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The angular deformations of continuous media
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1. — The expressions for the angular modifications indéfermation of a continuous
medium take a remarkably simple form when one compéeesine of the deformed
angle to the sine of the initial angle.

As | did in my previous notes on deformation that werbliphed in theComptes
rendus de I’Académie des Sciendesill call an arbitrary material line fber and a fiber
of infinitely-small length, arelementary fiber A sheetwill be a portion of matter that is
extended over a surface, but with negligible thickness.

In the neighborhood of a point, the direction oftsefiis determined by its tangent;
similarly, one can associate the direction of a&ment of a sheet with either the tangent
plane or the normal to the surface that carriesdlgshent.

Having posed these definitions, we shall consider atrd:poi

1. The angle between two elementary fibers.

2. The angle between a fiber and a sheet.

3. The angle between two sheets.

2. — Angle between two elementary fibers- Letds ds be the lengths of the two
fibers in the deformed state, and Bbe their angle; letls, dg,, & be the analogous

guantities in the initial state.
The expression:
ds[ds sin @

represents the area of an infinitesimal triangle ihdefined by two fibers; the ratio:

ds[ds8ing
ds, (0§ (S$ing,

will then be equal to 1 £, whereE denotes the surface dilatation of the plane of tha
triangle at the point considered. If one callslthear dilatations of the two fibeesand
€ then one will have:
dsCds
ds, [ds
and consequently, one will get:

=(1+e) (1 +¢€),
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sind

(L+e) (1 +€) — =1+E.
0
We write that relation in the form:
sing _ 1+E

(1)

sing, (1+e)1+€)’

3. — Angle between a fiber and a sheet. Letdsbe an elementary fiber at a polvit
of the deformed medium, leto be an element of the sheet, and gebe the angle
between them. The same letters, when affectedthéhndex O, will continue to denote
the analogous quantities for the initial mediunreheve will have to consider the linear
dilatatione of the fiber, the surface dilatatid#of the sheet, and the cubic dilatat®rof
the medium aM.

The product:

dstoking

represents the volume of an infinitely-small cy#ndhat hasls for its base ando for
the generator of the fiber. One will then have:

ds[daE'km¢ - (1+0).
ds, (o, [$ing,
that is:
sin 1+0

sing, (1+e)1+E)’

In the calculations that relate to flexure, ons k@ consider the anglg’ of a fiber
with the normal to a sheet. Since that angles the complement of the angde the
relation (2) will take the form:

2) cosg’ _ 1+0
cosp, (l+e)(1+E)

Equation (2) presents a remarkable analogy witlagon (1) and with the analogous
formula that relates to the angle between two shdwt we shall establish later on.
However, it differs by a peculiarity that meritsesgal attention.
sing

sing,
dilatation of the fiber and the surface dilatatiohthe sheet. On the contrary, the

The ratio

Is determined entirely at a poiM when one knows the linear

calculation of the ratie% that is given by formula (1) demands that one rkastwv,
sing,

not only the linear dilatations of the two elemewntfibers that define the angl@ but
also theplaneof the two fibers, or at least, the surface dilataof that plane.
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4. — Angle between two sheets. Consider two elementary shedsanddo’ at M
whose planes form the dihedral angldetween them. Call the surface dilatations of the
two sheet& andE’, and lete denote the linear dilatation of the fiber that is dieecalong
their intersection. In order to apply the line of wrasg to this problem that served for
us in the first two cases, we shall appeal to theviatlg elementary proposition, whose
proof is immediate:

The volume of an arbitrary parallelepiped is equal to the product of the afda®
contiguous faces, multiplied by the sine of their dihedral angle, and dibg¢he length
of their edge of intersection.

Having said that, start from the poikt in the planes of the two sheets that are
considered and take two infinitely-small parallelogratusdu that have a commods
that is obviously directed along the line of intersatti Upon continuing to distinguish
the initial values by the index zero, we will have:

duldd Sing | du, [y, Sing,, _ 1

+0,
ds ds
or rather:
(+E)I+E) sy _, o
l+e) sing,
and finally:
3) siny _ (1+o)1+e)

sing, (L+E)A+E)

Equations (1), (2), and (3) show that there dxist ratios of dilatations for the sines
of the angles of the various types that are anailego the ones that exist for the lengths,
surface areas, and volumes.

5. — Review of the formulas for the dilatation. — The proof of our formulas by a
direct calculation is very simple.

Let us first recall the fundamental formulas thelkte to the linear and surface
dilatations.

We suppose that the coordinates, z at each point of the deformed medium are
expressed as functions of the coordinatgeso, z of the point considered in the initial
medium. Moreover, in order to avoid redundancy, ageee to let the letters without
indices denote the quantities that relate to tHerded state and the same letters, when
affected with the index zero, will refer to the mmponding quantities in the initial state.

Letdsbe an arc element that rés dy, dzfor its projections onto the axes andgs, y
for its direction cosines.

One has:
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X
dx=—dx +— dy+— dgz
X %, % ¥ ¢

@) dy=2 dx+ Y ay+ Y gz

VA VA
dz=—= dy+— dy+-— d
2% o % ¥ g

Hence, upon dividing bgts and settingls/ dg = 1 +e, one will infer:

0x 0x oXx
1+e)a=—a,+—Ly+— Vo
(1+e) ax, %0 ayoﬁo 6zoy°

0 0 0
(5) a+e)p=DLg+ L g+
0, A 0z,
0z 0z 0z
l+e)y=—a,+—LB,+—V,.
(1+e)y ax, %0 ayoﬁo azoyo

Upon adding these latter equations together after squiduemg, one will obtain the
expression for the square of le-as a homogeneous function of degree twapin, ) -
We set:

(6) (1+e°=ega’+e B+ ey +2enf+2en )60 +2e2a K,

and we denote the right-hand side of equation (6jday 5, ).

Equations (5) define the transformation of the direatiosines of the lines. There is
good reason to introduce the equations of the transfamafithe direction cosines of
the normals to the sheets, along with these formuleet ¢, 77, ¢ denote the direction
cosines of the normal to an elementary fiber whostase dilatation will be denoted by
E; the cosinest, 7170, {o define the direction of the normal to the correspogdnitial
sheet. Upon representing the functional determinftiteofunctionsu, v with respect to

d(u,v)

the variables y by the general notatioadﬁ, we will then have the transformation
XY
formulas for the normals in the form:

_ d(y, 2 Ay 2 dyy
1+E)é = ,
(+E) d(yo,zo)%+ d z, >6),70+ d ¥ y)z"
d(z % d z X qdzX
7 1 E = 0 0 (o}
(7 A+Edr mef+dam”+dawZ
d(x y) d( % y) dxy
1+E)J = .
(+E) d(yo,zo)%+ d z, >6),70+ d ¥ y)z"
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The square of (1 E) is also expressed by a quadratic form in the coghe®, ¢ :
(8) (1 +E)? = E, {2+ E, 2+ E,{ %+ 2Ex 0 {o+ 2E31 & & +2E0 & 1o

The quadratic form on the right-hand side of equations(8)e adjoint form td(ao,

Bo, 1), we denote it b¥(<o, 70, <0)-
One knows that the cubic dilatati@nis defined by the equality:

1+o=_ 9%
d0% %, %)

The discriminant of the forrf(ao, . W) is equal to (1 #9)? and that of the form
F(&, o, &) is equal to (1 ©)~.

6. — Calculation of the angles.

Angle between two fibers. Let a, B, yanda’, (3, y be the direction cosines of the
two fibers, and leeé and€ be their dilatations, respectively.

The use of the formulas (5) permits one to cateulae cosine of their ang# which
is expressed by a bilinear form in the cosines thkte to the initial state. One then
finds:

of of o |
da, °ap, !

1
1+e)(1+€)cosl==!a, +a, +
(1+e( ) 2{ 0 0 V"ayo

one then infers that:
H I 1] 1 I I 1] I I
(9 (L+ef (L +€)?sit 0=f(ao, /o 10) T (a5, Bono) =5 [ AL, + Bof, i |

The right-hand side of equation (9) is expresset the aid of the adjoint form and
the binary determinants that are deduced from twmesrof elements:

a S W
a B Vo
by the identity:
! ! 1 ! ! ! ! ! 2
(10) (a0, o 16) 15 55, ¥o) =5 @of, + Bof, +Vof,, ]

= F[(IBOVO_yolg;))’(y(ﬁlo_aoi/o)’(a(ﬂ’o_ﬂé}"()] :

On the other hand, if we I&t 1, ¢ denote the direction cosines of the normal to the
plane of the two fibers then we will have:

IBOVO —VoﬁB =ésinG,
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yoaé)_aoyo =osin&,
ayfy = By = Gosin .

If we substitute these values into the expressioth®guadratic fornf then we will
find that:

FI(Bo=VoB) (Vo= a ¢/ . (@ BB @3] =sit & F(&, o, &),

and since the for(<&, 1o, {o) represents the square of the expressiorElrelative to
the surface dilatation of the plane of the fibers, &qug9) will finally be converted into
the form:

(1 +e)? (1 +€)sirf 8= (1 +E)*sif&,

which is equivalent to our formula (9).

Angle between a fiber and a sheeflhe cosine of the ang(eg—qu that is formed

between a fiber and the normal to a sheet can lbalaged with the aid of formulas (5)
and (7). The binary functional determinants thgiirfe in it as coefficients in the right-
hand sides of formulas (7) are the coefficientthefpartial derivatives:

ox  0x
0%, 0y,

in the development of the ternary functional defieemt:

d(x v, 2

d(%: Yo %)
in the elements of its rows or columns.
Upon taking that remark into account, one wildfimmediately that:

(1+e) (A +E) (as+ pn+y5) = (1 +0) (a0 o+ o170 + 6 <0),

and one will have, consequently:
sing _  1+0
sing, (l+e)1+E)’

Angle between two sheets.The calculation of the angle between two sheéets
absolutely similar to that of the calculation o thngle between two fibers. All that one
needs to do is replace equations (5) with equaiidnand replace the identity (10) with
the following one:

(o o &) F (G000 =3[ 0F, +05F, + OO,
(11) = (L +0) T[(7,:00 = ol (CoEo= L"), (E 9111 €]
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One will then find the equation:
(12) (1 +E)? (1L +E')? sirf = (1 +©)* (1 +e)? sirf ¢,
which is equivalent to our formula (3).

Another form for the calculations. The calculation of the sine of the angles between
two fibers or two sheets can be further carried out &yraewhat different procedure that
exhibits the relation that exists between the sys(&jnand (7).

Recall equations (5) and the analogous equations that te e directiona’, 5’, v,
and form the binary determinant:

By -yB =¢sing,

ya' —ay =nsing,

afB’-Ly={sing.

We have:
0 0 0 0 0 0
_yao+_yﬁo+_yyo _Zao+_zﬁo+_zyo
0%, oy, 07, 0% oY, 017
(13) (@ +e)1 +€)BY-yPB) = :

oy, 6y ay dz , 0z, 0z

0 :80 Vo _ao+_ﬁo+_V0
0%, ~ 0y, 0z 0x ~ dy = 0%

The determinant in the right-hand side can be put irdddim of a sum of products
of second-order determinants; equation (13) then takesitime f

(1+e)1+e)By-yp) =

d(y, 2 dy 3 , dy?
Aty )(/J’OVO Yoo * 1z %)(Vcﬂo ayot 4 x y)( B Bg)

and that result will become:

@+e+e)singE=sing | 90D ¢, A¥3,, AVE,

d(¥o. %) ° Az % d¥% Y

by an immediate transformation, or, upon dividirygsin & :

(L+e)+€)sing o d(%.2 », dy3 4y
sing, A0 2" Az 9 dg 9

We thus find the first of equations (7) in an eqlent form, and the interpretation of
the result that is obtained will give formula (fymediately.




