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The stress field of a dislocation is described and compared by various methods. In the first section, a solution will be 

given by using the tools of pure elasticity theory, and in the second, a simplified derivation and extension of an 

argument by Peierls will be presented that considers the atomic structure approximately. It turns out that the two 

solutions agree in practice. Finally, those solutions will be compared to one that was given by Taylor. 

 

 

1. – Introduction. 

 

 The foundations of the current conception of the mechanism of plastic deformation of crystals 

is based upon the picture of the formation and motion of dislocations. A dislocation is a 

characteristic perturbation of the crystal lattice (1). The 

arrangement of atoms in a dislocation for a primitive cubic lattice 

can be inferred from Fig. 1. One imagines that this arrangement is 

repeated in all parallel net-planes of the lattice. The characteristic 

of a dislocation is that above a certain plane – viz., the glide plane 

(y = 0, here) – a larger sequence of atoms is present than below it. 

Such an arrangement reacts to shear stresses with especial ease. 

One then describes the plastic deformation by the motion of 

dislocations in the crystal under the influence of shear stresses. 

The stress field and the actual atomic arrangement in a dislocation 

is then of interest in the name of a detailed representation and quantitative statements. 

 
 (1) Here, we shall consider only the so-called “edge dislocations” that are explained in Fig. 1. As of recently, one 

also discusses a “screw dislocation” that Burgers discovered. However, we shall not go into the latter topic in what 

follows.   

 

y 

x 
B 

A 

Fig.1. Atomic arrangement 

in a dislocation. 
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 There are two approaches to solving that problem. First of all, one can treat that question with 

the methods of pure elasticity theory. The foundations for that can be inferred from the works of 

Timpe (1) and Volterra (2). Taylor (3), who was supported by the work of Timpe, gave a first 

solution for the stress field of a dislocation. However, in our opinion, it is not a good 

approximation. Later, Köhler (4) gave another solution without going into the details of what it 

was based upon. Peierls (5) gave a second way of arriving at a solution. He considered the atomic 

structure approximately. For both Ansätze, one assumes that the elastic properties are isotropic. 

 Here, we would first like to discuss the purely-elastic method in order to be able to compare it 

to Taylor’s solution. In essence, we will obtain Köhler’s result. We will then follow through the 

Peierls argument with a somewhat-simpler method in order to compare the solutions. It will show 

that they agree in practice. 

 

 

2. – The planar state of dislocation. 

 

 We already explained above that in the description of a dislocation, one cares to assume that 

no displacement appears in the z-direction and that the displacement in the x and y-directions do 

not depend upon z. The z-axis is perpendicular to the xy-plane in Fig. 1 in the sense of a right-

handed system. One will then have an especially-simple elastic problem, namely, the so-called 

planar state of dislocation (6). As a preliminary to the elastic calculations of the following section, 

we would now like to summarize the relations that are true for this simple case. If u, v, w are the 

displacements in the x, y, z-directions, resp., then: 

 

u = u (x, y) , v = v (x, y) , w = 0 . 

 

If one considers that fact in the relations between stresses and displacements and lets pik (i, k = x, 

y, z) denote the components of the stress tensor then that will give: 

 

pxz = pyz = 0 , pzz =  (pxx + pyy) .     (1) 

 

 is Poisson’s constant (0 <  < 1/2). The remaining stress components can be derived from a 

stress function F (x, y), viz., the so-called Airy stress function, by differentiation: 

 

pxx = 
2

2

F

y




,      pyx = −

2F

x y



 
,      pyy = 

2

2

F

x




.           (2) 

 
 (1) A. Timpe, Diss. Göttingen, 1905.  

 (2) V. Volterra, Ann. Ec. Norm. 24 (1907), pp. 401.  

 (3) G. I. Taylor, Proc. Roy. Soc. London 145 (1934), pp. 362  

 (4) I. S. Köhler, Phys. Rev. 60 (1941), pp. 397.  

 (5) R. Peierls, Proc. phys. Soc. 52 (1940), pp. 34. The Peierls Ansatz is discussed thoroughly and explained by F. 

R. N. Nabarro, Proc. phys. Soc. 59 (1947), pp. 256.  

 (6) One can find a thorough presentation in the any textbook on the theory of electricity, e.g., Trefftz in Handbuch 

der Physik, by Geiger-Scheel, Bd. VI. 
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The stresses (1) and (2) will then be solutions of the elastic equations when the stress function 

satisfies the equation  F = 0. The elastic state is described completely by the stress function. 

One obtains the stresses from it by differentiating and the displacements by integrating the stress-

strain equations. The stress-strain equations themselves also assume a simpler form: 

 

2
2 (1 ) , (1 ) ,

1 2

2
2 (1 ) , (1 ) ,

1 2

.

xx yy xx

yy xx yy

xy

u G u v
G p p p

x x y

v G v u
G p p p

y y z

u v
G p

x y

   


   




   
= − − = − +  

 −    
    

= − − = − +  
 −    

  
+ = 

    

  (3) 

G is the shear modulus. 

 The assumptions that lead to the introduction of the planar state of dislocation represent an 

idealization. In general, from (1), pzz is non-zero, which is also the case for the dislocation. If the 

body in question has a finite extent along the z-direction, and if it is bounded by planes 

perpendicular to the z-axis then one must apply corresponding normal forces to those boundary 

surface in order to maintain the planar state of dislocation. By contrast, if the outer surfaces are 

force-free, which one assumes for a dislocation in an ideal crystal, then that will require a deviation 

from the planar state. Qualitatively, nothing would change essentially. Quantitatively, one would 

expect percentage deviations with an order of magnitude 2  under the influence of lateral 

contraction. 

 

 

3. – Treatment of a dislocation in the theory of elasticity. 

 

 Obviously, one can exhibit a dislocation, as in Fig. 2, in such a way that below the glide plane, 

one removes the series of atoms, which are suggested by filled circles, and then deforms the lattice 

in such a way that the neighboring series will once more take their normal lattice spacing at a 

sufficient distance. 

 If one imagines that a cylinder of radius a has been cut out from around the center of the 

dislocation and one neglects the influence of the interior then one will have the following problem 

in elasticity as a replacement for the dislocation. A plane-parallel disc of thickness  is cut out of 

a hollow cylinder of radii a and b (Fig. 3). If one now bends the two boundary surfaces together in 

such a way that they make contact, and one attaches the contact surfaces together (say, by 

soldering) then one will get precisely the state that corresponds to a dislocation. That problem was 

first touched upon in the dissertation by Timpe (1). Volterra (2) gave a thorough discussion of it, 

with beautiful pictures of rubber cylinders that were deformed in that way. Here, we would like to 

give only the essential results. 

 
 (1)  A. Timpe, Diss. Göttingen, 1905. 

 (2)  V. Volterra, Ann. Ec. Norm. 24 (1907), pp. 401. 
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 The stress function: 

F (x, y) = − 
2 2lnA y x y+  = − A r ln r  sin    (4.a)  

corresponds to the stresses: 

 

 in rectangular coordinates in polar coordinates 
2

2 2

2

2 2

2

2 2

2
1 , sin ,

2
1 , sin ,

2
1 , cos ,

xx rr

yy

xy r

A y x A
p p

r r r

A y x A
p p

r r r

A x x A
p p

r r r











 
= − + = −  

  
  

= − − = −  
  

 
= − = 
  

   (4.b) 

and the displacements: 

 

u = 
2

(1 )
2 2

A x y

G r


 

  
− − +  

  
, v = − 

2
(1 )

2 2

A x y

G r


 

  
− − +  

  
. (4.c) 

 

 The arbitrary additive constants in the displacements are already available. One counts the 

angle  from the negative y-axis from –  / 2 to 3 / 2. If one now chooses A = 
2 1

G

 −
 then one 

will remark that one can describe the bending together of the cylinder in terms of those 

displacements. The left boundary ( = 3 / 2) will be displaced by precisely  / 2 to the right along 

the x-direction, while the right boundary ( = –  / 2) will be displaced by the same amount to the 

left when one neglects the terms in  / a. Since the y-displacements are equal, the gap will close. 

That solution is still not complete, since boundaries a, b are not stress-free. One will get the 

complete solution from the stress function: 

 

F = −
2

2
ln

2 2

B C r
y a r

r

 
+ − 

 
 = − 

3

sin ln
2 2

B C r
Ar r

r


 
+ − 

 
,  (5.a) 

 y 

x 

Fig.2. Creating a dislocation by 

removing a series of atoms. 

y 

x 
 r b a 

Fig. 3 Hollow cylinder with 

parallel gap. 

 
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with the stresses: 

 

2
2 2 2 2

2 2 4 2
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 (5.b) 

 

and the displacements: 

 

2 4

2 2 2
2 2

2 4

(1 ) (3 4 ) ,
2 2 2 2

(1 4 ) (5 4 )
(1 2 ) ln ( ) .

2 4 4 4
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u
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
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
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  (5.c) 

 

 The constants B, C are calculated from the demand that the outer surface must be stress-free. 

Thus, the stress components prr and pr must vanish for r = a, b. Two constants will suffice here 

for the four conditions, since prr and pr exhibit the same radial dependency. A is established from 

the width of the gap. For B, C, one will get: 

 

B = 
2 2

2 2

Aa b

a b+
,  C = 

2 2

A

a b+
.    (5.d) 

 

If one makes b then one can obviously drop C completely. That corresponds to a displacement in 

an infinitely-extended crystal. In that case, one will then have B = 
2A a  and C = 0 . The stresses 

and displacements can also be written in an especially-simple way then: 
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3
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( ) ,
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r
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p r a

r

G
p r a

r





 

 

 

 

 

 


= − − 

−


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− 
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      (6.a) 

and (1): 

 

 (1) For the sake of convenience, the free additive constant 
4 (1 )



 −
 is added to (5.c) for v here.   
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2 2
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ln .
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x y
u r a

r
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v
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  
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         (6.b) 

 

The displacements are brought into the simplest form possible in (6.b). On the interior boundary, 

one has only the displacement in the x-direction that is proportional to . 

 One can also interpret the same stress state in a different way. Namely, if one counts the angle 

 from the positive x-axis from 0 to 2 and adds the constant  / 4 to u then one will get the 

following picture (Fig. 4): Immediately above the positive 

x-axis, one has no displacement on the inner boundary, 

while immediately below it, one has a displacement by  

to the right. Nothing changes in regard to the stresses as a 

result of that consideration. One can also exhibit the same 

stress state as follows then: If one cuts out a hollow 

cylinder along the position x-axis, then displaces the upper 

part through the segment  to the right with respect to the 

upper part of the cut, and fixes that state by soldering then 

one will likewise get the stress state (5.b) with the same 

constants A, B, C. Taylor (1) had interpreted a dislocation 

elastically in that way. 

 One will then get an expression for the elastic energy 

E per unit length that is stored in the cylinder that is bent together: 

 

E = 
2 2 2

2 2
ln

4 (1 )

G b b a

a b a



 

 −
− 

− + 
        (7) 

 

that diverges logarithmically with b. 

 The total energy in a cylinder of length l is then E  l. If the linear dimensions l and b are large 

compared to the width of the gap then one can replace a with a value of order of magnitude  in 

order to determine the energy of a dislocation approximately and neglect the second term in (7), 

which refers to the influence of the pzz boundary stresses, as well as that of the atoms inside of a. 

In that way, one will get the total energy U as: 

 

U = 
2

ln
4 (1 )

G l b

  



−
 . 

 

Along with the linear dimensions of the piece of the crystal considered, U depends upon only the 

gap-width and increases quadratically with increasing gap-width in practice. 

 
 (1) G. I. Taylor, Proc. Roy. Soc. London 145 (1934), pp. 362.  

 

 
 

a b 

y 

x 

Figure 4. Taylor’s definition of a 

dislocation. 
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 If one regards the formation of dislocations as definitive for plastic deformation then, on 

energetic grounds, one will have a strong argument for the observed preference for the most 

densely-populated lattice line as the glide direction. One has no reference point for the choice of 

glide plane. In fact, preferring the most densely-populated lattice line over all other glide directions 

is indeed much more canonical than the corresponding choice of glide planes. Even when new 

glide systems are created at higher temperatures, that will normally manifest themselves in changes 

of the glide planes, but not the glide directions. In the special case of -iron, a well-defined glide 

direction probably exists, namely, [111] (and likewise the most densely-populated lattice line), but 

there is in no way a preferred glide plane (1). 

 The elastic model that is considered here differs from an actual dislocation, above all, by the 

fact that there is no intrinsic cylindrical surface for a dislocation that is stress-free. In reality, one 

would have a complicated stress distribution on such an excised surface that one would have to 

infer from a more-precise atomic theory. However, one can neglect that influence at a great 

distance from the center of the dislocation, just as one can drop the term in 
2a  there, since it drops 

off with a higher power of distance. Thus, at a great distance from the center, the elastic state of a 

dislocation will be described eq. (4) alone. Köhler (2) had also employed those formulas. One can 

initially make no statement about the domain of validity for the elastic calculations. One can 

probably assume that formulas (4) are a useful approximation at, say, ten lattice separations from 

the center of the dislocation. The atomistic considerations that we will go into in the following 

section will show us that the elasticity-theoretic results are useful in a much-broader context than 

one is inclined to assume. 

 

 

4. – The Peierls argument. 

 

 One best recognizes that the assumptions of the theory of elasticity will be altered for strong 

distortions, not just quantitatively, but also qualitatively, in the homogeneous shearing of a 

primitive cubic lattice. In the elastic domain, one has: 

 

pxy = A Bu u
G



−
,     (8) 

 

when uA and uB are the displacements of two neighboring atomic planes (Fig. 5). For large shears: 

 

pxy = 
2

sin ( )
2

A B

G
u u



 
−         (8.a) 

 

will be a useful approximation. Atomic positions for which the nonlinear domain of the sine law 

is applicable occur in the neighborhood of the center of a dislocation, and above all, in the 

transition to the glide planes. Now, the idea of Peierls consists of treating the parts of the crystal 

 
 (1) E. Schmidt and W. Boas, Kristallplastizität, Berlin, 1935, pp. 90.  

 (2) I. S. Köhler, Phys. Rev. 60 (1941), pp. 397. 
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above and below the glide plane separately by pure elasticity theory, while one assumes that the 

transition to the glide plane obeys the sine law. One can do that when the dislocation is sufficiently 

extended that only small distortions can arise inside of each half-crystal. It turns out that this 

assumption is not fulfilled especially well. 

 
 The two half-crystals are bounded by the planes A and B, as in Fig. 6 (1). We next imagine that 

the interaction between the two halves is turned off and each half is deformed by itself by forces 

that are applied to the outer surfaces A, B in a manner that would correspond to the actual 

dislocation. The forces of interaction must now compensate the forces on the surfaces precisely in 

order for the crystal to be in equilibrium. 

 One can now formulate the Peierls assumptions as follows: A transfer of purely-tangential 

forces exists between the planes A, B. Those forces will be described by the sine law (8.a). 

 The tangential forces that are applied to A, B while turning off the interaction then have 

opposite signs, and they will change signs at the y-axis on symmetry grounds, moreover. They are 

suggested by arrows in Fig. 6. Four points P1, …, P4 are plotted in that figure that emerge from 

each other under reflection in the x and y-axis. One can adjust the displacements to the symmetries 

of the outer surface forces. Since the outer surface forces will not change under a rotation by 180o 

around the y-axis, and the sign will invert under a corresponding rotation around the x-axis, one 

can assume that the displacements exhibit the same behavior. Therefore, if the displacements are 

known at P1 then one can get the displacements at the other points P2, P3, P4 by considerations that 

purely relate to symmetry. For the displacements, one then has: 

 

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ,

u x y u x y u x y

v x y v x y v x y

= − − = − − 


= − = − 
   (9.a) 

 

and one has, correspondingly, for the stresses: 

 

pyy (x, y) = − pyy (x, − y) = pyy (− x, y) .   (9.b) 

 

In particular, one will then have: 

 
 (1) The rest positions of the atoms in A are displaced with respect to the ones in Fig. 5 by  / 2, on symmetry 

grounds. The null positions of the atoms are suggested in Fig. 6. That change requires a change of sign in (8.a). 

y 

A 

x 
B 

 

 

Figure 5. Homogeneous shear 

P4 
− u1 

v1 
P1 

u1 y 

v1 

 

v1 

u1 

 
P3 P2 

 
v1 

 

− u1 

A 

B 
x 

Figure 6. Symmetry relationships in the Peierls Ansatz. 
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uA = − uB .             (9.c) 

 

In addition, one sees that the assumption of the adjustment of pure tangential forces between A, B 

is fulfilled quite well. When the elastic equations are valid throughout, from (9.b), one would have 

pyy = 0 for y = 0. The normal forces in the glide plane would vanish then. Indeed, one can infer the 

same thing from the elasticity-theoretic treatment of bent cylinders. Certainly, the normal forces 

at the neighboring planes A, B can also be neglected as small, with the exception of perhaps the 

center of the dislocation, where the atoms are furthest from their normal equilibrium positions. 

 If one imagines that the shear stresses ( )A

xyp x  are given at A then one can determine the 

displacements uA (x) from them with the help of the theory of elasticity. However, due to (8.a) and 

(9.c), the shear stress is coupled with the displacement uA directly, in addition (1): 

 

( )A

xyp x  = − 
4

sin ( )
2

A

G
u x



 
 . 

 

From that coupling, Peierls obtained an integral equation for uA in the following form: 

 

( )1 Adu x
dx

x x dx

+

−




 −  = 
1 4

sin ( )
2

Au x
 



−
 .            (10.a) 

 

 The solution that corresponds to a dislocation is: 

 

uA (x) = − arctan 2(1 )
2

x


 
−  ,    (10.b) 

 

as one can see by substitution. The integral in (10.a) is understood 

to mean the Cauchy principal value. Eq. (10) was given by Peierls 

(2) and Nabarro (2). Nabarro has explained the Peierls 

calculation and carried it further. However, the derivation of (10.a) 

is somewhat awkward. We would like to carry out the derivation 

of the equation here by a simpler method. 

 For that, we require the solution for a “planar” isolated force. 

If the force K per unit length is applied to the entire z-axis, and if 

only the half-space y > 0 is filled with matter (Fig. 7) then the 

problem can be solved by the stress function: 

 

F = − 
K

y


,   (11.a) 

 
 (1) See the remark on pp. 8.  

 (2) R. Peierls, Proc. Phys. Soc. 52 (1940), pp. 34. The Peierls Ansatz is discussed thoroughly and explained by F. 

R. N. Nabarro, Proc. phys. Soc. 59 (1947), pp. 256. 

y 

k 

r 
 

x 

a x 

Figure 7. The definition of a 

planar isolated force. 
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with the stresses: 
3

4

2

4

2

4

2 2 cos
, ,

2
, 0,

2
, 0,

xx rr

yy

xx r

K x K
p p

r r

K x y
p p

r

K y x
p p

r







 






= − = − 




= − = 



= − = 


   (11.b) 

and the displacements: 

 

u = − 
2 2

2 2
(1 ) ln

2

K r y

G a r




 
− + 

 
 ,  v = − 

2
(1 2 )

2

K x y

G r
 



 
− − 

 
 . (11.c) 

 

 One makes the meaning of formulas (11) clear most simply by cutting out a half-cylinder of 

radius a (a can be arbitrarily small) around the z-axis and then discussing the stresses and 

displacements (Fig. 7). Surface forces appear only at the walls of the half-cylinder. If K is positive 

then one will have normal forces on the lateral surface, as is suggested by arrows in Fig. 7. Upon 

integrating the forces over a lateral surface of length c, one will get a force of magnitude K c in 

the x-direction as the resultant force. 

 If the point of application of the isolated force does not lie at x = 0, but x = , then one needs 

only to replace x with the quantity x –  everywhere in (11). If the outer surface stresses pxy () are 

given for y = 0 then every interval d will correspond to an isolated force − pxy () d . If one then 

replaces K with − pxy () d and x with x –  in eq. (11) then upon integrating over , one will get 

the corresponding quantities for the given outer surface forces. The displacement uA (x) of the outer 

surface: 

uA (x) = 21
2

(1 )
( ) ln ( )xyp x d

G


  



+

−

−
− .    (12) 

 

That equation is equivalent to (10.a), and one can rewrite one as the other directly (1). It will 

likewise be solved by (10.b) then. With the solution (10.b) for uA, the outer surface stresses will 

then be known, as well, and they are given by: 

 
 (1) If one forms the Peierls expression with (13): 

 

( )Adu x dx

dx x x

+

−

 


 −  

then one will get: 

2

4
sin ( )

(1 )

2 ( ) ( )

A

A

u
du dx

d dx
dx x x x x x




 


 

+ +

− −

 
 

 −    = −
   − − −   . 
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( )A

xyp   = 
2 2

G  

  +
 with  = 

2(1 )



−
.   (14) 

 

Upon integrating (1) eq. (11), one will get from (14) the stress function, stresses, and dislocations 

for the entire upper half-plane. Evaluating it will yield the stress function: 

 

F = − 2 21
2
ln{ ( ) }

G
y x y





+ +     (15) 

and the displacements: 

2 2

2 2

2 2 2

(1 )
arctan ,

2 2 ( )

(1 2 ) 1 ( ) ( )
ln .

2 2 2 ( )

y x y
u

x x y

x y y y
v

x y

    

  

    

   

− + 
= − +  

+ +  


− + + + = − +
+ + 

  (16) 

 

 If one would like to compare those quantities with the ones from the purely-elastic theory then 

one would have to replace y with the quantity y –  / 2 everywhere. That is because eqs. (11) all 

refer to the plane A, which lies  / 2 above the glide plane, but not to the glide plane. If the glide 

 
All integrals are understood to mean Cauchy principal values. Now, one can prove, under very general assumptions 

on a function f (), that: 

2( )
( ).

( ) ( )

f
dx d f x

x x x


 



+

−

 = −
 − −   

 

That will imply the asserted equivalence. 

 (1) Evaluating the terms that do not include ln r or  results immediately from the residue theorem of the theory of 

functions. In the integrals that do contain ln r and , one must replace the limits with  M and define the integral by 

the limit as M goes to . One can then, e.g., calculate the quantity: 

 

2 2

2 2
( , ) ln{( ) }f x y x y d


 

 

+

−

= − +
+  

in that way. 

 f (x, y = 0) is known here from (10.b), and f / y can be evaluated from the residue theorem. One gets: 

 

f

y




 = 

2 2
( )

x

x y



+ +
. 

One then has: 

0

( , ) ( ,0) arctan

y
f x

f x y f x dy
y y





= + = −

 + . 

 

There are terms that remain constant under the integral over  that include the upper limit. However, those constant 

terms do not need to be considered in either the stress function of the displacements. Moreover, one can also convince 

oneself that they describe the desired state immediately from the integrated formulas. 
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plane is y = 0, once more as in the purely-elastic calculations, then from (15) and (16), one will 

have: 

F = − 

2

21
ln

2 (1 ) 2 2 2(1 )

G
y x y

   

  

    
−   + +   

− −     

,  (15.a) 

2

2

2

2

2

2

2

2(1 ) 2
arctan

2 2 4 (1 )

2(1 )

2
arctan ,

2 4 (1 )

2(1 ) 2(1 )

2(1 )(1 2 ) 1
ln

4 (1 ) 2

2(1 )

y x y

u
x

x y

x y
x

y x y

x y

v

  

  

    





 

     
 

 

 

  



   
+ −  −   = − +  

−   
+ +    − 

 
− 

 
= − + 

−  + + + − − 

 
+ + 

−−  
= − 

−  
 

− 

2

2

2 2(1 )
.

4 (1 )

2(1 )

y y

x y

  



   

















  
− +   

−   
+  −   + +  −  

 (16.a) 

 

 A comparison with the elasticity formulas (5) and (6) shows a far-reaching agreement when 

one drops the 2a  from the elasticity (in addition to the term 

that is logarithmic in v, and in which one can replace, say, a 

with  / 2). Since the Peierls assumptions are not fulfilled at 

the center of the dislocation, in any case, it would only make 

sense to compare the solutions at some lattice separations. 

However, neither the term in  / 2 nor the quantity 
2(1 )

 

−
 

will have any noticeable influence there. Therefore, for all 

applications that are not concerned with the center of the 

dislocation directly, one can just as well employ the one-

term stress function (4.a), e.g., for all problems that are 

concerned with the interactions of two dislocations. 

 It initially seems very remarkable that the elasticity 

solution exhibits such a good agreement with the atomic 

Ansatz. However, one must consider that for the case of small radii (compared to the gap width), 

it by no means describes the problem of the bent-together cylinder anymore. In fact, the gap is 

closed only at distances that are large compared to the gap width. Therefore, one can still regard 

the elasticity solution itself as a useful approximation when one sets the internal radius equal to, 

say,  / 2 (Fig. 8). That will also immediately give the possibility of obtaining more detailed 

information about the arrangement of the atoms in a dislocation. One can employ the elasticity 

 

x 
Glide plane 

y 

Figure 8. u-displacements for the 

elasticity solution with a =  / 2. 

a 
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solution for a radius a with the same order of magnitude as the lattice constant as an initial solution 

and then consider the atomic forces on the atoms, which lie on the boundary (interior, resp.) of the 

cylinder of radius a. In that way, it will also be possible to consider the crystalline structure, which 

certainly plays a role at the center of the dislocation. That possibility shall be pursued in a later 

work. 

 With such an Ansatz, one would be able to determine precisely the influence of the atomic 

arrangement at the center of the structure and the length of a dislocation. That is because neither 

the Peierls solution nor the elasticity-theoretic one allows one to expect that they will give the 

displacements at the center correctly, because all assumptions are fulfilled to the least extent at 

precisely that location. On the one hand, the type of lattice is significant there. Furthermore, the 

vanishing of the normal stress is questionable there. In addition, the calculation with continuous 

displacements is no longer permissible. However, the structure of the center is definitive for the 

dynamics of a dislocation. 

 

 

5. – Taylor’s solution. 

 

 In conclusion, we would like to discuss the meaning of the stress state that Taylor (1) gave. 

The stresses that were given by Taylor are: 

 

prr = 
sinG

r

 


, p = − 

sinG

r

 


, pr = 

cosG

r

 


. 

 

It is derived from the stress function: 

 

F = − { ln }
G

y r x





+ , 

and the displacements are: 

u = 
2





, v = ln

2
r




. 

 

The shifts here likewise exhibit the properties that are necessary for the description of the bent-

together cylinder. In essence, what we have here is a superposition of (4) and an isolated material 

force that is applied to the origin in the – y-direction with a magnitude of 2G , as we can also see 

by a comparison with (11). 

 Now, what is the difference between the quantities that were given here and our solution (5)? 

The solutions (5) describe the bent-together cylinder under the influence of pzz boundary stresses, 

which we assume do not influence the result essentially. The cylinder jackets a, b are stress-free. 

Taylor’s solution once more describes the bent-together cylinder, except that here the boundary 

stresses have a different distribution. pzz is zero here, so one must keep the stresses that were given 

above in equilibrium on the cylinder jackets a, b, which do not have to be in equilibrium on one of 

 
 (1) G. I. Taylor, Proc. Roy. Soc. London 145 (1934), pp. 362.  
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them. One can add a further divergenceless solution [e.g., the term in eq. (5) that is affected with 

B] in order to make prr or pr vanish on the internal boundary (but not both of them, as Taylor 

stated, as a result of a sign error). 

 In order to compare the two stress fields, we give them in Cartesian coordinates: 

 

According to Taylor According to (4) 

pxx = − 
2

G y

r




 , pxx = − 

2 2

2 2

3

2 (1 )

G y y x

r r



 

 +
  

−  
, 

pyy =    
2

G y

r




 , pyy = − 

2 2

2 22 (1 )

G y y x

r r



 

 −
  

−  
, 

pxy =    
2

G x

r




 , pxy =     

2 2

2 22 (1 )

G x x y

r r



 

 −
  

−  
. 

 

The differences are significant in a theory of solidification or a theory of the diffusion of foreign 

atoms into a deformed crystal, as was recently give by, e.g., Cottrell (1). 

 The question is now: “Which of the two approximate solutions should one prefer?” We believe 

that the solution (5) must be given priority, since the consideration of the pzz boundary stresses 

would not affect the result essentially. In addition, the Taylor solution does not at all describe an 

important property of dislocations. It is divergenceless (due to the fact that prr + p = 0), so neither 

dilatations nor compressions occur in the lattice. On the other hand, it is intuitively clear that 

dislocation that is treated here must compress the lattice above the glide plane and dilate the lattice 

below it. 

 

 We would like to thank Herren Prof. G. Masing and R. Becker for some stimulating 

discussions. 
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 (1) A. H. Cottrell, Report of a Conference on the Strength of Solids, Bristol, 1948.  


