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 It is known that the principle of least constraint that Gauss presented (1829) can be 
derived from Lagrange’s equations of the first kind for rectangular coordinates in a 
simple way, in which the expression for the constraint Z – i.e., the function to be 
minimized – was first formulated by Scheffler (1858): 
 

Z = 2 2 2

1

1
[( ) ( ) ( ) ]

n

m x X m y Y m z Z
m ν ν ν ν ν ν ν ν ν

ν ν=

− + − + −∑ ɺɺ ɺɺ ɺɺ . 

 
 Now, Lipschitz (1877) tried to introduce general coordinates into the condition 
equations that the variable must fulfill identically in place of the rectangular ones that are 
coupled to each other by the condition equations, and Wassmuth (1895) succeeded in 
performing the transformation of constraint into general coordinates in a very simple 
way, at least under the assumption that the conditions do not include time explicitly (1).  
In addition, Radakovich and other have addressed that problem in detail. 
 That raises the question of whether it might be possible to derive Gauss’s principle 
for mutually-independent generalized coordinates, as well, and in particular, the general 
expression for the constraint Z, from the most general Lagrange equations of the second 
kind directly in a way that is similar to what one does with rectangular coordinates. 
 Now, such a direct derivation shall be attempted in what follows in which in total four 
different cases shall initially be brought under consideration, since the form of the 
condition equations that exist between the rectangular coordinates, as well as the 
transformation equations by which the generalized coordinates p1 , p2 , …, ps will be 
introduced in place of the rectangular ones, can be 1. holonomic or 2. non-holonomic, and 
the transformation equations can themselves once more include time t or not in both 
cases, and thus be rheonomic or scleronomic, resp. 

                                                
 (1) Waßmuth, “Über die Transformation des Zwanges,” These Sitzungsberichte, CIV, Part II.  
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 Meanwhile, it will be shown that the non-holonomity of the generalized coordinates 
generally exerts no essential influence upon method of derivation, such that actually only 
two main cases will come under consideration in the present article, namely, according to 
whether the generalized coordinates are scleronomic or rheonomic. 
 The simpler, and at the same, more common of those two cases shall be attacked first. 
 
 

A. – Scleronomic generalized coordinates. 
 

 At first, the transformation equations shall not include time t explicitly, so they will 
either read like (1): 

xν = fν (p1 , p2 , …, ps)  for ν = 1, 2, …, 3n, 
 
in case they are holonomic, or: 
 

dxν = 
1

s

h h
h

dpνπ
=
∑   for ν = 1, 2, …, 3n, 

 
in case they are non-holonomic, in which the quantities h

νπ  are any functions of the ph 

that do not, however, include time explicitly.  The s general or generalized coordinates p1, 
p2 , …, ps that are introduced by these 3n equations shall fulfill the τ condition equations 
that exist between the rectangular coordinates: 
 

ϕ1 (x1 , x2 , …, x3n) = 0,      ϕ2 (x1 , x2 , …, x3n) = 0,      …,      ϕτ (x1 , x2 , …, x3n) = 0 
 
identically, but are completely independent of each other, which is naturally possible only 
when their number s is equal to the number of degrees of freedom in the system 3n – τ.  
The Lagrange equations of the second kind will then read: 
 

Qh = 
h h

d L L

dt p p

 ∂ ∂− ∂ ∂ ɺ
 − Ph = 0 for  h = 1, 2, …, s,   (I) 

 
for holonomic coordinates, and for non-holonomic coordinates, they read: 
 

Qh = 
h h

d L L

dt p p

 ∂ ∂− ∂ ∂ ɺ
 − Ph + 

3

1 1

n s

h hk
k

m x ν ν
ν ν

ν
ζ ζ

= =

 + 
 

∑ ∑ɺ = 0, for h = 1, 2, …, s, (II) 

 
as Boltzmann first found (2), in which L is the vis viva, and Ph means a generalized force 
component. 

                                                
 (1) Following Boltzmann, all rectangular coordinates for the system will be denoted with the same 
symbol x, and likewise, for the sake of simplicity in notation, each mass of each point will be expressed by 
three symbols; e.g., m1 = m2 = m3 . 
 (2)  Boltzmann, Prinzipe der Mechanik, Part II, pp. 109.  See also pp. 8 of this article. 
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 One can now derive Gauss’s principle and the general expression for the constraint 
directly from these generalized Lagrange equation in the present case as follows: 
 It follows from the equations: 
 

Q1 = 0,  Q2 = 0, …, Qs = 0     (1) 
that: 

1 1 2 2 3 3 s sQ p Q p Q p Q pδ δ δ δ+ + + +ɺɺ ɺɺ ɺɺ ɺɺ⋯ = 0.    (2) 

 
 Furthermore, differentiating the transformation equations will give either: 
 

xνɺ = 
1

s

h
h h

x
p

p
ν

=

∂
∂∑ ɺ   or xνɺ = 

1

s

h h
h

pνπ
=
∑ ɺ , 

 
such that the vis viva of the point system will take the form of a quadratic form in the 
quantities hpɺ : 

L = 
3

2

1 2

n m
xν

ν
ν =
∑ ɺ  = 1

2
, 1

s

hk h k
h k

a p p
=
∑ ɺ ɺ .    (3) 

 
 The coefficients ahk = akh in that form are composed of the quantities ∂xν / ∂pk ( h

νπ , 

respectively), so they are functions of the ph  (which do not include time explicitly), and it 
can be shown that the determinant of the quadratic form L is non-zero (1): 
 

D ≡ 

11 12 1

21 22 2

1 2

s

s

s s ss

a a a

a a a

a a a

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 ≠ 0 

for all values of time t. 
 One then multiplies equation (2) by 2D and gets: 
 

1

2
s

h h
h

Q D pδ
=

⋅ ⋅∑ ɺɺ = 0.     (4) 

 Now, as is known: 
 

D = a1h A1h + a2h A2h + … + ash Ash ,  for h = 1, 2, 3, …, s,  (5) 
 
in which the Arh shall be the adjoints of D.  Equation (4) can then also be written in form: 
 

1

2
s

h
h

Q
=
∑ [a1h A1h + a2h A2h + … + ash Ash] hpδ ɺɺ = 0.   (6) 

 

                                                
 (1) Boltzmann, Prinzipe der Mechanik, Part II, pp. 35. 
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 Now, there is another theorem from the theory of determinants that when r is 
different from h : 

a1h A1h + a2h A2h + … + ash Ash = 0.    (7) 
 
 If one then adds those terms (which vanish identically) to the left-hand sides of 
equation (4) or (6) then one will also have: 
 

 
1

2
s

h
h

Q
=
∑ {[ a11 A1h + a21 A2h + … + as1 Ash] 1pδ ɺɺ  

  
 + [a12 A1h + a22 A2h + … + as2 Ash] 2pδ ɺɺ  

(8) 
 + ……………………………………. 
 
 + [a1s A1h + a2s A2h + … + ass Ash] spδ ɺɺ } = 0.  

 
 For every well-defined h, from (7), all terms that appear in equation (6), except for 
one, will vanish then.  If one adds all of the terms that appear in a column in equation (8) 
then it will follow that: 
 

 
1

2
s

h
h

Q
=
∑ { A1h (a11 1pδ ɺɺ + a12 2pδ ɺɺ  + … + a1s 2pδ ɺɺ )  

+ …………………………………….     (9) 
 
 + Ash (as1 1pδ ɺɺ + as2 2pδ ɺɺ  + … + ass 2pδ ɺɺ ) } = 0. 

 
 Now equation (3) implies that: 
 

h

L

p

∂
∂ɺ

= 
1

s

hk k
k

a p
=
∑ ɺ ,     (10) 

so 

h

d L

dt p

 ∂
 ∂ ɺ

 = 
1

s

hk k
k

a p
=
∑ ɺɺ , 

 
and therefore Qh = 1 1 2 2h h hs sa p a p a p+ + +ɺɺ ɺɺ ɺɺ⋯  + … = 0. 

 One will then have: 

1

hQ

p

∂
∂ɺɺ

 = ah1 , 
2

hQ

p

∂
∂ɺɺ

 = ah2 , …, h

s

Q

p

∂
∂ɺɺ

 = ahs .    (11) 

 
 For that reason, one can also write equation (9) as follows: 
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 1 1 1
1 1 2

1 1 2

2
s

h h s
h s

Q Q Q
Q A p p p

p p p
δ δ δ

=

  ∂ ∂ ∂ + + +  ∂ ∂ ∂  
∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
 

 

 + 2 2 2
2 1 2

1 2
h s

s

Q Q Q
A p p p

p p p
δ δ δ

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
 

(12) 
 + ………………………………………… 
 

 + 1 2
1 2

s s s
sh s

s

Q Q Q
A p p p

p p p
δ δ δ

 ∂ ∂ ∂ + + +  ∂ ∂ ∂  
ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
= 0, 

 
or in summation form: 
 

1 2
1 1 1 2

2
s s

r r r
h rh s

h r s

Q Q Q
Q A p p p

p p p
δ δ δ

= =

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
∑ ∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
= 0.  (12′) 

 
 If one now expands the first sum over h then that will yield the equation: 
 

 + 1 1 1 2
1 1 2

2
s

r r r
r s

r s

Q Q Q
Q A p p p

p p p
δ δ δ

=

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
 

 

 + 2 2 1 2
1 1 2

2
s

r r r
r s

r s

Q Q Q
Q A p p p

p p p
δ δ δ

=

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
 

(13) 
 + ………………………………………………… 
 

 + 1 2
1 1 2

2
s

r r r
s rs s

r s

Q Q Q
Q A p p p

p p p
δ δ δ

=

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
 = 0. 

 
 Now one can once more sum over all terms in the same column of this equation, 

which are all multiplied by the same factor r h
h

Q
p

p
δ∂

∂
ɺɺ

ɺɺ
.  Equation (13) will then go to: 

 

 1 1 2 2 1
1 1

(2 2 2 )
s

r
r r rs s

r

Q
A Q A Q A Q p

p
δ

=

 ∂+ + + ∂
∑ ɺɺ⋯

ɺɺ
 

 

 + 1 1 2 2 2
2

(2 2 2 ) r
r r rs s

Q
A Q A Q A Q p

p
δ∂+ + +

∂
ɺɺ⋯

ɺɺ
 

(14) 
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 + ……………………………………………… 
 

 + 1 1 2 2(2 2 2 ) r
r r rs s s

s

Q
A Q A Q A Q p

p
δ

∂+ + + ∂ 
ɺɺ⋯

ɺɺ
= 0. 

 
 If one now divides equation (14) by D and then sets: 
 

1 1 2 2

1
(2 2 2 )r r rs sA Q A Q A Q

D
+ + +⋯ = 

r

Z

Q

∂
∂

 for r = 1, 2, 3, …, s  (15) 

 
then Z will likewise be defined to be a quadratic function of the quantities Q1 , Q2 , …, Qs 
by those s equations that will take the form: 
 

Z = , 1 1
, 1

1
( , , , , , )

s

s sA Q Q p p p p
D µ ν µ ν

µ ν
ϕ

=

+∑ ɺ ɺ… …     (16) 

 
after one integrates, as one easily convinces oneself by differentiating the latter equation.  
The function ϕ enters into it because only the quantities hpɺɺ  were regarded as variable in 

equations (11). 
 Equation (14) will now go to: 
 

1 2
1 1 2

s
r r r

s
r r s

Q Q QZ
p p p

Q p p p
δ δ δ

=

 ∂ ∂ ∂∂ + + + ∂ ∂ ∂ ∂ 
∑ ɺɺ ɺɺ ɺɺ⋯

ɺɺ ɺɺ ɺɺ
= 0.   (17) 

 
 However, the last expression is nothing but the first variation of Z when only the 
quantities hpɺɺ  are varied (so in the Gaussian sense), and everything else is considered to 

be constant.  Therefore, from equation (17): 
 

δ Z = 0.     (18) 
 

 The second variation is obviously positive, such that the last equation says that when 
one varies the motion in question in the Gaussian sense, the constraint: 
 

Z = , 1 1
, 1

1
( , , , , , )

s

s sA Q Q p p p p
D µ ν µ ν

µ ν
ϕ

=

+∑ ɺ ɺ… …  

 
must be a minimum for the actual motion, which results from just the general Lagrangian 
equations (1). 
 It is probably immediately obvious that this derivation will be valid for holonomic, as 
well as non-holonomic, scleronomic coordinates, when one now understands the Qh to 
mean the left-hand sides of the Lagrangian equations in the form (I) in the former case, 
but in the form (II) in the latter case, because the argument will remain the same in either 
case. 
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B. – Rheonomic, generalized coordinates. 
 

 The second, and significantly more difficult, of the two main cases that were cited 
above shall now be brought under consideration, namely, the case in which time also 
enters explicitly into the transformation equations.  Those transformation equations will 
then read simply: 

xν = fν (t, p1, p2, …, ps) for ν = 1, 2, 3, …, 3n 
 

when they are holonomic, or: 
 

dxν = ϑν dt +
1

s

h h
h

dpνπ
=
∑  for ν = 1, 2, 3, …, 3n 

 
when they are non-holonomic (1), but in which the functions ϑν and h

νπ  also include time 

explicitly.  The rheonomic generalized coordinates p1 , p2 , …, ps shall once more fulfill 
the conditions on the system: 
 

ϕ1 (x1 , x2 , …, x3n) = 0,      ϕ2 (x1 , x2 , …, x3n) = 0, …, ϕτ (x1 , x2 , …, x3n) = 0 
 
identically, and just as before, they must be completely-independent of each other. 
 The Lagrangian equations of the second kind do not change under that assumption, so 
they will also appear in the form (I) and (II) here according to whether the coordinates ph 
are holonomic or non-holonomic, because a change in those equations would occur only 
when certain relations exist between the coordinates ph themselves. 
 However, in order to be able to go deeper into that second case at all, from the 
mathematical standpoint, it will be necessary to make some assumption about the nature 
of the functions that appear here, and for that reason, one will perhaps assume that all of 
the functions that enter are single-valued, analytical functions, which is an assumption 
that can probably be regarded as too broad, rather than too narrow, for the physical 
problem, in general. 
 Now, as differentiating the transformation equations will show, in the present case, 
one will have either: 

xνɺ = 
1

s

h
h h

x x
p

t p
ν ν

=

∂ ∂+
∂ ∂∑ ɺ       (1) 

or 

xνɺ = 
1

s

h h
h

pν
νϑ π

=
+∑ ɺ , 

 
so the vis viva of the point-system L will no longer take the form of a quadratic function 
of the quantities hpɺ  now, but of a function of degree two in those quantities of the type: 

 

                                                
 (1) Cf., Boltzmann, Prinzipe der Mechanik, Part II. 
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L = 
3

2

1 2

n m
xν

ν
ν =
∑ ɺ  = 1

2
, 1 , 1

s s

hk h k h h
h k h k

a p p b p
= =

+∑ ∑ɺ ɺ ɺ + c,   (2) 

 
in which the coefficients ahk , bh , and c will themselves include time and the coordinates 
ph in any way that depends upon the form of the functions fν (ϑν and h

νπ , resp.). 

 If one now attempts to actually combine the expressions Qh here again then one will 
get from equation (2) that: 
 

a)  
h

L

p

∂
∂ɺ

= 
1

s

hk k
k

a p
=
∑ ɺ + bh , 

 

b)  
h

d L

dt p

 ∂
 ∂ ɺ

 = 
1 1 1

s s s
hk hk h h

k k l hk k l
k l ll l

a a b b
p p p a p p

t p t p= = =

 ∂ ∂ ∂ ∂+ + + + ∂ ∂ ∂ ∂ 
∑ ∑ ∑ɺ ɺ ɺ ɺɺ ɺ ,         (3) 

 

c)  
h

L

p

∂
∂

 = 1
2

, 1 1

s s
k

k
k h h h

a b c
p p p

p p p
ρ ρ

ρ ρ
ρ ρ= =

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑ɺ ɺ ɺ . 

 
 Moreover, it is known that: 

d)      Ph = 
3

1

n

h

x
X

p
ν

ν
ν =

∂
∂∑ , 

or for non-holonomic coordinates: 

   Ph = 
3

1

n

hX ν
ν

ν
π

=
∑ , 

and finally, from Boltzmann (1): 
 

e)     
1

s

h hk
k

ν νζ ζ
=

+∑  = 
h h

x xd

p dt p
ν ν ∂ ∂−  ∂ ∂ 

ɺ
. 

 
 If one then forms the expression Qh from these relations 3b, c, d, and possibly e, 
according to the forms (I) or (II) that were presented to begin with, then one will see 
immediately that for the rheonomic coordinates, as well as for the scleronomic ones, one 
will have in full generality: 
 

h

r

Q

p

∂
∂ɺɺ

= ahr ,  for 
1,2, , ,

1,2, , .

h s

r s

=
 =

…

…
   (4) 

 
 For that reason, one should also consider the determinant D of the quadratic parts in 
the expression for L [equation (2)] here; i.e., the determinant of degree s : 
 

                                                
 (1)  Boltzmann, Prinzipe der Mechanik, Part II, pp. 106. 
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D ≡ 

11 12 1

21 22 2

1 2

s

s

s s ss

a a a

a a a

a a a

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

. 

 
 However, one can no longer assert now, as perhaps one would in the first case, that 
this determinant D must be non-zero for all values of time t, because the proof that was 
given before was essentially based upon the assumption that L was a homogeneous form, 
which is indeed no longer the case here.  In order to examine the determinant D more 
closely, it is therefore necessary to actual construct it, and indeed initially under the 
assumption that the transformation equation are holonomic in form.  One will then have: 
 

xνɺ = 
1

s

h
h h

x x
p

t p
ν ν

=

∂ ∂+
∂ ∂∑ ɺ , 

and the vis viva will be: 
 

 L = 
3

2

1 2

n m
xν

ν
ν =
∑ ɺ = 

223

1 1 1

2
2

n s s

h h
h hh h

m x x x x
p p

t t p p
ν ν ν ν ν

ν = = =

  ∂ ∂ ∂ ∂ 
 + +   ∂ ∂ ∂ ∂    

∑ ∑ ∑ɺ ɺ  

 
or also: 
 

 L = 
2 23 3 3

1 1
12 2

1 1 1 11

n n s n

s h
h hs h

x x x x x
m p p m p m

p p t p t
ν ν ν ν ν

ν ν ν
ν ν= = = =

 ∂ ∂ ∂ ∂ ∂ + + + +   ∂ ∂ ∂ ∂ ∂  
∑ ∑ ∑ ∑ɺ ɺ ɺ⋯ . 

 
 If one then compares that to the general form [equation (2)]: 
 

L = 2 2 21 1 1
11 1 22 2 12 1 2 1, 1 1 12 2 2 ss s s s s sa p a p a p a p p a p p b p− −+ + + + + + +ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ⋯ ⋯  + … 

 
then one will see immediately that the determinant of the coefficients ahk will take the 
following form in the case of rheonomic, holonomic coordinates: 
 

D = 

2
3 3 3

1 1 11 1 2 1

2
3 3 3

1 1 11 2 2 2

2
3 3

1 11

n n n

s

n n n

s

n n

s s

x x x x x
m m m

p p p p p

x x x x x
m m m

p p p p p

x x x
m m

p p p

ν ν ν ν ν
ν ν ν

ν ν ν

ν ν ν ν ν
ν ν ν

ν ν ν

ν ν ν
ν ν

ν ν

= = =

= = =

= =

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
 ∂ ∂ ∂ 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

. 
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 However, there is nothing more that one can say about the vanishing of that 
determinant from its form.  It therefore important to point out that this symmetric 
determinant D can also be regarded as the product of two rectangular matrices (†): 
 

3 1 1 11 2
1 2 3

1 21 1 1

3 2 2 21 2
1 2 3

1 2 12 2 2

3 3 331 2
1 2 3

1 21

n
n

s

n
n

n n nn
n

ss s

x x x xx x
m m m

p p pp p p

x x x xx x
m m m

p p pp p p

x x xxx x
m m m

p p pp p p

∂ ∂ ∂ ∂∂ ∂   
   ∂ ∂ ∂∂ ∂ ∂
   

∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂∂ ∂ ∂   
   
   ∂ ∂ ∂∂∂ ∂   
   ∂ ∂ ∂∂ ∂ ∂   

⋯⋯

⋯⋯

⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯

⋯⋯

 

 
 However, since the number of rows s is smaller than the number of rows 3n in any 
event, from a theorem in the theory of determinants (1), this symbolic product can also be 

represented as a sum of 
3n

s

 
 
 

 squares, each of which has the general form: 

 

1 1 1

1 2 2

1 2

1 2

2

1 2

1 2 1

1 2

s

s

r r r

s

r r r

r r r

rr r

s

x x x

p p p

x x x

m m m p p p

xx x

p p p

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

⋅ ⋅ ∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

⋯

⋯
⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
in which r1, r2, r3, …, rs mean any combination of class s of the elements 1, 2, 3, …, 3n 
without repetition.  However, the coordinates x1, x2, …, x3n are not independent of each 
other, but are coupled by the τ condition equations: 
 
ϕ1 (x1, x2, …, x3n) = 0,  ϕ2 (x1, x2, …, x3n) = 0,  …,  ϕτ (x1, x2, …, x3n) = 0, 
 
which is why one can think of representing τ of the quantities x in these equations as 
functions of the remaining 3n – τ = s quantities x, which will then be independent of each 
other – say, in the form: 
 

xs+1 = ψ1 (x1, x2, …, xs),  xs+2 = ψ1 (x1, x2, …, xs),    …,    x3n = ψ1 (x1, x2, …, xs) . 
 
                                                
 (†) [Translator: I have taken the liberty of modernizing the matrix notation in this product, so not all of 
the discussion that follows in regard to the theory of determinants is not applicable to it.  I have included 
the remarks only the for the sake of completeness.] 
 (1) Balzer, Determinanten, § 6, pp. 48, et seq. – E. Pascal, Determinanten, I, § 7. 
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However, one will then have: 
 

s

h

x

p
λ+∂

∂
= 1 2

1 2

s

h h s h

xx x

x p x p x p
λ λ λψ ψ ψ∂ ∂ ∂ ∂∂ ∂+ + +

∂ ∂ ∂ ∂ ∂ ∂
⋯     (5) 

 
for all values of λ = 1, 2, …, τ, and h = 1, 2, …, s. 
 If one now introduces this representation (5) into the individual determinant-squares 
in the development above then, as is clear immediately, a factor that is combined with 

2

hx
λψ ∂

 ∂ 
 will emerge from each of them, with exception of the first one, and the 

remaining determinant-squares will then coincide with the first one.  For that reason, one 
can also represent the entire original determinant D as the square of those individual first 
sub-determinants in the form: 

D = 

2

1

1 1

22 1

1
2 21 2 1

1

1

, , , , ,

s

s

s s
s

s

s s

xx

p p

xx

p pm m m m m
x x

xx

p p

τψψ

∂∂
∂ ∂

∂∂     ∂∂
   ∂ ∂+ Φ    ∂ ∂      

∂∂
∂ ∂

⋯

⋯

⋯ ⋯ …

⋯ ⋯ ⋯

⋯

. 

 
 As would emerge immediately from its form, the expression in square brackets 
cannot vanish, and can only be positive, because the mν  are positive quantities, since they 
are material masses, and the function Φ can also be only positive or zero, since it is a sum 
of quadratic terms.  Therefore, the vanishing of the determinant D is possible only when 
the determinant of degree s : 

∆ ≡ 

1 2

1 1 1

1 2

2 2 2

1 2

s

s

s

s s s

xx x

p p p

xx x

p p p

xx x

p p p

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

vanishes. 
 However, the determinant ∆, whose vanishing then represents a necessary and 
sufficient condition for the vanishing of the original determinant D, is now nothing but 
the functional determinant of the single-valued, analytic functions: 
 

x1 = f1 (t, p1 , p2 , …, ps),    x2 = f2 (t, p1 , p2 , …, ps),    …,    xs = fs (t, p1 , p2 , …, ps) . 
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 For that reason, ∆ itself is a single-valued, analytic function of the quantities p1 , p2 , 
…, ps , and as such, must vanish identically when it also vanishes identically in any 
arbitrarily-small time-interval t′ to t″.  In that way, however, one would obviously define 
a relation between the quantities p1 , p2 , …, ps , which would contradict the complete 
independent of the generalized coordinates from each other that was assumed.  One will 
then have the identical vanishing of the original determinant D in any time interval that is 
also not too small is excluded, and all that will remain is that the determinant vanishes for 
only isolated special moments t0 , t1 , t2 , …, while it will otherwise be non-zero, in 
general. 
 However, as long as that determinant D is non-zero, as a result of the results that were 
obtained in equation (4), one can, with no further analysis, also repeat precisely the same 
conclusions for the case of rheonomic coordinates that one reached in the case of 
scleronomic coordinates, such that one will get the same expression for the constraint Z 
(which must be a minimum for the actual motion) as in the first case, namely: 
 

Z = 1 1
, 1

1
( , , , , , )

s

s sA Q Q p p p p
D µν µ ν

µ ν
ϕ

=

+∑ ɺ ɺ… … , 

 
for all intervals in which the assumption D ≠ 0 is fulfilled. 
 Naturally, time will also appear explicitly in that expression for the constraint Z now, 
just as it does in the quantities Aµν , and D. 
 However, as far as each individual moment is concerned in which the determinant D 
actually vanishes (and for which the derivation that was given above would no longer be 
meaningful then), from a purely-mathematical standpoint, one can probably find the 
modified general expression for the constraint at those moments by a passing to the limit 
under special assumptions on the nature of the functions that appear.  However, such 
detailed mathematical investigations must be skipped over here, since more detailed 
specializations of the assumptions are not permissible with no further discussion for the 
present general physical problem, and since on the other hand the mechanical principles 
will no longer be actually applicable when one selects individual moments at which the 
time and coordinates do not vary, but are regarded as fixed.  In general, one also cannot 
decide when that exceptional case can actually occur, or how often, without going into 
special cases. 
 Finally, in regard to the non-holonomity of the rheonomic coordinates, which has 
been excluded up to now, it should be pointed out that it will exert no essential influence 
on the course of the investigation here either, just as in the first case, except that the 
single-valued analytic functions k

νπ (which are generally not better known) will enter in 

place of the differential quotients ∂xν / ∂pk , and the Lagrangian equations will again be 
employed in the form (II).  However, all conclusions will remain correct, with the 
exception of the decomposition of the determinant D, which can no longer be performed 
here, in general.  Nonetheless, that fact, which will become clear later, has no further 
influence on the entire argument, because just like the functional determinant ∆, D is 
obviously also itself a single-valued analytic function of the quantities p1 , p2 , …, ps that 
cannot vanish identically without the disturbing the assumed mutual-independence of the 
generalized coordinates.  Under the assumption of single-valued, analytic functions, the 
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general expression for the constraint Z is precisely the same for rheonomic coordinates, 
and indeed for holonomic, as well as non-holonomic, as it is for sceleronomic 
coordinates (except for individual moments that might possibly arise when D = 0). 
 
 

___________ 
 
 
 


