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PREFACE

To my mind, after more than thirty years have passexethiting of this preface
amounts to a nostalgic memory of the time in whichttieeries of relativity commenced
their grand career. For me, it also evokes all ofatbek that | had the pleasure of seeing
the birth of, thanks to A. Lichnerowicz and his studewtith a richness in the results that
fulfills my hopes and sometimes surpasses them. Withaoubt, that set is destined to
be enlarged further, but it is time to make its presemnitizde known. This is what A.
Lichnerowicz did in his course at the College de Frahg@éng the two years 1952-1953
and 1953-1954. It is the content of these two coursesdhatittite the present book.

Einstein’s train of thought, starting with special teiy, may now be outlined in its
grandiose simplicity, and hopefully remain faithfulrtion.

The invariant quadratic form that defines the intervalvben two neighboring events
introduces a new geometry that is not properly Euclidiane it involves real elements
of null length, a geometry of a spacetime that isiealnty adapted to the propagation of
electromagnetic waves.

However, this spacetime, although an excellent gettim physics, still has no
physical reality. It does not define the enveloping fiblt unites the effects and causes
of the energy distribution and its motion. The sedochand study of the properties of
this grand field for gravitation in a hyper-field that unitesawijation and
electromagnetism is the passionate quest that spawmseddok by A. Lichnerowicz.
The construction is based on the genius of Riemann,cndaded general spaces in which
the metric is given by a quadratic differential form, dfidstein, who extended the
invariant interval of special relativity to that of @&Rannian space and divined what sort
of fundamental equations must restrict the generalithede Riemannian spaces in order
to define a true gravitational field.

The physical fecundity of the theory, which integsag@d profoundly generalizes the
preceding theories, also has an esthetic superiorityodie fact that, as we shall see, it
seems to be the crowning glory of the theory of th@ggation of waves.

Moreover, one sees in it a sort of mathematicalridity, as well as new problems
that are naturally provoked by the idea that the spacdtaaghysical reality, such as the
following one: Any regular spacetime without mattermsedo be necessarily locally
Euclidian.

The deeper mathematical treatment of these hyperajees necessarily employs
not only the tensorial calculus but also the stylantrinsic differential geometry that
affords the necessary clarity and rigor that thededif questions demand.

The first book is dedicated to general relativity, ammblBIl is dedicated to unitary
theories. For the latter, A. Lichnerowicz has mad#udy of two examples that are both
the most recent and the most suggestive from a physaadmint: the Jordan-Thiry
theory and the Einstein-Schrddinger theory.

One knows that in order to begin a theory of grawatatEinstein proposed a
Riemannian geometry for spacetime. The fundamental quadiatio of four
differentials:

dSZ = gaﬁandXﬂ,
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must be of the hyperbolic normal type, in the sensk Bfadamard, i.e.:
d¢ = () - () - ()? - ()2,

in which theware linearly independent Pfaff form&@ne finds a real hypercone defined
at each point that verifies the equatish = 0, just as in special relativity.

The gravitational tensay.z is subject to a system of equations that generalizes th
Laplace equations for the exterior case and the Pomsgoations for the interior case,
which are the basis for potential theory. There areetpiations:

Sop=X Tap.

The two symmetric tensor§,z and Tos have a geometric nature and represent a
generalization of the density that is described by theggrdistribution and its motion,
respectively. One verifies how the intuition of E@is provided a solution to this
dilemma that is quite unique by choosiagto be the Ricci tensor.

The ten second-order equations for the derivativegzgfwhich are linear in these
derivatives and verify the four conditions, are calltedservation conditions of the tensor
S;s. These conservation conditions are thus imposedig@n In order to use the
fundamental equations, it is necessary to:

a) State in a precise fashion just what the spacetiam@faid is, along with its various
coordinate systems, and the hypotheses on the derwaifvearious orders, and
then state in a precise fashion whatgheare from that same standpoint.

b) Study the tensof of matter and the electromagnetic field.

c) Study the Cauchy problem or relativistic determinism- in order to exhibit the
exceptional multiplicities.

d) Recall the relativistic viewpoint of the physical theerthat are attached necessary
properties of the tensdr, i.e., hydrodynamics.

e) Study the new problems, which are global in nature,at@iposed by the physical
reality that is attributed to spacetime.

It is in that order that the author proceeds, which is undoubtedly natural atie is
reason that this work is profoundly satisfying. The work that isssacg for the reader
to do will be, | think, facilitated if he has the elements of tealsoalculus (A. Colin,
1950) well within his reach, especially in the beginning.

| have already spoken of the importance)of | would like to point out the elegant
and profound treatment bj, and | must further insist upa.

From the conservation conditions, the system of Einstein equati@asyistem in
involution, i.e., the Cauchy data are assumed to verify four necessadjtions on the
hypersurface upon which they are defined, and the six remaining equatiomsidete
solution that verifies four supplementary conditions everywhere at thatipdime.
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The solution is locally unique in the case for which tlata are analytic if these data
are defined upon a hypersurface that is not tangent toulhéength hypercone at any
point.

Of course, it is reasonable to assume that andlytmist play no role, and there is a
place for the beautiful and difficult work that hasbedone in that regard. Definitive
results have been obtained by Mme. Fourés under jubypmehesis of differentiability.

We have already seen the role of these exceptiosaifoids— viz., the characteristic
hypersurfaces that are everywhere tangent to the ¢bastic cone — that the theory of
wave propagation has introduced, with the classical bicteistics playing the role of
rays. The characteristic conoid that is generatedhbybicharacteristics at a point of
spacetime is nothing but the elementary wave thatratigs at this point and goes away.

These characteristics are moreover null-length getglesiOne therefore sees
gravitational wave surfaces and rays appear in the ext€duchy problem that are the
same for the electromagnetic field.

It is, moreover, remarkable that when one studiesohgion of Mme. Fourés one
sees the work on the propagation of waves in striking tmayrwith the previous work
and with greater generality than before.

The Cauchy problem in the interior case enlarges the smofhese conclusions by
introducing new characteristic manifolds that are gengrayethe flow lines, and finally
(in the context of the perfect fluid), a third type wianifold that is the relativistic
extension of the wave fronts of classical hydrodynamid$ie speed of propagation,
which is determined by starting with the equation ofestgéneralizes the classical value
of Hugoniot.

The Cauchy problem for the case in which there alsdseais electromagnetic field
produces analogous results, but the set of givens must sericonditions. Uniqueness
may be further established by the method of Mme. Fourésa faon-characteristic
hypersurface that is oriented in space. The identithefpropagation laws for the two
fields is therefore established in full rigor.

It is appropriate to point out a result of great elegatiat relates to a singular case
for which the flow lines are null-length geodesics asul the author to say that the pure
singular electromagnetic field describes a photon fluid.

When one makes a prolongation of the exterior tointerior, or conversely, the
Cauchy problem leads us to specifically exhibit the matchingitons for the potentials
that were actually included &), but which merit a special study in light of the fHuat
they influence the interrelation between the field aademal masses.

These conditions, which are familiar from potentiedory, are the ones that demand
the continuity of the potentials and their first datives, but due to the arbitrariness in
the coordinates, that statement implies that specgaptions must be taken here. In
fact, there must exist a system that they verify.

A. Lichnerowicz shows that one has the right to usas@an coordinates that are
deduced from the geodesics that are normal to a hypersurface

The prolongation of the interior to the exteriorrtheplies some conditions. For a
perfect fluid, the separating hypersurface must be generatéaelifow lines, and the
pressure must be annulled on them.

The conditions are locally sufficient.
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If one would like to go from the exterior to the inbe then one must have that the
separating hypersurface is generated by (timelike) geodsdias exterior field, but then
that hypersurface would be characteristic and the salwauld not be guaranteed. The
latter point should not be surprising because one concideésthere is either no
distribution that produces the field or that several rbestioing so.

If one applies the condition that relates to geoddsi@ massive tube of very small
cross-section then that will obviously entail that atemal point must describe a
geodesic. In other words, the geodesic principle is aemuence of Einstein’s theory
and some matching conditions that were often cited by &asehild.

In c), we recover these problems of massive tubes in ¢ fiwe now go on td).
The relativistic hydrodynamics that is presented by Ahhé&owicz is a context in which
the relativistic generalizations that one makes olvflines, vortex lines, Bernoulli's
theorem, viscous fluids, relativistic Navier equationsssges not only rare elegance, but
also indicate a very profound agreement with physicdtyeaVe point out only that the
speed of propagation of the hydrodynamical wave fronts in dexlynincompressible
liquids is defined to be the one for which this propagatakes place at the speed of
light.

As we have seen, problems of typeare inspired by the physical reality that one
attributes to the spacetime. Their solutions are, nag say, some internal coherence
tests of Einstein’s theory. This path has shown tanee productive. The study of
everywhere regular, stationary spacetimes (which app®abe necessarily locally
Euclidian), and the fact that the necessity of singiida foreshadows the existence of
massive tubes, as in a universe with gravitation, seafidosome well-posed problems,
although one senses that they are not consequencesefpetially not simple
consequences) of general axioms. The properties of #made equation on a
Riemannian manifold, and the existence of vectors whageggiles rise to extensions of
Gauss’s theorem constitute a powerful means by whichatke this study productive.

In that context, we cite only one theorem (which wesearched by Einstein and
Pauli in 1941, following the results of Serini, Racine, #mthesis of A. Lichnerowicz)
and proved by A. Lichnerowicz in 1943:

Any complete stationary exterior spacetime with asymptoticaltyidtan behavior is
necessarily locally Euclidian.

One may also cite a very obscure result that wasreat by these methods (pp. ??7?),
and which permits one to reduce the Schwarzschild postitatese construction ods’.
We recover analogous coherence considerations inabalgtudy of unitary fields.

We now go on to Book Il on the unitary theories. AcHrerowicz has dedicated
Book II with an introduction to which | have nothing to adith@ugh | would likewise
say that | have already derived not only the word “higge for a truly unified field,
but also a clear idea of what such a field must be fiom

The first unitary theory that is studied is that e@frdan-Thiry. It is a penta-
dimensional in which the greater generality in theeti@ries of charged particles
corresponds to the introduction of a supplementary dimensiotruth, these trajectories
are the geodesics of a Finsler manifold that minimthessum of the square root of a
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guadratic form and a linear form. A. Lichnerowicz andThiry have solved a very
general problem of analytical mechanics that synthesihe true central idea of a
number of results, some of which are known and somnéhah are entirely new.

The result here is that one may introduce a five-dgimmal Riemannian manifold
whose metric is of hyperbolic normal type, and whose gaosleroject onto the ordinary
spacetime along the set of trajectories of chargedcfesti One thus has a hyper-field of
fifteen potentials whose generality must be restidig equations that were inspired by
Einstein’s equations and based on the conservative Rinsot; one thus has fifteen
equations. The expression for the energy-momentum rteasd the physical
interpretation for the various terms pose difficult questithat are inevitable in any
unitary theory. The field equations have some imposedemmtical properties, but the
physical interpretation itself is not imposed. One muste at it through persistence
and prudence by starting with earlier results. The saoluttat is finally proposed by A.
Lichnerowicz differs from that of Jordan and Thiry, éxample.

The results that are deduced from the study of the Cauablem in the form of
matching conditions are the same ones, i.e., they gisimple and suggestive as in
general relativity. The problems of typegive rise to a complete generalization for the
Jordan-Thiry theory; the same study for the KaluzasKibeory is a little less satisfying.
The latter theory therefore possesses a littleiteéesnal coherence.

The Einstein-Schrédinger theory is of a completelfed@nt type. It is a theory with
an affine connection on a four-dimensional manifold. Thenggoc elements are a

tensorggs with no symmetry and an affine connectidfj,. The field equations are

obtained from the extremum of an integral, in the exinbf some variations of thg,s
and thel'% . This mode of formation insures the existence of cwasien identities.

The fundamental problem of the local integrationhaf €quations presents the same
general character that it does in general relativity.

The Cauchy data must verify a system of conditioms] #e integration of the
remaining system will provide some solutions that vetiy conditions everywhere.

It seems that the methods of Mme. Fourés may bededeo that case.

What | would especially like to point is that the eptoenal multiplicities introduce a
characteristic cone that is not obviously null.

It is this tensor, to which correspond the null-lengthodgsics of a certain
Riemannian metric, that must define the gravitational glatie unitary field.

One sees that as far as the very difficult probldrnthe physical interpretation of
these fields is concerned, the Cauchy problem at leass ¢he answer to a fundamental
guestion.

In concluding this overextended preface, in which | havergonly a sketch of the
relativistic revolution, one may see what a preciouskb&. Lichnerowicz has given us.
By his profound novelty, his elegance, and his solidity,chenot fail to attract new
researchers to this work, along with the numerous studdgntise author. They are
assured of finding problems in the scientific realm thus apepethat will unite modern
geometry and physics with an uncontestable beauty.

G. DARMOIS.
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CHAPTER |

THE SYSTEM OF EINSTEIN EQUATIONS
AND THE ENERGY-MOMENTUM TENSOR

|. — SPACETIME AND THE EINSTEIN EQUATIONS

0. — Functions of class piecewisé?. — HereR"will denote the numerical space of
n real variablesx¢, X4, ..., X"). A function ¢ with numerical values (i.e., a function of
real variables) is said to lof class C (with v a positive integer) if it admits continuous
partial derivatives up to order In all of what follows, we will set:

09 _

0°¢
= =0 : etc.
axa ﬂﬁ¢

xToxE

0,9

We may denote the class of infinitely differentiabledtions byC”, and the analytical
functions of real variables bg”.

Having said this, we shall use the notion offumction of class piecewisg.
Consider a continuous functighwith numerical values that is defined in a neighborhood
of the surfaces (x" = 0) inR", and suppose that:

1) This function if of clas€? in each of the neighborhoo®s> 0 andx" < 0.

2) The first and second derivatives ¢ftend uniformly converge to definite limits
whenx" goes to 0 for positive values (+ 0), and to limits thaght be different
whenx" goes to zero through negative value®).

We may represent the discontinuity in a function tbetssesS by placing the
function insider brackets, []. From the classicguement that is due to Hadamar ¢he
discontinuities ofp upon crossing satisfy the relations:

[0.4] =0 [0,4]=A (herey, j, etc., =1, 2, ...n-1),
and:
[0,¢4]1=0 [0.41=A  [0,4]=B,

() J. HADAMARD. Lecons sur la propagation des ondep, 83-87. Hermann (1903).
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in which A andB are functions that are defined 8n
After a coordinate change of cla€3 inR", we will obtain a functiong and a
“surface of discontinuity’S (f = 0), for which:
1) ¢ is a function of clas€? in each of the neighborhoofis 0 and < 0.
2) The first and second derivativesgtiniformly converge to definite limits when
=+0orf=-0.

We say that a functiogh that is defined in a domain dk" is afunction of class
picewise-C if it is of classC? except in a neighborhood of a finite number of surfades
discontinuities at which the preceding conditions atésfe&ad. These conditions are
identical to the ones that appear in the theory of hydiadyical waves.

1. — The spacetime manifoldV,s. — In the relativistic theory of gravitation and
electromagnetism, the primitive element is defined bfpwar-dimensionalspacetime
manifold V4 that is endowed with the structure of a differentiabl@nifold, which we
shall now specify.

It might be of value to briefly recall how one desnine notion of aifferentiable
manifold An n-dimensional manifold/, is a connected topological space in which each
point possesses a neighborhood that is homeomorphie tuttlidiann-ball. How does
one define the structure of a differentiable manifolgoch a manifold?

We call a topological representation of an open domasf V,, inR" alocal chartof
Vi, or, equivalently, éocal coordinate systent) is called thedomainof the chart. Such
a chart associates a poifiof R" to each poink of D, and, as a resulh real numbers
(x%), which are the coordinates &f Then real numbersx() are called theoordinates
of x in the chart considered. A differentiable manifold lafssC" (v is either a positive
numbergoor ) is ann-dimensional manifoldv,, to which one may associate a set of
charts— or atlas— A that satisfies the following two conditions:

A;. — The domains of the charts of A completely cover the manifpldnvother
words, the union of the domains of the charts f idlentical with V.

As. —If Dy and D, are two domains of charts of, and if xt D, n D, then the

coordinates of the point x in one of the charts are functions of clagstiCnon-
null Jacobian of the coordinates of x in the other chart.

Axioms A; and A, are the axioms of an atlas of cla88 We may define an

equivalence relation between atlases of cztssn the same manifold: two atlasksind

B areequivalentif their union is again an atlas of clas% In order for this to be true, it
is necessary and sufficient that this union should sdsisfy axiomA;. It is clear that the
relation so defined is indeed an equivalence relationathas is equivalent to itself. The
order in which one takes the atlases makes no differeRramlly, two atlases that are
equivalent to a third one are equivalent to themselvEise differential structureof a
manifold of classC” is defined by the equivalence relation between atlasesther
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words, two equivalent atlases define the same diffedestiucture of clas€” on the
manifold V, .

A local coordinate system o is calledcompatiblewith the differential structure on
the manifold, oradmissible,if its union with an atlas that defin& as a differentiable
manifold is also an atlas of the same class.

We may then take thespacetim& manifold V, to be a four-dimensional manifold
that is endowed with aifferential structure of clas€? and satisfies the following
hypothesiswhich complements,, in addition:We demand that the second derivatives of
the coordinate functions be functions of class piecewisgrCGhe intersection of the
domains of two admissible coordinate systems.

Therefore, in the intersection of the domains of &dmissible coordinate systems,
the coordinates of a point in one of the systems will be four-times-differentiable
functions of the coordinates ®»fn the other system with non-null Jacobians; the aind
second derivatives must be continuous, but the third andhfaames may present
discontinuities of Hadamard type. These are the hypeshesV, that will always be
made in the sequel.

We may suppose that a Riemannian metsiof everywhere hyperbolic normgJpe
is defined on the manifol?, . The local expression for this metric in an admissib
coordinate system is:

(1-1) ds’ = gap(x") dxXdx¥® (a, B, and every Greek index = 0, 1, 2, 3).

The coefficientsga[;(x") in (1-1) are called thgravitational potentialdor the coordinate
system envisioned. We essentially assume thatftileldmental gravitation tensbthat
is defined by the g has components of class$ @h \; and that thed,g,, are functions

of class piecewise’C

This axiom, which relates to the differentiability ofiet metric, is obviously
compatible with the differential structure that is impd®nV,. The hypothesis that was
made on the type of the metric amounts to saying tredch poink of V4 theds’ may be
put into the form:

(1-2) ds = (w)” - (w)” ~(w)” ~(w)?,

in which thedS" are a locally linearly-independent system of Pfaff fernTherefore, the
equationds” = 0 defines a real cor@ of directions that are tangent\f at each poink
of V4, a cone that will be called tledementary conatx.

In what follows, V4 will designate the “spacetime” manifold endowed with a
Riemannian metric that satisfies the specified hypotheses

2. — Orientations in space and time. &) A directiondx that is tangent t¥/, atx is
oriented in time or space according to whether ittisrior or exterior to the elementary
cone. If we assume that it is defined by the compor{drtsthen one has:

Jap dX X > O: dx is oriented in time
Jap dXd¥P < O: dx is oriented in space.
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An elementark-plane k = 2 or 3) that is tangent ¥, atx is oriented in space if all of its
directions are oriented in space. It is orientedinmetif it admits directions that are
oriented in time.

Consider an elementary 3-plafi that is defined by the equatiogdx” = 0. The
direction that is defined by the vectey is the normal to the plane, i.e., the conjugate
direction with respect to the elementary cone. Aassalt,[y is oriented in space or time
according to whethev” is oriented in time or space, respectively, i.e.prtiog to the
sign ofgasve VP = g% v, vs:

g vavs > 0: dx is oriented in space
9’ vavp <0: dx is oriented in time.

Let 77 be unitary vector/ff = + 1)- hence, it is oriented in time and letl, be the
elementary 3-plang,dx” = 0 that is orthogonal to it; hence, it is orientecdpace. We
say thaty andly define atime and anassociated spacatx. If X is an arbitrary vector
then it will be the sum of a vector that is colline@ath /7 and a vector that is orthogonal
to 77, hence, it is ifl,. One immediately has:

(2-1) X =Xnn+X, with X* O My

The first vector of (2-1) is called themporalcomponent o, andX is called its
spatial component relative to the time an associated spaceisttagfined bys; the
quantity — K)? is called thespatial magnitude of the vectirrelative to the direction of
time 7.

A curvel in V, is oriented in time if the tangents to its various poare oriented in
time. Alongl’, one will then have:

ds’ = ggpdx@dxé > 0.

Fords’ < 0,T will be oriented in space.

A three-dimensional hypersurfaBas oriented in space if its plane elements that are
tangent to the various points are oriented in spac8isliocally defined by(x? = 0 then
the plane element will admit an equation that hasdedficient form:

Vg=0,T.
As aresulihsf =g¥0, fd , f > 0 onS for Af < 0,Sis oriented in time.

b) In all of follows in this book, we agree that any Lahdexi, j, etc., can take only
the values 1, 2, 3.

The metricds’ that was introduced definesviinkowski space structuren the vector
spacely that is tangent t¥, atx, i.e., a structure of the spacetime of special relgtivit

To any decomposition of the metric into a sum of squares
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ds* = (@)’ - (o)’
i

there corresponds a basm,( w) for the linear forms ax and a framex;, e, &) in Ty
with:
dx = of e
From the relation:
ds = (dx)? = (f er)(Fep),
one deduces:
(2-2) e,€3=0 fora#p, @?>=+1 @)?>=-1

A frame that satisfies the relations (2-2) will¢adled arorthonormal frameat x; the
vectorey and the 3-plane spanned by &éhdefinetimeand arassociated space.

Just as in Riemannian geometry, properly speakhmg,geometric interpretation of
the magnitudes that are definedkas deduced by considering the Euclidian vectocspa
that is tangent ta; similarly, the interpretation of a tensor thatlefined atx is deduced
by considering the Minkowski space that is tangemtx. When referred to an
orthonormal frame, this space must be identified with the spacetispeofal relativity
when referred to a Galilean frame. This immediately givephtiysical interpretation in
terms of the time and associated space for this frame.

¢) We shall have to evaluate the spatial magnitfde vectorX relative to a time
direction that is defined by a unitary vectpron several occasions in the sequel. We
adopt anmarbitrary frame §, @) at x such that the vectax, is collinear withs. In this
frame the fundamental quadratic form is given by:

(X)? = gapXX°.
Since the vectog, is oriented in time, one will have the equality:
(2-3) €0)” = goo > 0.

Since the vecton is unitary and collinear witky, one will have:

1
(2-4) N=——e.
gOO

Having said this, we seek to evalua¥e){. Upon taking the square of (2-1) and
taking (2-4) into account, it will follow that:

(X2 = (02— (X D7)? = (X)% = —— (X D)’

00

One deduces from this that:
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(2-5) Xy = o2 =X

00

Namely, upon making this explicit with the aid of the ttamariant components of.

. X 0)2 1
(X = 0o XX = = g xrx - L (gox2

00 00

Now, if one decomposes the fundamental quadratio fvith respect to the direction
variableX® then it will follow that:

Jap Xaxﬁ:i(gw X%+ {gij _%j XX,

00 00

in which the last term on the right-hand side isegative-definite quadratic form in the
three variableX' sincegoo is positive. It results from this that:

(2-6) (X*)z = {gij _%j XX,

00

which gives the desired spatial magnitude.
Consider the negative-definite quadratic form thatjust created, and which admits
the coefficients:

R Joi Yo;
gij:gj_;m'
00

The quadratic form with the coefficiergd that satisfy the relations:

(2-7) g,9"'=9",
is associated with this form.
Now, one may immediately verify that:

*ik — Kk
g™ =d"
Because:

. ik Yo i
g; 9= 01 0" ——L 00 9" = 9 0™ -~ 9o 9™ - G0 0™ ( 91 g™ — g0 g™),

00

and taking into account thg,g"* =07, we will get the relations:

g;9"=4".
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In due course, we have established the following theorem:

THEOREM. — For any frame(x, e;) for which go is positive the two associated
guadratic forms have the coefficients:

_ Y0 Yo
900

% =4 g’ =¢

are negative definite. X is an arbitrary vector with componentX®) then the spatial
magnitude o relative to the time direction that is defineddgys given by

- (X)?=-g; XX.

Similarly, one establishes that the inequality > O entails the negative-definite
character of the two associated quadratic forms thai #ldencoefficients:

9oi Go;
i _&’ i »
Y00
respectively.

3. — The system of Einstein equations- Now that we have discussed the geometric
framework, the first step towards the relativistic tlye@f gravitation consists of
choosing a tensorial system of partial differentgaaions that limit the generality of the
fundamental tensor of gravitatign and relate this tensor to the energetic distribution o
spacetimé/, . Einstein was led to these equations by two typeson$iderations: On
the one hand, these equations must generalize the edptasson equation that locally
determines the Newtonian potential, and, on the othad,lthey must give rise to what
we call “conservation conditions.”

We rewrite these equations in the form:

(3-1) Sos= X Tap,

in which Sp and T,z are symmetric tensors, andlenotes a constant factor. The tensor
Tap, Which is of purely mechanical significance, must descabdyest, the character of
the energy distribution (the interior case) at thefpof V, considered, or it must be
identically null in the regions o¥, that are not swept out by energy (the exterior case)
This tensor, which is called the energy-momentum ter@onnore briefly, the energy
tensor, thus generalizes the right-hand side of théategPoisson equation. We return
to the choice of this tensor in the second part ofctégpter.

The tensoiS,z, which is of purely geometric significance (i.e., it deg& upon only
the Riemannian structure of the manifold) is restricted by the following two
conditions:
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1) The components,sdepend upon only the potentials and their derivatives of the
first two orders; they are linear with respect to the datives of the second
order.

2) The tensor &is conservative, i.e., it satisfies the relations:

(3-2) 0,S;=0

identically, in whichlJ, denotes the operation of covariant derivation.

One easily understands why it is necessary that timeist exist a system of four
identical equations between tBgz. By a convenient choice of local coordinate system,
one may restrict four of the potentials to take thergiwaues locally; ultimately, we will
verify examples of these. If there does not exisysiem of four relations betwe&ag
then the six remaining potentials must verify, for eganten independent equations in
the interior case. We verify that the four chosenditions (3-2) are heavily laden with
physical content.

The determination of the tens&z, which was found intuitively by Einstein and
Weyl, was accomplished by a regular method by Elie G4fja It proves that the only
tensor that satisfies the preceding conditions isrgibwethe formula:

Sep=h[Rap— 5 (R+K) gog,

in which Ry is the Ricci tensor of the Riemannian manifold &nd are two arbitrary
constants. Upon suppressing the extraneous fa¢ha corresponding partial differential
equations may be written:

(3-3) Sep=Rap— 3 (R+K) dag= X Tap-
The constank, which is called theeosmological constanis only weakly involved

with the study of cosmological problems, and plays @le m astronomical problems,
properly speaking. Unless stated to the contrary, wehesiiteforth adopt the system:

Sop=Rap— 3 RYap= X Tap
for the system of Einstein equations, and it is thisesyghat we shall ponder. However,

many of the results that we shall obtain may beadiliwviextended to the equations with
non-nullk.

() E. CARTAN, J. Math. Pures et appliquée$1922), 141-203.
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Il. - THE ENERGY-MOMENTUM TENSOR

4. — The principal directions of spacetime— One refers therincipal directionsof a
Riemannian manifold at a poirtwhen one wishes to describe the conjugate directions
that are common to the elementary cone:

(4-1) 9(X) =gapX' X’ =0
at that point and the cone of the Ricci equation:
RasXX? = 0,

in which X and K? denote a tangent vector»at It results from (3-4) or (3-3) that the
principal directions for an Einstein spacetime are commronjugates to the cone (4-1)
and the cone of the equation:

(4-2) T(X) = TapX“XP =0

that is associated with the energy tensor. The m@tation of the principal directions of
spacetime is therefore found to reduce to the determinafitime proper vectors of the
matrix (T4p) relative to the matrixgyg). The proper values of this matrix relativg4)
are the roots of the equationgn

| Tap—S0as| =0,

in which the || symbol denotes the determinant that cceded with the matrix that they
enclose.

5. Orthonormal frames. The normal energy-momentum tensor— In the rest of
this chapter, we shall place ourselves at a given paifh, and devote ourselves to the
purely algebraic considerations that relate to theovecind tensors that are associated
with the tangent spac¥, at x. Recall that a framex(e;) with origin x is called
orthonormalif it composed of pair-wise orthogonal vectors, one bicl g is oriented
in time, while the others are oriented in space and normed dg) € —1.

We take the energy tensor to be a symmetric tehgothat satisfies the following
hypothesisT s admits a real, proper vector that is oriented in timguch a tensor will
be callednormal. If the associated quadratic foif{X) is defined then one will see from
the classical results on quadratic forms that suchsiotas always normal.

A proper vectol satisfies the relation:

(5-1) Tas—S Sp VP =0.
Let Vg be the real proper vector ©fz, which is oriented in time and assumed to be

normal; we normalizé/, by the relation Y] = 1. The associated proper value is
necessarily real. We adopt an orthonormal framéepbintx considered at an instant
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whenVy is the frame member that is oriented in time. I8 trame,gs = Toi = 0. The
three missing proper values will then be the roots of:

| Tj—sg|=0,

in which theg; determine a definite quadratic form. As a result, tipgs@er values
will be real, and one may find three proper vectrthat are oriented in space such that
the frame that is defined by the is orthonormal. This frame will be calledpbancipal
frame of the spacetime at the pomt Naturally, in the case for which one of the proper
values is multiple there will exist an infinitude of pripal frames axk.

Refer spacetime at a given instant and the poiata principal frame and denote the
components of a vectdf by X . One has:

(5-2) g(X) =(X)* =3 (X")*.
By virtue of equations (5-1), one will then have:

(5-3) T(X) =5,(X7)* =Y s( X)?.

i
One easily deduces an expression for the nornabgriensor from this relationby
starting with its proper values and correspondirgppr vectors. We perform a change

of frame that consists of returning to an arbitrigyne, so ifX, and Xz denote the two
systems of covariant components of a vetdnen:

Xa=A X,

in which (A;’.) denotes the matrix of the frame change. Upon apgphhis formula to the
covariant components of the vectdf, it will follow that:

(5-4) Vv,0 = A Vv, =4,
As a result, from the classical tensorial formulae
9op= A7 A Gy Tap=A A5 Ty
and, starting with (5-2), (5-3), and (5-4), onelwéduce the expressions:
(5-5) Gop = VOVS? = T VO
and |

(56 Top= VOV -3 s\ Y.
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which are valid in an arbitrary frame.

6. Definite schema. The arbitrary fluid schema. - If we are given a field of
symmetric tensor$,z in an arbitrary domain of spacetime then we will &t this field
defines anenergy scheman this domain. A schema will be callesrmal if Tz is
normal. In particular, it will be definite if the quaticaform T(X) that is associated with
the tensor is everywhere positive-definite.

We shall study a definite schema. That hypothesislenta existence of a real,
proper vector that is oriented in time. We first fptet this vector as thenitary velocity
vectorof the schema considered and set:

Ug = V¥

to abbreviate the notations. This vector is defined up sm@m we shall return to this
indeterminacy later. From (5-3), teeare negative ang is positive. We set:

P=% Pi =—S

in which p andp; are therefore positive scalars. With these natafidormulas (5-5)
and (5-6) take the form:

(6-1) Gap = Uatlp =DV, V5’
and

Therefore, the energy tensor may be put into the {&+2) in the case of the most
general definite schema. We translate this resuling thatu, is theunitary velocity
of the fluid, andp is its proper densitythe p; are calledproper partial pressures.The
three principal directions that are oriented in spae the corresponding pressups
define the quadric of pressures at the point of the flomsiclered.

7. — The “pure matter” schema and the “perfect fluid” schema.— A schema is
called apure matter schemithe corresponding energy tensor admits the propeesalu

S=p>0 s =0.

This schema is not definite, and the corresponding spaeetimits only one privileged
principal direction that is oriented in time. Onertlimas:

(7-1) Top= P UgUg.

A schema is called apérfect fluid schenfaif it is definite, and the proper partial
pressures are equal. One will then have:
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Pw) = P2 = Pe) =P,
and formula (6-2) will become:

Tap=pPUalp+pY VI VY.

Upon expressing the last term of the right-hand sidle thie aid of (6-1), one will obtain:

(7-2) Tap=(r +P) UgUp— P Qup.

As in the pure matter schema, the corresponding speeetill admit only one privileged
principal direction that is oriented in time.

If we temporarily abandon the exclusively geometric pieint that we have adopted
up till now and take the physical viewpoint then we migiyt that the energy-momentum
tensor is capable of providing a representation for mitkeenergy distribution that is as
complete as possible. This tensor therefore containsus terms that correspond to the
various types of energy in the distribution. The mogieementally important one
—when it exists — is always the one that correspondfi@opbnderable energy. In
particular, it prevails over the energy that origisatethe pressures. If one takes these
two types of energy into account exclusively (...missinge.li.) the corresponding
material schema. However, the proper dengitynust be considered to be large
compared to the numbeps) in this schema. One will note that the study of cardus
media in special relativity, when carried out with tleial physical units, shows that it is
the quotients (pressure?) that are homogeneousfirand must appear in equations (6-2)
and (7-2) instead gfj andp. The units that are used here are the ones for which

The “pure matter” schema corresponds to the caseHmhvone totally neglects the
energy that originates in the pressures.

8. — The electromagnetic field— Up till now, we have not assumed that an
electromagnetic field was involved. The classical ytoflelectromagnetism in special
relativity leads us to represent such a field by an antisynumtnsor F,z — the
electromagnetic field tensor)( In a definite orthonormal frame the, give the
components of the electric field relative to the fearmnd thd=; give the components of
the corresponding magnetic field. More precisely, 9pace vectors of the electric and
magnetic field are the vectors that admit the spaogoaents:

X:F10:_FlO L:F23:F23
(8-1) Y=Fp=-F?* M = Fa= F*
Z=Fz=-F>* N=F,=F"%
One will note that sincgoo = 1, gi = — 1, in such a frame, the raising or lowering of a

space index is accomplished with a change of sign, whereasaheeds not true for the
temporal index 0.

() See A. LICHNEROWICZ.Eléments de calcul tensorid, Colin, Paris (1950), pp. 191-202.
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One then finds that an antisymmetric tensor of orderdefined on the manifold,,
which we will refer to admissible coordinates ¥n When this is true, we shall always
assume that theomponents=,z of the electromagnetic field in admissible coordinates
are functions of class piecewisé:€his hypothesis is analogous to the one that was made
for the gravitational field. It may be convenient toaaluce the exterior quadratic form:

F=1Fgpdx" ~d¥é

which will be called theelectromagnetic field form Later, we shall verify that it gives

the differential equations that are presumed to be satibfy the electromagnetic field.
We shall now introduce the indicators and tensor @hatin common usage. In an

dimensional Riemannian spabg we define theKronecker tensor indicatoto be the

tensorsgll_fgs (p £ n), which is defined in the following manner: Its componegsal +1

when the sequence of upper indices is an even permutdtibe cequence of lower
indices, which are assumed to be distinct, in the case of an odd permutation, and 0O in
all of the other cases. It is easy to verify tha obtains a tensor from this thapitimes
contravariant ang-times covariant, and thalis tensor has a null covariant derivative
for any affine connection, and in particular, the Riemamo@nnection oV, . In order

to abbreviate the notation, we set:

ap- a,

gl =gl e =g .

If V4 is oriented then from this indicator and the existeatehe metric, one
immediately deduces the antisymmetric volume elemesiotey, which also has a null
covariant derivative for this metric. In the casehs spacetime manifold, this tensor
admits components that are defined by the formulas:

1
Napys =1 9 | Eapyo, NP == P

Jigl

in which the presence of the — sign takes into accoentégative character gf

Having said this, the volume element tensor imahmensional Riemannian space
V, permits us to deduce an antisymmetric tensor of opldn — p) from any
antisymmetric tensop-tensor, which will be called itadjoint We may deduce the
adjoint tensor (F)qs, Which is also an antisymmetric tensor of order @nfithe tensor
Fap. Itis defined by the formula:

(8-2) (*F)ydz % Oaﬁdeaﬁ, (*F)VJZ% Oaﬁycf Fus
One easily verifies that (¥),5=—F4. Conversely, one therefore has:

(8-3) F%=~1nPP°(*F)ye, Fap=—3 Nage (*F)®.
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It may be convenient to associate the exterior quadatic.
*F = 1 (*F)gpdx® Ad¥,

to the tensor ),s. The interpretation of the components of)g, in an orthonormal
frame is immediately deduced from that of the componehtke electromagnetic field.
One thus has:

X = (*F2s= (*F)*° L=-(Fwo=(PY
(8-4) Y= (*Fai=(*F)* M == (*F)20= (*F)*°
Z=(*F)2=("F)"* N == (*F)z0 = (*F)*

One may attach two interesting scalars to the relecgnetic field: the scalar
products of the fornk with itself and with the formE. We set:

Y=<F F>=1FuF?% ® = <F, *F> = 1 Fgp(F) ™.

It is easy to obtain another representationdfor From the definition of the adjoint
tensor, one has:
® =3 1" FapFio= 5 4 17" 08 FauFop.
Now, the formF * F has precisely the components:

1 oAuvp
7 €apo FauFvp.

It results from this tha® is nothing but the scalar adjoint of that expressirs *(F »
F). Now, from a well-known result on left-symmetdeterminants:

FAF=[|F,, | ddrdx' A dén dx.
From this, one deduces that:
lg|®==|F; I

and one sees that the vanishingFoéxpresses the vanishing of the determinant of the
matrix (Fqp), i.€., that the fornfr * F has rank less than four.

Finally, with the aid of formulas (8-1) and (8-4)ne will observe that in an
orthonormal frame the scalakB and ® have the following values in terms of the
components of the electric and magnetic fields:

(8-5) W2+ N2+ M2 =X Y2 =72,
and
(8-6) ® =2(LX + MY + N2).
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9. — Schemas with electromagnetic fields- In special relativity ) one establishes
that it is possible to associate an energy-momentasotevith an electromagnetic field
by the formula:

(9-1) Tap = 9ap(Fay |:/1/1) - FaUFlf .
One will note that:
(9-2) r=9%r,5=0.

One takesTq,z = 143 In the case for which the energy distribution envisin
corresponds to just the electromagnetic field, andtémsor will be said to represent a
pure electromagnetic field schema.

In order to represent a distribution that simultanBousvolves matter and an
electromagnetic field, one may add an electromageeicgy tensor of the type (9-1) to
the previously introduced matter tensors. For example, thos envisions aptre
matter-electromagnetic fieldschema with:

(9'3) Taﬁ =pPUgUg+ Tpp

or a ‘perfect fluid-electromagnetic fieldior which:

(9-4) Tas= (0+P) UsUs— P G + Tap.

One must realize that such a pure and simple additiotnegoenergy-momentum
tensors that correspond to these schemas will giveaofnlgt approximation for the more
refined energy-momentum tensors.

10. — The study of the energy-momentum tensor for the ekgomagnetic field. —
We now propose to study the energy-momentum tensor {@rlthe electromagnetic
field, and, in particular, to indicate certain reducedm® in terms of which the
components of the tensagz may be expressed for convenient orthonormal frandes.
we have said before, all of the analysis that fodlas/ purely algebraic and valid at a
given pointx of the manifoldV, .

If we adopt an arbitrary orthonormal framexahen, with the aid of (8-1) and (9-1), it
is easy to see that the components of the temgpare given as functions of the
componentsX, Y, Z) and (, M, N) of the electric and magnetic fields relative tottha
frame by the elements of the matrix:

(10-9)

this is a simple frame fa@gz. Indeed, in such a frame one has:

() See A. LICHNEROWICZEIéments de calcul tensoridi, Colin, Paris (1950), pp. 202-204.
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XZ+LN=0 LZ-XN=0 and -MZ+YN=0 YZ+MN =0,

which entails that eithe =N =0 orX =L =Y =M = 0; however, in the case for which
Ty = — I, it further entails thaZ =N = 0. Moreovern, = XY + LM is null; the frame is
therefore simple.

Having said this, it is easy to study the proper valuasofith respect t@qz in the
reduced form (10-8); they are the roots of the equatioss in

/72_52 52_/72 52'*'/722_ 2,2
e e SRR

so that:

We may state'{:

THEOREM . — The energy-momentum tensor for an electromagnegid &dmits
four pair-wise equal and opposite proper valuesk, —k, —k.

We have takek = (& — /%) / 2. It is easy to obtain an intrinsic expressior k* with
the aid of¥ and®. Indeed, one has:

A = [(L2 —Y2) _ (IVI2 —XZ)] 2 _ [L2 Y2+ M? —X2] 2 40_2 —Y2)(M2 —X2);
now:
L2+ M>-X2-¥Y2 =,
and, from the trivial identity:

(L2 =Y?)(M? =X3) = (XY + LM)? = (LX + MY)?,
one has:
—4(L% - Y?)(M? = X3) = %,
From this, one deduces that:
(10-10) K=Y+ F2

From the theorem just stated, one sees that ierdodpursue the reduction of the
matrix (74p) it is convenient to distinguish between two cases

a) THEk# 0 CASE. There will then be two distinct propeluesk and —k, and in
order to pursue the reduction, it will suffice tbserve that there exists an orthonormal
frame W) that is composed of proper vectors, and for whbich has:

o= K I W - WD W+ WP W P )

() See SYNGE. Univ. of Toronto Studies. Appl. Math. 3¢11935) and RUSE. Proc. London Math.
Soc.41(1936), 302-322.
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the vectorsV® andW® are two arbitrarily-chosen normed orthogonal vectbas are
chosen in a 2-plane that is oriented in space, and éb®rsW® and W™ are two
normed orthogonal vectors that are restricted onlyhkyréquirement that one of them
must be oriented in time and the other must be oriemtexpace in a 2-plane that is
oriented in time and totally orthogonal to the preceding. One will note that{") is

a simple frame for which, for example= 0.

b) THE CASEk = 0; i.e.,W =® = 0. — In this case, for any orthonormal frame the
electric and magnetic fields will be orthogonal andehthe same length. Here, the form
(10-8) for the matrix {sp) will reduce to:

& 0 0 -&&°
0 O 0
10-11 = e=+1
( ) Cap) o o ( )
52
since& = 17%. Introduce the vector:
| =g+ €63.

One immediately sees that this vector will have nefigth, and that one may
translate (10-11) into the tensorial equation:

(10-11) Tap=E%lgp.

Therefore, in this case there will exist a vectonaf length and a scald such that
I,p may be put into the form (10-12). One will note that fbben (10-12) will be
preserved if one multiplies the vectoby an arbitrary factor upon modifying the scalar
factor accordingly. This case will be callsidgular casdor the electromagnetic field.

Finally, we study a lemma that will be useful to usrsoo

LEMMA. —Given an arbitraryt # Othat is oriented in time, it is always possible to
find a simple frame for the tensags such that in that framé =t° = 0.

Indeed, in thea) case the frami{(V) is a simple frame. If we reférto it then we
have:

t=>t'w® [with (%)% =>  (t'")* > 0].
A i

From the indeterminacy a¥® andW®, one may choos&/® to be collinear with
the projection of onto the 2-plane/®, W®); i.e., such that’ = 0. Similarly, since is
oriented in time, one may choosé? to be collinear with the projection bbnto the 2-
plane W , W): i.e., such that' = 0.

In theb) case, the vectdrwill certainly not be orthogonal tosince the fact thdtis
of null length implies that the vectors that aréhogonal tol will be the ones in the 3-
plane that is tangent to the co@g alongl; thus, they will be oriented in space. For
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example, one may choosgto be collinear with, and consider the vectbr e;, whose
scalar producg is:

(I—e) O =10p-1,

and sincel [k is non- zero, one may multiply by a factor such thdt — ey will be
orthogonal tosy, and, a result, it will have a square of —1.eslflenotes the vectdr— e
thus obtained then one will see that the fragpié therefore a simple frame in whith
=t* = 0. In this case, we have created only one solutidhegroblem, whereas, it is
obvious that others may exist. Be that as it may, oomla is still proved.

11. — A theorem on perfect fluid-electromagnetic field schema— Consider a
perfect fluid-electromagnetic field schema. Such amehes described by an energy-
momentum tensor of the form:

Top= (0+p) UagUg—P Qop + Tap,

in which 7,5 is the energy tensor of the electromagnetic fielde then introduce the
vectorU that is oriented in time and defined by:

(11-1) Us=4p+pu, .

If we knowU then we will know the unitary vector, which is collinear with it in the
same sense, and, by passing to the square, we will also(jnop). We may therefore
substitute the vectdd for these elements and takes to have the form:

(11-2) Tap=UgUp—pP Qup + Tap.

If we apply the preceding lemma to the vedtioand the tensays then it results that
there is a simple orthonormal frame foyz such U = U, = 0. For such a frame the
tensorT s is represented by:

2 2
U2-p+s ;’7 0 0 &n+UU,
2 g2
p+—,7 25 0 0
(11-3) (o = o
L& .
PT

2 2
Uz +prt ;'7

If one performs a pseudo-rotation of the vectesse) in the 2-plane that is totally
orthogonal to the fixed vectoes ande, then one notes that sinegande, stay fixed the
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matrix (7o) preserves the form (10-9) and, as a result, the framains simple for,z.
On the other hand, one obviously hds= U, = 0 in this frame, too. The orthogonal
frames for whichTgp) has the form (11-3) will therefore be defined only up pse@udo-
rotation of the pair of vector®y es), which is a pseudo-rotation that modifies only the
elements of the partial matrix:
M :|:T00 TOS} .
T30 T33

If X andY denote two vectors in the 2-plane spannedefyef) then we set:
(X, Y) = s X Y2,

in which the indices A, B take only the values 0 and 3, @am@s scalar values. If we
start with¢g then the elements of the mathikwill be given by:

M:V(e’e‘)) #(&, %)}
#e;.8) #(e )|

Having said that, we perform the pseudo-rotation that isetbby the formulas:

(11-4) €, = e coshfd+e; sinh 4,
€,= e sinh @+ e; coshd

on (e, €).
The matrixM is replaced’, whose elements that are not situated on the principal
diagonal have the values:

P(€), €)= Too costPsinhd+ 1o3(cosi+ sinfé) + 133 coshg sinhé,
namely:

+
(€, &)= 103 cosh B +%sinh 2
A= (Too + T33)2 ! (T03)2 >0

then there will exist a pseudo-rotatiéithat annihilates this element.
Now, from (11-3) one has:

A= (UE+UZ+ E2+ 17 + 208+ oUs) (Ug +UZ+ &2+ 177 = 27 = 2Ug Uy),

namely:
A =[(E+ n)* + Uo + Ua)] [(£- 7)) + (Uo - Us)7],

from whichA is strictly positive, since the fact tHdtis oriented in time implies that:
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(11-5) UZ-U2> 0.

Therefore, if we are given the energy-momentum tefdsgrfor a perfect fluid-
electromagnetic schema thtérere will always exist an orthonormal frame for which the
matrix of components of, may be written:

2 2
UZ-p+s ;’7 0 0 &n+U U,
2 _ g2
p+,7 25 0 0
(11-6)  Tod = o
L& .
P

2 2
U+ p+s ;'7

andén +UpgUs =0.

We have therefore obtained an orthonormal fraraeishcomposed of proper vectors
of Ty with respect tag,s. It then results from this that the energy tensioa perfect
fluid-electromagnetic field schema will always baamaltensor.

Conversely, we now considernarmal tensor Tz and look for conditions that will
make it possible to interpret it as the energy-momwn@ tensor of a perfect fluid-
electromagnetic field schema. Leag,(S) be its proper values. In order to proceed with
the identification with the expressions in (1146isinecessary to find five real quantities
Uo, Us, & 1, p,that satisfy the five equations:

(11-7) én+UgUs=0,
and:
,72_52 g(2_,72
(11-8) p+ =-5, p+ =-5),
2 2
2 2 2 2
(11-9) Uz-p+ =, Uzap+ S,

From (11-8), one immediately deduces that:

2 _ a2 _
po-S*tS =& _s-s
2 2 2

The electromagnetic field that one obtains willrthee nonsingular i§; # s,. From (11-
9), one deduces the two relations:

(11-10) Us+UZ+ E+1IF  =s-ss,
Us-U; =0+ -G +9),
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and one must hawg > 5. One deduces the values of;

Uz (593~ 9) uz 88N 9

(11-11) 0 : 3
S-S S-S
2-(678)5-9 EECEDCRE)
$-S $-S

from (11-7) and (11-10) by an easy calculation.
As far as reality considerations are concerned,smes that if one calculates the four

quantitied) 2+ & U2+ 17, UZ+ 17, U2+ & then one will necessarily have:

(11-12) S9>S1, 9>, S >S5, >,

In addition, ifp = 0 andp > 0 then one will deduce the necessary inequsilitie

(11-13) 8 +9<0, so+%>L2%.

Therefore, assume that the inequalities (11-12) @i-13) are satisfied. If, in
addition,s; # s, then all of the proper values of the given tensiirbe distinct, and the
tensor will admit a unique orthonormal frame thatcomposed of proper vectors.
Equations (11-11) will then give us the values W and Us, up to sign. The
hydrodynamical part of the energy tensor will béedmined uniquely (in particular, this
will be true forp andp), butu admits several determinations. Omnces choserx, the 7
will be defined by (11-11) and (11-17), with a nesign indeterminacy. The
electromagnetic part of the energy tensor will béedmined uniquely, but oncgand
are fixed the electromagnetic tensor is definec g@bintx only up to a parametar.
Indeed, with respect to the frame considered, ahdawe:

X2 +1%2= &, Y2+ M? = 17, YL-XM=&n.
Thus, there exists an angtesuch that:

X=£¢cosa, Y=nsina,
L=¢sina, M =-pcosa.

If s1 =5 then the electromagnetic part will be singulad #re frame envisioned will
no longer be unique, but the results will obviouyséysist. Ifs; + s, = 0 then the schema
that one obtains will be a matter-electromagnésic fschema. We stat8:(

() This theorem was established in 1947 by E. WILLIAM®owsed a different method. The method
of proof that is given here is derived from that of GRAINICH. Mathematics of RelativityJohn Wiley,
New York (1950).
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THEOREM. — Any normal tensor that satisfies the inequali{ie$-12)and (11-13),
may be interpreted as the energy-momentum tensor of a perfecelggiromagnetic
field schema.




CHAPTER Il

THE CAUCHY PROBLEM FOR THE EQUATIONS OF
GRAVITATION AND ELECTROMAGNETISM

|. THE PURELY GRAVITATIONAL CASE

12. — The expression for the Ricci tensor As we shall see, since the system of
partial differential equations that is due to Einsteiespnts a hyperbolic normal
character, the first problem that we must pose fos the Cauchy problem: Given the
gravitational field on a hypersurfa& determine the gravitational field that satisfies the
Einstein equations outside &f The problem obviously translates into what one maly cal
“relativistic determinism,” and the fact that gravitatisatisfies the schema of wave
propagation will result immediately from this analysis.

In order to begin this problem, we must study the amallygxpression for the Ricci
tensor as a function of the potentials and their deweatof the first two orders. In fact,
except for the existence of conservation conditioresuse only the manner by which the
second derivatives appear in the components of the fRicsdr here.

From the expression for the curvature tensor in tesfrihe coefficientd” of the
Riemannian connection, viz.:

R/mvluﬂ = 6/1 rlalﬂ _aarﬁlﬂ + rﬁlprgp - rgprfﬂ’

one deduces the components of the Ricci tensor by ctingaverA and.

(12-1) Rog =0, 0, =0, T 0, +T o To,—To %,

If we want to draw attention to only the second-okmivatives of the potentials on
the right-hand side of (12-1) then we may write:

Rap =710 JaB o] ~0] pB d} +Kap,

in which the [] expressions denote the Christoffel syiswmf the first kind, andK
depends only upon the potentials and their first derivativdJpon developing the
Christoffel symbols, it follows that:

(12_2) Raﬂ :% pﬂ{aﬂp ng +amr gﬂp _aﬂp gm _aaﬂ gm} + Kaﬂ-

13. —The proof of the conservation conditiong3-2). — We commence by recalling
that proof. Those conservation conditions are a simplesequence of the Bianchi
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identities that relate to the curvature tensor, and tlesylt from differentiating the
curvature forms.
The Bianchi identities may be written:
Ui Rapuy + UuRagu + Uy Rapay = 0.
By contracting oveandv, it will follow that:
D/] Ray - D/IRQ/] + |:| VRQ/V/]/I = O
Finally, we contractr and/;, we obtain:
LR- DaR,]a— DVR,]V =0;

i.e., upon grouping the last two terms, which are idahtwe will obtain:

(13-1) DURA”—% 0,R=0.
If we set:
(13-2) Saﬁ: Raﬂ—% (R + k)gab

then (13-1) will be equivalent to:
0,sy =0;
I.e., the desired conservation conditions.
One will note that from (13-2) one may deduce, by cotnac

S, +k=—-(R+K).
As a result:
(13-3) Rop=Sup =4 (S5 +K) dag.

14. — The exterior problem. Analysis of the equations- We confine ourselves to
the equations for a null cosmological constant; thdifitations that must be made to the
analysis when there is a cosmological constantase ® obtain. Our purely local study
will begin with the right-hand side of the Einstein equag. From (10-2) and (10-3),
these equations may be written as eithgr= 0 or:

(14.2) Ras = 0.

The results that we obtain will be, moreover, us&fulthe analysis of the equations
with a non-zero right-hand side. By definition, tpavitational field that we study is
found to be determined by the gravitational derivativestaad first derivatives. Our
problem is therefore the following one:
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THE EXTERIOR PROBLEM. - Given the potentials and their first derivatives on
a hypersurface S, determine the potentials outside of S that are assus@®fy the
Einstein equationgl4-1)for the exterior case.

First of all, we assume th& is everywhere oriented in spae@and that it has been
locally represented by the equatidn= 0. One will then havg® > 0. The data oSthat

is comprised of the potentiads, determine the values of the first derivativgs,, on S

We call the number of times that the index 0 appeathard symbol theindex of a
derivative ofg,,. The “Cauchy data” o8 are therefore composed of the valuesSarf
the potentialsg,, (which are assumed to be at least three times cmnigly
differentiable) and their first derivatives of indexrtemely, d,g,,, (which is assumed to

be at least twice continuously differentiable). Wepose to determine the values of the
derivatives of order higher than the first 8n This search will permit us to specify
whether these derivatives are subject to discontinuipes traversing, and to embark
upon a study of the structure of the system of Eingtgirations.

A simple derivation o1® gives the values of the second derivatives whose irsd@x
or 1. As aresult, the only second derivatives that beagiscontinuous upon traversig
will be the derivatives of index 2, namedy,g,,. We are thus led to express these

derivatives explicitly in equations (14-1), whose leftthade may be expressed by (12-
2). One therefore obtains:

(14-1) Rj = —% gooaoogu + Fij(C.d.) =0,
(14-3a) Rj = %gooaoogij +®;(C.d.) =0,
(14-3) Roo= 190,09, + ¥(C.d.) = 0,

in whichF, ®, W, denote quantities that are calculableSarsing algebraic operations on
the derivatives 0% when one starts with the Cauchy data (C.d.).

Under the hypothesis thgto is non- zerg one will see that the 6 equations (14-2)
give the values of the derivativegg,,0onS We must analyze this fact.

Our purely local study has been accomplished within theadto of a certain
coordinate system. However, in the domain of the Cauctey ttiat is envisioned, the
data onS will leave open the possibility of coordinate changeat tpreserve the
numerical values of the coordinates at any poin§ads well as the Cauchy data. In
order for us to account for this, consider the coordichtnge that is defined by the
formula:

X" =x! +(X—;)3 + [PA)(K) + €] (A'= A, numerically),

in which ¢! goes to zero whexf goes to 0. Under a change of coordinates, eaich @b
Swill preserve the same coordinates numericallg, amoreover, we will have:

(14-4) (A)s =0, 0,A)s =0, 0:0A))s = (0oA")s =0,
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on S in such a way that among the second derivatives Apf only the
derivativeqd,, A, )swill be non-null onS

(00040 )s= ¢,

Under a coordinate change, the potentials and theird@gtvatives will transform
according to the formulae:

Qi =A] A)[j’ Orp s
(14-5) 609/1;1 = A\a’ Aﬁ Ag’ap' Qs +ao 'q° 5 Qs +ao 5' 'Aﬁ‘ 9 -

From (14-4), one deduces that under the coordinate changeleed, the Cauchy data
on Swill satisfy the relations:

Ot = Gy 009,,= 049, -

How does such a coordinate change influence the secoivatilers (of index 2)?
One has:

aOOgM = Ala Af Ag 'glap'a' g{'ﬂ' +aoo /3(" 'g gﬂ’ +aoo ’5' P‘ 9/;'+ o,

in which © denotes terms that contain the first derivativef ahd are null ors. From
this, one deduces that:

0009 = 0409y s
000950 = 050 Uyg + 80, + 0,0 00, =0009,6 + Py + P ) -

Therefore, the derivativeg,g; are not modified under such a coordinate change,

whereas thed ,g,, may take on arbitrary values. Upon using a coordinate myste

which the ¢V are different on either side &— which is permissible in terms of the
structure o4, since thep”) appear only in the third coordinate 8r one sees that one
may make the possible discontinuities in these secondatlees appear or disappear,
which are discontinuities that are thus devoid of amgmnisic physical significance. In
particular, one may restrict th&,,g,, to be continuous upon traversiSgn a convenient

coordinate system. One encounters such circumstantes study of the Schwarzschild
matching conditions.

Up to the preceding reservations, the second derivatizeébe potentials will be
continuousupon crossing the hypersurfae In the case where the Cauchy data are
differentiable up to a higher order, one sees that the s@nclusions will extend to the
successive derivatives of the potentials; in order to dg thwill suffice to explicitly
differentiate equations (14-2) with respectdo In all of our analysis up till now, only
equations (14-2) were involved, to the exclusion of equaf{ibhs).
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15. —The integration of the Einstein equations. From the form of the left-hand
sides of equations (14-2) and (14-3), it results that the itjgant

g()j Ri +gOORio, ginij +900R00

do not contain any derivative of index 2 of the potentiadsa aesult, their values d
may be calculated by starting with the Cauchy data. s@ lygiantities are very simply
expressed with the aid of the components of the teéqgorindeed, one has:

S* = R=g”R; + g”Ro.
On the other hand:

S =R -1 F=g”Rop+ £ (g Ry + 2¢” Roi + g” Roo),
namely: )
S =1 (9”Roo - ¢’ Ry).

Conversely, the data oR; and the 4 quantitiesS) permit us to evaluate the 4

quantitiesRy for goo # 0. From this, it result that under the hypothesis nthedesystem
composed of equations (14-2) and (14-3) is equivalent (inghibeihood ofS) to the
system composed of equations (14-2) and the 4 equations:

(15-1) S =0,

in which the left-hand sides contain no derivative of in@ex Therefore, the four
equations(15-1) give four conditions that must be necessarily verified obyShe
Cauchy data.

Therefore, consider Cauchy data that satisfy the fonditions(S’) = 0, and assume

that we know als’ that satisfies these Cauchy data, as well as equélit+®). The left-
hand sides of (15-1) are coupled with the right-hand sitlét4e2) by the conservation
conditions:

0,S/=0,
namely:
(15-2) 0,5 +0,S,=0.

Now, for a solution to equations (11-2) one has:
S, =g°Ryj -1} (¢ Roo + 29° Ry, S =9”Ruw,
and also:

S*= R, 0= 2 9% Roo.

From this, one deduces that the four equations (15-2) maytbeto the form:
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(15-3) 9°0,S° = A0, S+ B S,

in which A andB are of clas€’. Therefore, for any solution of (14-2) they satisfy a
system of four linear homogeneous partial differentiplagions that are solvable with

respect to thé,S). Such a system admits no other solution but the alutisn for null

data(S}))s onS One therefore sees that it results from the emasion conditions that if

ds’ satisfies equations (14-2) and — at leasSenequations (15-1) then it also satisfies
equations (15-1) outside & One may translate this fact by saying that the system
Einstein equations is involution in the sense of E. Cartan.

We therefore see that our initial problem must be dividéo two distinct problems.

PROBLEM I, or “the initial conditions problem.” — This consists of looking for
Cauchy data that satisfy the syst8fw 0 — or the system of initial conditions — 8n

PROBLEM 1I, or “the evolution problem.” — This consists of integrating the
systemR; = 0 for Cauchy data that satisfy the conditions offiisé problem.

Suppose, for an instant, that all of the data in tbc®id problem are real-analytic,
even though this is, moreover, contrary to the axidmas we gave in the first chapter.
With the aid of the Cauchy-Kowalewska existence theofempartial differential
equations, one may then establish that problem Il acdm#sand only one real solution
locally, up to a coordinate change that preserves thelrmtes of any point & and the
Cauchy data. The coordinate changes permit us to giveaaybitalues ofy, outside of
Sthat are compatible with the Cauchy data. Howeveratiadyticity plays no role here,
in fact, and this result must show us only that we aréherright track. The evolution
problem has been recently solved by Fourés under the lesimppothesis of
differentiability. We shall return to these resudtel.

The results of the preceding analysis are not apgaaodified if the hypersurface
S is everywhere oriented in timg”{ < 0). The decomposition into two problems is
accomplished in the same fashion, but these problems pghesent very different
approaches to their solutions.

16. —Characteristic manifolds and bicharacteristics — If the hypersurfac& that is
locally defined by = 0 is such thag™ is identically null orS- i.e., if it is tangent to the
elementary cone at each of its poiatshen the results are found to be profoundly
modified. ~ The second derivatives of the potentials , (ithed,,g;) might be

discontinuous upon crossirf§ there can exist an infinitude of distinct solutionsthe
Einstein equations that correspond to the same Cauchyi&aln this, one recognizes
the classical results from the theory of partiafedéntial equations that are concerned
with characteristic manifolds, or, in the language o¥evpropagation, that characterize
the wave surfaces. Therefore, we may state:
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THEOREM. —The elementary coné&s; are the characteristic cones for the system
of Einstein equations. They admit the manifolds that are tangent to thes® for their
characteristic manifolds.

If Sis locally represented by the equatféx) = 0 then the characteristic manifolds
will therefore be solutions of the first order part#ferential equations:

(16-1) Nf=g¥d,fo,f=0.

They will be denoted by, in the sequel. A solution to (16-1), i.e., a chandstie

manifold V,©, may be generated by means of the characteristis sifi(16-1). We shall
see that such a solution may be generated by means dfateteristic strips of since
such a strip consists of the set composed of a duy\and a one-parameter family of
elementary 3-planes that are tangent to this curve giethe name dficharacteristics
for the Einstein equationt the characteristic curves of (16-y . We shall now
determine them.

Set:

H, v,) = 9%YaYs,

and consider the partial differential equation:

(16-2) Af =2H (x',9,f)=C,

in which C is an arbitrary constant. In terms of the varialifed, yz, the characteristic
strips of (13-2) will be given by the solutions to theetiéntial system:

dx’ _d¢ _df _ _dy, . __dy,

OH "TOH 2H  oH T oH
ayO ayg aXO 6X3

(=du),

which will have the first integral:
2H(', y) =C

that gives the value for the const&ht If one introduces the auxiliary variahlehen the
functionsx“(u), y4u) will be given by the canonical system:

dx” oH dy, __oH

(16-3) ===, =,
du ody, du 0x,

in the Hamiltonian functiorH(x’, yu). The first group of equations (16-3) may be
explicitly written:

dx?
16-4 X = g% X =—).
(16-4) g"ys ( du)
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Conversely:
Yp=0ap X" .

Having said that, the solutiox§(u) to (16-3) will be extremals for the Lagrangian
functionL that is defined by:

2L =g, %%,
since, by passing from the variable$, &”)to the canonical variablegx¥ yz), which are

related by (3-4) and (3-5), one will have the classidation betweerH andL.:

oL
ox?

H=x"

-L (=L).

These solutions are the extremals that give theirirsgral:
(16-6) 2=C

for the value of the constarf@. Now, from the existence of this first integral the
extremals thus defined are also extremals of:

\/Z_zﬂgaﬁxaxg !

which satisfy (16-6). It results from this that tf¢u) define the geodesics . If C =

0 then the differential system of the characteristic€l6-1) admits the first integrél=
constant, and the manifoldg~ may be generated by the strips\afthat are defined by
geodesic®f null lengthL,, with the associated 3-plane being the plane thainigent to
the elementary cone along the tangentLga From the theory of partial differential
equations, one knows, moreover, that when one is giveardgfold V,~ that touches the
elementary cone atalong a generatds the tangent to the curve that is associated to
VS atx is G, which showsa priori, why the bicharacteristics have null length.

We may summarize the results of this analysis kngta

THEOREM. — The bicharacteristics of the Einstein equations #re null-length
geodesics of the Riemannian manifdld

Upon referring to the theory of wave propagation tl@hes from the works of
Hadamard, one sees that the gravitational field preskaisharacter of a propagation
phenomenom relativity. The characteristic manifolds along whibe discontinuities of
the field may be produced play the role of gravitatiomave surfaces We shall later
verify that the propagation of an electromagnetiadfi@l V, involves exactly the same
elements. In a neighborhood of a pointhe bicharacteristics that issue frargenerate
a hypersurface that admidor a conic point and is called tbharacteristic conoidat x.
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17. — The conservation conditions in material schemas We shall now return
from the study of the Cauchy problem in the exterior ¢asgn analogous study in the
interior case; first, we shall consider the absencano&lectromagnetic field. To that
effect, we must study the physical consequences of tleeo@tion conditions.

Let Ty be the energy tensor for the material schema comesiderd write down the
corresponding Einstein equations:

Sop=X Tap.

Since the tensd®,; is not conservative, the same thing will also be tou¢he tensor
B
Tap, Which is constrained to differ from it by only a constan

O0,T;=0.

If we take a particular expression for the energyhwwhe aid of a certain number of
physical elements, then we will determine a certainbarmof “conservation” properties
for these physical elements by way of (3-2). By fiestgoning in as general a manner as
possible, we take the energy ten$gg in the form:

(17-1) Top=T1 UgUg— Haﬂ,

in whichu, is a unitary velocity vector (hence, it is orientadiime),r is a positive scalar
(the pseudo-density), arils is a symmetric tensor (the pressure pseudo-tensomge Si
the vectow, is unitary, one will have:

(17-2) JapU U = g% ugup= 1,

and, upon differentiating:
(17-3) WOsup=0.

If we define a vectoK by the relation:
(17-4) 0,65 =rKg
then the conservation conditions for the energydensy be written:
Oa(r UaUﬁ) =r Kﬁ.
Therefore, the scalar and the vectowu, will satisfy (17-2), (17-3), along with the
relations:
(17-5) Oa(ru® ug+ru®deuP =1 Kg.

In order to simplify these equations, we may take (1&r#)(17-3) into account. By
contracted multiplications witt?, it follows that:

(17-6) Oa(ruf) =r Kou“.
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Upon accounting for this relation in (17-5), one will abtafter dividing byr:
(17-7) U? O = (@ap— UsUp) K°.

The left-hand side of equation (17-6) presents the aspaatequation of continuity.
On the other hand, we call the lines that are evergavtangent to the unitary velocity
vector - i.e., the trajectories of that vector — tfteeamlinesof the schema considered.

When the vectoK is known, equations (17-7), in whialf :dd_x"’ will constitute a
S

differential system that the streamlines must satisfy
In order to find a simple interpretation for the farew, we study two particular
cases. The first case will be that of fhee matter schemaln this case, one has:

Top= pUaUg,
and one may take, in turn:
r=p, G =0, Kz = 0.

Equations (17-6) and (17-7) may therefore be written:

(17-8) Oa(pu®) =0,
(17-9) u’Oqu, =0.

The first equation expresses that the divergence opribeduct of the density of the
medium with the unitary velocity vector is null. $his obviously the equation of
continuity for the “atomized” medium considered. Hystem (17-9) expresses the idea
thsglt the streamlines of the current are auto-parake),they are geodesics of the metric
ds.

The second case that we envision is the one thall theacase of théolonomic
medium(or schem@ By definition, it is the case for whidks is a gradient. If lod~
denotes the corresponding functiorMatthenF will be called thendexof the holonomic
medium considered and equations (17-6) and (17-7) will therthakerm:

0 F 0 F
Oo(ru® =ru ‘I’: , u e’ = ‘I’: (95— uup.

We may verify that one may interpret the differahslystem of the streamlines in this
case by saying that they are geodesics of the Riemanntan that is defined iV,:

ds? = F2d¢,

which is conformal to the Einstein metde’.

In particular, consider a perfect fluid in a state @ition such that one may deduce
(from thermodynamical considerations, for example)gkistence of an equation of state
that relates the proper density to the pressure, namelg(p). In this case, the energy
tensor may be written:
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Tap= (0 + P) UaUs—P Ugg,
and one may take:

1 d,p
D[I(pga): ]
p+p 7 prp

(17-10) r=p+p,  BGp=pds, Kp =

in whichp =¢(p). It results from this thafz is the gradient of:

J’D dp .
P @(p)+ P

Such a perfect fluid will therefore be a holonomedium of index:

(17-11) F = exp| p’:ﬁ.

18. —The interior problem in the pure matter case — We shall now pose the same
local Cauchy problem in the interior case thatesponds to a pure matter schema. If we
are given the gravitational field on a hypersurf&a terms of the Cauchy data that we
have discussed then we will propose to determia¢ field outside ofS when one
assumes that the Cauchy data satisfy the equatfdhe pure matter schema:

(18-1) Sep = P UaUpg,

in which p > 0, and the vectau, is unitary. We further assume tt&its not tangent to
the elementary cone; if it is locally representgddb= 0 then one will haveg # 0. It
will results from the considerations of sel2 that under these conditions we may
substitute an equivalent system for system (18Hgt twill decompose into two
subsystems; from (10-3), the first six equations loa written:

(18-2) Ri = xpo (uiu — 3 gi),
whereas the other four are:
(18-3) SP= &ouyd.

It is convenient to add the equation:
(18-4) g uu, =1

to them, as well as the inequaly> 0.

Any solution @z u,) to this system will therefore satisfy equatiod3-8), (17-9),
which will entail the conservative character of teasorT,s. These equations may be
put into the form:

(18-5) UgOgUs = U’ u,+ ®p(C.d.,uy,0.u,)=0
/9 oYs B i
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(18-6) Oa(puf) = u%d,0+p0,u’+ F(C.d.,us,0,u,, o, 0,0)=0.

Having said that, we assume that the Cauchy gigtand d,9,, are three and two

times continuously differentiable & respectively. This data the values of BfeonS
it is then possible to determine the valuepahdu, onS One first has:

o) =g*s)'s).

The right-hand side must be strictly positive; inestivords, the vector that is locally
defined byS} must be oriented in time. We set:

g¥s; s;= @)’ (>0),
in such a way that:
xou’=Q°

From this, and with the aid of (18-3), one deduces that:

0_ SOO
Q°

0
U =—=2, u I (T

Since p is positive, one must also ha®’ > 0. On the other hand, from the
indeterminacy in the sign @°, the Cauchy data must determineup to a sign. In what
follows, we will assume that this sign has beerseino once and for all.

Conforming to our prior analysis, equations (18x#) then provide the values of the
derivative®),g, onS. SinceS® is positive- in particular, it is non-zere we will haveu’

# 0. As a result, equations (18-5) and (18-6) mithvide the values of the derivatives
d,u; and 0,0 on S respectively. It will then result that the quies u,, p,
0,9;,0,u,,0,0 will have definite values on a hypersurfa&that satisfies the

hypotheses that we made atmhnot be discontinuous upon crossing I5the Cauchy
data are locally differentiable to a higher ordeert the same conclusions will extend to
the higher derivatives of a solutiogug, us, p) onS it suffices to differentiate either (18-
2) or (18-5) and (18-6) with respectxtb

Consider a setggs, ux, o) that satisfies equations (18-2), (18-5), (1846),a
neighborhood o§ and equations (18-3) and (18-4) @nlt results from (18-5) and (18-
6) thatl, (S; — xT;) = 0. If we write this system of four equations ésolution of (18-

2) then it will follow that:
(S -xT)= Ao (S-x D+ B(S-x D,

and, as a result, (18-3) is verified outsideSaf it is verified onS. Similarly, from (18-
5), it results that:
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u? (W aug =2 u”a, (g% uruy) =0,

and, as a result, the vectorwill be of constant length along the streamlines.it i§
unitary onSthen it will be unitary outside &

Therefore, since (18-3) and (18-4) are satisfiedSoit will suffice to preoccupy
ourselves with the system (18-2), (18-5), (18-6), for thegration. Under the (abusive)
hypothesis of analyticity there will be one and onlyeoCauchy problem, up to a
coordinate change that presern&gpoint-by-point, along with the Cauchy data if they
satisfy the conditions:

g®#0, Q% =g¥s) >0, §°> 0.

We examine what sort of hypersurfaces may produce disctigin a given
interior field upon being traversed. This is the caséherfollowing phenomena:

a) WhenSis tangent to the elementary cone or is the cheniatit manifoldV,® (g° =
0);

b) WhenQ® = 0, which entails that’ = 0 and, as a resul§. = 0; from the fact that’
= 0, Swill then be tangent to a streamline or generated bgtteamlines.

The case for whick™® = 0 will reduce to the preceding one if, as we haveraed,
the densityp is finite. We therefore see a new sort of hyperserfappear as an
exceptional hypersurface, along with the characterissinifmlds of the exterior problem:

namely, th&.°, which are generated by the streamlines.

19. — The interior problem in the case of the perfect fluil. — The previous
argument will be analogous in the case of a perfeit fthat is endowed with an equation
of state. However, it is convenient to explicitly mien the calculations here because
they present a new physically interesting circumstafi@ethe energy-momentum tensor:

Tag= (0 +P) UaUs—P Qo (o= ¢(X)],

there will correspond the system of field equations:

(19-1) Rj =x[(o+p)uu—3(o-p) gl
(19-2) Sy=xl(p+p) wiu’-pgjl,

to which it is necessary to add:
(19-3) g*“uu, = 1.

As for the conservation conditions, they may betemi
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0P, 0 @
(19-4) U Ogsus—2—(g%-uup =0,
Toprpt
(19-5) Oal(0+p) U] —u“0, p=0.

For the moment, assume that the valup sfknown onS. One deduces from (16-2)
that:

X +p)u’ =Sy + xpgy,
and, upon taking (19-3) into account:
X(o+p) U =ai S} + X p gy (S)+ xpgg)(So+ xpg)) = [Qp))%,

in which we have denoted the function pfthat appears in the right-hand side by
[Q%p)]?. One deduces from this that:

S+ x pd o _S"+x pd° _ [Q%p]?
19-6 == TAPS > *XPg +p) =2 PI”
(19:6) a Q°(p) - Q°(p) Ap+P) S* + x pg®

If o =¢(p) then the last equation above will give a finitgiation inp that determines
eitherp or the possible values pf One then deduces the valuesipf o, and then, with
the aid of (19-1), of thé,g; .

We now seek to calculadgp, ord,p, which, taking into account the equation of

state, is equivalent to it. Equation (19-4) istcavariant wher3 = 0, and equation (19-5)
may be written:

(19-7) +p)uou’-[g”- )7 0,p =A
(19-8) p+p) 0,u’+u’@'(p)a, p =B,

in which the values oA and B are known onS. The simultaneous determination
ofd, pandd,u’ may be accomplished only if:

(U)?¢'+g* - W)’ #0,
namely:
g* - )’ (1-¢)#0.

If this is true fod, pandd,u’thend u'will be determined or§ as a result of the

unused equations (19-4). The argument then preceetefore.
One therefore obtains three cases of exceptiorahifaids that may produce
discontinuities in the field when crossed:

a) Manifolds that are tangent to the elementary comesharacteristic manifold¥,
(9*=0);
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b) Manifolds that are tangent to a streamline or are gty streamliney,;

c¢) Manifolds V' such thag® — ) (1 -¢') = 0. When they are locally defined by
f(x') = 0 these will be the manifolds that satisfy the ¢iqua

(19-9) [g¥-u'u(1-¢")]0,f0,f =0.

Discontinuities of the pressure gradient may be produgssh crossing these
manifolds that constitute the relativistic extension tbé wave fronts of classical
hydrodynamics. We assume that these wave frontso@eated in time,or, more
rigorously, they arg¢angent to the con€,; we verify that this hypothesis is in accord
with the demands of relativistic physics preciselyit i true then:

A f Eg””aﬂ fo,f <O0.
Now, from (19-6):
Af= (U9, F)*(1-¢").

From this, one deduces that:
(19-10) ¢ =1.

Having said that, it is easy to evaluate the quantity ¢cbastitutes the “velocity of
propagation” of the hydrodynamical waves considered hdrake two neighborhing

wave surfacegV,"), and(V;'),, which are defined by the equations:
f(x") = 0, f(x) = ¢

and takes to be infinitesimal, in principle. The streamline tissues from the point of
(Vy'), intersects (V,"), at a point that is easy to determine up to higher-order

infinitesimals. If we denote this point by + rnu then 77 will be determined by the
relation:
(19-11) nu'o, f==c

Let n be the normalized vecton{ = -1) that is normal to the wave surfa¢e™), .
This vector has the covariant coordinates at

9,1

J-g%o,fa,

The orthogonal trajectory of," that issues from intersects(V,"), at a point that

may be writterx + /1n, up to higher-order infinitesimals, in whiep is determined by
the relation:

n)=
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(19-12) mn' o, f=¢
From this, one deduces that:

£J-g%a, o, f
(19-13) m=—~ = 3 1Ot £ |
no, f g*o,fo, f /_gma) fo,f

The vectot = nu — 71N is obviously tangent to the wave surface. Indeed, ase h

u'o, f £
J-9%,fa,f J-g"9,f0,f

n(uth)y=n

and, as a result:
t Ch=(pu—mn) h=0.

The vectot is oriented in time because its square:
ns = ©)° =7 —ni-2nm(u ) = 17 +n?

is positive. The vectonu thus appears to be the sum of two vectors: One of thkem
orthogonal to the wave surface and oriented in s@awkthe other one is tangent to the
surface and oriented in time. The “velocity of propagatonf the wave will therefore
be found to be defined by the limit of the ratio of thenm® of the vectors, namely:

)
1o

Vv =lim

-0

One thus has:

2 2
v2=lim2% = jim(1+L |,
£-0 /71 £-0 /71
so that upon replacing and: with their values, one will have:

_ g*o,fo  f
vi=1-2_4 4 —1_(1-¢")=¢".
W0, Y2 (1-¢") =¢

The velocity of propagation of the waves is tfy%. This value calls for two

remarks: First, it generalizes the value that is obthby Hugoniot’s theorem in classical
hydrodynamics. Second, under our hypotheges>(1) the velocity of propagation will

be less than or equal to the velocity of light, whigkaken to be unity; this is an essential
necessity from the relativistic viewpoint.
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Il. - THE CASE IN WHICH THERE EXISTS AN ELECTROMAGNET IC FIELD

20. — The relativistic equations of electromagnetism: Here, we adopt a classical
(i.e., non-quantum) viewpoint and first indicate the eQuatthat may appear as the
rigorous equations of electromagnetism in general rehativihe essential element that
enters into these equationsviz., the electromagnetic field tensdf,z — varies
considerably in spacetime in the neighborhood elementatizlpa. The corresponding
macroscopic magnitudes, which vary relatively little pacetime domains that are filled
with a sizable portion of charged matter and are deduced fi@roscopic magnitudes
by taking means will be dispensed with here. We shatktfore outline what appears to
be aprovisionalrelativistic theory of electromagnetism.

One deduces from the classical results of specidivigfathat the electromagnetic
tensorF,s must satisfy two systems of four partial differenBguations inv, that are
nothing but the translation of Maxwell’'s equations itite language of general relativity.
We take these equations in the following form: FirsaloftheF,z must satisfy the four
inhomogeneous equations:

(20-1) D= zF% = x' 2%,

in which x'is a constant that we may reduce to 1 by a judiciougehaf units, and the
vectorJ? describes the electrical current in spacetime domaasatk filled with charged
matter. The vector that appears in the right-hand dfiégguations (20-1) plays the same
role in these equations that the energy tensor ago#®eiright-hand side of the Einstein
equations. We shall return later to the possible expresgor vectord?, to which one
gives the name alectric current vector

As for the second system of Maxwell equations, it niaryan orientable manifold, be
put into the form:
(20-2) E’= 3 0pF =0,

in which the left-hand side is a vector\of

One may thus express the left-hand side of the Maxagelations with the aid of the
adjoint tensor (F),z, which may be substituted fdf,z in order to represent the
electromagnetic field. From (8-3), one has:

- (o) —
FF = -1 % (*F),5= 0.
Sincen has a zero covariant derivative, one deduces fronihéis

D= 0, F = -1 7 0s(*F),s,
namely:
(20-3) D= -1 0p(*F)ys
Similarly, one has:
E”= 4 77 OpF 5= Ol 3 17" Fyd,
namely:
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(20-4) E?= Op(*F)™.

One confirms that by passing to the adjoint, the esgiwas forD? andE“ that are
given by (20-1) and (20-2) will correspond to the left-had@siof equations (20-3) and
(20-4), respectively.

Upon specifyingllzF s in equations (20-2), one may put these equations into an
equivalent form that has an interesting interpretatiowleed, one has:

OpFps = 05F 5 T4 Fs —Th:F, -

Since thel are symmetric with respect to the lower two indicasd 77 is
antisymmetric:

E" =4 77 OpFps = £ 70, Fyo.

One may interpret this result by saying tEAtis the adjoint vector to the exterior
differentialdF of the formF that is associated with the electromagnetic fidamilarly,
one will have:

D= =3 ¥ 0p(*Flye = =3 77770, (F)e,

with an analogous interpretation. Equations (20-2) thushedgF = 0. Thereford= will
belocally the exterior differential of a linear form; in otheords,F .z will be locally the
rotation of a vector field@,:

Faﬂ:aa¢ﬂ _aﬂ¢a .

@ is called avector-potentialfor the electromagnetic field. Naturally, is defined
only locally and up to an additive gradient. The tramsfdions¢, - ¢, +9,S(Sis a
scalar-valued function) have classically received thmen ofgauge transformations
theoretical physics. Note that in general there issagon for there to exist a vector field
@ on every manifold/s such thaf .z is its rotation. If one wants this to be true tlten
will be necessary to explicitly specify this or makec@nvenient hypothesis on the
topology ofV, or the domain that is occupied by the field.

One is often forced to raise the indeterminacy ofvéletor-potential by restricting it
with supplementary conditions. The one that is aa#ig employed is:

(20-5) Da ¢a =0.

If ¢, is an arbitrary known vector-potential then the vegimtential that satisfies (20-
5) will be deduced by the addition of a gradient of a func§icsuch that:

NS=g¥050,S=-0ag".

Sis therefore a solution to a second-order equation pdriplic type. In the case of an
elliptic metric and a compact orientable manifold, thed¢tsde Rham theory of
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harmonic forms shows thatif = d¢ then there will exist one and only one global vector-
potential@, that satisfies (20-5). No analogous theorem existseicdbke of a hyperbolic
signature.

Recently Dirac has introduced the supplementary conditi

(20-6) 9% pa s ‘F’

instead of (20-5), in whick is a given constant. Under the same conditions,uthetibn
Swill be defined by the first-order partial differenteduation:

o 0,5+ 80,5+ 47 = ki

in which the form is completely related to that of HaomtJacobi. The fact that this
equation is one of the first order is encouraging inelyes of global analysis.

Finally, let T,z be an energy tensor that defines a schema that invawes
electromagnetic field. From the postulates of genetativity, the electromagnetic field
and the metric tensor must be related by not only the MHByequations, but also the
Einstein equations for the interior case:

(20-7) Sop = X Tap,

in which one term oT 43 is composed of the Maxwell tensnyz, which is defined by (9-
1).

In summation, the relativistic equations of electronedigm are composed of the
Maxwell equations (20-1) and (20-2) and the Einstein equatRiRg).

21. —Conservation conditions for the electromagnetic case. Fhe vectorD“ and
EY that appear in the left-hand sides of the Maxwell eqnatienjoy a fundamental
property: Their respective divergences are zerdhis originates from the fact that they
are, up to sign, the adjoint vectors of the exteridecghtials of the formg and *#. For
example, consider the vector:
E7 =19 ,F

By

Its divergence is given by the formula:

0aE" = ra GIgE r‘sﬂﬂ’”aaﬁFy(,

From the symmetry ofd;F, with respect to the indicesr and g and the
antisymmetry of with respect to the same indices, it results that:
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(21-1) 0,E“=0.
When one substitutes the adjoint tenséi,§*for F,z one similarly establishes:
(21-2) 0,D%=0.

Since the vectod’ is restricted by equation (20-1) to differ frobf only by a
constant factor, one must necessarily have:

0,39=0,

which we translate by saying thae electric vector-current®Js conservative

In the conservative tensdiys for a schema that involves an electromagnetic field,

there appears the term:
(21-3) 15 =195 FauF ¥ —F%Fpg,

which is associated with the electromagnetic flejd. We seek to evaluaig, 7, which
appears in the conservation conditions. One immelgliags:

0,75 = 3 F¥ OpF = F% OaFgo— Fpo 0o F%.

We evaluate the second term on the right-hand sidee l@&s, by an obvious
transformation:

F% 0aFg =1 F¥[0aFg+ 0pFad.
Upon taking into account the Maxwell equations (20-2), whici beawritten:

this takes the form:

This term thus annihilates the first term of the rgahd side, and what will remain
is:
DHTZ = Fpﬁ Da Fap

If one replacesl, F“ by the value it gets from the Maxwell equations (20-1) then
will follow that:

(21-4) 0,75 =Fopd-.

Consider a pure electromagnetic field schema. Inawsdihema, the vector-current is
zero by hypothesis. On the other hand, from the consexveharacter of the energy

tensor, one will have,r; = 0; equations (21-4) show that these conditions are quit
compatible. Similarly, one may note that they areivedent, in general. In order for this



The Cauchy problem for gravitation and electromagnetism 43

to be true it is necessary and sufficient that theraeant of the matrik .z be different
from zero. From the considerations of sec. 8, the thygsts made is therefore thatz O;
i.e., the electric field and the magnetic field canbetorthogonal in a local physical
interpretation.

22. —The Cauchy problem for a pure electromagnetic field schem — From the
considerations of se@0, the Maxwell equations admit conservation condititireg are
analogous to the ones that are verified by the Einsteirtiegsa In order to study the
interaction of the gravitational field and the electagmetic field, we are therefore led to
study the Cauchy problem that relates to the two fieldally, and, as a consequence, the
set of Maxwell and Einstein equations together. We prgedwes in the “exterior in the
unitary sense” case, i.e., under the hypothesis of anraiegnetic schema in the
absence of matter. The system of equations to be studigdbe written:

(22-1) D=0, E?=0,
and:
(22-2) Qup=Supp— X Tap=0,

in which 7,5 is defined by (21-1). Relative to these equations, our proldethen the
following one:

PROBLEM. — Given electromagnetic and gravitational fields on a hypersurface
determine these fields outside of S under the assumption that thByesguistiong22-1)
and(22-2).

If Sis locally represented b§l = 0 then the Cauchy data will be the values obthe
(which is at least three-times continuously differaolieg) onS and the values of
thed,g,; and the components,; of the electromagnetic field (which is at least &wic

continuously differentiable) o&. First of all, we assume th&is not tangent to the
elementary cone in the local domain considegdd# 0).

The only field derivatives that may be discontinuous uparssing S are the
derivatives),g,,andd,F,;, since a simple differentiation ddgives the values of the
other derivatives of the same order for these fieldle shall thus make these derivatives
explicitly evident in the Maxwell and Einstein equations

The Maxwell equations (17-1) may be written:

(22-3) Da=¢” UsF 0= 0.

If we make the derivatived,F,, appear in them explicitly then it will follow that:

(22-4) Di = g"9,F, + g*9,F, + d(C.d.) = 0,
and: _
(22-5) Do=g" 9,F,+ &(C.d.) =0,
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in which thed, are quantities o that are deduced from the Cauchy data by algebraic
operations and derivations & From this, one immediately deduces the quantity:

gOi Di + gOO DO — DO,

which does not contain any derivative of index 1 of tleeteomagnetic field. We are
thus led to replace the system (22-3) with the equivagstem (sincg® # 0) that is
composed of the three equations (22-4) and the equation:

(22-6) D°=0.

Similarly, the Maxwell equations (17-2) may be decomgast one system of three
equations:

(22'7) Ei = %”ﬂy&aﬂ ch:% ﬂycﬁaﬂ Fy6+ ‘é (C'd') =0,
and the equation:
(22-8) E°=17"%F, =0,

in which the& are quantities of$ that are calculated by starting with the Cauchy data,
and E° enjoys this same property. One will note that (22-8) ege®the fact that the
form F, dX*~ dX that is induced o6 has a zero exterior derivative.

Finally, from the considerations of set2, the system of Einstein equations is
equivalent to a system that decomposes into two. ifsiesix equations will be the
following ones ?):

(22-9) Ri—x(5j—30i7)=0 T =17).
As for the other four, they are written:
(22-10) Q) =8 - x17=0,

in which the left-hand sides are quantities that areutsted onS by starting with the
Cauchy data.
Having said this, equations (22-7) give the values of the tleeeativesd F, onS

Since the quantitg is different from zero, equations (22-4) give the valethe three
derivativesd,F; on S and equations (22-9) give those of the derivatiggg, . All

tolled, with the same reservations as before, thensederivatives of the potentials and
the first derivatives of the electromagnetic field Ivineé continuous upon crossing the
hypersurfaceS.  This conclusion may be obviously extended to the higlaero
derivatives by differentiating equations (22-4), (22-7), and92&ith respect to’, since
the present analysis has not used equations (22-4), (22412 249), up till now.

() Naturally, 7 = 0 for the energy-momentum tensor of an electromiagfield; however, we do not
profit from this circumstance here, in such a way thatpitesent calculations will be valid under more
general conditions (see s@&).
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23. —The integration of the Maxwell-Einstein equations. -The left-hand sides of
equations (22-6), (22-8), and (22-0namely,D°, E°, andQ} - are quantities that are
directly calculable ors from starting with the Cauchy data. It will then redbat the
chosen Cauchy data must be such that the six precedintitiggaare zero o

Hence, consider Cauchy data that satisfies thessatktions ornS, and assume that
we know a pair of tensorgdz, Fap) that correspond to these Cauchy data and satisfy
equations (22-4), (22-7), and (22-9). First of all, the leftehsides of (17-1) and (17-2)
are related by the conservation conditiohed? = 0 anddJ,E“ = 0. For such a solution
of (22-4) and (22-7), these conditions will take the form:

9,D° = A9, D° + BD® (A" andB are of clas€?),
and:
0,E° = -1, E°.

Therefore,D andE each satisfy a linear homogenous first order partidreintial
equation which is obtained by solving for the derivative witbpect toC; for null data
on s there will correspond only zero solutions. Theegfour pair @45 Fop satisfies the
Maxwell equations (17-1) and (17-2) outsideSof

From (21-2), since the system (17-1) is satisfied, thsoter,z will be conservative.
The same will therefore be true for the ter@gs = Sps— x745. Therefore, the left-hand
sides of (22-9) and (22-10) will be coupled by relations #tatn from the fact that

0,Qz= 0. In order to find the form of the conditions when (22s93atisfied, it will

suffice to calculate the values @f and Q] for the pair envisionedyfs Fop). If we take
(22-9) into account then an easy calculation will give:

Q° =9”[Ro—x (fio—% go?)],
Q} = 1 g”[Roo —x (700 —% Goo?)].

For such a pair, it will then result that the expi@ss

R+ X7 = 9% [Rap— X (Tap—UapT)]

can be expressed by a homogeneous linear combinationomitinwous coefficientsgf®
# 0) of theQ?. In turn, the same thing will true for the components

Qaﬁzsaﬁ—)(Taﬁ: [Raﬁ—)((taﬁ_%gaﬁr)] _%gaﬁ(R +XT)

that is true for the componen(@};. It will then result that for a solution of (22-9) the
conservation conditions for the teni@j will reduce to the form:

9°0,Q) = A9, + B,
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in which theA andB are continuous, and the same reasoning applies. OuggaiF.s)
then satisfies the Maxwell-Einstein equations outsfdg o

Our initial problem is thus found to be subdivided furtido two more distinct
problems.

PROBLEM | — Find Cauchy data that satisfy:

(23-1) D°=0 E°=0 Q =0,
onS
PROBLEM Il — Integrate the system of equations (22-4), (22-7), and (219),

Cauchy data that satisfy the system (23-130n

Under the (abusive) hypothesis that the data of thendeproblem are all real-
analytic, the corresponding system will again admit and only one real-analytic
solution, up to a change of coordinates that preservesottrelinates of the points &
and the Cauchy data. The method of Fourés is then applibd fwesent system, which
permits us to obtain the theorems of existence andstpalyuniqueness” under the
hypothesis of simple differentiability, under the coiudit that g% is positive 6 is
oriented in space).

If the manifoldS is such thag® is identically zero then the derivativigg; and

0,F, of the gravitational field and the electromagnetiafigight be discontinuous upon
crossingS. In particular, one may construct solutions to thexW&l-Einstein equations
such that the derivatives of the gravitational field @atinuous upon crossirgbut the
derivatives d,F, are discontinuous. The manifol appears as the characteristic

manifold of the Maxwell equations or as the electrometig wave front. We may
therefore state:

THEOREM. - There is an identity between the characteristic manifolds of the
Einstein equations and those of the Maxwell equations. These manifoldbeare
solutions to the equatiafyf = 0.

We have thus established the identity of the gravitatiomaves and the
electromagnetic waves in a completely rigorous mararat, as a result, the identity of
the laws of propagation of the two fields. In part@eulthe null-length geodesics that
constitute the gravitational rays also constitute teetemagnetic rays, or light rays.

23 (cont.). =The singular electromagnetic field and null-length geodesic—

a) Consider gure electromagnetic fiell,z in a spacetime domain thatssigular
in the sense of se@0. The space vectors of the electric field and thenaag field are
orthogonal and of equal norm relative to any orthombriframe. From the
considerations of sed.0, there exist simple orthonormal frames)(at each poink of



The Cauchy problem for gravitation and electromagnetism 47

this domain such that the componeXsY, Z) and €, M, N) of the electric and magnetic
fields relative to these frames are:

X=¢ Y =0, Z
L=0, M = &€&, N

01
01

in whiche=+1. From (8-1) and (8-4), one deduces that the only nonezenponents
of the tensor& and (*F)“ are:

Pl =g F =
(F)* =4 (*F)* =&
respectively.
As for the tensor,g, its components with respect to the frame envisionediaes by

the matrix (10-11). The vector:

=&+ &6
defines an isotropic proper direction®f, and one has the tensorial equation:
(23a-1) Tap=&%lglp.

b) Refer to the spacetime domain envisioned to thelsiorthonormal framesef).

One has:
ds’ = () =D ()2,

Let w’ be the Pfaff forms that define the Riemannian estian that is attached to
the metric t) when expressed with respect to these framessatve

af =Ygy’ Vago = Qac ¥,

in which the s, generalize the Ricci rotation coefficients. Thwariant derivative of
the metric tensor is given by:

ngaﬂ :apgaﬂ _ygpgaﬂ _ygpgaﬂ == (yaﬁp + MBH,D)!
in whichd ,represents a Pfaffian derivative. From this, oegudes that:
(23a-2) Vago * Vpap = 0,
which are relations that will be useful to us inatfollows.

c) The pure electromagnetic field envisioneds$ia the Maxwell equations:

() The reader is referred to Book Il, Chapter IV.
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(23a-3) OFP =0,
and
(23a-4) Op(*FA%) = 0.

In the frame envisioned, equations ¢23, for @ = 0 or a = 3, may be written
explicitly in the form:

OpFP° = =0, + &Jhoo + Yhsa— E)or + EYiog) = O,
SD/JF‘B =-0,& + &2z~ Voo~ EYsor + EWizg) =0,

(23a-5) Yioo+ Vizs+ & Yoz + Yz = 0.
Similarly, upon specifying (284) for a = 0 anda = 3, it follows that:

(23a-6) Yoo+ o33+ € (Jeos + Js3q) = 0.

We then evaluate the components of the vector:
tpOpl 7 =150,17+ 21717,

in which | admits the components (1, 0, 4),in the frame envisioned. First, it follows
that:

IﬁD/;IO = € Vo * V5= € Yoo + Yos,
1P 051° = £ Y5+ ¥3= £(€ Yao0 + J509).

From the other part of (23) and (23-6), one deduces that:

1P Op1" = Yo + Vas+ €V + Vo) = Vioo+ Mas +& (Yos + Ma0) = 0,
1P 017 = Yoo + Vo + E(V e+ Vo) = Yooo + Ysaa +€ (yoos + Jzo) = O.
If one sets:
a= & oot Vo3

in the frame envisioned then there will exist a scalsuch that the tensorial equation:
(23a-7) Os17=al”

will be satisfied. This equation says that the dioectof the vectorl is parallel-
transported along its proper direction. Thereftine, trajectories of the vectdrwill be
null-length geodesics in the spacetime envisidfed

One sees from (2381) and (23&-7) that a singular, pure electromagnetic field schema
may be interpreted as a singular field medium whoseedstlines” are null-length

() This resultis due to LOUIS MARIOT. Comptes ren@L@54).
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geodesics. We interpret these results by saying thagalainpure electromagnetic field
describes a fluid of photons.

24. The Lorentz transfer equation. — Except for the case of a purely
electromagnetic distribution, the fundamental equatior electromagnetism that we
gave before will remain incomplete as long as one doeknmt an expression for the
electric vector-current’. One may complete these equations with a supplemyentar
equation that depends upon the vector-current and gives ugsyaofvimplicitly
interpreting the electronic hypothesis. We assume thateality, any elementary
electronic current is a convection current; in other wotids electric current vecta¥
must be collinear with the unitary velocity vectdrof the material. We are therefore led
to add the equation.

(24-1) Y=pud,

in which y is a scalar variable that we call theoper electric charge densityWe give
equation (24-1) the name of tHeorentz transfer equation A great number of
consequences result from the hypotheses that this eqaaggests.

Consider the case of a matter-electromagnetic fiehetraa. It corresponds to the
energy-momentum tensor:

(24_2) Taﬂ = P Uy Uﬁ + Taﬁ.

One may associate the vector:
pKﬂ = —DaTg =- Fpﬂ\]p

with this form of the tensor, and [from (17-6) and (17-Hg tonservation conditions
(24-4) for the tensor will take the form:

(24'3) Da(p Ua) == Fpﬂ\]pua,
and
(24'4) Ua Da Uﬂ = (gaﬁ— UQUIB)% Fap\]p.

These conservation conditions, as well as the dhat are associated with the
Maxwell equation (17-1), take a very simple formemhone accepts the validity of the
Lorentz transfer equation. From the conservatioth® current vector, one first deduces
that:

(24-5) Og(uu®) = 0.
(24-6)
Moreover, one will have the term:

Fosd u’ = uFsu’u’=0

in the right-hand side of (24-3) as a result ofanéisymmetry of,,. Therefore, (24-3)
will take the simple form:
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(24-7) Oa(ou = 0.

Similarly, the last term of the right-hand side &4{4) is null for the same reason if
Jp =l Uy, and (24-4) then takes the form:

(24-7) u”Oalgp =% Fapu®,

which is the differential system of the streamlines.

From equations (24-5) and (24-6), which translate into theezwation of electricity
and matter, respectively, one derives a physicalbrasting consequence. Indeed, these
two equations may be written:

9aH _

Oq.u?+ u” =0,
u
and:
Oau? + u”a”—’oz 0.
0

It follows by subtraction that:

u? (aﬂ_’u—aa_pj =0
g P
or.

u’a, (Iogﬁj =0.
Yo,

Therefore, the ratik& :Ewill remain constant along the streamlinén general, the
yo,

ratio k =H may vary from one streamline to another. We areotsibpeinterested in the
P

“homogeneous” schemas, for whigéhis constant over the entire spacetime domain
considered.

25. —The Cauchy problem for the matter-electromagnetic field shema. - We
conclude this chapter by studying the local Cauchy problem et af two fields in the
case of a matter-electromagnetic field schema thsfisa the Lorentz transfer equation.
Given gravitational and electromagnetic fields on a hgyéace S, we propose to
determine the fields outside 8fwhen one assumes that they satisfy the equations:

(25-1) DY =puu°, E =0,
(25-2) Qup=Ses— X Tap=0,
in which:

Taﬁ:pUQUﬁ'l' Taﬁ,
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I, denotes the energy-momentum tensor for the eleagoetic field. We set:

Pasg = Sap— XTag,

and equations (25-2) may be written:

QaﬂE Pag— X pUsUg = 0.

It is convenient to add the equation:

(25-3) gaﬂuauﬂ: 1,
as well as the inequality > 0.

We further assume th& is not tangent to the elementary cone; if it isalbc
represented by the equatigh= 0 then one will havg® # 0. We know that under these
conditions we may replace the system (25-1), (25-2), a6d3) with an equivalent
system that decomposes into two systems. Thesfigem will be composed of the
following equations:

(25-4) Di=uu, E=0,
and:
(25-4) Ri—x(Tj—3giT) =0.

The second system will be composed of the equations:

(25-6) D=y, E°=0,
and:
(25-7) 2 = R]O_)(U/] uw’ =0,

to which we add equation (25-3).
Any solution @qs Fap Ua 4, ) Of the system considered satisfies equations (24-5),
(24-6), and (24-7), which originate in the conservation tmms$, namely:

(25-8) Ot u®) =WPo, p+ po U+ G(C.d.,uy, d,u,, 4, 0,4) =0,
(25-9) Odou®) =u’0, 0+ pd,u’+ F(C.d.,uy, d,u,, p, 9,4) =0,
(25-10) u? DaUﬁ_% Fapu?=ud,u, + dp(C.d.,uy, OU,, %) =0.

Having said this, assume that the Cauchy dat¢and 0,9,,, Fa» are three and two

times continuously differentiable @ respectively, and naturally, that they satEfy= 0
(i.e., the existence of a vector-potential fgronS). This data will determine the values

of theP’on S A calculation that is identical to an earliereowill then permit us to
determine the values of the andponS First, one has:

(o)’ = g P,



52 The relativistic theory of gravitation and electromaggmet

One assumes that the right-hand side is strictlytipesand sets:

g/VI R]O FLO — (QO)Z.
One then deduces:

I _@°
_Qo’ _Qo’ AP = Poo

uj , (P® > 0)

and (25-6) will give the value gf, sinceD° is known orS,

Under these conditions, equations (25-5) will giwbe values of the
derivative®),g; on S and equations (25-4) will give the values of tegivativesd,F;
and d,F,. Then, sincel’ # 0, equations (25-10), (25-9), and (25-8) will gitre
equations oD u,,9,0, andd,onS. Therefore, these quantities will have well-defin
values on a hypersurfa&that satisfies the hypotheses that were mademeagiat not be
discontinuous upon traversing it.

Consider a setggs, Fas, Us, o, 1) that satisfies equations (25-4), (25-5), (25(8%-
9), and (25-10) in a neighborhood$fand satisfies equations (25-3), (25-6), (2®7P.
From (25-10), it results that:

u?(W¥ O, up = 0;

thereforeu, has a constant length along the streamlines. eStnis unitary onS it is
unitary outside of and (25-3) is satisfied outside &f Similarly, for a solution of (25-
4), the conservation conditions, EY = 0, 0,(D“ — £ u® = 0, one of which is satisfied
identically and the other of which follows from (3%, may be written:

d,E°=-T9.E°,
9,(D° - puu®) = A9, (D° - %) +B (D° — ).

As aresult, (25-6) are satisfied outsidesof
Since this is true, equations (25-9) and (25-1ill)emtail the conservative character

of 7, and, as a result, that @; = S; - ¥ T{. The calculations that were made in sec.
24, in which it sufficed to substitute the tenstf for the tensor,s, show that for any
solution of (25-5), the conservation conditiaigQ; = 0 may be written:

0,Q) = AP0, QG + B Q,

in which theA’s andB’s are continuous. Therefore, equations (25-7katesfied outside
of S

Since (25-3), (25-6), and (25-7) are satisfied $nit results that it suffices to
preoccupy ourselves with the system (25-4), (25%);8), (25-9), and (25-10) from the
standpoint of integration.



The Cauchy problem for gravitation and electromagnetism 53

Here, one may further establish that, under the hypotineses, there exists one and
only one solution to the Cauchy problem, up to a changeartlinates that preserves the
coordinates of any point & As in the case of the pure matter schema, the aanapt

manifolds are the characteristic manifold$, and the manifolds that are generated by
the streamliney/®.

An analogous theory may be developed in the case forhwhicorresponds to a
perfect fluid-electromagnetic fiekthema?).

! See chapter VI.



CHAPTER I

MATCHING CONDITIONS

|. - THE GRAVITATIONAL CASE

26. —GAUSSIAN coordinates — Consider a hypersurfa&in V — for example, one
oriented in space — and suppose that the coordipdtpare locally defined by the
equatiorx’ = 0. Construct a geodesic through each pwitSthat is normal to th&, a

geodesic that is therefore oriented in time. We dsthblish that these geodesics are
orthogonal to an infinitude of hypersurfaces (Fig. 1).

Figure 1.

Indeed, we leV be a normal vectoM@ = + 1) that is tangent to a geodesic and study
its rotation, which is written:

arp= UaVp—UVa= 0,V —0,V,

a

in a system of arbitrary coordinates.
Since the trajectories &f are geodesics one has:

\Vad OaVs= 0.
On the other hand, sin&&is normal:
\Vad OpVa = 0.

One deduces from this by subtraction that:
(26-1) V¥ app = 0.

For the ) coordinates, take coordinates with the property thalirtes along which
the () are constant are the geodesics considered. If a demhemuntersS at x then

one may, for example, take=x"(&). Note that one then h¥= 0. Suppose, moreover,

thatx’ = 0 definesS. Since the geodesics are orthogona tone then ha¥; = 0 onS
Having made these assumptions, (26-1) is written:

(26-2) abi =0
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in these coordinates.
One the other hand, sineggis a rotation:

£7°0,0,,= 0.
For o=, upon taking (26-2) into account, it will follow that:
(26-3) 0,w, = 0.
Now, one ha¥; = 0 onS and, as a result:
=0V, —0,V,;=0.

From (26-2) and (26-3) it will then result thats = 0 in a neighborhood & As a
result, there will locally exist a functiopsuch thav is its gradient:

Vo=0,0,

and the geodesics are orthogonal trajectories toutti@ecesg = constant. Sinag¢ = 0

onS ¢ will reduce to a constant, which one may assume tebe If one adopts’ to
be the normal coordinate thdg will take the form:

ds* = Joo (d)é))2 + g.,(x”) dX dx.
However, one has:
g =M1 =gPV, V= 1.

Thus:
Qoo = 1,
and the metric may be written:
(26-4) ds? = ([@X)? + g;(x") dX dX.

The hypersurface, = c is therefore obtained by measuring off an arc of lesgalong
each normal geodesic that startsSon

The coordinatesx X°), whose existence we just proved, are calledGhessian
coordinatesthat are associated withand the coordinates’ (= X) on S Conversely,
suppose that one has a coordinate sysénin(a neighborhood of a hypersurfegéd =
0), for which the metric takes the form (26-4). It isyeto see that the lines along which
X’ alone varies will be geodesics, because:

d’x'  _, dX d¥
=+

= = =1’ =0,
ds? ” ds ds %
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along these geodesics, and the coordinat®sa(ll be the Gaussian coordinates that are
associated witls.

The results that we just established for a hypersuifatieat is oriented in space
persist, with a slight modification, whé&hs oriented in time. The vectd must then be
normalized byV? = -1 in such a way thag® = goo = -1. In this case the Gaussian
coordinates lead to a metric of the form:

(26-5) ds’ = — ()% + g;(x") dX dX.

27. — Matching conditions —We propose to represent a model of several gravitating
masses on a spacetime manifgld Each mass generates a “world tube” that is bounded
by a hypersurfac& On one side 0§ there exists a metric that satisfies the Einstein
equations in the interior case. Exterior to all ofrteesses we have a metric that satisfies
the equations for the exterior case. In each of tHeseains the potentials, as well as
their first derivatives, are continuous relative tcadmissible coordinate system.

What happens when one crosses the hypersu8aceConforming to our general
axioms (see sed), we must impose the following conditions, whosstfuusage dates
back to Schwarzschild.

MATCHING CONDITIONS. - For any pointx of S there exists an admissible
coordinate system whose domain contaxnsuch that the potentials and their first
derivatives are continuous upon crossing S relative to this system.

Since the manifol&/, is twice-differentiable, the potentials and theirtfalsrivatives
will therefore be precisely continuous for any admissitbordinate system and at any
point ofV,. The second derivatives of the potentials will themesebe continuous upon
crossingS  The matching conditions will obviously be contained liaiy in our
general axioms, but, because of their importance, we tlgsen to state them explicitly
here.

We verify that it results from the matching condisothat the manifoldsS are
necessarily oriented in time.

28. — GAUSSIAN coordinates and matching conditions- Consider one of the
hypersurfaces$ (which is oriented in time), and assume that it Gally defined by the

equatiorx’= 0 in an admissible coordinate systerh)of Vi. Conforming to the
matching conditions, the potentiadg,, and their first derivative®,g, , are assumed to
be continuousupon crossing.

Now refer both parts of a neighborhood ®to the Gaussian coordinates that are
associated witl and the coordinat¢s”)onS We propose to rigorously establish that

relative to the Gaussian coordinates, the potestak continuous upon crossinggad
that under these conditions the Gaussian coordmatdlectively form an admissible
coordinate system for,V
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First of all, forx® = 0 the coordinateg andx" are identical and® = 0. From this one
deduces that:
X=X +X9(x), X" =xX9(x),
in a neighborhood d&
As a result:

(A)s =, (A")s=0,

and theg; = g;; will have well-defined values o&

Now, let us study the values &f . These quantities are the components of a vector

that is tangent to the lineé = constant, i.e., to the geodesics that are norma t
Moreover:

g/l';/' Ag’ Aé/ = _1'

The A} are therefore the componentd of the normal vecto¥ that is tangent to the
geodesics:

Vi=A.

The vector V admits the covariant componentg.= 0 and V, on S in
the(x") coordinates, such thgt’(V,)? =-1. It will then result that the quantities:

(A)=(V")s =gV,

have well-defined values d®and are subject to discontinuities upon crosSing
One immediately deduces from this that the firstvdenes:

0005 =0o(A" A" ay,)=0 A K g, +0 A A g, + 8 A R, g

are themselves continuous upon crossing
Finally, we show that the derivativeL;AQ' are continuous upon crossi®y The

problem is posed only for the derivativsA} , since the other ones are deduced from
the A} by differentiation orS. Now, since the/* satisfy the geodesic equation:

dv* i
<t V9V =0,
s
av? : : o
the q will be continuous upon crossirfg because the derivative is taken along a
s

geodesic and, on the other hand:
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dv*
ds

d, , dx!
= =0 — =9
as\ ) = A Tge =0

a0
ds

One sees that th@,A! are then continuous upon crossi@gas well. Since the

passage from Gaussian coordinates to an admissiblansystisvice-differentiable, the
Gaussian coordinates themselves will also be twiceréifitiable.

In the actual determination of the metrics, it is egally not very convenient to
express the matching conditions in an arbitrary adméesibbrdinate system. It results
from the preceding study that the stated matching condit@wasequivalent to the
following ones:

1) The potentials, as well as their first derivatives, imgtom one side o0& to the
other relative to the Gaussian coordinates that aoeiassd withS,

2) The set of Gaussian coordinates on both sidé&fofm admissible coordinates for
V4; i.e., they are compatible with the differentiableisture ofV,.

From a practical standpoint, it might not be convenientise this new form of the
conditions. One will note that 1) does not imply ahd that, as a result, it will be
convenient to either verify the second condition ordifine the structure oV, a
posterioriin such a way that is true.

29. —Local prolongation from the interior of matter to the exterior. — For the
moment, we place ourselves in the absence of an@teagnetic field. In a region that is
bounded by a hypersurfaave give ourselves an interids’ that corresponds to a pure
matter or perfect fluid schema. We propose to lookHerdondition under which there
exists an exteriods’ on the other side @ that matches with the given interid¢ onS.
We say that we are addressing the problem of prolongengntérior to the exterior.

Therefore, assume that there exists such an extifio Since the hypersurfais

locally defined byx® = 0 in an admissible coordinate system, the quant@feshat are

associated with the exterials® will be zero identically. Now, o they depend upon
only the potentials, their first derivatives, and theicand derivatives of index 1. From

the matching of the interior and exterits, the quantitiesS) that are associated with the
interior field must therefore also be zero®mand one will have:

T’ =(p+ Py - pgd=0
onS One necessarily deduces from this that:

(29-1) w =0, p=0
onS

In other wordsSis generated by the streamlines of the interior schend,the pressure
goes to zero oB.
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Conversely, suppose that this is true. Since the hypacafis generated by the
streamlines, it will be oriented in time everywhei@n the other hand, the quantiti€$

that are associated with the interis& are zero orS (X = 0). An exteriords that
matches with the interiods on S will therefore be a solution to the exterior Cauchy
problem relative t& and also to the Cauchy problem that is defined by theantdsion
Swhose data satisfy the condition:

S =0
onS
One knows that this problem locally admits a physicafiigue solution under these
conditions. The existence of such a regular solutiay be assured only in a certain
neighborhood o&
We may state the following:

THEOREM. — Under the hypothesis of a pure matter or perfect fluid schema, in
order for the problem of prolonging from the interior to the exterioadmit a solution
upon crossing a hypersurface S, it is necessary that:

1) The hypersurface S must be generated by the streamlines of the istbeara.
2) The pressure on S must be zero for the perfect fluid schema hypothesis.

These conditions are, moreover, sufficient for the local exiseneesolution.

Under the hypothesis of an arbitrary fluid schema:
Taﬁ:,OUaU,B'*'Z p(i)Vg(i)V;g) _

Reasoning that is analogous to the foregoing showghéagiossibility condition for
the problem translates into the nullity of the four diies:

TAO :puAUO+Z Riy \40) Vo

onS. One must therefore have:
wVTl=pu’=0

onS From this, one deduces the following form for the pml#si conditions:
w =0, pV =0 (=12, 3).

The first equation once more says t8ahust be generated by the streamlines. The other
equations relate to the composition of the pressurelseosutrface.

30. —Prolonging from the exterior to the interior. The geodesigrinciple. — We
now study the inverse problem, which presents itself innapéetely different light. We
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give ourselves an exterials’ that is bounded by a hypersurfaSe and propose to
examine whether there exists an intederthat matches up with it cBwhen we restrict
ourselves to the pure matter schema.

Therefore, assume that there exists such an intdsor The study of the direct
problem imposes an extremely interesting condition @nhypersurfaceé& S must be
generated by the streamlines of the interior schema, tivag¢ are time-oriented geodesics
of the interiords’, and thus, from the matching conditions, they will &sdime-oriented
geodesics of the exterials’. Thereforethe hypersurface $ust be generated by the
time-oriented geodesics of the exteriof.ds

Suppose that this condition is satisfied. The problemgbsed is an interior Cauchy
problem relative t® and the Cauchy domains that are deduced from the extisfion

S However, one ha® = 0 for these data d®; i.e.,u’ = 0. We are therefore concerned

with one of the exceptional cases for which the Cayecbiplem is not correctly posed
viz., one for which the hypersurfacis not generated by the streamlines — and we
conclude nothing on the subject of our prolongation problédme may interpret this
circumstancegrosso moddy considering that an exterior field might not be corbpat
with an effective distribution of masses, or elsat tih may be compatible with several
such distributions; this is what one confirms in thelg of the Schwarzschilds’.
Meanwhile, from the fact tha% by virtue of the matching conditions, must be
generated by the geodesics of the extetirone may infer a fundamental result.
Consider a very small test mass in a given exteriawigtional field. Internal
interactions are negligible for such a mass so therior field of the mass may be
represented by a pure matter schema. This mass willilokescworld-tubes in V, that
has a very small cross-section and is generated kyraeoriented exterior geodesics of
ds’. If one passes to the limit and neglects the esession of the tube then one sees that
the trajectory of a material particle is necessarityme-oriented exterior geodesicdsf.
We state the following:

GEODESIC PRINCIPLE. —The spatio-temporal trajectory of any material point in
a given exterior gravitational field is a time-oriented geodesithefexteriords’.

One sees how this principle may be regarded, on thdamég as a consequence of
the conservation conditionsi.e., the Einstein conditions — and, on the othedhéme
matching conditions.

31. —Global problems.— We are now in position to reveal, in full clarityhat might
be the fundamental instrument for the representatigmasftation in general relativity.

A d< is calledregular in a domain of/; when it satisfies the conditions regarding its
type and differentiability that we stated in the firsapter.

| propose to call a manifold/, a world model when it is endowed with an
everywhere-regular metric that satisfies the follmyvconditions — and it is good to once
more discuss them in detail:
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a) In any domain oiV, that is filled with an energy distribution and boundedaby
hypersurfaceS the metric is regular and satisfies the Einstein egpustfor the
interior case.

b) Inthe domains o¥, that do not contain any energy distribution, the mesrregular
and satisfies the Einstein equations for the exter®e.ca

c) Conforming to the matching conditions, the potential$ @ueir first derivatives are
continuous upon crossing the hypersurfdce

When it is possible to construct such a world model gkterior field may be
regarded as the gravitational field that is effectively produlegdhe various masses or
energy distributions that were introduced.

Only one such world model is susceptible to physical ineéaion. A metric is not
susceptible to any such interpretation in any doniginn which it is not regular. In
order to ultimately reach a world model, one must seaeid possible to find such a
domain, i.e., to choose a hypersurf&tat bounds a domal that contain®,, and to
construct an energy distribution and a metric that elsead by the Einstein conditions,
such that the metric is everywhere regulaSiand matches with the previously-given
metric onS. Note that such problems are of an essentially gloaaire, whereas our
prior analysis was local. One knows only a few thingsua the general solution to such
problems very well.

In a world model (in the sense that we just defined)nust be impossible to
introduce new energy distributions whose associatediasatnatch with the exterior
field; otherwise, the preceding definition would loseddlits interest. One is therefore
led to think that, conversely, it must be impossible taofuce an energy distribution that
is compatible with an exterior field in a domain whehrgs field is regular. Therefore,
one must study the validity of the following propositiorrelativity:

PROPOSITION A. —The introduction of an energy distribution into a given exterior
field may be accomplished only in the case of domains for whichelldissfnot regular.

This proposition is not satisfied for the general axidha we have adopted up till
now, but we verify that one may establish it under veyat conditions that have a
simple physical interpretation.

If one admits the necessity of Proposition A thare will see that it must be
impossible to introduce an energy distribution into aldvahat is composed of an
everywhere-regular exterials’ onV,. Such a world model would have to be vaeuum
world model, and, as a result, with the hypothesis @&ra zosmological constant, such a
world model would have to be one of a universe withouvigon, i.e., a locally-
Euclidian universe.

One may further say that a very small test magsdhatroduced into such a universe
can be regarded as everywhere isolated. Therefore, mest locally exist coordinates
(x") that are interpretable in terms of space and time thattthe motion of the test mass
is uniform rectilinear motion with respect to theserdomtes. Therefore, the geodesics
of such a Riemannian manifold may be locally represdmyeztjuations of the form:
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(31-1) X =ax’+b i=1,2 3).

One immediately sees that the Riemannian spaces chwhe geodesics may be
defined, equations (31-1) will give those of the locally-Ediah spaces. We are
therefore led to study the validity of the following position for the exteriods:

PROPOSITION B. — An exteriords’ that satisfies the axioms of general relativity
and is everywhere-regular must be locally-Euclidian.

We verify that this proposition is not satisfied unttee general axioms, but it may be
established under physically interesting conditions.

IIl. THE CASE IN WHICH THERE EXISTS AN
ELECTROMAGNETIC FIELD

32. — Prolongation in the case for which there exists aneetromagnetic field —

All of what was said above about matching conditionstlie metric may be applied to
the case in which the energy distribution¥Jirare composed of charged matter of charge
density if we introduce an electromagnetic fiefgl,. However, we must add certain
considerations that relate to this electromagnetitd fend the Maxwell equations.
Conforming to our axiomsF,z must be continuous in any admissible system of
coordinates on ¥ In particular, this must be true upon crossing a hypersufam
which the charge densigyis discontinuous.

From the previous analysis in sec. 25, it results fieenequatiod® = 4 W° that one
will necessarily hav®® = u° = onS (X = 0), and, as a resu,must be generated by the
streamlines of a charged matter schema.

In particular, this will be true upon crossing hypersw$athat bound the charged
matter and along whicjy passes from a value that is different from O to ¢ake O.
More precisely, we may thus establish the following:

THEOREM. - Given a distribution of charged matter or a charged, perfect fluid
that is bounded by a hypersurface S, as well as gravitational and electraimdggids
(9as, Faop) that are related to the distribution by the Maxwell-Einstein equation order
for there to exist gravitational and electromagnetic fields that epoad to the pure
electromagnetic field schema and match the preceding ones on Scrissary that:

1) The hypersurface S be generated by the streamlines of the distribution;
2) The pressure on S is zero under the perfect fluid hypothesis.
These conditions are sufficient for the local exisgeof a solution.

Indeed, assume that there exist gravitational and efeagnetic fields that
correspond to the pure electromagnetic schema and matitiihe given fields ors
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Since the quantitie®’ = S - x7°, D° E° are continuous upon crossif®) the same

guantities for the given fields must be necessarily Beohuon S.  Now, for the
distribution envisioned, one will have:

Q=xl(p+pu L~ pd], D°=uu’, E°=0.

In order for these quantities to be zeroSpiit is necessary and sufficient thdt=p = 0
onS

Conversely, if this is true then sin&is generated by the streamlines, it will be
everywhere time-oriented. The desired figdds( Fop) will be a solution of the Cauchy
problem that relates t& and the Cauchy data will be provided by the field of the
distribution onS, which are data that satisfy the conditions:

Q=D°=E’=0.

One knows that under these conditions the Cauchy proliemthe pure
electromagnetic schema will locally admit one solutihich will be physically unique.

33. — The trajectories of a charged, material particle— Consider a very small
chargedtest mass in a given fielddz, Fqp) that corresponds to a pure electromagnetic
field. The interior field for such a mass may be espnted by a pure matter-
electromagnetic field schema. This mass will descailveorld-tubeS in V, that has a
very small cross-section and will be generated by thteastlines of its interior field,
which will satisfy the differential system (34-7), ndyne

U Oatf = K (Faa) Ua K :%)

in which (ze)i denotes the interior field of the mass. However, fthencontinuity of the
electromagnetic field, one will haB4,)i = Fz, onS and, as a resulg will be generated
by the solution curves to the differential system:

Ua Dauﬂ: k Fﬂa UQ,

namely:
2.8
(33-1) X yps XKy R

d¢ ™ ds ds 7 ds

If one passes to the limit and neglects the crodssseaf the tube then one will see
that the trajectory of a charged material particlenegligible cross-section in a given
field (9as, Fap) Will satisfy the differential system (33-1), in whikhs the constant ratio
of the charge to the mass of the patrticle.

One will note that the union of the gravitational andtetanagnetic fields leads us to
pose global problems that are analogous to the oneswebatiscussed for the
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gravitational field alone. In particular, if one wamsattribute the electromagnetic field
to the presence of charged matter uniquely then one wiidoe study the validity of the
following proposition:

PROPOSITION C. — If a gravitational field and an electromagnetic field that is
everywhere-regular on )\satisfy the equations of the pure electromagnetic schema (the
unitary exterior case) and the axioms of general relativity thereldetromagnetic field
must be zero and the’dsustbe locally-Euclidian.

The validity of this proposition was established by Y .r¥fif) in the stationary case.
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ll. - ROTATIONAL AND IRROTATIONAL MOTIONS

CHAPTER IV

THE RELATIVISTIC HYDRODYNAMICS
OF HOLONOMIC MEDIA

|. THE PRINCIPLE OF THE EXTREMUM AND INTEGRAL INVA RIANTS

34. —Holonomic media. The differential system of the streamties. —Suppose
that a certain domain o¥, is occupied by a material distribution whose energy-
momentum tensor may be put into the form:

Tap="1 UgUg— Bpp,

in whichr is a positive scalar angl, is a unitary vector. In sec. 17, we agreed that a
medium that is described Ay, should callecholonomicif the vector fieldKz, which is
defined by:

r Kﬁ = DHH” ,
is a gradient vector field. If this is true then wdl get:
Kg=04logF .

r is the pseudo-density of the mediwmis its unitary velocity vector, arfd is itsindex.
We recall that a perfect fluid with the state equapong(p) is a holonomic medium; in
this case:

p dp

mo+p

r=p+p, F:expj

The streamlines of the holonomic medium considerashgahe differential system:

ax’ _

0 F .
(34-1) o u?, u?OgUg :”?(gaﬂ—u Us) .
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In all of what follows in this chapter we will placeirselves in a domain &, that is
swept out by a holonomic medium. First of all, weparee to geometrically interpret the
streamlines of such a medium.

35. — The variation of an integral. — To that effect, we commence by briefly
recalling a formula from the calculus of variations tisaslightly classical. Consider a
differentiable manifold/,, the “fiber” spacé\;, of vectors that are tangent to the various
points ofV,, and the “fiber” spac®,,-1 of directions that are tangent to the various
points ofV, . If one adopts local coordinates ®q then an element o\, will be
defined by the coordinates®) of the corresponding pointof V,, and then quantities«”,
which are the contravariant components of the veatiothe natural frame that is
associated with thex{) at x. For an element oD,,-;, thex”will be defined only
proportionally in the form of direction parametergiud direction.

Let C be a curve iV, which we represent by giving it a parametric representas
a function of an arbitrary scalar parameter In local coordinates, one will therefore
have:

x7 = x(u).

The curveC is the projection of the curve in D,,-; onto V, that is defined by the
directions that are tangent @at its various points. A curdg in W», corresponds to
the parametric representationf C, which is defined by the derivatives of tk& with
respect tai at the various pointsof C. In local coordinates, one will therefore have:

o axXf
X' =—
du
for L(u) .
Letr be a function with scalar values that is defined ensgracé\., of vectors X,V)
that are tangent to the various points/pfand are such that for fixed f(AV) = A f(V).
In local coordinates, such a function will be represgrigf (x”, x”), and it will be

homogenous of the first degredth respect to thg” .
To f and the arc of the curv@ that joins the points,, X3, one may associate the
following integral, which is calculated alomhg,:

& = '[uul f(x7, %) du= Lzl f(x7,dx').

This integral is attached tband C intrinsically since it will not be modified if one
changes the parametric representatio@.of

We now calculate the variation of the integbafor an arbitrary variation of the a@
with variable extremities. First of all, we suppahatC belongs to the domain of a
system of local coordinates. It will then follohat:

&F = 1,00, - 1,80+ [ 5f du.
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A classical argument from the calculus of variatigives:

U af a U U
of du=| —ox -| PoX'du
Up aX u= Up

in which P, denotes the right-hand side of the Euler equationsatieahssociated with
The quantities(Jx”)u:uO and(Jx”)u:ul that appear in the brackets are obviously expressed

in terms of the vector&y anddx; by the formulae:
(O0X")yoyy = OXg = %0y, (0X7),., = OX —X'Iu.
One deduces from this that:

(35-1) & =[a(9)], {&(I],, - P,oX du

in which «(J) denotes the form:

of of
= ox? —| ¥ — -1 |du,
9 ox? [ ox }
which will reduce to:
(35-2) wd=2sx.
[1)4

as a result of the homogeneity fofand the indicegy, andx; in (35-1) signify that the
form wis evaluated at; andx; for the vectorxg andx;. We remark thatv— or, if one

prefers, then quantltles(fT— define a covariant vector field ddy,-;. Moreover, it is
X

well known that theP will be the components of a covariant veckifor a certain
parametric representation; therefore, the scaladymt <€ dx> will appear under
thej sign. Sincewis defined in local coordinates by (35-2), in whitiex? are the ones

that are defined to be proportional@pone may put (35-1) into the form:
(35-3) & =[], [ ], - [ < Pox>du

Now, if the arc of the curv€ is arbitrary then formula (35-3) extends without
modification by the addition of the variation oftintegrals that relate to the arcs of the
curve that are interior to the same domain asat& coordinates.

36. —An extremal principle for the streamlines. —We now return to the manifold
V4 and apply the results that we just discussededithction:
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ds
f=F —=F,qg,, ¥,
du Gas

in whichF is a function that is defined df. Letx, andx; be two points oV, that may
be joined by a time-oriented curve, and consider thgrake

s=[ Fds=[" Rlq, df df,

which is an integral that is necessarily evaluaiedg a time-oriented cun@& From:
f2=F?gas X%,
one immediately deduces by derivation that:

of
ox”

of
ox“?

(36-1) f =F?g,, %, f =F[0,F g, X’ +1F0d,q, ¥ X,

which will then give the values of the partial detives.

Consider a three-parameter family of time-orientadres and study the variation of
S, when it is taken along a curve of this family,emhone varies this arc within that
family. We take the real curvilinear abscisga be the parameterof the curveC. The

vector:
)'([I - d><a - u[)’
ds

will then be the unitary vector that is tangentGowhich will locally define a vector
field. The formulae (36-1) then reduce to:

of of . _ 5
(36-2) W—Fuﬁ, W—%Faﬂgaﬂu W +0,F=F[aB o u'W + 0,F,

in which [ ] denotes Christoffel symbol of the fitype. The component3s; of P that
correspond to this parametric representation aitéswr

_dof _of _d

5 (Fuy)-FlaB, U’ -0, F.

Tdso¥ 0¥  ds

Therefore, upon specifying the total derivative:

Pg=F(ud,u,-[aB, N ) -0, R & - 0 y),
one thus obtains:

(36-3) Ps=F [u” Oqus- 9,F

F

(95 —u"u,)].
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One thus has the following formula ®r
(36-4) 35 =[a(9)], &I, - [ < Pox> ds

in which «(9) is locally defined by:
(36-4) afd) =F uydx’,
andP admits the covariant components that are locafindd by (36-3).

Now, apply formula (36-4) to the case in whiclvaries with fixed extremitieg and
X1, SOXKo = ;1 = 0, and, as a result of the variatiors@freduces to:

55 :—j:< POX > ds,

and in order fors to be an extremum under these conditions it ieseary and sufficient
that the unitary vector & be such thaP = 0, i.e., that:

o,F

(36-5) u? OgUg— (g5 —u”uy) =0,

elquations that are formally identical with (34-1)Ve may state the following theorem
O):

THEOREM. — During any motion of a holonomic medium, the streamlines are the
time-oriented lines that realize the extremum of the integral:

§=KFds

for variations with fixed extremals.

In other words, the streamlines are the (timerbe@d) geodesics of the Riemannian
metric that is conformal to the spacetime madgtand defined by:

(36-7) ds® = F? dg = F2g,p dX"dx¥’.
We are therefore led to endow the domairVpfinder consideration with either the

spacetime metric or the new metric that is defibgdhe index of the medium. For this
latter metric, the fundamental tensor will have chenponents:

() This theorem has been proved by a different methoddgnBart in the case of perfect fluids, Trans.
Amer. Math. Soc.26 (1924), 205-220. See also J. L. SYNGE, Proc. London Math, £&1937), 376-
416.
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(36-8) U, =F 9as, g¥=Fg®”.

37. —The relative integral invariant of hydrodynamics. — In all of what follows,
we will further consider a definite motion of a holome medium. The streamlines
locally form a congruence of curves\h, the unitary vector fieldi” satisfies equations
(36-6), and the formw = F u, & is definedV,;. Such a motion may be defined, for
example, by the solution to a correctly posed interianddy problem, such as the one
that was studied in set9. Trace a cycl€ of dimension 1 on a hypersurfaSé¢hat is not
tangent to the streamlines, and consider the streanfinegssue from the various points

Xo of Mp. These streamlines will generate a two-dimensidifédrentiable manifold? (

at least in a neighborhood 8f that we call dlow tube If we bound each streamline by
Xo and a poink; that generates a cydig that is traced it and is homotopic td, on¥

then we may apply formula (36-4) to each of the arah@fstreamlines, which are arcs
for whichP = 0. Since the total variation of the integgis zero wherx, described o ,
it will follow that:

(37-1) J. 0)-]_wd)=0.
We translate this result into the following statement:
THEOREM. —The differential system of the streamlines:
ds

of a motion of a holonomic medium admits the re&aintegral invariant (in the sense of
Poincaré):

(37-2) [ w=] Fu,ox

in which[ is a one-dimensional cycle.

In the expression (37-2) for the integral invariant tlapears a covariant vector that
has the components:
(37-3) Cs=F u,.

We give the name afurrent vectorfor the medium considered to the vecthat

admits these components on the Riemannian manifold thafireed byds. SinceF is
scalar, the contravariant components of this vectibbeni

(37-4) C/=F "
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Consider the vectorC with the same covariant componeBiss C, on the
Riemannian manifold that is defined loig*. This vector will then be unitary under this
metric since, from (36-8):

g% C, C;= F? gap(F ug)(F ug = 1.

The contravariant components of the ve€arill then be:
(37-5) C’=g"Cy=F 'u,.

One notes that if], is the covariant derivative operator that is assediatith the

metric ds® then the fact that the streamlines are geodesicsi®hietric will translate
into the equations:

(37-6) c-g,Cf=o0.

One may directly verify that equations (37-6) are edentao equations (36-6).

Upon introducing the current vector, one may say tbadefines its elementary
circulation, and one may give the following equivaletatement to the preceding
theorem:

THEOREM - Given a one-dimensional cyclE that is not tangent to the
streamlines, the circulation of the current vectwngl™ will remains invariant when one
deformd” on a tubet of the streamlines that are definedlhy

One recognizes that this is the relativistic generadinaof the classical theorem of
the conservation of circulation.

38. —The invariant form dw and the vorticity tensor. — As is well known, one
immediately deduces an absolute integral invariant (in ¢insesof Poincaré) from the
integral invariant that is defined hy by an application of Stokes’s formula. Df is a
two-dimensional differentiable chain that is transvief§ato the streamlines, an@D, is

its boundary then one will have, in fact:

Joo, @= ], 0.

in whichdwdenotes the exterior derivative of the fosm In local coordinates:

(38-1) dw=dCs " d¥’=1(9,C, -09,C,) dX O dX.

() We use the word “transversal” in the sense of nistgoangent, and not in its proper sense from the
calculus of variations.
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In the language of Elie Cartan, we translate thiglrésy saying thathe form dvis
an invariant of the differential system:

(38-2) ¢ _dX _ dxX _ dX

U R U o | A

for the streamlines. This signifies that the forndw admits a local expression as a
function of the first integrals of this differentsystem.

The antisymmetric rotation tensor of the current ve@associated with the form
da which has the components:

(38-3) Qup = (9,C,-9,C,).

We give this tensor the name of tharticity tensorfor the motion that is associated
with the current vector; it constitutes a true extemsibthe rotation of the velocities that
is introduced in classical hydrodynamics. One notes faratr perfect fluid it is the
rotation of a vector that depends upon the dynamical elesmpep, of the fluid. In fact,
the influence of these elements is very weak, and thea®n that is introduced is a
purely relativistic correction of the orde. Indeed, for such a fluid; differs from 1
only by terms of that order since upon re-establishing thal ydhysical units, i.e., upon
replacingp by pc?, one will get the following expression fér

F=exp Jm—c . p_l+j%—c 2ot p

up to terms irc .

Il. - ROTATIONAL AND IRROTATIONAL MOTIONS. VORTEX LINES.

39. —The characteristic system of the fornrdaw —We have seen that tlfferential
system (38-2) for streamlines admits the intepmhs a relative integral invariant, or,

equivalently, it admits the formhcwas an invariant form. We now propose to look for all
vector fieldsV? such that the differential system of their trajeie®renjoys the same
property with respect tawanddw To that effect, we must form the characterisyistem

of the formda and sincelwis closed that system reduces to the associated s{f3tem

Q0¥ = 0.
Any vectorV“ that satisfies:
(39-1) Q=0

() On the subject of the notions of associated systeincharacteristic system, see ELIE CARTAN,
Les systemes differentials exteriewtsap. Il, Hermann (1945).
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corresponds to a differential system of trajectotties leave the formdw invariant. We
are therefore led to study the rank of the system oflioear equations in four unknowns
(39-1).

From a classical theorem) (on the rank of an exterior quadratic form, this rank is
necessarily even. Now, it is certainly less thaur feince the vector” that define€ 4z
satisfies the system (39-1). It results from this thatrank is certainly two or zero.

1) If the characteristic system (39-1) is of rank two thtie® motion of the medium
considered will be rotational. The formdw then admits characteristic manifolds
that are generated by the streamlines, which we wilystud moment.

2) If the characteristic system (39-1) is of rank zerie., if the vorticity tensof s is
identically zero- thenthe motion of the medium considered will be irrotational.

We confine ourselves to a simply-connected domawy,.ofin order for the motion to
be irrotational in this domain, it is necessary and seffit thatC, be the gradient of a
function ¢ such thatC, = d,¢; i.e., the streamlines must be the trajectories éne

orthogonal to a family of hypersurfacgs= constant.

40. —The study of an irrotational motion. — It results from the study of Gaussian
coordinates that we made in s26.that the irrotational motions of a holonomic mediu
possess a property that generalizes a notion thatatasshto Lagrange’s theorem in
classical hydrodynamics, namely, the property of “permagémno a relativistic context.

We adopt the metridiS® for the metric in the domain considered. The circuntsta
for this metric are identical with the ones in s26,.as a result, if the streamlines that are
geodesics fords® are orthogonal to a hypersurfagethen it will result that they are
orthogonal trajectories for the family of hypersuesdhat are “parallel t& for the
metric ds®, i.e., they are obtained by moving continuously along time-oriented
streamlines through a current &8¢ starting withS. The motion considered is therefore
irrotational. We state the following:

THEOREM. —In order for the motion of a holonomic medium tarpbetational it is
necessary and sufficient that the streamlines bt#hogonal to the same (local)
hypersurface.

This result may be extended slightly. In the studgeaf26, one first established that
Qgs=0o0nS and then that this result would be valid outsid& of

Suppose thathere exists a space-oriented hypersurface S duait,z = 0on S
Locally adopt coordinates such that the streamlines presented by = constant, and
the hypersurfac& is represented by’ = 0. With the notations of the present chapter,

relation (26-1) for the metrids* may then be written:

() For example, see ELIE CARTANEgs systémes differentials exteriewtsap. |, Hermann (1945).
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(40-1) 0, =0,

and it will also say that the foralwis an invariant for the differential system (38-2) of
the streamlines. In the local coordinates that \adopted, (40-1) is written:

(40-2) Qo = 0.

Q; = 0 onS and, sincel(da) = 0, reasoning that is analogous to that of sec. 26 kol
that:

0,Q,=0
on a neighborhood &

It results thatQ,s = 0 on a neighborhood & and that, as a result, the motion that
corresponds to it is irrotational.

41. —Vorticity vector. Vortex lines. —In what follows, unless stated to the contrary,
we always put ourselves in the case of irrotational motiéhthe pointx of V4, under
consideration, we study the two-dimensional vector spiaad vectorsV such that:

(41-1) QP =0.

We are already acquainted with the veatan Iy, which is unitary with respect to
ds’ and tangent to the streamlinexat In order to succeed in determinifiy , it will
therefore suffice to look for a second non-zero vedomwhich we choose to be
orthogonal to the first. We are therefore led tcedaine a vectod, that satisfies the
equations:

(41-2) Q=0 uz6° = 0.

We provisionally adopt local coordinates for which ttreamlines are the lineé =
constant. One then hasu’ = 1, and, conforming to (40-2):

(41-3) Qo =0,

Equations (41-2) reduce to the equations:

(41-4) Q1,07 +Q130° =0, Q6" +Q2360° =0, Q10"+ Q36 =0,
and:
(41-5) us&° = 0.

Solving equations (41-4) gives:
(41-6) 0 =-AQm, 6°=-1Qz, 6°=-1Qy,

in which A denotes an arbitrary factor. One deduces from (41-5) that
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(41-7) 0° =AU (U1 Qa1 + Up Qa1 + Uz Qy1).
If we choose:
u0

Jigl

then we may put equations (41-6) and (41-7) into the form:

A=

Hl — ,71023u0 923, 32 — /72031U0 Q3l, 33 — /73012U0 le,
and:
30 :% /70ijk Ui ij .
Let:
(41-8) 67 =1 "°us Qys,

in which 77 is the volume element tensor f&. One will note that sincé is non-zero,
from equations (41-3) and (41-6), the fact tB&t= 0 will imply thatQ.sz = 0. It results
from this that the vectofthat is defined in arbitrary coordinates by (41-8) will sdlve
problem. We give this vector the namewvefticity vector. The trajectory lines of the
vector field @ will be calledvortex lines. These lines, which are orthogonal to the
streamlines, are everywhere space-oriented.

42. —\Vortex tubes. — Since the vorticity vector satisfies equations (41-L)ill
result that the formdwis invariant for the differential system of the vartmes:

o dé _ d¥ _ df

¢ e e

Let " be a one-dimensional cycle that is not tangent tovoineex lines and does not
pass through a point at whighgoes to zero. The vortex lines T that issue from the
pointsx of I will generate a two-dimensional differentiable marmifédt least in a certain
neighborhood of") that will be thevortex tubethat is defined by. We may state a
theorem on the subject of vortex tubes that is identicéhe one that was stated for the
tubes of streamlines:

THEOREM. - Given a one-dimensional cyclethat is not tangent to the vortex
lines and on whicl¥ does not go to zero, the circulation of the curreettor alongl
remains invariant when one defori®n the vortex tub® that is defined .

Consider a fundamental system of cyclesSonConforming to the convention that is
used in hydrodynamics, the periods of the foenfor these cycles will be called the
momentof the vortex tube considere@,

Let ¥ be a flow tube, and lét and I'" be two cycles of that are homotopic oR

and satisfy the hypotheses of the preceding theorenth &athese cycles defines a
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vortex tube, which we will denote &y and®@’ , respectively. If 1 is a cycle o that is
homotopic tol on© and I'; is a cycle of that is homotopic t6' on @' then it will
follow that:

J. a):J' a):J' w=| w,
ry r r ry

and therefore:
(42-1) jr,lcuz G-

Equation (42-1) constitutes the relativistic generalizatbma classical theorem of
Helmholtz. If we change the roles that are playedhbystreamlines and the vortex lines
then this will naturally lead to an analogous result.

43. —The characteristic manifold. — The field of elementary 2-plané$, that is
defined by the characteristic system of the fdan

Qapd¥ =0

is a completely-integrable field. One gives the namehafacteristic manifold®f the
form dwto the two-dimensional manifoldd; that are its integrals. These manifolds may
be generated by the streamlines and by the vortex vi@sh makes their construction
immediate.

In order to construct the characteristic manifdlf?’ that passes through a poigtof

V4, one deals with the streamli® and the vortex lind that issues from that point.
The streamline€ that pass through the pointsTaf generate the characteristic manifold

W that passes througl. The same will be true for the vortex liriEshat issue from
the points ofCy, and these lines will be trajectories that are gtimal to the streamlines
on W . Conversely, it is clear that any trajectory thadrihiogonal to the streamlines

onW,? will be a vortex line. Therefore:

THEOREM. - If one deals with the streamlines that pass through the points of a
vortex line then the trajectories that are orthogonal to thesestliees on the surface
that they generate will be vortex lines.

This result must be considered to be the relativest@log of the following theorem
of classical hydrodynamics: If a line in a fluid is atex line at one instant then it will be
a vortex line at any other instant.

The property of streamlines and vortex lines that thiéferential systems both admit
the same integral invarianﬁa) thus permits us to construct a theory of vorticity in
relativistic hydrodynamics that best generalizes theoh of vorticity in classical

hydrodynamics. Meanwhile, note an interesting pectyiarof relativistic
hydrodynamics:
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Consider a vector field such that the vectdf that corresponds tobelongs tdly ;
i.e., it is tangent to the characteristic manifold tredses through One will then have:

V=Au+ub,

in which A andy denote two scalars. From the results that werugs®d in se@8, the
form dewwill be an invariant for the differential system five trajectories of the vector
field V, and these lines will enjoy all of the properties tieddite to the circulation of the
current vector that were stated for the streamlinesvartéx lines. We call themuasi-
vortex lines. Since the 2-planBy is time-oriented, one might find that such lines are
either time-oriented (like the streamlines) or spacented (like the vortex lines), or,
similarly, of null length. The latter correspond to a veckrwhich is such that:

VZ=(lu+uB)P2=1-1F6°=0

in which ddenotes the real number:
6 =.-(8)°.

Therefore, there exist null-length quasi-vortexe$ in relativistic hydrodynamics,
which are the trajectories of the two vector fields

V=0 +4u.

lll. - PERMANENT MOTIONS .

44. —Spacetimes that are stationary in a domain. We first place ourselves in the
domain of a local coordinate system. Supposettigatocal coordinatesd, X) may be
chosen in such a manner that the correspondingWiiteg,sz are independent of the
variablex’, with the lines along which the variabfévaries being only time-orientedof
> 0). If that is true then we will say that thetneis locally stationaryin the domain
envisioned. We note that we make no hypothesisthen orientation of the local
hypersurfaces’ = constant. We recall that the inequatity > 0 entails thag.s has the
opposite character to the quadratic form in thizéables:

(44-1) [gij —Mj X' X!
00
Now consider a definite four-dimensional dom&n of V4, and suppose that the
Riemannian manifold that is defined By and is endowed with the spacetime medst
admits aconnected, one-parameter group of global isometries that leave no poiat of D
invariant and whose trajectories z are time-oriented.
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Since the isometries are glob&, must be generated by tle We assume,
moreover, that:

a) Thezare homeomorphic to the real liRe

b) One may find a three-dimensional differentiable manif@dhat satisfies the same
differentiability hypothesis a%/,, and is such that there exists a differentiable
homeomorphism of clas®’ of D, with the product manifol; x R, in which thez
project onto the right-hand factor. This homeomorphsnmoreover, assumed to
be piecewise continuous up to order 4.

With these conditions, we say that the RiemannianetpaeV, is stationaryin Da.
We call thez trajectories théimelines

Let ¢ be the infinitesimal generator of the group of isomastr Since no point @, is

invariant,x # 0 at every point oDs,. One knows that this vector satisfies the Killing
equations:

(44-2) X OQop=U0péa+ Uaép=0,

in which X denotes the Lie derivative operator with respect tovélogor &
Consider a system of local coordina(@§) in D;. We may define local coordinates

(x") in D4 in the following manner: The date') determine a timeline. In order to

determine a point on this line, we look at the manif¢dd) = constant to which it
belongs since these manifolds will be homeomorphBstby the homeomorphism in b).
In the local coordinate$x’), the timelines, which are trajectories of the vedield ¢

will be the lines(x") = constant; as a result, the contravariant compsragmtwill be:
&=0, &#0.
We perform the change of local coordinates that finei by:
X =x", XX =f(x%, x).

One may substitute new manifolds M, X° = constant, for the manifolds’ =
constant, such that the new component:

L= =—5¢
is equal tol. It suffices to take:

of _ 1
ox? &
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and the functioffi is found to be defined up to an additive function ofdberdinatesx’ .

Fix this function by taking a submanifold B, that is intersected at one and only one
point by each timeline iB, to represent’ = constant. Note that the timelineestablish

a homeomorphism between the manifolds that are hormmtincto D3, X° = constant,

and the manifolds® = constant, and that there exists a homeomorphisiD,afith

Ds; x R that satisfies the hypotheses of b) and maps the atgsi® = constant to the
factor manifolds, which are homeomorphid]_g)(l).
In the preceding system of coordinatés X) one has:

o= 0.

Notice how the Killing equations (44-2). It follows that:
Opéa=0p90 + T30 9,0= B0, al.
One deduces from this that:
Opéa+Daés=[BO, a +[a0, A = 9,0,

Therefore,0,9,; = 0 in the coordinates envisioned, andghewill be independent of

the variable®. The metric is locally stationary in a neighborh@bany point oD..

The coordinate systemg’( x) whose existence we just showed will be said to be
adapted to the stationary charactelt is clear that the coordinate changes that allew u
to pass from one adapted system to the other are ofrthe fo

X' = (X) X =X+ ),

in which they"and @ are arbitrary functions of the. In a coordinate system that is

adapted to the stationary character, the symbol ahfimtesimal transformation that the
generates the group of isometries:

X¢ =¢&70,¢9 (¢ is a scalar function)
will be given by:

X¢ =0,0.
The isometries that we consider are defined in adaptedinates by:

X o X, X’ - X2 +h.

45. —The notion of a permanent motion. Hf we are given a holonomic medium in
motion that is associated with a spacetime melithen we may say that the motion of

() The preceding considerations will be useful to us irgthleal theory of stationary spacetimes.
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the medium igermanenif the Riemannian manifold is stationary in a donfaiand the
group of isometries leaves the unitary velocity vect@nd the indeX of the medium
invariant. One will therefore have:

XF=0, Xu =0,

in which XF andXu are defined by:
XF :E”aaF XuﬁzfaDaUﬂ+UaDﬂ§w,

in an arbitrary coordinate system.
If the coordinates are adapted to the stationary cleardoetn one obviously has:

XF=0,¢,
andF is constant along the timelines. Moreover, fromekgression for the operatir
Xug=0oUg+ I'jou, = 95U,

and theug are also constant along the timelines; the same thilhgentrue foru?.

For example, consider a motion of a perfect fluid @d@mits an equation of state
p = @(p) such that the associated Riemannian spacetime isnstatiinD,. Letx be an
arbitrary point oD, and choose an adapted coordinate sysk€rs(ich thak belongs to
the manifoldS (X’ = 0) andS is not ahydrodynamical wave front,e., an exceptional
manifold for the Cauchy problem stat was studied in $8c. From the study of that
problem, it results that on the manifod = 0 and the neighboring manifoldé =
constant one will have, from (19-6):

(45-1) XS+ xp ) e+p) =g S+xpd)(S+x ph.

On the other hand, one obviously Bgg,, = 0 and,S)= 0 in adapted coordinates.
By differentiating (45-1) with respect 18 , it will follow that:

[(S°+xpd)(#'+ 1) +xd(0+p) - 268"+ xp )] 9,p=0,
namely:

SOO+ngOO

0_ (1_4'
O o m)

19,p =0;
i.e., from (19-6):
[0° - (1-4)(u°)*]9, p= 0.

One deduces from this thagp= 0 onSand, as a result, that o = 0 and,u, = 0.
Therefore one hasp = 0 andXp = 0 at the poink; hence:
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p dp _

=0,
PO+ P

XF =X expj

and, on the other hand:
Xu = 0.

The motion considered will thus be permanent. We statéllowing:

THEOREM. —If one is given a perfect fluid that admits an epra of state in a
domainD4 then in order for the motion of this fluid Dy to be permanent it is necessary
and sufficient that the associated Riemannian dpaeebe stationary iD,.

46. —The first integral H. — Consider a permanent motion of a holonomic medium.
The Riemannian manifold that is defined Dy, when endowed by the metras?, will
admit the same group of isometries. Moreover, theovdield C on this manifold will
satisfy X C = 0.

The streamlines of a permanent motion are the toajes of a vector field that admit
the infinitesimal transformations. One says that the corresponding differential syste
admits this infinitesimal transformation. As in d&sl hydrodynamics'), the study of
permanent motions will therefore be reduced to the study differential system that
simultaneously admits an integral invariant and an itefsimal transformation.

Let:

dw=dCs " d¥’

be the invariant for the differential system (38-2) tioe streamlines. kix; anddx; are
two vectors that are tangent\fp at x then the alternating bilinear form:

daw(dxy, dxz) = diCp daXP — dp Cp dy X°
will be canonically associated with the fodw in whichd.Cz andd,Cgs are the values of
the differentialdC;s for both vectors. The existence of the infiniteditnansformationX
that is defined by permits us to deducé)(an invariant linear form from the quadratic
formdaw By (38-2), it is the forndcw(¢, dx), namely:
dw(é dx) =679,C, dX’ - £dCs.

In local adapted coordinated,= 0 and&® = 0, and one has:

dew (& &) = - dG.

() E. CARTAN.Lecons sur les invariants intégrattermann, Paris (1922), pp. 86.
() E. CARTAN.Lecons sur les invariants intégrattermann, Paris (1922), pp. 82-84.
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Now, say thatlG, is invariant because of (38-2); i.e., say t@ais a first integral of
this system. Thereforéhe component £of the current vector in adapted coordinates
preserves a constant value along each streamlidew, Cy is the expression in adapted
coordinate for the scalar functidhthat is defined by:

(46-1) H=¢&C,
in arbitrary local coordinates.
We therefore state the following:

THEOREM. — The scalar function H that is defined @46-1) preserves a constant
value along each streamline for any permanent motion of a holonomic medium.

The vorticity tensor and the vorticity tensd also admit the infinitesimal
transformatiorX, sinced,Q,,= 0 and,6” = 0 in adapted coordinates. It results from the

fact thatX@ = 0 that the differential system of the vortex liaeknits the same properties
as the differential system of the streamlines asgdiwandX are concerned. Therefore,
H will also preserve a constant value along each vditex and as a resul will be
constant on each characteristic manifdigl

47. —The differential of the function H. — We seek to evaluate the differential of the
functionH. In a coordinate system that is adapted to the stayicharacter one has:

dH =dCy = 9,C, dX = Qg dX,
which may be written:
(47-1) dH = Qs &dX,

which is a formula that is then valid in arbitrary coortissa The results of se46 will
be obvious from this formula.

We wish to find the case in whidH is constant not only on each characteristic
manifold but also on evey,. One deduces from (47-1) that in order for this to beitrue
will be necessary and sufficient that:

Q& =0.

This will be the case when the permanent motion densd is either precisely
irrotational or precisely rotational since the charastiermanifolds are generated by the
timelines. The forndwwill then be invariant for the differential systerntle timelines.

Let us return to the adapted coordinates. It is easypieessdH with the aid of the
Q; and the components of the velocity veatorindeed, one has:

Qmu” = Qio UO + Qij Uj =0.
Upon substituting the expression @ty so obtained for the one mH in adapted

coordinates, it follows that: o
(47-2) WwdH = Q; U dX.
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This formula is the relativistic extension of a fodenin classical hydrodynamics that
is due to Beltrami.

48. —Bernoulli’'s theorem. — One may put the results of the preceding sectionsinto
form that closely recalls Bernoulli’'s theorem ofsdacal hydrodynamics. To that effect,
we introduce thespatial magnitude ¥ of a unitary velocity vectou relative to the
direction of time& ().

We adopt anadapted local coordinate systeand, in order to abbreviate the notions,
we set:

U = goo,

in which U, which is strictly positive, is called th@incipal potential. The direction of
the vectoré will coincides with that of the vectaw in the natural frame at that is
associated with the adapted coordinates. It will theedfalow from (2-5) that:

-V = W —u—g.
Yoo U
One deduces from this that:
(W)’ =U (1 +V)
and, as a result, that:
(48-1) (Co)?=F?U (1 +\A).

We are therefore led to state the theorem of4&in the following form ¢):

THEOREM. —Along each streamline, the permanent motion oflarf@mic medium
satisfies the condition:
F2U (1 +VA = constant,

in which F is the index of the medium,is the spatial magnitude of the velocity vector
relative to the direction of the timelines, andd.the principal potential of gravitation.

We suppose that our holonomic medium is a peffeict that admits an equation of
state and re-establish the velocity of lighih the expression (38-1) for the first integral.
It then follows that:

(Co)*=F*U (1 +c V),

in which F? is given by the formula:

pdp

F? =
eXFJjpo Zp+p

() See se for this notion. ]
(®) The results of secd6, 47, 48, figure in A. LICHNEROWICZ, Ann. Ecole Normalgg (1941), 285-
304.
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in the usual physical units.

Suppose that the quotiet€p / p andc?V? are small with respect to unity, and then
formulate the expression fo€4)? up to terms inc®. One first has the approximate
expression:

p dp

pocp

FP=1+ Zj
and from this one deduces that:

(Co=U +U (_+2 dpj
VOC,O

One sees that, up to termsciA, the statement that:

2
v v d
1PU+U| 5 +2 2p = constant
c % C°p
is valid along each streamline, which is a result tlegely recalls the classical statement
of Bernoulli's theorem.




CHAPTER V

ESSAY ON THE RELATIVISTIC HYDRODYNAMICS
OF VISCOUS FLUIDS

49. —The incompressible fluid.— We saw in secl9 that if we are given a perfect
fluid that admits an equation of stgbe= ¢(p) then the velocity of propagation of the
hydrodynamical wave fronts will be given by the scalar:

1

Jo'(p)

and that the equation of state is admissible fromaivistic standpoint only i§" > 1.

The case in which the wave fronts propagate with unit ugldice., the velocity of light)
is the one for whicld' = 1, i.e., the one for which the equation of statd the form:

(49-1) £ — p= constant.

Such a relation represents — if | may say so — thermmariincompressibility that a
perfect fluid may admit in relativity. Therefore, lid that satisfies (49-1) must be
considered to be ancompressiblg@erfect fluid from a relativistic point of view.

From (49-1) one may deduce a simple relation that dependstheaurrent vector
C“ The equation of continuity of the perfect fluid:

(49-2) Dal(p+p) U =u’0,p,
may be into the form:
(49-2) (o+p) Oqu?+ ud, p=0.

By virtue of (49-1) the derivative op(— p) along each streamline is zero, namely:
(49-3) u“d,(p - p)=0.
From (49-2) and (49-3) one deduces that:

u“a, p
ptp

Oqau? + =0.

If F denotes the index of the fluid then this is:

(49-4) 0,u% + uaaa?F: 0
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Now, relation (49-4) is none other than:

More generally, an arbitrary fluid that sndowed with an index Rill be called
incompressibléf it satisfies the relationl, C” = 0.

50. —The index of a fluid and the associated metric. n the course of this chapter,
we propose to study what the energy-momentum tensoharejuations of motion of a
viscous fluid might be, and, in particular, to exploreviibe classical equations of Navier
may be generalized.

Consider the energy-momentum tensor of an arbittaig. f In the course of seé,
we saw that this tensor may be put into the form:

Taop=pPUgUp + 7Tp,

in which p is the proper density of the fluid,is its unitary velocity vector, ants is its
pressure tensor. From the study of g&e¢his symmetric tensorzz must satisfy the
relations:

(50-1) s W= 0.

We assume that the pressure tensor involves a pressalegp that appears in the
equation of state for the fluid, and once more wethallscalar function:

p dp
m O+ P

F= expj

theindexof the fluid at its various points.
As in the case of a perfect fluid, we introduce théricie

ds’= F? ds’

that is conformal to the spacetime metric, as wellttas vectorsC andCon the

Riemannian spaces that are defineddsy andds’, respectively. These vectors admit
the covariant and contravariant components:

Cs=F Ug, C=F U9,
and:
C,=Cus=F Uy, C,=F*u”,
so the vectoC is collinear withu in the same sense and unitary for the medst.
We denote the covariant derivative operator for therimels® by 0, . It is easy to

evaluate this operator when applied to a vector as aidunnet the analogous operatay,
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relative to the metrids’. If r2, andT7; define the Riemannian connections disf and

ds?, respectively, and if:
Ko=0,logF,
then it will follow that:

s = G,4laB8, 01 =Fg”{[F*[aB, A +F(9y,0,F + 9,,0,F — q,,0, F)}.
From this, one deduces the formula:
(50-2) re, =T +K, 05 +K,0f - Koq,,.
In particular, ifvzis an arbitrary covariant vector then one will deduoenf(50-2) that:

(50-3) iavﬂ = DaVﬁ— KaVﬁ— Kﬁva + va/;ga/;.

51. —The energy-momentum tensor of a viscous fluid. ¥he study of perfect fluids
that was made in the preceding chapter leads us to thinkthéwed is no point in
separating the purely kinematical properties from theathioal properties here — as one
does in classical hydrodynamics — and that the mé®&icand its corresponding elements
must be introduced for the study of the properties oflthe that generalize the purely
kinematical properties from the classical viewpoint.

We therefore consider a viscous fluid, which we charaete- from the standpoint of
internal deformations — by its metrids®, and, as a result, by the associated unitary
vectorC. We refer this fluid to an orthonormal frame for thetric dS* at a pointx in
the domain that it sweeps. Relative to this frame:

C' =G =0, C'=Co=1.

In such a frame, we may take the following expressionthe space components of
the pressure tensor of a viscous fluid:

(51-1) 5 = _ﬂgij +%/j(iiq +ij Q)a

in which 77is a scalar angl is a viscosity coefficient. One will observe tiathe frame
envisioned the space tensay differs from the classical pressure tensor for aowsc
fluid by relativistic corrections of order?. One the other hand, from equations (50-1),
one has:

(51-2) o =0,

in this frame.



88 The relativistic theory of gravitation and electromaggmet

It is easy to put equations (51-1) and (51-2) into a complateariant form. The
spacetime tensor whose only non-zero componentg;ane this particular frame is none

other than the tensor:
gﬂﬂ - Ca Cﬂ = F2 (gaﬂ— UQ Uﬂ)

On the other hand, consider the tenggithat is defined by the formula:
(51-3) 2y =0,C,+0,C,-C(0,GG+0,G Q).
In the frame envisioned, it admits space componentsitaagiven by:
(51-4) 2 =0C +0,C.

On the other hand, one has:

2)o = iico'*'iocu_iocu = i'Co

in this frame and:
240 = ZEOCO—ZEOCO =0.

Now, sinceCis unitary for the metrias?, one will have:

(51-5) c'0,C,=0
in any frame. In particular:
0,C,=0

a

in the frame that we adopted. Therefore, in the framasioned, the tensggs that is
defined by formula (51-3) will admit components that arénéeffby (51-4) and:

Vao = 0.

It results from this that the pressure tenggythat we adopted may be expressed by
the invariant formula:

Tlp == TTF (Qap—UaUp) + U Vap.

Finally, in order to make the incompressibility of thad, which must appear irralong
with the pressure, more obvious, we take:

m=F?%(p-A0,CA,

in whichp is the pressure that we introduced, which serves to dégnmdex for us, and
A denotes the second viscosity coefficient.

(51-6) Tap= (71+ P —=A 0,C") Qap + U Vap,
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in which the tensoy,z is given by the formula:
(51-7) 2ysp=0,C,+0,C,-CN0,G G +0,G Q).

In all of what follows, we will assume that the cosity coefficientsd and ¢ are
constant throughout the fluid domain envisioned.

52. —The streamlines of a viscous fluid. 4n a domain that is occupied by the fluid
the gravitational metrigjs’ is related to the energy-momentum terBgrby the Einstein
equations:

(52-1) Saﬁ = )(Taﬂ-

As a result, the energy-momentum tensor (51-6) mussfysaihe conservation
conditions:

(52-2) 0,T¢=0,

which give the continuity equation, and the differentgétem that is satisfied by the
velocity vectoru that is tangent to the streamlines. In order to abdeviotions, we set:

(52-3) P =p+p-A0,C-
If Topis given by (51-6) then equations (52-2) may be written:
(52-4) O.(Pu)u, +p 0, U, —0,( p-A0,C)+u0 yg =0.
Upon scalar multiplying (52-4) bf one will obtain the continuity equation:
(52-5) 0,(Pu”) = W0 ,( p=AD,C) +u0,¥8].

Upon substituting the expression fy(ou”)that one derives from (52-5) into (52-4), it
will follow that:
(52-6) pUD, U, = (g~ U Y)I0,( p-A0, @)= u0,pf.

The differential system (52-6) that regulates the stlieasimay be considered to be the
relativistic extension of the Navier equations.

53. — The calculation of the vector] ). — The vectorl ,y” appears in the right-

hand side of equations (52-6), and it becomes necessary forevaluate this expression
by starting with (51-7) and (50-3). The vorticity tensottlsd fluid, i.e., the rotation of
Cq, is always denoted Hy .5 and we have:
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(53-1) Qus=(0,C,-0,C,) = (aCs—0sCa) = (0,C,~0,C,).

From the relationC” 0_C, = 0 that we established in sé&d, we see that formula (51-7)
may be put into the form:

2¥ap = 0,C, +0,C, —C(Q,; G +Q4,G),
or again, upon destroying the symmetry in the first twmseand introducing” instead
of C*:
2Vap=20,C, +Q,; —U" (QupU; +Qp 1, ).
In the sequel, we will introduce the tensor:
(53-2) D= Qaﬁ—UA (Q,\ﬁ ug+Q,p Ug ),

in which the components depend on the vorticity tensoaidipe One will therefore
have:

yaﬁ = ﬁﬂca + eaﬁ-
By virtue of (50-3), let:

yaﬁ: DﬁCa_ KaCﬁ‘l' KﬁCa_ KpCpgaﬁ'l' eaﬁ

Start with this expression for the tensgys and take the contracted covariant
derivative for the metrids’. It will follow that:

0,4 = 0a 05C7 = (0K Cs - (0aC%) Ky = C7 OaKp
~K70aCy +Dp(K?Cq) +00,05.

However, upon observing th#ls is a gradient and introducing the vorticity tensor
again, one will get:

Ca DaKﬁ + Ka Dacﬁ = Ca DﬁKa + Ka DﬁCa + QaﬁKa = Dﬁ(KaCa) + QaﬁKa.
One deduces from this that:
(563-3) Dayg= DaDﬁCa_ (0.K% Cs - (0.C% Kg — QaﬁK” +Da®‘[’,.
On the other hand, from a classical formula thatesl to the curvature tensor, one will
have:
Da Dﬁca - Dﬁ DaCa = Raﬁ/ap C,D: RaﬁCa

Now, by virtue of the Einstein equations it will follaat:
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SupCY=RypCT -1 RCs= x TosC? = yp CF,

sinceC is an eigenvector of the energy-momentum tensor Wwehefigenvalugp. From
this one deduces that:

Oa0pC7=0,(0,C7) + (xp+4R) Cp,
and sinceK, is the gradient of lo§:
a aﬁF a 1 a a
(53-4) O,y; =0,0,C )—? 0aC"+ (xp+3R-AlogF) Cs— QqeK™ +00,0%,

a formula that may also be written:

0,ce
F

(53-5) O.V5 = (DaC")aﬁ log +(yp+iR-AlogF) Cs— QK7
in whichA denotes the Laplacian operator for the metsic
Substitute this value for the vectar, y;; into the system (52-6) that regulates the
streamlines, and note that:
(95— uup Cs=F (95— u“up us = 0.

will then therefore follow for this system that:

(53-6) pu”d,u,=(g; —u'y)
0 Cc”
x 6a(p—)lDpC")—,u(DpC"aalog"T—QaﬂK"+Dp@§) .

This system therefore defines the motion of aouscfluid. One will note that the
proof of (53-6) involves the Einstein equations|&ily even though the curvature d€
is eliminated in the final result.

54. —The irrotational motion of a viscous fluid. — We say that the viscous fluid
considered admits an irrotational motion when tbetieity tensorQ,s is zero for this
motion; suppose that this is true. From the idgnti

c°d,C, =0,

one will derives:
(54-1) c’0,C,=0
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under these conditions, and the streamlines will nacgsde geodesics of the metric
ds®. Therefore, the equations of motion (53-6) must coinaitle the ones that relate to
a perfect fluid with density and pressurp (4).

We look for the case in which this is true preciselyr &wirrotational motion, (53-6)
will reduce to:

(54-2) (o+p-A0,CAu’Oaug

0 C?
=(95 —u"uy)|9,(p-4A0,C)-u0,C0,log pF ,
and equations (54-1) may be written:
54-3 0,18 = (g2 - U u,)0 70 = (g~ uu,) Ok
(54-3) +p)u” 00" = (g; —u"U,)d, p or  u'0,u" = (ggz-u’uy) o

Upon taking (54-3) into account, it will then foll that:

L
0,C?

o

a c”
u”Dauﬁ:(gg—u”uﬂ)lz 6H(DpC”)+%6alog p :l

F
which is a formula that may be put into the form:

(54-4) u’ Ogu’ = (g5 - u” uﬂ)[a‘l’f

u DpCp
+(1+5)0  log——|.
( A)a 9—F

In order for (54-4) to be equivalent to (54-3)isinecessary and sufficient that either
A+ =0 or that the vector:

() The difference between this result and the analogaustrie classical hydrodynamics points to a
genuine difficulty in the theory: The definition of thatation in a motion can be made only by means of an
indexF. It is true that this index is largely indeterminated ane will have to try to remedy the difficulty
that just presented itself by leaving the indletemporarily indeterminate. All of the formulae tfiaitow
will remain true, with the exception of the one thattetF to p andp. In an irrotatonal motion, the
streamlines naturally remain geodesics ofdfebut this metric will no longer necessarily corresptme
fluid that is assumed to be perfect. If one wants to egpitee possibility of irrotational motions in any
case then one will come to the following condition: FEhmust exist a scaldrsuch that:

0,F _0,[p-(A+1) €,
F p+p-(1+4)8

Yu, (6=0,c7),

but there is no reason for this to be true, in ggdnéWe prefer the viewpoint that is adopted hdrefact,
the indeterminacy that prevails in the definitidrpoessure makes the difference obvious withoubssty
inconveniencing the theory.
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0 c”?
grad Iog"?

. .o’
must be collinear with the vectar i.e., that the quotlent”F— must be constant on the

hypersurfaces that have the streamlines for their ootheigrajectories. In particular,
this will be the case if,C” =0 ; i.e., if the fluid is incompressible. We thee that one
has the following:

THEOREM. _ — An incompressible, viscous fluid may admit an irrotational motion
for which the equations of the streamlines are identical with the fones irrotational
motion of an incompressible, perfect fluid.




CHAPTER VI

THE RELATIVISTIC HYDRODYNAMICS
OF A CHARGED, PERFECT FLUID

55. —The conservation conditions for a charged, perfect fluid. 4n this chapter,
we propose to study whether it is possible to extenddlagivistic hydrodynamics of a
perfect fluid that was developed in Chapter IV to the s charged, perfect fluid. The
case of the charged, pure matter schema will be treatagarticular case.

We will always assume that the energy distributiothe domain oW, envisioned is
given by the energy-momentum tensor that was studiddtail in sed.1:

(55-1) Tap=(0+P) UsUp—P Qup + Tap,

in which 7,3 is the energy-momentum tensor for an electromagrietid F,z3. This
tensor will satisfy the Maxwell equations (20-1), whicé write as:

(55-2) OpF% = puJ°.

The current vectod is given by the Lorentz transport equation, ang the proper
charge density of the fluid. Here, we assume thaetbrists aglobal vector potentiain
the domain envisioned, i.e., a vector figlgdsuch that:

(55_3) Faﬂ = aa¢ﬂ _aﬂ¢a'

In particular, this is always the case if the domainsaomed is simply-connected. The
linear differential form:

¢ =@adX’,

which we call thevector potential formjs associated with this vector potential. Its
exterior differential is obviously the electromagaodield form.

Finally, we assume that there exists an equationabé gt=¢@(p), and introduce the
index of the fluid ):

(55-4) F=exp|’ dp

mo+p

First, it is necessary for us to form the conty@guations and the streamlines that
are deduced from the conservation conditions (55-1) #®retfergy-momentum tensor.
The energy-momentum tensor that is adopted will kaeform:

() In this chapter, the notatidh will be reserved for the index of a fluid, and we willt rexplicitly
introduce the electromagnetic field form.
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Tap=r UgUg— Gy,
with:
r=p+p Oup = POap — Tap-
We must therefore introduce the vedtgy which is defined by:
(o+p)Kp=0a (pg; —75) = 0,p-0,75.

Now, from equations (55-2) one has:

0,75 =Fopd’ = Fpplf.
One deduces from this that:

(55-5) P+ p) Kp=0,p+ pFpu’
Under these conditions, the continuity equation wilib#ten, from (17-6):
Oal(o+p) U = u7(@,p+ uF,,u°).
Hence, from the antisymmetry Bf,s we will get:
(55-6) Dal(p+p) U] = u?d,p,

which is formally identical with the equation for a petfélaid in the absence of charge
and an electromagnetic field.
From (11-7), the differential system that determinestteamlines is:

a_,@a 0,p , H
(55-7) u? 0,08 = (g% - u u)(L+—FH u"j.
T T P ptp prp
Finally, the conservation of charge translates inéorélation:
(55-8) Og(uu®) = 0.

Having said this, observe that equations (55-6) and (55-8pmaut into the form:

and:

respectively.
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It follows by subtraction that:

(55-9) ua(a”—’u_ﬁj: 0.
[ p+p

Now introduce the positive scalar, which is defined by the relation:

(55-10) 0 :%,

which is a scalar that differs very little from thendity o. Indeed, up to terms m*, one
will have:
-2
p=p (1+—C P_ ¢ pﬂ)}
Y P O

in the usual physical units. More rigorously, one hasHe scalap :

dp” _d(p+p _ dp _ dp
]

P’ p+p p+p p+p’

One deduces from this that equations (55-9) mgyubéto the form:

u?a, Iogﬁm: 0,
yo,

which expresses the fact thhe ratiok = i/ p stays constant all along the streamline.
In the sequel, we shall studwly fluids that are charged in a homogenous manner,
ones for which the ratik stays constant throughout the domain of spacetimat is
envisioned.

56. —The extremal principle for the streamlines.— In a given spacetime domain,
we therefore give ourselves a perfect fluid schéhad is charged in a homogeneous
manner and admits the indExand the vector potentigl Consider the integral:

(56-1) o=[ [Fds+ k],

which is evaluated on an arc of a time-orientede@ that joins two pointg, andx;. If
we parametrically represe@twith the aid of the arbitrary parametethen:

0= TR0, %)+ kg, ¥] du (x =%j.
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Introduce the functionf (x*, x*), which is homogeneous of the first degree with
respect to the and is defined by:

f= F(g, 5 )2+ kg, X

Its partial derivatives are defined by the relations:

af gaﬁ Xﬁ
=F +kda,
ox gy ny
(56-2)
0,9, % X
o _f %% +0,F (9, %K) +kd, 0,5 .

o 2(g, K )?

Consider a three-parameter family of time-oriertedres, and study the variation of
o when taken over an arc of a curve in the familyewlone varies this arc within the
family. If we adopt the curvilinear abscissan the arcC then the vector:

)'([I :ﬁz ua
ds

will be the unitary tangent vector ©, and it will locally define a vector field. Under
these conditions, formulas (56-2) can be written:

of

(56-3) 672Fuﬁ+k¢ﬁ’
(56-4) é?%:%Faﬂgapu"u"ﬂ)ﬁ,F+ ko ,¢,u”.

In this parametric representation, the componéats the Euler vector are:
d a
Ps= d_s(F us+k gp) —Flap, o u"v’ - 0 ,F —ka ,¢4,u°,

so that upon specifying the total derivative witspect tes we will get:

a a aﬂF
Ps= F[u O.Us —(gg —U'y,) = }— kB, d.

Now obviously:
(95 — U Uy) Fap” = Fppll”.

Therefore the componen®s of the covariant Euler vector may be written:
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(56-5) Pﬁ:F{u”Dauﬁ -(g - U Lb)[a‘l’:F +E E, Lfﬂ

From the argument in se@&5 and36, one will thus have the formula:
S
- = - —| < POxX>
(56-6) oo=[a(9)], [« I] LD ox> ds,

for the variation ofg; in which, from (56-3xJ9) is defined locally by:
(56-7) ) = (F ug +k @) dx’.
Now apply formula (56-6) to the case in whichvaries with fixed endpointg and

X;. In order thatobe an extremum under these conditions, it is nacgssd sufficient
thatP = 0, i.e., that:

(56-8) u? Oaus—(95 —u”uﬁ)(a‘l’:F +§ Fapu"j =0.
If we note that:
0,F _ 0,p k_ u _ n
F p+p F pF p+p

then we will see that equations (56-8) are formalbntical to equations (55-7), which
regulate the streamlines. We may then state the:

THEOREM. —In any motion of a perfect fluid that is chargedanmhomogenous
manner the streamlines are the time-oriented cutles realize the extremum for the
integral:

o = [ (Fds+kg),
)

for variations with fixed endpoints, in whighis the vector potential form, and k is the
constant ratiou/ o .

The streamlines that appear here are the geogdeeicsf a Riemannian metric, but of
a Finslerian metric that depends upon the pararket@ne knowsY that the form (56-
1) in the integrand is one from which one may abtai Riemannian metric by the
introduction of a supplementary dimension.

57. —The invariant form dwand the vorticity tensor of a charged, perfect fluil. —
Consider a definite motion of a perfect fluid thstcharged in a homogenous manner.
One deduces results from formula (56-6) and theqolieg extremal principle that are

() See LICHNEROWICZnd Y. THIRY, C.R. Soc. Acad. S@24(1947), 529.
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analogous to the ones that were established in Chaptfer tie streamlines of such a

motion. Since the reasoning is identical to thahefrest of that chapter, we will confine

ourselves to stating the results and exhibiting the vaddtesences that they present.
First of all, the differential system of the stmdees:

b _dd _de _d¥

U R T o TS U

(57-1)

admits the relative integral invariant:

(57-2) jrw:jr(F u, +kg,)dx .

If C; = Fu, denotes the hydrodynamical current vector of thiel then the formw
will define the covariant vector:

(57'3) Ia = FUQ + k¢a = Ca + k¢a

We give the name ohomentum vectdor the charged fluid considered to the vector
| of the Riemannian manifold that is defineddsf and admits these components. This
vector will admit the contravariant components:

19 =Fu” + kg” = C” + kg¢“.

The trajectories of this vector field will be callenomentum lines.We note that the
orientation of these lines may be arbitrasy,priori. The form w appears as the
elementary circulation of the momentum vector:

W= 1,dx°,
As a result, we will have the following:

THEOREM - If T is a one-dimensional cycle that is not tangent to the streamlines
then the circulation of the momentum vector albrig invariant when one defornfison
the flow tube that is defined by

Consider the form:
(57-4) dw=dlg"d¥’ = (9,1 ,-0,1 ;) dx* ~ d¥’.

One may further translate the preceding resultdyyng thatthe form dvis an invariant
of the differential systeifd7-1)for the streamlines.

The antisymmetric tensor that is the rotationref momentum vector is associated
with the formdw:
(57-5) Map=0,15-0,1 ;= Qqp+KFqg,
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in which Qs is the rotation of the hydrodynamical current vectdfe give the name of
vorticity tensor for a charged fluitb the tensofl,z. The characteristic system of the
form dwis then the system:

(57-6) Mg dé = 0.

If the vorticity tensor is non-zero then this systeith have rank two, and the motion
envisioned will be calledotational. If the vorticity tensor is identically zero théme
motion will be calledrrotational.

58. —The study of an irrotational motion of a charged, perfect fluid — First, we
suppose that the motion envisioned is irrotational and merdurselves to a simply-
connected domain of that fluid. In order th&iz = O in such a domain, it is necessary
and sufficient that the momentum vectfibe the gradient of a scalar function, i.e., that
the momentum lines be the orthogonal trajectories to a one-parameter family
hypersurfaces.

An irrotational motion possesses a property of “peenaa” that translates into the
following statement:

THEOREM - If there exists a spatially-oriented (or, more generally, transg to
the streamlines) hypersurface S upon which the vorticity tensannslled then the
motion of the charged fluid envisioned will be irrotational.

This theorem is established by reasoning that is idertbctthat of sec40 upon
adopting local coordinates in which the streamlines laeelihesx' = constant, and the
hypersurfaceS is represented by’ = 0. In particular,if the momentum lines are
orthogonal to a hypersurfacet8at is transverse to the streamlines then theomatill
be irrotational.

56. — The study of a rotational motion. n the sequel, we will assume that the
motion envisioned is irrotational. The vorticity vectoof the charged perfect fluid will
then defined by the relation:

" =3 UM,

the vortex lines will be its trajectories. These dira@e orthogonal to the streamlines, and
their differential system leaves the fodw invariant. One deduces from this that the
circulation of the momentum vector along a one-dimensiogele enjoys the same
properties with respect to the vortex lines that theutation of the hydrodynamical
current vector does in the absence of charge.

The two-dimensional characteristic manifolds of the foda are once more
generated by the streamlines and the vortex lines.
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60. — The permanent motion of a charged, perfect fluid. A motion of a charged,
perfect fluid will be called “permanent” in a domdn if the Riemannian space that is
defined by the associated metdg is stationary irD, and the corresponding group of
isometries leaves the potential vecggrinvariant.

If X denotes the Lie derivative operator that is associatéd tve infinitesimal
generatoi of the group of isometries then one will have:

X¢o=0.
One will therefore easily see that:

XFos=0  Xp=Xp=XF=0 Xug = 0.

One deduces the existence of the invariant linear 8¢, dx) for the differential
system of the streamlines from the existence ofrliariant quadratic forrdw and the
infinitesimal transformatioX. In adapted coordinates this form is written:

dw(é, dx) =—dlo.

The following theorem results from this:

THEOREM -1In any permanent motion of a charged, perfect fluid, the component:
|o = FUO — k¢o

of the momentum vector relative to an adapted coordinate system wskryeea
constant value along each characteristic manifold, and therefore along each Igteeam
and vortex line, in particular.

The first integral of the system of streamlines tbaines into existence may be
written in arbitrary coordinates:

Its differential may be expressed by:
(60-2) dH =M &LdxX.

As a resultH will be constant over all db, if M,& = 0, i.e., if the characteristic
manifolds are also generated by the timelines or iintb&on is irrotational. Under the
former hypothesis, the fordw will be an invariant of the differential system diet
streamlines.

61 — The case of a pure, charged matter schema All of the preceding results
apply when one substitutes a pure matter schema ttlaénged in a homogenous manner
for a perfect fluid that is charged in a homogenous marinethe preceding equations, it
suffices to set:
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p=0 F=1 p =p.
The momentum vector is then given by:
lo=Uy + K@, (k = i/ p= constant),

and this equation is precisely in accord with the oneishedopted in special relativity in
order to define the momentum vector of a charged particle.
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[ll. — GLOBAL STUDY OF STATIONARY SPACETIMES

CHAPTER VI

RICCI TENSOR FOR A SPACE THAT ADMITS A
CONNECTED, ONE-PARAMETER GROUP OF
ISOMETRIES. APPLICATIONS

I. - STATIONARY SPACETIME

62. — Notion of a stationary, Riemannian spacetime. We say that a Riemannian
spacetimeV, is stationaryif it is stationary everywhere on its manifold; i.€.there
exists a connected one-parameter group of global isosein®/, with time-oriented
trajectoriesz that leave no point of, invariant, and the family of lines— or timelines—
satisfies the following hypotheses:

a) The timelines are homeomorphic to the reallkne

b) One may find a three-dimensional, differentiable nwdai¥/; that satisfies the same
differentiability hypotheses asv, such that there exists a differentiable
homeomorphism of clas®’ of the manifoldV, with the product manifolts x R in
which thez map to the right-hand factors. Moreover, this homeapiniem is
assumed to be piecewise-continuous up to order four.

We may naturally identifi/s with the space whose poirgsare the timelinesys will
be called the quotient space, or, more briefhace. We have seen that there then exist
local coordinatesx() in Vi, which are said to bedaptedto the stationary character, that
enjoy the following properties:

1. The K) define an arbitrary local coordinate system\an The manifolds® =
const. are globally-defined manifolds oy and are homeomorphic tv3 . The
homeomorphisms ob) may be assumed to map the manifoiis= const onto the
manifolds that are homeomorphic\ein the product manifolés x R .

2. The potentialsges are independent of the variabi@ relative to adapted
coordinates. The vectd; which is the infinitesimal generator of the isometrgugy,
admits the contravariant components:

&=o, L=1.
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The square of this vector is:

(62-1) &=0o>0 G:\/Q?Z > 0).
2. These coordinates are defined, up to a coordinate change, by
(62-2) X' =y (X)), X=X+ (X),

in which ¢ denotes the restriction of an arbitrary functigix) that is defined o3 to a
local chart ofvs.

In all of what follows in this part, we will introduaenly adapted local coordinate
systems. In such a system, the manifoftts const will be callegpatial section®f that
system.

Let W be a definite spatial section \¢f; this manifold will be homeomorphic ¢,
and the X) will define local coordinates on it. The metric \df and its group of
isometries will define some tensors on e&@h. This is true because tigg define a
symmetric tensor (the induced metric)\&k thego define a covariant vector, and thg
define a scalar, since these quantities transform diogpto the classical tensorial laws
under a change of local coordinates:

(62-3) X' =y (X), x? =X,

that preserve¥\;. Naturally, one tensor must map to the other one uhéemap that is
induced by the isometry that maps one spatial sectidrecddame system to another

Among these tensors, certain ones, of which theas@l= gy is the simplest
example, must map to each other under the map that is thdycehe homeomorphism
of two spatial sections with different systems. yrhey thus be considered to tefined
on the quotient spacé;. In order for a tensor of; to be defined o3, it is necessary
and sufficient that it be invariant under the change:

(62-4) X=X, x* =" + X),
which we will call achange of the system of spatial sections
63. —The Riemannian space¥/; and W;. — We assign an orthonormal franeg)(to
each pointx of a neighborhood o¥,;, whose first vectog, is the unitary vector that is
tangent ak to the timelinez(x) that passes through The vectodx is represented by:
dx=dfe,= Je + da,
in which thedf are local Pfaff forms. The metric W§ may then be written:

(63-1) d¢ = ()2~ Y (@)?
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and thed will be annulled along the timelines. Such an orthorad frame will be called
adapted. _

Having said this, let) be an adapted system of local coordinates. Sincetase
Pfaff forms with respect to thiX, one will see that (63-1) is nothing but a decomposition
of the fundamental quadratic form into squares withvéirabledxX’ playing the role of
directrix variable. Upon performing this decompositioio inquares one has:

(63-2) ds’ = (J)*+ ds?,
with:
(63-3) o :% (9oo X + goi dX),
and
X2 i\2 _ gOi go;‘ j j
(63-4) ds” = —Z (W) = (gij - jdx dx .

From formula (63-4), it results from the last esgsion that the quadratic fos? is
independent of the variabi@, and, from the second expression that it is indeest of
any system of spatial sections. From this, onauckesl thatit determines a negative-
definite Riemannian metric ons.VThe quantities:

. Yoi Yo;
g =gi———",

00

are the components of a tensor @§ or a ‘Spatial tensof. The corresponding
contravariant tensor & =g'.

In the sequel, we shall always assume that thefoldsV; andV, have been given
the structure of a Riemannian manifold that ismkdiby (63-4). They will therefore be
isometric {).

64. —The spatial tensorH;; . — Consider the covariant vect§r, the componeng, =
&2 defines a scalar s andVs. Thed = Joi define a covariant vector field oi;. We
study the variation of thé under a change of system of spatial sections:

G=&+ NG =6+ AE

Therefore, consider the vectgy that is defined oW, by:

(64-1) " :% =% @o=1).

() Note that in our studw is notassumed to be endowed with the structure of a Riemannisifolda
that is defined by its embeddingVf, i.e., by the tensag; on W; (the corresponding metric might then be
of elliptic or hyperbolic signature).
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The component®, define a vector field oW that transforms according to the
formula:

(64-2) @ :¢i’ + AO' )

under a change of systems of spatial sections.
Therefore, if one introduces the rotatiéty, of ¢, then one will see that the
component$iy, of this tensor oV, are:

Hox =0,¢, —=0,6,= 0,

and that, from (64-2fhe Hy, define a tensor onzV

It is easy to see the geometric significance ofvéngishing of the tensdd; . For a
neighborhoodJ of Vs, it is possible to find local spatial sectiofis= const such that the
timelines that correspond td are the orthogonal trajectories in the adapted cooelinat
system relative to these spatial sectidirs goi = 0, ¢ = 0, and, as a result, thidf = 0.
Conversely, ifH;; = 0 then the tensdt,, will be zero, andgo = 1, ¢) will locally define
a gradient field. Therefore, in a neighborhdddf Vs there will exist a functiori(x)
such that:

@2 =0,[x° + f(X)].

Therefore,H; = 0 says that the timelines are orthogonal trajextoto the local
spatial sections in the neighborhoadlsf V.

We have therefore defined a scalan the spacd/s;, a negative definite Riemannian
metric:

(64-3) 6S)? =g, dx o

and an antisymmetric tenséfj . On each\s, one finds, other than these elements, a
vector fieldg; such that:

(64-4) gij = Ji _52¢i ¢j ' Hij :ai¢j _aj¢i '

65. — Passing from an orthonormal frame to a natural frame— When one says
that a tensor is referred to a system of local doatds, what that really means is that it
is referred to the natural frame of this local coordiratstem. If¢,;) denotes the natural
frame atx of an adapted local coordinate systexf),(and if €, is an adapted
orthonormal frame, then one will have:

dx =dx"e,= S e,
and the ¢) define an orthonormal frame fadg)?. From (63-3), it follows that:

(65-1) o = EAX + ¢ dX)
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and since thed are local Pfaff forms with respect to tthé:
(65-2) W=Adx.

Denote the inverse matrix to the ma(i) by(A). By solving (65-2), it will then

follow that: _
(65-3) dx = 5\} w .

Formulas (65-2) and (65-3) define the passage from local catedix) to the
orthonormal frames) in Vs or W; . Let @ be the components with respect to thp df

the vectorg, onWs:

(65-4) g =A¢g,.

(65-1) may then be put into the form:

(65-5) o =EAP+3 o),
and conversely one will deduce that:
(65-6) dx :%—ai o .

The change of frame N, is carried out with the help of the coefficient matri
(Ag)of d® in terms of thewf’ and the inverse matrix. In particular, one will have

(65-7) K=& A= A=0; /3€=§, A=-¢, A=0.

II. - Ricci tensor of a spaceV,.; that admits
a one-parameter group of isometries

66. — The fundamental formulas of Riemannian geometry in orthonornal
frames. — The preceding analysis obviously applies to a Rmman space/,.; that
admits a connected, one-parameter group of isoesetinat satisfies hypotheses that are
pointless to repeat. We denote the manifoldsahatanalogous tv; andW; by V, and
W, , resp. Since the following calculations are putecal, we may assume th&t,
reduces to one of its neighborhoods. Finally, ndeo for our calculations to be easily
adapted to the various hypotheses on the signafirg;, we will assume to begin with
that V.1 admits a positive-definite metric. In that subsete will therefore have:

ds =>"(af)? = (w°)2+Z(ai)2 (@=0,1,..ni=1,..,n).
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All of the other formulas of sec§3, 64, 65 will remain unchanged or undergo an
obvious change.

Having said this, we propose to evaluate the Ricci temsdt.1 by starting with the
ones onV, and the tensors that we just introduced. In order tioqmerthe calculations
that relate the elements that pertain to the matfion the ones that pertain to the metric
ds?, we will impose the use of orthonormal frames. Tigpothesis on the signature of
the metric permits us to not distinguish between the @vaand contravariant indices in
such a frame. We will therefore put the indices m ldwer position, while preserving
the summation convention that relates to a twiceatukindex. Up till now, we have
notated elements that are expressed with respect torthanormal frame with an
overbar. Since only orthonormal frames will be atiegsg the present section of this
chapter, we will temporarily suppress the overbar, atedl ta-establish it.

We commence by recalling the fundamental formulafkiemannian geometry in
terms of orthonormal frames. The formulas of moviagnies may be written:

(66'1) dX = %ea,
(66-2) de, = wypes.

Since the frames are orthonormal, the metri¥onmay be written:

(66-3) ds’ =) (af)? = (@")*+2 ()*.

The local Pfaff formsu,z define the Riemannian connectiondn; and are defined
by two types of conditions. First, one has:

a’bﬂ :_abaa

which says that the moving frame stays orthonormé&ne then must express the
vanishing of the torsion of the Riemannian conoectwhich leads to the formulas:

(66-4) dan = ap” apa.
Finally, the exterior differentials of theyz are related to the curvature forms\é:
by the formulas:
(66-5) dads = g pa — Qap
in which the local quadratic differential forr,z are given by:

(66-6) Qup=3Ropiu w ™ &,

in which the Ry, denote the components of the curvature tensoMon in the
orthonormal frame.
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The quantities that replace the classical Christadfghbolsl” here are the Ricci
rotation coefficientgsz , which are found to be defined by the relations:

Whs = Vapr (Y (Vapr = = Vpar)-

The calculation of thgsz will be carried out as a function of the coefficieatghe
guadratic formsla, with the aid of formulas (66-4). We set:

(66-7) dwa = % C/‘/IU a)/] A a*ll; (C/]/ja = _C/I/]a)
Upon identifying the terms ioy * @y, in (66-4) and (66-7), it will follow that:
(66-8) Copa = Vaau = Yuar = Vaau t Vuar
Conversely, one immediately solves equations (66-8) wattpect to they by a
calculation that is analogous to the one that led taCtestoffel symbols, and one will
have:
(66-9) Yopr =3 Capr + Cag— Cpiar-
If f denotes an arbitrary function then we will set:

(66-10) df=a_ fw,

in all of what follows in this section.

67. —Calculation of the Ricci coeffjcients forVas1 (). — Consider the Riemannian
manifold Vi,, endowed with the metricl§)?. To any adapted orthonormal frame\#y,
i.e., to any decomposition of the metli€ on V.1 into squares of the type:

ds’ = (@)’ +)(@)?
there corresponds a decompositionlst into squares:
ds® =3 (@),

withaw = « ; i.e., an arbitrary orthonormal frame @f. The formulas of Riemannian
geometry in orthonormal frames may be applied &rtianifold \; ; we agree to denote

the elements that relate to it with the symbol Hence[] will denote the covariant

() The calculations that follow appear in Y. THIRY, Jourath. pures et appl. (9) (1951), 275-396.
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derivative for the metrids®. We propose to calculate the Ricci rotation comffits yz
of Vi1 a@s a function of the ones ¥, J, , and the tensors that were introduced.

We commence with the calculation of #)g,. First, one has:
da =3 Ci &g ™ @k + Cjoi & " b

On the other hand, one has:

daw=dw :%Cjkiwj N a.
in V,,. One will deduce from this that:
(67_1) Cjki = c;jki c;jOi =0.

In order to calculate theyo, consider the formaw. It is given by (65-5) in adapted
local coordinates. If one introduces the componentg @i the orthonormal frame,
which are components that one denoteglhere, then one will have:

(67-2) w = &E(dX + ¢ w).

Upon taking the exterior differential of (67-2), onel\git:
day =~ “2+ £ ).

Upon developing the differentials in the right-hand smi® will get, taking (67-1)
into account:

0.
dab='?5a?"ab+x[6i¢jcq"a? + 2 hCipaw " .

On the other hand:
dad =3 Gjo @ ™ & + Cioo W " @

One deduces the formulas:

)
(67-3) Cio= £(3,6,-0,4,+ Gio), oo :'?5
from this.
Since thec’s are known, one may then evaluate glsewith the aid of formula (66-9).

Obviously, one will first have:
ik :yijk g

which will permit us put the first of formulas (67-3) irdanore manageable form.
Indeed, one has:
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Cih = Yinj ~ Wi =Vinj = Vini
and the first formula in (67-3) may be written:

Cijo = [(0,@; Vi @) = (0,8 — Vi #1)]

namely:

(67-4) Gio= &(0i §,-0; ¢,) = £Hy,

sinceH; is the rotation of; onWs.
If one or the other of the indices pére zero then one will have:

Viok =2 (G * Guo~ Cua) =3 Geo
Yiko :%(Qk0+(:id< - Ck(]') :% Go
Yioo =% (G oot G oo~ Con) = € 0o

One then deduces the following expressions for the Ritation coefficients:

. d.
(67-5) Wik = Vige» ok = i = Mo =7 € Hi, Woo :?5 .

68. —Calculation of the components of the curvature tensor in amrthonormal
frame. — From the preceding expressions, it results that:

(68-1) W =), +3 SHjaw,
9.
(68-2) cqo:'?gaM%EHiraz.

We now propose to evaluate the components of the tcuevéensor orV,.1 as a
function of the components of the curvature tensoiWgm@nd the various tensors that
were introduced. To that effect, we apply formulas (663heé Riemannian manifolds
Vi1 andV,.

When (66-5) is applied to the foramy , it will result that:

dag = ao ™ ayj + o ™ wyj —Qji,
namely, from (68-1):
(68-3) day = ao ™ awy +(@, +3 EHiraw) ™ (@, +5 EHy w) — Q.
On the other hand, by differentiating (68-1), one wilt get

(68-4) dag = da; +5 d($Hy) * @b + 5 S Hij a ™ ao.
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From formulas (68-3) and (68-4) and applying formula (66-5Vgnone deduces
that:

(68-5) Qj _Qij =—do "™ o +% [w” QZHrj + d)jr ¢ Hir —d(Hij) Nay— % Q(Hijak N .

One recognizes the absolute derivatiyéH; ) in the term in brackets. It results from
this and (68-2) that (68-5) may be put into the form:

8¢

Q, -0, :_(ai—;%’L%fHuCﬁ)jD( g wﬁ%i"'ﬁ@j

(68-6)

~101(EH,)q Doy ~2H, m("’i_;w_;ng,a,)

Identifying the coefficients of the termy  «p in both sides leads to the following

relation:
2

(68-7) Rijx = R,— W —% (Hic Hy = Hi Hy + 2Hj Hi,
If we now identify the coefficients of the ter ™ wp, we get:

Rijo= —3[01(EH,) +20,6H, -3 &H, +a &H 1,

Namely, upon developing the covariant derivative:

(68-8) Rilo=—%[& 0 Hij +26|§(Hij _QC(HJ'I +Q5HJ 1.
(68-9)
If we apply the same formula (66-5) to the fogmwmthen we will get:

dawo = ar ™ awo —Qio,
namely, from (68-1) and (68-2):

(68-10) dago = (e, +3¢H; @) D(%‘(%%mg@j— Qio.

We are interested in only the terms ady that containay as a factor. By
differentiating (68-2), one will get:

(68-10) dap = d(a'—;j O, +ai—;cq< Dak—;a)o (mod terms i ™ ).
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Upon identifying the terms in (68-9) and (68-10) that contams a factor, one

obtains:
0&) . 0.¢ 656 £ &
dl == |-y —=> Oap == H, H Qio=0.

From this, one deduces the relation:

Riojo=-0U (a;j 950¢ g(—H H

QZ 4 Ir 2

Hence, upon developing the covariant derivative:

] S $
(68-11) RoJo 5D| (0.6)+ 7 HeHe

We have therefore obtained the following formufas the components of the
curvature tensor oW1

(68-12) Rijia = R, K _%(Hk Hjl -H Hk )_% W H,

(68-13) Ryo= —3[€00 H, +20,H, —4 &H, —q &M, +9 &H ]
1 * 2

(68-14) Roo =~ 00 (6i5)+% HH,

69. — Calculation of the components of the Ricci tensor onVy:; in an
orthonormal frame. — Finally, we now propose to valuate the companeitthe Ricci
tensor orvy.1 in an adapted orthonormal frame as a functiomsafomponents o, and
the various tensors introduced. The formulasweaintroduce are useful, not only in the
present theory, but also in the unitary field tlyedFirst, one has:

le = z Ri ki + I:eiO,kO-
i
Now, from (68-12):
ZRi,ki =R —3&°H H, .
J

From this and (68-14), one deduces that:

(69-1) Rk = R, —Dk(a E)—— H; H,

Similarly, one has:
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RlO = ZRj’OJ = _Z Rj,jo '
J J
One deduces from this and (68-13) that:
(69-2) =3[E0H,; +30,6H 1= 0 (8H) .

Finally, the last component of the Ricci tensor is
Roo :Z Ria = z Roio -
One deduces from this and (68-14) that:
52

I P S
(69-3) Roo = 5A5+2 H

in which A denotes the Laplacian for the metds J?, and we have set:
(69-4) H? =13 (H,)".
i

If we abandon the current notations then we gieailhite with the formulas that were
proved before by re-establishing the overbar acdting the lower and upper indices in
such a way that they satisfy the classical Einsteimvention. We will get:

R=R 0005 AR

(69-5) Ro= ?D (&2HY)
5 _ 1, 5_2 ,
Ry = 5A5+2 H

in which we have set:

(69-5) H?=ZH, H".

1

N =
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lll. — APPLICATON TO STATIONARY SPACETIMES

70. —The fundamental equations for a hyperbolic signature— Return to the
stationary spacetimé, that was envisioned in the first part of this chapter, whamits
a metric of the hyperbolic normal type:

(70-1) ds =(a°)? —Z(aﬂ')z.

We will get d¢ as a sum of four squares upon performing the following
transformation on the local Pfaff forms:

—0 0

a® = @ =i,

We may establish the formulas that were establishdukis@cond part of this chapter for
the new form ofis*

ds = (aﬂ)2+z(m")2.

However, the components in the hyperbolic metric maydrived from the ones in
the elliptic form of the metric by the following rul&ny contravariant index= 1, 2, 3
corresponds to multiplication by any covariant indek to multiplication by -, and the
index 0, to multiplication by 1. Formulas (69-5) and (69-6) wbviously remain
unchanged under this transformation, and one will thexdfave:

(70-2) (ds)?= - (@')?

under our new hypotheses (69-5) and (69-6), in which the staleetems are now
expressed with respect to the negative-definite metric.

71. —Calculation of the componentR] relative to an adapted, natural frame on
V4. — Now assume that, is referred to a definite, adapted, local coordinateegysand
let W5 be a corresponding spatial section. We propose to ¢edh@mR. component of

the Ricci tensor in the natural frame that is assediavith the local coordinates with the
aid of the preceding formulas. In the difference of temasors that appears in formulas

(69-5), RY has precisely a scalar characteMa but not ornvs.

One deduces from classical formulas for the changeaoie applied to the Ricci
tensor:

R=AAR.

Formulas (65-7) give us the values of the precedin@ne will therefore have:
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1 _ _
R=cIR-0R|-R-9 8
Now, from the signature of the metric, one has:

Ry = Ry Ry = —Ry.

Upon turning all of the indices into lower ones, one deddilm this and (69-5) that:

(71-1) RO = —iAf— 4

ir 3 5_2 2
FAE S0 (E M)+ 25 R,

Now, upon integrating by parts, one will obtain:
$.0,(EH,) =0,(Eg H, ) -&EH, 04
namely, from the antisymmetry bf; :
$.0,(E°Hy) = 0,(Ep Hy) - R
When one substitutes this into (71-1), one willasslthat:
< - —%{A&%Dj(f% Hy ]
so, upon slightly modifying the notations and ragscertain indices, one will get:

o - _Lraseln (220 1Y
(71-2) = g([A5+2Di(<‘</5KH)]-

Upon expressing the Laplacian explicitly and cating the indices into lower or
upper ones, according to the Einstein conventieanget:

o__g" - P
I:20 :_?Di[alg*‘?ﬂi Hfii] .
We are thus led to introduce the vedianW; that is defined by:
3
(71-3) h =0+ HE

and we will have the following simple formula f&}:
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o 1o 1.
(71-4) R =—2 0,1 == divh.

From the tensorial character of the various tertins, preceding formulas may be
written immediately, while making only componentdative to the local coordinates
appear. 1H< = g“H;i then one will have the relationd:(

(71-5) h =0, 5+ ¢kH k h=g'h
and:
(71-6) R = —%Di H.

72. —A divergence formula in spacetime— Formulas (71-4) or (71-6) involve the
divergence, relative to the Riemannian manifdkg] of a vector on this manifold in their
right-hand sides. It is possible to transform fioisnula in such a fashion as to involve
the divergence, relative to spacetivig of a vector of a vector o¥; in terms of the
metric onV, and the system of spatial sections. One redadlsih an orthonormal frame
the covariant derivative of a vectggis given by:

(72-1) Oalls = 04115 = Vipall” -

Take a vector oW, that is orthogonal tg to ben; its components in an adapted
orthonormal frame will be:

n° =1,=0 n-=-.

Evaluate its divergence:
Dgng =0y7° +0,n" =0y7,-0,7, .
Now, from (72-1), one has:

— i i _ajg i
Dgﬂg __ygidr _yifoi(ﬁ* _?/77

Oim =07 — ¥y n = 07 .

One deduces from this that:

(*) Note that these relations use the fact §flat g' and thatH* = g H, , sinceHy = 0. Therefore, our
notations are quite coherent.
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0§ 5 o 1. j
(72-2) 07" = 0 =20,

Therefore, consider the vectoy on V4, which admits the following covariant
components in an orthonormal frame:

I
©

hl Q( 52 k
72-3 ==L HE .
(72-3) n Rl ¢ Mo

One deduces from (71-4) that:
(72-4) Ry =-0,7°=-divn.

Formulas (72-3) and (72-4) may be written immesghain local coordinates. The
vectorn admits the covariant components:

(72-5) U :a'—; +<(—2¢kH it Mo =0
and:
(72-6) Rg =-0.n"

One may then replace the vectpby a vectof that enjoys the same propertlast
whose contravariant componegf is zero. Indeed, upon developing (72-6), one will
get:

~Ry =07 +T G +0y1°+T5g1° =07 +T517

since the spacetime is stationary, soAfi@nd,/| g |will not depend upor® in adapted
coordinates. As a result,gfdenotes the vector on, With contravariant components:

J'=1, ¢°=0,
then one will have, moreover, that:

(72-7) R =-0.0",
with:

(72-8) {'=g' [?‘(+5_2¢ka j Z°=0.
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73. —Another expression for the components of in local coordinates — One may
obtain a simple expression for the component§ of local coordinates with the aid of
the Christoffel symbols, which will be an expressibattsomewhat masks its vectorial
character.

First transform the expression fgr. Taking into account the relati@aﬁg”ﬁ = g7,
one will obtain:

= _6,900 +1 g0 gk'H _a|goo _%gm ooHi .
2900 2g00

Upon specifyingH; with the aid of the potentials, one will obtain:

0, _
n === Yoo —%gmgoo 0, (&j -0, (g_aj
2g00 gOO gOO
- aigOO 1 ol (al go| _a gq)+ d] gOla gOO gOa gOO
2900 ngO

so, by obvious transformations, we will obtain:

9°0, G0

00

m=39"0Go+ 9"[0i 1]+ g
Upon introducing the Christoffel symbdls that will give:
= rgi _rgo& o = 0.

Y00

One deduces from this that:

—r0 0 90/1 rgo A
M=oy =T ’ ’7/] rpog %
00 gOO
and, as a result:
(73-1) h=r,g"

One easily verifies by direct calculation that tiieergence o that is given by (73-

1)is-R ().

() Cf. A. LICHNEROWICZ,Problémes globaux en mécanique relativistemann, (1939), pp. 64.
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74. — Another formula for the divergence on a spatial sectiokVs . — Always
assume that th¥, is referred to a specific adapted local coordinate sysiach|etWs be
a corresponding spatial section. One can valuategthe of the componenky, of the
Ricci tensor in the natural frame that is associatidl tve local coordinates immediately
e with the aid of the preceding formulas. Indeed, f(657), one has:

Roo= AV A R, =& Ry;
namely, from (69-5):

2
(74-1) Roo_Lases pe,
gOO 5 2
On the other hand, (71-4) may be written:
1.
RS =-=divh,
'3
in whichh is the vector with covariant components:
2
hi = ai§(+%¢kai .
Introduce the vectqy with the covariant components:
2
(74-2) pi=09,-h =7¢kai.
Formula (71-4) may then be put into the form:
1. 1.
(74-3) RO =-=A&+=divp.
'3 '3

Upon subtracting both sides of (74-1) from (74e3)e will obtain:

F{)o 0 | — 52 2 H
E{——RO =2-H"-divp.
Yoo 2

Now one obviously has:

R002900F€+90F%’

SO that:
Ro_po- % 5 — 4 p
—-R=—"R=¢R.
Yoo R) goo% F%

One will therefore obtain:
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(74-4) o R :%2 H? - divp.

Let C be a three-dimensional differentiable chainVis with boundargC. By
integrating (74-4) ove€, one will obtain an integral formula that will ery useful to
us O:

(74-5) [[].éo R drzmc%z H>dr - flux.p,

in whichdz7 denotes the volume element\bkh

() From the consideration of sec& and73, each of the divergence formulas that we estaldishe
relative toW; corresponds to a divergence formula in spaceti/me One will find the formula that is
equivalent to (74-5) in A. LICHNEROWICZ and Y. FOURESRCAcad. Sc.226(1948), 432.



CHAPTER VIII

EVERYWHERE-REGULAR, STATIONARY SPACETIMES

. —STUDY OF THE PROPERTIES OF THE LAPLACE
EQUATION ON A RIEMANNIAN MANIFOLD

75. —Complete, Riemannian manifolds. -n the first part of this chapter, we will
commence by establishing some theorems that relates tbagplacian on a Riemannian
manifold with a (positive-)definite metricwhich will be a manifold that we assume to be
complete To my knowledge, these theorems have not beerdsaatéestablished under
the hypotheses that are necessary for us. A purelytloearem was given by E. Hopf
and Georges Giraud)( and | have been led to use the result that relatélsetowery
simple case in whick, is compact and orientable. In the latter case, &l served as
a basis for Bochner and myséif {n our research on the real cohomology of Riemannian
manifolds, thanks to the technique of harmonic forms.

Let us recall the definitions and principal resultttboncern complete, Riemannian
manifolds {).

Given two points¢; andx, of V,, consider the lengths of the piecewise-continuously
differentiable paths that join the points. We refethedistancebetween the two points
— which we will denote by(xi, x2) — when we mean thewer bound of the lengths of all
such pathghat joinx; to x.. It is clear thatd(x;, x2) will satisfy the triangle inequality.
This distance associates the structure of a metricespath the given Riemannian
structure onv/, that is compatible with the differentiable topology\6n

Consider an infinite sequence of poirgs(p = 1, 2, ...) onV,,. This sequence is
called aCauchy sequender the metric space structure if one may associayesavith
an integelP such that the inequalities:

p,q>P
imply that:

A%, X) <&

One knows that this definition is equivalent to théofeing one: Consider a sétthat
bounds the points df,. Such a set iboundedif there exists a poird and a positive
numberr such that for any of &:

da, ¥ <r.

() E. HOPF, Preuss. Akad. Wiss. Sit9,(1927), 147-152; GEORGES GIRAUD, Bull. des Sc. math
56 (1932), 9.

() S. BOCHNER, Bull. Amer. Math. So&2 (1946), 776-797; Ann. of Math49 (1948), 349-390; A.
LICHNEROWICZ, C.R. Acad. Sc., (1948), 1678, and Compteslus du Congrés de Harvard (1950).

() H. HOPF and W. RINOW, Comm. Math. Hel®&,(1931), 209-225; G. DE RHAM, Comm. Math.
Helv., 26 (1952), 328-343.
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In order forV, to be completeit is necessary and sufficient th&tbe relatively

compact, i.e., that its adhereftéde compact.

There exists another equivalent definition of a comepl®iemannian manifold that
might be useful to state. Latbe an arbitrary point of,, and letT, be the vector space
that is tangent t¥, ata, which is a space that we assume to be endowed \Etitlaean
space structure. If we are given a geodesic arc thahateg ata then we will refer to
the initial vector of the arc when we mean the vecyon T, that is tangent ta in the
same sense and has a length that is equal to the lendid géodesic arc. Having said
this, in order forV, to be complete, it is necessary and sufficient #mgt vectorof T,
must be the initial vector of a geodesic awdhich will be an arc that is necessarily
unique.

That arc may be naturally double-checked; one recavefrst is part of a closed
geodesic. One may translate the preceding propertyyiygsthat, as far as length is
concerned, the geodesics that originate ate closed or infinite in both senses. Weyet
denote thanap of T into V, that makes any vectgrin T, correspond to the extremiky
of the geodesic arc with origin atand initial vectoty:

Y. Ta - V.
One proves that one has the following properties ohaptete Riemannian manifold:

a) The setC.(a) of pointsx in V, such thad(a, X < r, wherer is an arbitrary positive
number, iscompact.

b) Given two arbitrary pointg;, x,, of V, that are at a distanax;, x») apart, there
exists at least one path that joxago x, whose length isl(x;, x), and that path will
be a geodesic.

One deduces from this that the majs a map fronT, ontoV,.
Complete, Riemannian manifolds may be divided into tweseks

1. If the set of distanced(a, x) from the pointscof V, to a fixed pointais bounded¥)
then the complete, Riemannian manifold will beoapact space

2. If the set of distancéd(a, ¥ is not bounded then the complete manif@ldwill be
non-compact. One further says that it admitdoanain at infinity:i.e., given an
arbitrarily larger, there exisk in V,, such that:

d(a, r) >r.

We shall consider each of these classes in turn.

() It results naturally from the triangle inequalityattthe distances between all pairs of point¥,of
will then be bounded.
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76. — Green’s formula. -In this section and the following one, we shall make¢hat
very least, the following differentiability hypotheses ohe Riemannian manifold
envisioned:

a) V, is a differentiable manifold of clasg® and the second derivatives of the
admissible coordinate changes are piecewise twicercmnisly differentiable.
b) The metric orv,: o
ds = g; dX dx (,j=1,2, ...n)

is positive-definite, and the componegisof the fundamental tensor will be functions of
classC' in admissible coordinates; the first derivatives Wl piecewis€™.

A scalar functiorU is calledregularin a domain if it is of clas€® in this domain and
its first derivatives are piecewis®’. If U andV are two such functions then one will
have:

div(U gradv) =¢';(UoV)=Ud O 0V+g'oua,Vv,

in the domain envisioned; namely, if we denote the Lapta@n the Riemannian
manifold V, by A:
div (U gradV) =U AV + gradU [gradV.

If I is ann-dimensional differentiable chain in the regularity damaf U andV,
andol" its boundary then by an application of the generalize#eS formula, one will
get:

(76-1) LFU gradVv ndo :jr UAV + gradJOgray 3,

in whichdr denotes the volume element\6f do denotes the area elementodbn andn
denotes the unit normal vectordlo, with the corresponding orientation. If we take
U then we will immediately deduce the uniquenessrg@ for solutions of the Dirichlet
problem forAU = 0 from (76-1).

Upon changing the role &f andV in (76-1) and subtracting both sides we will get
the Green formula:

(76-2) [, Ugradv -V grads ndo =] UAV-\AU X,

77.—- Case for whichV, is compact and orientable— The desired global theorem is
immediate in the case where the Riemannian mani@igisioned is a compact,
orientable manifold. Let) be a regular function ow, that is a solution of:

(77-1) AU =f(x),

in which f is a continuous function on,With values that are positive or zerdJpon
integrating (77-1) over the fundamental cyclé/afone will first have:
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jv f(x)dr:jVAu dr=0

and, as a resulf, may only be identically zero. If we apply formuld6{l) to the
fundamental cycle d¥,, with V = U then we get:

jv [UAV + (gradU ¥ ]dr = 0

namely:
IV (gradU Ydr = C.

One deduces from this that grdc 0, and that) is constant oW,. We then state:

THEOREM. — Any function U that is regular on a compact, orientable, Riemannian
manifold \4 and is a solution of:
AU =1(x)

in which {x) is a continuous function whose values are positive or zero, reduces to a
constant on Yidentically.

Ultimately, we shall drop the orientability condition

78. —A theorem of E. Hopf (). — Let E, be the real properly Euclidian space of
dimensionn, and letD be ann-dimensional open set &, that is arbitrarily large, but
bounded. Suppose that we are given an operator of eliypgconD:

(78-1) L(U)=g'0,u +h U

in which theg’ and theh' are continuous functions @ and the quadratic forgl ; 4; is
positive definite. We may establish the following theare

THEOREM. —If U is a function of class<»n Dsuch that_(U) = 0, and there exists
a point ain the interior of D such that (1) < U(a) for any x of D then the function U is
constant in D.

We reason by absurdity and assume that that theits exikast one poing in D for
whichU(xo) <U(a). We set:
U(a) =M.

In order to reach a contradiction, we first propasednstruct a closed bdl and a
functionV on this ball such thdt(V) is strictly positive orB and attains its maximum on
B at an interior point oB.

() For the proof of this theorem, see also K. YAN@ & BOCHNERCurvature and Betti Numbers
Ann. of Math. Studies, pp. 26.
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a) To that effect, observe that if one starts whité pointx, as a center(xy) < M] and
traces a spher@ of radiusr then it results from the continuity of that for a sufficiently
smallr one hadJ(x) < M on the closed ball that is defined 8y On the contrary, for a

certain valuero of r there will exist at least one poirt on § for which U(x) = M,
although forx interior to S, , one will haveU(x) <M.

Trace out a sphef®of centerO and radiudk that is tangent t&, atx, and interior to
S, n D. One therefore had(x) <M for anyx on the closed ball that is defined 8y

except at the point; for whichU(x;) = M.

Finally, consider a sphee with centerx; and a radius that is sufficiently small that
O is exterior to it. The surface &dividesZ into two “caps.” We denote the cap —
including its boundary — that corresponds to the interio® b¥ Ci, and the cap — not
including its boundary — that corresponds to the exteri&lyfC.. There will then exist
a numbers > 0 such that:

(78-1) UX)<sM-¢ onGC
whereas one has only:
(78-2) Ux)<M onCe.

Once the spherg@has been so chosen, we denote the closed balt tteftrnies byB.
Having said this, adopt the centrof S to be the origin of a system of ordinary
orthogonal coordinates)( and consider the function:

(78-3) W= g — g™
in which a is a positive constant, and:

r?=0x =3 (%)

One then has:

oW =-2a em x oW = 4a’e Xx-a émzéj '

One deduces from this that:
(78-4) L(W) =€ 2a[2a ¢ x%- §J - hA.

Since O is exterior toB, g’ x; X will be strictly positive onB. If we choose a
sufficiently large quantity for then we may then suppose that:

L(W) >0 onB.

On the other hand, one Ha#x) < 0 onC,, whereadM(x;) = 0.
Finally, we take our functio¥ to be the function:
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(78-5) V=U+dW,

in which dis a positive number that is sufficiently small toke&(x) <M onC;, which
is possible from (78-1). One will thus have:

V(X) <M onG;, V(X) <M onGCe,
therefore:
V(X) <M onz.
Now:
V(Xl) =M.

Therefore, in the closed bdal, the functionV will certainly attain its maximum at an
interior point ¢.
On the other hand, since:
L(U) =0, L(W)>0
on B, one will have:
(78-6) L(V)>0 onB.

b) We shall now show that it is possible for a fumety such that_ (V) > 0 onB to
attain its maximum oB at an interior point. If this is the case then &\ will be zerol

at this point&. We adopt this point to be the origin of a new cootemaystemx) and
developV with the aid of Taylor’s formula. One obtains:

V() = V(&) +3XX[(0,V), + &X)]
in which £ » 0 with thex. Denote the distancg by p and se = p A'. One will thus
have o
AALOV),+4<0
at & It results from this that for any system of quantitles
@,V). A A<0.
As a result, since thg' are the coefficients of a positive definite form:

¢ 03V]=0.
Now, L(V) reduces to: )
L(V) =¢’ aijv

at ¢, and it will be strictly positive, by construction.
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79. — Geodesically-normal coordinates. -In the rest of this section, we shall
consider a differentiable manifolt,, of class € that is given a positive-definite,
Riemannian metriof class . One knows that one may associate a positive number
() to every poing of V, such that for any for whichd(x, 8@ < p(a) there will exist one
and only one geodesic arc of lenglfa, ¥ that joinsa to x. The numbep(a) may be
chosen in such a way that it defines a continuous functiia.

Therefore, the restriction @f to the open Euclidian ball of radiyéa) in T, will be a
bijective map of that ball onto the neighborhod@, ¥ < o(a) of the pointainV,. The
geodesic normal coordinates of a podmtf this neighborhood will then be defined by the
components of the vector such thay = X, relative to a given frame with origia In
other words, ifr denotes the distanaia, ¥, and @') denotes th& components of the
unit vector that is tangent atto the geodesic arc in question that joan® x then the
geodesic normal coordinates»oét the origina will be the numbers:

y =6'r.

The determination ofyy and its geodesic normal coordinates is related to the
integration of the differential system for the geodesiWe write this system in the form:

du o ax
(79-1) W:—ij u'ue, gl (gju' U = 1).

We must integrate (79-1) for the following initial comatits forr = O:
(79-2) Q(i)r=0 = (Xi)a ) (Ui)rzo =4,

and concern ourselves with the dependency of the solution bpa®'.t Ford(a, ¥ <
r(a), it results from classical theorems on differensigdtems that, under the hypotheses
we made, the system (79-1) will admits a solutxdn 8’) that is twice-continuously
differentiable with respect toand@'. As a result, the) will be functions of the normal
coordinatesy() of classC?.

In other words, defines a differentiable homeomorphism of cl&8sf the open
Euclidian ball of radiugxa) onto the neighborhoad{a, ¥ < o(a) of V,.

80. —Geometric considerations. -Suppose that we have adopted geodesic normal
coordinates with origina, and that ford(a, ¥ <p(@) we refer the tensors to these
coordinates. In particular, leg;jx be the components of the fundamental tensgy atd
letd.r be the derivatives af = d(a, ¥ with respect to the normal coordinatesxofFrom

sec.79, the @;)x are functions of clas€" of these normal coordinates. On the other
hand, one knows' that:

9. = (Gi)a 8 = (Gi)x&'

() For example, see A. LICHNEROWICZ, Bull. Soc. Matharfrze,72 (1944), 146-150.
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in such a way that th@ = d,r will be the covariant components of the unit vestdat is

tangent ak to the geodesic arc that joiado x and has the same sense as that arc. The
geodesics that issue fromwill be orthogonal trajectories of the geodesic spb&i(a)
with centera and radius < p(a), andv will therefore be the unit normal vector$da) at
X that is oriented towards the exterior. The systéapberess(a) and geodesic arcs that
issue froma will be homeomorphic to the corresponding systemowmicentric Euclidian
spheres i, with the same radii.

Finally, if d denotes the area elementSqf) one has:

_ds
im = = da(0),

in whichdw(0) is the area element of the unit Euclidian sph¥&ve. may set:

(80-1) d= = r"daw(r).

81. —Theorems on maxima.— a) Consider a functiotd of classC? on a local
coordinate domaib in V, that has the property that the quantity:

(81-1) L(U) =AU +l'0U ,

in which AU is the Laplacian of the function, alids a continuous vector field, will be
either positive or zero oD. If U attains its maximum iD at an interior poinb then we
may considet to be a function of the local normal coordinates witigin a and apply
the theorem of Hopf (sed8) to that function. The functioty is then necessarily
constant irD.

In particular, we may use a neighborhad{d, ¥ < p(a), which is represented by
means of the normal coordinates of origirto be the local coordinate domdn Since
the homeomorphism of this neighborhood onto the open dtacliball inT, of radius
o(a) has clas€?, U will appear to be a function of clag’ of the normal coordinates.
Moreover, in normal coordinates:

AU =g¢g'9,U-¢ I} o.U

admitsg’ coefficients of clas€" and continuous coefficients = - g’ . If U attains its

maximum at an interior point of the domaifa, ¥ < p(a) then we may apply the theorem
of Hopf, and the functiotd will necessarily be constant afg, X < o(a).

b) Now letU be a function of clasg? onV, such that one hagU) = 0 onV,, andL(U)
actually attains its maximum ow, at a pointa of that manifold. We propose to show
thatU is constant on the entire manifolehich is assumed to be complete.



13C The relativistic theory of gravitation and electromaggmet

Indeed, letxy be an arbitrary point d¥,, and letR be a number that is greater than
d(a, ). The set of points such thatl(a, ¥ < Ris a compactur@g(a). The continuous
function p(xX) admits a minimunp # 0 on this compactum. Leh be a fixed positive
number that is less tham.

The pointxg may be joined t@ by a patH of finite lengthL (for example, a geodesic
arc). Since the functiod attains its maximum &, it will be constant irfC,(a). Letq be
an integer such thdt < g, and divide the art into g intervals of equal length with
subdivision points, %, Xo, ..., X¢-1, Xo. One will then havel(a, %) < . As a resultlU
attains its maximum at; in C,(x1); hence,U is constant in ¢Ixi), and, as a result, in
Cu(a) U Cy(x1), and so on. The functids is finally constant in:

Cu(@) U Cyx1) U ... O Culxo),
and one has:

THEOREM - If a bounded function U of class?’®n a complete Riemannian
manifold is such that(U) is positive or zero and attains its maximum at a point a,of V
thenit will be constant on V.

82. —Behavior of the function U at infinity. —a) Suppose that the complete,
Riemannian manifold/, admits a domain at infinity, and consider a functibof class
C? onV, such that.(U) = 0. We say that uniformly tends to a constakin the domain
at infinity of V, ; i.e., that ifa denotes a given point then one may associate any gasitiv
with a numbeR that depends only upon e and has the property that:

da, ¥ =R
implies that:
|lUKX) -k| <&

As a result, eithelJ(x) = k on V,, or U(x) takes various values &fonV,. For
example, suppose that there existgg@such that:

U(xo) > k.

(One likewise treats the contrary hypothesis by reagamin-U).
Take:
£<U(X) —k

and letR be the associated positive number. dar ¥ =R, one has:
U(X) <k + €< U(x) .
Consider the domai@r(a) that is defined byl(a, ¥ <R. It containsg in its interior.

The maximum ofJ on Cg(a) will therefore be attained at an interior pdmtand one will
have:
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U(x) < U(b), ford(a, ¥ <R,
U(X) < U(X) < U(b), ford(a, ¥ =R

U therefore attains its maximum &f at the pointb. As a result, since the functidh
satisfies the hypotheses of the preceding theorem, itamigybe constant oW,. One
has:

THEOREM —If a function U of class €on a complete Riemannian manifold is such
that L(U) = 0and U uniformly tends to a constaktn the domain at infinity of Mthen it
will be constant on V.

b) Consider a functiok) onV, of classC? such thal_(U) is positive or zero. Suppose
furthermore thatJ uniformly tends to a constaktin the domain at infinity, but with
values that are greater than or equa.tol'here exists aR such that fod(a, ¥ = Rone
has:

U(x) = k.

Then, by the preceding argument, it results thatill attain its maximum at a poirit of
Vih. As aresult:

THEOREM - If a function U of class £on a complete Riemannian manifold is such
that L(U) = 0 and it uniformly tends to a constanbl¢ values that are greater than or
equal to k in the domain at infinity of, Yhen it will be constant on,V

83. —The stationary spacetimes that are envisioned- We return to the stationary
spacetime¥, in the sense that was defined in .

We say thasuch a spacetime is spatially complete, or, more briefly, coenpléte
associated Riemannian manifold With the metriqds)? is complete.

In what follows, we shall envision stationary space8rthat satisfy the postulates of
relativity, and, in particular, the Einstein equationsthe various cases. We shall put
ourselves in a domaiB in which the metric satisfies the Einstein equationsa given
schema. Of course, under these conditions, the manifdlgor Ws will satisfy the
differentiability hypotheses that were made in . However, due to the Einstein
equations themselves, there is more.

Consider the potentiafg,z in a neighborhood of a poirtof V4, and a hypersurfac®
which we represent locally in adapted coordinatesxby: 0. From isometry, the
derivatives of the potentialg,s on S may present discontinuities, and, as a result, the
values of these potentials &will be of classC®. On the other hand, sin&ds generated
by timelines, it will be non-characteristic. As su#, all of the second derivatives of the
potentials gos will b continuous upon traversing, with the exception of the
derivatives),g,,and their possible discontinuities are obviously constaloing a
timeline. It is then possible to perform a local chaofjadapted coordinates on one side
of S that annuls the discontinuities of these derivativeSince the result extends
immediately to third derivatives, one will obtain locatlapted coordinates in a
neighborhood ok such that the correspondiggg are of clas€®.
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For example, suppose, as we shall in the followingiaestthat we are concerned
with everywhere exterior stationary spacetimes. Wktlkerefore see that it is possible
to assume that spacetime is homeomorphic of cBspiecewiseC?) to a manifoldV, of
classC* that is the topological product of\a of classC* with the real lindR , with V.
being endowed with a Riemannian metric of cl&ds This is what we shall assume in
what follows.

II. - STATIC, LEVI-CIVITA SPACETIMES

84. - Notion of a static spacetime. -€onsider a stationary spacetime such that the
spatial tensoH; is identically zero. We say that such a spacetinstatsc in the Levi-
Civita sense. We recall that a space for wikigh= O enjoys the following property: U
is a neighborhood ofsthen the corresponding timelines will be orthogona¢ttaries to
the local spatial sections over. One may therefore find a local, adapted coordinate
system such that in the domain\afthat projects ontt, ds’ takes the form:

(84-1) ds’ = &(dx)? +g; dx'dx (9, =)

in which theg; and ¢ depend only upon the variabled)( This is the property that Levi-

Civita originally used in order to define static spacetimes.
In the case of a static spacetime equations (69-5) hak&rhple form:

Ry = R ~30,(0,9),
(84-2) R, =0,
Roo = —%AE

85. —Complete, static, exterior spacetimes- Consider a complete, static spacetime
that everywhere satisfies the Einstein equations fer ekterior case. We assume,
moreover, that i3 admits a domain at infinity thefiwill uniformly tends to a constant
k£ 0. It will then be easy to apply the theorems thaevestablished in the first part of
this chapter td/3 since, from the last equation (84-2), the functfomill satisfy:

Aé=0.
If V3 is compact thed reduces to a constant identically.Vifis not compact then we
are dealing with the conditions of the first theorens@¢.82, and £ again reduces to the

constank identically. Therefore,£ = const. in either case, and, from (84-2), the Einstein
equations of the exterior case reduce to the equations:

R.=0.
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Therefore, the three-dimensional Riemannian manNglddmits a Ricci tensor that
is zero. One knows that, for this dimension, sineedirvature tensor is equivalent to
the Ricci tensor, the vanishing of the Ricci tensor wiiply a locally-Euclidian
character. Thus, in any domain \éf that projects onto the neighborhoddof V3 the
metric ofV, may be written:

ds® = IE (dX°)? +(dy)?

in which (d9? is a locally-Euclidian metric. It results from thisat V, is locally-
Euclidian. We state the:

THEOREM - Any everywhere regular static exterior spacetime Wgltompact is
necessarily locally-Euclidian.  Any complete, everywhere-reguldatic, exterior
spacetime for whicl§ uniformly tends td in the domain at infinity is necessarily locally-
Euclidian (%).

If the manifoldV; is complete and, in addition, simply-connected thea lomows,
moreover, that it will be Euclidian.

Note that in order to establish the preceding theorerhave used only the quotient
spaceVs, and not the existence of global spatial sectids This theorem will then be
true under hypotheses that are more general than thehategere stated in Chapter VII.
For example, it will suffice to assume that thediimes, which are trajectories of the
isometry group, define a convenient fibration\an If two points ofV, are considered to
be equivalent when they are located on the same tien#ien the quotient &4, by that
equivalence relation will be a spavg that enjoys the properties that were studied in
Chapter VII. The preceding theorem is therefore validleunthe more general
hypotheses.

[ll. - EXTERIOR, STATIONARY SPACETIMES

86. — The case in whichVs is compact.— In the sequel, we shall envision only
complete, exterior, stationary spacetimes. Fasppose thaVs is compact. From (69-
5), the Einstein equation will take the form:

(86-1) —AE:—%SHZ
with:

H2 = % g"‘ gj' Hij Hu .

Since the functiod® H? is positive or zero ol the functioné will satisfy ~A& < 0

onVs. Sincef# 0, one will deduce that the quantit§ = 0 onVs, i.e.:
Hij =0.

() See CH. RACINEThése, Pari$1934).
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Such an exterior spacetime is therefore necessstaljc in the Levi-Civita sense,
and, as a result, locally-Euclidian. We state:

THEOREM. — Any everywhere regular stationary exterior spacetime with V
compact is necessarily locally Euclidian.

87. —Case in whichVs is non-compact. First theorem— Now consider a complete,
stationary, exterior spacetime with a spagehat admits a domain at infinity. Suppose
that £ uniformly tends to 1 in the domain at infinity @ by values that are less than or
equal to 1.

The Einstein equation (86-1) may be written:

—A(—g‘):%HZ.

One sees that the functioné-satisfies the hypotheses of the second theoreseof
82. As a result, one will havé = 1, H* = 0, onVs, and we will again come back to a
static spacetime. We may state:

THEOREM - Any everywhere-regular, stationary, exterior spanet with a
complete Yfor which  uniformly tends td in the domain at infinity of Ms necessarily
locally-Euclidian.

In the two preceding theorems, the argument ire®lonly the manifold/s, and the
same remark that was made about static spacetimidsewalid; the theorems are true
under the more general hypothesis Wais fibered by timelines.

88. —Asymptotically-Euclidian behavior. — Physicists frequently use another sort
of hypothesis in the non-compact case that is ketys presented clearly, but which we
shall try to schematize mathematically in a correahner. Heral(xo, X1) will denote the
distance between two points of the Riemannian ro&his .

Consider a three-dimensional Euclidian sp@gethat admits a negative-definite

metric ds . We refer&s to a privileged coordinate systey) for which:

ds = g;dy dy,
in which:
g =0 fori #j, g =-1.

We say thav/, admits an asymptotically-Euclidian behavior\&when, for a point
a of W5 and a sufficiently large numbg&
1. There exists a homeomorphibrof classC? in the domaird(a, X > R of W; onto

a domain of&; that is homeomorphic and complementary to a cldsdidof &5 . (This



The field equations of Einstein’s theory 13t

homeomorphisnt will thus define a Euclidian space structure on the domavisioned
in Ws.)

2. If (y?) is the privileged coordinate systemdnthat is defined by the/j and the
variablex’ in the domain o¥, that corresponds to the domaif@, ¥ > R of W5 then we
will have:

M M
(88-1) | 9ap — Oupl <T 10,9,5 |<F [r =d(a, ¥]

in that domain, in whichM is a fixed positive number and the potentials and their
derivatives are expressed relative to the privileged codedirgd) andd,s= 0 fora # g,
O = +1.

It is clear that the poira plays only an auxiliary role here.

In the rest of this section, we shall envision onlyredats of\W;. Letx, be a point of

W5 such thato = d(a, ¥ is greater thaR, yo is its image inf; by h, andg is the ordinary
distance fronyy to the origin O irfs:

2 =2 (%)

We propose to compare the numbayandry.
LetL be a geodesic arc that joiaso xo and has a length. Let L' be the connected

arca of L for all pointsx such thatd(a, ¥ = R. If r, denotes its length then we will
havero =R+ r; . Inthe domaird(a, ¥ >R of Ws , we will have, from (88-1):

§=g +- = d@, )

and, as a result:
d_32 = (ds2 +%mj dy d)/,

in which themy; are bounded in absolute value. By integration ﬁ@ we will obtain:

— 1
88-2 _|ds|< | | 1I+=
(88-2) J1ds] \/ | (e

m dy dy ‘ |ds|.

Now, under our hypotheses there exists a fixedipesumberk; such that:

‘—mj dydy <K;.

(d9*

From this, it results that:
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ds < =
[1dsl= K[ _lds|= K ¢,
in whichK; denotes a fixed positive number. Now, we obviously have:
o< [ |ds|+Ks,
X, %

in whichKs is a fixed positive number. Therefore, there exidtseal positive numbeK
such that for any, for whichd(a, %) > R one will have:

(88-3) Po <Kro.

89. —The study of the flux vectorp. — Let%, be a sphere i3 with centerO and
radiusp, and letS_ be the set of points &¥5 such thati(a, ¥ =ro >R We choos@to
be sufficiently large thak, contains the image d§_ by h, and denote the image of the

spherez, in Wz by S,.
Consider the compactuB) of Ws that is defined by:

a) The pointsx for whichd(a, X <ro;
b) The pointsx for which d(a, ¥ = ro whose image irks is interior to%, or on that
sphere.

The boundary oB, is S, with the outward orientation. [ denotes the vector that
was introduced in se€4 whose covariant components are:

3
pi Z? P H¥

then we shall propose to study the behavior oflthep as it crosse§, whenp — .

For the moment, let us adopt a frame that is edhmal for the metricds)? at a
pointx of W5. One has:

S
pl__ 2;¢KHK-

From the Schwarz inequality:
(p)’ < (%j PACADNCIE
k j

One deduces from this that:
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3 2
Z(pfs(%j ACADAGHE
i k i -
We introduce the positive scalars that measure thaitndgs of the tensors:

p=yIp?l, #=41¢?], H={HZ.

52
<-=¢H,
p<\/§¢

One will thus have:

and the flux op throughS, may be majorized by:
O 1 3 O
|f|ux8pp|sﬂsp pds sﬁﬂspf pHd=",

in which dz" is the area element &%, for the metric §s)>. Under our hypotheses, for

x O S, one will have:

C
FpH<

in which C; is a fixed number and = d(a, x). It results from (88-3) that there exists a
fixed numberC; such that:

&3¢ H <%.

On the other hand:

jsdeD:J’Sp {1+ o(%ﬂ & < qjsp &,

in which dZ is the Euclidean area. We will thus have:

1C C
flux, p|<—=—2C,4mp* <=,
| fluxs p| 72 02 TP p
in whichC is a fixed number. We have established that uadehypotheses:
(89-1) limflux ; p= 0.
P - 14

90. —The case in whichVs is non-compact. Second theorem: Therefore, consider
a complete, exterior, stationary spacetime that itsdmn asymptotically-Euclidian
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behavior in the domain at infinity &;. Apply the integral relation (74-5) ¥, which
is extended to a domal), for a sufficiently largep. One will get:

[I], ¢8R or =WBP%3 H2 dr ~flux . p.

Since the space is exterior, we will get:

flux.p= ig 2
sP=]lf, 5 Hdr.

Suppose that? is positive at a point ofMs. It is then positive in a certain
neighborhood of this point, and one will have:

flux.p < e
Spp - .[.[.[D 2 H dT.

Now, whenp - o, the left-hand side will go to zero, which conicasl the
preceding inequality. One will thus hav¢ - 0 onW; or V3, and the spacetime
envisioned will necessarily reduces to a statiojk&vita spacetime. We may thus state:

THEOREM — Any complete, exterior, stationary spacetime thaimis an
asymptotic-Euclidian behavior is necessarily logdtuclidian.

This theorem involves the existence of globaligbaections in an essential manner.

IV. — APPLICATION OF THE DIVERGENCE FORMULAS
TO STATIONARY UNIVERSES

91. —The matching of stationary gravitational fields.— In this last part, we shall
study certain stationary spacetimes that satighHinstein equations in different cases.

Consider a hypersurfac® (x* = 0) on a spacetime manifoltf, that carries the
Cauchy data for an exterior problem, and assuntetiieae data are such thgg,,= 0

on S while the lines irs along which onlyC varies are assumed to be time-oriented. It
results from the theorems of Mme. Fourés that tmeesponding solution of the exterior
Cauchy problem can only be locally stationary. &e then led to think that an exterior
gravitational field that extends a stationary fieldl itself be stationary. We shall
assume this, from now on.

Consider a stationary field — interior or exteroand an exterior, stationary field that
agrees the preceding one 8n One easily establishes that 3)(is an adapted, local
coordinate system relative to the first field (wW@lbeing defined by = 0) then one may
obtain an adapted, local coordinate system relébithe second field that satisfies:
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(91-1) x' =% +(X—;)3[¢“>( ) + €] (A=0,2 3)

in which & — 0 whenx' - 0. In particular, the spatial sections can bemssl to have
a second-order contact & One may say that (91-1) translates into the innagcof the
isometries ors

92. —The sign of R} for a spatially-oriented Ws . — Some of the results that follow

involve the sign of theR? component of the Ricci tensor for an interior stadiry ds’,

anda spatial sectios that is spatially oriented.For such aVs, one hagyyo > 0 along
with g°° > 0, and the two quadratic forms with the coefits:

0i and d’,

respectively, are both negative-definite.
Having said this, we adopt the perfect fluid-alestagnetic field schema for the
energy-momentum tensor envisioned. From (13-3),has:

R(()) :)((To0 _%T)
in which the energy tensdiyz is given by:

Tag=(r+ P) UgUg—P Qup t+ Top;

I,p corresponds to the electromagnetic fiElgg. One obviously ha$ = p—3p. As a
result:

R =xl(p+ Py - p-3(p-3 p+1]
namely:

R =Xpo(wl-3)+ o wd+)+7]).

Let us study the sign of the various terms in bets First, sincel, is unitary we
have:
ot -3 =g*(u)® + g” uoui — [g"(uo)® + 20” woui + g’ wuy]
namely:
U’ ~4=1[ &(w)’ - g’ uu] >0,

under the hypotheses that were made. The saméeniitliea fortiori for uo U° +1. We
now study the sign of:

0 — A 0A1
7, —%FA/IF /I—FO/]F .

If we single out the index 0 and the Latin inditdesn we will get:
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1(Fy F' + 2Fo F%) —Fo F,

7o

namely:

0 =1F Fl- 1Fo FO,

If we express the electromagnetic field in termstsfdovariant components (for
example) then we have:

7o =4(g"d' Fij Fu+ 299" Fij Fio) — £ (979" Foi Foj + g 9" Fo Fix + g o° Foi ).
One deduces from this that:
(92-2) 1o =49"g' FjFu—£(9°¢" - ¢” ¢”) Fai Fo,

which is, moreoverpositiveunder the hypotheses that were made. One see&}hat

strictly positivefor a spatially oriented\s, and that this result will persist in the case of
the pure matter, perfect fluid, and pure electromagnetid §ichemas. In what follows,
we shall confine ourselves to case for whighis positive.

Under these conditions, equations (71-6), which may béewrit
(92-3) divh =-¢éR,

gives a good extension dhe classical Gauss theoreto the theory of stationary
spacetimes.

93. —Singularities of the gravitational field interior to and exterior to masses—
Consider a world-tube that is bounded by a hypersur&ciled with a stationary
interior gravitational field, and generated by timelinéEhis field induces a stationary
gravitational field in a neighborhood & that satisfies the Einstein equations of the
exterior case and agrees with themSonWe propose to show that this latter field cannot
be assumed to be regular in the interioB.of

Therefore, suppose that this exterior field is reginldine interior ofS. LetW, be an
arbitrary spatial section relative to the interiotdighat is spatially oriented; it determines
a two-dimensional domaiB, onS. One may construct a hypersurfatg that passes

throughD, and has a second-order contact with on D, and is transversal to the

timelines of the exterior field. We may také® to be a spatial section for the exterior

field in Sand adopt local coordinates in a neighborhoo8 thfat make this field satisfy
(91-1).

The vectors that relate to the two fields will be identical Ba, since they depend
upon only the potentials and their first derivatives. Ugapplying formula (92-3) to the
interior field, one will get:

fluxph=~-[[] R0 dr <o.
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This flux is strictly negative, whereas, when the sdovenula is applied to the
exterior field, we get:

flux, h=0.
We state the following:

THEOREM -If one is given a stationary, interior field bounded by a hypersurface S
that is generated by the timelines then any exterior, stationary gtiawial field that
agrees with it on S may be regularly extended to the entire interi®r

94. — Stationary universe with a compact, orientable space— Consider a
stationary spacetim&/, that admits a compact, orientable spatial secténthat is
spatially-oriented. We suppose that this spacetime dedivesrld model,i.e., that its
metric satisfies the Einstein equations for the integiied exterior cases with agreement
on hypersurface$ that are generated by timelines. We shall show gsheh a world
model may not exist in the actual presence of enegsilalitions.

One deduces from the relation:

divh = =¢R’,
by integrating ove¥\s that:

jjngng dr =0,

so &R will be strictly positive in certain domains @6 and zero on their complements.
We have the:

THEOREM - There cannot exist a stationary world model that has a compact,
orientable, spatial section that is spatially-oriented.

95. —Stationary universe with a non-compact space- Now consider a stationary
world model that admits a complete spatial sectdgrand has asymptotically-Euclidean
behavior in the domain at infinity &4, with the energetic distributions assumed to be at
a finite distance and occupy domaibgsonWs.

Apply the relation (74-5) t®, (with the notation of sec. 89) for a sufficientlydar
p. One obtains:

I, €0 R er=[]], & He ot p

namely, sinceR, is null outside oDy:

> I, ¢oR dr:jijp%2 H? dr ~flux o p
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Whenp - o, the flux ofp goes to zero. As a result, the first integral onrtbbt-
hand side will converge, and one will have:

(95-1) J'J'J'%%Zszr:Zu: qufﬂ%dr.

One may deduce an important consequence fromréfasion. Suppose that the
matter is schematized in the form of a perfectdfla@and suppose that the streamlines of
the various masses coincide with the timelinese @il then have:

u'=0, R =S =xl(e+p) Uuw-pg)]=0

in the adapted coordinates that are being usedframd(95-1), one will deduce that* =
0 onWs. The world-model will necessarily be a staticcgiame in the Levi-Civita sense.
We then state the following:

THEOREM - Any stationary word-model with asymptotic-Euclidibehavior for
which the matter streamlines (which are assumebfetschematized in the form of a
perfect fluid) coincide with the timelines is ewghgre static in the Levi-Civita sense.

In particular, this theorem permits us to reduee postulates- which one assumes
are independent — that lead to the constructidgheochwarzschild world-model.
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