fourth-degree surface with 16
nodes twice includes, in addition to these six rayesgst 16 more ray systems of order
zero and class one, each of which consists of allesttaight lines that lie in a singular
tangential plane, since they are always straight tihascontact the surface twice, so the
system is, in fact, of order 12 and class 28, as mustébeade for any fourth-degree
surface. One then has the theorem:

XXXVII. Any fourth-degree surface wifl6 nodes is the focal surface of six distinct
ray systems of order two and class two and@®distinct ray systems of order zero and
class one.

As noteworthy special cases of this general ray systieonder two and class two, |
would like to mention here the case in which the fourth-adedpeal surface with 16
nodes becomes a surface with one double line and thm evigch it becomes a surface
with two double lines.

If one setd, = 0 then one will obtain the focal surface with aldle line fromx = 0,

y = 0; the eight nodes 1, 2, 7, 8, 9, 10, 15, 16 will falll@msé double lines whenever one
joins any two of them+ namely, 1 and 10, 2 and 9, 7 and 16, 8 and f a point; the
eight singular tangential planes with the same namesgwilthrough the double line
when one likewise joins any two of the corresponding pairtis the same names to a
plane and makes them coincide. All that will then nenaae eight special nodes that do
not coincide and do not lie in the double lines, and eiglgutar tangential planes that do
not coincide and do not go through the double line. Fotheo§ix ray systems of order
two and class two will remain namely, I, 1, IV, V- which consist of the ones that have
no focal curve, although the two ray systems Ill andglve only those ray systems of
order two and class two that have the double line for tbeal curve. Each of the four
ray systems that have no focal lines will still ha@esingular points with 16 planar ray
pencils when the two that coincide are counted twiceyaweere. With a different type
of enumeration, the theorem that was given in § 6hemtmber of singular points for
second-order ray systems would no longer be corresticgh special or limiting cases,
which was already stated expressly at the time.

If one specializes further by settiag = 0, in addition tdy, = 0, then one will obtain
the fourth-degree focal surface with two non-intersgctiouble lines =0,y = 0 andz =
0,t=0. It will then become a fourth-degree ruled surfaiceest is known that two non-
intersecting double lines can occur only in a fourth-deguéss rsurface. Eight nodes
will then fall on each of the two double lines when coenbines them into a single one,
and likewise eight singular tangential planes will gmugh each of the two double lines,
two of which will coincide. The four ray systemsli, IV, V will also still remain in this
case as the ones that have no focal curve, whilediNd will drop away.



KUMMER: On algebraic rays systems; in particular, onsoofdirst and second order 48

§ 8.
Ray systems of order two and classthree that have no focal curves.

From Theorem XVIII, the three functio®s Q, R in the first linear equation of a ray
system of order two and class three will be of degnee tIf one then sets = 2 in the
two equations of Theorems XXIX and XXX then that willey

50=m + 8mp and 10 =02y,
SO
m; =10 and mp = 5.

The ray systems of this class then have 15 singulatspamall, 10 of which have
plane pencils of rays and 5 of which have second-degremnreg, and since the singular
points of the system are likewise nodes and the plahéiseoray pencil are singular
tangential planes of the focal surface, one will hdweefollowing theorem:

XXXVIIl: The ray systems of order two and class three H#veingular points,
and, in fact,10 of them have planar ray pencils abdf them have second-degree ray
cones; their focal surfaces are fourth-degree surfaces Wstimodes andlO singular
tangential planes.

If one is given the first equation of a ray systdrthe class:

) P{+Qn+R{=0

then the second one will likewise be given as the firsvel@requation of that equation,
but, as was shown above for th8 derived equation, in general, the second derived
equation must vanish identically, and here, where othevedkequations do not exist,
that condition will be the sufficient condition foretHirst equation, together with its one
derived equation, to in fact give a ray system of otder and class two, which must
likewise be the most general of that class. If orie BeQ, R equal to entire, rational
functions of degree two IR, y, z, t of a general form then the condition that the second
derived equation must vanish identically will immediptglive ten simple linear
equations in the 3 times 10 constants of these second-dagotiens, which will yield

the following most general form of them:

P=-fiy) ~eZ+dyz tezx+fxy+gxt+hyt +izt +k&
(2) Q=-hZ-fX¥ +dhyztezx+tfixy+gxt+hyt+ipzt+tk
R=-exX -thyY+hhyztezxtihoxy+@mxtthyt+tizttk

with the one condition equation:
(3) d+e +f,=0.

If one sets the first equation in the form:
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(4) AE?+BIP+Cl?+2Dnd+2EJE+2F&n=0
then one will get:
A=2fy+ez+tgt), D=-dx-dy-dyz+ (i1 +hy t,
B=2Wiz+fix+h t), E=-ex—-ey —ez+(@t+i)t,
C=2@ x+dy+ist), F=-fx —fy -foz+ (h+g)t

As was shown in general in 8§ 3, the focal surface sfritiost general ray system of
class three that is represented by both of equationand)(4) will be given by the
following determinant:

AFEP

FBDOQ

5 =0,
®) EDCR

PQRO

which will obviously be of degree six, sinBeQ, R are of degree two aml B, C, D, E,
F are of degree one, but it includes the fattowhich drops out in such a way that the
focal surface will be of degree four, as it must be.e Tact that the surface that is
determined by this equation has, in fact, 15 nodes and tenasingahes is difficult to
see in this most general form, so the simplest fornthefray systems shall also be
presented here, which is likewise also the most genaealinsofar as all ray systems of
this class will be only collinear conversions of it.

To that end, | take the most general fornPo®, R:

d =9 h =a, I =—a, k =-b,
e =9 i1 =a, 01 =—ay, ki =— by,
f,=9, Oz = ay, h, = -4, k2 = — by,

while | take all other coefficients equal to zero, whiclkes:

P=0yz+rt,
(6) Q=d zx+r1t,
R=0 Xy+rat,

in whichr, ry, ro denote the same quantities as in the previous paragraphs,vamah:
o0+a+0=0.

The focal surface of this ray system is:
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0 -0,z -0y Oyz+rt
e -0,z 0 -0X O zx+ Jt _o
-9y  —Ox 0 Jgxy+rt

Oyz+rt o, zx+ [to,xy+ rt 0

which can be put into the following simpler form, from wHyi the factor of? has been
omitted:

0 -0,z-9y r
-0,z 0 -0x ¢
-9y -ox 0

r nor, 2,

(8) =0,

in which, for the sake of brevity, we have set:
bx+by+byz=r3.
The complete development of this determinant gives:

2 X1+ O2YPr2+ 822 - 2010 Yz 1y 2 — 2A10Y2h 12 — 2081 XyITy

9)
= 4000, xyzr = 0.

This equation, which differs from equation (8) in the presiparagraph only by its
last term, which is added to it, gives the most generah of the equation of all fourth-
degree surfaces with 15 modes, insofar as all of thesacesrfare only collinear
conversions of the one in this form. The complete fopbthis assertion will be achieved
with no difficulty from the same method by which | dieyeed the most general form of
all fourth-degree surfaces with 16 nodes in the Monatditen of 1864, page 249. | will
outline the actual proof here, which goes further into phesent purpose of the
investigation of ray systems. It follows from it tlsditray systems of order two and class
three are only collinear conversion of those of the ray systemswhee determining
functions RQ, R are given by equatior6).

The ten singular tangential planes to the focal sarfeave the following equations:

01
01
0

W e
N < X

(10)
4and7. p-daiby) é+ (p- dab- J a: by) é+ Jbt=0,

5 and 8. ,()—éazbz)%+(p—5la1b1—éa2b2)é+5lb1t1=0,
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6 and 9. ,()—éazbz)%+(p—da1b1—éazb2)é+db1t1=0,
10. bx+biy+b,z=0,

in which p is determined in a double-valued way by the quadratic equation:

,02— (dab+ daiby + paphy) p+ darbidab + ab.d0ab
(11)
+dabdabh—-0ad bbb, =0,

and in which one takes one of the valuespdd be 4, 5, 6, for the singular tangential
planes, but equal to 7, 8, 9 for the other.

The 15 nodes of the focal surface are determined moglysby the four singular
tangential planes that go through each of them, whielgi@en by the following table:

1234567 8 91011121314
1 2312312312114
(12) 4 56 45654423325
789 87 7 6 65345°©6 6!
101010 9 9 8 7 8 910 7 8 9 10:

Here, the numbers above the line denote the nodes ande¢bédeneath them denote
the four numbers of the singular tangential planes thahmugh each node. Each of the
15 nodes belongs to a second-degree cone that envedofis#h surface, in addition to
the four singular tangential planes, which will be dendigdhe same number as the
node. 9 nodes lie on each of the 15 enveloping second-dsgres, including the one
that lies at the center; 9 of these cones go througin made, moreover. The nine nodes
that lie in a cone and the nine cones that go througtda will be given systematically
by the following table:

1234567 8 91011121314
1112112114211 4°
2 2233233253325
3334444566456 6!
(13) 544555777778 9101
6 6 56 6 68 8 8 811111111
8 7 7 7 8 9 9 9 9 912121212
9 9 8 1110101010101013131313

121111121213 1112141414 1414 14
1313 12 14 14 14 15 15 15 1K 15 15 15 1!
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If a number above the line is assumed to refer tona toen the numbers beneath it
will give the nine nodes that lie in it, and conversdlythe number above the line is
assumed to refer to a node, the numbers beneathl igiwe the nine cones that go
through that node.

The ray system of class three that is given by equé&bipincludes the five ray cones
with the same numbers at the singular points 11, 12, 13, 1#utife plane pencils of
rays at the points 1 to 10, whose planes are denoted amhe numbers in the same
sequence. As the table shows, the five ray cones 11, 1241385 lie in such a way that
the center of each of them lies on the other fouesonThe necessity of that condition
for each ray system of class three also followmftbe fact that if any two of the five ray
cones do not lie in such a way that they reciprocallgtaia their centers then an
arbitrarily-given plane that goes through those two eent@uld be cut out of the each
of the two distinct rays of the system — hence, faugli — such that it could not be of
class three.

From a closer consideration of the table in (13), one S&x there are precisely six
couplings of five of the 15 enveloping cones that fulfi# ondition that the center lies
on one of the other four, namely, the couplings: (11, 1214315), (4, 5, 6, 10, 14), (7,
8,9, 10, 15), (2, 3,4, 7, 11), (1, 3, 5, 8, 12), and (1, 2, 6, 9,(39. can conclude from
this that the same focal surface will belong to sffedeént rays systems of order two and
class three whose ray cones are these six couplingact, the following six ray systems
of order two and class three have the same focalcsu(®:

P=0yz+(gy-az bt
. Q=0dzx+(ay- 3 x byt
R=0J,xy+(ax ay- bxt

P=gdlp-dah(po' -Jdah xd o' -d afp' -3, ap vy
+52b2(,0—5ab)(,0—5232b2) Y,
Q:SL(51Q(,0_51‘%Q)(,0’_516}@ }’*5qu'—516}@(,0'—5232@

tand i +db(p-dah)(p-oat
R=s(5,b(p-0,ab)(p' -5, 25 (o'-J, 3 Yo' -Jab)x
+ 51b1 (,0 - 528.2b2)(,0 - 51a1b]) 91
where

s=(p—daib) L +(p—db-daib) L +bt
bz b,
sl:w—osazbz)% +(p—da1b1—osazbz)é+db1tl,

Sz:(p_gab)% +(o—oga2b2—aab)% +o bty

and whereo andp’ are the two roots of the quadratic equation (11):
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P=dyz+(ay az b
v. Q=02x-{(Ab- ahl-(0.b- apl+ o

R=dxy+ »{(51@— 39Y-(0,5- a2+ %

P=syzt 45, b- ad Y- b ag X+ }
yz 2{( b a@bl ( 9§bl f
V. Q=9zx-(az a x byt

=oxy- % (S, B~ agd =~ (5 b ag— }
R=0Jxy {(Qa@bl( §9q+9

P=3yz- {(w agL-(d, b ap-+ 9},

b, b,
VL. Q=dzx+ {(ﬂr a@)é—(mr @hé” 9},

R=J,xy+(ax ay- byt

The five remaining ray systems can be derived foenfirst one by the same method
through collinear conversions, as in the correspmndase of the previous paragraph,
and it can also be verified without difficulty (boot, at the same time, without a certain
long-windedness) that they all have the same feadhce by defining and developing
the equation of the focal surface for each of them.

The 10 plane pencils of rays and five ray cones ltelong to these six ray systems
will be given by the following table:

1 2 3 4 5 6 7 9 10 11 12 13 14 1!
. 1 2 3 4 5 6 7 9 10 (11) (12) (13) (14)
.7 8 9 @) G5) 6) 1 2 3 @04 5 6 (14)1cC
(14) WL |4 5 6 1 2 3 (7)® (9 W7 8 9 10 (1
V.10 (2) 3 (4 9 8 (76 5 1 (@1)3 2 4 7
V. |[) 10 ® 9 (5 7 6 (8 4 2 3 (@121 5 8
V.| (2 10 8 7 ()5 4 (9 3 2 1 (13)6 O

8
8

where the second-degree ray cones that are distivegl by parentheses are to be
excluded. Since all two-fold contacting straiginies of the focal surface, along with
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these six rays systems, define 10 ray systems of orceard class one that lie in the 10
singular tangential planes, one will have the follogviheorem:

XXXIX: Any fourth-degree surface willtb nodes and ten singular tangential planes
is the focal surface of six distinct ray systems of order twoctass three and o010
distinct ray systems of order zero and class one.

As a special case of one of them in which someeflhsingular points combine into
one, | point out the case in which:

obib,+a(@b+a by +axby) =0,
for which one will have:

p=da b —&ab p'=ab,—7a ab.

In this case, the three singular points 1, 4, 15 coalesz®ne, which will be a uniplanar
node for the focal surface whose osculating cone stsnsf two coincident planes. The
three nodes 1, 4, 15 that belong to the enveloping conegyodelevo decompose into two
planes that are identical with two of the existinggsiar tangential planes, so they give
six singular tangential planes that go through uniplanar ;nibg@eremaining 12 nodes
each carry four singular tangential planes and its lepwey second-degree cone. The
ray systems that belongs to a focal surface with e$i0one of which is a uniplanar
one, consist of six different ray systems of ordey amd class three, with the difference
that each of them will carry only four second-degreea@yes, since the fifth one will
decompose into two plane pencils of rays that emarmatetine uniplanar node.

Another remarkable special case of ray systems e§ ¢laee that one gets from the
general equations that were presented for them, not dratedy, but after a collinear
conversion, is the one for which four times three nodm®bine into four uniplanar
nodes, and three of them consist of ordinary nodes. géheral equation for the fourth-
degree surfaces that have four uniplanar and three ordindes is:

Zyz+ ZX+ Xy + Xt + yt + zf)? — 4xyzt= 0,
(yzy y yt+ zf) y

so the four uniplanar nodes are:

X X N <
mnon o
cooo

PwbhPE
<< X N
mann
[eNeNoXe)
~ ~ ~ ~—
nanon
[eNeNoNo)

and the three ordinary nodes are:

5. X = +t, z=-1t, t=-1,
6. X:_t, Z:+t, t:_l
7. X=-1, z=—1, t=+1t.
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The ten singular tangential planes to the planes are:

5. y+z=0, 8. x+t+0,
6. z+x=0, 9. y+t+0,
7. x+y=0, 10. z+t+0,

AWM PE
~ N < X
o nn
©ocoo

For each of the four uniplanar nodes, the enveloping toaeemanates from it
consists of six of the ten singular tangential planed, far each of the three ordinary
nodes, it will consist of four singular tangential pleia@d a second-degree cone.

The six different ray systems of order two and cthsse that have this surface for
their common focal surface are determined by the equations:

l. zy+t)$+t(@z+x) n-yx+t¢=0,
II. y@z+t)-tz+x) n+t(x+y) =0,
1. —z(y+t) E+x(z+t) n+t(x+y) (=0

v. Ly +2) E+2(Z+) N-xX(y+1) ¢=0,
V. Ly +2) E-x(2+0 7+y (x+1) =0,
Vi 2+ EFLEN) X+ £=0,

and their first derived equations. Two plane pencils g$ mmanate from each of the
four singular points 1, 2, 3, 4 in each of these six rakesys but only one plane pencil
of rays will emanate from two of the singular point657, and a second-degree ray cone
will emanate from the third one. If one considers¢éhey systems to be limiting cases
of the general ray system of order two and class tin&tehave ten singular points with
plane pencils of rays and five with second-degree ray dbeesit will be those cases in
which four of the second-degree ray cones decomposenatplane pencils of rays that
the two points that combine with them into a pointl wdincide, while of the three
remaining singular points, one of them will carry a sekcorder ray cone and the other
two will carry plane pencils of rays.

§09.
Rays systems of order two and classfour that have no focal curves.

From Theorem XXIV, the ray systems of class fourvdich the degrea of the
three function®, Q, Ris equal to 3 will have a double ray. From Theorem XXXihe
two singular points of the systems that lie at this dowal will have third-degree ray
cones for which the double ray is a double edge, and sinc#heo third-degree ray
cones are present besides those two, one will mgve 2. It one now sets = 3 in the
two equations of Theorems XXIX and XXX then one will:get

108 =m + 8 + 27 Mg, 30 = 2 + 9,
SO:
m]_:6, m2:61 %:61
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and one will thus have the following theorem:

XL: The ray systems of order two and class four have a double ray4asidgular
points and, in factg of them have planar ray penciof them have second-degree ray
cones, an® of them have third-degree ray cones; their focal surfaces are fourtleelegr
surfaces withl4 nodes and singular tangential planes.

The analytical representation of these ray systersts upon the determination of
three function®, Q, R in the equation:

) P{+Qn+R{=0,

so that equation, along with its derived equations, wdtednine the ray system
completely. If one chooses the one double ray tode-dixis, then from Theorem XXII,
the three third-degree functioRs Q, R must be equal to zero far= 0,y = 0, so they will
have the form:

P=xg tya@a+xynp
(2) Q=x¢ +y ¢ +xyp,

R=x¢" +y ¢ +xy,

in which ¢ ¢, ¢”are second-degree functions that do not inclydso they will be
homogeneous functions of degree twoxinz, t, and @, ¢, ¢ are homogeneous

functions of degree two W z t, butp, p’, p” are linear functions of y, z t. If one now

introduces the condition that the third derived equatiostraanish identically- or what

amounts to the same thingthat Px + Qy + Rzmust be of degree only three relativexto
Y, z, then one will obtain:

o = A1y2+BlyZ+C]_ZZ+Dlyt+E12t+F1t2,

d = + Blyz+ C/Z+ D]yt+ E zt+ F't’,

d =-MAy-Clyz +D/yt+ E/zt+ F/' %,
(3)

p = Bxz+CZ +Dxt +Ezt+F &

¢ = A'XC+B'xz+C’Z +D'xt+E’zt+F'f,

@ = -BX¥-C"xz D X t+E"z t+F",

p =—-A’'X+Hy+I|z+Kt,

p’ =—Hx-Aiy+l'z+K"t,

p” ==-B'+1)x=By+1)y—-(C’'+By) z+K"t.

Now, let the coefficients that enter into these egpions be further determined in
such a way that the first equation of the ray systedhthe two derived equations concur
with each other, such that one of these three eq@aBaam consequence of the other two.
One obtains the derived equations from using the rulewhatgiven above, when one
replacesx, y, z with x + p&, y + pn, z + p¢, resp., in the original equation, so that
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equations must then be true for any arbitrary valup. ofn the present case, it is now
preferable to determine the two derived equations in suwehyathat one give® two
well-defined values, and indeed= - x/ &, in the one case, apg= -y / ¢, in the other;
the two equations that are obtained will then be comlyletquivalent with the ones that
were found by the usual method of development in poweos of

For the value- x / ¢, one will have:

w v
X+ pé=0, y+p/7:—?, z+p(:+g,

in which we have set {— x{=u, zE— X{ = v, XN —y¢ = @ to abbreviate. Now, singe
+ pn drops out, the equatidhé + Q 7+ R (= 0 will give, using the equatiané +v 77 +
w{=0:
Citf + Aiw® —Bww- C,uv+ Bluw+ (DE+ D, n+ D) {) wt
(4)
+E+En+ EQut+Fé+ R n+ R QL =0.

For the other valup = -y / £ one obtains in the same way:

CiU? + A’w? —Buw- Cuv- B’ uw+ (DE+ D +D ") wt
(5)
—(EE+EN+EQut+ FE+FN+F Q) ntt=0.

These two equations, which enter in place of the twivekk equations, must now be
identical, when one consults the original equation @ijnce both of them are of degree
two in & n, ¢, and likewise of degree two in the quantitey, z, which contain only,

U, g and since the original equation is of degree three ynz one can give just one
equation for an equation that couples one of these twdiegsiavith the original one and
has a degree higher than two, and which cannot then kiicalda the other equation. It
then follows from this that the two equations (4 and Sstmbe identical, in their own
right. Since the six quantities v, @ & 7, { couple to each other by just the one
equationé u + n v + { w= 0, but are otherwise completely independent, the igeoti
both equations must be true term-by-term when the tereng u tis replaced with the
two terms +£ n vt + E { wt in the last one. Comparing the individual terms thieas:

C.1=0, E: =0, E' =0, Fi1=0, F'=0,
(6)
so both equations then have the form:

(7) aau+ mu+ mw+ BEL+ Bint+ Blt) + (Gun — &had) t — yuu + end® = 0.

One then has:
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AL =K, Bi=km, B =«a, C, =k F =«kg¢
D1 =- kB, D,=-k6, D/=-«k(&+d), E = ko,

(8)
A=A, B=Am, B'=-Aaq, C=-Ay F = Ag
D =185 D= A4, D"=A(Z-a - &), E=kd,

in which xk andA are two arbitrary quantities. If one sets:
H=a, I=-a, I'=+4& K=-b, K'==b, K’=-b

then one will obtain, after employing the values oftladl following expressions for the
three function®, Q, R:

P=xyr + k-4 s + 7+ &zt+et) Ax,
9)  Q=xyn+ Ky -) s+ (Y2 + Rz t+et)ky,
R=xyr, + (ky’ =) s, + A (yz= (& + a) 1) +ky’ (yz- att),

where:
r =apxy—ap1z-bt, S=my—-mz-pt,
rn=az —ax—hbt, S=az-mz-Lit,
r,=aix—ay-—hbot, S=mXx—ay-/At

Once the most general ray systems of order two aisd &ar has been found, one
again comes to the problem of finding the simplest rayesy of the same kind, which
can still amount to the most general one, insofarllastlaer ones are only collinear
transformations of this simplest one. To that et =0,01n =0, =0,6=0,6. =
0,6=0,y=0,6=0, andd + & = - J, so one gets:

P=xyr+Adxzt
(10) Q=xyn+koyzt
R=XxyhL+Ad¢t+1dVt,

and equation (7) gives the second equation of the raynsyste

(11) QUN-aw{=0,
or when developed:
(12) xnN{+ay{é+azin=0.

The focal surface of this system will then be:

0 56,z9y P
(13) 0,z 0 ox Q ~ 0.
gy ox 0 R

P Q RO
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which includes the superfluous factondfy? in this form, but which drops out when one
develops this determinant. The equation of the focahsearthen becomes:

(14) (OKXr + qyrL — & Z12)° — 403, (yr + Ad Z)(xr1 + k& zt) = 0,
or
O X%+ Y12 =022 - 200 Y Z Ty — 280Z X BT — 200 X Y Iy
(15)
—450% (KYyr+Axn)zt-404 62kAZ ¥ =0.

In fact, this equation represents a fourth-degree suwiahel4 nodes and 6 singular
tangential planes, and indeed the most general susfaites kind, insofar as all other
ones are just collinear conversions of it. In th@eaense, the ray system that is given
simply by equations (10) is also the most general ragsysf order two and class four.

The six singular tangential planes of this surface are

1. z =0,

2. p=0apXx +tday—-(0Dap+ada)z=0,

3. P=0ap'x+day—(0ap’'+da)z=0,
(16)

4. t=0,

S. q=ap'Xx-ay+{b+bp)t=0,

6. g=axpXx—ay+b+bhpt=0,

in which p andp’are the two roots of the quadratic equation:
(17) @b —Hak F+(Bb+dabi-Gab)p+d(mb-dal)=0.

By means of these expressions for the six singulgetdaial planes, one can also put
the equations can into the following form:

(18) Jpd +/pg+d mzi=0,
where:
m=d(ab— & a k) (0 - p)>

The 14 nodes of the surface are:

o

e NeNoNeNoNeNa!

~ ~ ~ N N N N N
L O I N B

eleleNoNoNoNoNe!

coofPoocoo

O~NO D WN R
TQTQQUTAaT
T T OoTOQT
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9 and 10. p =0, p' =0, p'q- mzt=0,
lland 12. g =0, p' =0, pq — mzt=0,
13and 14. p =0, q =0, pg — mzt= 0.

The first eight nodes are such that three singulgetatial planes go through each of
them; in addition, an enveloping cone of degree threle avilouble edge will emanate
from each of these eight points. Only two singular tatigeplanes go through each of
the remaining six nodes, and two enveloping cones of degoewill emanate from each
of them, as well.

The eight enveloping cones of degree three, which eménatehe first eight nodes,
are arranged pair-wise such that the double points of aayofwthem will coincide,
which are then the third-degree cones that emanate fierpdints 1 and 5, 2 and 6, 3
and 7, 4 and 8. The ray system of degree two and clasthduwwas presented above has
the third-degree cone that emanates from the two poiatgl15 as its ray cone and the
common double edges to them as the double ray. In additloas a second-degree ray
cone that comes from each of the six pairs of secogrkdecones that emanate from
each of the six pairs of second-degree cones that eenioat the six nodes 9, 10, 11,
12, 13, 14. Finally, it has six plane pencils of ray$ @manate from the six nodes 2, 3,
4, 6, 7, 8, which lie in the singular tangential plarzes, q', t, p', p, respectively. Since
each ray system of order two and class four must awehird-degree ray cones with a
common double edge as double ray, and since the focal shdagast four such pairs
enveloping cones of degree three with common double edgg®nitfollows that no
more than four such ray systems can lie on one anshthe focal surface. The fact that
any such fourth-degree surface is, in fact, the focabearbf four such ray systems
follows simply from the commutability of the six sidgutangential planes, which will
leave the surface itself unchanged, although its nodebevpermuted. If one permutes
g with p andq with p' then the nodes 1 and 5 will go to 2 and 6, and one williolat
second ray system of order two and class four thatheasonnecting line for the nodes 2
and 6 for its double ray; one likewise obtains the thag system of that kind with the
double ray that goes through the nodes 3 and 7 by pernmitamglq, and the fourth one,
whose double ray goes through the nodes 4 and 8, by permpwndy’. Therefore:

XLI: Any fourth-degree surface witth nodes and singular tangential planes is
the focal surface of four distinct ray systems of order two and fdass

The complete system of all straight lines that ocdntach a fourth-degree surface
twice consists, in addition to the aforementioned fayrsystems of order two and class
four, of an irreducible ray system of order four andskig, and the six rays systems of
order zero and class one that are defined by all oftiteeght lines that lie in the six
singular tangential planes. | will skip over the atieé} representation of the other three
ray systems of order two and class four that lie ensdime focal surface (15), since the
expressions are too complicated.
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8 10.
Ray systems of order two and class five that have no focal curves.

The degree of the three functidRsQ, R is n = 4 for ray systems of class five. From
Theorem XXIV, they have three double rays that, fromaarem XXXIII, go through the
same point. The singular point of the ray systemshathnthe three double rays intersect
has, from Theorem XXXIV, a fourth-degree ray conevithich the three double rays are
double edges, and the three singular points that lie othtee double rays each have a
third-degree ray cone with the singular ray as its doulteorze then hasy = 1, mz = 3.

If one now setsny = 1,mz = 3,n = 4 in the two equations of Theorems XXIX and XXX
then that will give:

51=m+sm, 12 =2m,
som = 3,m, = 6,mz = 3,y = 1, and one will then have the following theorem:

XLII: The ray systems of order two and class five have three doublehatygat
through one and the same point at@isingular points, and, in fact, three of them have
planar ray pencils, six have second-degree ray cones, three haveldigirde ray cones,
and one of them has a fourth-degree ray cone; their focal surfaces aré-tmgtee
surfaces witll3 nodes and three singular tangential planes.

The analytic representation of this ray system feilind by a method that is similar
to the one that was applied to ray systems of ctass flf one chooses the three double
rays that go through a point to be the three coordina® @nd the planes that go through
any two of them to be the y, z coordinate planes, and observes that the three double
rays must be the three common straight lines tohreetsurface® = 0,Q = 0,R =0,
then one will obtain the following forms for theseeth fourth-degree functions:

P=yzg +zx@ +xy@ +xyzp
1) Q=yz¢ +zxg +xyg +xyzp
R=yz¢" +zx¢f +Xyg +xyzp,

where ¢ @, ¢” are homogeneous functions of degree twoy,irz, t, @, ¢, ¢ are
homogeneous functions of degree twoznx, t, and @, @, ¢ are homogeneous

functions of degree two i y, t, butp, p’, p”are linear functions of, vy, z t. If one now
introduces the necessary condition tRat+ Qy + Rzmust be of only fourth degree xn
y, z then one will obtain the following formulas for thene second-degree functiogs

@, @, etc.:

Ay +Byz+CZ +D yt +E zt+F £
= B’yz+C’'Z+D’yt +E’zt+F't}
~B'y+C'yz Dyt +E"zt+ F"8,
:—Bl"y2+C”yz +D; zt+ B Xt + Fltz,

S{es
1
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) d= AZ+Boe C%+ Dzt Ext Fi
qd = +Blzx+ G X+ O zw Ext F3
® = 1By Xy + Co P + Do Xt + Ep yt + F
@ =—BX —Coxy +D; xt+E, yt+ R t',
g = AX+Bxy+Gy+DOxt Byt Bt

If one now replaces with x + pé y with y + pon, andz with z + o in the first
equation of the ray system:

P{+Qr+R{=0,

and successively gives the arbitrary quantithe three valuep=-x/& p=-y/n, p
= -2/ ¢, then after dropping the superfluous factors one willinkitee following three
equations, which are only of degree twafjm, ¢, and also irx, y,

@) Cuv?+ A’ — Buw+ Bwu- Cw+( B- v+ FRH)EL
+(E'v-Dw+ Fté)nt+(E'v- D'w+ F't§) {t=0,

5 C@+AF-BwrBw- Qo Ew- Du BN
+(Ejw- Dju+ K1) { t+(Ew- Du+ FE)&t=0,

@ GUFAU-BwrBuo- Gou(Bu v+ B4
+(E,u-D,u+ R W) ét+(E,u- Do+ F¥€)nt=0.

These three equations, which enter in place of the theeived equations, must now
be identical with each other, and when one replagéwith —ué — un by means of the
equationué + un + w{= 0, they must be identical term-by-term. If one thempares
the terms that do not appear in all three equationsahenvill get:

C=0, A=0, E=0, D=0, E”=0, D’=0,
1 =0, A =0, E=0, D=0, E=0, D=0,
C;=0, A =0, E}=0, D;=0, E=0, D=0,
(7)
F=0, F'=0, F'=0,
F =0, F'=0, Fi=0,
F, =0, F, =0, F/=0,

such that these equations will take on the form:

(8) auwtfwutyuv+oudt-ovunt=0.
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Now, in order for all of these three forms to be titerd one must further have the

equations:

(9)

"=— Ky, D”"= ko, E’'= ko,
=—JAa, Di=A, E' =19

B =-«a, B'=«p,
Ex = ua,

B=-A5  B=Ay

Bi=-uy Bi=ua Co=-up D=0

wherex, A, u are arbitrary quantities and we havedet - 0— &, sod+a + & =0. If
one substitutes these values for the coefficientstireamine functions that are denoted by

@then one will obtain the following expressions RIQ, R:

P=a(-kyYZ+AZx+uxy)-puy x—yAzZx
+ AR ZXt+udxyYt+xyzp

Q=BkYZ-A1ZX+ulyY)—yy'y—auzy
Zt +xyzp,

(10)
+ UYL+ KDY

R=y(kYZ+AZX - uly)—arlxz-px2z
+KAY Zt+ A0z Xt +xyzp,

where the three linear expressign®’, p”, according to the condition thBik+ Qy + Rz
must be of degree only four ¥y, z, will be determined as follows:

p=(uta)y-aiz-bt
(11) p’'=(ak+ta)z—ax—t,
p”= (Bl +a)x—ay—Dbyt.
Now, since this again only comes down to finding a rayesy of order two and class
four from which all ray systems of that kind can be gatesl by collinear conversions,

one can setr = 0,5=0, y= 0 in the ones that were given here with no loss o¢iggity;
one then obtains the simpler ray system:
P{+Qn+R{=0,

P=xyzr +1 % Zxt+ u o x yt,
(12) Q=xyzr + U O yt+ Kk &y 7t
R=xyzh + K A Y’ xt+ 1 dz ¥,

wherer, r1, r; are the same linear expressions as in the previous parageapely:

r=a,y—a;z—Dbt, rn=az—ax-bt, rh=apXx—ay-—Dbt.

As the second equation of this ray system, one obffaimsequation (8):
aug-ouvn=0,

(13)
or
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(14) xnl+ay{é+rzén=0.
The focal surface of this system is then:

0 56,z9y P
0,z 0 ox Q| _

(15) =0
gy ox 0 R

P QRO

In this form, it again contains the superfluous factox’of Z, which will drop out
under the complete development of this determinant, whith, the equation of the
focal will take on the following form:

O+ AV P+ B2 12-208YZ0r-28% & XK — 230 Xyrm

(16) —400%(KYZI+AZXE+UXYR)t—4 5% (UXC + AU KY
+&h kA D) P =0.

This equation, in fact, represents a fourth-degree suwitt thirteen nodes and three
singular tangential planes, and indeed it is the most glemee of that kind, insofar as all
other ones will only be collinear conversions of it.

The three singular tangential planes are:

t=0,
(17) p=Jdapx +day—(dkp +da)z=0,
q=J0a p'x+day— (o +da)z=0,

wherep andp’are the two roots of the quadratic equation:

2
S(aby — & ap k- 22K

)p2+(5ab—da1b1—éazbz—%),0
(18)

2
+d(a1b—czaz/l—%)=0-

The 13 nodes are: First of all, the following #re

1. x=0, y=0, z=0,

o t=0, = X, 7= %8P
Y= oap+oa

3 t=0, y=p'x = 2P X

dap' +da
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through which, any two singular tangential planes will gl for which the sixth-degree
enveloping cone will consist of a fourth-degree cone whtiee double edges and two
planes.

Secondly, one has the node:

4. t=0,

I
Tl<
I

@ | x
oOIN

through which, all three singular tangential planes will god which will belong to a
third-degree enveloping cone with no double edge. Thirdly,stirface has 9 nodes,
through each of which only one of the three singulageatial planes will go, and for
which the completely enveloping sixth-degree cone wilisist of a third-degree cone
with a double edge, a second-degree cone, and a planee dfttteese nine nodes lie in
the singular tangential plane= O, three of them, ip = 0, and three of them, o= 0; the
three that lie it = O are:

5.
6.
7

~ ~ ~—
I
ooo
X N <<
Inmnon
[oNeoNe]
< X N
m o n
coo

The three nodes 8, 9, 10 that lie in the plpre0, as well as the three nodes 11, 12, 13
that lie ing = 0, depend upon a third-degree equation whose coefficientslentiie roots
por p’of the quadratic equation (18).

The ray system that is exhibited by (12) has one singuamt with a fourth-degree
ray cone and three double edges in node 1, further, the dimgadar points with third-
degree ray cones, and a double edge at the points 5, 6n&ixhgingular points with
second-degree ray cones at the nodes 8, 9, 10, 11, 12, 13, dhteéhsingular points
with plane pencils of rays at the nodes 2, 3, 4.

Since each ray system of order two and class five iasladfourth-degree ray cone
with three double edges, but the fourth-degree surfacesl@ittodes and three singular
tangential planes have three nodes, from which, fourthedegnveloping cones with
three double edges emanate, it will then follow thahsusurface cannot belong to more
than three ray systems of that kind. Furthermomgesthe node 1 goes to 2 under
permutation of the two singular tangential plapéandt and to 3 under permutation pf
andt, it will then follows that, in fact, in addition tihe ray system of order two and class
five that was exhibited above, two other ones belonpabfocal surface. Hence:

XLII1: Any fourth-degree surface with thirteen nodes and three singular tangential
planes is the focal surface of three different ray systems of ovdeand class five.

The complete system of all straight lines that @oihsuch a surface twice consists of
a ray system of order six and class ten and thresystgms of order zero and class one,
in addition to these three ray systems of order twocéass four.
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8 11.
Ray systems of order two and class six that have no focal curves, of thefirst type.

As was proved in Theorem XXXIII of § 6, there are tdifferent kinds of ray
systems of order two and class six, one of which hadaibkle rays that define the edges
of a tetrahedron, and will be referred to as the fifse. Only four singular points lie on
the six double edges here, through each of which, threeeadduble rays go, so from
Theorem XXXIV, fourth-degree ray cones with three dowdages will belong to them,
and one will then haves = 0,my, = 4,mg = 0. If one substitutes these values, along with
n =5, into the equations of Theorems XXIX and XXX then wilkobtain:

64 =my + s m, 16 = 2, ,
som, = 0,m, = 8. One then has the following theorem:

XLIV: The ray systems of order two and class four of the first typedmaw®uble
rays, any three of which go through one and the same point, and furthermorbateey
twelve singular points, eigldf which have second-degree ray cones and four of which
have fourth-degree ray cones with three double edges; their focal sudeedsurth-
degree surfaces with no singular tangential planes.

We now have to determine the three fifth-degree fanstP, Q, R in the first
equation of the ray system:

1) P$+Qn+RJ=0,
which, as we showed above, must then satisfy the equatio
(2) Px+ Qy+ Rz+ St= 0,

in which Sis a fourth entire function of degree five. To thad, | choose the four faces
of the tetrahedron, which have the six double rays for edgd® the four coordinates

Y, Z, S, wheres should not be represent the infinitely-distant plameich was denoted by
t above, but a homogeneous, linear functior, §f z, t:

3) S=ax+ py+yz+t.
If one correspondingly sets:
(4) o=as+pn+y

then one can represent equations (1) and (2):

®) P-a9i+Q-F9n+R-y9 {+S0=0,

and

(6) P-a9x+Q-B9y+R-y9z+Ss=0.
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As was shown above, the three surfadees0,Q = 0,R = 0 must now include the six
double rays as common straight lines, and equation (2)sstimt/the surfac® = 0 must
also go through the same six double rays, so one willhglgeP —aS=0,Q - S=0,
andR —yS=0. It follows from this that these functions muavé the following forms:

P-aS= yzg+ zsg+ Xxgg+ Xyzsp
Q-p3S= yzg + zgg+ xgk+ XxyZsy
R-yS= yz¢'+ zgf+ xyg+ xyZs

S=yzg'+ zsf+ xg+ xyZs

(7)

If these expressions are substituted and one take€),y = 0,z=0,s=0 in
succession then equation (2) will now show that one hast identically:

gy+¢z+¢' s=0,
dy+d'stgx=0,
@s+@gx+dy=0,
ex+@ y+¢ s=0.

(8)

One obtains the following expressions for the sixteactionsgfrom this:

@p=Ay' +BZ+ C$+ Dzst Esy Fyz
¢g= -FZ-E'S+ Dz Esy Fyz
¢g=-Fy* -D"s+D'zst Esy Fyz
"s-EyY-D'Z +Dzs Esy By

(9)

whereD’+E”+ F”'=0.

d= AZ+Bs+ CX+ Dsx+ Exz Fzs
d= -F'S¥-EX+ Os¢ E xz Fz
d'=-F'7 -D X+ D'sx+ E xz F z
a=-Ey-0§  +Ose Ex Fzs

(10)

where D/ +E" + F1 = 0.

#g= AS+BX+Cy+ Oxy+ Eys F s
= -EX-EYy+Oxyt By B9
@ =-F's’ - DX+ D, xy+ E ys F sx
¢ =-E;s' - D)X + 0 xyr Eys E sx

(11)

where D, +E,+ F,=0.
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= KX+BY+CZ+Oyz §ox Fx

(12) @ = “RY' -EZ+Dyz E 2% Fxy
@=-Fx -DiZ+ D, yz+ B 2t B xy
d=-E,X-D¥  +Dlyzr E 2t Exy

where D, + E; + F; = 0.
If one now replaces with x + pé&, y with y + pn, z with z + p in equation (5), with

which, s goes tos + pg, and gives the arbitrary quantjpythe special valup=-x/ ¢
then if one sets, as above:

u=yd{—z3, UV=2Z-X, w=x1-Y;

and in addition:
u’=sé—xo, v'=sn-yo, w'=s{— 70,

one will obtain
(Awf + Bu?+ CU?+ vud- Elw- Rw)é
+(-F"v* -E"u?+ Dud - E dw- Faw)n
+(-F'a” -D"u?+D"vu - E'dw- Faw)l
+(Ew’ - D"v*+ D"vu - E"Uw- F'aw)o =0.

(13)

By means of the equations:

ué+un+al=0, uwu+uvu'+ww=0.
(14)
v{-wn+uc=0, wé-ud+vo=0, un-uvé+wr=0,

and the equatio®’+ E”+ F” = 0, equation (13) can be converted in such a wayxthat
drops out as a common factor, and one will have:

A’ + Bu? - Fuw+ Fou+ Fw+ ud- Bvl- B

15
(13) +D"va +CU? - E"UV' - D' U + E ul- Fuu' =0.

In the same way, for the special vajme —y / 77, one obtains the equation:

Au+Bul+ Fw+ Fuw- Fud+ D'~ E o

(16)
-Elw+ D'U'd+ Go? + Euw- Dwu+ E ul- [ =0,

and for the special valugs=-z/ ¢

A f? + BUP+ Fudd + Fud + Fu'd+ Dw- B )

(17)
+E/U'dJ - D,vw+Cy ¥ — EU'u- Bwuw+ E ul- Euu' =0,
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Finally, with the special value=—- s/ gone obtains:

(18) AU+ BuU?+ Cw’- DUva + Ewl+ B W
+D;ud - E, V' - Ejud- Rwu+ Fev'+ E ul— Duu' =0.

These four equations, which take the place of the finst flerived equations, and
which are of degree two relative £ 7, {, and likewise relative tg, y, z, must now be
identical to each other, on the same basis as thespannding equations in the previous
two paragraphs, and since the six quantiijes « u’, v’, @ are coupled only by the one
equationuu’ + vu’ + ww’ = 0, but are otherwise independent, they must coincide wit
each other term-by-term. Now, there is no term bssidle two terms that includeu’
and vv’ that appears in all four equations at once, so eatieofemaining terms must
have a zero coefficient in at least one of these emstmoreover. Therefore, all of
these terms must have a zero coefficient in alhe$¢ equations — i.e., besides the twelve
coefficientsD’, E”, F”, D ,E], F1, D", Es, F,, D3, E;, F;' all of the remaining

coefficients of the 16 functiong must be zero. Since each of these four equations has
the formJduu’— dvv’ = 0, one gets the following values for the twelve Goets that
are not zero, when one tak&s o, + & = 0:

D’ = ok, =0/, Dy=&u, Dsz=2dy,
(19) E” = dk, EY = a4, Eo=du E=av,
"= 0K, F1 = oA, F, =oL, F =V,
SO
=0, ¢ =0, @ =0, @=0,
(20) ¢ = 52KZS 44' =0/ sx ¢2": a-2:u Xy @@= ov N4
¢ =0ksy, @=0AXz @=04YyS ¢h=0y X
¢'=0kyz, @=0Az8 @G=qSx F=0y X
and thus:
P-aS= X347 é+0u §5+ov §& vyzpp
(21) Q-BS= Yok 2 8+u 8§ %+dv 7% xZ3p

R-yS= 43k § §+I § %oV X xy%p
S=qok Y Z2+9A X 2+0,u X + xyZp.

| now take the fourth coordinate plage 0 to be the infinitely-distant plane= 0,
with which, one will geta = 0, 5= 0, y= 0, by means of the equatisF ax + fy + yz +
t, and then determine the linear expressmns, p”, p” from the equatio’x + Qy + Rz
+ St=0 as:

p=ay—ai;z—Dhbt, p'=az—ax—-bit, p’=ax—-ay-bt,
(22)
p”=bx+by+hbz.
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If one then lets, rq, rp, r3 denote the same things as above then one will get the
following analytical representation of this ray systefnelass six:

P{+Qn+R{=0,

P=X(RAZC+o Uy t+ovy Z+yzti,
(23) Q=y (G kZP+IuXtt+avZ¥+xzth),
R=Z(G kY P+IAX%E+HVEY +Xyth)

and the equatiogyuu’— dvv’= 0 will give:

(24) xné+ ayiét azén=0

as a second equation for this ray system. Once athgsnrepresentation is the most
general one, insofar as all ray systems of this kiad be obtained by collinear
conversions of the one presented here. The focaksuida

0 0z9y P
5,z 0 &6

(25) 2 00X Qg
gy ox 0 R

P Q RO

which then contains the superfluous factdry? Z t°; when it has been removed, the
equation will take the form:

T+ 02222+ 022 -2 By znra—2%dZXEr — 2300 Xy Iy

(26) —4000 (KY Ztr+ AZXth+UXYyth+VXYZ§)
— 4000 (MU P+ QUK C+ RN Z C+ kv Z X+ Huv XX YY) = 0.

This equation, in fact, represents the most general for the fourth-degree surface
with twelve nodes that has no singular tangential glafée first four nodes are:

1. x =0, y =0, z=0,
2. y =0, z=0, t=0,
3. z=0, x=0, t=0,
4. x=0, y=0, t=0,

while the remaining eight nodes depend upon an eight-degretoeqieat one obtains
by elimination from the equatior® = 0,Q = 0, R = 0. The enveloping sixth-degree
cone, which emanates from a node, decomposes for otiesd twelve nodes into a
fourth-degree cone with three double edges and a second-degeze Any three of the
four enveloping second-degree cones that emanate fropoifis 1, 2, 3, 4, intersect in
the remaining eight nodes, which can also be represesitie a&ight intersection points
of three second-degree surfaces. The enveloping fougtie@leone that emanates from
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these first four nodes is so arranged that the three @ledles of one of these emanating
cones go through the other three nodes, such that these @aigigls are collectively the
edges of the tetrahedron that has these four nodes tfiocege If one considers the
fourth-degree enveloping cone that emanates from one akthaining eight nodes —
which | choose to be node 5 — then its three double edglegoatihrough three nodes of
the surface that are not the nodes 1, 2, 3, 4. | dencte theee nodes by 6, 7, 8. These
four nodes 5, 6, 7, 8 then have the same property as 14 2, iamely, that they define
the vertices of a tetrahedron whose six edges are th#ededges of the four enveloping
fourth-degree cones that emanate from these points.sdrhe thing is also true for the
remaining four nodes 9, 10, 11, 12.

The ray system that was presented has the four phir#s 3, 4 as singular points,
from which emanate the four fourth-degree ray cones thitlse three double edges,
although the points 5, 6, 7, 8, 9, 10, 11, 12 are the 8 singulas gicam which second-
degree ray cones. Since the four nodes 5, 6, 7, 8, amddi&also the four nodes 9, 10,
11, 12 have precisely the same relationship to each otiéh@amemaining nodes as 1, 2,
3, 4, it will then follow that this focal surface comisthree different ray systems of order
two and class six. Then:

XLV: Any fourth-degree surface with twelve nodes and no singular tangential
planes is the focal surface of three distinct ray systems of osdeand class six whose
six double rays are the edges of a tetrahedron.

This focal surface is associated with a ray systemardér six and class ten, along
with these three second-order ray systems.

As a noteworthy special case of this ray systepait out the one for which one has
a=0,a1=0,8a=0,b=0,b; =0,b, =0, sor =0,r, =0,r, = 0. lIts focal surface:

NUXC+ QUK P+ GAKZ P+ VY 2+ Quv 2 X + Suv X2 y? = 0,

is the reciprocal figure to the center of curvature serfafica three-axis ellipsoid, and the
three ray systems of order two and class six thafdba surface is associated with have
three ray systems of order six and class two for tieeiprocal polar ray systems, each of
which is the system of all normals to an ellipsoid.

The second-order ray systems without focal curvesnhbes treated up to now can be
considered to be the special case of the ray systesndef two and class six that was
given by (23). If one setig= 0 then one will obtain the ray system of order twd class
five that was presented in § 10, in which one drops the comaaber foft from the three
functionsP, Q, R, which will reduce the class by one unit. If one sets0 andy =0
then the two factorsandz will drop out, and one will obtain the ray systenoader two
and class four that was given 8§ 9. If one setsO, i/ = 0,1 = 0 then, since, z y will
drop out, one will obtain the first of the ray systeof order two and class three that was
given in 8 8. Finally, when one seats= 0, = 0,4 = 0, andk = 0, one also will obtain
the first of the ray systems of order two and clags that was presented in § 7, and
likewise its focal surface, although one then accéptg’ + ay{¢ + & zén = 0 as the
second equation of the ray system, which is remarkablgahee for all of these ray
systems.
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8 12.
Ray systems of order two and class six that have no focal curves, of the second type.

As an example of a ray system of class six, | pointthe ones whose six double rays
all go through and one and the same point. From TheXdexiV, that point will be a
singular point of the system with a ray cone of dedineethat has six double edges in
which the six double rays lie. In addition, at each efgix double rays, there is another
singular point with a third-degree ray cone that has thibldoray for its double edge.
One then hass = 1,my = 0,mg = 6, and sinca = 5, one gets:

33 =y +8m, 8 =2

from the two equations in Theorems XXIX and XXX, ®® = 1,m = 4. One then has
the theorem:

XLVI: The ray systems of order two and class four of the second type Rave si
double rays that go through one and the same point, and furthermore, theyMetxe t
singular points, one of which has a planar ray pencil, four of which have selsgnde
ray cones, six have third-degree ray cones with just one double edge, avfdiera has
a fifth-degree ray cone with six double edges. The focal surfddeese systems are
fourth-degree surfaces with twelve nodes and one singular tangential plane.

The analytic representation of these ray systentisb&i found by the following
method. Let, as above:

Uu=yd-zn, v=z5-24 w=xn-Y
| then take the first equation of a ray system torbecuation of the following form:
(1) atl? + bto? + Zpuw+ 2qau + 2ruv = 0,
where
p=diy+tdz+dst, g=ez+ex+est, r=fx+fy+fst.

This equation has only one derived equation, namely:
(2) din + hQuw+ (e +edwu+ fE+fip)uv =0.

The two equations (1) and (2) thus determine a ray systanpletely. Now,
although the first equation, when developed, is of degreadlative toé, 7, ¢, and the

second equation is of degree three, this ray systenstililbe only one of second order.
In order to show this, | put equation (1) into the form:

xu(ew+fu) +yv(fiu+d; @ + zw(d, v+ e u) +t M =0,

where, to abbreviate, we have set:



KUMMER: On algebraic rays systems; in particular, onsoofdirst and second order 73

2M = auf + bt + 2030w+ 2e3aw + Az uL.
Equation (2), as the first derived equation of this dmen becomes:
& (ew+fu)+nu(fiu+dia) + {w(ds v+ e, u) =0,
and from these two one obtains:

U&)(fl —ez) u —dzU —dla) = fMt,
3) al (dy —f) v—ew—eu) =Mt
uv ((e—f) w—fiu—fo) ={Mt.

The guotients of any two quantitiéss, {are thus rational fractional functions wf
U, @ and whenwis eliminated by means of the equatiant+ yu + zw= 0, they will be
rational function of the one quantity/ v. If one also eliminateg from equation (1)
then one will obtain:

(4) (x—atz) u? + 2(px+ qy—rz) uv + (2py—btz) =0,

so the quantity / v will be two-valued, and in turn, the quotientséf;, { will also be
two-valued, so the ray system will have order two.

The ray system that is given by equations (1) and (2) mustrn, also have an
equation of the forPé + Q7 + R = 0, and this also can, in fact, be derived from the
given equations. | shall skip the derivation of this equahere, because it is an
immediate special case of the results that were dpedlin the following paragraphs for
the rays systems of order two and class seven.

One obtains the focal surface of this ray systemeadiately from equation (4) by the
condition that the two values aoff v must be equal to each other whem, zis a point of
the focal surface, namely:

) (Px+ qy—r2)° — (2x — at}(2py — btz = 0,
which can also be put into the following form:
(6) (ox — qy? —z (2prx + 2qry — 2apyt— 2bgxt Fz—ab £ 2) = 0.
It then follows from this that the plaze= O is a singular tangential plane of the focal

surface that contacts it at the conic section O, px — qy= 0. The six nodes of the
surface that lie in these singular tangential planeslatermined by the three equations:

z=0, px — qy= 0, prx + gry- apyt—bgxt=0

so they are:

1. z=0, x=0, y =0,
2. z=0, p=0, g=0,
3. z=0, x=0, q=0,
4. z=0, y=0, p=0.
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The two remaining nodes 5 and 6 that lie m O will be determined by a quadratic
equation. From the form of equation (5), one furthes dbat the eight intersection
points of the three second-degree surfaces:

px+ qy—rz =0, x—atz= 0, dy-btz=0

are nodes of the focal surface, and since only twoesktleight nodes — viz., 1 and 2 — lie
in the planez = 0, one thus obtains the six nodes that shall be eénmt 7, 8, 9, 10, 11,
12. The focal surface thus has 12 nodes, and one cayp@asiince oneself that it also
has no other nodes beyond these 12. The second-ordgystayn that is given by the
two equations (1) and (2) will then have a fourth-degrefaseiwith 12 nodes and one
singular tangential plane for its focal surface. Heoexamines the sixth-degree
enveloping cone that emanates from the nodes then ilifaavthat for each of the two
nodes 1 and 2, this enveloping cone will consist of a-fitgree cone with six double
edges and a plane, and furthermore, for each of thenémles 3, 4, 5, 6, it will consist of
a third-degree cone with no double edge, a second-degree odnae,ane, while for
each of the six nodes 7, 8, 9, 10, 11, 12, it will condistvo third-degree cones, each of
which has a double edge.

Equation (4) is identical with equation (1), with the es@n of the case whers= 0,
in which it is tacitly assumed that it can then be @®red to be the first equation of the
ray system. Since this equation is fulfilled identicédr each of the six nodes 7, 8, 9,
10, 11, 12, only equation (2) for the ray system will be farethese points, which
represents a third-degree cone with a double edge that rslgntbe equationg/ x =1/
y = { | z, which must then be a ray cone of the system thanhat®es from the point
considered. As the equations themselves show, the six deddpss of the third-degree
ray cones that emanate from the points 7, 8, 9, 10, 11, 48 #irough the point= 0,y
=0,z= 0, so every double edge of a ray cone is a double rdedafytstem, moreover.
The ray system that is given by the equations (1) ands(#ein a second-order ray
system with six double rays that go through the same punt, is then the desired ray
system of order two and class six of the second kirfte fact that it also represents the
most general ray system of that kind follows from thet taat its focal surface is the
most general fourth-degree surface with 12 nodes and ondasitgugential plane when
arbitrary, linear functions of the coordinates are nakeplace of the, y, z t. The one
singular point of the ray system with the fifth-degrag cone and six double edges is
node 1, the six singular points with third-degree ray camiés double edges are the
points 7, 8, 9, 10, 11, 12, the four singular points with sgctegree ray cones are the
nodes 3, 4, 5, 6, and the one plane pencil of rays ofae®mifrom the singular point 2.
Since the focal surface is likewise an enveloping adraegree five with six edges that
emanates from the node 2, which go through the six nod&s97,10, 11, 12, and since
yet a second enveloping third-degree cone emanates frdnoé#wese six nodes with a
double edge that goes through the node 2, one will sethth&dcal surface belongs to a
second ray system of the same kind that one can deowe tfie given one when one
switchesx andp, and likewisey andq, with which, the node 1 will go to the mode 2.
Thus:
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XLVII: Any fourth-degree surface wifl2 nodes and one singular tangential plane
is the focal surface of two distinct ray systems of order two &as$ six whose six
double rays go through a point.

8§ 13.
Ray systems of order two and class seven that have no focal curves.

As was shown above, the ray systems of class seae® ten double rays that go
through the same point, and at that singular point theg l sixth-degree ray cone with
ten double edges on which the double rays lie; one themdvad for them. In addition,
a singular point with a third-degree ray cone that haglthuble ray as a double edge lies
on each of ten double rays; one then tmgas= 10. One also hass = 0, ms = 0, since
singular points can lie on only the double rays for r@ayes of degree higher than two,
and since the 11 singular points that lie on them havetenlthird-degree ray cones and
one of degree six. If one then sets= 1,ms = 0,y = 0, mg = 10, along witm = 6, in
the equations then, since the systems has class ssy@bi@ins:

O=m+sm, 0=12n,,

somy = 0,m, = 0. It then follows from this that:

XLVIII: The ray systems of order two and class seven have ten double rays that go
through one and the same point, and furthermore, they have eleven singular guzents,
of which has a sixth-degree ray cone and ten double edges and ten of which fgave thi
degree ray cones with only one double edge. The focal surfaces okyst=ms are
fourth-degree surfaces with eleven nodes, one of which must have aspengysixth-
degree cone with ten double edges emanating from it.

If one takes the first equation of a ray system tthbesquation:
(1) atl? + bt + ctdf + Zpuw+ 2qau + ruu = 0,

whereu, v, @ p, g, r have the same meaning as in the previous paragraphs, thén it
have only one derived equation:

(2) din + d2d) vw+ (e2{ +€é) wu+ (fE+Tfip)uv=0,

and the two equations (1) and (2) will determine a ray systempletely, and we shall
prove that this is the desired ray system of order tvabctdass seven, and indeed the most
general one, insofar as the one considers all collineaversions of it to be likewise
included in that form. If one puts equation (1) into thenfor

Xu (ew+ fu) +yu (fiu+ dia) + zw(dhv+eu) +tM =0
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in the same way as what was done in the previous paragrapére
2M = auf + be? +cdf + 20suw+ 283 + 23U,
and puts equation (2) into the form:
& (ew+fu)+ nufu+di + {w(d0 + e2u) =0
then one will obtain the same expressionséfoy, {'in terms of, y, z from this:

vw((hh—-e)u-duv+d =M,
3) wu((d-Huv-ew +teau)=nMt,
uw((e—d) w—-fiu +fov) =Mt

If one now eliminates the quantity from equation (1) by using the equatiox+ vy +
az = 0 then one will get:

(4) (atZ-2qz¢ ctX) G+2( ctxy pxz qyz eow( b2 pzy 0 =0.

If one eliminates the quantity from the expressions faf, 1, {that are given by (3)
using the same equations then the quotients of any twieeauantitiest, 7, {will be
rational functions ofu / v, and because, from equation (4)/ v is two-valued the
guotients of any two of the quantitiéss, ¢ will be two-valued functions of, y, z t, so
the ray system will have order two.

Since the two values af / v that are given by the quadratic equation (4) must be
equal to each other for each point of the focal surfame will get:

(5) (ctxy— pxz—qyz+ r7%)* — (cté — qxz+ at?) + (cty’ — Dyz+bt?) = 0

as the equation of the focal surface of the second-aaersystem that given by
equations (1) and (2). This equation then contains the canfeatorZ, and when the
equation is freed of that factor, it will take the da¥ling form:

x*(p’—bct)+ y( - caf)+ Z f- abh+2 yg atp ¢

6
(6) +2zX(bta- rp+ 2 xy( ct- pq= 0,

which can also be represented by the following symmettearhnant:

at r g x

bt
@) L )

g pctz
xy zO0
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If one arranges for equation (1) to be an equationndmidegree two with respect to
& n, {in the form:
(8) AE2+BP+Cl%+2Dnd+2E &+ 2F &n=0
then one will get:
A=DbtZ -2 pzy cty,
B=ct¥ -2qxz+ atz,
C = aty’ — 2ryx+ btX,
D =—pxX + gxy+ rxz- atyz
E =-qy + ryz+ pyx btz
F =—rz°+ pzx+ rzy- ctxy

(9)

and these six coefficients will be coupled by the follogvequations:

Ax+Fy+Ez=0, - AX + By + CZ + 2Dyz= 0,
(10) Fx+By+Dz=0, +AX - By + CZ + 2Ezx= 0,
Ex + Dy +Cz=0, +AX + By + CZ + 2Fxy= 0,

and one additionally will get:

D’-BC=xXg E-CA= Yo, FP- AB

11
(D) AD-EF=yzp, BE FD= zz, CF DE Xy

whereg@= 0 is the equation for the focal surface.
One sees immediately that all six quantide®3, C, D, E, F are equal to zero for the

four points:

1. x=0, y=0, z=0,
2. y=0, z=0, t=0,
3. z=0, x=0, t=0,
4. x=0, y=0, t=0.

Moreover, equations (10) show thiatE, F must necessarily equal zero wh&rB,
and C are equal to zero withowt y, or z being zero. If one now eliminates the two
guantitiest andz from the three equatiors = 0, B = 0, C = 0 then one will obtain an
equation of degree seven fpf x, andz/ x andt / x will be expressed rationally in terms
of y/x. In addition to the stated four points, there are aé&s/en points that do not lie in
any of the four coordinate planes 0,y = 0,z=0,t = 0, for which, the six quantitie,

B, C, D, E, F will be simultaneously equal to zero. The first equatibthe ray system
will be fulfilled identically or these eleven poirtswhich, as equations (11) shows, are
likewise eleven nodes of the focal surface — withoeldyng a determination of the
direction of the rays that emanate from them. @&hesints will be, in turn, singular
points of the ray system from which ray systems emeatizat are determined by the
second equation of the ray system. For the first pomtO,y = 0,z = 0, the second
equation will be fulfilled in addition to the first onguch that the ray cone that belongs to
that point will remain undetermined, but for each oftdmeremaining singular points the
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second equation will give a third-degree ray cone with a éoedige that is determined
by the equationg /x=n/y={/ z and in turn, will always go through the origin of the
coordinates. The ray system will then have ten thirdeegay cones with one double
edge, and thus ten double rays, so it will necessarithd&lesired ray system of order
two and class seven, and the point 0,y = 0,z = 0, through which the ten double rays
go, will be the singular point that has the sixth-degesecone, which has ten double
edges.

Of the eleven nodes of the focal surface, only ontbesf — viz.x=0,y=0,z=0 —
has the property that a sixth-degree enveloping core teit double edges emanates
from it, while the sixth-degree enveloping cones thaamate from the remaining ten
nodes will decompose into two third-degree cones, onehafhwhas a double edge, but
not the other one. It then follows from this thagsides this a ray system of order two
and class seven, the same focal surface can belongatihers of the same kind, and no
other second-order ray systems at all.

§ 14.

Representation of a ray system of order two and class seven
by an equation that islinear in &, 1, ¢, and special cases of these systems.

From the two equations (1) and (2) that were found irpteeious paragraph for the
ray systems of order two and class seven, the thregtibnsP, Q, R in the linear
equation:

) PS+Qn+R{=0,

which each second-order ray system must satisfy, heildetermined in the following
way: If one first eliminates, thenv, thenwfrom equation (1) by means of the equation
ux+ vy + az = 0 then one will obtains the three equations:

Cl’— Duw +Bdf =0,
2) Adf — 2Ewu + C# = 0,
BU — 2Fuu + AU =0,

whereA, B, C, E, F have the same meanings as in the previous paragraphwillltgave
the following values for the quotients of any two of the qui@sti, v, w

U_D+xﬁ w_E+y\/& u_F+zﬁ

w ¢ ' u A v B
()

a)_D—X\/& E_E—y\/& E_F—z\/&

v B w Cc ' u A
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If one now substitutes the values #rn, ¢ that were found in (3) in the previous
paragraph in the equati®¥€ + Qn + R{ = 0 then, after dropping the common factors, one
will get:

@ Pl(h-e)-als 4l d(d- 9- v e e g e 4]0

w

and when the values that are foundddm, w/ u, w/ u, etc., are substituted in this:

~((h-e) A= d(F- 30+ d( B )
) +2((d,- HB-< D= X0)+ o F+ /o)
+~((e-d)c- 1(E- W)+ 1 D+ xg))=0.

Since the same equation is also true when onesgiwethe opposite sign, one will
get the following two equations:

P ((h-e)n-aF+ ag+Q((d- 18 ed e R((e y & fE o,
©)
P i Qrg- 54+ R -
P dy-a,2+3(a- 9+S0 e fy=o0

and sinceP, Q, R are entire functions of y, z t with no common factors, one will thus
obtain the following values for them:

P=A{(fx+ fy)((d,- NB-eDr e H-(ez O e X €, €
(7) Q=B{(dy+d3((e @ G fB fD-( B fN( F 2 A dF dE

R=C{(ez+ eX(( f- 9 A dF dE( dy MK & )IB eD,d

These expressions f&; Q, R all have the common factdrand when it is dropped,
one will obtain the following representation foeth

Ray systems of order two and class seven

PS+Qn+R{=0,

P =AK, Q=BC, R=CM,
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A = btZ — 2zy+ cty,
B = cté — yxz+ atZ,
C = aty’ — 2yx + bt’é,

K=qo(ay— Z3x)((d1 —€) y +f2) + gobx ((d1 —€) x—f1 2)
+ Iy (az— %X)((dz—f) Z+ ey) +Io CX((dz—f) x—ezy) + 2q0 lo d3 X,

(8) L =ro (by— 23y)((62 —f1) Z+ di X) +Focy (&2 —F1) y -2 X)
+po (bx—Zsy)((e—d)) x+f12 +poay((e—-d) y-f2) + Zopo &y,

M =po (cX— 2632)((f —dr) X + &2 y) + poaz((f —dz) z—ey)
+ o (Cy—2:39)((fa—€) y+d2X) +qobz((fi—€)z—di X) + 2o Qo f3 Z

in which po, Qo, ro refer to the values g, g, r whent = 0, namely:
Po=chiy+d;z o= z+ex, ro=fx+fiy.

The three function®, Q, R, by which the ray systems of order two and class seven
are determined completely, when combined with the derigedt®ns, are functions of
degree seven, as they must be, since the degree is anaysiit less than the class of
the ray system. The ten double rays are common Istiaigs to the three surfacBs= 0,

Q =0,R=0, and indeed the three coordinate axes belong to te tée double rays; the
seven remaining ones are obtained as the ones thairameoa to the three third-degree
conesK = 0,L = 0,M = 0, which are straight lines that are determined lsg\a&@nth-
degree equation.

If one takesc = 0 then the common factor nwill drop out of the three functiorn,

Q, R, and one will obtain the general representation fer th

Ray systems of order two and class six of the secomd kin

P{+Qn+R{=0,
where
P = (btz — zpyK, Q = (atz —2gx) C, R=CM,

K=qo(@y —2f3X) (d1—€) y +f2) +qgobx((d—€) X-f1 2
+rp(@az -2e3x) ((d2—f)z+ey)y +2qorods X,

(9) L =po (ox —2f3y) ((e—d1) x+f12) +poay((e—d) y—f2
+10(bz -2d3y) (&2 —f1)) z+d1 X) + 2poro €3,

M=-2ep(fi—d)x+ey) +pa(f-d)z-ey)
—2hkp(fi—e)y+dx)+qgob((fi1—e)z+diX) + 200 rodz X.

Of the six double rays that go through the coordinaterpnghich must be six of the
straight lines that are common to the three surfRce®,Q = 0, R = 0, one of them will
lies along thez-axis, while the other five will be the straight lindésit are common to the
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two third-degree conekK = 0, L = 0, and the second-degr&€ = 0, which will be
determined by an equation of degree five.

If one setx = 0 andb = 0 then the common factoz&andy will drop out of the three
functionsP, Q, R, and one will obtain the:

Ray systems of order two and class five

PS+Qn+RJ{=0,

P=-2p (qo (ay —2f3x)((d1—€) y +12) + ro (az —2e3 X)((d2 —f) z+ cy
+ 203 Qo ro X),

(10) Q= (atz—29% [_stro((ez_ f)z+ dl)§+ 2¢LR DJ |

“2f,p,((e-d) x+ £+ ap((e o ¥

R= (aty — 2) {’st%((fl‘ez) yrdy-2¢ p(( F & x g)ﬂ.

—2f,p,0, + apo(( f-d)z 99’

The focal surface of this system is:

atr q x
(11) "OPYI_y
qgpoz
XxyzO0
or, when developed:
(12) X p? +y* f +Z 1’ — qzqr— 2zxrp— 2xypq+ 2ayzpt= 0.

This representation for the ray systems of clagstias a completely different form
fromthe one that was given in 8§ 10. It is likewike most general of all of them, and for
that reason, one can take both representationado ether by collinear conversions.
Likewise, the focal surface of this system will regent the most general fourth-degree
surface with 13 nodes and three singular tangeplzades, and one can convert the one
form of the equation into the other one by collmeanversions. The three singular
tangential planes for this equation of the surta@esimplyy = 0,z= 0, andp = 0.

If one setsa = 0, in addition tac = 0,b = 0, then the two factors afandy drop out of
the three functions, along with the common factbk,oand since the degrees of these
functions will be reduced by three units, the clagbalso be reduced by three units, and
one will obtain the:
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Ray systems of order two and class four

P&+Qn+R(=0,
P=p(fsq0 (h—€) y+f2) +esro ((d—F) z+ey) —cs o ro),
(13) Q=q (d's ro((&—f1) z+diX) +f3po ((e—dy) X +f1y) —esro po),

R=r (&3 po ((f —d2) x + € ) +ca Go ((f1 —€2) y + d2X) —f5 po ).

The focal surface for this is:

(14) X p? + Y f +Z r? — Azqr— 2zxrp- 2xypq= 0,
or, in irrational form:
(15) Jxp+yg+yzr = 0.

This form, which is different from the form that wiasind in 8 9 for ray systems of
class four, likewise includes the most general ray systethis kind, and the one form
can be considered to be a collinear conversion of ther dorm. The equation of the
focal surface in this form has the advantage thatixhgrsgular tangential planes= 0,y
=0,z=0,p=0,9g=0,r =0 become immediately apparent.

In order to obtain the ray systems of class thiranftbis by further specialization, |
introduce the following condition equation, with the catreonstants:

d + &y

(16) f | =0,

3 |w_"‘

where | have set:
k:dldz—dlf—dze,
a7 l=e,e—ed; —ef,
m:ffl—fez—fldz,

which are quantities that satisfy the following equations:

k(eg—f1)) +1d2—md =0,
(18) | (-f1)) +me-ke =0,
m(d; —e) +kfy —I1f =0,
and if | further set:
ds = ko, ea=la, fs=mo,
then the equation:
(19) o+a+%=0

will exist between the quantitie$ d, &, . By means of this condition equation, the three
guantitiesP, Q, R of the previous cases have the common factor:
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kx+ly + mz=0,
and when this is omitted, one will obtain the:

Ray systems of order two and class three

PS+Qn+RJ{=0,

P=p(&f p+den),

Q=9 (ddiro+ & f1 po),

R=r(demp+ddq),
(20)

p=diy+d,z+dkt

g=eztextalt,

r=fx+fry+omt

whose focal surface has the equation:

(21) Jxp+yg+Vzr=0

for the special values of the linear expressipng|, r that were given here, so this
equation represents the most general fourth-degree swifdcgé5 nodes and ten singular
tangential planes.

Finally, one also obtains the ray systems of clagsftom the ones given here for
class four when one establishes the conditions:

k=dido-dif+dre=0,
(22) l=ege—ed;—e f =0,
m:ffl—fez —f1d2:0,

which are essentially just two equations, because as egu#li8) show, if two of them
are true then the third one will be fulfilled automaticalf one sets:

d =%a, €=4,3 f=0,4,

(23)
dz = _531’ e= _51 &, fl: _5251

in order to fulfill these conditions in a symmetricadnner, and one sets:

(24) dz =- b, e=—-0ab, fa==o by,

in addition, then one will get:
o+a+&=0,

p=0(@y—-az-bt),
(25) q-= d(az—al X—b]_ t),
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r=oc(ax—ay—hyt),

or when one makes use of the notation for theserlegaations that was applied above,
onewillgetp=a,q=4ari, r=0or,. The factors that are enclosed in parentheses in the
expressions foP, Q, R in (13) will be equal to each other when one substttiese
values, and if one drops them, such that &#yr, Q =r1, R=r, remain then:

(26) ré+rin+ra{=0

will emerge as the first equation of the ray systerolags two, which is the same as the
one that was presented in 8 7. One can likewise findsébend equation for the ray
system of class two, which is quadratic with respect, to, z, as a special case of the
equations that were given for the ray systems of cagen. Namely, if one puts= 0,b
=0,a=0,p=a,q=ar1,r =3 rzin equation (1) of 8 13 then that will give:

27) Orvw+ o riwu+ & rauv=0,
and from the coupling of this equation with the first equmtio

(28) ré+rin+ré=0,
one will obtain:

oxn{+ay{é+ozén=0,

which is the second equation of the first ray systemasisawo that belongs to six focal
surfaces.

The ray systems of class seven (which are the witkeshe highest class that have no
focal curves at all for the ray systems of second prthers subsume all ray systems of
lower classes as special cases, with the exceptitrosé ray systems of class six whose
six double rays define the edges of a tetrahedron.



