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CHAPTER 1 
 

Properties of four-dimensional space under special transformations. 
Relationship to quaternions. 

 
 

MINKOWSKI’s vector analysis is based upon the linear-geometric structures of 
EUCLIDIAN space.  The number of dimensions plays no privileged role in it at all, since 
the space-time continuum, with its four dimensions, defines a special case of the 
EUCLIDIAN space with a general dimension of n.  However, it possesses precisely the 
properties of four-dimensional space in regard to the orthogonal transformations (i.e., 
rotations), which distinguishes it from all other spaces.  Those properties, which are 
closely linked with HAMILTON’s quaternions, allow, on the one hand, a fundamental 
common equation and unified picture of quaternion calculus for all of four-dimensional 
vector analysis, and on the other hand, make it possible to extend the latter by adapting 
the limits of field theory to the electromagnetic field in a natural way in the 
MINKOWSKIan context. 
 The scalar product of two vectors, like the vectorial one, can be introduced by the 
requirement that one should build a system of quadratic structures from the components 
of two vectors with the property that the new system is connected with the old one in a 
homogeneous manner under a rotation of the axis-cross.  The scalar product defines one 

such system with its invariance, while the vectorial product with 
2

n 
 
 

 terms defines 

another.  The possibilities are then exhausted, in general (except for the most general, but 
trivial, case in which all possible products whatsoever of two arbitrary components taken 
together will likewise yield a system that one desires).  However, it is precisely for 
dimension n = 4 that yet another system – and in fact, a three-parameter one – can be 
constructed. 
 We write down the vectorial product of two four-vectors (X1, Y1, Z1, T1) and (X2, Y2, 
Z2, T2), with the usual notations, as well as the “dual” vector; both of them are six-
vectors: 
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  (1.1) 

 
Since the dual vector is covariant, along with the original one, the same thing will be true 
of the sum or difference of the two.  Therefore, only three distinct quantities arise in both 
cases, namely: 
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,

,

.

xt zy

yt zx

zt xy

±
± 
± 

F F

F F

F F

     (1.2) 

 
(The two signs are understood to mean either/or.)  This system of terms then likewise has 
the property of being connected homogeneously and linearly with the corresponding one 
in the transformed system.  If we now imagine that the spatial part of a four-vector is 
either real or pure imaginary, and that the temporal part is correspondingly imaginary 
(real, resp.) then we will see that the last three quantities that were written down define 
complex numbers.  However, a complex number is characterized by its real, as well as its 
imaginary, parts, such that when one allows complex numbers, the original six-vector can 
be replaced with those three quantities.  If we add a fourth one in the form of the scalar 
product of the two vectors then we will obtain the following system, which includes both 
kinds of multiplication: 

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 1 2

( ),

( )

( ),

.

X T X T Y Z Y Z

YT Y T Z X Z X

Z T Z T X Y X Y

X X Y Y Z Z TT

− ± − 
− ± − 
− ± − 
− + + 

   (1.3) 

 
 If we now consider the vector (X1, Y1, Z1, T1) to be a quaternion – whose so-called 
“scalar” part is represented by the temporal part of the vector – and multiply it by the 
quaternion (− X2, − Y2, − Z2, T2) then we will get a quaternion whose components can also 
be represented as a sequence in just the manner that was written down for their product, 
and indeed when we choose the lower (i.e., negative) sign.  By contrast, one chooses the 
positive sign when the sequence of those two quaternion factors is the opposite one.  
However, that product can no longer be referred to as simply a vector, since it is not 
covariant under an orthogonal transformation of its vector components.  On the other 
hand, the old and new components of the product depend upon each other in a 
homogeneous, linear way (and that is certainly what is crucial in regard to the theory of 
relativity); except that the matrix of the transformation is different from the original 
matrix.  We thus arrive at an extension of the original vector concept that admits a unified 
combination of four-vectors, six-vectors, and scalars.  We assume that the number of 
components is four throughout and that these components should transform in a 
homogeneous, linear manner under arbitrary, orthogonal transformations, in which the 
coefficients can be different from those of the coordinate transformations.  For the sake 
of brevity, let me refer to such a totality of four quantities as a versor, while the word 
vector, in the older sense of four-vector, shall still be used in the case of covariance.  We 
are actually dealing with an extension of the purely-geometric concept of “line segment.”  
The versor can also be defined by a line segment that does not, however, generally keep 
its direction under a rotation of the axis-cross, but will also experience a well-defined 
rotation.  In addition, the components can also be complex. 
 We define quaternion multiplication to be the basic operation, instead of scalar and 
vectorial multiplication by themselves.  We saw that in order to obtain a versor under that 
multiplication, the spatial part of a vector must be taken to have a negative sign.  That 
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shall be called the conjugate of the vector (or quaternion), and denoted with an overbar, 
in analogy to complex numbers.  Thus: 
 

F = (X, Y, Z, T), F = (− X, − Y, − Z, T).   (1.4) 

 
Finally, the unit vectors along the individual axes shall be denoted by the symbols 1x, 1y , 
1z , and 1t , so a vector will be represented in terms of them as follows: 
 

F = X 1x + Y 1y + Z 1z + T 1t .    (1.5) 

 
The rules of calculation for the unit that falls along the time axis are identical with the 
ones for the ordinary unit, such that one can also set: 
 

1t = 1.       (1.6) 
 
 Moreover, as is known, the distributive, as well as the associative, law for 
multiplication is valid, while the rule for commutation finds its expression as follows (1): 
 

FG = G F .      (1.7) 

 
 The product F F − which is a pure temporal versor, and can also be regarded as 
simply a number – represents the square of the length of the vector.  One can also derive 
division from it directly.  The quotient of two vectors: 
 

X =
F

G
,     (1.8) 

shall be determined from the equation: 
XG = F.     (1.9) 

One will then have: 
XGG  = FG ,      (1.10) 

so: 

X = 
F G

GG
.      (1.11) 

 
The division is then converted into a multiplication and a pure scalar division. 

                                                
 (1) At this point, let us mention the remarkable fact that all rules of multiplication will also be true for 
quadratic matrices, in particular, orthogonal ones, where the conjugate of a matrix is understood to mean 
the matrix that arises when one switches the horizontal rows with the vertical ones.  



 

CHAPTER 2 
 

Characterizing a four-dimensional rotation 
by two quaternions. 

 
 

 A remarkable connection exists between quaternions and general, orthogonal 
transformations in four-dimensional space that makes it possible to determine an arbitrary 
rotation of the axis-cross in a simple and natural way.  Six independent quantities are 
required for that determination, since the sixteen coefficients of the transformation matrix 
must satisfy the ten orthogonality conditions. 
 If we take a quaternion of length one: 
 

p = (p1, p2, p3, p4),      (2.1) 
 
and if we multiply it by the vector: 
 

F = (X, Y, Z, T).      (2.2) 

 
The components of the product are: 
 

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

,

,

,

.

X p X p Y p Z p T

Y p X p Y p Z p T

Z p X p Y p Z p T

T p X p Y p Z p T

′ = + − + + 
′ = + + − + 
′ = − + + + 
′ = − − − + 

   (2.3) 

 
If we regard that to be a transformation of the vector F into F′ then we will see that we 

are dealing with a rotation, so the matrix of the transformation will be: 
 

P = 

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

p p p p

p p p p

p p p p

p p p p

−
−

−
− − −

;    (2.4) 

 
it belongs to the so-called anti-symmetric matrices.  The same thing will be true when the 
quaternion defines the second factor.  The matrix, for which the symbol Q shall be used, 

shall then be: 
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Q = 

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

q q q q

q q q q

q q q q

q q q q

−
−

−
− − −

.    (2.5) 

 
For the sake of brevity, we would like to refer to these two types of transformations as P-

transformations (Q-transformations, resp.) and the two matrices as P-matrices (Q-

matrices, resp.).  The P-transformations and Q-transformations by themselves each 

define subgroups of the general group of orthogonal transformations; that is, two 
successively-performed P-transformations will again lead to a P-transformation, and a 

corresponding statement will be true for the Q-transformations; that follows from the 

associative law of multiplication.  Namely, let: 
 

1

2

,

,

p

p

′= 
′ ′′= 

F F

F F
     (2.6) 

so: 
F = (p1 p2) F ″.     (2.7) 

On the other hand, let: 

1

2

,

,

q

q

′= 
′ ′′= 

F F

F F
     (2.8) 

so: 
F = F ″ (q2 q1).     (2.9) 

 
A quaternion belongs to any P-matrix or Q-matrix.  If we write it as an index then, from 

the equations that were just written down, we will have the rules: 
 

1 2 1 2

1 2 1 2

,p p p p

p p p p

= 
= 

P P P

Q Q Q
     (2.10) 

 
for the product of two P-matrices (Q-matrices, resp.). 

 If we then perform a Q-transformation after a P-transformation then we will again 

obtain an orthogonal transformation, and indeed – as one can show – the most general 
one.  The composition of the P-group and the Q-group then yields the group of general 

orthogonal transformations.  Since the direction of the two quaternions p and q can be 
chosen arbitrarily, while its length must be unity, we will, in fact, require six terms.  The 
sequence of the two transformations is, moreover, irrelevant, so the commutative law: 
 

PQ = QP      (2.11) 
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will be true here.  The general, orthogonal transformation of the vector F into F′ can thus 

be once more given by the simple equation: 
 

F′  = p F q .     (2.12) 

 
Any orthogonal matrix can be represented as the product of a P-matrix and a Q-matrix, 

and indeed, the associated quaternions p and q will be determined uniquely (up to 
multiplication by – 1).  One can refer to them as the characteristics of the transformation. 
 The resulting matrix will be represented very simply by the characteristics.  We write 
the components of the product: 
 

p 1x q ,  p 1y q ,  p 1z q ,  p q   (2.13) 
 
underneath each other in each column in the existing sequence, so those sixteen 
components will yield the sixteen coefficients of the orthogonal matrix.  For example, let 
the general, orthogonal matrix be denoted as follows: 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

x y z t

x

y

z

t

α α α α
α α α α
α α α α
α α α α

′
′
′
′

    (2.14) 

One will then have: 
α11 1x + α21 1y + α31 1x + α41 = p 1x q,    (2.15) 

 
and so on.  One can also proceed in such a way that one writes the corresponding 
components of the products: 
 

1xp q ,  1yp q ,  1zp q ,  p q   (2.16) 

in a row. 
 Conversely, if the problem is to find the characteristics of a given matrix then we will 
proceed symmetrically as follows: Let the columns be considered to be the sequence of 
quaternions U1, U2, U3, U4 .  One will then have: 

 

1 2 3 4

1 2 3 4

1
( 1 1 1 ),

4
1

(1 1 1 ),
4

x y z

x y z

p

q

λ

µ

= − + + − 

= − + + −


U U U U

U U U U

   (2.17) 

 
in which λ and µ mean simply numbers.  They will be determined (up to the factor ± 1) 
by the requirement that the length of p and q must be equal to unity, and that one must 
have: 
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λµ = (α11 + α22 + α33 + α44),    (2.18) 
in addition. 
 The fourth column of a purely-spatial transformation should be considered to be a 
quaternion: 

 U4 = 1.      (2.19) 

One then has pq = 1, or: 
q = p .      (2.20) 

 
The subgroup of purely-spatial transformations can then be defined by the fact that the 
two characteristics are conjugate to each other. 
 In the previous chapter, we introduced versors and saw that the product F G  of the 

vectors F and G represents such a versor.  We would now like to determine the matrix of 

its transformation, in addition.  Let the orthogonal transformation be given by: 
 

,

.

p q

p q

′ = 
′ = 

F F

G G
    (2.21) 

 
From the rules of multiplication, one will have: 
 

′G = q pG ,     (2.22) 
and thus: 

′ ′F G = p pF G .    (2.23) 
 
The matrix of the transformation will be represented by the product: 
 

p pP Q ,      (2.24) 

but also by: 

p q q pP Q Q Q  = ( )( )p q pqP Q Q .    (2.25) 

 
When written out thoroughly, and taking into account the fact that p q  represents the 
fourth row of the matrix, one will have: 
 

44 43 42 4111 14

43 44 41 42

42 41 44 43

41 42 43 4441 44

α α α αα α
α α α α
α α α α
α α α αα α

−
−

−
− − −

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

.  (2.26) 

 
The first matrix is the vector matrix itself.  The transformation of the product F G  then 
produces two orthogonal transformations as a result.  The first of them is the 
transformation of the factors F and G, and the second one is a well-defined Q-

transformation.  Thus, if the versor F G  is pictured as a line segment then that line 
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segment will experience a rotation that is given by the second matrix under a rotation of 
the coordinate system.  This leaves out only the case of a purely-spatial transformation 
(for which, the second matrix will be equal to unity), and then the versor will go to an 
ordinary vector; things behave similarly for the product F G . 
 In physical applications, the four-dimensional orthogonal transformation comes under 
consideration in the form of the LORENTZ transformation, for which the spatial 
coordinates are coordinates, while the time coordinate is imaginary.  The coefficients of 
the transformation are accordingly part real and part pure imaginary.  However, the two 
characteristics p and q will then be complex quantities.  Here, we need a notation, 
namely, in order to be able to express the conjugate complex value of the complex 
quaternion: 

p = p′ + ip″.     (2.27) 
 

Since the symbol ( )  has already been assigned a different meaning, here, the similar 
symbol ( )* shall serve our purpose: 

p* = p′ − ip″.     (2.28) 
 
Now let the LORENTZ transformation be expressed by the equation: 
 

F′ = p F q.     (2.29) 

 
If we set – i in place of i everywhere then we will have: 
 

F′ * = p* F q*.     (2.30) 

 
If the vector has the property that its spatial part is real, while its temporal part is 
imaginary, then it will also maintain that property under the transformation (in the case of 
the LORENTZ transformation).  However, it follows from this that the same relation 
must exist between F′ * and F * that exists between ′F  and F .  Meanwhile, one has: 

 
′F = q pF ,     (2.31) 

 
and a comparison of this with the previous equation will imply that: 
 

q  = p*      (2.32) 
and 

p  = q*.     (2.33) 
 
These two formulas are identical to each other. 
 We then see that in the case of the LORENTZ transformation, the conjugate of the 
one characteristic is equal to the complex conjugate value of the other real one, so the 
characteristics are invariant only under purely-spatial rotations, so one will have q  = p, 
and therefore also: 

p* = p.       (2.34) 
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 Remark:  At the conclusion of this chapter, which contains the formal basis for the 
following developments, along with the previous one, I would like to briefly mention that 
quaternion multiplication also seems to define a satisfactory basis for tensors, when one 
regards then as a quadratic matrix in which the transformation will take a vector to a 
vector, in turn.  Namely, one arrives at a tensor matrix from the two vectors F and G 

when one writes the components of the four products: 
 

− F 1x G, − F 1y G, − F 1z G, − F G,    (2.35) 

 
underneath each other in a column in a manner that is similar to what we did for the 
construction of the orthogonal matrix from characteristics. 



 

CHAPTER 3 
 

Quaternion functions. 
 

 The so-called HAMILTONian operator: 
 

∇ = 1 1 1x y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

     (3.1) 

 
is equivalent to a vector, as far as its transformation is concerned.  If we then perform the 
multiplication: 

∇F  = 1 1 1x y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
F F F F

,   (3.2) 

 
in which F shall mean a vector, then we will obtain a versor.  If the components of F are 

denoted by X, Y, Z, T then the components of the versor will be: 
 

,

,

,

.

T Z Y X

x y z t

T X Z Y

y z x t

T Y X Z

z x y t

X Y Z T

x y z t

∂ ∂ ∂ ∂ + − − ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ + − − ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ + − −
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ + + +
∂ ∂ ∂ ∂ 

    (3.3) 

 
If we set these expressions equal to zero then the system of equations thus-obtained will 
still preserve the properties of versors, and as a result, for any arbitrary rotation of the 
coordinate system, as well.  These partial differential equations define certain functions 
of the four variables x, y, z, t – which we will assume to all be real, here – so we would 
like to give them the name of quaternion functions, and indeed consider the totality of the 
four values X, Y, Z, T to be one function.  Namely, the same symbolic relationship exists 
between it and the quaternions that exists between complex functions and complex 
numbers.  Symbolically, the CAUCHY-RIEMANN differential equations are included in 
the equation: 

(u + iv) i
x y

 ∂ ∂+ ∂ ∂ 
 = 0.     (3.4) 

 
However, the analogy goes far beyond the formal level.  In many regards, the equations: 
 

∇F = 0,      (3.5) 
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or also: 
∇F = 0,      (3.6) 

 
can be regarded as the representatives of the basis for a theory of functions in four-
dimensional space.  General, many classical properties of complex functions are lost, but 
many of the fundamental ones remain preserved, or can be carried over in a 
corresponding way.  Above all, one has the connection with the potential (which is four-
dimensional here).  Namely: 
 

( )∇ ∇F = ( )∇∇ F = 
2 2 2 2

2 2 2 2x y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
F F F F

 = 0;    (3.7) 

 
that is, all four components of a quaternion function are potentials (which satisfy the 
LAPLACE equation).  Conversely, any quaternion function can also be reduced to four 
potential functions.  Namely, let Φ be expressed in the following way: 
 

Φ = ∇Φ .     (3.8) 
 
Φ will then be a quaternion function when: 
 

∇∇Φ = 0,      (3.9) 
 
so the components of Φ will be potentials, and therefore the solution of the fundamental 
equations will be reduced to the solution of the LAPLACE equation (vector potential).  
In the following, the expression “the potential” shall mean the four-function Φ, from 
which the quaternion function can be derived in the manner that was just mentioned. 
 The fundamental classical integral theorem of CAUCHY, which allows the 
determination of complex functions from the boundary values, finds its complete 
analogue.  Its proof is entirely similar to the one in function theory.  We apply GAUSS’s 
integral theorem to the equation: 
 

∇F = 1 1 1x Y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
F F F F

 = 0,    (3.10) 

and write it in the form: 

ndf∫ F  = 0,     (3.11) 

 
in which n means the surface normal that points outward, which is taken to be a vector of 
unit length, and df is the surface element, and the integration shall be extended over an 
arbitrary closed surface (in four-dimensional space), which still envelops nothing but 
regular points.  Furthermore, let: 

∇G = 0     (3.12) 

for another function G, so: 
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1 1 1x y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
G G G G

= 0.    (3.13) 

 
It results from these two equations for F and G that: 

 

( 1 ) ( 1 ) ( 1 ) ( )x y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
F G F G F G F G = 0,   (3.14) 

 
or, with an application of GAUSS’s theorem: 
 

n df∫ F G = 0 .     (3.15) 

 
In this, the interior of the surface must be regular with respect to F, as well as G.  We will 

now choose G to be the function: 

G = ∇
2

1

R
,      (3.16) 

in which: 
R2 = (x – ξ)2 + (y – η)2 + (z – ζ)2 + (t – ϑ)2.     (3.17) 

 
It has a single singular point, namely, the point: 
 

x = ξ, y = η, z = ζ, t = ϑ.      (3.18) 
 
We remove it from a ball that envelops the integration domain, and ultimately arrive at 
the equation: 

( , , , )ξ η ζ ϑF  = − 
2 2

1 1
( , , , )

4
x y z t n df

Rπ
∇∫ F     (3.19) 

 
by an argument that is similar to the one for complex functions, in which the integration 
on the right is taken over surface that surrounds the point (ξ, η, ζ, ϑ) and is everywhere 
regular in its interior.  This equation determines the values of the function in the interior 
of a regular spatial domain from its boundary values. 
 The analogy to CAUCHY’s theorem breaks down especially when the latter is written 
in a corresponding form.  In place of the present form: 
 

f (ξ + i η) = 
1 ( )

2 ( ) ( )

f x iy

i x i yπ ξ η
+

− + −∫  d (x + i y)   (3.20) 

one can then also set: 

f (ξ + i η) = 21
( ) (log )

4
f x iy n R ds

π
+ ∇∫ ,    (3.21) 
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in which ds means the line element, while n and R are the corresponding quantities that 
are also in the formula for F, and: 

 

∇ = i
x y

∂ ∂−
∂ ∂

.      (3.22) 

 
In four-dimensions, the logarithmic potential log R2 corresponds to the potential 1 / R2. 
 Results for quaternion functions that relate to series developments in increasing and 
decreasing powers of the distance (“Laurent series”) can be derived from the integral 
theory that are similar to the ones that are true for complex functions, except that the 
commutative law is not fulfilled for multiplication here.  Since that discussion has a 
purely mathematical interest for the most part, it shall be passed over here. 



 

CHAPTER 4 
 

Maxwell’s equations. 
 

 If the components of the function F are complex functions and the fourth variable is 

imaginary: 
t = iτ,      (4.1) 

 
in which t means time (in a system of units for which the speed of light c = 1), then the 
defining equations of the quaternion functions will go to MAXWELL’s equations, and 
particularly in the special case for which we set T = 0.  There then exists an extremely 
intrinsic connection between the fundamental equations of electromagnetism and the 
quaternion functions that were introduced in the previous chapter.  The electric and 
magnetic field strengths do not define a six-vector in that picture, but a complex versor of 
the form: 

F = H + iE,       (4.2) 

 
if E means the electric field strength, and H means the magnetic one.  When written in 

the present three-dimensional symbolism, the following relations will, in fact, exist 
between the two field strengths: 

curl 0,

curl 0,

t

t

∂ + = ∂
∂ − =
∂ 

H
E

E
H

     (4.3) 

 
div 0,

div 0,

= 
= 

E

H
      (4.4) 

so: 
( )

curl ( ) 0,

div ( ) 0,

i
i

t
i

∂ + + + = 
∂ 

+ = 

H E
H E

H E

    (4.5) 

or: 

curl 0,

div 0.
t

∂ − = 
∂ 

= 

F
F

F

     (4.6) 

The equation: 
∇F  = 0      (4.7) 

 
combines both equations of the system for T = 0.  Meanwhile, we would like to mostly 
liberate ourselves from that restriction, since it would contradict the whole spirit of the 
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investigation as an unfounded assumption, when considered from the standpoint that has 
been chosen here. 
 At this point, we would like to touch upon the question of the transformation of the 
function F when we go from a given coordinate system to an equivalent one.  We saw 

that the fundamental equations remain invariant when F is considered to be a vector.  

However, the electric and magnetic field strengths collectively define a six-vector in the 
MINKOWSKI picture, which obeys completely different transformation formulas.  It is 
the nature of things that the transformation of the versor F is not at all determined 

uniquely.  It is then easy to recognize that along with F: 

 
F′ = F q0     (4.8) 

 
is also a quaternion function, in the event that q0 means a constant quaternion whose 
length we choose to be | q0 | = 1, in order to eliminate a mere similarity transformation in 
advance.  However, that equation means an orthogonal transformation of the function F, 

and in fact, a Q-transformation.  We then see that a three-dimensional manifold of 

transformations of the components of a quaternion function that leave the defining 
equations untouched already exists in one and the same coordinate system.  If we now 
perform a rotation of the axis-cross with the characteristics p and q then the 
transformation of the versor F will generally again be given by the formula: 

 
F′ = p F q q0 ;      (4.9) 

 
i.e., an arbitrary Q-transformation with the characteristic q0 can be performed after the 

vector transformation.  In particular, if we choose: 
 

q0 = q p,             (4.10) 
 
so the formula of the transformation will be: 
 

F′ = p F p ,       (4.11) 

 
then we will be dealing with the usual transformation of the electromagnetic field.  The 
first case that was mentioned – viz., in which F is a vector (q0 = 1) to begin with – is 

present in a gravitational field.  Here, the field strengths can be derived from a scalar 
gradient (viz., the temporal component of the general potential Φ) as its gradient.  The 
potential remains invariant under a rotation, so the field strengths transform as a vector. 
 The transformation of the potential Φ will generally be given by the formula: 
 

Φ′ = 0q q  Φ q.      (4.12) 
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If we replace q0 with its value for an electromagnetic field then the vector transformation 
will result for Φ.  Thus, while the field strength is a vector for a gravitational field, the 
potential (viz., “vector potential”) will be a vector for the electromagnetic field.  In all 
cases, field strengths, as well as potentials, represent versors. 



 

CHAPTER 5 
 

The electron as a function-theoretic singularity. 
 
 

The fundamental equations of MAXWELL’s theory, in their original sublime simplicity 
and lack of ambiguity, shall be valid only for the pure ether, while for matter, they will be 
extended with new, foreign terms.  That process is in stark contrast to the actual 
mathematical spirit of those equations.  We are dealing with partial differential equations, 
and what that means, as well as a wealth of possibilities that already lie hidden beneath 
the simplest types, can be given by a classical example in function theory, which is a 
magnificent edifice that is built upon only the soil of the CAUCHY-RIEMANN 
equations.  Whether quaternion functions can also be the basis for a correspondingly 
complex discipline is debatable, but certainly the theory of functions shows us the path, 
the method, and the general viewpoint for the treatment of partial differential equations to 
begin with.  Therefore, nothing can be said of an extension by terms that are foreign and 
do not belong to functions.  There are probably places where the equations would lose 
their validity, although they are not arbitrary, but are determined by the nature of the 
function itself.   At such places, one can no longer speak of equations at all, since the 
differential quotients would lose their meaning.  In contradiction to the regular points of 
the function, one cares to refer to them as its singular points.  They are characteristic 
insofar as they make it possible to determine the function in question from their position 
and their behavior in their immediate neighborhood in a natural way.  By such a function-
theoretic interpretation – which already lies close to the remarkable affinity between the 
functions that we speak of here with complex functions that we touched upon in the 
previous chapter, moreover –the problem of matter − especially, its atomic structure − 
will take on an exceptionally harmonic solution.  Matter represents the singular loci of 
the functions that are determined by the differential equations that are valid in the ether. 
 The characteristic role of singularities that was mentioned just now finds its physical 
sense in the fact that all effects have their starting point in matter.  The basic paradox of 
the theory of the electron – viz., how a structure can be held together by nothing but 
expansive forces – will become pointless here, while the discontinuity of matter seems to 
be a self-explanatory consequence, since the singular points will naturally define a 
discrete set in regular space.  A field theory that is consequently developed (and one 
wishes that it should be constructed in the spirit of partial differential equations) would 
then present no contradiction to atomism, but would even lead to it directly. 
 However, the fundamental equations define a linear and homogeneous system.  As a 
result, arbitrary particular solutions can be superimposed with each other in an entirely 
arbitrary manner.  The positions of the individual singularities, like the functions that are 
associated with them as particular solutions, are completely independent of each other.  
In reality, we find both continual interaction, on the one hand, and strict determinacy, on 
the other.  The fundamental equations cannot arrive at an explanation for nature then, but 
they must be extended by a new principle.  The next chapter would like to make a 
contribution towards the solution of that question. 



 

CHAPTER 6 
 

Hamilton’s principle.  
 

We would now like to assume that the fourth variable is pure imaginary and should be 
connected with time t by the equation: 

t = iτ.       (6.1) 
 
The basic particular function of the potential equation will then be the following function: 
 

Φ = 
2( ) 1

(1 )

f v

r r

τ ′ −
+ ɺ

,  v2 = 2 2 2ξ η ζ+ +ɺ ɺɺ .   (6.2) 

 
Here, we are dealing with a singularity that represents a line (viz., a world line) when it is 
mapped into (x, y, z, t) space.  The spatial coordinates of its points ξ, η, ζ can be arbitrary 
functions of time (except that no superluminal velocities can occur), v is the velocity, and 
τ′ is the retarded time: 

τ′  = τ – r,      (6.3) 
 
in which r means the distance from the starting point (x, y, z) to (ξ, η, ζ), but taken at the 
time point τ′.  Dots represent differentiation with respect to τ′, in any case. 
 New particular solutions can be defined by differentiating this solution with respect to 
the coordinates of the starting point (x, y, z, τ), and then define new ones by the same 
process, in turn, etc., and upon combining all of these particular solutions, we will 
ultimately obtain an infinite series in increasing powers of the distance, which will define 
the general solution of the potential equation for the singularity in question.  This series 
(which corresponds to the LAURENT development in the theory of functions, here) 
contains an infinite series of arbitrary functions of time as its coefficients. 
 An electron can then be regarded as a structure with infinitely many degrees of 
freedom.  The more precisely that the values of the function must be known, the more 
terms that there must be in the series, and also the more degrees of freedom that must be 
considered.  Meanwhile, at a suitable distance, the influence of the higher terms in 
comparison to the first one will always be smaller, and ultimately we will come to a 
distance at which we can already truncate the series at its first term.  That case (when one 
is not actually dealing with the internal structure of atoms or molecules) can probably be 
physically realized for the macroscopic physical applications.  We then come to the usual 
(physical) solution of the potential equation. 
 That now raises the question of how one can determine the coefficients of this series, 
as well as the spatial course of the singularity, which in nature are indeed determined 
uniquely by external causes that are no less than arbitrary and at each instant (at least, the 
inorganic kind).  Questions of that kind are answered classically in physics by posing 
variational principles, and in especially HAMILTON’s principle, which seems to take on 
a universal significance.  We would now like to attempt to give it a formulation that 
corresponds to our approach. 
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 HAMILTON’s principle states that for given initial and final states of the system, the 
so-called action integral: 

W = 
2

1

( )T d
τ

τ
τ− Ψ∫       (6.4) 

 
will be the smallest possible for the events that actually occur.  In this, T is the total 
kinetic energy, and Ψ is the potential energy of the system.  For the electromagnetic field, 
the kinetic energy will take the form of the electric energy, and the potential will take the 
form of the magnetic energy.  In order to get the total energy of the field, one must 
integrate over all of electromagnetic space, since the energy is, in fact spread over space.  
That implies a three-dimensional integration over the spatial coordinates, and then an 
integration over time is added to HAMILTON’s principle.  We then see directly how 
things look in the eyes of the principle of relativity.  We will have to perform an 
integration over all of four-dimensional space and must look for the boundary values of 
that integral.  The integrand in that process shall depend upon merely the values of the 
basic electromagnetic function – or field strength F – at the point in question and remain 

invariant under a LORENTZ transformation, as a pure scalar quantity.  It will then follow 
in advance from this that we must necessarily direct our attention to the absolute value of 
F (its square: 

FF = X2 + Y 2 + Z 2 + T 2,     (6.5) 
 
resp.) as the only invariant of a vector.  The same thing will also be true when the field 
strengths do not obey the vector transformation, but are subject to a Q-transformation.  

One will then have: 

F q0 0qF  = FF .     (6.6) 

 
One can then already establish the form of the action integral from mere dimensional 
considerations, along with the principle of relativity, namely, as: 
 

∫ FF  dx dy dz dτ.     (6.7) 

 
However, this expression harmonizes wonderfully with the form of HAMILTON’s 
principle that was written down to begin with.  Namely, one has: 
 

FF = (H + i E) ( )i+H E = ( )i− + +HH E E E H HE .  (6.8) 

 
The real part is thus equal to the square of the magnetic field strength minus the square of 
the electric field strength.  If we first perform the integration over the spatial coordinates 
at constant time then we will, in fact, obtain the difference of magnetic and electric 
energies that are contained in the total field (a constant factor that depends upon the 
system of units that are used does not enter into this), in the sense of MAXWELL’s 
theory and corresponding to the usual three-dimensional picture.  For such a division of 
the variables, however, the four-dimensional world would take the form of a circular 
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cylinder with infinitely-large dimensions, which contradicts the spirit of the principle of 
relativity.  The given initial and final positions of the world would be the lower and upper 
bases of that cylinder, resp.  We must look for a boundary for the universe that is 
admissible to the theory of relativity, and the solution to that problem will be unavoidably 
necessary for us when that boundary lies at infinity. [The demand that one must 
“integrate over all space” must then be accomplished by a corresponding passage to the 
limit (1).] 
 Above all, we shall address the prescribed initial and final state of the world, between 
which the variation is carried out.  It would be very unlikely that each world-line would 
be prescribed to have any well-defined point as its starting point and any other as its 
endpoint, and that these limit points would be dispersed throughout the universe in any 
sort of way.  I believe that the idea suggests itself with an almost-intuitive certainty that a 
single point should be assumed to be the starting point of the universe, and a single point 
should be assumed to the endpoint.  That is, a single point should define the starting point 
of all world-lines, and likewise there should be a single point where all world-lines must 
conclude.  We are dealing with only a single function F, whose singularities make up 

only a part of it, while they first produce the entire function only in their totality.  That 
unity will now be achieved because of the fact that they all possess a common starting 
point and endpoint, and thus, to some extent, define a single closed line. 
 With that assumption, the question of the boundary of the universe can also be 
answered uniquely.  Namely, since no superluminal velocities can enter in, all world-
lines must necessarily remain inside of the ball that expands away from the starting point 
with the speed of light, just as it must remain inside of a ball that contracts from the 
endpoint with the speed of light (in order for it to be able to arrive at the latter).  In the 
four-dimensional picture then, the “possible” world would then fall inside the interior of 
the cone: 

τ = τ1 + 2 2 2x y z+ + ,      (6.9) 

 
on the one hand, and the interior of the cone: 
 

τ = τ2 − 2 2 2x y z+ + ,   (6.10) 

 
on the other.  In this, the axis-cross is laid in such a way that the coordinates of the two 
limit points will be (0, 0, 0, τ1) and (0, 0, 0, τ2), resp.  These two cones (cf., Figure 6.1, 
which is shown spatially) include a well-defined space whose limits cannot be reached or 
exceed by any sort of means and over which, the four-dimensional integration is taken in 
HAMILTON’s principle, since only the physically-possible space can come under 
consideration in it.  However, nothing stops one from pushing the limit points out to 
infinity, i.e., exhibiting the universe with no boundary in a temporal, as well as spatial, 
context.  The two vertices of the cones must them be regarded as limits that electron 
paths come infinitely close to in time, but without reaching the one in the past or the one 
in the future.  The bounding conical surfaces will then naturally go out to infinity, as 

                                                
 (1) That would not correspond to a sphere of infinitely-large radius, since the fourth variable is not time 
τ, but iτ. 
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well.  In any case, a direction will be distinguished from the others as the “axis of the 
universe,” in some sense, namely, the line that connects the two limiting conical vertices.  
It then seems as though the principle of relativity would be introduced a priori and then 
cancelled a posteriori.  However, it is in the nature of the variational principle that the 
position of the limits is irrelevant to the behavior of the function.  (For example, a 
geodetic line between two well-defined points will also remain geodetic relative to any 
other two points along it.) 

 End of time (+ ∞) 

End of time (− ∞) 
 

Relativistic boundary of the universe in the sense of Hamilton’s principle 

Upper boundary cone 

boundary cone Lower 

Paths of 
the 
electron 

 
 

Figure 6.1  Relativistic boundary of the universe. 
 

 The dimension of HAMILTON’s integral is a so-called quantity of action in regard to 
its dimension.  We can then refer to the integrand – viz., the square of the field intensity – 
as the quantity of action that is contained in a unit volume, and thus rephrase 
HAMILTON’s principle as: The total quantity of action that is contained in the universe 
must be an extreme value amongst all possible values.  It should be remarked here that 
auxiliary conditions in the form of prescriptions for the boundary cones can be added to 
that demand.  For example, one such condition would be that the field strengths should be 
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zero throughout the upper cone.  The consequence of that requirement is that the 
electrons can radiate only into the future, but not into the past (so no contracting spherical 
waves would be possible). 
 We would now like to turn to the explicit calculation of HAMILTON’s integral.  It 
shows that the integration over a regular space can be replaced by a surface integral.  It 
will then follow from the two equations: 
 

1 1 1x y zx y z t

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
F F F F

 = 0,    (6.11) 

 

F =1 1 1x y zx y z t

∂Φ ∂Φ ∂Φ ∂Φ+ + +
∂ ∂ ∂ ∂

    (6.12)  

that: 

( 1 ) ( 1 ) ( 1 ) ( )x y zx y z t

∂ ∂ ∂ ∂Φ + Φ + Φ + Φ
∂ ∂ ∂ ∂
F F F F  =F F .  (6.13) 

 
We can apply GAUSS’s theorem to the left-hand side immediately and if we denote the 
four-dimensional volume element by dv and the surface element on the boundary surface 
by df then we will get the relation: 
 

dv∫ F F  = n dfΦ∫ F .    (6.14) 

That is also identical to: 

n dfΦ∫ F ,     (6.15) 

 
in which n again means the surface normal of unit length that points outward. 
 The singularities require a special treatment in the integration over all space.  One 
must exclude them from the integration domain that is enveloped by closed surfaces that 
are closely nestled and will unite with the singularities in the limit.  The spatial domain of 
integration will then be bounded, on the one hand, by these surfaces that surround 
singularities, and on the other, by the boundary cones, so one must also take the surface 
integral over them in place of the original spatial integral.  We assume that the outer 
boundary is at infinity, and we would like to temporarily address the totality of the 
singularities, and thus the paths of the electrons. 
 We can generally say nothing specific about its special construction and structure, 
since we still do not know whether those paths should be regarded as simple lines (i.e., 
point-like electrons) or more complicated structures.  Fortunately, part of the integral can 
be calculated (and indeed, as it seems, in many cases, it will be the definitive one) 
without having to go into any deeper details.  We can divide the field strengths into two 
parts in the vicinity of a singularity: An external one Fe , which is due to the external 

singularities (i.e., the remaining electrons), and an internal one Fi , which represents the 

“eigen-field” of the electron in question; the same thing will be true of the potential.  We 
then have to compute the following expression: 
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( ) ( )e i e in dfΦ + Φ +∫ F F .    (6.16) 

 
 

ds 

dσ n 

 
Figure 6.2.  Tubular integration surface. 

 
The entire integral can thus be decomposed into four sums, which we would like to 
consider individually.  The integration extends over a tubular surface that surrounds the 
entire singularity.  We decompose them into nothing but elementary cylinders of the type 
in figure 6.2 whose height shall be denoted by ds.  We now perform the integration in 
such a way that we first integrate around the base line of the cylinder – i.e., the cross-
section of the tubular surface – and then along the length.  In the first integration, the 
external field strengths − and likewise, the external potential − can be regarded as 
homogeneous when one neglects the possible dimensions of the electrons in comparison 
to their mutual distances, and that is ordinarily the case.  We can then remove Fe and Φe 

from the integration sign and then obtain the two expressions: 
 

( )e in d dsσΦ∫ ∫ F      (6.17) 

and 

( )e in d dsσΦ∫ ∫F .     (6.18) 

We set: 

L = lim i n dσ∫ F ,     (6.19) 

 

Λ = lim in dσΦ∫ ,      (6.20) 

and ultimately: 

H = lim i in dσΦ∫ F .     (6.21) 

 
dσ is the element of a surface in three-dimensional space that surrounds the electron.  
Certain values of L, Λ, and H belong to each point of the path-line.  The electron under 
scrutiny will then contribute three integrals to the action integral: 
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e eL ds ds H dsΦ + Λ +∫ ∫ ∫F .    (6.22) 

The fourth part: 

lim e en dsΦ∫ F      (6.23) 

is, in fact, zero. 
 We then get the quantity of action over all space from three sums of the form: 
 

e eL ds ds H dsΦ + Λ +∑ ∑ ∑∫ ∫ ∫F    (6.24) 

 
that are distributed over the sources of the field strengths, and one must add the integral 
over the external boundary surface to that: 
 

n dfΦ∫ F ,     (6.25) 

in addition. 
 One can show that the two limits L and Λ actually exist in general, and indeed for L 
(we would like to call it the allocation [Ger. Belegung]), only the coefficient of 1 / r 
comes under consideration in the infinite series development of the potential, while for Λ, 
only the coefficient of 1 / r2 gets considered.  If we truncate the series at the first terms, 
for example, then: 

Φ = 
2( ) 1

(1 )

v

r r

ϕ τ ′ −
+ ɺ

,     (6.26) 

so the allocation will be: 
L = 4π ϕ(τ),     (6.27) 

 
while Λ = 0.  τ should be employed as the time coordinate of the point of the world-line 
being considered. 
 Things are different for the limiting value H, which we would like to call the 
HAMILTONian function of the electron.  Generally, that limiting value does not have to 
exist, at least not as a finite quantity.  The value of H will already become infinitely large 
in the example above of the potential Φ.  In the following chapter, I would like discuss an 
electron model for which the HAMILTONian function possesses zero as a limiting value 
without examining the general conditions for staying finite. 
 
 



 

CHAPTER 7 
 

The circular electron. 
 
The potential: 

Φ = 
2 2 2

1

( ) ( ) ( )x y zξ η ζ− + − + −
     (7.1) 

 
generates a temporally-stationary field with the point (ξ, η, ζ) as a singularity.  Since we 
have introduced potentials and field strengths as complex quantities at the fundamental 
level, it would make intuitive sense to regard the constants (ξ, η, ζ) as complex numbers.  
We arrange the coordinate displacement and rotation in such a way that two of the 
constants – e.g., ξ and η – are equal to zero, and the third one can be set to something 
purely imaginary: 

ζ = − i ρ,      (7.2) 
such that we will have: 

Φ = 
2 2 2

1

( ( )x y z iρ+ + +
.     (7.3) 

 
Here, the denominator will not just be zero at an isolated point, but along an entire circle; 
namely, for: 

2 2 2

0

and

.

z

x y ρ

= 


+ = 

    (7.4) 

 
However, not only is this circle singular for the function, but also the entire circular 
surface that it surrounds.  Namely, the square roots will change their signs when one 
crosses through that surface. 

 

X 
+ + + + + + + + 
− − − − − − − −  

Z 

ε 

 
Figure 7.1.  Toral surface that wraps around a circular electron. 

 
 The calculation of the HAMILTONian function can be accomplished in two steps.  
We integrate along the circular disc above and below it up to a radius of ρ – ε, and then 
along a toral surface of radius ε that surrounds the circle, and then pass to the limit ε = 0.  
However, since Φ, as well as F, change signs on the circular disc, their product will 

remain regular, and the integral over the circular disc will, in turn, be zero.  Due to its 
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omni-directional symmetry around the Z-axis, it will suffice to perform the calculation in 
the projection onto y = 0 for the circular disc in order to then multiply by 2π ρ .  We set: 
 

cos ,

sin ,

x

z

ρ ε ϕ
ε ϕ

= + 
= 

     (7.5)   

and obtain: 

H = 
2

20

2 (cos sin )

[ 2 (cos sin )]

i
d

i

ππρ ε ρ ϕ ϕ ϕ
ε ε ρ ϕ ϕ

+ +
+ +∫ ,    (7.6) 

 
as a result.  One easily convinces oneself that this integral has the value zero (and is 
indeed independent of ε). 
 The circular electron gives us a simple example in which the HAMILTONian 
function of the electron does not need to be infinite.  In a stationary field, the 
HAMILTONian function means the difference between the electric and magnetic energy.  
The field energy will be infinitely large for point-like electrons, which generate a purely-
electric field.  The electric energy will also be infinite for the circular electron, but a 
magnetic field will also appear whose energy (which will be infinite in any event) will 
compensate for the electric energy precisely, in such a way that the difference of the two 
will tend to the limiting value of zero.  The magnetic forces will be noticeable only in the 
vicinity of the electron.  At a larger distance, where the radius ρ of the electron can be 
neglected, the field of the circular electron will differ from the point electron only 
infinitely little. 
 
 
 



 

CHAPTER 8 
 

Dynamics of the electron in a gravitational field 
and in a electromagnetic field. 

 
 
The outer surface integral into which the action integral over space will be converted is to 
be spread over the external bounding surface of space, in addition to the singularities.  
The contribution of that surface can by no means be simply set to zero, even when the 
boundary lies at infinity.  Rather, it is likely that the boundary surface will take on a 
characteristic role.  We have probably justified the boundary cones of the possible space 
relativistically, but when the standpoint of the theory of functions is valid, those limits 
must also have a meaning in the theory of functions.  That is the case when all points of 
the boundary surface are singular, so the function cannot be continued over the domain 
that it encloses.  “Such” functions with natural limits do not belong to the exceptions 
here, but rather they define the natural transition from real space (with the variable t) to 
the imaginary one (with the variable iτ), to some extent.  A point-like singularity in real 
four-dimensional space whose basic type is defined by the function: 
 

Φ = 
2 2

1

r t+
,      (8.1) 

 
in fact, corresponds to a cone as a singular surface in imaginary space, as the function: 
 

Φ = 
2 2

1

r τ−
     (8.2) 

 
shows, and indeed to the two cones r = t or r = − t.  The same thing will be true for the 
infinite series that arises by differentiating that function with respect to the individual 
variables and summing.  If we place such a series at both limit points of the universe and 
add them to the series that arise from the internal singularities then we will already have a 
function before us whose natural limits will actually come from the two boundary cones.  
However, those developments already go too far beyond the existing context of physical 
speculation, so their closer discussion here would have to take place at an embryonic 
stage of the theory.  I shall, in turn, pass over that question and leave the boundary 
surface unconsidered, for the time being. 
 By contrast, I would like to show the applicability of the intuitions that were 
developed in an entirely special example, namely, by deriving the equation of motion for 
a free electron that is found in a gravitational field or an electromagnetic field, in 
addition.  For the physical application of the variational principle, one can employ the 
usual fortunate artifice of replacing a hidden mechanics with empirically-established 
condition equations – i.e., replacing the unknown system with a postulated reduction of 
the degrees of freedom, in some sense.  We will shrink the general problem very 
considerably in a similar way.  First, we would like consider only the first term in the 
infinite series development, second, the allocation shall be postulated empirically such 
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that the only degree of freedom that remains is the course of the path-line of the electron, 
which will be considered to be point-like.  The electron will then be a system with three 
degrees of freedom here, and its spatial coordinates shall be determined as functions of 
time. 
 One must set Λ = 0 in the three partial integrals that make up the entire action integral 
with the assumed restriction; that part will then drop out.  From now on, the 
HAMILTONian functions of the electrons shall be equal to zero, or at least vanishingly 
small in comparison to the quantities that come under considerations.  Only the single 
sum: 

e L dsΦ∑∫      (8.3) 

then remains, in which: 

Φ = 
21

4 1

L v

r
rπ

τ

−
∂ + ′∂ 

∑   (t = t – r) .   (8.4) 

 

ds 

dσ′ 

 
Figure 8.1.  Electron path-lines. 

 
 Before everything else, one asks how, in general, the integration is to be performed in 
order to be able to obtain the present EULER equations as the solution.  We choose a 
definite electron.  In order to perform the variation, it will suffice to know only that part 
of the action integral into which the data of that electron enter.  Above all, one must 
integrate over its proper path then.  In addition, however, it is also influenced by all of the 
remaining electrons in the external potential Φe, such that all other paths must be 
considered at the same time.  The points of the path lines of all remaining electrons shall 
now be associated with the points of the proper path as follows: Each point of the 
remaining electrons path shall always belong to that point of the path line that the wave 
that hastens away from the reference point considered with unit speed will arrive at 
precisely.  The time point of the coordinate point will then be connected with the time t of 
the reference point by the equation: 

τ′ = τ + r,      (8.5) 
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in which r is taken to be the distance from the reference point at time τ to the coordinate 
point at time τ′.  r then depends upon τ′, as well as τ, so one will have: 
 

r2 = [ξ′ (τ′ ) – ξ (τ)]2 + [η′ (τ′ ) – η (τ)]2 + [ζ′ (τ′ ) – ζ (τ)]2,    (8.6) 
 
and furthermore: 

dτ′ = dτ + 
r r

d dτ τ
τ τ

∂ ∂′ +
′∂ ∂

,     (8.7) 

so: 

dτ′ = 
1

1

r

r
τ

τ

∂+
∂
∂−

′∂

 dτ.     (8.8) 

 
We now combine all terms that are multiplied by the differential of the path length ds and 
depend upon the position of the reference point (ξ, η, ζ).  It can be written in the form: 
 

(Φe + )e L′Φ ,      (8.9) 

in which: 

e
′Φ  = 

21 1

4
1

L v
r

r
π

τ

′ −
∂ − ′∂ 

∑   (τ′ = τ + rɺ ).     (8.10) 

 
This potential replaces the retarded potential Φe with one that is equivalent to it, but 
radiates backward from the future, and which is, however, reducible to the retarded 
potential. 
 To that end, we add another integral to the variational integral that has the value zero 
in its totality.  It is the integral that is taken over the cone: 
 

τ = τ0 – r,      (8.11) 
namely: 

2 a b c d
x y y t

  ∂Ξ ∂Ξ ∂Ξ ∂ΞΞ + + − +  ∂ ∂ ∂ ∂  
∫ ⋯ df ,   (8.12) 

 
in which τ0 shall tend to the limit + ∞, Ξ, Η, Ζ, Θ shall mean the components of the total 
potential, and a, b, c, d shall mean the components of the surface normal.  If we select the 
part that depends upon the X-component of the allocation of the electron under 
consideration then we will find the magnitude: 
 

4
x e e e eL

a b c d d
R x y y t

σ
π

  ∂Ξ ∂Ξ ∂Ξ ∂Ξ+ + −  ∂ ∂ ∂ ∂  
∫ ∫  ds,   (8.13) 

such that one must add: 
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Ax = 
1

4
e e e ea b c d d

R x y y t
σ

π
 ∂Ξ ∂Ξ ∂Ξ ∂Ξ+ + + ∂ ∂ ∂ ∂ 
∫   (8.14) 

 
to the X-component of the potential e

′Φ  when (a, b, c) is the normal to the infinitely-

distant cone with radius R, dσ is the surface element, and the values of the differential 
quotients are taken at time τ + R.  However, the sum e

′Φ  + Ax is nothing but the X-

component of the external potential at the point (ξ, η, ζ).  We can then introduce Φe into 
the formula in place of e

′Φ  and obtain: 

2 e LΦ∫ ds      (8.15) 

 
as the single quantity the comes under consideration in the variation. 
 We have already mentioned that certain requirements on the boundary surface must 
be added as auxiliary conditions.  We now introduce such an auxiliary condition when we 
demand that the total allocation of the boundary surface should have a prescribed value; 
i.e., the surface integral: 

ndf∫ F      (8.16) 

 
that is taken over it.  By applying the fundamental equations in the conversion by 
GAUSS’s theorem, it will follow that this limiting allocation will be equal to the sum of 
all allocations of the electrons, namely: 
 

L dt∑∫ .     (8.17) 

 
From the method of LAGRANGE multipliers, we must add the auxiliary condition, 
multiplied by a constant, to the variation integral.  Let that constant be – 2Γ in our case.  
It has the effect that the external potential will be reduced by the value Γ, such that 
ultimately for a particular electron the quantities to be varied will be (up to a constant 
factor and introducing time as the independent variable in place of time): 
 

2

1

2( ) 1e L v d
τ

τ
τΦ − Γ −∫ .    (8.18) 

 
Now, the EULER equations can be applied immediately when only the allocation L is 
known. 
 For the gravitational field, we now assume that all allocations point in a well-defined 
direction that does not change in time, either (it is plausible that the “world axis” – i.e., 
the line that links the two limit points – has that universal direction).  We lay the time 
axis of the coordinate system in that direction.  The allocation and the potential have only 
temporal components, so they are regarded as scalars.  We also assume that the 
magnitude of the allocation – i.e., the mechanical “mass” – is unchanging in time; let its 
notation be µ.  We will then have: 
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2

1

2 2 2( ) 1g
e d

τ

τ
µ ξ η ζ τΘ − Γ − − −∫ ɺ ɺɺ .    (8.19) 

 
The constant Γ is, in an event, a scalar quantity.  It is quite large in comparison to the 
gravitational potentials that we know of; namely, when it is expressed in the C. G. S. 
system in terms of the speed of light c and ordinary gravitational constant γ , it will be: 
 

Γ = 
2

4

c

πγ
= 10 × 1027 

g

cm
,    (8.20) 

 
while the potential on the solar surface is merely 3 × 1022. 
 We now apply the EULER equation to the integrand I for each of the components of 
the path; e.g., for the X-component: 

d I I

dτ ξ ξ
∂ ∂−
∂ ∂ɺ

 = 0.     (8.21) 

 
When we neglect g

eΘ , along with Γ, we will get: 

 

21

d

d v

µξ
τ

Γ
−

ɺ

= 21
g
ev

x
µ ∂Θ−

∂
.   (8.22) 

 
This equation includes NEWTON’s law of gravitation, correspondingly extended for η 
and ζ, in its relativistic formulation – viz., the coupling of the MINKOWSKI force vector 
with the gradient of the retarded potential – and, at the same time, the equivalence of 
gravitating and inertial mass. 
 In an electromagnetic field, the allocation falls along the present direction of the path, 
its magnitude is proportional to the four-velocity, with an imaginary proportionality 
factor, and the coefficient of i is called the charge of the electron.  One will then have: 
 

L = ie 1 1 1x y zs s s s

ξ η ζ ϑ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
,     (8.23) 

or also: 

L = 
2

( 1 1 1 )
1

x y z

e
i

v
ξ η ζ+ + +

−
ɺ ɺɺ .     (8.24) 

 
The electromagnetic field is superimposed with the gravitational field; i.e., their 
allocations must be added.  We would like to direct our attention to just the real part of 
the variational integral (what happens with the imaginary part must remain undecided, for 
the time being).  It is extended to the electromagnetic field with the following quantity: 
 

e ( )e e e eiξ η ζΞ + Η + Ζ + Θɺ ɺɺ .    (8.25) 
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Here, Ξ, Η, Ζ, Θ mean the components of the electromagnetic “vector potential.”  The 
auxiliary condition drops out, due to the integrability of the allocation.  If we apply the 
EULER equation then we will see that “inertial force” of the gravitational field will 
remain unchanged, while the following expression in the X-component must be added to 
the moving force: 

e ( )e e e e
e

d
i e

x x x x d
ξ η ζ

τ
∂Ξ ∂Η ∂Ζ ∂Θ + + + − Ξ ∂ ∂ ∂ ∂ 
ɺ ɺɺ   (8.26) 

However, one has: 

( )e

d
e

dτ
Ξ = e e e e ei

x x x x
ξ η ζ∂Ξ ∂Η ∂Ζ ∂Θ + + + ∂ ∂ ∂ ∂ 
ɺ ɺɺ ,  (8.27) 

 
and the result will then be: 
 

e e e e e ee i e e
x x y x z

η ζ
τ

 ∂Θ ∂Ξ ∂Η ∂Ξ ∂Ζ ∂Ξ   − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

ɺɺ .  (8.28) 

 
However, by splitting the real part from the imaginary one, we will now find the 
following connection between these quantities and the electric and magnetic field 
strengths: 

,

,

.

x

x

y

i
x

x y

x z

τ
∂Θ ∂Ξ− = − ∂ ∂ 

∂Η ∂Ξ − = − ∂ ∂ 
∂Ζ ∂Ξ− = − ∂ ∂ 

E

H

H

     (8.29) 

 
We then obtain precisely the same expression for the moving force of the electromagnetic 
field as the one that is posed in the theory of the electron, namely, when written 
vectorially: 

− e (Ee + v He).     (8.30) 

 
 The remarkable change in sign in COULOMB’s law compared to NEWTON’s law, 
by which electricity of the same kind repels, while masses of the same kind attract, arises 
here by the appearance of the factor i2.  Namely, we have regarded the mechanical mass 
as the source of the magnetic field strength, and therefore as a real quantity, while 
electricity represents the source of the electric field strength, and is therefore imaginary. 
 
 



 

CHAPTER 9 
 

Concluding remarks. 
 
It would be a self-evident achievement of the theory if one could also succeed in 
regarding the allocation as a degree of freedom and arrive at the electrical allocation and 
mechanical mass by variation, while also finding the mutual connection between the two.  
For now, the theory that was presented here does not go appreciably beyond the theory of 
electrons in practice.  It remains problematic why the charge of the electron, like its mass, 
must be universal constants.  Similarly, the essential difference between positive and 
negative electricity, as well as the quantum character of radiation (1), remains 
unexplained for now.  Still, one cannot forget that one cannot immediately count on 
convincing evidence, due to the complexity of the problem, as well as its mathematical 
treatment.  I hope that the theory that was sketched here will make a contribution to the 
structural design of modern theoretical physics, as was inaugurated by the work of 
Einstein, especially.  For that reason, its merits or demerits will not be assessed in terms 
of practical positivistic-economic principles – since it is no mere “work hypothesis.”  Its 
persuasiveness (if that does not amount to merely my own subjective delusion) lies not in 
“convincing evidence,” but in the consistency and lack of arbitrariness in its construction, 
by which, it captures the true soul of MAXWELL’s equations, and leads to electrons in a 
natural way when MAXWELL’s theory is fused with the theory of relativity.  In my 
opinion, its superiority over the ordinary theory of electrons lies in this systematic 
simplicity and necessity.  I will not go into the working-out of details here, but only 
address the broad outline.  Therefore, it would seem to me to be more indicative of 
realizing the initiation of a path that might possibly open up new perspectives into the 
unreachable depths of nature when explored. 
 
 It would affect my speculations in a very challenging way, and for just that reason, it 
would be greatly appreciated if my highly-valued colleagues that might possibly find 
these thoughts interesting would communicate their kind remarks and criticisms to be by 
letters – perhaps recommended – and indeed to the address: Kornél Lánczos, Assistant an 
der technischen Hochschule, Institut für Experimentalphysik, Budapest. 
 
Date of this manuscript: October 1919. 

                                                
 (1) Here, I would like to remark that the riddle of positive electricity and the riddle of the quantum 
possibly have a common root.  Namely, a connection very likely exists that allows one to the express the 
universal quantity action h in terms of nothing but electrical quantities.  I write down the purely-empirical 
equation: 

2

2hc

e
= 

µ
µ

+

−

,     (9.1) 

 
in which µ+ denotes the mass of the positive electron, µ− denotes that of the negative electron, and e 
denotes the elementary charge in electrostatic units.  If that equation also requires a numerical correction, 
since it is endowed with an error of several percent in this form, then it would be very unlikely that two 
dimensionless numbers that are both defined in terms of constants of nature would be almost identical to 
each other by mere chance. 



 

Addendum. 
 

I must unfortunately make a belated remark that seems to have characteristic importance 
for the unity of the theory and its entire conceptualization.  At the same time, it provides 
the actual proof of the essential relationship that was suggested in the text between the 
equations that were referred to as “fundamental equations” – which defined quaternion 
functions – and the CAUCHY-RIEMANN equations.  The latter can be derived from the 
variational principle by which one looks for a minimum of the integral: 
 

2 2( )X Y dxdy+∫      (9.2) 

 
when a given regular integration domain is present, and the values of: 
 

2

1
log dx dy

R
 ∇ 
 

∫ F ,     (9.3) 

with: 

F = X + iY, ∇ = i
x y

∂ ∂+
∂ ∂

,  R2 = (x – ξ)2 + (y – η)2 (9.4) 

 
are prescribed for each point (ξ, η) of the boundary.  The fundamental equations in four 
dimensions will then follow from the principle: 
 

δ 2 2 2 2( )X Y Z T dx dy dz dt+ + +∫ = 0   (9.5) 

 
in a corresponding way for prescribed values of the quantities: 
 

2

1
dxdy dz dt

R
 ∇ 
 

∫ F .    (9.6) 

 
(∇ and F, as well as R, have their current four-dimensional meanings.)  However, we 

have applied this same variational principle (with complex components for F and 

imaginary t) to the world as a whole in the form of “HAMILTON’s principle” (without 
specifying the boundary conditions) in order to arrive at the equations of motion of the 
electron, when the domain of integration also contained singularities.  That principle then 
defines the universal basis for the entire theory, as well as the field equations and 
dynamics.  However, the corresponding boundary conditions for the universe must be 
found if one is to perform the variation exactly. 
 


