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CHAPTER 1

Properties of four-dimensional space under special transfonations.
Relationship to quaternions.

MINKOWSKI’'s vector analysis is based upon the linear-gewin structures of
EUCLIDIAN space. The number of dimensions plays nweileged role in it at all, since
the space-time continuum, with its four dimensions, defiaespecial case of the
EUCLIDIAN space with a general dimensionmf However, it possesses precisely the
properties of four-dimensional space in regard to theogdnal transformations (i.e.,
rotations), which distinguishes it from all other spaceghose properties, which are
closely linked with HAMILTON's quaternions, allow, on tleme hand, a fundamental
common equation and unified picture of quaternion calcuduslf of four-dimensional
vector analysis, and on the other hand, make it pogsidatend the latter by adapting
the limits of field theory to the electromagnetic diein a natural way in the
MINKOWSKIan context.

The scalar product of two vectors, like the vectoria,ocan be introduced by the
requirement that one should build a system of quadsatictures from the components
of two vectors with the property that the new systemnisnected with the old one in a
homogeneous manner under a rotation of the axis-crass.sdalar product defines one

such system with its invariance, while the vectorialdpict with (2} terms defines

another. The possibilities are then exhausted, in gkefetcept for the most general, but
trivial, case in which all possible products whatsoevemwofarbitrary components taken
together will likewise yield a system that one desiregjowever, it is precisely for
dimensionn = 4 that yet another system — and in fact, a threaapeter one — can be
constructed.

We write down the vectorial product of two four-vect@Xs, Y1, Z1, T1) and Kz, Yo,
Zy, Ty), with the usual notations, as well as the “dual’ vecbmth of them are six-
vectors:

~7:yz:lez_Y24 f;i:fxt:xlTZ_XZTl’

Fu=4X = 4%, Fa=Fu=YNT,- T,

~7:xy = lez_ Xz% ~7:>:/ :fzt = Zsz_ Zle’ (1.1)
Fa = XK1= X, T, Fe=F.=N2,=- %2,

Fp =L =%, T =Fu= L X=X,

Fa=4T =4, Fa = Fy= X Yo = XY,

Since the dual vector is covariant, along withdhginal one, the same thing will be true
of the sum or difference of the two. Therefordydhree distinct quantities arise in both
cases, namely:
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F tF,,
Fp £ Fyp (1.2)
f'

(The two signs are understood to mean either/or.) Shisieem of terms then likewise has
the property of being connected homogeneously and lineaithytiae corresponding one

in the transformed system. If we now imagine thatdpatial part of a four-vector is

either real or pure imaginary, and that the tempordl isacorrespondingly imaginary

(real, resp.) then we will see that the last threentiies that were written down define
complex numbers. However, a complex number is cheniaet by its real, as well as its
imaginary, parts, such that when one allows complextaus, the original six-vector can
be replaced with those three quantities. If we adaualti one in the form of the scalar
product of the two vectors then we will obtain thddwing system, which includes both
kinds of multiplication:

XL =XT i(gzz —\QZQ,
YL Y%L (42X -%2X
ZT, -ZT (XY, - XY,
XX, “%Y +2Z +TT

(1.3)

If we now consider the vectoK{, Y1, Z;, T1) to be a quaternion — whose so-called
“scalar” part is represented by the temporal part of getor — and multiply it by the
quaternion € Xz, — Y2, — Z, T,) then we will get a quaternion whose components can als
be represented as a sequence in just the manner thatrites down for their product,
and indeed when we choose the lower (i.e., negativa) #y contrast, one chooses the
positive sign when the sequence of those two quateffaictors is the opposite one.
However, that product can no longer be referred toimplyg a vector, since it is not
covariant under an orthogonal transformation of @éster components. On the other
hand, the old and new components of the product depend upbnodaer in a
homogeneous, linear way (and that is certainly whatusia in regard to the theory of
relativity); except that the matrix of the transforimatis different from the original
matrix. We thus arrive at an extension of the oafuector concept that admits a unified
combination of four-vectors, six-vectors, and scalarse asume that the number of
components is four throughout and that these compondmslds transform in a
homogeneous, linear manner under arbitrary, orthogonaftnanations, in which the
coefficients can be different from those of the climate transformations. For the sake
of brevity, let me refer to such a totality of four quaes$ as aversor, while the word
vector, in the older sense of four-vector, shall still lsed in the case of covariance. We
are actually dealing with an extension of the purely-ggamconcept of “line segment.”
The versor can also be defined by a line segment thatnddbesowever, generally keep
its direction under a rotation of the axis-cross, but also experience a well-defined
rotation. In addition, the components can also be t®mp

We define quaternion multiplication to be the basic aip@n, instead of scalar and
vectorial multiplication by themselves. We saw thatrder to obtain a versor under that
multiplication, the spatial part of a vector must bkeih to have a negative sign. That
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shall be called theonjugateof the vector (or quaternion), and denoted with an overba
in analogy to complex numbers. Thus:

F=XY,ZT), F=(=X-Y,-ZT). (1.4)

Finally, the unit vectors along the individual axes shaltlbnoted by the symbolg 1,
1,, and 1, so a vector will be represented in terms of thefolksvs:

F=XL+YL+Z1L,+TL. (1.5)

The rules of calculation for the unit that falls aothe time axis are identical with the
ones for the ordinary unit, such that one can also set

1= 1. (1.6)

Moreover, as is known, the distributive, as well the associative, law for
multiplication is valid, while the rule for commutatidinds its expression as follow¥

Q
_“m‘

FG = (1.7)

The productF F - which is a pure temporal versor, and can also be regasied a

simply a number — represents the square of the lengtle ektttor. One can also derive
division from it directly. The quotient of two vectors:

f

X :E , (18)
shall be determined from the equation:
XG=F. (2.9)
One will then have:
XGG = FG, (1.10)
so:
x=29, (1.11)
Ggg

The division is then converted into a multiplication anplure scalar division.

() At this point, let us mention the remarkable fact #ikrules of multiplication will also be true for
guadratic matrices, in particular, orthogonal ones, a/tiee conjugate of a matrix is understood to mean
the matrix that arises when one switches the homtootvs with the vertical ones.



CHAPTER 2

Characterizing a four-dimensional rotation
by two quaternions.

A remarkable connection exists between quaternions and afjerethogonal
transformations in four-dimensional space that makesssible to determine an arbitrary
rotation of the axis-cross in a simple and natural w&yx independent quantities are
required for that determination, since the sixteen eefits of the transformation matrix
must satisfy the ten orthogonality conditions.

If we take a quaternion of length one:

P = (P1, P2, P, Pa), (2.1)
and if we multiply it by the vector:

F=XY,ZT). (2.2)
The components of the product are:

X'=+p4X— BY+ pZ& pT
Y=+pX+pY-p& pT
Z'=-p X+ Y+ pZ& pT
T=-pX-pY-RZ pT

(2.3)

If we regard that to be a transformation of the vegfanto 7’ then we will see that we
are dealing with a rotation, so the matrix of the ti@msation will be:

P, =B B B
P= P; P, - B B : (2.4)
~P PP B

ol S R R

it belongs to the so-calleghti-symmetrianatrices. The same thing will be true when the
guaternion defines the second factor. The matrix, fochvtiie symbol shall be used,
shall then be:
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& &% -G g
o-|™® % 4 G| (2.5)
6 -4 4
-4 -9 -G G

For the sake of brevity, we would like to refer toséwo types of transformationsas
transformations @-transformations, resp.) and the two matricesPamatrices Q-

matrices, resp.). Thé-transformations andQ-transformations by themselves each
define subgroups of the general group of orthogonal transfions; that is, two
successively-performe@-transformations will again lead to7&transformation, and a

corresponding statement will be true for t@etransformations; that follows from the
associative law of multiplication. Namely, let:

F=pF,
A (2.6)
F'=p,F",
SO:
F=@p) F" (2.7)
On the other hand, let:
F=F'q,
Tk (2.8)
F'=F"q,,
SO:
F=F" (0 ). (2.9)

A quaternion belongs to arfrmatrix or Q-matrix. If we write it as an index then, from
the equations that were just written down, we will hineerules:

PoPo, = Pop, } (2.10)
2,925, =<,

for the product of tw@P-matrices Q-matrices, resp.).

If we then perform a&-transformation after &-transformation then we will again
obtain an orthogonal transformation, and indeed — ascaneshow — the most general
one. The composition of the-group and the2-group then yields the group of general

orthogonal transformations. Since the direction eftthho quaterniong andqg can be
chosen arbitrarily, while its length must be unity, wi#, in fact, require six terms. The
sequence of the two transformations is, moreovetevaat, so the commutative law:

PQ = QP (2.11)
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will be true here. The general, orthogonal transédiom of the vectof into 7’ can thus
be once more given by the simple equation:

F'=pFq. (2.12)

Any orthogonal matrix can be represented as the prodwcPeafatrix and aQ-matrix,

and indeed, the associated quaternipnand q will be determined uniquely (up to
multiplication by — 1). One can refer to them asdharacteristicof the transformation.

The resulting matrix will be represented very simpyythe characteristics. We write
the components of the product:

pqu1 plyq1 pqu1 pq (213)

underneath each other in each column in the existing segueso those sixteen
components will yield the sixteen coefficients of tréhogonal matrix. For example, let
the general, orthogonal matrix be denoted as follows:

X 'y z t
X' all alZ al3 al4
y' aZl 022 aZ3 a 24 (2 14)
Z' a31 a32 a33 aS4
t’ a41 a42 a43 a44
One will then have:
a1+ ao1 ly + 031 1+ aa1=p 1k q, (2.15)

and so on. One can also proceed in such a way thawdtes the corresponding
components of the products:

pLa, pLq, pLq, Pq (2.16)
in arow.
Conversely, if the problem is to find the charactasstif a given matrix then we will
proceed symmetrically as follows: Let the columnscbasidered to be the sequence of

quaterniongf, Us, Us, Us . One will then have:

D=~ (UL, + Uy, + UL~ U,),
a4 (2.17)
q=—4—1ﬂ(ﬂyul+1yu2+w3—u4),

in which A and ¢ mean simply numbers. They will be determined (up tofabtor+ 1)
by the requirement that the lengthpp&indq must be equal to unity, and that one must
have:
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/]/J = (0’11 + 0o+ 33+ 0’44), (2.18)
in addition.
The fourth column of a purely-spatial transformatitwowdd be considered to be a
guaternion:

Uy = 1. (2.19)
One then hapq =1, or:
g=p. (2.20)

The subgroup of purely-spatial transformations can thedeffieed by the fact that the
two characteristics are conjugate to each other.

In the previous chapter, we introduced versors and savihigaroductF G of the
vectorsF andg represents such a versor. We would now like to detertheenatrix of
its transformation, in addition. Let the orthogotrahsformation be given by:

F=pra } (2.21)

g =pgq
From the rules of multiplication, one will have:

G=4qG P, (2.22)
and thus:

F'G=pFGp. (2.23)
The matrix of the transformation will be represerttgdhe product:

P, Q5 (2.24)
but also by:

P QL2 = (P Q) L) (2.25)

When written out thoroughly, and taking into account fdet that pq represents the
fourth row of the matrix, one will have:

Ay o o Ayl Oy Qg3 —0p Ay
a a a a
43 44 41 42| (2.26)
a, —a, Ay Qg

Ap - 0 Qu|| 0y —Q, —0, 0y

The first matrix is the vector matrix itself. Thansformation of the producE G then
produces two orthogonal transformations as a resulthe Tfirst of them is the
transformation of the factor§ and G, and the second one is a well-defin€ld

transformation. Thus, if the versgF G is pictured as a line segment then that line
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segment will experience a rotation that is given bys#mmond matrix under a rotation of
the coordinate system. This leaves out only the casepairely-spatial transformation
(for which, the second matrix will be equal to unityhdahen the versor will go to an

ordinary vector; things behave similarly for the prodg .

In physical applications, the four-dimensional oritwaal transformation comes under
consideration in the form of the LORENTZ transformatidor which the spatial
coordinates are coordinates, while the time coordinateaginary. The coefficients of
the transformation are accordingly part real and paré¢ imaginary. However, the two
characteristicpp and q will then be complex quantities. Here, we need aatian,
namely, in order to be able to express the conjugate eamyalue of the complex
guaternion:

p=p +ip". (2.27)

Since the symboU has already been assigned a different meaning, heresimilar
symbol () shall serve our purpose:
p =p —ip". (2.28)

Now let the LORENTZ transformation be expressed byethetion:

F'=pFq. (2.29)
If we set - in place ofi everywhere then we will have:

F'=p Fq, (2.30)
If the vector has the property that its spatial partesl, while its temporal part is

imaginary, then it will also maintain that property unttee transformation (in the case of
the LORENTZ transformation). However, it followsoi this that the same relation

must exist betweef’” andF "~ that exists betwee®’ and F. Meanwhile, one has:

F'=qFD, (2.31)

and a comparison of this with the previous equation mitily that:

*

p (2.32)

q
and

*

q. (2.33)

p

These two formulas are identical to each other.

We then see that in the case of the LORENTZ transftion, the conjugate of the
one characteristic is equal to the complex conjugalieevaf the other real one, so the
characteristics are invariant only under purely-spatigitians, so one will havg =p,

and therefore also:
p =p (2.34)
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Remark: At the conclusion of this chapter, which contains fdrenal basis for the
following developments, along with the previous onepuid like to briefly mention that
guaternion multiplication also seems to define a sat@fadasis for tensors, when one
regards then as a quadratic matrix in which the transtaomavill take a vector to a

vector, in turn. Namely, one arrives at a tensor imdtom the two vectorsF and G
when one writes the components of the four products:

_flxg, _flyg, _flzg, _fga (235)

underneath each other in a column in a manner thamitsusto what we did for the
construction of the orthogonal matrix from charasters.



CHAPTER 3

Quaternion functions.

The so-called HAMILTONian operator:

0 0 0 0
O0=—1+—1 +—1+— 3.1
axl‘ oy az]? ot 3-1)

is equivalent to a vector, as far as its transfoionas concerned. If we then perform the
multiplication:

67—"1K+6}"1y+6f]?+6f,
0x oy 0z ot

FO=

(3.2)

in which F shall mean a vector, then we will obtain a verdéthe components af are

denoted by, Y, Z, T then the components of the versor will be:
oT ,6Z_9dY_0dX
ox dy 0z Ot
ot 0X 0z 0¥
dy 0z o0x ot
aT [ 9Y_0X 0z
0z 0x dy ot
oOX 0dY 0Z 0T

ox 0y 0z Ot

(3.3)

If we set these expressions equal to zero thesysiem of equations thus-obtained will
still preserve the properties of versors, and assalt, for any arbitrary rotation of the
coordinate system, as well. These partial diffea¢equations define certain functions
of the four variableg, y, z, t — which we will assume to all be real, here — sowould
like to give them the name qtiaternion functionsand indeed consider the totality of the
four valuesX, Y, Z, T to beonefunction. Namely, the same symbolic relationsimgsts
between it and the quaternions that exists betwmamplex functions and complex
numbers. Symbolically, the CAUCHY-RIEMANN differgal equations are included in
the equation:

(u+ iv)(%ﬂi—yj =0. (3.4)

However, the analogy goes far beyond the formadlleln many regards, the equations:

FO=o0, (3.5)
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or also:
OF=0, (3.6)

can be regarded as the representatives of the basg tlegory of functions in four-
dimensional space. General, many classical propeftiesmplex functions are lost, but
many of the fundamental ones remain preserved, or carcabeed over in a
corresponding way. Above all, one has the conneegtitimthe potential (which is four-
dimensional here). Namely:

62]-"+62]-"+62}"+62}" _
x> oy 07 ot

0(EF)= (OD)F = 0; (3.7)

that is, all four components of a quaternion function @otentials (which satisfy the
LAPLACE equation). Conversely, any quaternion function akso be reduced to four
potential functions. Namely, l& be expressed in the following way:

o =00, (3.8)
® will then be a quaternion function when:
do® =0, (3.9)

so the components @f will be potentials, and therefore the solution of filnedamental
equations will be reduced to the solution of the LAPLACE #&quoavector potentigl

In the following, the expression “the potential” shakan the four-functior®, from

which the quaternion function can be derived in the mama¢mas just mentioned.

The fundamental classical integral theorem of CAUCHNhich allows the
determination of complex functions from the boundary \&lunds its complete
analogue. Its proof is entirely similar to the onduinction theory. We apply GAUSS'’s
integral theorem to the equation:

0F . 0F ., O0F OF
+ + + =0, 3.10
0x L oy L 0z L ot ( )

FO=
and write it in the form:
[ Fndf =0, (3.11)

in whichn means the surface normal that points outward, wisitaken to be a vector of
unit length, andlf is the surface element, and the integration dl@kxtended over an
arbitrary closed surface (in four-dimensional spaeehich still envelops nothing but
regular points. Furthermore, let:

0G=0 (3.12)
for another functiory, so:
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9,199 ]76—(’; %G _y (3.13)

l‘c’)x dz Ot

It results from these two equations Brandg that:
9 F10)+ 2L F1a)+ L FLa L Fa)=o, (3.14)
0x oy 0z ot

or, with an application of GAUSS'’s theorem:

[ Fngdf=o0. (3.15)

In this, the interior of the surface must be regulah respect tgF, as well ag;. We will

now choose; to be the function:
1
G= D?’ (3.16)
in which:

R=x-§+y-m°+@-0°+t-9)> (3.17)
It has a single singular point, namely, the point:

x=¢ y=n, z=¢ t=45 (3.18)

We remove it from a ball that envelops the intagratiomain, and ultimately arrive at
the equation:

F(&.n.{.9) =—%j F(X, y,Z,t)rﬁ% df (3.19)

by an argument that is similar to the one for caxglnctions, in which the integration
on the right is taken over surface that surrouhdspoint €, 7, ¢, ) and is everywhere
regular in its interior. This equation determitles values of the function in the interior
of a regular spatial domain from its boundary value

The analogy to CAUCHY’s theorem breaks down egplgoivhen the latter is written
in a corresponding form. In place of the presenint

_ f (x+iy) .
f(E+in= j(x iy oy ST (3.20)

one can then also set:
f(&+i 7)== [ (x+iy)ni(log ) d, (3.21)
4
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in which ds means the line element, whiteandR are the corresponding quantities that
are also in the formula foF, and:

O=—-i—. (3.22)

In four-dimensions, the logarithmic potential IBgcorresponds to the potential B,

Results for quaternion functions that relate to sedevelopments in increasing and
decreasing powers of the distance (“Laurent series”)beaderived from the integral
theory that are similar to the ones that are truectmplex functions, except that the
commutative law is not fulfilled for multiplicationehe. Since that discussion has a
purely mathematical interest for the most part, itidb@passed over here.



CHAPTER 4
Maxwell's equations.

If the components of the functigh are complex functions and the fourth variable is

imaginary:
t=ir, (4.1)

in whicht means time (in a system of units for which the spedwylaif c = 1), then the
defining equations of the quaternion functions will go to MAXMIE equations, and
particularly in the special case for which we $et 0. There then exists an extremely
intrinsic connection between the fundamental equationsledtromagnetism and the
guaternion functions that were introduced in the previous ehapThe electric and
magnetic field strengths do not define a six-vector ihpieure, but a complex versor of
the form:

F=H+i& (4.2)

if £ means the electric field strength, @aHdmeans the magnetic one. When written in

the present three-dimensional symbolism, the followingtists will, in fact, exist
between the two field strengths:

a—H+curl(€ =0,
ot (4.3)
a—g—curIH =0,
ot
d-|v5 =0, } 4.4)
divH =0,
Sso:
O(H+iE) o
T+cur| (H+i&)=0, (4.5)
div(H+i&)=0,
or:
0F
E—curl]—"—o, (4.6)
divF =0.
The equation:
0F =0 (4.7)

combines both equations of the systemTor 0. Meanwhile, we would like to mostly
liberate ourselves from that restriction, sincevduld contradict the whole spirit of the
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investigation as an unfounded assumption, when considenedtiie standpoint that has
been chosen here.
At this point, we would like to touch upon the questiortlef transformation of the

function 7 when we go from a given coordinate system to an equivalemt We saw

that the fundamental equations remain invariant wheis considered to be a vector.

However, the electric and magnetic field strengthsectilely define a six-vector in the
MINKOWSKI picture, which obeys completely differemabsformation formulas. It is

the nature of things that the transformation of the wvefSds not at all determined
uniquely. It is then easy to recognize that along vkith

F'=Fq (4.8)

is also a quaternion function, in the event ttyaimeans a constant quaternion whose
length we choose to be | = 1, in order to eliminate a mere similarity tramefation in

advance. However, that equation means an orthogonafotmaasion of the functiorf,

and in fact, aQ-transformation. We then see that a three-dimenkioramifold of

transformations of the components of a quaternion fumcti@t leave the defining
equations untouched already exists in one and the sameraierdystem. If we now
perform a rotation of the axis-cross with the charssties p and q then the

transformation of the versdf will generally again be given by the formula:
F'=pFq@; (4.9)

i.e., an arbitraryO-transformation with the characteristig can be performed after the
vector transformation. In particular, if we choose:

Go=700Pp, (4.10)
so the formula of the transformation will be:
F'=pFp, (4.11)

then we will be dealing with the usual transformatiorihef electromagnetic field. The
first case that was mentioned — viz., in whi€hs a vector ¢ = 1) to begin with — is

present in a gravitational field. Here, the field strbagtan be derived from a scalar

gradient (viz., the temporal component of the generadntiail ®) as its gradient. The

potential remains invariant under a rotation, so the fig&hgths transform as a vector.
The transformation of the potent@lwill generally be given by the formula:

»=gq®Pq (4.12)
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If we replacegp with its value for an electromagnetic field thee tlector transformation
will result for . Thus, while the field strength is a vector for a gediahal field, the
potential (viz., “vector potential’) will be a vector ftine electromagnetic field. In all
cases, field strengths, as well as potentials, repregsesors.



CHAPTER 5

The electron as a function-theoretic singularity.

The fundamental equations of MAXWELL'’s theory, in theniginal sublime simplicity
and lack of ambiguity, shall be valid only for the pureeet while for matter, they will be
extended with new, foreign terms. That process is amkstontrast to the actual
mathematical spirit of those equations. We are dealitigpartial differential equations,
and what that means, as well as a wealth of possbilihat already lie hidden beneath
the simplest types, can be given by a classical exampfunction theory, which is a
magnificent edifice that is built upon only the soil tfe CAUCHY-RIEMANN
equations. Whether quaternion functions can also be thie fta a correspondingly
complex discipline is debatable, but certainly the thedrfunctions shows us the path,
the method, and the general viewpoint for the treatmipartial differential equations to
begin with. Therefore, nothing can be said of an ext@nsy terms that are foreign and
do not belong to functions. There are probably placesemier equations would lose
their validity, although they are not arbitrary, bué aletermined by the nature of the
function itself. At such places, one can no long@eak of equations at all, since the
differential quotients would lose their meaning. In cadittion to the regular points of
the function, one cares to refer to them assitgjular points They are characteristic
insofar as they make it possible to determine the fumetiayuestion from their position
and their behavior in their immediate neighborhood intarabway. By such a function-
theoretic interpretation — which already lies clos¢he remarkable affinity between the
functions that we speak of here with complex functitdret we touched upon in the
previous chapter, moreover —the problem of mattesspecially, its atomic structure
will take on an exceptionally harmonic solutioMatter represents the singular loci of
the functions that are determined by the differential equations that adeivahe ether.

The characteristic role of singularities that wasio@ed just now finds its physical
sense in the fact that all effects have their stagmigt in matter. The basic paradox of
the theory of the electron — viz., how a structure lsarheld together by nothing but
expansive forces — will become pointless here, whil@it®ontinuity of matter seems to
be a self-explanatory consequence, since the singolatspwill naturally define a
discrete set in regular space. A field theory thatoesequently developed (and one
wishes that it should be constructed in the spirit ofigladifferential equations) would
then present no contradiction to atomism, but would éa@ahto it directly.

However, the fundamental equations define a linear ansddgemeous system. As a
result, arbitrary particular solutions can be superimpegdd each other in an entirely
arbitrary manner. The positions of the individual singtides, like the functions that are
associated with them as particular solutions, are tzirlp independent of each other.
In reality, we find both continual interaction, on thiee hand, and strict determinacy, on
the other. The fundamental equations cannot arrive ex@lanation for nature then, but
they must be extended by a new principle. The next ehapbuld like to make a
contribution towards the solution of that question.



CHAPTER 6

Hamilton’s principle.

We would now like to assume that the fourth variablpuse imaginary and should be
connected with timé by the equation:
t=ir. (6.1)

The basic particular function of the potential equatiahthen be the following function:

Q:L \,1—\/2 V= E2+n%+{2. (6.2)
r(l+r)

Here, we are dealing with a singularity that represehtegviz., aworld line) when it is
mapped intoX, y, z t) space. The spatial coordinates of its pofntg, { can be arbitrary
functions of time (except that no superluminal velositian occur)y is the velocity, and
r’is the retarded time:

" =7-r, (6.3)

in whichr means the distance from the starting point,(2) to (¢, 7, {), but taken at the
time point7’. Dots represent differentiation with respecttan any case.

New particular solutions can be defined by differenmigathis solution with respect to
the coordinates of the starting point ¥, z 7), and then define new ones by the same
process, in turn, etc., and upon combining all of thesecpat solutions, we will
ultimately obtain an infinite series in increasing posvef the distance, which will define
the general solution of the potential equation for thgudarity in question. This series
(which corresponds to the LAURENT development in theotheof functions, here)
contains an infinite series of arbitrary functions ofdias its coefficients.

An electron can then be regarded as a structure withitely many degrees of
freedom. The more precisely that the values of tinetion must be known, the more
terms that there must be in the series, and alsmtine degrees of freedom that must be
considered. Meanwhile, at a suitable distance, the irduef the higher terms in
comparison to the first one will always be smallerd altimately we will come to a
distance at which we can already truncate the seriesfaist term. That case (when one
is not actually dealing with the internal structure oiagécor molecules) can probably be
physically realized for the macroscopic physical appbcat We then come to the usual
(physical) solution of the potential equation.

That now raises the question of how one can detertheoefficients of this series,
as well as the spatial course of the singularity, wicinature are indeed determined
uniquely by external causes that are no less than aybétnal at each instant (at least, the
inorganic kind). Questions of that kind are answeredsiclally in physics by posing
variational principles, and in especially HAMILTON'’s pripke, which seems to take on
a universal significance. We would now like to attempgitee it a formulation that
corresponds to our approach.
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HAMILTON's principle states that for given initiaind final states of the system, the
so-called action integral:

W= j (T-W)dr (6.4)

will be the smallest possible for the events thaually occur. In thisT is the total
kinetic energy, an® is the potential energy of the system. For teetedmagnetic field,
the kinetic energy will take the form of the elec&nergy, and the potential will take the
form of the magnetic energy. In order to get tb&ltenergy of the field, one must
integrate over all of electromagnetic space, stheeenergy is, in fact spread over space.
That implies a three-dimensional integration ouss spatial coordinates, and then an
integration over time is added to HAMILTON'’s prip&e. We then see directly how
things look in the eyes of the principle of relagiv We will have to perform an
integration over all of four-dimensional spaaad must look for the boundary values of
that integral. The integrand in that process sthefiend upon merely the values of the

basic electromagnetic function —fogld strength7 — at the point in question and remain

invariant under a LORENTZ transformation, as a maaar quantity. It will then follow
in advance from this that we must necessarily tioeic attention to the absolute value of

F (its square:
FF=X?+Y?+Z%2+T?2 (6.5)

resp.) as the only invariant of a vector. The samey will also be true when the field
strengths do not obey the vector transformation,dna subject to &-transformation.
One will then have:

Fqo Faq, = FF. (6.6)

One can then already establish the form of theoadtitegral from mere dimensional
considerations, along with the principle of relayivnamely, as:

[ 77 dxdydz a (6.7)

However, this expression harmonizes wonderfullyhwihe form of HAMILTON'’s
principle that was written down to begin with. Naly) one has:

FF=(H+i &) (H+i8)= HH-EE +i(EH+HE). (6.8)

The real part is thus equal to the square of thgnetac field strength minus the square of
the electric field strength. If we first perforimetintegration over the spatial coordinates
at constant time then we will, in fact, obtain tthiéference of magnetic and electric
energies that are contained in the total field dastant factor that depends upon the
system of units that are used does not enter mg), tin the sense of MAXWELL'’s

theory and corresponding to the usual three-diro@asipicture. For such a division of
the variables, however, the four-dimensional warlould take the form of a circular
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cylinder with infinitely-large dimensions, which contradithe spirit of the principle of
relativity. The given initial and final positions ofthvorld would be the lower and upper
bases of that cylinder, resp. We must look for a bounétarythe universe that is
admissible to the theory of relativity, and the solutio that problem will be unavoidably
necessary for us when that boundary lies at infinity. [Oleenand that one must
“integgate over all space” must then be accomplished bgrresponding passage to the
limit (7).]

Above all, we shall address the prescribed initial amal State of the world, between
which the variation is carried out. It would be veryikely that each world-line would
be prescribed to have any well-defined point as its stagibint and any other as its
endpoint, and that these limit points would be dispersexugiftout the universe in any
sort of way. | believe that the idea suggests itséli an almost-intuitive certainty that a
singlepoint should be assumed to be the starting point of theersd, and a single point
should be assumed to the endpoint. That is, a singh glmuld define the starting point
of all world-lines, and likewise there should be a singent where all world-lines must

conclude. We are dealing with only a single functi@nwhose singularities make up

only a part of it, while they first produce the entiradtion only in their totality. That
unity will now be achieved because of the fact thay e possess a common starting
point and endpoint, and thus, to some extent, define e giluged line.

With that assumption, the question of the boundary ofuthigerse can also be
answered uniquely. Namely, since no superluminal veloai#senter in, all world-
lines must necessarily remain inside of the ball &xgands away from the starting point
with the speed of light, just as it must remain insidea ball that contracts from the
endpoint with the speed of light (in order for it toddale to arrive at the latter). In the
four-dimensional picture then, the “possible” world wothén fall inside the interior of

the cone:
T=n+X+y+7, (6.9)

on the one hand, and the interior of the cone:

T=h— X +Yy+7, (6.10)

on the other. In this, the axis-cross is laid in sueag that the coordinates of the two
limit points will be (0, 0, 0,n) and (0, O, 0»), resp. These two cones (cf., Figure 6.1,
which is shown spatially) include a well-defined space wHsits cannot be reached or
exceed by any sort of means and over which, the four-dior@&lsntegration is taken in
HAMILTON's principle, since only the physically-possiblgpace can come under
consideration in it. However, nothing stops one from pusttieglimit points out to
infinity, i.e., exhibiting the universe with no boundaryartemporal, as well as spatial,
context. The two vertices of the cones must themelgarded as limits that electron
paths come infinitely close to in time, but withouaching the one in the past or the one
in the future. The bounding conical surfaces will therunadiy go out to infinity, as

() That would not correspond to a sphere of infinitelygk radius, since the fourth variable is not time
7, butir.
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well. In any case, a direction will be distinguishfeain the others as the “axis of the
universe,” in some sense, namely, the line that contleetisvo limiting conical vertices.
It then seems as though the principle of relativity wdaddntroduced priori and then
cancelleda posteriori However, it is in the nature of the variationalnpiple that the
position of the limits is irrelevant to the behavior tbé function. (For example, a
geodetic line between two well-defined points will also asngeodetic relative to any
other two points along it.)

End of time (+o0)

boundary cone

boundary cone

End of time £ )

Relativistic boundary of the universe in the sepfsdamilton’s principle

Figure 6.1 Relativistic boundary of the universe.

The dimension of HAMILTON's integral is a so-callgdantity of actionn regard to
its dimension. We can then refer to the integrandz the square of the field intensity —
as the quantity of action that is contained in a umtume, and thus rephrase
HAMILTON's principle as:The total quantity of action that is contained in the universe
must be an extreme value amongst all possible valiteshould be remarked here that
auxiliary conditions in the form of prescriptions foetbhoundary cones can be added to
that demand. For example, one such condition woultidiele field strengths should be
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zero throughout the upper cone. The consequence ofréqairement is that the
electrons can radiate only into the future, but not theopast (so no contracting spherical
waves would be possible).

We would now like to turn to the explicit calculatioh HAMILTON's integral. It
shows that the integration over a regular space cardiaced by a surface integral. It
will then follow from the two equations:

0F 0F o0F ,  O0F
+ + =
c’)xl‘+6y1y az]? ot . (611

0D ., D . 0D 9P
F=1l—+1 —+1—+— 6.12
l‘ax oy ]762 ot ( )

that:
0 = =+, 0 = =.. 0 = =.. 0 ==, =
&(fly¢)+a—y(}"]y¢)+a—z(}"]7¢)+a—t(]—"CD) =FF. (6.13)

We can apply GAUSS'’s theorem to the left-hand swimediately and if we denote the
four-dimensional volume element dy and the surface element on the boundary surface
by df then we will get the relation:

[FFdv=]Fnddf. (6.14)
That is also identical to:
jcbﬁf df , (6.15)

in whichn again means the surface normal of unit lengthpbaits outward.

The singularities require a special treatmenthm integration over all space. One
must exclude them from the integration domain tha&nveloped by closed surfaces that
are closely nestled and will unite with the singtiles in the limit. The spatial domain of
integration will then be bounded, on the one haoyl,these surfaces that surround
singularities, and on the other, by the boundamespso one must also take the surface
integral over them in place of the original spatrkgral. We assume that the outer
boundary is at infinity, and we would like to tenngoly address the totality of the
singularities, and thus the paths of the electrons.

We can generally say nothing specific about itscgd construction and structure,
since we still do not know whether those paths khba regarded as simple lines (i.e.,
point-like electrons) or more complicated strucsuré&ortunately, part of the integral can
be calculated (and indeed, as it seems, in mangscaswill be the definitive one)
without having to go into any deeper details. Véa divide the field strengths into two

parts in the vicinity of a singularity: An externahe F. , which is due to the external

singularities (i.e., the remaining electrons), andinternal one#; , which represents the

“eigen-field” of the electron in question; the sathag will be true of the potential. We
then have to compute the following expression:
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[ (@, +o)n(F,+F)df. (6.16)
n do
ds

Figure 6.2. Tubular integration surface.

The entire integral can thus be decomposed into fouss,swhich we would like to

consider individually. The integration extends over alkubsurface that surrounds the
entire singularity. We decompose them into nothing bumexeary cylinders of the type
in figure 6.2 whose height shall be denoteddey We now perform the integration in
such a way that we first integrate around the baseoliriee cylinder — i.e., the cross-
section of the tubular surface — and then along theHengt the first integration, the

external field strengths and likewise, the external potential can be regarded as
homogeneous when one neglects the possible dimensioims electrons in comparison

to their mutual distances, and that is ordinarily the cad/e can then removg and®,
from the integration sign and then obtain the two espions:

jq:e(jﬁfi da) ds (6.17)
and

jf(j n®d, da) ds. (6.18)
We set:

L = lim jfinda, (6.19)

A =lim j n®, do, (6.20)
and ultimately:

H=lm[ & N7 do. (6.21)

do is the element of a surface in three-dimensional sffatesurrounds the electron.
Certain values oft, A\, andH belong to each point of the path-line. The electron unde
scrutiny will then contribute three integrals to thaacintegral:
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[ o Lds+ [ FAdst| Hde (6.22)
The fourth part:
lim [ ®,nF,ds (6.23)

is, in fact, zero.
We then get the quantity of action over all space fitar@e sums of the form:

> [ Lds+) [ ALAds Y | Hds (6.24)

that are distributed over the sources of the field gthex) and one must add the integral
over the external boundary surface to that:

j OhF df (6.25)

in addition.

One can show that the two limitsand A actually exist in general, and indeed for
(we would like to call it theallocation [Ger. Belegung), only the coefficient of 1 f
comes under consideration in the infinite series dewedop of the potential, while fok,
only the coefficient of 1 f* gets considered. If we truncate the series at tsetérms,

for example, then:
] 2
o= 2OV (6.26)
r(l+r)
so the allocation will be:

L = 477¢(2), (6.27)

while A = 0. 7should be employed as the time coordinate of thet pf the world-line
being considered.

Things are different for the limiting valud, which we would like to call the
HAMILTONian function of the electronGenerally, that limiting value does not have to
exist, at least not as a finite quantity. The gadfiH will already become infinitely large
in the example above of the potentfal In the following chapter, | would like discuss a
electron model for which the HAMILTONian functiomgsesses zero as a limiting value
without examining the general conditions for stgyiimite.



CHAPTER 7

The circular electron.

The potential:
1

b =
J (x=&?2+(y-n)?+(z-)?

(7.2)

generates a temporally-stationary field with the pfdnty, {) as a singularity. Since we
have introduced potentials and field strengths as complexitiea at the fundamental
level, it would make intuitive sense to regard the tamis ¢, 77, {) as complex numbers.
We arrange the coordinate displacement and rotatiough a way that two of the
constants — e.gé and 7 — are equal to zero, and the third one can be set talsame
purely imaginary:

Z: =i P (72)

_ 1
JOC+ Y +(z+ ip)?

such that we will have:

® (7.3)

Here, the denominator will not just be zero at an isdlgint, but along an entire circle;
namely, for:
z=0
and (7.4)
X2 + y2 - p2.

However, not only is this circle singular for the functi but also the entire circular
surface that it surrounds. Namely, the square roots hélhge their signs when one
crosses through that surface.

Figure 7.1. Toral surface that wraps around a circulatrelec

The calculation of the HAMILTONIian function can becamplished in two steps.
We integrate along the circular disc above and bélay to a radius op — & and then
along a toral surface of radigghat surrounds the circle, and then pass to the &miO.

However, sinced, as well asF, change signs on the circular disc, their product will
remain regular, and the integral over the circulac e\dl, in turn, be zero. Due to its



Lanczos — Maxwell’s ether equations and the theofyrodtions. 26

omni-directional symmetry around tHeaxis, it will suffice to perform the calculation in
the projection onty = 0 for the circular disc in order to then multiply 277p. We set:

x:pfscos¢, } (7.5)
z=¢£sing,
and obtain:
Y= 277szﬂ £+p(cos¢+i_ s?nﬁ ) dg (7.6)
£ Jo [e+2p(cosp+i sing )f

as a result. One easily convinces oneself thatititegral has the value zero (and is
indeed independent @&J.

The circular electron gives us a simple examplewimch the HAMILTONian
function of the electron does not need to be itdini In a stationary field, the
HAMILTON:ian function means the difference betweba electric and magnetic energy.
The field energy will be infinitely large for pottike electrons, which generate a purely-
electric field. The electric energy will also bdinite for the circular electron, but a
magnetic field will also appear whose energy (whigh be infinite in any event) will
compensate for the electric energy precisely, ehsuway that the difference of the two
will tend to the limiting value of zero. The magindorces will be noticeable only in the
vicinity of the electron. At a larger distance, evé the radiug of the electron can be
neglected, the field of the circular electron wdiffer from the point electron only
infinitely little.



CHAPTER 8

Dynamics of the electron in a gravitational field
and in a electromagnetic field.

The outer surface integral into which the action iraégwer space will be converted is to
be spread over the external bounding surface of spa@dition to the singularities.
The contribution of that surface can by no means belgisgt to zero, even when the
boundary lies at infinity. Rather, it is likely thdtet boundary surface will take on a
characteristic role. We have probably justified the boryndanes of the possible space
relativistically, but when the standpoint of the theofyfunctions is valid, those limits
must also have a meaning in the theory of functionsat Bithe case when all points of
the boundary surface are singular, so the function cdmnabntinued over the domain
that it encloses. “Such” functions with natural limite not belong to the exceptions
here, but rather they define the natural transition freah space (with the variabieto
the imaginary one (with the variahlg, to some extent. A point-like singularity in real
four-dimensional space whose basic type is defined biytimtion:

1
QD:W’ (81)

in fact, corresponds to a cone as a singular sunfiaiceaginary space, as the function:

®= (8.2)

shows, and indeed to the two comest orr = —t. The same thing will be true for the
infinite series that arises by differentiating thahdtion with respect to the individual

variables and summing. If we place such a series atlibutipoints of the universe and

add them to the series that arise from the intefnguarities then we will already have a
function before us whose natural limits will actuadlyme from the two boundary cones.
However, those developments already go too far beymne@xisting context of physical

speculation, so their closer discussion here would bawake place at an embryonic
stage of the theory. | shall, in turn, pass over thastion and leave the boundary
surface unconsidered, for the time being.

By contrast, | would like to show the applicability tfe intuitions that were
developed in an entirely special example, namely, byiderthe equation of motion for
a free electron that is found in a gravitational field am electromagnetic field, in
addition. For the physical application of the variaéibprinciple, one can employ the
usual fortunate artifice of replacing a hidden mechanics witpirgcally-established
condition equations — i.e., replacing the unknown systém a postulated reduction of
the degrees of freedom, in some sense. We will shhekgeneral problem very
considerably in a similar way. First, we would like sigier only the first term in the
infinite series development, second, the allocaticall dfe postulated empirically such
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that the only degree of freedom that remains is theseonfrthe path-line of the electron,
which will be considered to be point-like. The electvat then be a system with three
degrees of freedom here, and its spatial coordinatestshalktermined as functions of
time.

One must seA = 0 in the three partial integrals that make up theesattion integral
with the assumed restriction; that part will then drogt. o From now on, the
HAMILTON:ian functions of the electrons shall be eqt@lzero, or at least vanishingly
small in comparison to the quantities that come undesiderations. Only the single
sum:

> j ®_Lds (8.3)

then remains, in which:

®= ZL_‘(’; t=t—r). (8.4)
(127

Figure 8.1. Electron path-lines.

Before everything else, one asks how, in generalntiegration is to be performed in
order to be able to obtain the present EULER equatiorieeasolution. We choose a
definite electron. In order to perform the variatigrwill suffice to know only that part
of the action integral into which the data of that &tat enter. Above all, one must
integrate over its proper path then. In addition, h@wrev is also influenced by all of the
remaining electrons in the external potend®, such that all other paths must be
considered at the same time. The points of the path dihall remaining electrons shall
now be associated with the points of the proper patfolisvs: Each point of the
remaining electrons path shall always belong to thattpdithe path line that the wave
that hastens away from the reference point congidesieh unit speed will arrive at
precisely. The time point of the coordinate point wién be connected with the tirmef
the reference point by the equation:

I'=71+r, (8.5)
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in whichr is taken to be the distance from the reference @binime 7 to the coordinate
point at timer”. r then depends upar, as well ag, so one will have:

=) =E@IP+ " (T) —n @)+ (7)) - {(D), (8.6)

and furthermore:

dr'=dr+ idr +a—rdr (8.7)
or' or

SO:

1

dr'= grf dr. (8.8)
1_

or'

We now combine all terms that are multiplied by théedéntial of the path lengttls and
depend upon the position of the reference pding(¢). It can be written in the form:

(Pe+ D)L, (8.9)
in which:
1 L'\1-V?
o=y ——Y ‘=T+71). 1
i 24}7 (1—‘”) (r'=71+r) (8.10)
or'

This potential replaces the retarded poterialwith one that is equivalent to it, but
radiates backward from the future, and which iswdwer, reducible to the retarded
potential.

To that end, we add another integral to the vianal integral that has the value zero
in its totality. It is the integral that is takemer the cone:

I=T1—Tr, (8.11)

0= a_ 0= o=
2]{ [ b 3y —atdj }df, (8.12)

in which rp shall tend to the limit +o, =, H, Z, © shall mean the components of the total
potential, andh, b, ¢, d shall mean the components of the surface norihale select the
part that depends upon thécomponent of the allocation of the electron under
consideration then we will find the magnitude:

j L j 0=c 4 9=ep 92 9= cyy] 45| gs (8.13)
4R 0X oy ay ot

such that one must add:

namely:
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A=t ja:ea+a:*9b+a:ec+a:‘9d % (8.14)
4R 7\ dx oy oy ot

to the X-component of the potentiab, when &, b, c) is the normal to the infinitely-

distant cone with radiuR, do is the surface element, and the values of the diffexe
quotients are taken at tine+ R. However, the sun®, + A, is nothing but theX-

component of the external potential at the pofat ¢). We can then introduc®. into
the formula in place ofp, and obtain:

2 j ®,_Lds (8.15)

as the single quantity the comes under consideratiteimariation.

We have already mentioned that certain requirementfi® boundary surface must
be added as auxiliary conditions. We now introduce so@uailiary condition when we
demand that the total allocation of the boundary surshoelld have a prescribed value;
I.e., the surface integral:

j F ndf (8.16)

that is taken over it. By applying the fundamental equatim the conversion by
GAUSS'’s theorem, it will follow that this limiting laication will be equal to the sum of
all allocations of the electrons, namely:

ZJ Ldt. (8.17)

From the method of LAGRANGE multipliers, we must ade tauxiliary condition,
multiplied by a constant, to the variation integrakt that constant be 2n our case.
It has the effect that the external potential will ieeluced by the valuE, such that
ultimately for a particular electron the quantitiesbt varied will be (up to a constant
factor and introducing time as the independent varialjdace of time):

j (@, -T)Ly/1-V? dr. (8.18)

Now, the EULER equations can be applied immediatdtgn only the allocatioh is
known.

For the gravitational field, we now assume thaabdcations point in a well-defined
direction that does not change in time, eithers(plausible that the “world axis” — i.e.,
the line that links the two limit points — has thativersal direction). We lay the time
axis of the coordinate system in that directiome &llocation and the potential have only
temporal components, so they are regarded as scal&/e also assume that the
magnitude of the allocation — i.e., the mecharfinass” — is unchanging in time; let its
notation bew. We will then have:
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j @8 ~Tuf1-& -p?-¢%dr. (8.19)

The constanf is, in an event, a scalar quantity. It is quite largeomparison to the
gravitational potentials that we know of, namely, whieis expressed in the C. G. S.
system in terms of the speed of lightnd ordinary gravitational constant it will be:

c? g
M= =10x 107" =, (8.20)
4ny cm

while the potential on the solar surface is meBety10%.
We now apply the EULER equation to the integramor each of the components of
the path; e.g., for th€-component:
d ol ol

——-—=0. (8.21)
droé o¢
When we neglec®?, along withl", we will get:
. g
rd_# _ 1o %% (8.22)

dr [1-V? ox

This equation includes NEWTON'’s law of gravitatiamgrrespondingly extended far
and(, in its relativistic formulation — viz., the coupd of the MINKOWSKI force vector
with the gradient of the retarded potential — asidthe same time, the equivalence of
gravitating and inertial mass.

In an electromagnetic field, the allocation falleng the present direction of the path,
its magnitude is proportional to the four-velocityjth an imaginary proportionality
factor, and the coefficient ofs called thechargeof the electron. One will then have:

i[9y (00, 00, 89

L_Ie(aslﬁaslﬁas]ﬁasj’ (8.23)
or also:

L:\/%(éjy+/71y+i']1+i). (8.24)

The electromagnetic field is superimposed with tjavitational field; i.e., their
allocations must be added. We would like to diaat attention to just the real part of
the variational integral (what happens with thegmary part must remain undecided, for
the time being). It is extended to the electronedigrfield with the following quantity:

e(S.é+H+2.0+04). (8.25)



Lanczos — Maxwell’s ether equations and the theofyrodtions. 32

Here,=, H, Z, © mean the components of the electromagnetic “vagmbvential.” The
auxiliary condition drops out, due to the integrability loé @allocation. If we apply the
EULER equation then we will see that “inertial forcd’ tbhe gravitational field will
remain unchanged, while the following expression infeamponent must be added to
the moving force:

0=. . OH 0Z_ . 00 . d, _
e eE+—En+—=2(0+ & |[———(e= 8.26
(ax‘( ax axZ 6xj dr( e) (8.26)
However, one has:
d 6 _ =. . OH_ . 0Z_ . 00
—((e=)=e cE+—En+—=E0+ &1, 8.27
dr( e) (ax‘( ax” axZ ax j (8.27)
and the result will then be:
.00, 0= oH_. 0= .(0Z . 0=
e i——-——2 |+en e—_—¢ |+ e 8.28
( 1) 6rj en( o0X ayj GZ( 0X azj ( )

However, by splitting the real part from the imagiy one, we will now find the
following connection between these quantities ahe électric and magnetic field
strengths:

00 9=

i _:_gx’

ox O0r

oH 0=

— ==K, 8.29
ox _dy H, (8.29)
0Z 0= _

w0z b

We then obtain precisely the same expression @mnthving force of the electromagnetic
field as the one that is posed in the theory of ¢ectron, namely, when written
vectorially:

—e (& +VHe). (8.30)

The remarkable change in sign in COULOMB’s law paned to NEWTON's law,
by which electricity of the same kind repels, whilasses of the same kind attract, arises
here by the appearance of the fadforNamely, we have regarded the mechanical mass
as the source of the magnetic field strength, dmdefore as a real quantity, while
electricity represents the source of the electeid fstrength, and is therefore imaginary.



CHAPTER 9

Concluding remarks.

It would be a self-evident achievement of the theoryné @ould also succeed in
regarding the allocation as a degree of freedom and atrithee electrical allocation and
mechanical mass by variation, while also finding the mutaahection between the two.
For now, the theory that was presented here does regggyeciably beyond the theory of
electrons in practice. It remains problematic why ti@rge of the electron, like its mass,
must be universal constants. Similarly, the essedifédrence between positive and
negative electricity, as well as the quantum characterradiation ), remains
unexplained for now. Still, one cannot forget that eaenot immediately count on
convincing evidence, due to the complexity of the problemyedsas its mathematical
treatment. | hope that the theory that was sketchesvaidrmake a contribution to the
structural design of modern theoretical physics, as wasgurated by the work of
Einstein, especially. For that reason, its meritdemerits will not be assessed in terms
of practical positivistic-economic principles — sincesitno mere “work hypothesis.” Its
persuasiveness (if that does not amount to merely mysawjective delusion) lies not in
“convincing evidence,” but in the consistency and lack otness in its construction,
by which, it captures the true soul of MAXWELL'’s equatioasd leads to electrons in a
natural way when MAXWELL'’s theory is fused with theeory of relativity. In my
opinion, its superiority over the ordinary theory ofotlens lies in this systematic
simplicity and necessity. | will not go into the tkang-out of details here, but only
address the broad outline. Therefore, it would seemdaanbe more indicative of
realizing the initiation of a path that might possibly opg new perspectives into the
unreachable depths of nature when explored.

It would affect my speculations in a very challengingymand for just that reason, it
would be greatly appreciated if my highly-valued colleagues itight possibly find
these thoughts interesting would communicate their landarks and criticisms to be by
letters — perhaps recommended — and indeed to the address! Kamczos, Assistant an
der technischen Hochschule, Institut fir Experimentalhyidapest.

Date of this manuscript: October 1919.

() Here, | would like to remark that the riddle of positislectricity and the riddle of the quantum
possibly have a common root. Namely, a connectay likely exists that allows one to the express the
universal quantity actioh in terms of nothing but electrical quantities. | writevdathe purely-empirical
equation:

(9.1)

in which 1. denotes the mass of the positive electigndenotes that of the negative electron, and
denotes the elementary charge in electrostatic ulfithat equation also requires a numerical correction,
since it is endowed with an error of several percetthim form, then it would be very unlikely that two
dimensionless numbers that are both defined in termerditants of nature would be almost identical to
each other by mere chance.



Addendum.

| must unfortunately make a belated remark that seemav® characteristic importance
for the unity of the theory and its entire conceptutibra At the same time, it provides
the actual proof of the essential relationship that wagested in the text between the
equations that were referred to as “fundamental equatienghich defined quaternion

functions — and the CAUCHY-RIEMANN equations. Thedatcan be derived from the

variational principle by which one looks for a minimuntloé integral:

j (X2 +Y?) dxdy (9.2)

when a given regular integration domain is presamd, the values of:

j]—"D(Iogéjdxdy, (9.3)
with:
Fex+iv, 0=2+i2 R=x-8*+(y-n)° (9.4)
ox oy

are prescribed for each poirf ¢7) of the boundary. The fundamental equations ur fo
dimensions will then follow from the principle:

5j(x2+Y2+ Z%+ T?) dxdydzc=0 (9.5)

in a corresponding way for prescribed values ofhentities:
—(_1
j F| D5 |dxdydzd. (9.6)

(O and F, as well asR, have their current four-dimensional meanings.pwiver, we

have applied this same variational principle (witbmplex components fof and

imaginaryt) to the world as a whole in the form of “HAMILTOS!’principle” (without
specifying the boundary conditions) in order tovarrat the equations of motion of the
electron, when the domain of integration also coethsingularities. That principle then
defines theuniversal basisfor the entire theory, as well as the field equadi and
dynamics. However, the corresponding boundary itond for the universe must be
found if one is to perform the variation exactly.



