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It is known that the principle of least constraimttGausspresented (1829) can be
derived from Lagrange’s equations of the first kind foctaagular coordinates in a
simple way, in which the expression for the constraint i.e., the function to be
minimized — was first formulated I8cheffler (1858):

z= i%m %, - X,)2+(m, §, ~Y,)2 +(m, 2, - 2,)7.

v=1

Now, Lipschitz (1877) tried to introduce general coordinates itite condition
equations that the variable must fulfill identigalh place of the rectangular ones that are
coupled to each other by the condition equationd,Vdassmuth (1895) succeeded in
performing the transformation of constraint intongel coordinates in a very simple
way, at least under the assumption that the comsitdo not include time explicithy)(

In addition,Radakovich and other have addressed that problem in detail.

That raises the question of whether it might bssgme to deriveGausss principle
for mutually-independent generalized coordinateswall, and in particular, the general
expression for the constraigf from the most general Lagrange equations ofthend
kind directly in a way that is similar to what one does withtaegular coordinates.

Now, such a direct derivation shall be attempted/hat follows in which in total four
different cases shall initially be brought undemsideration, since the form of the
condition equations that exist between the rectangooordinates, as well as the
transformation equations by which the generalizedrdinatesp; , p2 , ..., ps Will be
introduced in place of the rectangular ones, cah. belonomic or 2.non-holonomic, and
the transformation equations can themselves onae mealude timet or not in both
cases, and thus Ipbkeonomic or scleronomic, resp.

() WaRmuth, “Uber die Transformation des Zwanges,” These Sitzumigstte, CIV, Part I1.
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Meanwhile, it will be shown that the non-holonomitf/the generalized coordinates
generally exerts no essential influence upon method ofadiem, such that actually only
two main cases will come under consideration in the ptesginle, namely, according to
whether the generalized coordinates are sclerononleeonomic.

The simpler, and at the same, more common of theseadses shall be attacked first.

A. — Scleronomic generalized coordinates.

At first, the transformation equations shall not inclaidee t explicitly, so they will
either read like™):
Xv:fv(pl,pz,...,ps) forv=1, 2, ..., 3,

in case they are holonomic, or:

dx, = > 71 dp, forv=1,2, ..., 3,

h=1

in case they are non-holonomic, in which the quastitie are any functions of thp,

that do not, however, include time explicitly. Thgeneral or generalized coordinapes
p2, ..., ps that are introduced by these 8quations shall fulfill the condition equations
that exist between the rectangular coordinates:

@1 (X, X2, .oy Xan) =0, @2 (X1, X2, ..., Xan) =0, vy O (X, X, oy X3n) =0

identically, but are completely independent of each other, whichtisally possible only
when their numbes is equal to the number of degrees of freedom in the ray&te- 7.
The Lagrange equations of the second kind will then read:

thi[a—Lj—a—L—PFO for h=1,2,..5 (1
op,

for holonomic coordinates, and for non-holonomic cootésiathey read:

3n S
Qn= E[‘l}% —P+3m, X/[z; +zzhka: 0, forh=1,2,..s (Il
h v=l k=1

asBoltzmann first found ¢), in whichL is thevis viva, andP, means a generalized force
component.

() Following Boltzmann, all rectangular coordinates for the system will beotsh with the same
symbolx, and likewise, for the sake of simplicity in notatioacle mass of each point will be expressed by
three symbols; e.gm =mp, =mg .

() Boltzmann, Prinzipe der Mechanik, Part Il, pp. 109. See also pp. 8 of this article.
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One can now derive Gauss’s principle and the genepaegsion for the constraint
directly from these generalized Lagrange equation iptésent case as follows:
It follows from the equations:

Q. =0, Q.=0,..., Qs=0 (1)
that:

Q15p1+Q25p2+Q35p3+“'+Q35pS:0. (2)

Furthermore, differentiating the transformation eauregiwill give either:

such that thevis viva of the point system will take the form of a quadrationf in the
quantities p,,

3n S
L=>D5 =13 a,p, b (3)

The coefficientsn = aw in that form are composed of the quantites/ op« (77, ,

respectively), so they are functions of gae(which do not include time explicitly), and it
can be shown that the determinant of the quadiatic L is non-zero™):

&, a, - g
D= a, Qa, - ay £0
ay 4, - a4
for all values of time.
One then multiplies equation (2) b 2nd gets:
zth [Ddp, = 0. (4)
h=1
Now, as is known:
D=aimAmn+amAPont ... +a8sn As, forh=1,2,3, ...5 (5)

in which theA;, shall be the adjoints &. Equation (4) can then also be written in form:

ZZQh [@in Aan + @on Aon + ... +8.5hAgh]5ph: 0. (6)

h=1

() Boltzmann, Prinzipe der Mechanik, Part I, pp. 35.
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Now, there is another theorem from the theory dkemeinants that whem is
different fromh :

auh Ath +an Aoh t+ ... +tagn An = 0. (7)

If one then adds those terms (which vanish identicatlyjhe left-hand sides of
equation (4) or (6) then one will also have:

> 2Q, {311 A + @1 Aoy + ... +ag Ag] O
h=1

+ [a12 At + a2 Aon + ... +a As] O,
(8)

+ [ass Aah + @s Aon + ... +assAq] 0P} = 0.

For every well-definedh, from (7), all terms that appear in equation @cept for

one, will vanish then. If one adds all of the terthat appear in a column in equation (8)
then it will follow that:

+ags 5p2)
F o (9)
+ A (B 0P, +aw 0P, + ... +tas 0P,) } = 0.
Now equation (3) implies that:
oL _ :
——= D Ay P (10)
P =
SO
d( oL >
|~ P »
dt (aphj ;a“k “
and therefor&, = a, p,+a,,p,+-+a.p, +...=0.
One will then have:
0 0 0
0 cay, Thzay, . 0h =g, 1)
opy op, op,

For that reason, one can also write equationg®lepws:
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0Q 0Q 0Q
2 —LO0P,+—20p,+ - +—20
Z Qh{/ﬂh{ ap, Ot g Ot psj

+ AZh[aQZ 5+ 322 g, 4 022 5@}

0Py P, o,
(12)
0Q 0Q 0Q, <.
+ = Of S0P, +---+—=0 =0,
&h( 2, P, + 2, P, . psj}
or in summation form:
; 0Q Q .. Q ..
2Q Lop,+—Lop,+---+ ,,répsjzo. (12)
hZ:; “;A(apl P, P op,
If one now expands the first sum oVvethen that will yield the equation:
0Q 0Q 0Q
+2 Lo LOp,+---+—=0
QlZA[apl b+, 0P . psj
0Q 0Q .. Q ..
+ 2 LOf LOp,+--+—=0
QZZA[ %, P+ ap, OP: . psj
(13)
0Q 0Q .. Q ..
2Q s ~op, + r5p teeet ..rapsjzo'
ZA{ a5, 0Pt 5p, OP: .

Now one can once more sum over all terms in timeesaolumn of this equation,

which are all multiplied by the same fact%?—f op, . Equation (13) will then go to:

h

S

Z{(2A1Q1+2A2Q2+”'+ ZAst )g—§5pl

r=1

+(2A1Q1+2A2Q2+---+ ZASQS)Z-_?(sz
(14)
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+(2A1Q1+2A Q2+ +2A5Q ) r5‘:)5}:0'

S

If one now divides equation (14) Byand then sets:

Z(2A,Q+ 2A,Qu++ 24,Q.)= ;’—S forr=1,2,3, .5 (15)

r

thenZ will likewise be defined to be a quadratic function of goantitiesQ; , Q, ..., Qs
by thoses equations that will take the form:

-—Z A Q,Q +8(Py-rs Py i D) (16)

,u v=1

after one integrates, as one easily convinces trigsdifferentiating the latter equation.
The functiong enters into it because only the quantitigs were regarded as variable in
equations (11).

Equation (14) will now go to:

S 0Z (0Q, ...  0Q .. 0Q
-Op 0Pt 5ij 0. (17)
Z;‘ oQ [apl op, op,

However, the last expression is nothing but thst fvariation ofZ when only the
quantities p, are varied (so in the Gaussian sense), and evegygse is considered to

be constant. Therefore, from equation (17):
0Z=0. (18)

The second variation is obviously positive, suddt the last equation says that when
one varies the motion in question in the Gaussaise, the constraint:

-—Z A QQ, +B(Prees Py Prve-e Ds)

,uvl

must be aninimum for the actual motion, which results from just tfeneral Lagrangian
equations (1).

It is probably immediately obvious that this detren will be valid for holonomic, as
well as non-holonomicscleronomic coordinates, when one now understandsQhéeo
mean the left-hand sides of the Lagrangian equationhe form (1) in the former case,
but in the form (1) in the latter case, becausedlhgument will remain the same in either
case.
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B. — Rheonomic, generalized coordinates.

The second, and significantly more difficult, of thveo main cases that were cited
above shall now be brought under consideration, nantedycase in whichime also
enters explicitly into the transformation equations. Those transfaomatquations will
then read simply:

Xy =1, (t, p1, P2, ---, Ps) forv=123,... 8

when they are holonomic, or:

y= 8, dt+> 7 dp, forv=1,2,3,..., 8
h=1

when they are non-holonomit)(but in which the functions, and 71, also include time

explicitly. The rheonomic generalized coordingtespz , ..., ps Shall once more fulfill
the conditions on the system:

(X, %, .0Xn) =0, @d(Xi,X%X, ..., %n) =0, ..., @& (Xa,%X, ..., %n)=0

identically, and just as before, they mustdoenpl etel y-independent of each other.

The Lagrangian equations of the second kind do not chamnige that assumption, so
they will also appear in the form (1) and (lI) here@aaling to whether the coordinatas
are holonomic or non-holonomic, because a changeosetaquations would occur only
when certain relations exist between the coordinatdsemselves.

However, in order to be able to go deeper into thabrebcase at all, from the
mathematical standpoint, it will be necessary to makeesassumption about the nature
of the functions that appear here, and for that reas@ will perhaps assume that all of
the functions that enter asngle-valued, analytical functions, which is an assumption
that can probably be regarded as too broad, rather thanatoow, for the physical
problem, in general.

Now, as differentiating the transformation equatiwilé show, in the present case,
one will have either:

- 9% v 1
X,= at Zaph by (1)
or
X/: 79v+zﬂz ph’

h=1

so thevis viva of the point-systerh will no longer take the form of a quadratic function
of the quantitiesp,, now, but of a function of degree two in those quastibiEthe type:

() Cf., Boltzmann, Prinzipe der Mechanik, Part Il.
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3n S S
L=>D¢ =13 a pp+ Y b p+e )

v=l 2 h,k=1 hk=1

in which the coefficientsy , by , andc will themselves include time and the coordinates
pn in any way that depends upon the form of the fonsff, (%, and 7z , resp.).

If one now attempts to actually combine the exgoesQ, here again then one will
get from equation (2) that:

oL & ;
a) - zahk Py +bn,
P k=
d( oL > 08, . 5. 0 . S q
b ——1 = KB+ — 3
) dt[aphj ;{ 5 P .Z:;‘ap. B B +ay B, t Z:l‘,a 3)
oL s, da, s, 0 oc
0 o= =3 PPt Pt
Pn 2p;laph e pzﬂaph ? op,
Moreover, it is known that
d) Pr=3 X, %
h — vV~ 1
v=1 aph
or for non-holonomic coordinates:
3n
Pr=> X, 1,
v=1
and finally, fromBoltzmann (%):
Voo v _ 0%, df0x,
e Z + Z =__v _
) h ; hk aph dt(aphj

If one then forms the expressi@y from these relationst3 ¢, d, and possiblye,
according to the forms (I) or (ll) that were prdasento begin with, then one will see
immediately that for the rheonomic coordinateswall as for the scleronomic ones, one
will have in full generality:

aQ, _ or {h=1,2,...,s, @

E_ahr’ r=12....,8

r

For that reason, one should also consider therdetantD of the quadratic parts in
the expression fdr [equation (2)] here; i.e., the determinant of eéegr:

() Boltzmann, Prinzipe der Mechanik, Part I, pp. 106.
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&, Q, - Qg
D= &y aQ, o Ay .
&, 4, - 4

However, one can no longer assert now, as perhapwauld in the first case, that
this determinanD must be non-zero for all values of timebecause the proof that was
given before was essentially based upon the assuntpibh was a homogeneous form,
which is indeed no longer the case here. In order tmiexathe determinar®® more
closely, it is therefore necessary to actual constty@nd indeed initially under the
assumption that the transformation equatiorhatenomic in form. One will then have:

- E o] O
and thevis viva will be:

or also:

SZ (—pﬁ +—psj Zrm Z—ph Zm{ jz

V=1 op, op, 10p, h=1
If one then compares that to the general formdaqo (2)]:
L=3a, P +38, Pyt +3a, Pi+a,p.p o +a o b Ptbp +.

then one will see immediately that the determinainthe coefficientsa, will take the
following form in the case of rheonomic, holonoro@ordinates:

im[&j imaw& X, el

op, op, 9p, v 0p, 0p,
D0 0%, & (axuj 0%, 0%,
D= sz‘im”apl ap, Z‘m ap, sz‘imapzapS :

3n

X 0 o (ox Y
Sm&&x L Zm[—‘j
v=1

op, Ip, =\ 0p,
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However, there is nothing more that one can say abwtvanishing of that
determinant from its form. It therefore important point out that this symmetric
determinanD can also be regarded as the product of two rectangulacesa):

p, ap, op, || Opp  Op, ap,
0X, 0X, 0%, 0x, 0X, 0X,
op, ~0p, Top, || op  Op, ap,

rnla_xl mZ% mmax3n ax3n ax3n 6X3n

| Cop,  op, o, || oo op, ap, |

However, since the number of rowss smaller than the number of rows B any
event, from a theorem in the theory of determinabgt{is symbolic product can also be

represented as a sum(ogfnj squares, each of which has the general form:
S

2

ox.  0x ox,

op,  0p, op,
ox.~ OX. 0x.

m, Enrz ey fop,  dp, op, |

ox,  0x, 0x,
op, O0p, op,

in whichry, ry, r3, ..., rs mean any combination of clas®f the elements 1, 2, 3, ...n3
without repetition. However, the coordinatasxy, ..., Xsp are not independent of each
other, but are coupled by tlreondition equations:

@1 (Xq, X2, ..., Xan) = 0, @2 (Xa, X2, ..., Xan) = 0, vy @ (Xg, X2, ..uy Xan) = 0,
which is why one can think of representingf the quantitiex in these equations as

functions of the remainingrn3- 7 = s quantities, which will then be independent of each
other — say, in the form:

XS+1:¢I]. (Xla X21 '--lXS)l XS+2:¢I]. (Xla X21 '--lXS)l ey )an:wl (Xla X21 "'IXS) .

(" [Translator: | have taken the liberty of modernigthe matrix notation in this product, so not all of
the discussion that follows in regard to the theory ofrdateants is not applicable to it. | have included
the remarks only the for the sake of completeness.]

() Balzer, Determinanten, §6, pp. 48 et seq. —E. Pasca) Determinanten, |, §7.
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However, one will then have:

0% = oY, 0% +a¢lﬂ 0%, +---+a¢lﬂ 9%, (5)
ap, 9% dp, 9x, dp, 0 op,

for allvaluesofAi=1, 2, ...,r, andh=1, 2, ...,s.
If one now introduces this representation (5) into tlkvidual determinant-squares
in the development above then, as is clear immewgjasefactor that is combined with

2

0 . . : .

[a%j will emerge from each of them, with exception of tlest one, and the
X,

remaining determinant-squares will then coincide with ifs¢ éne. For that reason, one

can also represent the entire original determiaas the square of those individual first

sub-determinants in the form:
2

op, op,

2 2 0X, 0X,

D= (0)) cee,m, Lo, r 0 0
mnmvo|mem (3] (32 [
op, op,

As would emerge immediately from its form, the expoessan square brackets
cannot vanish, and can only be positive, becausmlage positive quantities, since they
are material masses, and the functionan also be only positive or zero, since it is a sum
of quadratic terms. Therefore, the vanishing of the detentidas possible only when
the determinant of degree
o 0% 0%
op,  0p, op,
ox 0% = 0%
op, ap,

>
I
D
N

ox 0% . 0%
op, 9p, op,

vanishes.

However, the determinamh, whose vanishing then represents a necessary and
sufficient condition for the vanishing of the origirdgterminantD, is nhow nothing but
the functional determinant of the single-valued, analytnctions:

xg =f1 (&, pr, P2y --0n Ps), Xe=Fo(t, p1,P2, -y Ps)y ooy Xs=Ts(t, Pr, P2, .-y Ps) -
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For that reason) itself is a single-valued, analytic function of the qutzesp; , p2,

..., Ps, and as such, must vanish identically when it also vasigtentically in any
arbitrarily-small time-interval“to t”. In that way, however, one would obviously define
a relation between the quantitips, p2, ..., ps, which would contradict the complete
independent of the generalized coordinates from each thidiewas assumed. One will
then have thedentical vanishing of the original determinaldtin any time interval that is
also not too small iexcluded, and all that will remain is that the determinant shas for
only isolated special moments, t; , to , ..., while it will otherwisebe non-zero, in
general.

However, as long as that determinBnis non-zero, as a result of the results that were
obtained in equation (4), one can, with no further amglgdso repeat precisely the same
conclusions for the case of rheonomic coordinates on&t reached in the case of
scleronomic coordinates, such that one will get theesaxpression for the constraint
(which must be a minimum for the actual motion) aghenfirst case, namely:

2=~ 3 ALQQ PR PusBunr )

Hy=l

for all intervals in which the assumpti@nz 0 is fulfilled.

Naturally, time will also appeaxplicitly in that expression for the constramnow,
just as it does in the quantitidg, , andD.

However, as far as each individual moment is corezein which the determinabt
actually vanishes (and for which the derivatiort thas given above would no longer be
meaningful then), from a purely-mathematical stamalp one can probably find the
modified general expression for the constrainhasé moments by a passing to the limit
under special assumptions on the nature of thetibngthat appear. However, such
detailed mathematical investigations must be skippeer here, since more detailed
specializations of the assumptions are not perbiessvith no further discussion for the
present general physical problem, and since omtiher hand the mechanical principles
will no longer be actually applicable when one stdandividual moments at which the
time and coordinates do not vary, but are regaedefixed. In general, one also cannot
decide when that exceptional case can actuallyrocecuhow often, without going into
special cases.

Finally, in regard to thaon-holonomity of the rheonomic coordinates, which has
been excluded up to now, it should be pointed loait it will exert no essential influence
on the course of the investigation here either, assin the first case, except that the

single-valued analytic functiong, (which are generally not better known) will enter i

place of the differential quotient, / dpx , and the Lagrangian equations will again be
employed in the form (Il). However, all conclusomwill remain correct, with the
exception of the decomposition of the determiriantvhich can no longer be performed
here, in general. Nonetheless, that fact, which lvéicome clear later, has no further
influence on the entire argument, because just thieefunctional determinart, D is
obviously also itself a single-valued analytic ftion of the quantitiep; , p2, ..., psthat
cannot vanish identically without the disturbing iissumed mutual-independence of the
generalized coordinates. Under the assumptiorngfesvalued, analytic functionshe
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general expression for the constraint Z is precisely the same for rheonomic coordinates,
and indeed for holonomic, as well as non-holonomic, as it is for sceleronomic
coordinates (except for individual moments that might possiblyexidienD = 0).




