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Since they first appeared, the classical relativistic theories have profoundly modified 
our understanding of the different physical fields and our notion of field itself. 
 The special theory of relativity was based on electromagnetism.  In the general 
geometric case of an improperly Euclidian, four-dimensional, Minkowski space the 
concept of an electromagnetic field that is represented by an antisymmetric tensor Fλµ 
appeared, thanks to a detailed analysis of Maxwell’s equations.  We know the 
fundamental example of the unification of fields:  The electric and magnetic field vectors, 
which were represented in the old spatial framework by two vectors that varied in time, 
appear – depending on the observer - to be two aspects of one and the same physical 
field, which is represented by the tensor field Fλµ in the Minkowski framework.  One 
might almost say that this example and this success defined the dream of physicists for 
the last fifty years. 
 By contrast, if dynamics and gravitation have acquired a new form in special 
relativity, then this new form does not contribute to any progress in the explanation of the 
phenomenon of gravitation.  The gravitational field always appears as a singular 
phenomenon that is superposed upon, but foreign to, the Euclidian structure of 
Minkowski space and which does not interfere with the electromagnetic field. 
 On the contrary, the classical general theory of relativity is based on the gravitational 
field.  This field is represented with the aid of a symmetric tensor gλµ − viz., the 
gravitational potential tensor – on the spacetime manifold, and it thus provides this 
manifold with a fundamental Riemannian metric of the hyperbolic normal type.  
Dynamics, in the classical sense, disappears completely, and the gravitational phenomena 
acquire a subtle and satisfactory explanation that is based upon the consideration of 
regular global metrics, which we sought to detail in the first part of this course. 
 In the framework of general relativity, the electromagnetic field continues to be 
represented by an antisymmetric tensor field, and one is led to adopt both the established 
concepts of general relativity and equations that are deduced by reasonable inductions 
from the ones of special relativity for electromagnetism.  Without appealing to the 
concept of regularity, one may say that the fundamental equations of electromagnetism in 
general relativity are the following ones: 
 
 a)  The Maxwell-Lorentz equations that govern the electromagnetic field Fλµ ; 
however, one will note that only one of the equations involves the spacetime metric.  On 
the other hand, the electric current appears as a notion that is foreign to that of field. 
 
 b)  The Einstein equations, in which the Einstein tensor Sλµ is found to be equal to the 
energy-momentum tensor Tλµ up to a factor.  The electromagnetic field intervenes in the 
right-hand side of this equation by way of an expression that is prudently induced by 
starting with special relativity, although it not deduced from the axioms of general 
relativity, and remains largely foreign. 
 
 There is interference between the gravitational field and the electromagnetic field.  
On the one hand, as we have seen, the propagation laws of the two fields are identical. 
 If such a theory of electromagnetism is mostly an advance on the former state then 
one will see that what remains in it is unsatisfactory to the spirit of our theory and merits 
the name that we give to it of the “provisional” theory of electromagnetism.  To say that 
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the difficulties undoubtedly lead to quantum mechanics and that it is not convenient to 
pursue them further in the classical context is an impotent attitude to impose on relativity. 
 

* 
 

 Very early on, theoreticians were therefore led to attempt to elaborate a unitary theory 
that would realize the unification of the gravitational and electromagnetic field into a 
single hyperfield whose data are equivalent to those of some geometrical structure for the 
universe.  To a certain degree, the “mesonic” field has been combined with the problem 
in recent years. 
 Since 1919, which was the year when Hermann Weyl developed the first attempt at 
such a theory, the efforts have multiplied, but, one after the other, they have revealed 
aspects that are not strictly satisfactory to either viewpoint.  The first – rather maladroit – 
sketches have nevertheless great importance in the development of contemporary 
differential geometry in general.  Without a doubt, these are the efforts of Hermann Weyl 
and Eddington (1), which led Élie Cartan to construct his general concept of a space with 
a connection in a Lie group, starting in 1924.  The geometrical concepts of Élie Cartan 
that were recently restated and developed in a global context by Ehresmann, Chern, 
André Weil, and myself actually constitute the general case of differential geometry. 
 By contrast, the latter attempts becoming much more interesting and refined from the 
physical viewpoint, and the actual discussion about the interpretation in quantum 
mechanics have made them increasingly important. 
 Grosso modo, one may classify the different theories that have been proposed into 
two broad categories: 
 
 1.  The five-dimensional theories, which are also sometimes called projective theories, 
somewhat improperly.  It was Kaluza (2), who presented the first inkling of such a theory 
in 1921, which was a theory that was reprised in 1926 by O. Klein (3).  As we confirm, 
this theory, in the form of O. Klein, leads only to an explanation for the provisional 
theory of electromagnetism, and suggests no new equations.  Here, the formalism is 
essentially one that is appropriate to a five-dimensional Riemannian manifold that admits 
a one-parameter group of isometries. 
 The formalism that is called projective was introduced by Veblen (4) in 1933, 
developed by Pauli (5) and Schouten, and used again quite recently by Jordan (6) in 1947, 
and leads to essentially equivalent results.  The only differences are in their choices of 
mathematical representation.  One may account for that by stating that identical field 
equations have been simultaneously elaborated by Jordan and his school in the projective 
formalism by Yves Thiry and myself in the formalism of a five-dimensional Riemannian 
manifold. 
 
                                                
 (1) H. WEYL, Raum, Zeit, Materie, Eddington. 
 (2) KALUZA, “Zum  Unitäts problem der Physik,” Sitzungsber. Preuss. Akad. Wiss., (1921), 966. 
 (3) O, KLEIN, Z. Physik, 73  (1926), . 895. 
 (4) O. VEBLEN, Projective Relativitäts theorie, Berlin, Springer (1933). 
 (5) W. PAULI, Ann. Physik, 18 (1933), 305. 
 (6) P. JORDAN, Ann. Physik,(1947), 219; P. JORDAN-MULLER, Z. Naturforschg., 2a (1947), 1.  See 
also I. BERG. 
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 2.  The theories that one may call theories with affine connection.  It is appropriate to 
include the attempts of Weyl and Eddington, the numerous attempts of Einstein in 
collaboration with various students of his, and finally those of Schrödinger, as well as 
Einstein’s last theory, which produced restricted results (1). 
 In the second part of this course, we will study an example of each category, and 
naturally we will choose theories that are recent and to-the-point for examples.  For the 
first category, this will be the theory that I have proposed to call the Jordan-Thiry theory 
(2).  We will study it in the formalism of moving frames, as I have suggested here, and 
which seems to me, at least for the projective formalism, adapted to understanding the 
profound geometrical and physical realities of the theory.  For the second category, this 
will be the Einstein-Schrödinger theory, in a form that is appropriate to the one they 
actually used. 
 We are forced to point out advantages and disadvantages for each theory.  Grosso 
modo, one may say that the first category leads to elegant theories in which the physical 
interpretation is clear, but which can be criticized for being insufficiently unitary.  On the 
contrary, the second category amounts to a theory that seems to be as unitary as one may 
demand; however, this unitary character itself complicates the comparison with the 
theory of electromagnetism in classical general relativity, i.e., it complicates the correct 
physical interpretation of the geometric quantities that were introduced. 
 

* 
 

 As far as this mysterious unitary character I spoke of is concerned, I would like to 
make several remarks. 
 First of all, as Thiry observed, it is less ambiguous to employ the epithet of “unitary” 
in a negative proposition than in an affirmative one.  What one intends by saying that the 
provisional theory of electromagnetism in classical general relativity is not unitary is 
sufficiently clear; the gravitational field is defined by the geometric structure defined for 
the universe, and the electromagnetic field intervenes only by making a sufficiently 
arbitrary modification of the purely gravitational theory, thanks to a contribution from the 
energy-momentum tensor. 
 In the positive sense, we may hope to realize in the state of our conceptions a physical 
fusion that is just as complete as the one that is realized by the electric and magnetic 
fields.  In order to do this, it is possible to transmute the one into the other in a simple 
manner by a suitable choice.  As far as the gravitational and electromagnetic fields are 
concerned, these things are certainly less simple. 
 
 One may agree to say that a theory is unitary in the large sense if it makes the 
gravitational and electromagnetic fields play symmetric roles in the representation of the 
fields and the formation of the equations; in particular, since the gravitational field is 
related to the geometrical structure of the universe in the concepts of general relativity, it 
is convenient to choose a structure such that the two fields arise from the same geometry. 

                                                
 (1) See the corresponding bibliography in the second part. 
 (2) BERGMANN, Ann. Math., 49 (1948), 255, which contains a grave error.  On the other hand, see: A. 
LICHNEROWICZ and Y. THIRY, C.R. Acad. Sc., 224 (1947), 529; Y. THIRY, C. R. Acad. Sc., 226 
(1948), pp. 216 and 1881, and Thèse Paris (1950). 
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 A theory will be called unitary in the strict sense in the case where the rigorous 
equations regulate a non-decomposable hyperfield, and may be divided into propagation 
equations for the gravitational field and the electromagnetic field only approximately 
when the physical conditions are such that one of the fields dominates the other.  One 
may think that only the theories of the second categories may be clearly unitary in the 
strict sense. 
 

________ 
 



 
 

 

I. – THE JORDAN-THIRY THEORY  

 
 

FIRST CHAPTER 
 

THE TRAJECTORIES OF A CHARGED PARTICLE AND 
THE INTRODUCTION OF A FIVE-DIMENSIONAL SPACE 

 
 

I.  – ELECTROMAGNETISM IN CLASSICAL GENERAL 
RELATIVITY 

 
 

 1. – The equations of electromagnetism. – We recall the equations that are satisfied 
by electromagnetism in classical general relativity.  To facilitate our ultimate 
comparisons with these equations, we suppose that the spacetime manifold V4 is referred 
to systems of local coordinates (xi) (i, any Latin index = 1, 2, 3, 4) and that the index 4 
has a temporal character.  The metric of V4 is of hyperbolic normal type and is written: 
 
(1-1) ds2 = gij dxi dxj. 
 
 If Rij is its Ricci tensor then the associated Einstein tensor will be: 
 
(1-2)     RgRS ijijij 2

1−= . 

 
 Having said this, in the presence of an electromagnetic field Fij the Einstein equations 
take the form: 
(1-2) Sij = χ Tij , 
 
in which the energy-momentum tensor Tij contains the terms that relate to the 
electromagnetic field: 
(1-4)     j

r
ir

rs
rsijij FFFFg −= 4

1τ , 

 
which are terms that come from special relativity. 
 The electromagnetic field satisfies the Maxwell-Lorentz equations: 
 
(1-5) ∇k F

ki = Ji, 
 
in which ∇k is the covariant derivative operator of the Riemannian connection, and Ji 
denotes the electric vector-current.  The second group of equations may be written: 
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(1-6)     02
1 =∂ klj

jkli Fε , 

or in the invariant form: 
(1-7)     02

1 =∇ klj
jkli Fη , 

 
and expresses the local existence of a vector-potential ϕi such that: 
 
(1-8)     ijjiijF ϕϕ ∂−∂= . 

 
 Indeed, in the sequel we will assume the existence of a global vector-potential ϕi such 
that (1-8) is satisfied.  Equations (1-3) [with (1-4)], (1-5), and (1-8) may then be 
considered to be the equations of the provisional theory of electromagnetism.  In the case 
of a “pure electromagnetic” schema Tij will reduce to τij and Ji = 0. 
 
 
 2. – The trajectories of charged particle. – In (I, sec. 33), we established that the 
motion of a charged particle, whose charge to mass ratio is: 
 

k =
m

e
 = const., 

 
in the presence of an electromagnetic field is given by the equations: 
 

(2-1)    
2

2

i k l j
i i
jl j

d x dx dx dx
k F

ds ds ds ds
+ Γ = . 

 
 From (I, sec. 56), the trajectories of our particle are time-oriented lines that realize the 
extremum of the integral: 
 

(2-2)  ∫∫ +=+= 1

0

2
11

0

)])[()(
x

x

iji
ij

x

x
duxkxxgkdss ɺɺɺ ϕϕ    








=

du

dx
x

i

iɺ , 

 
in which ϕ is the vector-potential form and u is an arbitrary parameter. 
 These equations suggest various remarks: 
 
  a)  In the purely gravitational case, the trajectories of a material particle are provided by 
the time-oriented geodesics of a Riemannian manifold.  It seems desirable to extend this 
“geodesic principle” to the context of a unitary theory and to choose a geometric structure 
such that the motion of a charged particle is closely related to the geodesics of the 
geometric structure that represents the field. 
 
  b)  One may remark that equations (1-2) say that the trajectories envisioned are the 
geodesics of the Finslerian manifold that admits the metric: 
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L(xi, xj)  = 
1
2( )i j i

ij ig x x k xϕ+ ɺ . 

 
 It may appear during the study of the geometry of such a space.  However, we know 
that there exist particles in our universe for which the ratio k takes different values.  We 
are therefore led to envision a family of Finsler spaces, which seems much less satisfying. 
 We may then demand that it is possible to interpret the preceding trajectories, which 
correspond to different values of k, by making recourse to a unique, 5-dimensional, 
Finsler space whose metric is independent of k, and the new local coordinate x0 is related 
in some way to the variable k.  That question, or an equivalent question, is actually 
encountered – in various forms – in Classical Mechanics, as in relativity.  In 1947, in 
collaboration with Thiry, I posed the corresponding general problem in the calculus of 
variations whose very simple solution assures the synthesis of well-known results.  
Without a doubt, the corresponding general mathematical procedure suggests, at best, the 
introduction of a penta-dimensional manifold. 
 
 

II. – A PROBLEM IN THE CALCULUS OF VARIATIONS  
 
 3. – Finslerian manifold. – Let Vn+1 be a differentiable manifold of class Cp+1, and 
let W2(n+1) be the fiber bundle of tangent vectors toVn+1.  A point of W2(n+1) consists of the 
combination of a point x of Vn+1 (namely, its projection onto Vn+1) and a tangent vectorxɺ  
that is tangent to Vn+1 at x.  If (xα) (α and any Greek index = 0, 1, …, n) denote a system 
of local coordinates on Vn+1 then the union of the (xα) and the components )( αxɺ  of the 
vector in the natural frame that is associated with the (xα) provide a system of local 
coordinates on W2(n+1); that space is therefore naturally endowed with the structure of a 
differentiable manifold of class Cp. 
 We give ourselves a function L with scalar values and class Cp on W2(n+1), such that if 

x remains fixed and xɺλ  is substituted forxɺ  then one will have: 
 

( , ) ( , )x x x xλ λ=ɺ ɺL L . 
 
Locally, L is therefore a function of the (xα) and the )( αxɺ  that is homogenous and of 

degree one in the (xα). 
 When this is true, we will say that the given of the function L endows W2(n+1) with a 

Finslerian structure.  A Finslerian manifold will be called regular if the function L leads 

to a regular problem in the calculus of variations on W2(n+1). 
 
 
 4. – Lie derivatives of L. – Suppose we are given a vector field ξ ≠ 0, of class Cp on 

a neighborhood of Vn+1; this field is the generator of a one-parameter “group” of local 
transformations on the manifold.  These transformations are defined in local coordinates 
by integrating the differential system: 
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(4-1)     α
α

ξ=
dt

dx
. 

 
The trajectories of the vector field ξ will be the trajectories of the group. 
 
 We give t a sufficiently small value; integrating (4-1) for the initial conditions )( 0

αx  

gives: 
(4-2)     ),( 0 txfx αββ = , 

 
and the transformation that corresponds to that value of t takes the point whose local 
coordinates are )( 0

αx  to a point x that belongs to the domain of the local coordinates that 

we envision and has local coordinates (xβ).  This transformation may be extended to 
W2(n+1) in an intrinsic manner; it will suffice to make the vector 0xɺ  at x0 correspond to the 

vector,xɺ , at x with the components: 

ρ
ρ

β
β

0
0

x
x

f
x ɺɺ

∂
∂= , 

 
since this correspondence is obviously invariant under a change of local coordinates. 
 We associate the geometric object that is defined by the scalar field L with the 

transformed object
t

L , which is, by definition: 
 

00( , ) ( , )
t

x x x x=ɺ ɺL L . 

 One will note that: 

0 0 00( , ) ( , )
t

x x x xλ λ=ɺ ɺL L . 

 
 The Lie derivative of L with respect to the field ξ at ),( 00 xx ɺ  is, by definition: 

 

0
0 0

lim

t

t
X

t→

−= L L
L . 

 

 This is easy to evaluate upon finding the principal part of 0

t

−L L ; (4-2) may be 

written: 
)( 000

ββββ εξ ++= txx    ( βε 0 → 0 when t → 0). 

 From this, one deduces: 
 

0 0 0 0 0 0 0 00( , ) ( , ) ( , ) [ ]
t

x x x x x x t x tα β β
α ρ βξ ξ η= = + ∂ + ∂ ∂ +ɺ

ɺ ɺ ɺ ɺL L L L L  (η→ 0 when t → 0). 

 
It results from this, upon suppressing the 0 indices, that: 
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(4-3)   XL = 0 0 0 0 0xα β β
α ρ βξ ξ∂ + ∂ ∂ ɺɺL L  









∂
∂=∂

∂
∂=∂ ββαα

xx
, . 

 
 If L is invariant under the transformations that are generated by ξ then we say that ξ 

is the generator of a local group of isometries of the Finslerian manifold.  In order for ξ to 
be the generator of a local isometry group, it is necessary and sufficient that XL = 0. 

 
 
 5. – Quotient manifold.  The problem. – We consider a Finslerian manifold Vn+1 
and suppose that it admits a connected one-parameter group of global isometries that 
leaves no point of Vn+1 invariant.  The trajectories of the group will be designated by z; 
Vn+1 is therefore generated by the z.  We further assume that: 
 

  a)  The z are homeomorphic to the real line R or the circle T1; 

  b) One may find a differentiable manifold Vn of class Cp+1 such that there exists a 
differentiable homeomorphism of class from the manifold Vn+1 to the topological product, 
Vn ×  z, under which z is mapped to the linear factor. 
 
 We say that the manifold Vn is the quotient manifold of Vn+1 by the equivalence 
relation that the group defines. 
 Consider a system of local coordinates (xi) (i, any Latin index = 1, 2, …, n).  We may 
define local coordinates (xα) in Vn+1 in the following manner: The given of (xi) determines 
a trajectory z.  In order to determine a point on that trajectory, we choose the manifold x0 
= const. to which it belongs, since these manifolds will be the manifolds homeomorphic 
to Vn that defined by the homeomorphism b).  Let ξ be the infinitesimal generator of the 
group of isometries; since no point of Vn+1 is invariant, ξ is ≠ 0 at any point of Vn+1 .  In 
the preceding local coordinates, the trajectories of ξ will be the lines, x = const.; as a 
result, the components of ξ will be: 
 

ξi = 0,  ξ0 ≠ 0, 
 
and it will always be possible (1) to modify the homeomorphism of b) and the manifolds 
x0 = const. in such a way that  ξ0 = 1.  The systems of coordinates (x0, xi) such that ξi = 0, 
ξ0 = 1 will be called adapted to the one-parameter group of isometries.  The coordinate 
changes will take us from an adapted system to another one of the form: 
 
(5-1)   )( jii xx ′′ =ψ ,  )(00 jxxx ψ+=′ , 
 
in which the ψ are arbitrary functions of the (xj). 
 In an adapted system of coordinates, formula (4-3) obviously reduces to: 
 

                                                
 (1) See I, sec. 44. 
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0X = ∂L L . 

 
 From this, it results that the function L is then expressed as a function 0( , , )i jx x xɺ ɺL , 

which is homogenous and of first degree with respect to the αxɺ .  Unless stated to the 
contrary, we will use adapted coordinated in all of the following sections. 
 We may then pose the following problem: Is it possible to endow the quotient 
manifold Vn with the structure of a Finslerian manifold by means of functions L in such a 

way that the geodesics of Vn, which are the extremals of the integral: 
 

(5-2)    
1

0

( , )
x

x
x x du∫ ɺL      







 =
du

dx
xɺ  

correspond to the extremals of: 

(5-3)    
1

0

( , )
z

z
L z z du∫ ɺ      







 =
du

dz
zɺ  

by projection onto Vn . 
 In the following sections, I will confine myself to exclusively local considerations. 
 
 
 6. – Determination of the function L (1). – 1.  Suppose we are given an extremal of 

(5-2) with the parametric representation x(u), in which u denotes an arbitrary parameter.  
It is well-known that the differential system for the extremals: 
 

(6-1)     α
α

x
du

dx
ɺ= , 

in which αxɺ  satisfies: 

(6-2)     
d

du x xα α
∂ ∂−
∂ ∂ɺ

L L
 = 0, 

 
admits the relative integral invariant (2): 

(6-3)     ∑ ∂
∂=

α

α
αω dx

x

L

ɺ
. 

 
 The converse is true, and may be verified directly in the following manner: Suppose 
that the differential system (6-1) admits the relative integral invariant (6-3), or – what 
would be equivalent – the absolute integral invariant: 
 

                                                
 (1) Cf.  A. LICHNEROWICZ and Y. THIRY, C.R. Acad. Sc., 224 (1947), 529. 
 (2) See E. CARTAN, Leçons sur les invariants intégraux, chap. XVIII and Espaces de FINSLER, pp. 8-
9. 
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(6-4) 
2 2 2

,

1

2

d d dx
x

dx dx dx dx
x x x x x x

α
α

α

β α β α
α β α β β α

α β

ω ∂ = ∧ ∂
   ∂ ∂ ∂ = ∧ + − ∧   ∂ ∂ ∂ ∂ ∂ ∂  

∑

∑

ɺ

ɺ
ɺ ɺ ɺ ɺ

L

L L L
 

 
 The characteristic system of dω is obtained by annulling the coefficient of the term in 
^ dxα  in the last expression of (6-4).  That will give: 
 

2 2 2

dx dx dx
x x x x x x

β β β
λ β λ β β λ

β

 ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ ∂ ∂ 
∑ ɺ

ɺ ɺ ɺ ɺ

L L L
 = 0. 

 
Namely, upon dividing by du: 
 

(6-5)   
dx dx

x
x x du x x du x x

β β
β

β λ β λ β λ
β β

 ∂ ∂ ∂ ∂ ∂ ∂     + −      ∂ ∂ ∂ ∂ ∂ ∂      
∑ ∑

ɺ
ɺ

ɺ ɺ ɺ ɺ ɺ

L L L
 = 0. 

 
On account of the homogeneity of / xλ∂ ∂L , (6-5) may be written: 
 

0
d

du x xλ λ
∂ ∂− =
∂ ∂ɺ

L L
, 

which proves the property. 
 On account of the homogeneity of / xλ∂ ∂L , (6-5) may be written: 
 

d

du x xλ λ
∂ ∂−
∂ ∂ɺ

L L
= 0, 

which proves the property. 
 
 2.  We return to the abbreviated notation and the hypotheses of sec. 5; in what 
follows, I will assume that: 
(6-6)    

00
0∂ ≠ɺ ɺL . 

 
 The differential system of the extremals of (5-2) may therefore be characterized by 
the fact that it admits the relative integral invariant: 
 

0
0

k
k

dx dxω = ∂ + ∂ɺ ɺL L . 

 
 Moreover, under the hypotheses we made,0 0∂ =L , and one will have the first 
integral: 
(6-7)     

0
h∂ =ɺL . 

 
 When this relation is solved for 0xɺ , it will be locally equivalent to the relation: 
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(6-8)    ),,(0 hxxx lk

ɺɺ ϕ= , 
 
in which ϕ is a function that is homogenous and of first degree in lxɺ , and depends on h 
essentially. 
 Consider the family (Eh) of extremals of (5-2) that correspond to a definite value of h. 
For this family, the last term of ω will have the value h dx0, and will defines a relative 
invariant.  It will result from this that this family of extremals admits the relative integral 
invariant: 
(6-9)      k

k
dx∂ ɺL . 

 Now, from the homogeneity of L: 

 
0

0
k

k
x x∂ + ∂ =ɺ ɺ
ɺ ɺL L L . 

 
 As a result, for any solution of (6-7) or (6-8), the quantity k

k
x ∂ ɺɺ L  may be expressed as 

a function L of the variables ),,( hxx lk
ɺ : 

 
(6-10)   ( , , ) [ , , ( , , )] ( , , )k l k l k l k lL x x h L x x x x h h x x hϕ ϕ= −ɺ ɺ ɺ  
and one will have: 

0l l l l l
L hϕ ϕ∂ = ∂ + ∂ ∂ − ∂ = ∂ɺ ɺ ɺ ɺ ɺ ɺL L L . 

 
 Therefore, from (6-9), the projections of the (Eh) onto Vn are defined by a differential 
system that admits the relative integral invariant: 
 

k
k
L dxϖ = ∂ ɺ . 

 
 In other words, these projections are extremals of the integral: 
 

(6-11)     
1

0

( , , )
z

k l

z
L x x h du∫ ɺ    








=

du

dx
x

l
l
ɺ , 

 
in which h has the chosen value.  We state: 
 
 THEOREM  – For any function ( , , )k lx x hɺL  that is homogenous and of degree 1 with 

respect to the xλ, and is such that 
00

0∂ ≠ɺ ɺL , the extremals of the integral (5-2) on Vn+1 

that correspond to the value h of the first integral: 
 
(6-7)      

0
h∂ =ɺL , 

 
project onto Vn along the extremals of the integral (6-11), in which h has the same value, 
and L is given by: 
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(6-10)    ),,()],,(,,[),,( hxxhhxxxxLhxxL lklklklk
ɺɺɺ ϕϕ −= , 

 
in which ϕ denotes the function that is obtained by solving (6-7) with respect to x0. 
 
 
 7. – The inverse problem. – We call the correspondence that makes the function 

( , , )k lx x hɺL  correspond to the function ),,( hxxL lk
ɺ  that we just determined a descent. 

 Conversely, if we are locally given a function ),,( hxxL lk
ɺ  on Vn that is homogenous 

and of degree 1 with respect to thelxɺ  then we will propose to find out whether there 
exists a function ( , , )k lx x hɺL  that comes back to L by descent. 
 
  1)  If there exists a solution L to this problem then it will be easy to determine it.  

Indeed, upon differentiating (6-10), one will necessarily get: 
 

0

L
h

h h h

ϕ ϕ ϕ∂ ∂ ∂= ∂ − −
∂ ∂ ∂ɺL , 

which will reduce to: 

( , , )k lL
x x h

h
ϕ∂ = −

∂
ɺ , 

 
for any solution to (6-7) or (6-8).  The function ϕ is therefore known whenever L is 

known, and since ϕ depends essentially on h, 
2

2

h

L

∂
∂

will be non-zero.  If one solves the 

relation: 
),,(0 hxxx lk

ɺɺ ϕ= , 
with respect to h then it will become: 
(7-1)      ),,( 0xxxh lk

ɺɺψ= , 
 
in which ψ is homogenous and of degree 0 with respect to )( λxɺ , and depends essentially 

on )( 0xɺ .  Therefore, from (6-10), the function L will necessarily be expressed in the 

variables ),,( 0xxx lk
ɺɺ  by the relation: 

 
(7-2)    0 0 0 0( , , ) [ , , ( , , )] ( , , )k l k l k l k lx x x L x x x x x x x x xψ ψ= +ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺL . 
 
 2)  If one is given a function L such that 0/ 22 ≠∂∂ hL  then consider the function L 

that is defined by (7-2), in which ψ is obtained by solving the relation: 
 

(7-3)     ),,(0 hxx
h

L
x lk

ɺɺ
∂
∂−=  

 
with respect to h.  One will thus have: 
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)],,(,,[ 00 xxxxx
h

L
x lklk

ɺɺɺɺ ψ
∂
∂−≡ . 

 
 We apply the descent procedure to L.  One first obtains: 

 

0
0 0 0

[ , , ]k lL
x x x

h
ψ ψ ψ ψ∂∂ ≡ ∂ + ∂ +

∂ɺ ɺ ɺ
ɺ ɺL , 

 
namely, from the preceding identity: 

0
ψ∂ ≡ɺL . 

 
 One deduces from this that the function ϕ that is associated with L is essentially: 

 

h

L

∂
∂−=ϕ . 

 
When we pass to the variables ),,( hxx lk

ɺ , we will get the result: 
 

),,()],,(,,[),,( 000 xxxxxxxxxLhxxL lklklklk
ɺɺɺɺɺɺɺ ψψ +=  

 
from (7-2), in which ψ is obtained by solving the equation: 
 

h

L
x

∂
∂−=0

ɺ  

with respect to h. 
 We shall call the correspondence that makes the function L that was defined by the 

preceding theorem correspond to a function L an ascent.  We note two circumstances that 
occur frequently when one wants to use the ascent procedure. 
 
 a)  One is interested only in different families of curves (εh) that depend on a 
parameter h and may be defined as the extremals of a function: 
 

),,( hxxL lk
ɺ . 

 
 These curves may also be considered as extremals of the function: 
 

χ(h) ),,( hxxL lk
ɺ , 

 
in which χ(h) is an arbitrary function, and the ascent procedure that relates to these 
different functions L leads naturally to different functions L. 
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 b)  It may also be the case that one is interested only in the extremals (ε) of a 
function: 

),(0
lk xxL ɺ  

 
that does not depend on any parameter h.  One may then introduce a function ),,( hxxL lk

ɺ  
such that for a definite value h = h0 : 
 

),(),,( 0
lklk xxLhxxL ɺɺ = , 

 
and apply the ascent procedure to L.  The curves that are considered will then be 
interpreted as projections of the extremals that correspond to the value h0 of the function 
L.  Naturally, there will be a great degree of arbitrariness when the ascent procedure is 

applied in these cases. 
 A case that is particularly interesting – in Mechanics, as well as in relativity – is the 
one in which the ascent procedure allows us to pass from the geodesics of a Finslerian 
metric to those of a Riemannian metric, since such a metric is much easier to work with.  
Conversely, we shall therefore apply the descent procedure to a Riemannian metric in 
order to characterize the problems that may be encountered with this procedure. 
 
 
 8. – Case in which L defines a Riemannian metric.  First case. – Consider the 

function L that is defined by the relation: 

 
2 x xλ µ

λµγ= ɺ ɺL     (λ, µ = 0, 1, …, n), 

 
in which the γλµ are the components of a symmetric tensor of Vn+1 that does not depend 
upon the variable x0 in adapted coordinates.  The descent procedure will lead to two 
different results, depending on whether γ00 is zero or non- zero. 
 We first suppose that γ00 is not annulled in the domain in question.  If γ00 > 0 then we 
will restrict ourselves to values of the parameter for which: 
 

h2 < min γ00 
for any x that belongs to that domain. 
 We suppose that the form L2 is non-degenerate − so [g = det(γλµ) ≠ 0] − but we do not 

assume that it is positive-definite.  At each point x, we confine ourselves only to values of 
xɺ  for which the right-hand side is positive.  It is well known that it suffices that a 
geodesic of the Riemannian manifold should render this right-hand side positive at one 
point in order for it that to be true all along the geodesic (1). 
 Having posed that, the descent procedure will lead us to form the equation: 
 
(8-1)    2 01

00 02 0
x x hµ

µγ γ∂ ≡ + =ɺ
ɺ ɺL L   (i, j = 1, 2, …, n) 

                                                
 (1) For example, see I, sec. 16. 
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and eliminatexɺ between this equation and: 
 
(8-2)    L = L − 0xhɺ . 

 
 It is possible to next express L as a function of the variables ),,( hxx ji

ɺ  with the aid of 

(8-1).  Upon decomposing L2 into squares, beginning with the directrix variable0xɺ , we 

will obtain: 

(8-3)    
22 2 21

2 0
00

1

γ
 = ∂ + Φ ɺL L , 

with 

(8-4)   ji
ij xxg ɺɺ=Φ 2 ,   gij = γij − 

00

00

γ
γγ ji . 

 
 If γ00 ≠ 0 then since the form L2 is non-degenerate, the form Φ2 will be non-

degenerate, and g = det(gij) ≠ 0.  Conversely, if γ00 ≠ 0 and g ≠ 0 then the form L2 will be 

non-degenerate.  One deduces from (8-1) and (8-3) that: 
 

2
2 2 2

00

h

γ
= + ΦL L , 

 
and Φ2 will be positive for the values of the variables that we envisioned.  It results from 
this that: 

(8-5)     
2

00

1
h

γ
− = ΦL , 

 
which gives us L as a function of the desired variables. 

 One then obtains 0xɺ  as a function of L and the ),( ji xx ɺ  from (8-1): 

 

(8-6)     0 0

00 00

i
i xh

x
γ

γ γ
= −

ɺ
ɺ L . 

 
one then deduces from this and (8-2) that: 
 

2
0

00 00

1
i

i xh
L h

γ
γ γ

 
= − + 
 

ɺ
L , 

and from (8-5), that will give: 

(8-7)    
2

0

00 00

1
i

i j i
ij

xh
L g x x h

γ
γ γ

 
= − + 

 

ɺ
ɺ ɺ . 
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 Conversely, any function of the type (8-7) (with γ00 ≠ 0, g = det(gij) ≠ 0) corresponds 
a non-degenerate Riemannian metric of the first case by ascent.  Conforming to remark b) 
of sec. 7, we note that L presents itself, relative to the variablesixɺ , as the sum of the 
square root of a non-degenerate quadratic form and a linear form.  Only functions L0 of 
this type may lead to Riemannian metrics of the first case by ascent. 
 
 
 9. – Case in which L defines a Riemannian metric.  Second case. – We now put 
ourselves in the situation where γ00 = 0.  One then has: 
 
(9-1)    2

02 i j i j
i ijx x x xγ γ= +ɺ ɺ ɺ ɺL . 

 
We assume that 00 ≠i

i xɺγ , h ≠ 0.  The descent procedure leads us to eliminate L and 0xɺ  

from the relations (9-1): 
(9-2)     0

i
i x hγ =ɺ L , 

and: 
(9-3) L = L − 0xhɺ . 

 One infers from (9-2) that: 

0
i

i x

h

γ=
ɺ

L . 

 
 If one refers to (9-1) then this will become: 
 

ji
ij

ji
i

i
i xxxx
h

x
ɺɺɺɺ

ɺ
γγγ

+= 02

2
0 2

)(
. 

One deduces from this that: 

i
i

ji
ij

i
i

x

xx

h

x
x

ɺ

ɺɺɺ
ɺ

0
2

00

22 γ
γγ

−= . 

 
Therefore, the function L will be given by: 
 

i
i

ji
ij

i
i

i
i

x

xx
h

h

x

h

x
L

ɺ

ɺɺɺɺ

0

00

22 γ
γγγ

+−= , 

namely: 

(9-4)    
i

i

ji
ij

i
i

x

xx
h

h

x
L

ɺ

ɺɺɺ

0

0

22 γ
γγ

+= . 

 
 Conversely, any function of the type (9-4) corresponds to a Riemannian metric of the 
second case by ascent.  Conforming to remark b) of sec. 7, we note that L presents itself 
as the quotient of a quadratic form by a linear form with respect to the variablesixɺ .  Only 
functions of this type may lead to Riemannian metrics of the second case by ascent. 
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 10. – Examples from classical dynamics.  Hamilton’s principle. – In order to 
familiarize ourselves with these procedures and results, we shall study several examples 
from classical dynamics.  We will then confirm that they indeed reduce to well-known 
procedures in some interesting particular cases. 
 Consider a dynamical system with bilateral perfect holonomic constraints and r 
degrees of freedom.  Suppose, moreover, that this system is conservative.  The possible 
configurations of this system will depend on time, in general, and the differentiable 
manifold that we agree to introduce in the general case will be the configuration 
spacetime of the system Er+1, which will be the set of possible configurations at various 
instants. 
 For a specific choice of axes, the configuration of the system may be defined locally 
at each instant by means of r parameters qi (i, any Latin index = 1, 2, …, r).  Indeed, the 
set of (qi) and time t define a local system of coordinates for the configuration spacetime 
of the system Er+1 . 
 One usually determines the motion of the system by seeking to determine the qi as a 
function of time t.  In terms of Lagrange variables ),,( tqq ii

ɺ , the differential equations of 
motion can be written: 

i
i

q
dt

dq
ɺ= ,  0=

∂
Λ∂−









∂
Λ∂

ii qqdt

d

ɺ
, 

 
in which Λ denotes the Lagrangian (T + U) of the system, with the classical notations.  
The differential equations of motion may be considered to define the extremals of the 
Hamiltonian action: 

∫ Λ= 1

0

),,(
t

t

ii dtqtqW ɺ , 

 
and they may also be characterized by the existence of Cartan’s relative integral 
invariant: 

∑ −
∂

Λ∂=
i

i
i

Hdtdq
qɺ

ω , 

 
in which H designates the Hamiltonian (T2 – T0 – U) of the system. 
 This type of procedure presents the inconvenience of not being invariant with respect 
to the changes of local coordinates that are permitted by mechanics on the configuration 
spacetime.  As far as the parameters qi are concerned, one must transform them by: 
 
(10-1)     ),( tqfq jii ′=′ . 
 
 As far as time − which presents an intrinsic character in classical mechanics − is 
concerned one has only: 
(10-2)     µλ +=′ tt , 
 
in which λ and µ are constants (λ ≠ 0). 
 



The Jordan-Thiry theory 162 

 The preceding technique is not invariant with respect to the changes of local 
coordinates, and as a result, it does not recommend itself to theoretical studies.  It is 
preferable to introduce t as essentially the (r + 1)th coordinate of Er+1: 
 

t = qr+1, 
 
and to define the motion by looking for a parametric representation qα(u) (α, any Greek 
index = 1, 2, …, r + 1) as a function of an arbitrary parameter u.  The (qα) will therefore 
be a system of local coordinates on Er+1, and the αqɺ  will be the components of a tangent 
vector relative to the natural frame of these coordinates.  If: 
 

(10-3)     α
α

q
du

dq
ɺ=  

then one will have: 

1+==
r

ii
i

q

q

dt

dq
q

ɺ

ɺ
ɺ . 

 
 Upon adopting the variable u as the integration variable in the Hamiltonian action, 
one will obtain: 

(10-4)     ∫= 1

0

),(
q

q
duqqLW αα

ɺ , 

 
in which we have introduced the function: 
 

(10-5)     1
1

,,),( +
+ 







Λ= r

r

i
i q

q

q
tqqqL ɺ
ɺ

ɺ
ɺ

αα , 

 
which is homogenous and of degree 1 with respect to αqɺ .  Upon differentiating (10-5), 
one will immediately have: 
 

i
i qq

L

′∂
Λ∂=

∂
∂
ɺ

,  ∑ −=′
′∂

Λ∂−Λ=
∂
∂

+
i

i
ir

Hq
qq

L
1

, 

 
and the Cartan integral invariant will be none other than: 
 

∑ ∂
Λ∂=

α

α
αω dq

qɺ
. 

 
It is easy to specify L by starting with U and the expression for the vis viva: 
 

0222 TqbqqaT i
i

ji
ij +′+′′= , 

in which: 
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a = det(aij) ≠ 0. 
 It becomes: 

1 1 11
021 1, , ( )

i ji
iji r r i r

ir r

a q qq
q q q b q T U q

q q
+ + +

+ +

 
Λ = + + + 
 

ɺ ɺɺ
ɺ ɺ ɺ

ɺ ɺ
. 

 
 One deduces from this that: 
 

(10-6)   
1 1 2

0

1

2 2( )( )
( , )

2

i j i r r
ij i

r

a q q b q q T U q
L q q

q
α α

+ +

+

+ + +
=

ɺ ɺ ɺ ɺ ɺ
ɺ

ɺ
. 

 
 Therefore, the trajectories of our dynamical system in configuration spacetime will be 
defined as intrinsically extremals of the integral (10-4) in Er+1, in which the function L is 
given by (10-5) or (10-6).  In this manner, the formalism will be invariant under the 
changes of local coordinates on configuration spacetime, (10-1) and (10-2), that are 
permitted by mechanics. 
 
 
 11. – The ascent from Hamilton’s principle to Eisenhart’s ds2. – As a function of 

)( αqɺ , L is the quotient of a quadratic form with a linear form.  It is therefore possible to 
interpret the trajectories of our dynamical system as the projections of certain geodesics 
of an (r+2)-dimensional Riemannian manifold Vr+2, for which γ00 = 0 in adapted 
coordinates.  Since L is devoid of any parameter that would play the role of h, we must 
identify this function with the value that the function (9-4) becomes for a definite value 
of the parameter h; for example, 1.  We must write the function (9-4) by means of the 
(r+1) coordinates qα.  From the looks of (10-6), we limit ourselves to denominators with 
a linear form 1

10

+
+

r

r
qɺ

ɺ
γ  that consists of only one term.  We will then get: 

 

1

10

21

10

2

)(
)1,,( +

+

+
++

=
r

r

r

r

q

qqq
qqL

ɺ

ɺɺɺ
ɺ

ɺ

ɺ

γ
γγ βα

αβαα . 

 
 When we identify this expression with (10-6), we will get: 
 

    
10 +

=
r

ij
ija

γ
γ

,  
10

1

+

+=
r

ri
ib

γ
γ

, 

 

2(T0 + U) = 
10

2

1011
)(

+

+++
+

r

rrr

γ
γγ

. 

 
 One may choose the function of the qα, 

10 +r
γ  = ψ, of the qα arbitrarily.  One will then 

have: 
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   γij = ψ aij, 1+ri
γ  = ψ bi, 11 ++ rr

γ  = 2ψ (T0 + U) – ψ, 

     γ00 = γ0i = 0, 
10 +r

γ  = ψ. 
 
 One will deduce from this that for Vr+1 the ascent envisioned leads to the following 
ds2: 

(11-1) 
2 2 0

1 1 2 0 1
0

( , , )

{ 2 [2( ) ]( ) 2 }.i j i r r r
ij i

ds q dq dq

a dq dq b dq dq T U dq dq dq

α α

ψ ψ+ + +

 =
 = + + + − +

L
 

 
 This ds2 generalizes a ds2 that was obtained by a direct study by Eisenhart (1).  One 
will obtain Eisenhart’s ds2 by starting with ψ = const. = k2, which will lead to: 
 

(11-2)  
2 2 0

2 1 1 2 0 1
0 1

( , , )

{ 2 2( )( ) 2 },i j i r r r
ij i

ds q dq dq

k a dq dq b dq dq T U dq dq dq

α α

+ + +

 =
 = + + + +

L
 

 
in which one has set: 

(11-3) U1 = U − 
2

2k
. 

 
 The geodesics of (11-2) coincide with those of: 
 
(11-4)  1021

10
12 2))((22 +++ ++++= rrri

i
ji

ijE dqdqdqUTdqdqbdqdqads , 

 
which is Eisenhart’s ds2.  One immediately verifies that the determinant of the quadratic 
form that appears in the right-hand side of (11-4) is nothing but a ≠ 0; as a result, this ds2 
will be non-degenerate.  It is not obviously positive-definite. 
 We propose to evaluate the variation of the parameter q0 along a trajectory of the 
motion in the configuration spacetime.  First of all, the equation 

0
∂ ɺL= h = 1 may be 

written: 
21

2 0
∂ =ɺL L  

here. 
 We suppose that the trajectory envisioned is considered to be the projection of a 
geodesic along which the ds2 of (11-2) is non- zero.  One will explicitly obtain: 
 

k2 dqr+1 = ds, 
namely: 
(11-5)     ds2 = k4 dt2. 
 
 Along the geodesic envisioned, the ds2 that is defined by (11-2) is certainly positive.  
The expression for ds2 that is given by (11-2) may be recast in the form: 

                                                
 (1) EISENHART, Ann. of Math., 30 (1939), 591. 
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(11-6)    







+Λ=

dt

dq
k

dt

ds 0

1
2

2

2

2  

in which one has set: 

Λ1 = T + U = L − 
2

2k
. 

 
 One infers from (11-5) and (11-6) that: 
 

Λ−=Λ−= 2
1

20

2
k

k

dt

dq
. 

One deduces from this that: 

(11-7) q0 = k2t + C − ∫ Λ
t

dt
0

. 

 
 q0 is therefore related to the Hamiltonian action directly.  Suppose we choose the 
constants k2 and C; one may evaluate the function q0(t) along any trajectory of the motion 
in the configuration manifold by means of (11-7).  The expressions for q0(t) and qi(t) that 
correspond to the motion will provide a parametric representation of a geodesic of (11-2) 
(or (11-4, for that matter), along which the ds2 considered is positive, as a function of t = 
qr+1.  We state: 
 
 THEOREM  – The trajectories of a conservative holonomic dynamical system with 
bilateral perfect constraints on a configuration spacetime Er+1 may be obtained as 
follows: if one is given two constants k2 and C then consider the topological product Vr+2 

= Er+1 × R, which is endowed with Eisenhart’s Riemannian metric (11-4), in which q0 is 

the abscissa of a point of R.  These trajectories will be the projections onto Er+1 of the 

geodesics of that Riemannian manifold along which 2
Eds  is positive and satisfies: 

 
222 dtkdsE = . 

 
Conversely, if one associates each point of such a trajectory with that point of Vr+2 that 
projects onto it and is defined by (11-7) then that point will describe a geodesic that 
satisfies the preceding conditions. 
 
 This theorem permits us to recover the Hamilton-Jacobi theory as a simple 
consequence of some well-known facts of Riemannian geometry.  It also permits us to 
treat questions of stability in the Riemannian context by means of the technique of the 
“geodesic chart.” 
 
 
 12. – The descent from Hamilton’s principle to de Maupertuis’s principle. – 
Suppose that the Finslerian manifold Er+1 admits a one-parameter group of isometries (in 
the sense of sec. 5) such that for an adapted coordinate system, the manifolds that are 
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defined by the homeomorphism b) of that section may be defined to be the manifolds t = 
constant. 
 Let Er be the quotient manifold.  In the sequel, we shall call it the configuration space 
of the system.  Let (qi) (i, any Latin index = 1, 2, …, r) be a system of local coordinates 
on Er .  From the hypotheses made, the set (qi, t) will define a system of adapted 
coordinates on Er+1; because of the restrictions on time, the adapted systems of 
coordinates that answer the question are defined up to a change of coordinates here by: 
 

)( jii qq ψ ′=′ ,  µ+=′ tt , 
 
in which the ψ are arbitrary functions and µ is a constant.  In such a system of adapted 
coordinates, one will have the isometry property: 
 

(12-1)     0=
∂
∂

t

L
. 

 
 Now, upon differentiating (10-5), one will get: 
 

),,(1 iir qtq
t

q
t

L ′
∂
Λ∂=

∂
∂ +

ɺ . 

 
One will deduce from this that (12-1) is equivalent to: 
 

0=
∂
Λ∂
t

. 

 
 The Lagrangian Λ does not depend on time explicitly.  We say that we are working 
under the Painlevé hypothesis. 
 Under these hypotheses, it is possible to apply the descent procedure with respect to 
the variable t = qr+1 to the function Λ that is defined by (10-6).  One obtains a first 
integral: 

(12-2)    hUT
q

qqa

q

L
r

ji
ij

r
=++−=

∂
∂

++ )(
)(2

0211
ɺ

ɺɺ

ɺ
, 

 
which is nothing but the well-known first integral of energy: 
 

H ≡ T2 – T0 = − h = E. 
 One infers from this that: 

(12-3)    1 2

0

( )
2( )

i j
ijr a q q

q
T U h

+ =
−
ɺ ɺ

ɺ . 
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 Since the form i j
ija q qɺ ɺ  is positive-definite, one must restrict oneself to values of h for 

which the denominator is positive.  One must therefore eliminate 1+rqɺ  between (12-3) 
and the relation: 

L1 = L − 1rh q +
ɺ , 

with: 

1
01 ( )

2

i j
ij i r

ir

a q q
L b q T U q

q
+

+= + + +
ɺ ɺ

ɺ ɺ
ɺ

. 

 From (12-3), this gives: 
 

1 1 1
1 0 0 0( ) ( ) 2( )r i r r i

i iL T U h q b q T U h q T U h q b q+ + += + − + + + − = + − +ɺ ɺ ɺ ɺ ɺ . 

 
 Hence: 

(12-4)    1 0( ) i j i
ij iL T U h a q q b q= + − +ɺ ɺ ɺ . 

 We state: 
 
 THE PRINCIPLE OF De MAUPERTUIS  – In the case where the dynamical 
system envisioned satisfies the Painlevé hypothesis, the trajectories of the motion in the 
configuration manifold that correspond to the total energy E are projected onto the 
configuration manifold Er along extremals of the Maupertuisian action integral: 
 

1

0
0[ 2( ) ]

z
i j i

ij iz
T U E a dq dq b dq+ + +∫ , 

 
in which z0 and z1 are two points of Er .  Conversely, if one associates  each point of such 
an extremal of Er with the point of Er+1 that projects onto it and moves according to the 
law (12-3) (h = − E) then that point will describe a motion in the configuration spacetime 
that corresponds to the energy. 
 
 In the case where bi = 0, the Mauperuisian action given on Er gives a Riemannian 
metric for each value of the energy E. 
 
 
 13. – The ascent from the principle of de Maupertuis to a Riemannian ds2. – The 
function L1 that defines the Maupertuisian action presents itself as not only a function of 
the iqɺ , but also as the sum of the square roots of a quadratic form and a linear form.  For a 
fixed value of E, it is therefore possible to interpret the trajectories of our dynamical 
system in the configuration manifold as the projections onto Er of geodesics of an (r + 1)-
dimensional Riemannian manifold Vr+1 for which γ00 ≠ 0 in adapted coordinates.  It is not 
E that will play the role of this parameter, because that would only lead back to 
Hamilton’s principle.  Since E has a fixed value, we will identify L1 with the function that 
(8-6) reduces to for a definite value of the constant h − for example, 1. 
 Therefore, consider the function: 
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(13-1)    1( , ,1)i i i j i
ij iL q q q q b qα= +ɺ ɺ ɺ ɺ , 

in which: 
(13-2) αij = 2 (T0 + U + E) aij . 
 On the other hand, from (8-6): 
 

2
0

1
00 00

( , , ) 1
i

i i i j i
ij

qh
L q q h g q q h

γ
γ γ

 
= − + 

 

ɺ
ɺ ɺ ɺ . 

 
 By identification, one obtains: 
 

αij = 
2

00

1 ij

h
g

γ
 

− 
 

 
00

0

γ
γ i

ib = . 

 
It is therefore possible to choose the function γ00 ≠ 0 arbitrarily, and one will have, 
conversely, that: 

γ0i = γ00 bi, gij = 
100

00

−γ
γ αij , 

and as a result: 

γij = 
100

00

−γ
γ

γ00αij + bibj. 

 
Upon substituting the values (13-2) for αij, one will then obtains the Riemannian metric: 
 

ds2 = γ00 
0 0 20

00

2( )
2 ( )

1
i j i

ij i j i

T U E
a b b dq dq b dq dq dq

γ
  + + + +  −   

 

 
by ascent, namely: 

ds2 = γ00 
0 20

00

2( )
( )

1
i j i

ij i

T U E
a dq dq dq b dq

γ
 + + + − 

. 

 
 In order to have a ds2 that is as simple as possible, we may take γ00 = 2.  We will thus 
get: 
(13-3)  ds2 = 2 [2 (T0 + U + E) i j

ija dq dq  + 0 2( )i
idq b dq+ ] = L2 (qi, dqi, dq0), 

 
whose geodesics will coincide with those of: 
 
(13-4)  ds2 = 2 (T0 + U + E) ji

ij dqdqa  + 0 2( )i
idq b dq+ . 

 
 We propose to evaluate the variation of the parameter q0 along a trajectory in the 
configuration manifold.  From (13-3), the equation 

0
∂ ɺL  = h = 1 may always be written: 
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(13-5)    2 ( 0 i
idq b dq+ ) = ds. 

 Now, again from (13-3): 
 

0 22

0 22 2

( )
4( ) 2 2

i
idq b dqds

T U E T
dt dt

+= + + + . 

 

 One deduces from this relation and (13-5) (with the classical mechanical notations) 
that: 

2

20 )(

dt

dqbdq i
i+

= 0 22( ) 2T U E T+ + ⋅ . 

 
 Now, from the Painlevé integral: 
 

2T2 = 2(T0 + U + E). 
 We therefore obtain: 
 

0

1 0 2 0 1 12( ) ( )
dq

T T U E T T U E T E
dt

+ = + + = + + + = Λ − + , 

namely: 

1

0

E
dt

dq
b

dt

dq i

i +−Λ= . 

 
 One deduces from this by integration that: 
 

(13-6)    q0 = CEtdqbdt
t i

i

t
++−Λ ∫∫ 00

. 

 
 We suppose that the energy constant E and the constant C have been chosen; one may 
evaluate q0(t) by means of (13-6) along any trajectory in the configuration space that 
corresponds a motion with energy E.  The expressions for q0(t) and qi(t) that correspond 
to the motion provide a parametric representation of a geodesic of (13-3) (or (13-4), for 
that matter).  We state, in a form that relates to (13-4): 
 
 THEOREM  – Under the Painlevé hypothesis, the trajectories of a dynamical system 
in a configuration space Er may be obtained as follows: If the motion that corresponds to 
an energy E and a constant C has been chosen then consider the topological product Vr+1 

= Er × R endowed with the Riemannian metric (13-4), in which q0 is the abscissa of a 

point of R.  These trajectories are the projections onto Er of the geodesics of the 

Riemannian manifold along which: 

dsdqbdq i
i 2

20 =+ . 
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Conversely, if one associates each point of such a trajectory that corresponds to the 
energy E with the point of Vr+1 that projects onto it and is defined by (13-6) then that 
point will describe a geodesic that satisfies the preceding conditions. 
 
 Despite the extent of the geometric research into dynamics, the ds2 in (13-4) has not 
been brought to our attention.  It may be put to use in the theory of dynamical systems 
that satisfy the Painlevé hypothesis. 
 
 
 

III.  – APPLICATION TO THE RELATIVISTIC TRAJECTORIES 
OF CHARGED PARTICLES. 

 
THE PRIMARY POSTULATES OF THE UNITARY THEORY.  

 
 
 14. – The ds2 of Kaluza-Klein. – We leave behind the examples that are implied by 
classical dynamics and return to the differential system of the trajectories of charged 
particles in spacetime V4 .  We have seen that there exists a global vector-potential ϕ 
whose trajectories may be defined to be the time-oriented extremals of the integral that is 
associated with the function: 
 

(14-1)  
1
2( , ) ( )i j i j i

ij if x x g x x k xϕ= +ɺ ɺ ɺ ɺ   (i, j, any Latin index = 1,2, 3, 4), 

 
in which k denotes the charge-to-mass ratio: 
 

m

e
 

of the particle. 
 As a function of ixɺ , f takes the form of the sum of the square root of a quadratic form 
and a linear form.  It is therefore possible to interpret the trajectories of charged particles 
in V4 as the projections of geodesics of a five-dimensional Riemannian manifold V5 for 
which γ00 is ≠ 0 in adapted coordinates.  When we started the descent process with the 
function: 
(14-2) L

2 = βα
αβγ xx ɺɺɺ    (α, β, any Greek index = 0, 1, 2, 3), 

 
we saw that the geodesics that satisfy the first integral that were defined by: 
 

21
2 0

h∂ =ɺL L  

project onto the extremals of: 
 

(14-3)   
2

0

00 00

( , , ) 1i j i j ii
ij

h
L x x h g x x h x

γ
γ γ

 
= − + 

 
ɺ ɺ ɺ ɺ , 
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in which: 

00

00

γ
γγ

γ ji
ijijg −= . 

 
 If we compare formulas (14-1) and (14-2) then the form quadratic form ji

ij xxg ɺɺ  will 

be multiplied by a factor: 









−

00

2

1
γ
h

, 

 
which depends upon both the parameter h and the xi, in general, by the intermediary of 
γ00.  The same thing is not true for f.  We may avoid this difficulty by choosing: 
 
(14-4)     γ00 = constant  (the Klein hypothesis), 
 
which is a constant that we will, moreover, be led to assume to be negative in what 
follows.  We then couple k and h by the relation: 
 

(14-5)     
2

00

1

h
k

h

β

γ

=
−

, 

 
in which β is a constant that we will allow to modify the numerical value of γ00 if the 
need arises.  If that is true then we will see that the extremals of f are also the extremals 
of: 

(14-6)   
2 2

00 00

1 ( , ) 1i j i j i
ij i

h h
f x x g x x h xβ ϕ

γ γ
 

− = − + 
 

ɺ ɺ ɺ ɺ . 

 
 If we identify the function (14-6) with ),,( hxxL ji

ɺ  then we will see that the symbol gij 

denotes the same quantities, and that γ0i = β γ00 ϕi .  We will therefore have: 
 

γ00 = const. < 0 γ0i = β γ00 ϕi ,  γij = gij + β2 γ00 ϕi ϕj , 
 

and the Riemannian metric that we envision is written: 
 
(14-7)  dσ2 = L2 (xi, dxi, dx0) = gij dxi dxj + γ00 (dx0 + β ϕi dxi)2. 

 
 The quadratic form in the last expression is reducible to an algebraic sum of 5 
squares, one of which – viz., the one that corresponds to the index, 4 – is positive, and the 
others of which are negative; the metric dσ2 will therefore be defined by a non-
degenerate form of the hyperbolic normal type. 
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 We propose to evaluate the variation of x0 along the trajectory of a charged particle in 
V4.  The necessary calculations for a geodesic of L

2 that corresponds to the value h have 

been done before and in the general case where γ00 may vary, moreover.  From (8-5), one 
has: 

(14-8)     
2

2

00

1 i j
ij

h
g x x

γ
 

− = 
 

ɺ ɺL , 

and, from (8-6): 
0 0

2
00 00 00

00

1

1

i i j ii
ij i

h h
x x g x x x

h

γ βϕ
γ γ γ

γ

= − = −
−

ɺ ɺ ɺ ɺ ɺL , 

 
and if we introduce k by way of (14-5) then we will get: 
 

(14-9) dx0 = 
00

1

βγ
k ds – β ϕ . 

 
 One deduces by integration that: 
 

(14-10)   Cds
k

x
u

u

u

u
+−= ∫∫

00
00

0 1 ϕβ
γβ

, 

 
in which u designates an arbitrary parameter.  Suppose that we choose the constant C; 
one evaluates the function x0(u) all along the trajectory of the charged particle in V4 by 
means of (14-10).  The expressions for x0(u) and xi(u) that correspond to that movement 
provide a parametric representation for a geodesic of (14-7); since γ00 is negative, it 
results from (14-8) that if the trajectory envisioned is oriented in time and L2 is 

essentially positive along the geodesic envisioned then dσ2 will be positive (1).  We state: 
 
 THEOREM  – The trajectories of a charged particle in the spacetime V4 of general 
relativity may be obtained as the follows: Given a constant C consider a manifold V5 that 

is homeomorphic to a topological product V4 × R and endowed with the Riemannian 

metric (14-7), and in which γ00 is a constant (which we assume to be negative), and x0 is 

the abscissa of a point of R.  The trajectories considered are the projections of geodesics 

of this Riemannian manifold along which dσ2 is positive onto V4 , and: 

                                                
 (1) The preceding argument shows − along the way − a result that we did not insist upon in I: If an 
extremal of (14-1) is time-oriented (ds2 > 0) at a point in V4 then the same thing will be true all along this 
extremal.  Indeed, for constants γ00 < 0 and C, the extremal will be the projection of a well-defined geodesic 
in V5 .  From (14-8), if the extremal is time-oriented at a point then L2 will be positive at that point, and the 

geodesic in V5 will give a positive value to ds2 at the corresponding point; hence, at every point.  As a 
result, from (14-7), ds2 > 0 at every point of the extremal. 
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dx0 = 
00

1

βγ
k ds – β ϕ . 

 
 Conversely, if one associates each point of the trajectory of a charged particle with 
ratio e/m = k with the point of V5 that projects onto it and is defined by (14-10) then that 
point will describes a geodesic of V5 that satisfies the preceding conditions. 
 
 
 15. – The postulates of a unitary theory. – 1.  The preceding reasoning and results 
lead us to introduce a five-dimensional Riemannian manifold V5 that is endowed with a 
metric of hyperbolic normal type and to suppose that this manifold admits a connected, 
one-parameter group of isometries (in the sense of sec. 5) whose trajectories are oriented 
in such a way that dσ2 is negative along any one of them.  These hypotheses translate into 
what is called the cylindricality hypothesis.  The spacetime V4 must be identified with the 
quotient manifold of V5 by the equivalence relation that the group defines. 
 Conforming to the paper of Oskar Klein, in the course of sec. 14 we supposed, 
moreover, that: 

γ00 = constant. 
 
 What is the intrinsic significance of this hypothesis as far as the isometry group is 
concerned?  One immediately sees that it expresses the idea that the trajectories of the 
isometry group are the geodesics of V5.  Indeed, in order for the differential system of the 
geodesics of V5, which may be written: 
 

0
2

2

=Γ+
σσσ

µλ
α
λµ

α

d

dx

d

dx

d

xd
, 

 

to admit the solution xi = const. it is necessary and sufficient that 000 =Γα (since 
σd

dx0

 is 

constant along these lines).  Now: 
 

002
1

00 ],00[ γγβγ β
αβαβα ∂−==Γ . 

 
 One deduces from this that it is necessary and sufficient that: 
 

000 =∂ γβ ; 

i.e., that γ00 = const. on V5. 
 One sees that the two hypotheses we made – viz., the cylindricality postulate and the 
hypothesis that γ00 = const. – are completely geometrically distinct.  The first hypothesis 
was suggested to us by the form itself of the problem of the calculus of variations that we 
solved and the need to obtain a geometric structure that is independent of the factor k = 
e/m.  The second one, which was introduced in sec 14, merely constitutes the simplest 
means of remaining in plain accord with the provisional theory for the longest possible 
time. 
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 2.  In this provisional theory, in which we assume the existence of a global 
electromagnetic vector-potential ϕi , the potentials of the fields are 14 in number, namely, 
10 components for the tensor potential of gravitation gij and 4 components for the 
electromagnetic vector-potential ϕi .  On the other hand, there exist 14 field equations for 
these potentials, 10 of which are provided by the Einstein equations and 4 more that come 
from the Maxwell-Lorentz equations.  The left-hand sides of these equations are, 
moreover, coupled by “conditions” − or “conservation identities” − which we have 
studied in detail (1) and which number five, here. 
 In a unitary theory that is based on a penta-dimensional manifold, we are tempted to 
introduce the natural extension of the Einstein equations to V5 as the field equations; 
these equations involve the symmetric tensor Sαβ , and we must compare them to the 
equations of the provisional theory.  However, it is convenient to observe that we thus 
obtain 15 field equations, which is the number of independent components of a 
symmetric tensor on V5, and not exactly 14, since the left-hand sides of these equations 
will be, moreover, coupled by 5 conservation identities that are provided by the Bianchi 
identities.  There is therefore a difference of unity between the numbers of field 
equations.  We are therefore led to abandon the hypothesis that γ00 = constant and 
introduce 15 potentials for our unitary field − viz., the 15 components of the tensor γαβ – 
and to compare the equations that they suggest at an instant with equations of the 
provisional theory of electromagnetism.  Of course, we must study the physical 
interpretation of the supplementary potential that is introduced and see if such an 
interpretation is compatible with experiment. 
 A difficulty presents itself when we reject the hypothesis that γ00 = constant, and it is 
a difficulty that will not be completely resolved in what follows.  It concerns the problem 
of specifying the relativistic trajectories of charged particles that have served as the basis 
for our study up till now. 
 If the manifold V5 that satisfies the cylindricality postulate is given, and V4 is 
identified with the quotient manifold, then we will be tempted to obtain the trajectories of 
charged particles by proceeding in the following manner:  We consider the geodesics of 
V5 that give dσ2 a positive value and satisfy the first integral that translates into the 
relation: 

21
2 0

h∂ =ɺL L , 

 
in which h is a definite constant.  The projection of such a geodesic onto V4 must define 
the spatio-temporal trajectory of a charged particle.  In what follows, we shall prove that 
this is essentially true as a consequence of the field equations and the matching 
conditions that we adopted. 
 Such a projection is an extremal in V4 of the integral that is associated with the 
function: 

2 2
0

00 00 00

( , , ) 1 1i j i j i i j ii
ij ij i

h h
L x x h g x x h x g x x h x

γ β ϕ
γ γ γ

   
= − + = − +   

   
ɺ ɺ ɺ ɺ ɺ ɺ ɺ , 

 
so if we set: 
                                                
 (1) See I, sec. 13, 14, 15, and 21, 22, 23, for example. 
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2

00

1

h
k

h

β

γ

=
−

 

 
then it will be an extremal of the integral that is associated with the function: 
 

(15-2)     
1 i j i

ij ig x x x
k

ϕ+ɺ ɺ ɺ . 

 
 One notes that h is constant along the trajectory envisioned in (15-1), but that γ00 may 
vary.  Therefore, (15-2) is not rigorously equivalent to f from the standpoint of extremals 
in the general case.  In fact, we confirm that γ00 varies very slightly; under these 
conditions, if the ratio k = e / m must be considered to be variable for a specific particle 
then we will confirm that this theoretical variation is very small in practice and 
inaccessible to experiment or observation. 
 If the trajectories of a charged particle are thus defined then it will result from the 
manner by which we carried out the calculations that the significance of the coordinate x0 
is always given by the formula: 

∫∫ +−=
u

u

u

u
Cds

k
x

00
00

0 1 ϕ
γβ

, 

 
in which k / γ00 must be considered to be variable. 
 The theory thus-described will be satisfied to the extent that the variations that were 
introduced are sufficiently small for a generic point, and our equations approach those of 
the provisional theory for very weak variations of γ00 .  Finally, we confirm that if one 
starts with the field equations then one may establish the “principle” itself for the 
geodesics of charged particles that we just stated; at any point, the situation will therefore 
be analogous that of general relativity in the purely gravitational case. 
 

________ 



CHAPTER II 
 

THE FIELD EQUATIONS  OF   
THE JORDAN-THIRY THEORY 

 
 

I. – THE RIEMANNIAN MANIFOLD V5 AND SPACETIME 
 
 
 16. – The Riemannian manifold V5 . – In this chapter, we propose to specify the 
general principles of the Jordan-Thiry theory, as they are suggested by the variational 
problems that relate to the motion of charged particles that was studied in detail in the 
first chapter. 
 
 a)  The primitive element in the Jordan-Thiry theory is defined by a five-dimensional 
differentiable manifold that satisfies the same differentiability hypotheses as the 
spacetime manifold of general relativity (1): In the intersection of the domains of two 
admissible coordinate systems, the coordinates of a point x of V5 in one of the systems 
must be 4-times differentiable functions with non-zero Jacobian of the coordinates of x in 
the other system, such that the first and second derivatives are continuous, and the third 
and fourth derivatives may present discontinuities of the Hadamard type. 
 We suppose that a Riemannian metric ds2, which is everywhere of hyperbolic normal 
type, is defined on this manifold.  The local expression for this metric in a system of 
admissible coordinates is: 
 
(16-1)  dσ2 = γαβ (x

λ) dxα dxβ  (α, β, all Greek indices = 0,1, 2, 3, 4). 
 
 The fundamental tensor γαβ will determine the elementary unitary phenomenon, i.e., 
the motion of a charged material particle.  Its components are called potentials for the 
system of coordinates envisioned.  We suppose that this tensor admits components of 
class C1 on V5, and that the derivatives αβγ γ∂  are functions of class piecewise-C2. 

 The hypotheses we made on the type of metric amounts to saying that dσ2 may be put 
into the form: 

(16-2)  ∑
=

−=
3

0

2242 )()(
A

Ad ωωσ   (A, any Latin capital = 0, 1, 2, 3) 

 
at each point of V5, in which the ωα are a linearly independent system of local Pfaff 
forms.  The frame (x, eα) that is associated with the dual basis is called orthonormal in 
V5. 
 One has: 
(16-3) dx = ωα eα , 
 
                                                
 (1) See I, sec. 1 and 2. 



The field equations in V5 

 

177 

 

and the scalar products of the frame vectors are such that: 
 
(16-4)   eα eβ = 0 for α ≠ β; 12 −=Ae ; 12

4 =e . 
 
 b)  We suppose, moreover, that the Riemannian manifold V5 admits a global, 
connected, one-parameter group of isometries of V5 whose trajectories z are oriented in 
such a way that dσ2 < 0 and that leaves no point of V5 invariant, and the family of these 
trajectories satisfy the following hypotheses: 
 
 a)  The trajectories are homeomorphic to a circle T1 . 
 
 b)  One may find a four-dimensional, differentiable manifold V4, which satisfies the 
same differentiability hypotheses as V5, such that there exists differentiable 
homeomorphism of class C2 on the manifold V5 onto the topological product V4 × T1, in 
which the z applies to the circular factor.  This homeomorphism is, moreover, supposed 
to be piecewise-continuous up to order 4. 
 We may naturally identify V4 with the space whose points z are trajectories.  We have 
called V4 the quotient manifold of V5 by the equivalence relation that the group of 
isometries defines. 
 We have seen that there consequently exist local coordinates in V5 that are called 
adapted to the group and enjoy the following properties (1): 
 
 1.  The (xi) (i, any lowercase Latin index = 1, 2, 3, 4) are an arbitrary system of local 
coordinates on V4.  The manifolds x0 = const. are globally-defined manifolds in V5 and 
are homeomorphic to V4 .  The homeomorphism of b) may be assumed to apply to the 
manifolds x0 = const. on the manifolds that are homeomorphic to V4 in the product V4 × 
T1. 
 
 2.  Relative to the adapted coordinates, the potentials γαβ are independent of the 
variable x0.  The vector ξξξξ, which is the infinitesimal generator of the isometry group, 
admits the contravariant components: 
 
(16-5)   ξi = 0,   ξ0 = 1. 
 
 The square of this vector is: 

ξξξξ2 = γ00 < 0. 
 We set: 

(16-6)   2| | 0ξ = >ξξξξ  (γ00 =  − ξ2). 

 
 3. These coordinates are defined, up to a change of coordinates, by: 
 
(16-7)   )( jii xx ψ ′=′   )(00 jxxx ψ+=′ , 
 

                                                
 (1) See I, sec. 44 and 62, II, sec. 5. 
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in which ψ denotes the restriction to a local chart of an arbitrary function Ψ(x) that is 
defined on V4. 
 In all of what follows, we will introduce only adapted local coordinates.  The 
manifolds x0 = const. of such a system of coordinates are called the sections of V5 that are 
associated with the system.  They are preserved by the transformation: 
 
(16-8)   )( jii xx ψ ′=′ ,  00 xx =′ . 
 
 We call the change of adapted coordinates: 
 
(16-9)   ji xx =′ ,  )(00 jxxx ψ+=′  
 
a change of the system of section, or a change of gauge. 
 Let W4 be a specific section of V5 .  It is a manifold that is homeomorphic to V4 for 
which the (xi) define local coordinates.  On each W4, the metric of V4, along with its 
group of isometries, defines tensors; it is therefore true that the γij define a symmetric 
tensor, the γ0i, a covariant vector, and γ00 or ξ, a scalar, since these quantities will 
transform according to the tensorial law under the transformation (16-8). 
 Among these tensors, certain ones (of which, the scalars γ00 or ξ are the simplest 
examples) must be applied to the same tensor of V4 in all of the maps that are induced by 
the homeomorphisms of the sections of the different systems onto V4.   The image tensors 
are said to be intrinsically-defined on the quotient manifold V4 .  In order for a tensor of 
W4 to generate an intrinsically-defined tensor on V4, it is necessary and sufficient that it 
must be invariant under a change of gauge (16-9). 
 
 
 17. – Spacetime V4 and its sections. – We associate each point x of a neighborhood 
on V5 with an orthonormal frame whose first vector e0 is a tangent vector at x to the 
trajectory z(x) that passes through x and has square 1.  Such a frame will be called 
adapted.  Relative to the adapted frame, the metric is expressed with the aid of local Pfaff 
forms ω0, ωi, where the ωi are zero along the trajectories: 
 
(17.1)    dσ2 = − (ω 0)2 + ds2, 
 
in which: 

(17-2)    0 0
00 0

1
( )i

idx dxω γ γ
ξ

= − +  

and: 

(17-3) ds2 = (ω 4)2 − (ω 1)2 − (ω 2)2 − (ω 3)2 = 0 0

00

j j i j
ij dx dx

γ γ
γ

γ
 

− 
 

. 

 
 It results from this that the quadratic form ds2 determines a Riemannian metric on V4 
that is of hyperbolic normal type.  The quantities: 
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(17-4)     gij = γij − 
00

00

γ
γγ jj  

 
are the components of an intrinsically-defined tensor on V4.  The associated contravariant 
tensor is gij = γij . 
 In what follows, we will always assume that the quotient manifold V4 and the section 
W4 are endowed with the structure of a Riemannian manifold that is defined by ds2 (17-
3). 
 
 
 18. – The electromagnetic field tensor. – In V5, we consider the vector ξλ and the 
vector ϕλ , which is collinear to it and is defined by: 
 

(18-1)    β ϕλ = − 
00

0
2 γ

γ
ξ
ξ λλ =     (β ϕ0 = 1), 

 
in which β denotes a numerical constant whose value we shall ultimately fix.  The ϕi 
define a covariant vector field on W4, and, up to a change of gauge, these quantities 
transform according to the formula: 
 
(18-2)    i i iβ ϕ β ϕ ψ′= + ∂ . 

 
 The rotation Fλµ of ϕλ is such that: 
 
(18-3) F0λ = 00 ϕϕ λλ ∂−∂ = 0, 

 
and, from (18-2), the Fij are invariant under change of gauge, so they intrinsically define 
a tensor on V4.  The vanishing of this tensor says that the trajectories z(x) are orthogonal 
trajectories to the local sections. 
 In summation, we find an intrinsically-defined scalar ξ, a metric of hyperbolic normal 
type: 
(18-4) ds2 = gij dxi dxj, 
 
and an antisymmetric tensor Fij on the manifold V4.  Other than these elements, a vector 
field ϕi is defined on each W4 (which is canonically homeomorphic to V4) such that one 
one has: 
(18-5)  gij = γij – β2 γ00 ϕi ϕi = γij + β 2 ξ2 ϕi ϕj , Fij = ijji ϕϕ ∂−∂ . 

 
 We are therefore led to identify the quotient manifold V4 endowed with the metric 
(18-4) with the spacetime of general relativity, so the tensor gij becomes the gravitational 
tensor.  The non-canonical reciprocal image on V4 of the covariant vector field ϕi that is 
associated with a section of V5 may be interpreted as the electromagnetic vector-
potential; under a change of the system of sections, this image is found to be transformed 
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according to (18-2), which is none other than a change of gauge in the initial sense (1).  
By abuse of language, we say that the vector ϕi is the vector-potential.  The tensor Fij, 
which is intrinsically-defined on V4, must then be interpreted as the electromagnetic field. 
 
 

II. – THE FIELD EQUATIONS IN V5 
 
 19. – The system of field equations. – Having specified the geometrical context of 
our theory, the next step for us to make consists of choosing a system of “field equations” 
− i.e., a tensorial system of partial differential equations that refer to the potentials γαβ − 
and to relate these potentials to the mass and charge distributions in spacetime. 
 The most natural idea consists of formally generalizing the Einstein equations of 
general relativity, and to set: 
(19-1) Sαβ = Θαβ , 
 
in which Sαβ and Θαβ are two symmetric tensors.  The tensor Θαβ must describe, at best, 
the state of the distribution of masses and charges at the points of V5 (interior, unitary 
case), so that in the regions of V5 that do not contain any such distribution, it must be 
identically zero (exterior, unitary case).  Naturally, Θαβ is zero in the region that is 
envisioned when one finds oneself in the presence of a gravitational and electromagnetic 
field, but in the absence of masses and charges; that will define an essential difference 
with the energy-momentum tensor of classical general relativity, which is non-zero in the 
presence of an electromagnetic field. It is the pure electromagnetic field schema of 
general relativity that corresponds to the exterior, unitary case here.  We shall return to 
the choice of this right-hand tensor Θαβ in a later part of this chapter. 
 As for the tensor Sαβ that depends only upon the structure of the Riemannian 
manifold V5, it is natural to restrict it with the same conditions as in general relativity. 
 
 1.  The components Sαβ do not depend on their potentials and their derivatives of the 
first two orders, and are linear with respect to the second order derivatives. 
 
 2.  The tensor Sαβ satisfies the “conservation conditions or identities:” 
 
(19-2) γαβ Dα Sαβ = 0, 
 
in which Dα denotes the covariant derivative operator for the Riemannian connection of 
V5 (we reserve the notation ∇ for the covariant derivative operator for the connection on 
the spacetime V4). 
 
 The existence of such conservation identities is, as we saw in detail apropos of 
general relativity, intimately related to the fact that the arbitrary local coordinate changes 
make it possible to restrict five of the conveniently-chosen potentials to take given local 
values, and that the system (19-1) must not be over-determined under these conditions.  

                                                
 (1) See I, sec. 20. 
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Indeed, such conservation identities, which are related to the possibility of adopting 
arbitrary local coordinates, must exist in any field theory. 
 Cartan’s theorem (1) shows that the preceding conditions imply that we must take Sαβ 
to be a tensor of the form: 

Sαβ = Rαβ − 2
1 γαβ (R + k), 

 
in which k is a constant that generalizes the cosmological constant.  In the sequel, we 
shall set k = 0.  Now, as we know, the equations in which k is a non-zero constant do not 
possess the gauge invariance that we introduced, due to the equations that we adopted (2).  
Henceforth, we set: 
(19-3) Sαβ = Rαβ − 2

1 γαβ R, 

 
and with these notations, the equations of the exterior, unitary case may be written: 
 
(19-4) Sαβ = 0. 
 
 Like the homologous quantities in general relativity, the quantities Sαβ in the left-hand 
side of the field equations can be constructed by starting with simple variational 
processes.  Since such processes play a fundamental role in the Einstein-Schrödinger 
theory, and in order to permit easy comparisons, we shall, in the course of the following 
two sections, specify the variational considerations that provide one of the points of 
departure for the Einstein-Schrödinger theory. 
 
 
 20. Variations of the curvature tensor. – Suppose that the Riemannian metric γαβ in 
a domain of V5 is varied in the sense of the calculus of variations, and denote the 
variation of γαβ by δγαβ ; the δγαβ are obviously the components of a symmetric tensor.  
This variation of the metric tensor results in a variation of the components λµνΓ  of the 

Riemannian connection, which are variations that we shall denote by λ
µνδΓ . 

 It is well known that under a change of local coordinates )( βαα xxx ′=′  the 

components λ
µνΓ  of a connection transform according to the formula: 

 
(20-1)    ρ

νµ
λ
ρ

α
γβ

γ
ν

β
µ

λ
α

λ
µν

′
′

′
′′

′′
′ ∂+Γ=Γ AAAAA , 

 
in which one has set: 

α

λ
λ
α ′′ ∂

∂=
x

x
A ,  µ

β
β
µ

x

x
A

∂
∂=

′

. 

 
 One deduces from (20-1) that: 

                                                
 (1) See I, sec. 3. 
 (2) Nevertheless, it is not completely without interest for us to study the structure of the equations with a 
non-zero constant k on W4 . 
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(20-2)      α
γβ

γ
ν

β
µ

λ
α

λ
µν δδ ′

′′
′′

′ Γ=Γ AAA , 

 
and therefore the λ

µνδΓ  are components of tensor that is once contravariant and twice 

covariant.  Moreover, one will note that the operator δ commutes with the ordinary partial 
derivative with respect to a local coordinate. 
 It is easy to obtain the corresponding variations of the curvature tensor and the Ricci 
tensor.  One deduces from the explicit expression: 
 

ρ
αµ

λ
ρβ

ρ
αβ

λ
ρµ

λ
αµβ

λ
αβµµβα

λ ΓΓ−ΓΓ+Γ∂−Γ∂=,R , 

by variation, that: 
 

λ
ρβ

ρ
αµ

ρ
αµ

λ
ρβ

λ
ρµ

ρ
αβ

ρ
αβ

λ
ρµ

λ
αµβ

λ
αβµµβα

λ δδδδδδδ ΓΓ−ΓΓ−ΓΓ+ΓΓ+Γ∂−Γ∂=,R . 

 
 We calculate the covariant derivatives of the tensor λ

µνδΓ .  They are: 

 
λ

αρ
ρ
βµ

ρ
αµ

λ
ρβ

ρ
αβ

λ
ρµ

λ
αβµ

λ
αβµ δδδδδ ΓΓ−ΓΓ−ΓΓ+Γ∂=ΓD , 

and similarly: 
λ

αρ
ρ
βµ

λ
ρµ

ρ
αβ

ρ
αµ

λ
ρβ

λ
αµβ

λ
αµβ δδδδδ ΓΓ−ΓΓ−ΓΓ+Γ∂=ΓD , 

 
if we take the symmetry of Γ in its lower indices into account.  Upon subtracting term-
by-term, we will get(1): 
(20-3)     λ

αµβ
λ

αβµµβα
λ δδδ Γ−Γ= DDR , . 

 
 Upon contracting over the indices λ and µ, one obtains the variation of the Ricci 
tensor: 
(20-4)     λ

αλβ
ρ

αβραβ δδδ Γ−Γ= DDR . 

 
Multiplying by γαβ leads to an interesting relation.  Since Dρ γαβ = 0, we first obtain: 
 

)()( λ
αλ

ρα
ρ

ρ
αβ

αβ
ραβ

αβ δγδγδγ Γ−Γ= DDR . 

 
 We are then led to introduce the vector: 
 

λ
αλ

ραρ
αβ

αβρ δγδγ Γ−Γ=A . 

 We will thus obtain: 
(20-5)     ρ

ραβ
αβ δγ ADR = , 

 
and the scalar that appears in the left-hand side is expressed as the divergence of a vector. 

                                                
 (1) The preceding calculations are much simpler in normal coordinates.  However, we are ultimately led 
to make analogous calculations in the absence of normal coordinates. 
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 21. – The variational principle.  – Consider a five-dimensional, differentiable chain 
C in the manifold, and vary the metric in such a way that the variations of the potentials 
and their first covariant derivatives are zero on the boundary C∂  of the chain.  As a 
result, the α

βγδΓ  will also be zero on this boundary.  We propose to study the 

corresponding variation of the integral: 
 

(21-1)    
0 4

C
I dx dx= ∧ ∧∫ ⋯L , 

 
in which L is the tensor density: 

 

(21-2) L = Rαβ γαβ ||γ . 

 
 The differential element is therefore a 5-form R dτ that is the product of the volume 
element dτ on V5 with the scalar Riemannian curvature R.  By variation, one obtains: 
 

0 04 4| | ( | | )
C C

I R dx dx R dx dxαβ αβ
αβ αβδ δ γ γ δ γ γ= ∧ ∧ + ∧ ∧∫ ∫⋯ ⋯ . 

 
 Now, from formula (20-5), one has: 
 

0 4| | flux 0CC
R dx dxαβ

αβδ γ γ ∂∧ ∧ = =∫ A⋯ , 

 
since Aρ = 0 on the boundary ofC∂ .  On the other hand: 
 

1 1
2 2

| |

| |
λµ λµ

λµ λµ
δ γ γ δγ γ δγ

γ
= = − . 

 
 One deduces from this that: 
 

1
2( | |) [ ] | |R R Rαβ αβ αβ λµ

αβ αβ αβ λµδ γ γ δγ γ γ δγ γ= − , 

 
so, upon changing the names of the indices in the second term in the brackets, we will 
get: 

1
2( | |) ( ) | |R R Rαβ αβ

αβ αβ αβδ γ γ δγ γ= − . 

 
 Therefore, the variation in question becomes: 
 

(21-3)    
0 4| |

C
I S dx dxαβ

αβδ δγ γ= ∧ ∧∫ ⋯ . 

 
On the other hand, from a well known formula concerning the differentiation of γαβ: 
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λµ
βµαλαβ δγγγδγ −= . 

 
 If we substitute this in (21-3), we obtain: 
 

(21-4)   
0 4| |

C
I S dx dxλµ

λµδ δγ γ= − ∧ ∧∫ ⋯ . 

 
 If L is expressed with the aid of the γαβ then the tensor Sαβ will be related to the 

variational derivative of L for the variations envisioned by the relation: 

 

(21-5)    
1

| |
Sαβ αβ

δ
δγγ

= L
. 

 
Similarly, if L is expressed with the aid of the γαβ then: 

 

(21-6)     
1

| |
Sαβ

αβ

δ
δγγ

= − L
. 

 
 In order for I to be an extremum for such variations, it is necessary and sufficient that 
Sαβ = 0.  We may state: 
 
 THEOREM  – In the exterior, unitary case, the field equations may be characterized 
by the following variational principle: They define an extremum for the integral of the 
variations of the potentials over a five-dimensional, differentiable chain C, and their first 
derivatives will be zero on the boundary of C. 
 
 

III. – DEFINING THE EQUATIONS IN SPACETIME V4 
 
 22. – Case of a Vn+1 with a positive-definite metric.  Passing from an orthonormal 
frame to a natural frame. – Apropos of the theory of stationary spacetimes in general 
relativity, we have been led to study a Riemannian manifold of arbitrary dimension Vn+1 
that admits a 1-parameter group of isometries and satisfies the same hypotheses as V5.  
We have denoted the manifolds that are homologous to V4 and W5 by Vn and Wn.  Since 
the calculations are purely local, they have been carried out while supposing that Vn is 
reduced to a neighborhood.   Finally, in order for these calculations to be easily adaptable 
to the various hypotheses on the signature of the metric of Vn+1 and the orientation of the 
trajectories of the isometry, they have been carried out while supposing that Vn+1 is 
endowed with a positive-definite metric.  We have therefore set: 
 

2 2 0 2 2( ) ( ) ( )i

i

d α

α
σ ω ω ω= = +∑ ∑   (α = 0, 1, …, n; i = 1, …, n) 
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in which the ω i are annulled along the trajectories, and perform the calculations in the 
adapted, orthonormal frame that corresponds to these (ωα) (1). 
 

dx = dxα  eα = ωα eα . 
 
 Since the ω i are local Pfaff forms with respect to the dxi, one will have: 
 
(22-1)   ϕ 0 = ξ (dx0 + β ϕi dxi) ,  ωi = ji

j dxA  

 
upon substituting the quantities βϕ i for the ϕ i in I, sec. 65. 
 We denote the inverse matrix to )( i

jA  by )( i
jA .  One has: 

 
(22-2)     ii

j
i Adx ω= , 

 
and the passage from local coordinates to the orthonormal frames that are associated with 
the forms (ω i) on Vn or Wn is performed with the aid of the matrices )( i

jA  and )( i
jA . 

 If ϕ i represents the components of the vector-potential relative to the ω i, then one 
has: 

(22-3)     
0

0 i
idx

ω β ϕ ω
ξ

= − . 

 
 Therefore, the passage from the natural frame to orthonormal frame in Vn+1 is 
performed with the aid of the matrices )( α

βA , )( α
βA  whose purely Latin part was just 

introduced and whose other elements are given by: 
 

ξ=0
0A , iiA ξβϕ=0 , 00 =iA , 

and: 

ξ
10

0 =A , iiA βϕ−=0 , 00 =iA . 

 
 
 23. – Components of the Ricci tensor and the Einstein tensor for Vn+1 in an 
orthonormal frame. – Let ijR̂  be the Ricci tensor of the manifold Vn and let ijŜ  be its 

Einstein tensor.  We denote the covariant derivative operator on Vn by ∇i and the 
Laplacian of ξ in Vn by ∆.  Under these conditions, if one substitutes β Fij for Fij in 
formulas I (69-5) then they will take the form: 

                                                
 (1) See I, sec. 66 and following. 
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(23-1)  

2 2

3
0 2

2 2
2

00

1ˆ ( ),
2

( ),
2

1
,

2

k
ij ij i jk j i

j
i j i

R R F F

R F

R F

β ξ ξ
ξ

β ξ
ξ

β ξξ
ξ


= − − ∇ ∂




= ∇



= − ∆ +


 

with: 

(23-2)     kl
kl FFF

2

12 = , 

 
in which the different components that were introduced are defined relative to the 
orthonormal frame and the ^ sign is defined relative to Vn . 
 From formulas (23-1), one easily deduces the expression for the components of the 
Einstein tensor Sαβ in an orthonormal frame with the aid of tensors that are intrinsically 
defined on Vn .  One has: 

RRS αβαβαβ δ2
1−= , 

and, on the other hand: 
R = 00

00RRij
ij δδ + . 

 
 Therefore, from (23-1), one has: 
 

(23-3)    ξ
ξ

ξβ ∆−−= 2

2
ˆ 2

22

FRR . 

 
 From this, one deduces the expression for the different components of αβS : 

 

(23-4)  

2 2
1
2

3
0 2

2 2 2
00

1ˆ [ ( ) ],
2

( ),
2

1 3ˆ .
4

kl k
ij ij ij kl i jk j i ij

j
i j i

S S g F F F F g

S F

S R F

β ξ ξ ξ
ξ

β ξ
ξ

β ξ
ξ


 = + − − ∇ ∂ − ∆  




= ∇



= − +


 

 
 We note that the left-hand sides of (23-1) and (23-4) involve only tensors that are 
defined intrinsically on Vn, and as a result, they themselves will define intrinsic tensors on 
Vn .  We let Pij denote the symmetric tensor field on Vn whose components in the 
orthonormal frame are Pij = Sij ; similarly, we let Qi designate the covariant vector field 
on Vn whose components are in the orthonormal frame are Qi = Si0 .  Finally, the left-hand 
side of the last equation in (23-4) is a scalar L that is defined on Vn , and in the 
orthonormal frame it will equal: L = S00 . 
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 24. – Divergence formulas on a section Wn . – Suppose that Vn+1 is referred to an 
adapted system of local coordinates, and let Wn be a section that is referred to this system.  
With the aid of formulas (23-1), it is possible to evaluate the components 00R  of the Ricci 

tensor in the natural frame that is associated with these local coordinates.  In the 
difference of the tensors that appear in (23-1) and (23-4), the quantity 0

0R  presents a 

scalar character precisely on Wn, but not gauge invariance, and, as a result, it will not 
constitute an intrinsically-defined scalar on Vn . 
 One deduces from the classical tensorial transformation formulas that: 
 

0 0
0 0R A A Rβ α

α β= , 

 
in which the A are given by the results of sec. 22.  Since iA0  = 0, 0

0A  = ξ, we will get: 

 
0 0
0 0R A Rα

αξ= , 

or, more specifically: 
(24-1)     0 0

0 0 0
i

iR R Rξβ ϕ= − . 

 
 Since the metric on Vn+1 is positive-definite, one will have 00

0
0 RR = , 00 i

i RR = .  It will 

then be possible to evaluate the left-hand side of (24-1) with the aid of formulas (23-1).  
A calculation that does not differ from the one in I, sec. 71 will give: 
 

(24-2)    ]
2

[
1 22

0
0 i

k
kij

ij FgR ϕξβξ
ξ

+∂∇−= . 

 
 We are therefore led to introduce the vector field h on Wn, which is defined by: 
 

(24-3)    l
k

kii Fh ϕξβξ
2

22

+∂= , 

and we will get: 

(24-4)    0
0

1
divR

ξ
= − h , 

 
in which the divergence is evaluated on the Riemannian manifold Wn that is endowed 
with the metric ds2. 
 It is possible to deduce another interesting divergence formula from this formula, 
which does not differ from the one in I, sec. 74.  One has: 
 

000000
2

00
0
0

0
000 RRRAAR γξ ===  

 
for the component R00 of the Ricci tensor relative to the natural frame. 
 Upon evaluating the difference: 
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i
i RR

R
0

0
0

00

00 βϕ
γ

=− , 

 
with the aid of the last formulas of (23-1) and (24-2), one obtains: 
 

(24-5)    
2 2

2
0 2 2
i ij k

i j k iR F g F
βξ βξξ ϕ ϕ 

− = − ∇  
 

. 

 
 If we introduce the vector field p on Wn , with the components: 
 

(24-6) pi =
k

ik Fϕβξ
2

3

, 

then we will get the formula: 

(24-7)    
2

2
0 div

2
i

i R F
βξξ ϕ − = − p , 

 
in which the divergence is again evaluated on the Riemannian manifold Wn . 
 
 
 25. – Applications to the manifold V5 with isometry trajectories that are oriented 
so that dσ2 < 0. – Recall the manifold V5, which admits the metric of the hyperbolic 
normal type: 
(25-1)   dσ2 = − (ω0)2 + [(ω0)2 − (ω1)2 − (ω2)2 − (ω3)2], 
 
(in adapted orthonormal frames), in which the (ω i) are zero along the trajectories of the 
isometries: 
(25-2) i i j

jA dxω = , 

 
and in which, from (17-2) and (18-1): 
 

(25-3)  0 0 0 000
00 0

1
( ) ( ) ( )i i i

i i idx dx dx dx dx dx
γω γ γ β ϕ ξ β ϕ

ξ ξ
= − + = − + = + . 

 
 Without modifying the local coordinates, we deduce a quadratic form from (25-1) 
that is the sum of five squares by performing the following transformation on the Pfaff 
forms: 
(25-4)   ϖA = iωA  (A = 0, 1, 2, 3) , ϖ 4 = ω 4, 
 
and we express the metric in the new form: 
 

∑=
α

αϖσ 22 )(d . 
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 In this new form, we may apply the formulas that were recalled or established in the 
course of the last three sections.  Now, the components relative to the elliptic form of the 
metric (i.e., relative to the ϖα) are deduced from those relative to the hyperbolic form 
(i.e., relative to the ωα) by the following rule: Any contravariant index A = 0, 1, 2, 3, 
corresponds to multiplication by i, and any covariant index A corresponds to 
multiplication by – i; the index 4 corresponds to multiplication by 1.  Moreover, since: 
 

0 0( )i
idx dxϖ ξ β ϕ= + ,  ω0 = ξ (dx0 + β ϕi dxi), 

 
one deduces that ξξ i= and, as a result, 00

22 γξξ =−= . 

 We are therefore led to write the formulas of sec. 22, 23, 24 in barred notation and, 
thanks to the preceding rule, to transform them in such a way that we obtain formulas that 
are valid for V5 and its isometry trajectories that are oriented so that dσ2 < 0.  One first 
confirms that the formulas of sec. 22 that relate to the passage from an adapted, 
orthonormal frame to an adapted, natural frame and its inverse transformation do not 
suffer any modification. 
 When formulas (23-1) are transformed by the preceding rule, they will take a form 
that we will use from now on: 
 

(25-5)  

2 2

2
0 2

2 2
2

00

1ˆ ( ),
2

( ),
2

1
,

2

k
ij ij i jk j i

j
i j i

R R F F

R F

R F

β ξ ξ
ξ

β ξ
ξ

β ξξ
ξ


= + − ∇ ∂




= − ∇



= ∆ +


 

with: 
2 1

2
kl

klF F F= . 

 
 We note that F2 is no longer necessarily positive-definite or zero. 
 Similarly, when formulas (23-4) are transformed by our rule, they will become: 
 

(25-6)  

2 2
1
4

3
0 2

2 2 2
00

1ˆ [ ( ) ]
2

( )
2

1 3ˆ .
2 4

kl k
ij ij ij kl i jk j i ij

j
i j i

S S g F F F F g

S F

S R F

β ξ ξ ξ
ξ

β ξ
ξ

β ξ


 = − − − ∇ ∂ − ∆  




= − ∇



= +


 

 
 Finally, we transform the divergence formulas that were given in sec. 24.  After 
transformation, formula (24-2) will become: 
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(25-7)   ]
2

[
1 22

0
0 i

k
kij

ij FgR ϕξβξ
ξ

−∂∇−= . 

 
 One deduces from this that upon introducing the vector h of W4 with the covariant 
components: 

(25-8)    l
k

kii Fh ϕξβξ
2

32

−∂= , 

they will become: 

(25-9)    0
0

1
divR

ξ
= − h , 

 
in which the divergence is evaluated on the Riemannian manifold of hyperbolic normal 
type W4 . 
 Similarly, when the transformation is performed on formula (24-5), it will give: 
 

2 2
2

0 2 2
i ij k

i j k ii R i F i g F
βξ βξξ ϕ ϕ 

+ = ∇  
 

; 

 
namely, upon dividing by i and introducing the vector field p on W4 whose covariant 
components are: 

(25-10) pi =
k

ik Fϕβξ
2

3

, 

the relation: 

(25-11)   
3

2
0 div

2
i

i R F
βξξ ϕ + = p , 

 
in which the divergence is evaluated under the same conditions. 
 
 
 26. – Formulas in local coordinates. – Conforming to a remark in sec. 23, the left-
hand sides of equations (25-6) define a symmetric tensor field P, a covariant vector field 
Q, and a scalar L on V4, respectively.  The components of the vector field and tensor field 
in local coordinates are immediately expressed with the aid of their components in 
orthonormal frames, i.e., ijS  and 0iS .  They become: 

 
(26-1) Pij = k l

i j klA A S , 

and: 
(26-2) Qi = 0

k
i kA S . 

 
 Upon referring all of the tensors that we have defined on V4 to local coordinates, one 
will deduces from this that: 
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(26-3)  

2 2
1
4

3
2

2 2 2

1ˆ [ ( ) ],
2

( ),
2

1 3ˆ .
2 4

kl k
ij ij ij kl i jk j i ij

j
i j i

P S g F F F F g

Q F

L R F

β ξ ξ ξ
ξ

β ξ
ξ

β ξ


 = − − − ∇ ∂ − ∆  




= − ∇



= +


 

with: 
kl

kl FFF 2
12 = . 

 
 One will note that i

k
li

kl
li

kl
i

k FFFgF λ
λγγ === , since gkl = γkl and F0i = 0.  It is 

therefore pointless to indicate whether the components of the electromagnetic field tensor 
are mixed or contravariant and whether this tensor field is defined on V5 or V4 . 
 Similarly, the vectors h and p that appear in the divergence formulas may be defined 
by their components in local coordinates: 
 

(26-4)    k
ikii Fh ϕξβξ

2

32

+∂= , 

and: 

(26-5) pi =
k

ik Fϕβξ
2

3

. 

 
 
 27. The field equations in the exterior, unitary case. – In the exterior, unitary case, 
the field equations on V5 translate into the fifteen equations: Sαβ = 0.  It is possible to 
specify them with the aid of the tensors that were defined on V4 or W4 in several ways 
that might possibly be interesting. 
 
 a)  First of all, in orthonormal frames, one has the system: 
 
(27-1)   0=ijS , 00 =iS , 000 =S , 

 
or, in an equivalent manner, in adapted, local coordinates: 
 
(27-2)   Pij = 0,  Qi = 0,  L = 0, 
 
in which the values of the left-hand sides are given by (25-6) and (26-3).  One will note 
that Pij is distinct from the components of Sij and Sαβ in local coordinates.  On the 
contrary, one will have Pij = Sij, since: 
 
(27-3)   ij i j kl i j kl ij

k l k lP A A P A A S S= = = . 
 
 On the other hand, upon performing a change of frame, one will get: 
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0 0 0 0
0

1i i j i jk i ik
j j k kS A A S A A S Q Sβ ϕ

ξ
= + = −  . 

 
 One deduces from this that: 
 
(27-4) Qi = ξ (Si0 + β ϕk S

ik). 
 
The introduction of the components Sij, Si0, S00 on V4 would give only complicated 
expressions that are of no interest. 
 
 b)  One may substitute the following system for the system (27-1): 
 
(27-5)   0=ijS , 00 =iR , 000 =R , 

 
which is equivalent to it.  As far as notation is concerned, this system differs from (27-1) 
only in its fifteenth equation.  In order to establish the equivalence of (27-5) with the 
system (27-1), we first evaluate the scalar S, which is the contraction of Sαβ, as a function 
of R. 
 One deduces from the relation: 

RRS αβαβαβ γ2
1−= , 

the relation: 
(27-6)     RRRS 2

3
2
5 −=−= . 

 
 Now we seek to evaluate 00S  as a function of 00R  for a solution of the first ten 

equations ijS  = 0 that are common to the two systems.  For such a solution: 

 

0000
00 SSSS ij

ij −=+= γγ . 

 Now: 

003
1

003
1

002
1

00002
1

0000 SRSRRRRRS +=−=+=−= γ . 

 
 One deduces from this that: 

003
2

00 SR =  

 
for any solution of the ten equations that we envision, which assures the equivalence of 
(27-1) and (27-5). 
 In adapted, local coordinates, the system (27-5) will correspond to the system: 
 
(27-7)    Pij = 0,   Qi = 0, 
and: 

(27-8)     0
2

1 2
22

=+∆ F
ξβξ

ξ
. 
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  c) Finally, it is possible to substitute the equation0
0R  = 0 for the fifteenth equation of 

system (27-5), namely (27-8), relative to an adapted system of local coordinates.  In 
equation (24-1), which is valid without any hypothesis on the signature: 
 

i
i RRR 0

0
0

0
0 ϕξβ−= , 

and which may be written: 
i

i RRR 0
0
0

0
0 ξβϕ−−=  

 
with the adopted signature, one sees that for any solution of the equations 00 =iR  the 

equations 0
0R = 0 and 000 =R  will be equivalent.  One deduces from this that one may 

substitute the equation: 
(27-9)     div h = 0 
 
for (27-8), which is an equation that is equivalent for a solution of 00 =iR . 

 Finally, one will note that one will have the relation: 
 

(27-10) div p = 2
2

2
F

βξ
, 

 
as a consequence of the field equations in the exterior, unitary case. 
 
 
 28. – The equations of the Kaluza-Klein theory. – The equations of the Kaluza-
Klein theory are deduced from the preceding calculations immediately.  In that theory, 
the geometric context is the one that we specified in first part of this chapter, but with the 
supplementary hypothesis that the trajectories of the isometry group of V5 must be 
geodesics of this manifold that are oriented such that dσ2 < 0, and that as a result γ00 = 
constant in local coordinates, or, in an equivalent manner, ξ = constant.  We may choose 
the infinitesimal generator ξξξξ in such a way that ξ = 1.  As a result, γ00 = −1. 
 Conforming to the variational processes that were indicated in sec. 21, the field 
equations will be obtained by annulling the variation of the integral: 
 

0 4| |
C

I R dx dxαβ
αβγ γ= ∧ ∧∫ ⋯  

 
for the variations of the potentials that preserve the fixed value γ00 = −1, and therefore 
annul their first derivatives on the boundary of C.  Since δγ00 = 0, one obtains from (21-
4): 

 0 4| |
C

I S dx dxαβ
αβδ δγ γ= ∧ ∧∫ ⋯  

 0 4 0 0 4
0| | 2 | |ij i

ij iC C
S dx dx S dx dxδγ γ δγ γ= − ∧ ∧ − ∧ ∧∫ ∫⋯ ⋯ . 
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 From this, one deduces that in the Kaluza-Klein theory, the field equations may be 
written: 
(28-1)    Sij = 0,  Si0 = 0. 
 
 By virtue of (27-3) and (27-4), this system is equivalent to the system of 14 
equations: 
(28-2)    Pij = 0,  Qi = 0. 
 
 If one sets ξ = 1 in the expressions (26-3) for the left-hand sides then one will obtains 
explicitly: 

(28-3)   
( )

2
1
4

ˆ ,
2

0,

kl k
ij ij kl i jk

j
j i

S g F F F F

F

β
= −


 ∇ =

 

 
which are equations that will coincide rigorously with those of the provisional theory of 
electromagnetism for the pure electromagnetic field (sec. I) if one sets: 
 

(28-4)     
2

2β
= χ0 , 

 
in which χ0 will henceforth denote Einstein’s gravitational constant (a constant that was 
denoted by χ in I).  Except for the formalism that was employed, the “projective” theories 
that were due to Veblen, Hoffman, and Pauli (1), respectively, do not differ from the 
preceding penta-dimensional theory, which was due to Kaluza and Klein, in substance. 
 One therefore confirms that in order to deduce the equations of electromagnetism in 
classical general relativity from the Jordan-Thiry equations, it will suffice to suppress the 
fifteenth equation (27-8), and to give the value 1 to ξ in the remaining 14 equations (27-
7). 
 
 

IV. – THE EQUATIONS OF THE INTERIOR CASE. 
PHYSICAL INTERPRETATION OF THE THEORY  

 
 

 29. – The equations of the interior, unitary case and conservation conditions in 
V5 . – The tensor on the right-hand side of the equation Θαβ that we will now introduce is 
intended to represent the distribution of the masses and charges at the spacetime point 
envisioned.  We suppose that this tensor formally generalizes the energy-momentum 
tensor of classical general relativity in the absence of an electromagnetic field.  Although 
it might be interesting to take the “perfect fluid” schema as our point of departure, here 
we confine ourselves to generalizing the “pure matter” schema of general relativity by 
setting: 

                                                
 (1) VEBLEN, Projektive Relativitätstheorie, Springer (1933); W. PAULI, Ann. d. Physik, 18 (1933), 
305-337. 



The field equations in V5 

 

195 

 

(29-1) Θαβ = r vα  vβ , 
 
in which r denotes a positive scalar, and vα  denotes a unitary vector on V5 (which is a 
vector that is oriented so that dσ2 > 0 and has square +1).  Moreover, one will note that 
the passage from the tensor (29-1) to the more complete tensor: 
 
(29-2) Θαβ = r vα  vβ − p γαβ  
 
is effected in the various equations that follow in a simple manner, and will lead to an 
analysis that is analogous to that of Part I, Chapter VI. 
 Once we have adopted the tensor (29-1), by reasoning that is analogous to that in I, 
sec. 45, we will easily establish that if X denotes the infinitesimal transformation that is 
generated by the isometry group then ee will necessarily have: 
 

Xr = 0,  Xv = 0, 
 
in which r and v are invariant under the transformations of the group; in adapted, local 
coordinates, r and the components vα of v will be independent of the variable x0.  The 
trajectories in V5 of the vector field v will be called the penta-dimensional streamlines. 
 One immediately deduces some simple consequences from the equations of the 
interior, unitary case: 

Sαβ = Θαβ , 
 
in which Θαβ is provided by (29-1).  Since the left-hand side tensor Sαβ satisfies the 
conservation identities, one will necessarily have: 
 
(29-2)     β

α
α ΘD =  Dα (r v

α vβ) = 0. 

 
 Upon developing (29-2), one will obtain: 
 
(29-3) Dα (r vα) vβ + r vα Dα vβ = 0. 
 
 Now, since vα is unitary, one will have: 
 
(29-4) vβ Dα  vβ  = 0. 
 
 Upon multiplying both sides of (29-3) by vβ and taking (29-4) into account, one will 
obtain the relation: 
(29−5) Dα (r vα) = 0, 
and (29-3) will reduce to: 
(29-6) vα Dα  vβ  = 0. 
 
 Equation (29-5) presents the aspect of a continuity equation; we shall interpret this 
equation in a moment.  As for equations (29-6), they say that the penta-dimensional 
streamlines are the geodesics of V5, when they are oriented so that dσ2 > 0.  We state: 
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 THEOREM  – The streamlines in the manifold V5 are the geodesics of that 
Riemannian manifold, which are oriented so that dσ2 > 0. 
 
 
 30. – The vector v and the unitary velocity vector of V5 . – From cylindricality, and 
by virtue of (8-1), the penta-dimensional streamlines, along which: 
 

α
α

σ
v

d

dx = , 

will be such that along one of them: 
 

γ00 v
0 + γ0i v

i = const. = h, 
namely: 
(30-1)     v0 = h. 
 
 Since γ00 = − ξ2 is negative, it will result from the considerations of sec. 8 and (8-5) 
that these penta-dimensional streamlines project onto V4 along lines – which are called 
spacetime streamlines −  that are oriented in time such that along one of these lines: 
 

(30-2)     22
2

2

1 dsd
h =







+ σ

ξ
, 

which is an extremal of the integral: 

(30-3)     













++∫ ϕβ

ξ
hds

hz

z 2

2

1
1

0

, 

 
in which ϕ designates the vector-potential form, for a choice of vector-potential. 
 Let ui be the unitary velocity vector, i.e., the unitary vector in the metric ds2 of V4 that 
is tangent to the spacetime streamlines.  Once one knows this vector, the scalar ξ, and the 
constant h, it is easy to determine the vector vα on V5 .  Indeed, along a streamline one 
has: 

ii
ii

i u
h

d

ds
u

d

ds

ds

dx

d

dx
v

2

2

1
ξσσσ

+==== . 

 
 If one passes to adapted, orthonormal frames then from the form of the relations for 
the frame change one will obtain: 

2

21i ih
v u

ξ
= + , 

which is equivalent to: 

(30-4)     
2

21i i

h
v u

ξ
= +  . 
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 On the other hand, one obviously has: 
 

0
0 0 0 0

1
v A v v

ξ
= = , 

namely: 

(30-5)     
ξ
h

v =0 . 

 
 We have therefore determined the components αv  of the vector we just introduced by 

starting with h, ξ, and the unitary velocity vector on V4. 
 
 
 31. – The electromagnetic tensors and the variation of the gravitational factor. – 
In an adapted, orthonormal frame, the equations of the interior, unitary case may be put 
into the following form: 
 

(31-1)  
2 2

1
4

1ˆ ( )
2

kl k
ij ij kl i jk j i ij i jS g F F F F g r v v

β ξ ξ ξ
ξ

 − − − ∇ ∂ − ∆ =  , 

(31-2)    
2

2
0

2
( )jj i iF r v v

ξξ
β

∇ = , 

(31-3)     2
000 )(vrS = . 

 
 We examine equations (31-2), to which we must add the constraint that the tensor ijF  

must be derived from a vector-potential.  The form of the equations (31-2) leads us to 
introduce inductions into the vacuum that are distinct from the field.  The tensor ijF  may 

be interpreted as representing the two space vectors of the magnetic induction B and the 
electric field E for the space and time that is associated with the orthonormal frame 
envisioned (I, sec. 3).  From Maxwell’s equations, one knows that the corresponding 
tensor always has zero exterior derivative.  Under the same conditions, the 
tensor ijij FH 2ξ=  will then be interpreted as representing the magnetic field H, and the 

electric induction D.  In order for this to be the case (1), it will be necessary and sufficient 
that we attribute a dielectric constant ε and a magnetic permeability τ such that: 
 

(31-4)   ε = ξ 3,   
3

1

ξ
τ =    (ετ = 1), 

 
which are quantities that vary slightly, in accordance with the field equations.  With these 
conditions, equations (31-2) take the form: 
 
(31-5)     ii

j
j JH =∇ )( , 

                                                
 (1) Cf. BECKER, Théorie des électrons, Alcan, (1938), pp. 358-365. 



The Jordan-Thiry theory 

 

198 

in which the electric current vector is currentlly given by: 
 

(31-6)     
2

0

2
i iJ r v v

ξ
β

= . 

 
 One knows (1) that a purely electromagnetic energy-momentum tensor corresponds to 

ijF  and ijH , and it is defined by: 

 

)(2
1

4
1

jk
k

ijk
k

i
kl

klijij HFFHFHg +−=τ , 

 
namely, since ijij FH 2ξ= : 

(31-7)    ( )jk
k

i
kl

klijij FFFFg −= 4
13ξτ . 

 
 We are therefore led to put equations (31-1) in the form: 
 

(31-8)   
2

2

2ˆ [ ( )]
2ij ij j i ij i jS g r v v
β τ ξ ξ
ξ β

= + ∇ ∂ − ∆ + , 

 
and to interpret the factor: 

(31-9)     
ξ
χ

ξ
βχ 0

2

2
== , 

 
as a “gravitational factor,” a variable that reduces to the value χ0 of Einstein’s 
gravitational constant for ξ = 1. 
 
 
 32. – Matter density and charge density. – A tensor on V4 that is proportional to 

i jv v  − hence, from (30-4), to i jv v  − appears in the last term of the right-hand side of (31-

8).  We are thus led to set: 
(32-1) r i jv v = χρ i jv v , 

 
in which ρ is the proper matter density.  Upon substituting the values of iv  and jv  that 

are inferred from (30-4), one will get: 

(32-2)     
2

21
h

rχρ
ξ

 
= + 

 
 ; 

 
namely, upon introducing χ0, instead of χ : 

                                                
 (1) SCHOUTEN, Tensor Analysis for Physicists, Oxford, (1951), pp. 225-226. 
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(32-3)     
2

0 21
h

rχ ρ ξ
ξ

 
= + 

 
. 

 
 Similarly, the expression (31-6) for the electric current vector leads us to set: 
 

(32-4)     
2

0

2
i i iJ r v v u

ξ µ
β

= = , 

 
in which µ is the proper charge density.  Upon substituting the values of iv  and 0v  that 

are inferred from (30-4) and (30-5), one will obtain: 
 

(32-5)     
2

2

2
1

h
hr

ξµ
β ξ

= + , 

namely: 

(32-6)     
2

21
h

hrχµ β
ξ

= + . 

 
 Upon dividing (32-6) by (32-2), one will obtain: 
 

(32-7)     
2

21

h
k

h

µ β
ρ

ξ

= =
+

, 

 
which is a formula that does not differ from (15-1), in essence.  With the notation k thus-
introduced, one sees that the spacetime streamlines − which are extremals of the integral 
(30-3) − will be extremals of the integral: 
 

(32-8)     
1

0

1z

z
ds

k
ϕ + 

 
∫ . 

 
 One will note that the sign of the constant h determines the sign of the charge density 
µ.  In the presence of matter and the absence of charge, one will have h = 0. 
 In summation, the first 14 equations of the interior, unitary case may be put into the 
form: 

(32-9)   ])(
2

[ˆ
2

0
jiijijijij uugS ρξξ

β
τ

ξ
χ

+∆−∂∇+= , 

 
(32-10) ∇j H

 j
i = µ ui , 

 
in which Hij = ξ3 Fij, and ijτ  is given by (31-7). 
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 As for the fifteenth equation, we may put it into a form that is convenient for 
calculating the value of 00R  when starting with the right-hand sides.  From (27-6), one 

has: 

Θ = R
2

3− . 

 One deduces from this that: 
 

Θ+=−=+= 3
1

002
1

00002
1

0000 SRSRSR γ . 

 Now: 

2

2
2

000 )(
ξ
h

rvrS == ,  Θ = r. 

 Therefore, one obtains: 









+=

2

2

00 3

1

ξ
h

rR , 

 
and from the expression(32-3) for r: 

2

2
0

00 2

2

1 3

3
1

h

R
h

χ ρ ξ
ξ

ξ

+
=

+
. 

 This results in the equation: 

(32-11)   

2

2
2 2

0 0 2

2

1 3
1

3
1

h

F
h
ξξ χ ξ χ ρ

ξ

+
∆ + =

+
. 

 
 One may deduce from this equation and the corresponding equation in the exterior, 
unitary case by an approximation method (upon whose details we shall not insist) that the 
variation due to ξ in spacetime remains numerically quite small, and that the same will be 
true for the variation due to k. 
 
 
 33. – Conservation conditions in V4 . −  The conservation conditions (29-5) and (29-
6) in V5 may be easily translated into spacetime V4 .  Equations (29-6) are expressed in V4 
by the fact that the spacetime streamlines are extremals of (30-3) and by the 
supplementary condition: 
(33-1) v0 = h. 
(33-2)  
 We now propose to translate the condition: 
 
(33-3) Dα (r vα) = 0 
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into V4 .  To that effect, we establish the following lemma (1), in which we systematically 
use adapted, orthonormal frames: 
 
 LEMMA  – If the vector field ηηηη on a manifold Vn+1 with a positive-definite metric that 
admits a one-parameter isometry group, is invariant under that isometry group, then the 
divergence α

αηD  of that vector field on Vn+1 can be expressed by starting with the 

divergence of the vector iηξ  in Vn by the formula: 
 

1
3 ( )j

jD α
αη ξ η= ∇ . 

 
 Indeed, in coordinates and an adapted frame, one has: 
 

03
1

0
0

00 ηηη == A , 

 
and since ηηηη is invariant under the isometry group, 0η  will be independent of the 

coordinate x0.  One deduces from this that: 
 

0 0η∂  = 0. 

 
 Having said that, one obtains from the expressions in I, (67-5) for the coefficients of 
rotation γλµν that: 

jjj
jDD η

ξ
ξ

ηγηηη
∂

=−∂== 000000
0

0 . 

 
 On the other hand, from the same formulas I,  (67-5): 
 

j
j

k
jkjjjjj

k
jkjjjjj

j
j DD ηηγηηγηγηηη ∇=−∂=−−∂== 0

0 . 

 
 One will also obtain: 

jjj
jD η

ξ
ξ

ηη α
α

∂
+∇= ; 

namely: 
(33-3)    )(3

1 j
jD ηξη α

α ∇= , 

which proves the lemma. 
 This formula (33-3), which was established for a positive-definite signature, remains 
valid by the rule of sec. 25 that permits us to translate it onto the manifold V5 that has a 
hyperbolic normal signature whose isometry trajectories are oriented so that dσ2 < 0.  In 
order to translate (33-2), we may thus apply this formula to the vector r vα αη =  on V5.  
Therefore, on V4, (33-2) translates into the relation: 
 

                                                
 (1) This lemma is completely related to the result that was established in I, sec. 72. 
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( ) 0i
i r vξ∇ = ; 

 
namely, upon substituting the values of ξ r and iv  that one infers from (32-3) and (30-4), 
one will get: 

0

2

2

0

1

i

i

u

h

χ ρ

ξ

 
 
 ∇ =
 
 + 
 

, 

 
which is a relation that may be written in local coordinates in V4 as: 
 

(33-4)     
2

2

0

1

i

i

u

h

ρ

ξ

 
 
 ∇ =
 
 + 
 

. 

 
 On the other hand, if one takes the contracted covariant derivative of both sides of 
(32-10) then one obtains the condition of the conservation of electricity: 
 
(33-5)     ∇i (µ ui) = 0. 
 
 On account of (33-4), this equation is equivalent to the fact that along a spacetime 
streamline: 

2

21 const.
hµ

ρ ξ
+ = , 

 
which is in accord with (32-7), since the value of the constant is βh.  On account of (33-
4), equation (33-5) will be, moreover, deducible from the condition v0 = h along a 
streamline.  Therefore, we have the fact that the spacetime streamlines are extremals of 
(32-8), and the two equations (33-4) and (33-5) form a set that is equivalent to the set of 
the five conservation conditions Dα Θα

β in V5 . 
 One will note that for ξ = 1 equations (32-9) and (32-10) reduce to: 
 

(33-6)     ijŜ  = χ0 (τij + ρ ui uj), 

(33-7) ∇j F
j
i = µ ui , 

 
in which τij is the classical energy-momentum tensor of the electromagnetic field.  As for 
equations (33-4) and (33-5), they may be written: 
 

∇i (ρ ui) = 0,  ∇i (µ ui) = 0. 
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 For ξ = 1 − i.e., in the case of the Kaluza-Klein theory − one sees that the equations 
that were described reduce to the equations of electromagnetism in general relativity for 
the “pure electromagnetic field-matter” schema in the case for which one admits the 
equations of Lorentz transport (see I, sec. 24).  Upon adopting a more complete tensor 
Θαβ, one may, moreover, obtain the equations of the “charged, perfect fluid” schema that 
were developed in I, Chap. VI. 
 The physical interpretation of the Jordan-Thiry equations that we just gave here 
differs very appreciably from the one that was suggested by those authors, and seems 
more satisfactory to us.  In the interpretation that was given by Jordan and Thiry, the 
introduction of a dielectric constant and a magnetic permeability, with the aid of ξ, was 
not envisioned, and the law of variation for the gravitational factor as a function of x was 
different.  The present interpretation, which seems to be in precise analogy with the 
viewpoint that was developed directly in electrodynamics by Born and Infeld, seems 
more interesting.  Here, we touch upon one of the essential difficulties that presents itself 
in the study of any unitary theory; it consists in the multiplicity of physical interpretations 
that may be assigned to “field equations” that were deduced from mathematical 
conditions, a priori. 
 
 
 
V. – THE CAUCHY PROBLEM AND THE GEODESIC PRINCIPLE 

 
 
 34. – The Cauchy problem in the exterior, unitary case. – In this section and the 
ones that follow, we will confine ourselves to local considerations.  We may, in turn, 
assume that the spacetime manifold V4 has been reduced to a neighborhood. 
 The Cauchy problem in spacetime that relates to the Jordan-Thiry equations (27-7) 
and (27-8) in the exterior, unitary case may be stated in the following manner: 
 
 PROBLEM  – If we are given the gravitational potentials gij , a vector-potential ϕi , 
and the scalar ξ, as well as their first derivatives, on a hypersurface S in V4 then how do 
we determine these quantities outside of S, assuming that they satisfy the Jordan-Thiry 
equations (27-7) and (27-8) for the exterior unitary case. 
 
 We assume that S is not tangent to the elementary cone of V4 and that if (xi) denotes a 
system of local coordinates of V4 then it will be represented locally by the equation x4 = 
0.  One will then have g44 ≠ 0 (here the variable x4 is not assumed to correspond to a 
specific orientation in space and time).  We assume that the values of gij, ϕi, ξ, and their 
derivatives ijg4∂ , iϕ4∂ , ξ4∂  are known on S.  These quantities, which are the “Cauchy 

data” of our problem, are assumed to be at least three times and twice-continuously 
differentiable with respect to the variables xu (u, v = 1, 2, 3), respectively.  One 
determines the values of iju g∂ , iuϕ∂ , ξu∂  on S by differentiation on that hypersurface. 

 Having said that, we assume that we are given the manifold V5 as the topological 
product V4 × T1.  If (xi) is a system of local coordinates on V4, and x0 is the canonical 
coordinate on the circle T1 then a point of V5 will admit the local coordinates (xi, x0), and 
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the manifolds x0 = const. will be the factor manifolds W4 of V5; the “trajectories” will be 
the factor lines xi = const. 
 Consider the hypersurface Σ in V5 that is generated by the projections of the 
trajectories onto the points of S.  Σ is defined locally in V5 by the equation x4 = 0 in the 
local coordinates envisioned.  From (18-1) and (18-3), the preceding Cauchy data on Σ 
will provide us with the values of the quantities: 
 
(34-1)   γ00 = − ξ2, γ0i = − β ϕi ξ2,  γij = − β2 ξ2ϕi ϕj , 
 
and their first derivatives, since these quantities are functions of only (x0).  One will note, 
moreover, that: 
(34-2) γ44 = g44 ≠ 0. 
 
 The following problem in V5 will therefore correspond to the problem that we initially 
posed: 
 
 PROBLEM  – If we are given the potentials γαβ(x

u) and their first derivatives 

λ∂ γαβ(x
u) on a hypersurface Σ in V5 that is generated by the trajectories then how do we 

determine the values of these potentials outside of Σ if we assume that they satisfy the 
Jordan-Thiry equations Sαβ = 0. 
 
 From (34-2), the hypersurface Σ is assumed to be non-tangent to the elementary 
cones of V5.  The values γαβ (x

u) and 4∂ γαβ (x
u) on Σ are the new Cauchy data.  The study 

that we made in general relativity, (I, sec. 14), leads us to replace the system Sαβ = 0 with 
the equivalent system that is formed by the union of the following two systems: 
 
(34-3)   RAB η − 2

1 γ44
44∂ γΑΒ + FAB = 0  (A, B = 0, 1, 2, 3), 

and 
(34-4)     04 =λS , 

 
in which the FAB and the 4

λS  do not contain any derivative of x4 with the index 2 and, in 

turn, admit values on Σ that are deduced from the Cauchy data by algebraic operations 
and differentiations on Σ. 
 We propose to study the values of the derivatives of order higher than the first on Σ.  
First of all, since γ44 ≠ 0, equations (34-3) will provide the values of the 44∂ γΑΒ (xu) on Σ.  

No equation contains the derivatives 44∂ γλ4 .  This fact is related to the existence of 
changes of local coordinates that conserve the numerical values of the coordinates at any 
point of Σ, as well as the Cauchy data, and they will be coordinate changes of the form: 
 

(34-5)   )]()([
6

)( 44
34

xx
x

xx λλλλ εϕ ++=′   (λ ′ = λ, numerically), 

 



The field equations in V5 

 

205 

 

in which ελ goes to 0 when x4 goes to 0.  The derivatives,(44∂ γΑΒ)Σ  will not be modified 

by such a change of coordinates, whereas the (44∂ γλ4)Σ can pick up an arbitrary function 
of (xu).  Upon using an adapted, local coordinate transformation of the type (34-5), in 
which the ϕi are different on either side of Σ, which is permitted by the structure of V5, 
one will see that one can make the possible discontinuities of these second derivatives 
appear or disappear, which are discontinuities that are devoid of any physical sense then.  
In particular, one may restrict the (44∂ γλ4)Σ to be continuous when they cross Σ for the 
admissible systems of adapted coordinates. 
 Up to this restriction, one sees that the second derivatives of the potentials are 
continuous upon traversing Σ.  The same conclusions may possibly be extended to the 
successive derivatives of the potentials by differentiating equations (34-3) with respect to 
x4.  At the conclusion of that operation, one will see only equations (34-3), to the 
exclusion of equation (34-4). 
 Having said that, we consider Cauchy data that satisfy the five conditions: 
 

Σ)( 4
λS = 0, 

 
and assume that we know a dσ2 that corresponds to these Cauchy data and satisfies 
equations (34-3).  It results from the conservation identities: 
 

Dα S
α

λ = 0 
 
that equations (34-4) are then satisfied outside of Σ.  The problem of integrating the 
Jordan-Thiry equations thus divides into two problems here: 
 
a) The search for Cauchy data that satisfy 4

λS = 0 on S. 

b) The integration of the system RAB = 0 for Cauchy data that satisfy the conditions of 
a). 

 
 Suppose for the moment (which is an abuse, of sorts) that all of the data real-analytic.  
With the aid of the Cauchy-Kowalewska theorem, one thus easily establishes that, up to a 
change of local coordinates and assuming that (34-5) preserves the coordinates and the 
Cauchy data at any point of Σ, the system (34-3) will admit one and only one cylindrical 
analytical solution γαβ (x

i). The coordinate change permits us to give arbitrary values to 
the γλ4 (x

i) outside of Σ that are compatible with the Cauchy data.  The corresponding 
“physical” theorem of existence and uniqueness has been established by Mme. Fourés 
under simple differentiability hypotheses. 
 It results from this study that the characteristic manifolds S of the Jordan-Thiry 
equations on V4 will always be manifolds that are tangent to the elementary cones of V4.  
Ihe characteristic manifolds Sc in V5 are the manifolds that are generated by the 
projections of the trajectories onto one Sc and are, in turn, tangent to the elementary cones 
of V5 .  In V4 and V5, these manifolds play the roles of wave surfaces of the unitary field, 
respectively.  It is the traversing of Σ that can produce discontinuities in the second 
derivatives of these potentials. 
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 In our penta-dimensional formalism, the phenomena that correspond physically to the 
pure electromagnetic field schema are completely analogous to the ones that appear in 
general relativity in the exterior case. 
 
 
 35. – The Cauchy problem in the interior, unitary case. – The Cauchy problem 
may also be posed in the presence of a non-zero right-hand side.  On the manifold V5, we 
are therefore led to the following problem: 
 
 PROBLEM  – If we are given the potentials γαβ (x

i) and their first derivatives 

4∂ γαβ(x
i) on a hypersurface Σ in V5 then how do we determine the values of these 

potentials, as well as those of r and vα, in a neighborhood of Σ, assuming that they satisfy 
the Jordan-Thiry equations Sαβ = r vα vβ . 
 
 The hypersurface Σ is always assumed to be non-tangent to the elementary cone of V5 
(γ44 ≠ 0).  From the relation: 

rSR 3
2

3
2 −=− , 

one deduces that: 
)( 3

1
2
1

αββααβαβαβ γγ −=+= vvrRSR . 

 
 The study we made in general relativity (I, sec. 18) led us to replace the initial system 
of the interior, unitary case with an equivalent system that is composed of the union of 
the following two systems: 
(35-1)    )( 3

1
44

44
2
1

ABBAABABAB vvrFR γγγ −=+∂−=  

and: 
(35-2)     λλ vrvS 44 = , 

 
in which FAB and 4

λS do not contain derivatives with respect to x4 with the index 2.  We 

agree to add the equation: 
(35-3) γλµ vλ vµ = 1 
 
and the inequality r > 0. 
 Any solution (γαβ, vλ, r) of this system will also satisfy equations (29-5) and (29-6), 
which express the conservative character of the tensor Θαβ .  These equations may be put 
into the form: 
(35-4)  vα Dα v

β = v4
4∂ vβ + Φβ (C.d., vλ , A∂ vλ) = 0 (C.d. = Cauchy data), 

 
(35-5)  Dα (r vα) ≡ v4

4∂ r + r 4∂ v4 + F(C.d., vλ , A∂ vλ , r, A∂ r) = 0. 
 
 Having said that, we assume that the Cauchy data γαβ (x

i) and 4∂ γαβ (x
i) are three and 

two-times continuously differentiable on Σ, respectively.  The values of the 4λS  will be 

determined on Σ once they are given.  It will then be possible to determine the values of r 
and the vλ on Σ.  From (35-2) and (35-3), one will first have: 
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4 2 4 4( )r v S Sλµ
λ µγ= . 

 
The right-hand side must therefore be positive.  We set: 
 

44
µλ

λµγ SS  = (Ω4)2 > 0, 

in such a way that: 
(35-6) r v4 = Ω4. 
 
 With the aid of (35-2), one deduces from this that: 
 

(35-7)   
4

4

Ω
= λ

λ
S

v , 
4

44
4

Ω
= S

v , 
44

24)(

S
r

Ω= . 

 
 One will note that the right-hand sides − and, in turn, the left-hand sides as well − 
depend only upon the variables (xu), which confirms the invariance of r and the vector v 
with respect to the group of isometries of V5 .  Since the scalar r must be positive, one 
must also have S44 > 0.  On the other hand, the Cauchy data determine the vλ up to sign, 
namely, the indeterminacy in the sign of Ω4.  We assume that this sign has been chosen 
once and for all. 
 Equations (35-1) then provide values for the derivatives 44∂ γαβ on Σ; Since S44 > 0 − 
and, in particular, it is non-zero − we have that v4 ≠ 0.  As a result, equations (35-4) and 
(35-5) will provide values for the derivatives4∂ vλ and 4∂ r on Σ, respectively.  It results 

from this that the quantities vλ , r, 44∂ γΑΒ , r, 4∂ vλ , 4∂ r will have well-defined values on 
a hypersurface S that satisfies the hypotheses we made and cannot be discontinuous when 
traversing Σ.  The same conclusions will possibly extend to the values of the higher 
derivatives of a solution (γαβ , vλ , r) on S by differentiating either (35-1) or (35-5) and 
(35-5) with respect x4. 
 One deduces the values of the quantities ui, ρ, µ on the hypersurface S in V4 
immediately from the values of r and vλ .  Since h = v0, the formulas of sec. 30 and 32 
will imply that: 
 

2
0
21

i
i v

u
v

ξ

=
+

,  







+=

2

2
01

ξ
χρ v

r , 
2
0

0 21
v

v rχµ β
ξ

= + . 

 
 Having said that, consider a set (γαβ , vλ , r) that satisfies equations (35-1), (35-4), and 
(35-5) in a neighborhood of Σ and equations (35-2) and (35-3) on Σ.  Because of the 
conservation conditions, an argument that is identical to the one that was made in I, sec. 
18 will show that (35-2) and (35-3) are then satisfied outside of Σ.  From the viewpoint of 
integrating equations (35-1), (35-4), and (35-5) that has preoccupied us, this fact will 
therefore suffice for us to establish that there again exists a “physically” unique solution 
to the Cauchy problem, provided that our are hypotheses are satisfied, namely: 
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γ44 ≠ 0,  (Ω4)2 = 4 4S Sλµ
λ µγ  > 0,  S44 > 0. 

 
 We now examine what sort of hypersurface Σ might produce discontinuities when 
one traverses it with a given interior, unitary field (r finite ≠ 0).  One will observe this 
phenomenon: 
 
a) When Σ is tangent to the elementary cone of V5 or is a characteristic manifold Sc (γ44 

= 0). 
 
b) When Ω4 = 0, which, from (35-6), entails that v4 = 0, and, in turn, 4

λS = 0.  The 

surface Σ will be tangent to a penta-dimensional streamline or will be generated by 
such streamlines. 

 
 If S44 = 0, with r remaining finite, then one will have Ω4 = 0, and one will come back 
to the preceding case.  Therefore, other than Σc, the exceptional hypersurfaces here will 
consist of the hypersurfaces Σ1 that are generated by the penta-dimensional streamlines.  
They will have corresponding hypersurfaces S1 in V4, along which u4 = 0; i.e., they will 
be generated by spacetime streamlines. 
 The phenomena that were studied here that correspond physically to the 
electromagnetic field-pure matter schema are therefore completely analogous in V5 to the 
ones that appeared in general relativity in the pure matter case. 
 
 
 36. – Matching conditions and the prolongation of the interior to the exterior. – 
We propose to present a model on a manifold V5 that involves several distributions that 
are connected to charged matter.  Each distribution generates a domain that is bounded by 
a hypersurface Σ.  On one side of Σ, there exists a cylindrical metric dσ2 that satisfies the 
Jordan-Thiry equations for the interior, unitary case.  In each of these domains, the 
potentials are continuous relative to an admissible coordinate system, as well as their first 
derivatives. 
 What happens when we traverse a hypersurface Σ?  Conforming to the general 
axioms of the theory (see sec. 16, a), we must impose the following conditions, which 
generalize the Schwarzchild conditions of general relativity. 
 
 MATCHING CONDITIONS.  – For any point x of S, there exists an admissible 
coordinate system whose domain contains x, and is such that the potentials that are 
defined by dσ2 relative to this system are continuous, as well as their first derivatives, 
when one traverses Σ. 
 
 Since the differentiable manifold V5, is twice-continuously differentiable, the 
potentials and their first derivatives are, of course, continuous for any admissible 
coordinate system and any point of V5 .  On the contrary, since the field equations take 
different forms on either side of Σ, the second derivatives of the potentials will be 
discontinuous upon traversing Σ. 
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 We give ourselves a dσ2 that corresponds to a domain that is bounded by a 
hypersurface Σ that is generated by the trajectories in the interior unitary case.   We 
propose to find under what condition there would exist an exterior dσ2 on the other side 
of Σ that agrees with the given interior dσ2, in the preceding sense, on Σ.  We say that we 
are treating the problem of prolonging the interior to the exterior. 
 Therefore, suppose that there exists such an exterior dσ2.  Since the hypersurface Σ is 
defined locally by x4 = 0 in an admissible adapted coordinate system, the quantities 4

λS  

that are associated with the exterior dσ2 are identically zero.  Now, their values on S 
depend upon only the potentials, their first derivatives, and their second derivatives with 
respect to x4 with an index that is at most 1.  From the matching of the interior dσ2 and 
the exterior dσ2, the quantities 4

λS  that are associated with the interior field must also be 

zero on Σ, and one will have: 
4 4 0r v vλ λΘ = =  

 
on Σ.  One deduces from this that Σ is necessarily such that: 
 

v4 = 0 ; 
 
i.e., that Σ, which is generated by trajectories, is also generated by the penta-dimensional 
streamlines of the interior field. 
 Conversely, assume that this is true.  Since the hypersurface Σ is generated by 
streamlines, it will admit tangent plane that cuts the elementary cone of V5 ; we say that it 
is time-oriented.  On the other hand, on Σ (x4 = 0), the quantities 4

λS  that are associated 

with the interior field are zero.  An exterior dσ2 that agree with the interior dσ2 on Σ is 
therefore a solution of the exterior Cauchy problem relative to Σ and the Cauchy data that 
are provided on Σ by the interior field, which are data that satisfy the conditions: 
 

4
λS  = 0 

 
on Σ.  One knows that under these conditions this problem will admit a physically unique 
solution locally. 
 We state: 
 
 THEOREM  – In order for the prolongation of the interior to the exterior when one 
traverse a hypersurface Σ that is generated by the trajectories of the interior field to 
admit a solution, it is necessary that Σ be generated by the penta-dimensional streamlines 
of the interior field.  That condition is sufficient for the local existence of an exterior 
solution. 
 
 
 37. – Geodesic principle in the Jordan-Thiry theory. – Suppose that there exists an 
interior, unitary field and an exterior, unitary field that agree on a hypersurface Σ, which 
is generated by trajectories.  The hypersurface Σ will then be generated by the penta-
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dimensional streamlines of the interior field, which are streamlines that are geodesics of 
the interior field, and which are oriented so that dσ2 > 0, and from the matching 
conditions, they will also therefore be geodesics of the exterior field that are oriented 
such that dσ2 > 0.  Thus, the hypersurface Σ will necessarily be generated by geodesics of 
the exterior field that are oriented so that dσ2 > 0. 
 We consider a small charged particle in a given exterior, unitary field.  In V5, this 
particle will describe a domain that is bounded by Σ and has a very small section in V4 
that is generated, on the one hand, by trajectories of V5, and, on the other hand, by 
exterior geodesics that are oriented such that dσ2 < 0.  If one passes to the limit and 
neglects the section in V4 then one will sees that S reduces to a two-dimensional surface 
in V5 that is always generated, on the one hand, by trajectories of V5, and, on the other 
hand, by geodesics of the exterior dσ2 that are oriented such that dσ2 > 0.  One will note 
that in order for this condition to be satisfied, it will suffice that the trajectories that 
generate Σ sweep out a geodesic Γ of the given exterior dσ2 that is oriented such that dσ2 
> 0.  Indeed, let x be a point of Σ, and let xΓ be the point of Γ that projects onto the same 
point as x on V4 .  Apply the canonical isometry of V5 that takes xΓ to x to Σ and Γ.  Σ is 
invariant under this isometry, and Γ is transformed into a geodesic of the same type that 
passes through x.  One sees that in order to determine the motion of a charged particle in 
V5, it will suffice to start with a geodesic of V5 that is oriented such that dσ2 > 0 and 
project it onto V4, conforming to the considerations of the preceding chapter.  We state: 
 
 GEODESIC PRINCIPLE  – The geodesics in V5 of an exterior unitary field that are 
oriented so that dσ2 > 0 may be interpreted as the penta-dimensional trajectories of 
charged particles in this unitary field. 
 
 One sees that, as in general relativity, this principle is a consequence of, on the one 
hand, the conservation conditions − i.e., the field equations − and, on the other hand, the 
matching conditions.  We therefore find ourselves in complete agreement with the 
statements of sec. 15. 
 

_________ 



CHAPTER III 
 

GLOBAL STUDY OF UNITARY FIELDS 
 
 

 38. – Global propositions in unitary theory. – In the Jordan-Thiry theory, a 
spacetime model consists of a Riemannian manifold V5 that the hypotheses of secs. 16 
and 19.  In particular, we note the following circumstances: 
 
  a)  In the domains of V5 that are swept out by a matter distribution – charged or not – 
and bounded by the frontier hypersurfaces Σ that are generated by the trajectories, the 
metric that describes the field will satisfy the Jordan-Thiry equations of the interior 
unitary case. 
 
  b)  In the domains of V5 that are not swept out by any matter distribution, the metric will 
satisfy the Jordan-Thiry equations of the exterior unitary case, viz., Sαβ = 0. 
 
  c) The potentials and their first derivatives will be continuous upon traversing a 
hypersurface Σ, in accord with the matching conditions. 
 
 Upon starting with this notion of a spacetime model, one will be led to look for 
hypotheses under which the following propositions are valid, and for the same reasons as 
in general relativity: 
 
 PROPOSITION (AU) – The introduction of a matter distribution – charged or not – 
into a given exterior, unitary field may be performed only in domains in which that field 
is not regular. 
 
 PROPOSITION (BU) – An everywhere-regular, exterior, unitary field is trivial. 
 
 By trivial , we mean a field that is described by a metric that is locally-Euclidean on 
V5, so its electromagnetic field will be zero, as well as the locally-Euclidian metric on V4 
(in such a way that one may say that the gravitational field is locally zero). 
 In this chapter, we propose to establish the preceding propositions in the case of 
stationary fields and under hypotheses that will be specified in detail along the way.  We 
commence by occupying ourselves with proposition (BU), which is both the more 
interesting one and the more delicate to achieve. 
 
 

I.  – STATIONARY, EXTERIOR, UNITARY FIELDS 
 
 39. – Notion of a stationary, unitary field. – In accord with the considerations that 
were developed in general relativity, a stationary, unitary field will be described by a 
Riemannian manifold V5 that satisfies the following hypotheses: 
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 a)  The manifold V5 is homeomorphic to the topological product of a manifold V4 of 
class C4 with a circle T1 under a homeomorphism of class C4.  It is endowed with a 
Riemannian metric of class C3 that is of the hyperbolic normal type: 
 
(39-1)    dσ2 = γαβ dxα dxβ   (α, β = 0, 1, 2, 4) 
 
and admits a global, one-parameter group of isometries whose trajectories, which are 
oriented so that dσ2 < 0, are the images of the factor lines.  One uses adapted coordinates 
(x0, xi) (i, j, … = 1, 2, 3, 4) such that the Killing vector ξξξξ, which is the infinitesimal 
generator of this isometry group admits the components: 
 

ξ0 = 1,  ξi = 0,    (i = 1, 2, 3, 4), 
 
and the sections x0 = const. will be images of the factor manifolds and, as a result, they 
will be homeomorphic to V4.  The γαβ will be functions of only the (xi) in these 
coordinates. 
 The quotient manifold V4 is endowed with the structure of a Riemannian manifold of 
class C3 and hyperbolic normal type by way of the quotient metric: 
 
(39-2)    ds2 = gij dxi dxj    (i, j = 1, 2, 3, 4), 
 
that was defined in sec. 17.  We find the intrinsically-defined scalar ξ and the 
antisymmetric tensor Fij on V4 .  If W4 denotes an arbitrary section that is associated with 
ξξξξ in a system of adapted coordinates then this manifold can be considered to be a 
Riemannian manifold with the metric (39-2).  Other than the preceding elements (or 
rather, their images), one finds the vector-potential ϕ i defined it. 
 
  b)  Let W4 (x

0 = 0) be a section of a well-defined system of adapted, local coordinates.  
We suppose that W4 admits a global, one-parameter group of isometries that leave the 
scalar ξ and the vector-potential ϕi invariant.  The manifold W4 is assumed to be 

homeomorphic to the topological product of a manifold V3 of class C4 and the real line R 

by a homeomorphism of class C4 in such a way that the group trajectories refer to the 
linear factors.  For a system of local coordinates (xi) on W4 (and, as a result, on V4), we 
choose a system of coordinates (xu, x4) (u, v = 1, 2, 3) that are adapted to the group action 
on W4.  The manifold V3 is endowed with the structure of a Riemannian manifold by the 
quotient metric of class C3: 
(39-3)     2 u v

uvds g dx dx=ɺ ɺ    (u, v = 1, 2, 3). 

 
  c)  Under these conditions, the manifold V5, which is homeomorphic to the product V4 × 

T1, will be homeomorphic to V3 × R × T1, and, as a result, it will be homeomorphic to 

4V ′×ℝ , in which 4V ′  denotes the topological product V3 × T1.  If (x0, xu, x4) denotes the 

system of coordinates on V5 that just introduced then the lines x0 = const., xu = const. are 
the ones that must refer to the linear factors in this latter homeomorphism.  One will note 
that in this coordinate system one has: 
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0)(
04 0 =∂

=xαβγ  

 
on W4, and that, on the other hand, from the existence of the canonical isometries that 
were described in a): 

004 =∂ αβγ . 

 One deduces from this that: 
04 =∂ αβγ  

 
on V5 .  Thus, the lines xA = const. (A, B, …, = 0, 1, 2, 3) will be the trajectories of a 
global isometry group of V5 .  We assume that these trajectories are oriented so that dσ2 > 
0, and call them the time lines of V5 .  One sees that since: 
 

g44 = γ44 + β 2 ξ 2(ϕ 4)2, 
 
the projections of these lines on V4 are oriented so that ds2 > 0 (i.e., in time).  They are 
called the spacetime timelines.  By an argument that is based in the hyperbolic normal 
type of W4, it will immediately result that the metric (39-3) on V3 is negative-definite. 
 
 d) Let ξξξξ be the Killing vector field that is the infinitesimal generator of this new one-
parameter isometry group on V5, whose trajectories are oriented so that dσ2 > 0.  In the 
coordinates (x0, xu, x4) that we introduced, this vector admits the components: 
 
(39-4)   ζ 0 = 0,  ζ u = 0,  ζ4 = 0, 
 
while the vector ξξξξ admits the components: 
 
(39-5)   ξ 0 = 1,  ξ u = 0,  ξ 4 = 0. 
 
 The manifolds x0 = const. are images of the factor-manifolds that are homeomorphic 
to V4 under the homeomorphism of V5 with V4 × T1.  The manifolds x4 = const. are images 
of the factor-manifolds that homeomorphic to V4 under the homeomorphism of V5 with 

4V ′×ℝ . 

 We call systems of coordinates that enjoy the preceding two properties totally-
adapted coordinates.  A change of local coordinates that preserves the values (39-4) and 
(39-5) of the components of ξξξξ and ζζζζ will necessarily have the form: 
 
(39-6)  )( vuu xfx ′=′ , )(00 uxxx ψ+=′ , )(44 uxxx θ+=′ . 
 
 As a result, totally-adapted coordinates will be defined up to the change (39-6), in 
which we let ψ and θ be the restrictions of the functions that were defined on V3 to the 
neighborhoods.  It is these coordinates, which are simultaneously adapted to both 
isometry groups, that shall use in the sequel.  The γαβ depend upon only the (xu) in these 
coordinates. 
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 e)  As we have seen (see I, sec. 2 and 63), the metric of the quotient manifold may be 
defined conveniently in adapted coordinates with the aid of the associated contravariant 
tensor.  This is why one may define the metric ds2 of hyperbolic normal type on V4 by the 
condition: 

gij = γ ij            (i, j = 1, 2, 3, 4), 
 
and hence the negative-definite metric 2)( sdɺ  on V3 by the condition: 
 

 uvgɺ = guv = γ uv   (u, v = 1, 2, 3). 
 

 Consider the manifold V4, which is the quotient manifold of V5 by an isometry group 
with trajectories that are oriented so that dσ2 > 0.  It is endowed with the structure of a 
Riemannian manifold with a negative-definite metric: 
 
(39-7)     ds2 = ABgɺ dxA dxB            (A, B = 0, 1, 2), 
 
in which the associated contravariant tensor is such that: 
 

ABgɺ = γAB, 
 
and it admits a global, one-parameter group of isometries xu → xu, x0 → x0 + h, whose 
trajectories are homeomorphic to T 1.  It is clear that the metric 2)( sdɺ  on V3 can also be 

defined by starting with the Riemannian manifold 4V ′  and its isometry group, since: 
 

uvgɺ = γ uv = uvg′ . 
 
 
 40. – Complete, stationary, exterior, unitary fields. – The stationary, unitary field 
that was just described will be called spatially-complete – or, more briefly, complete – if 
the Riemannian manifold V3 is a complete manifold. 
 In the sections that follow, we imagine that the stationary fields are assumed to be 
complete and exterior, in the sense of the Jordan-Thiry theory; i.e., they satisfy the 
equations Sαβ = 0 or Rαβ = 0 everywhere. 
 Thanks to the existence of the group of isometries on V5 with trajectories that are 
oriented so that dσ2 > 0 (the stationary character of V5), we can begin the task of writing 
down the equations by means of the tensors that are defined on V4.  As we have remarked 
(I, sec. 70), equations [I, (69-5)] are not modified in form when one passes from the 
positive-definite signature to the hyperbolic normal signature with trajectoties that are 
oriented so that dσ2 > 0.  We adopt the notations of I, sec. 69 by referring to the elements 
that relate to 4V ′  and its metric 2sd ′  by a ‘ and not a ..  We substitute the notations Aϕ ′  

and ABH ′  for ϕ i and Hij, and we must replace ξ with ζ .  Upon annulling the components 
of the Ricci tensor of V5 relative to orthonormal frames that are adapted to the stationary 
character of V5, from (I, 69-5), one will thus obtain: 
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(40-1)   
21

( ) 0
2

C
AB AB A A ABR H H

ζζ
ζ

′ ′ ′ ′− ∇ ∂ − = , 

 

(40-2)     )( 2 B
AB H ′∇′ ζ = 0, 

 

(40-3)    0
2

1 2
2

=′+∆′− H
ζζ

ζ
, 2 1

( 0)
2

AB
ABH H H′ ′ ′= ≥ , 

 
in which the tensors that were introduced on 4V ′  are defined by their components in 
orthornormal frames. 
 Let 4W′  be a section x4 = const. of V5 .  On this section, one has, moreover, as a 

consequence of the field equations and from (24-6) and (24-7) (in which one sets β = 1): 
 

(40-4) div′ ′p  = 2
3

2
H ′ζ

, 

with: 

(40-5)     
3

2
B

A B Ap H
ζ ϕ′ ′ ′= . 

 
 
 41. – Another form for equation (40-3). – In totally adapted local coordinates, the 
scalars ζ and 2H ′ depend only on the variables (xu).  They are therefore intrinsically 
defined on V3 as functions with scalar values.  We propose to transform equation (40-3) 
in such a way that the only operations that are involved will be the ones that are defined 
on V3 .  In order to avoid sign difficulties in the course of calculation, we consider a 
Riemannian manifold with a positive-definite metric. 
 We shall therefore establish the following lemma: 
 
 LEMMA  – Let 4V ′  be a Riemannian manifold with a positive-definite metric 2sd ′  
that admits a one-parameter group of isometries, and let V3 be the quotient manifold with 
the metric 2)( sdɺ .  If ζ is a scalar on 4V ′  that is invariant under the group of isometries 

then the Laplacian ζ∆′  of z on 4V ′ is related to the Laplacian ζ∆ɺ  on V3 by the relation: 
 

(41-1)    ζ∆′ = 
1 uv

u vgζ ζ ζ
ζ

∆ + ∂ ∂ɺ ɺ . 

 
 We prove this in an orthonormal frame of 4V ′  that is adapted to the group of 

isometries.  The gradient vector of ζ on 4V ′  ( ζ0∂ = 0, ζu∂ ) is invariant under the group 

of isometries.  As a result, its divergence on 4V ′  will be given by the lemma of sec. 33.  
One will therefore have: 
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1
( )uv

u vgζ ζ ζ
ζ

′∆ = ∇ ∂ɺɺ . 

 
 One deduces from this, upon expanding the derivative that appears in the right-hand 
side, that: 

1
( )uv uv

u v u vg gζ ζ ζ ζ ζ
ζ

′∆ = ∇ ∂ + ∂ ∂ɺɺ ɺ , 

namely: 
1 uv

u vgζ ζ ζ ζ
ζ

′∆ = ∆ + ∂ ∂ɺ ɺ , 

and our lemma is proved. 
 In order to effect the passage from a positive-definite metric to a negative-definite 
metric, one must substitute iζ for ζ and perform multiplications by i or – i on all of the 
indices, depending on whether they are contravariant or covariant, resp.  One will see that 
formula (41-1) is not modified by that rule.  Upon accounting for the expression for ζ∆′  
in (40-3), one may put this equation into the form: 
 

(41-2)    
3

21

2
uv

u vg H
ζζ ζ ζ

ζ
′−∆ = ∂ ∂ −ɺ ɺ . 

 
 One will note that since z is positive the right-hand side of (41-2) is negative or null 
for the signature envisioned. 
 
 
 42. – Case in which the space V3 is compact. – Having said this, consider a 
stationary field that is described on a Riemannian manifold V5, whose space V3 is 
compact.  On this compact manifold, the function ζ is such that ζ∆− ɺ  ≥ 0.  It attains its 
minimum at a point of V3, and as a result, it will necessarily reduce to a constant.  One 
therefore has: 

ζ = const. = ζ0 , 0=′ABH , 
 
and, from (40-1), the field equations will reduce to: 
 

0=′ABR . 
 
 Therefore, there locally exist adapted coordinates such that the metric on V5 takes the 
form: 

2242
0

2 )( sddxd ′+= ζσ , 

 
and the manifold 4V ′  with metric 2sd ′  admits a zero Ricci tensor.  Thanks to the existence 

of a group of isometries on 4V ′ , we can express this last condition be means of tensors 
that are defined on V3 .  Here, we once more use equations of the type [I, 969-5)]; in our 
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notations, we substitute η (η2 = 00gɺ− ) for ξ and the antisymmetric tensor K for the 

antisymmetric tensor H.  Since the signature is negative-definite and, as a result, the 
trajectories are oriented so that 2sd ′ < 0, these equations will give: 
 

(42-1)    0
2

)(
1 2

=+∂∇− vw
w

uuvuv KKR
ηη

η
ɺɺ , 

 

(42-2)     )( 3 v
uv Kη∇ɺ = 0, 

 

(42-3)     2
2

2

1
K

ηη
η

=∆− ɺ   (K2 = 1
2

uv
uvK K ≥ 0). 

in an orthonormal frame on V3 . 
 Equation (42-3) shows us that the function η is such that − η∆ɺ ≥ 0 on V3 . 
 It necessarily results from this that this function reduces to a constant and, in turn, 
that uvK = 0.  From (42-1), the manifold V3 will therefore have a zero Ricci tensor and 

since it is three-dimensional, it will be locally Euclidean.  Since uvK = 0, there will exist 

adapted coordinates on 4V ′  locally, for which: 
 

2202
0

2 )()( sddxsd ɺ+−=′ η , 

 
and, as a result, they will exist locally on the manifold V5 over a neighborhood of V3 in 
totally-adapted coordinates such that: 
 

2202
0

242
0

2 )()()( sddxdxd ɺ+−= ηζσ , 

 
and one will see that the manifold V5 is locally Euclidean.  The electromagnetic field that 
is described by V5 is zero, and the metric on V4 may be locally written: 
 

2242
0

2 )()( sddxds ɺ+= ζ , 

 
is locally Euclidean.  The exterior unitary field that is envisioned is necessarily trivial.  
We state: 
 
 THEOREM  – In the case of a compact space V3 an everywhere regular stationary 
exterior unitary field is necessarily trivial. 
 
 
 43. – Asymptotically-Euclidean behavior of a stationary, unitary field. – We now 
assume that the complete, Riemannian manifold V3 admits a domain at infinity. 
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 Consider a three-dimensional Euclidean space E3 that admits a negative-definite 

metric 2sd .  We assume that they are referred to a privileged coordinate system (yu), for 
which: 

2sd = δuv dyu dyv, 
in which: 

δuv = 0 for u ≠ v, δuu = −1. 
 
 We say that the stationary field envisioned admits asymptotically-Euclidean behavior 
when, for a point a of V3 and a sufficiently large number: 
 

 1.  There exists a homeomorphism h of class C2 from the domain d(a, x) > R of V3 

onto a domain of E3 whose complement is homeomorphic to a closed ball (this 

homeomorphism thus defines the structure of a Euclidean space on the domain of V3 
envisioned); 
 
 2.  One may find sections x0 = const., x4 = const. of V5 such that for the privileged 
system of totally-adapted coordinates )( αy  that are defined on the domain of V5 over the 

domain d(a, x) > R of V3, the potentials and their first derivatives relative to this system 

satisfy the inequalities: 
 

(43-1)   | γαβ − δαβ | < 
r

M
 

2
||

r

M<∂ αβγ γ   [r = d(a, x); x ∈ V3], 

 
in which M is a positive number and in which δαβ = 0 for α ≠ β, δ00 = −1, δ44 = + 1. 
 It is clear that the point a plays only an auxiliary role here.  If x is a point of V3 for 

which r = d(a, x) > R, and if y is its image in E3 under h then one will establish, as in (I, 

sec. 88), that, by virtue of the inequalities (43-1) between r and the ordinary distance ρ 
from y to the origin O in E3 : 

∑=
u

uy 2)(ρ , 

one will have the inequality: 
(43-2) ρ < Kr, 
 
in which K denotes a fixed number. 
 
 
 44. – Study of the flux vector p′  of W4 . – Let r0 be a fixed number that is greater 

than R, and let
0r

S be the set of points of V3 such that d(a, x) > r0.  Consider a sphere Σp of 

center O and radius ρ in E3, and take ρ sufficiently large that Σp will contain the image 

of
0r

S under h.  We denote the image of the sphere Σp in V3 by Sp . 



Stationary, exterior, unitary fields 

 

219 

 

 Consider the compact subset Bρ of V3 that is defined by: 
 
 a)  The points x of V3 for which d(a, x) ≤ r0 ; 
 b)  The points x for which d(a, x) ≥ r0, whose image in E3 is interior to Σp or that 

sphere. 
 
 The boundary of Bρ is Sp, oriented outward. 

 Having said that, consider one of the sections x4 = const. that was introduced in 2. of 
the preceding section, which is a section that we will denote by 4W′ .  The points of 4W′  
that project onto the points of Bρ in V3 define a compact subset that is homeomorphic to 
the product Bρ × T1, and whose boundary ρC∂  is homeomorphic to the product Sp × T1.  

Let p′  be the vector on W4 that was introduced in sec. 40, whose components are: 
 

3

2
B

A B Ap H
ζ ϕ′ ′ ′= . 

 
 We propose to study the behavior of the flux of p′  upon traversing ρC∂  when ρ 

→ ∞ . 
 As far as the modulus p′  of the vector p′  is concerned, it results from the 
inequalities (43-1), by an argument that is identical to the one in (I, sec. 89), that there 
exists a fixed number C1 such that: 
 

3
1

r

C
p <′   (r = d(a, x); x = projection of the point in 4W′ ), 

 
and, as a result, from (43-2), that there will exist a finite number C2 such that: 
 

(44-1)    
3
2

r

C
p <′ . 

 
 On the other hand, the area of ρC∂ under the metric 2sd ′  on 4W′ , namely: 

 

∫∂ Σ
ρC
d 3 , 

 
in which  dΣ3  is the area element of this metric, satisfies the relations: 
 

(44-2)  
1

0 0 2
3 3 4

1
1

C C T
d O dx d C dx d C

rρ ρ ρ
ρ

∂ ∂ Σ

  Σ = + ∧ Σ < ⋅ Σ < ⋅  
  

∫ ∫ ∫ ∫ , 
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in which C3 and C4 denote a fixed number and Σd  is the Euclidean area element for the 
metric 2sd−  on E3 .  One deduces from (44-1) and (44-2): 

 
(44-3)    lim flux 0Cρρ ∂→∞

′ =p , 

 
since this flux is evaluated with the metric 2sd ′  on 4W′ . 
 
 
 45. – Case in which the space V3 admits a domain at infinity. – For the case in 
which the complete manifold V3 admits a domain at infinity, we consider a stationary, 
exterior field with asymptotically-Euclidean behavior.  On the manifold 4W′  that was 
introduced in sec. 44, one has: 

3
2div

2
H

ζ′ ′ ′=p . 

 
 By integrating over Cρ when ρ is sufficiently large, one will obtain: 
 

3
2flux

2C C
H d

ρ
ρ

ζ τ∂ ′ ′ ′= ∫ ∫∫∫p     ( 2H ′  ≥ 0), 

 
in which τ ′d  denotes the volume element of 4W′ .  Suppose that 2H ′  is positive at a point 

of 4W′ .  It will then be positive in a certain neighborhood D of that point, and for a 

sufficiently large ρ, one will have: 
 

3
2flux

2C D
H d

ρ

ζ τ∂ ′ ′ ′≥ ∫ ∫∫∫p . 

 
 Now, the left-hand side goes to zero when ρ → ∞ , which is in contradiction with the 
preceding inequality.  One therefore has2H ′ = 0.  Equation (41-2) may then be written: 
 

1
( ) 0uv

v uL gζ ζ ζ ζ
ζ
 ≡ − ∆ − ∂ ∂ = 
 

ɺ ɺ , 

 
and the first theorem of (I, sec. 82) may be applied to the function ζ on the complete 
Riemannian manifold V3, which tends to 1 in the domain at infinity.  One therefore 
necessarily has ζ = 1, and from (40-1), ABR′  = 0.  Therefore, there will locally exist 
adapted coordinates such that the metric on V4 takes the form: 
 

dσ2 = (dx4)2 + 2sd ′ , 
 



Stationary, exterior, unitary fields 

 

221 

 

and the manifold 4W′  with the metric 2sd ′  admits a zero Ricci tensor.  We find ourselves 
being within the scope of the conditions in sec. 42, and we write equations (42-1), (42-2), 
(42-3).   Consider a section 3W′  of 4W′  that is defined by x0 = const.  There exists a vector 

uq  on this section, with components: 

v
uuu Kq ψη

2

3

= , 

 
in which ψ plays the role of ϕ, which is such that: 
 

3
2div

2
K

η=q . 

 
 If ρB′  denotes the compact subset of 3W′  that projects onto V3 along Bρ , and if ρ′S   is 

its boundary then one will establish, as in (I, sec. 89), that: 
 

lim flux 0
ρρ ′→∞

′ =q
S

. 

 
 One immediately deduces from this that uvK  = 0.  Since equation (42-3) reduces to 

η∆ɺ = 0, and η goes to 1 uniformly in the domain at infinity in V3, one will necessarily 

have η = 1, and that result will be obtained as in sec. 42.  We state: 
 
 THEOREM  – An everywhere-regular, complete, stationary, exterior, unitary field 
with asymptotically-Euclidean behavior is necessarily trivial. 
 
 
 

II. – A THEOREM ON STATIONARY SPACETIME MODELS 
 

 
 46. – Matching stationary, unitary fields. – We now propose to study proposition 
(AU).  As in general relativity, an exterior, unitary field that prolongs a stationary field 
upon traversing a hypersurface Σ that is generated by the timelines of that field is itself 
locally stationary.  Here, we therefore concern ourselves with unitary fields that are 
interior or exterior stationary. 
 In each domain where the field satisfies the Jordan-Thiry equations of a particular 
case − interior or exterior − the differentiability hypotheses will be the ones that we made 
before.  Upon traversing the hypersurface Σ that separates a domain of V5 that is swept 
out by a matter distribution from a domain that is not, the admissible coordinate systems 
will now be only (C2, piecewise-C4), and the metric dσ2 is of class (C1, piecewise-C3). 
 Let (xα) be a system of coordinates that are totally adapted to the interior field; for 
example, ones with Σ defined locally by the equation x1 = 0.  For the exterior, unitary 
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field, one may obtain a system of adapted, local coordinates in a neighborhood of Σ that 
presents a second-order contact with the preceding ones along Σ; i.e., they satisfy: 
 

(46-1)   )]()([
6

)( 31
µλλαα εϕ xx

x
xx J ++=′    (J = 0, 2, 3, 4), 

 
in which ελ → 0 when x1 = 0.  One may say that equations (46-1) express the agreement 
of the isometries for the two fields on Σ. 
 
 
 47. −−−− Study of 4

4R  for a section 4W′  that is oriented so that dσ2 < 0. – Consider a 

stationary, interior, unitary field, and let 4W′  be an arbitrary section of the timelines that 
are oriented so that dσ2 < 0.  The datum of this section determines the data of the system 
of sections that are deduced from it by isometries of V5 whose trajectories are timelines.  
In an associated system of totally adapted coordinates, one will have: 
 
(47-1) γ 44 > 0. 
 
 One recalls, moreover, that since the timelines are oriented in time one has γ44 > 0, 
and, as a result, that the quadratic form of the coefficients γ AB = ABg′ (which is none other 

than the form that is associated with2 A B
ABds g dx dx′ ′= ) is negative-definite.  For such a 

system of sections, 4
4R   will be strictly positive for the Ricci tensor of the field. 

  In order to establish this, we first observe that: 
 

RSR 2
14

4
4
4 += . 

 However: 

4
44

4 vrvS =   rR
3

2

3

2 −=Θ−= . 

 
 One deduces from this that: 
 

62

1

3

1
4

4
4

44
4

r
vvrvvrR +







 −=






 −= . 

 
 We evaluate the quantity: 
 

v4 v4 − 2
1 = γ 44 (v4)

2 + γ 4A v4 vA – 2
1 [ γ 44(v4)

2 + 2γ 4A v4 vA + γ AB vA vB], 

 
in which we have accounted for the unitary character of the vector vα in the right-hand 
side.  One thus obtains: 

v4 v4 − 2
1  = 2

1 [ γ 44(v4)
2 − γ AB vA vB], 
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and, as a result: 

(47-2)    4
4R  = 

2

r
[ γ 44(v4)

2 − γ AB vA vB] + 
6

r
. 

 
 Since r is strictly positive for an interior field, one sees that the component44R  is 
strictly positive. 
 Having said that, we may express 4

4Rζ  by means of the divergence that one 

evaluates on 4W′ .  That equation will not be modified upon transforming equation (24-2) 
by the rule that corresponds to the hyperbolic normal signature for trajectories that are 
oriented so that dσ2 > 0, and one may write an equation that relates to V5 and 4W′  that 
differs only by the notations: 
(47-3)    4

4div Rζ′ ′ = −h , 

 
in which the vector h′  on 4W′  has the components in adapted coordinates: 
 

(47-4)    
2

2
B

A A B Ah H
ζζ ϕ′ ′ ′= ∂ + . 

 
 Formula (47-3) provides the equivalent of Gauss’s theorem in our theory of stationary 
fields. 
 
 
 48. – Existence of singularities for the transition from the exterior to the interior 
for the unitary field of a matter distribution.  – Consider a domain D of V5 that is 
bounded by a hypersurface Σ, contains a stationary interior field, and is generated by the 
time lines.  In a neighborhood of Σ, this field will induce a stationary, unitary field that 
satisfies the Jordan-Thiry equations of the exterior case, and agrees with them on Σ.  We 
propose to show that this last case may not be assumed to be regular in D. 
 We therefore assume that this field is regular in D and let 2

idσ  and 2
edσ  be the two 

corresponding metrics on D that correspond to the interior and exterior field, respectively.  

Let )(
4

iW′  be a section relative to the interior field and orient it so that 2
idσ < 0; it will 

determine a three-dimensional domain D3 on Σ.  One may construct a hypersurface )(
4

eW′  

that passes through D3 that has a second-order contact with )(
4

iW′  on D3 and is transversal 

to the timelines of the exterior field in D3 .  We may adopt )(
4

eW′  as a section for the 
exterior field in D and adopt local adapted coordinates for the two fields in a 
neighborhood that have a second-order contact. 
 The vectors h′  on D3 that relate to the two fields are identical since they depend only 
on the potentials and their first derivatives.  Upon applying formula (47-3) to the interior 
unitary field, one will obtain: 
 

( )3
4

4
4flux 0

iD W
R dζ τ

′
′ ′= − <∫ ∫∫∫h , 
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in which τ ′d  is the volume element relative to 2sd ′ .  This flux is therefore strictly 
negative, whereas the same formula, when applied to the exterior field, will give: 
 

3
flux D

′ =h 0, 

 
which leads us to a contradiction.  We state: 
 
 THEOREM  – If we are given a stationary, interior, unitary field that is bounded by 
a hypersurface S that is generated by timelines then the stationary, exterior, unitary field 
that agrees with it on S may not be prolonged regularly to the entire domain of the 
interior field. 
 
 

III. – GLOBAL PROBLEMS IN THE KALUZA-KLEIN THEORY  
 
 
 49. – Global propositions in the Kaluza-Klein theory. – Propositions that are 
completely analogous to the ones that were stated in sec. 38 present themselves in the 
theory of electromagnetism in general relativity, or, equivalently, in the penta-
dimensional Kaluza-Klein representation of that theory.  We are therefore led to seek the 
hypotheses under which the following propositions are valid: 
 
 PROPOSITION (AK)  – The introduction of a matter distribution − charged or not 
− into a gravitational and electromagnetic field that satisfies the relativistic equations of 
the pure electromagnetic field schema may be accomplished only in domains where that 
field is not regular. 
 
 PROPOSITION (BK)  – If a gravitational and electromagnetic field satisfies the 
relativistic equations of the pure electromagnetic field schema everwhere then that field 
will be trivial. 
 
 This latter proposition does not differ from the one that we pointed out in general 
relativity in I, sec. 33.   We begin by specifying the various equations that we need in 
order to study proposition (BK).  In order to permit useful comparisons with Book I, we 
adopt, not the penta-dimensional viewpoint in the hypotheses and statements, but the 
same viewpoint as in the relativistic theory of electromagnetism. 
 
 
 50. – The field equations for the pure electromagnetic field schema. – Consider a 
spacetime on which we have defined a metric of hyperbolic normal type: 
 

ds2 = gij (x
k) dxi dxj   (i, j = 1, 2, 3, 4), 

 
and a global vector-potential ϕi, whose rotation Fij represents the electromagnetic field.  
We assume that the gravitational field and the electromagnetic field thus-introduced are 
stationary; i.e., we assume that spacetime admits a global group of isometries whose 
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trajectories are oriented so that ds2 > 0, and which leaves the vector-potential ϕi invariant.  
The quotient manifold will be designated by V3 . 
 We introduce a manifold V5 that is the topological product of spacetime with a circle 
T1.  If (x) is a system of local coordinates on spacetime and x0 is the canonical coordinate 
on T1 then a point of V5 will admit local coordinates (x0, xi), and the variables x0 = const. 
will be the factor manifolds of V5 .  The linear factors will be represented by xi = const. 
 We identify spacetime with one of the sections W4 of W5, and we endow V5 with the 
metric that is defined in the chosen local coordinates by: 
 

γ00 = 2
0ξ− , γ0i = 2

0iβ ϕ ξ− , γij = gij jiϕϕξβ 2
0

2− , 

 
in which ξ0 designates a constant; since g44 is strictly positive in adapted coordinates on 
spacetime, we may choose ξ0 to be sufficiently small that γ44 is strictly positive.  We thus 
obtain a Riemannian manifold for V5 that has the hyperbolic normal metric: 
 

ds2 = γαβ  dxα dxβ, 
 
which enjoys properties that are identical to the ones that were analyzed in sec. 39.  In 
what follows, we shall use notations that are identical to the ones in that section (with ξ = 
ξ0).  For a convenient choice of β, the equations of the Kaluza-Klein theory for the 
exterior unitary case relative to orthonormal frames on V5 that are adapted to the isometry 
trajectories xi = const. can be put into the form: 
 
(50-1)    0=ijS ,  00 =iS . 

 
 Let 4W′  be an x4 = const. section of the manifold V5 .  We propose to establish that 
equation (40-4) is again a consequence of our new field equations on that section.  
Indeed, one obtains: 

4 4
A AS A A Sβ α

α β=  

 
for the components AS4  (A = 0, 1, 2, 3) of the Einstein tensor of V5 in totally-adapted 
coordinates; namely, from (50-1): 

0 0
4 0 4 0
A AS A A S= . 

 
 Now AA0  = 0.  One deduces from this that equations (50-1) for the field entail that: 

 
044 == AA RS . 

 
 Now, from (24-7), when it translated into the form that corresponds to a negative-
definite metric, one will have: 
 

3
2

4 div
2

A
A R H

ςζ ϕ′ ′ ′ ′+ = p   (ζ 2 = γ44), 
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identically on 4W′ , with: 

(50-2)     
3

2
B

A A Ap H
ζ ϕ′ ′ ′= . 

 
 One deduces from this that equations (50-1) entail that: 
 

(50-3)     
3

2div
2

H
ζ′ ′ ′=p  

on W4 . 
 The field equations entail another interesting consequence that one may establish in 
penta-dimensional formalism, but which is simpler to establish directly.  Let W4 be an x0 
= const. section of the manifold V5, and let ϕi be the vector-potential on W4 .  From 
equations (50-1), one arrives at the Maxwell equations: 
 

∇j F ji = 0. 
One deduces from this that: 

∇j (ϕ i F ji) = 2
1 Fji F

 ji = F2. 
 
on W4 .  Therefore, if ψψψψ denotes the vector on W4 whose components are: 
 
(50-4) ψ j = ϕ i F ji 
then one will obtain: 
(50-5) ∇j ψ  j = F 2. 
 
 Since the vector ψψψψ is invariant under the isometries of W4, one may express the 
divergence that appears in the left-hand side of (50-5) by means of a divergence on V3 
with the aid of the lemma of sec. 33.  If jψ  denotes the components of ψψψψ relative to an 
orthonormal frame on W4 that is adapted to the group of isometries on that manifold, then 
one must have: 

(50-6)    2)(
1

Fv
v =∇ ψη

η
ɺ     (η2 = g44). 

 
 
 51. – Case in which the space V3 is compact and orientable. – Consider a 
gravitational and electromagnetic field that satisfies the relativistic equations of the pure 
electromagnetic field schema everywhere on a spacetime that has a compact space V3 .  
Since the manifold 4W′  is homeomorphic to the product V3 × T1, it will also be compact 
and, from (50-3), one will get: 

∫ ′
=′

3

0
2

2
3

W
H

ζ
. 

 
 One deduces from this that ABH ′ = 0.  Therefore, there locally exist adapted 
coordinates such that the metric on V5 may be put into the form: 
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dσ2 = ζ 2 (dx4)2 + 2sd ′ . 
 
 In these coordinates, γ04 = 0, ϕ4 = 0, and, as a result: 
 

0444 =∂−∂= uuuF ϕϕ  

 
in these coordinates.  It will then result from a simple calculation (see I, sec. 92) that: 
 

F 2 = 2
1 Fji F

 ji = 2
1  guw gvi Fuv Fwi , 

 
and as a result, the scalar F 2 will be positive or zero, and it will be zero only for a zero 
electromagnetic field. 
 Now, since the manifold V3 is compact and orientable, one will deduce from (50-6) 
that: 

3

2 0
V

F =∫ . 

 
 We deduces from this that the electromagnetic field is zero, and we come down to the 
same problem as in the absence of the electromagnetic field, which is a problem that was 
solved in I, sec. 86.  We state: 
 
 THEOREM  – If a stationary, electromagnetic and gravitational field satisfies the 
equations that relate to the pure electromagnetic field schema then that field will 
necessarily be trivial in the case of a compact orientable space V3 . 
 
 
 52. – Asymptotically-Euclidean behavior. – Now assume that the Riemannian 
manifold V3 is complete and admits a domain at infinity. 
 If E3 and (yu) denote the same elements as in sec. 43 then we will say that a stationary, 

gravitational and electromagnetic field admits asymptotically-Euclidean behavior when, 
for a point a of V3 and a sufficiently large number R: 
 
 1.  There exists a homeomorphism of class C2 of the domain d(a, x) > R in V3 onto a 
domain of E3 whose complement is homeomorphic to closed ball. 

 
 2. One can find x4 = const. sections of W4 such that for the privileged system of 
adapted coordinates (yi) that we defined in the domain W4 over the domain d(a, x) > R in 
V3 by (yu) and y4 = x4, the potentials and their first derivatives, the potentials ϕi, and their 
first derivatives relative to this system will satisfy the inequalities: 
 

r

M
g ijij <∂− || , 

2
||

r

M
gijk <∂ , 

and: 
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r

M
i <||ϕ ,  

2
||

r

M
ik <∂ ϕ , 

 
in which the notations are identical to the ones in sec. 43. 
 It immediately results from this that the stationary unitary field on the manifold V5 
that is described by the metric γαβ (in which, one may assume that γ00 = −1 by taking y0 = 
ξ0 x

0), admits asymptotically-Euclidean behavior, in the sense of sec. 43. 
 
 
 53. – Case in which V3 admits a domain at infinity. – Therefore, consider a 
stationary gravitational and electromagnetic field that admits asymptotically-Euclidean 
behavior in the case of a complete space V3 and presents a domain at infinity.  One 
deduces from equation (50-3), as in sec. 44 and 45, that: 
 

02 =′H  . 
 One deduces from this that: 

F2 ≥ 0, 
 
in which equality is attained only for a zero electromagnetic field.  Since the notations 

ρB′  and ρ′S  are identical to the ones in sec. 44, one will deduce from (50-6) that: 

 
2flux

B
F d

ρ ρ
η τ′ ′

′= ∫∫∫S
ππππ , 

 
in which τ ′d  is the volume element of 2)( sdɺ , and πu = ηψu.  On the other hand, from the 
asymptotically-Euclidean behavior: 
 

lim flux
ρρ ′→∞

=
S

ππππ  0. 

 
 One deduces from this that F2 = 0, and the result will be obtained as before. 
 
 
 THEOREM  – If a stationary gravitational and electromagnetic field satisfies the 
relativistic equations of the pure electromagnetic field schema for a complete manifold V3 
that admits a domain at infinity and presents asymptotically-Euclidean behavior at 
infinity then that field will necessarily be trivial. 
 
 
 54. – Proposition (AK) for stationary fields. – In the Jordan-Thiry theory, 
establishing the proposition envisioned for stationary fields will result from the 
consideration of the 4

4R  component of the Ricci tensor on V5 for certain systems of 
totally-adapted coordinates.  This component will be zero for an exterior, unitary field 
and strictly positive for an interior, unitary field. 
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 That will not always be the case in the Kaluza-Klein theory.  Indeed, by an easy, but 
somewhat lengthy, calculation one will obtain: 
 

( )4 2 4 41 1
4 0 0 4 0 42 2R F u u u uχ χ ρ χ ρ= + − + . 

 
 As a result, this component will not be zeroin the absence of a matter distribution, and 
will not have a well-defined sign in the presence of such a distribution.  An argument that 
is analogous to the one in sec. 48 cannot be carried out then. 
 Therefore, from this viewpoint, the Jordan-Thiry theory presents a coherence that is 
better than that of the Kaluza-Klein theory.  We shall see that the proposition envisioned 
may nevertheless be proved for the two theories under the hypothesis of a charged matter 
distribution for which the charge has well-defined sign over the entire distribution. 
 
 
 55. – Proposition (A) for matter distributions whose charge has a definite sign. – 
In this last section of the chapter, we shall no longer assume that the field envisioned is 
stationary. 
 In either of the two theories envisioned here, we consider the Maxwell equations, 
which we write on spacetime as: 
(55-1)     ∇j H

 ji = µ ui. 
 
 We assume that we are carrying out our proof in a four-dimensional domain D4 that is 
homeomorphic to the topological product D3 × I of a tri-dimensional domain D3 with an 
interval I.  Let (xu) be a system of local coordinates in D3, and let x4 be the canonical 
coordinate on I; (xu, x4) defines a system of local coordinates for D4 that we shall use.  
For i = 4, (35-1) may be written: 
(55-2)     ∇j H

 j4 = µ u4. 
 
 Consider the vector k that has components: 
 

k j = H j4 
 
in the coordinate system envisioned.  One has: 
 

∇j H
 j4 = ∇j k j + jk

jk H4Γ  = ∇j k j, 

 
from the symmetry of Γ in its lower indices and the antisymmetry of H.  Equation (55-2) 
may therefore be put into the form: 
(55-3)     ∇j k j =µ u4, 
 
in which the vector k has the components: 
 
(55-4)    ku = Hu4, k4 = 0. 
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 Consider an interior, unitary field that corresponds to a charge matter distribution for 
which the charge density µ admits a well-defined sign and which is bounded by a 
hypersurface S in spacetime, upon which it agrees with an exterior, unitary field.  We 
assume that one may bound the domain that is swept out by the distribution by two 
sections of the neighboring streamlines in such a manner as to obtain a domain D4, which 
we refer to the local coordinates (xu, x4) that we introduced, since the lines xu = const. will 
be segments of the streamlines in D4 and the coordinate changes will be furthermore 
admissible and have the form: 
 

)( vuu xfx ′=′ , +=′ 44 xx const. 
 
 The boundary of D4 is composed of Σ (x4 = 0), Σ′ (x4 = h), and a subset T of S.  Let k 
be the vector that is defined by (55-4) in these coordinates.  One will have: 
 

fluxΣ k = 0,  flux 0′Σ =k , 

and, in turn, from (55-3): 
 

4

1 2 3 4

44

flux | |T D
g dx dx dx dx

g

µ= ∧ ∧ ∧∫ ∫∫∫k . 

 
 This flux is therefore essentially non-zero.  If the exterior unitary field is regular in D4 
then one will establish, as before, that: 

fluxT k = 0, 
 
which implies a contradiction.  We state: 
 
 THEOREM  – If we are given a gravitational and electromagnetic field in a domain 
D4 that corresponds to a distribution whose charge has a well-defined sign then an 
exterior, unitary field that it agrees with cannot be regular in D4 . 
 
 This theorem is just as valid in the Jordan-Thiry theory as it is in the relativistic 
theory of electromagnetism. 
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CHAPTER IV 
 

II. – THE EINSTEIN-SCHRÖDINGER THEORY 
 

NOTIONS ON SPACES WITH AFFINE CONNECTIONS 
 

 56. – Definition of an affine connection. – a)  Consider a differentiable manifold Vn 
of dimension n and class Cr (r ≥ 2).  At each point x of Vn, one can define a vector space 
Tx of vectors tangent to Vn at x and the vector space xT ′  of linear forms at x that is dual to 

it.  One calls an ordered set of n linearly independent vectors of Tx − namely, e1, e2,…, en 
− a frame with origin x, and one denotes it by Rx.  Two frames, Rx, with vectors eα and 

xR′ , with vectors eβ , may be deduced from each other by way of: 
 
(56-1)     Aα

β β α′ ′=e e , 

in which the matrix: 
( )A Aα

β ′=  

 
is an arbitrary, regular n×n matrix, and therefore, an element of the linear group G of n 
real variables.  We may translate (56-1) into the abbreviated form: 
 
(56-2)     x xR R A′ = . 
 
 By duality, every such a frame Rx in Tx corresponds to a frame in xT′ , or co-frame, 

namely θx , which is an ordered set of n linearly independent linear forms θ 1, θ 2, …, θ n 
at the point x.  If xθ  and xθ ′  are the co-frames that are dual to Rx and xR′ then one will 

have: 
(56-3)     x xAθ θ ′= . 

 
 b)  Having said this, consider an arbitrary covering of Vn by open neighborhoods U.  
In each U, we are given an ordered set of n linearly independent Pfaff forms (θ α (x)) of 
class Cr−1.  For each x in U, these forms will define a co-frame Uxθ , and, by duality, a 

frame r
UR .  In other words, over each admissible U we may choose local sections of the 

fiber space of coframes of Vn whose structure group is G, or the fiber space of frames. 
 If U and V are two neighborhoods of Vn, and ifx U V∈ ∩ then there will exist a 
regular matrix ( )U

VA x  of class Cr−1 such that: 

 
(56-4)    U U V

x V xAθ θ=   ( x U V∈ ∩ ) 

and: 
(56-5)     x x U

V U VR R A=  

and one will obviously have: 
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1( )U V
V UA A− = . 

 
 If U, V, W are three neighborhoods of Vn, and if x U V W∈ ∩ ∩  then we will have: 
 

U U V U V W
x V x V W xA A Aθ θ θ= = . 

 As a result, we will have: 
 
(56-6)    U U V

V V WA A A=   ( )x U V W∈ ∩ ∩ . 

 
 In the sequel, it will be convenient to introduce the n×n matrix of Pfaff forms that are 
defined for eachx U V∈ ∩ by the relation: 
 
(56-7)   1( )U U V U V U

UV V V U V U VA A dA A dA dA A−= = = −  . 
 
 Suppose that x U V W∈ ∩ ∩ .  By differentiating (56-6), one will get: 
 

U U V U V
W V W V WdA dA A A dA= + . 

 
If we multiply the sides of this relation by the matrix: 
 
    1 1 1( ) ( ) ( )U V U

V V WA A A− − −=  
then it will become: 
(56-8)    1( )V V

UW W UV W VWA A−Λ = Λ + Λ . 
 
 c)  In any neighborhood that is endowed with frames, an affine connection on Vn is 
defined by the data of a matrix ω of Pfaff forms of class Cr−2 such that for x U V∈ ∩ one 
has: 
(56-9)    1( )U U

V V U V UVA Aω ω−= + Λ . 
 
 Let U, V, W be three neighborhoods of Vn .  For x U V W∈ ∩ ∩ , one has three 
matrices: ωU, ωV, ωW .  We seek to determine whether these matrices satisfy relations of 
the type (56-9) pair-wise.  To that effect, we assume that one has (56-9) and: 
 

1( )V V
W W V W VWA Aω ω−= + Λ . 

 
 We replace ωV in this latter relation by its value from (56-9).  It becomes: 
 

1 1 1( ) ( ) ( )V U U V V V
W W V U V W W UV W VWA A A A A Aω ω− − −= + Λ + Λ  

 
so, from (56-6) and (56-8): 

1( )U U
W W U W UWA Aω ω−= + Λ  
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and our definition is therefore self-consistent. 
 There exist an infinitude of affine connections on a differentiable manifold Vn .  
Starting with a denumerable covering of Vn, one may construct one directly by induction 
on the neighborhoods with the aid of the preceding result.  In a moment, we shall confirm 
that one affine connection on Vn may be deduced from another.  A differentiable 
manifold of class Cr that is endowed with an affine connection of class Cr−2 is called a 
space with affine connection of class Cr−2. 
 
 
 57. – Explicit formulas. – We now propose to be more specific about some of the 
preceding formulas that may be useful to us in the sequel.  To that effect, we introduce 
the coframe matrices: 

U
xθ = (θα)   U ( )x

βθ θ ′= . 

 
 If  x ∈U V∩  then the matricesU

VA  and V
UA  have the elements: 

 
( )U

VA Aα
β ′=  ( )V

UA Aβ
α

′= . 

 
With these notations, (56-4) translates into: 
 
(57-1)     θ α = Aα β

β θ ′
′ . 

 
 The matrix ΛUV of differential forms has the elements: 
 
(57-2)     A dAλ λ σ

µ σ µ
′ ′
′Λ = . 

 
 We denote the elements of the connection matrices ωU and ωV by: 
 

ωU = ( )α
βω  ωV = ( )λ

µω ′
′ . 

Relation (56-9) then implies: 
(57-3)    A A A dAλ λ α β λ σ

µ α β µ σ µω ω′ ′ ′
′ ′ ′= +   (x ∈ U V∩ ). 

 
 In (57-3), we recognize the transformation law for the local forms that define a 
Riemannian connection under a change of frame.  In what follows, we will set: 
 
(57-4)     α α γ

β βγω γ θ=   (x ∈ U). 

 
 The α

βγγ  are called the coefficients of the affine connection envisioned at the point x 

with the chosen frames θx and Rx.  From (57-3), these coefficients will transform 
according to the rule: 
(57-5)    A A A A Aλ λ β α α λ σ

µ ρ α µ ρ βγ σ ρ µγ γ′ ′ ′
′ ′ ′ ′ ′ ′= + ∂  
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in which ρ ′∂  denotes the Pfaffian derivatives of A with respect to ρθ ′ . 

 
 
 58. – Passing from one affine connection to another. – Consider two affine 
connections on Vn with coefficients α

βγγ  and α
βγγ , respectively, with respect to the same 

frame.  By passing to another system of frames, one will have (57-5) and: 
 

A A A A Aλ λ β α α λ σ
µ ρ α µ ρ βγ σ ρ µγ γ′ ′ ′

′ ′ ′ ′ ′ ′= + ∂ . 

 
 Upon subtracting both equations one gets: 
 

( )A A Aλ λ λ β α α α
µ ρ µ ρ α µ ρ βγ βγγ γ γ γ′ ′ ′

′ ′ ′ ′ ′ ′− = − . 

 
It results from this that the quantities: 
 

Tα α α
βγ βγ βγγ γ−≐  

 
are the components of a tensor of rank 3 that is once contravariant and twice covariant.  
Conversely, by adding the components of such a tensor to the coefficients of an affine 
connection one obviously obtains the coefficients of an affine connection.  We state the: 
 
 THEOREM  – Given an affine connection on Vn, one obtains all of the other ones by 
adding the coefficients of an arbitrary tensor of rank three that is once contravariant and 
twice covariant to its coefficients. 
 
 
 59. – Torsion of an affine connection. – If Θ and Θ  are matrices whose elements 

α
βΘ  and α

βΘ  are differential forms then we will set: 

 
Θ ^ Θ = ( α

βΘ  ^ β
γΘ ), 

and let dΘ denote the matrix: 
dΘ = (d α

βΘ ). 

 
 One obviously has d(dΘ)) = 0.  We still use the same notation if one of the matrices 
considered has only one row. 
 Having said this, if x ∈U V∩ then one will have: 
 

θ V = V U
UA θ , 

 
and, as a result, by taking the exterior derivative of both sides: 
 

dθ V = V U V U
U UA d dAθ θ+ ∧  = V U V U V

U U VA d dA Aθ θ+ ∧ , 
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namely: 
(59-1)    dθ V = V U U

U UVA dθ θ− Λ ∧ . 

 
 On the other hand, from (56-9), after exterior multiplying by θ V one will have: 
 

ωV ^θ V = V U V
U V VA Aω θ∧ + ΛUV ^θ V, 

namely: 
(59-2)    ωV ^θ V = V U

U VA ω θ∧ + ΛUV ^θ V. 
 
 By (59-1) and (59-2) one obtains: 
 
(59-3)    dθ V + ωV ^θ V = ( )V U U

U UA dθ ω θ+ ∧ . 

 
 In each neighborhood U, consider the matrix with one row whose elements are local 
exterior quadratic differential forms: 
 

ΣU = dθ V + ωV ^ θ V. 
 
(59-3) expresses the fact that for x ∈U V∩ : 
 
(59-4)     ΣV = V U

UA Σ . 

 
 One may translate the result by saying that the Σ define a vector-valued exterior 
quadratic differential form.  If ΣU = (Σα) and ΣV =( )β ′Σ then, from (59-4), one will have: 
 
(59-5)     = Aβ β α

α
′ ′Σ Σ , 

in which Σα is given by: 
(59-6)     Σα = dθ α + α

βω ^ θ β. 

 If we set: 
(59-7)     Σα = − Sα

βγ θ β ^ θ γ .   (Sα
βγ = − Sα

γβ ) 

 
then it will result from equation (59-5) that Sα

βγ  are the components of a tensor of rank 

three that is antisymmetric with respect to the lower indices.  This tensor is called the 
torsion tensor of the connection. 
 
 
 60. – Curvature of an affine connection. – We now study the exterior derivative of 
the connection matrix.  By differentiating (56-9), one gets: 
 

dωV =
V U V U V U
U U V U U V U U VA d A dA A A dAω ω ω+ ∧ − ∧ + dΛUV , 

 
namely, from (56-7): 
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(60-1)  dωV =
V U V U V U U U
U U V U U V U U V V VA d A dA A A dA dA dAω ω ω+ ∧ − ∧ + ∧ . 

 
 On the other hand, we evaluate: 
 

ωV ^ωV = V U V U UV UV V U
U U U V U U V U U VA A A A A Aω ω ω ω∧ + ∧ Λ + Λ ∧ + ΛUV ^ ΛUV . 

 
One gets from (56-7) that: 
 
(60-2)  ωV ^ωV = V U V U V U V U

U U U V U U V U U V U VA A A dA dA A dA dAω ω ω ω∧ + ∧ − ∧ − ∧ . 

 
By adding (60-1) and (60-2), one will obtain: 
 
(60-3)    dωV + ωV ^ωV = V

UA (dωU + ωU ^ωU) U
VA . 

 
 In each neighborhood U, consider the n×n matrix whose elements are quadratic 
exterior differential forms: 

ΩU = dωU + ωU ^ ωU . 
 One has: 
(60-4)     ΩV = V

UA ΩU
U
VA . 

 
 One may interpret this result by saying that the Ω define a tensor-valued quadratic 
exterior differential form of type (1, 1).  If  ΩU = ( )α

βΩ  and ΩV = ( )λ
µ

′
′Ω  then one will 

obtain: 
(60-5)     = A Aλ λ β α

µ α µ β
′ ′
′ ′Ω Ω  

in which α
βΩ  is given by: 

(60-6)     dα α α ρ
β β ρ βω ω ωΩ = + ∧ . 

 If we set: 
(60-7)     1

,2 Rα α
β β λµΩ = θ λ ^ θ µ 

 
then it will result from (60-5) that the Rα

β,λµ are the components of a tensor of rank four 
that is anti-symmetric with respect to λ and µ.  It is the curvature tensor of the 
connection. 
 
 
 61. – The Bianchi identities for an affine connection. – We start with the formulas 
that define the torsion and curvature of a connection.  From now on, we shall write them 
by suppressing the index U whenever the presence of that index is irrelevant to the 
calculations being performed.  One will then have: 
 
(61-1)     Σ = dθ + ω ^ θ 
and: 
(61-2)     Ω = dω + ω ^ ω. 
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 Take the exterior derivatives of both sides of (61-1).  Since d(dθ) = 0, one obtains: 
 

dΣ = dω ^ θ − ω ^ dθ ; 
 
namely, upon using the values of dω and dθ  from relations (61-1) and (61-2): 
 

dΣ = (Ω − ω ^ ω) ^ θ  − ω ^ (Σ − ω ^ θ). 
 
One deduces from this, after simplifying, that: 
 
(61-3)     dΣ = Ω ^ θ − ω ^ Σ. 
 
 Similarly, take the exterior derivatives of both sides of (61-2).  Since d(dω) = 0, one 
will obtain: 

dΩ = dω ^ ω − ω ^ dω. 
 
so by replacing dω with its expression in (61-2): 
 

dΩ = (Ω − ω ^ω) ^ ω  − ω ^ (Ω − ω ^ω). 
 
After simplifying, one will thus have: 
 
(61-4)     dΩ = Ω ^ ω  − ω ^ Ω. 
 
Formulas (61-3) and (61-4) are called the Bianchi identities for an affine connection.  In 
explicit form, they may be written: 
(61-5)     dΣα   = α β α β

β βθ ωΩ ∧ − ∧ Σ  

(61-6)     d α α ρ α ρ
β ρ β ρ βω ωΩ = Ω ∧ − ∧ Ω . 

 
 
 62. – Absolute differential and covariant derivative for an affine connection. – a)  
Consider a contravariant vector field.  Its components in a neighborhood U are defined by 
the matrix with one row vU and by the analogous matrix vV in a neighborhood V, and for 
x ∈U V∩ one has: 

vV = V U
UA v . 

 By differentiating, one obtains: 
(62-1)     dvV = V U V U

U UA dv dA v+ . 

 
 On the other hand, from (56-9) one has: 
 

ωV v
V = V U U

U U UVA v vω + Λ  = V U V U V
U U U VA v dA A vω − ; 

namely: 
(62-2)     ωV v

V = V U V U
U U UA v dA vω − . 
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 By adding (62-1) and (62-2), term-by term, one will get: 
 
(62-3)     dvV + ωV v

V = V
UA (dvU + ωU v

U). 

 
 It results from this that the quantities: 
 
(62-4)     Dv = dv + ω v 
 
define a contravariant vector-valued, linear, exterior differential form.  The contravarinat 
components are given explicitly by the Pfaff forms: 
 
(62-5)     Dvα = dvα + vα ρ

ρω . 

 
The form (62-4) is called the absolute differential of the vector field relative to the 
connection.  If one sets: 

Dvα = Dβ v
αθα 

 
then one will see from (62-3) that Dβ v

α are the components of a tensor for which the 
index β is a covariant index and which is called the covariant derivative of v for the 
connection.  From (62-5), one will have: 
 

Dβ v
α = v vα α ρ

β ρβγ∂ + , 

 
in which∂ represents the Pfaffian derivative. 
 One likewise establishes that if one considers a covariant vector field that is defined 
in each neighborhood U by the matrix with one column wU then the quantities: 
 

Dw = dw – wω 
 
will define a covariant vector-valued, linear, differential form whose components are 
Pfaff forms: 

Dwα = dwα –w ρ
ρ αω  

 
and which defines the absolute differential of this field.  The corresponding covariant 
derivative is: 

Dβ wα = w wρ
β α αβ ργ∂ − . 

 
 b)  Let T be a finite-dimensional vector space that serves as the space of values for a 
tensor of some particular type, and let R(G) be a linear representation of G in T.  If one is 
given a certain set of neighborhoods Vn then a tensor will be defined in each 
neighborhood U by the data of a function tU(x) (x ∈ U) with values in T such that for 
x ∈U V∩ : 
(62-6)     tU(x) = ( )U

VR A  tV(x). 
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 For such a tensor field, by considering the linear representation R  of the Lie algebra 
of G that is induced by R, one may establish that one may construct a tensor-valued, 
linear, differential form: 
(62-7)    DtU = ( )UR ω tU 

 
of type R(G), i.e., it is such that: 
 
(62-8)    DtU = ( )U

VR A DtV , 

 
and which is called the absolute differential of the tensor for the affine connection 
envisioned. 
 For example, if we consider a tensor field that is once covariant and once 
contravariant then formula (62-6) may be written explicitly: 
 

tα
β  = A A tα µ λ

λ β µ
′ ′

′ ′  

namely, in matrix notation: 
tU = adj( )V V V

U V U U VA t A A t=  

 
in which the linear representation R envisioned is made specific.  One will then have: 
 

DtU = dtU + ωUt – tωU 
or, in explicit form: 
(62-9)    Dtα

β = dtαβ + α
ρω tρ

β  − ρ
βω tα

ρ , 
 
and the general form for the absolute differential will appear easily from (62-9).  One 
immediately passes to the covariant derivative.  One also sees that as far as the absolute 
differential is concerned, the sum, tensor product, and contracted product satisfy the usual 
rules of differentiation. 
 
 
 63. – Formulas in the natural frame of local coordinates. – We say that we refer a 
connection or the various tensors that we have introduced to a natural frame when we 
adopt the co-frame Uxθ  that is defined in each local coordinate neighborhood by the n 

differentials (dx1, dx2, …, dxn) of the local coordinates (xα); the associated frames UxR  are 

called the natural frames that are associated with the local coordinates.  If U and V are 
the domains of the local coordinates (xα) and( )xβ ′ , respectively, then one will have: 
 

x
A

x

α
α
β β′ ′

∂=
∂

, 
x

A
x

β
β
α α

′
′ ∂=

∂
 

 
for x ∈ U V∩ .  With these values, one will always have (57-3) for the connection 
matrices, namely: 
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A A A dAλ λ α β λ σ
µ α β µ σ µω ω′ ′ ′

′ ′ ′= + . 

 
 In natural frames, we introduce the special notation: 
 

dxα α γ
β βγω = Γ  

 
in order to denote the coefficients of the affine connection.  Under a change of natural 
frame, these coefficients will always transform according to the formula: 
 
(63-1)    A A A A Aλ λ β γ α λ σ

µ ρ α µ ρ βγ σ ρ µ
′ ′ ′
′ ′ ′ ′ ′ ′Γ = Γ + ∂ , 

 
but one will note that ρ ′∂  now denotes the ordinary partial derivative of Aσ

µ ′  with respect 

to xρ ′ .  From this, it results that: 
(63-2)     A Aσ σ

ρ µ µ ρ′ ′ ′ ′∂ = ∂ , 

 
i.e., that the last term in the right-hand side of (63-1) is symmetric in the indices. 
 Since d(dxα) = 0, formula (59-6), which defines the torsion form, reduces in a natural 
frame to: 

Σα = α
βω ^ dxβ. 

 One thus has: 
Σα = α

βγΓ dxα ^ dxβ  =  − 1
2 ( )α α

βγ γβΓ − Γ dxβ ^ dxγ. 

 
One deduces from this that the torsion tensor that is defined by (59-7) has the 
components: 
(63-3)   1

2 ( )Sα α α
βγ βγ γβ= Γ − Γ   (Sα

βγ  = − Sα
γβ). 

 
 One may verify immediately with the aid of (63-1) and (63-2) that under a change of 
local coordinates the quantities Sα

βγ that are defined by (63-3) will essentially transform 
according to tensor laws.  One will note, moreover, that if the α

βγΓ  are the coefficients of 

an affine connection in a natural frame then the same thing will be true for the quantities: 
 

α
βγΓ = α

βγΓ  

 
since, from (63-3), the αβγΓ  are deduced from theαβγΓ by adding a tensor of rank three that 

is once contravariant and twice covariant. 
 Finally, from formulas (60-6) and (60-7), it is easy to deduce the explicit expression 
for the curvature tensor as a function of the coefficients α

βγΓ  of the connection.  Indeed, 

one has: 
 

1
2( ) ( )d d dx d dx dx dx dx dxα α µ α µ α λ µ α α λ µ

β βµ βµ λ βµ λ βµ µ βλω = Γ = Γ ∧ = ∂ Γ ∧ = ∂ Γ − ∂ Γ ∧ . 



The Einstein-Schrödinger theory 

 

242 

On the other hand: 
 

1
2 ( )dx dx dx dxα ρ α ρ λ µ α ρ α ρ λ µ

ρ β ρλ βµ ρλ βµ ρµ βλω ω∧ = Γ Γ ∧ = Γ Γ − Γ Γ ∧ . 

 
One deduces from (60-7) that: 
 
(63-4)    Rα

β,λµ  = α α α ρ α ρ
λ βµ µ βλ ρλ βµ ρµ βλ∂ Γ − ∂ Γ + Γ Γ − Γ Γ . 

 
 
 64. – Tensors deduced by contraction. – a) One may deduce the following 
covariant tensor From the torsion tensor Sα

βγ  by contraction: 
 
(64-1)     Sα = Sρ

αρ . 
From (63-3), one will thus have: 
(64-2)     2Sα = ρ ρ

αρ ραΓ − Γ  

 
in the natural frame that is associated with local coordinates. 
 From the anti-symmetry of the torsion tensor in its lower indices, the other possible 
contraction will lead to the opposite covariant vector. 
 
 b)  One may obtain two covariant tensors of rank 2 by contracting the curvature 
tensor that are essentially distinct.  One of them constitutes the generalization of the Ricci 
tensor of Riemannian geometry, so we also call it the Ricci tensor.  It is defined by: 
 
(64-3)     Rλµ = Rα

λ,αµ . 
 
Its components in a natural frame are given explicitly as functions of the coefficients of 
the connection by the formula: 
 
(64-4)   Rλµ = σ σ σ ρ σ ρ

σ λµ µ λσ ρσ λµ ρµ λσ∂ Γ − ∂ Γ + Γ Γ − Γ Γ . 

 
This tensor does not have any particular symmetry, in general. 
 The second tensor is obtained by contracting α and β in relation (63-4), and as a 
result, it is anti-symmetric in the remaining lower indices λ and µ.  We set: 
 
(64-5)     Vλµ = Rα

α,λµ . 
 
This tensor has the explicit expression: 
 
(64-6)     Vλµ = α α

λ αµ µ αλ∂ Γ − ∂ Γ . 

 
 It obviously reduces to zero in the case of a Riemannian connection.  In the case of an 
arbitrary affine connection, Vλµ will be the rotation of a vector field.  Indeed, if we give 
the manifold Vn a Riemannian structure with a positive definite metric − which is always 
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possible – and let α
βγΠ  be the coefficients in a natural frame of the corresponding 

Riemannian connection then one will have: 
 

α
βγΓ = Tα α

βγ βγΠ + , 

 
in which T is a tensor.  By introducing the covariant vector: 
 

Tµ  = Tα
αµ , 

one will obtain: 
α
αµΓ  = Tα α

αµ αµΠ + . 

 
 One deduces from this that: 

Vλµ = T Tλ µ µ λ∂ − ∂ , 

 
which expresses the stated property. 
 Suppose that the manifold Vn is orientable.  It is easy to obtain a geometric 
interpretation for the condition Vλµ = 0.  Suppose that there exists an exterior differential 
n-form η on Vn that is not annulled at any point.  The components of such a form in local 
coordinates may be written: 

1 2 1 2
| |

n n
gλ λ λ λ λ λη ε=

⋯ ⋯
, 

 
in which | |g  is the strict component of the form η, which is a component that one may 

always assume to be positive, and in which
1 2 nλ λ λε
⋯

is the classical indicator of the 

permutation.  Under a direct change of local coordinates, | |g  will transform according 
to the formula: 

| |g′  = ( )| | detg Aα
β ′ . 

 
 The covariant derivative of η has the components: 
 

1 2 1 2 1 2n n n
D α

µ λ λ λ µ λ λ λ αµ λ λ λη η η= ∂ − Γ
⋯ ⋯ ⋯

, 

namely: 

1 2 1 2
D ( | | | |)

n n
g gα

µ λ λ λ µ αµ λ λ λη ε= ∂ − Γ
⋯ ⋯

. 

 
If this derivative is zero then one will have: 
 

| |

| |

g

g
µα

αµ

∂
Γ = , 

 
and it follows from (64-6) that Vλµ  = 0. 
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 Conversely, if Vλµ = 0 then, starting with the transformation formulas for α
αµΓ  under a 

local coordinate change, one easily proves that one may construct an n-form on Vn that is 
not annulled at any point and which has a zero covariant derivative under the affine 
connection considered. 
 
 
 65. – Symmetric connection associated with an affine connection.  Einstein 
tensor. – From now on, we will use the symbols () and [] as the symbols of 
symmetrization and anti-symmetrization, respectively.  In particular, if ϕλµ… denotes a 
system of quantities that depend on the two indices λ and µ, and possibly other indices, 
we have: 

ϕ(λµ)… = 1
2 (ϕλµ… + ϕµλ…)  ϕ[λµ]… = 1

2 (ϕλµ… − ϕµλ…). 

 
 One immediately deduces that: 
(65-1)     ϕλµ… = ϕ(λµ)… + ϕ[λµ]... 
 
 Now that we have introduced this notation, consider the coefficients α

βγΓ  of an affine 

connection in a natural frame.  From (65-1), one has: 
 

α
βγΓ = ( ) [ ]

α α
βγ βγΓ + Γ . 

Now, by virtue of (63-3): 

[ ]
α
βγΓ = Sα

βγ . 

One deduces from this that: 
(65-2)     α

βγΓ = ( )
α

βγΓ + Sα
βγ . 

 
 Since the Sα

βγ are the components of a tensor, it will results that in a natural frame the 

( )
α

βγΓ  are the coefficients of an affine connection whose torsion is obviously zero.  We 

say that this connection is the symmetric affine connection that is associated with given 
affine connection.  It is naturally possible to express the various tensors that were 
introduced relative to the affine connection as functions of the torsion tensor and 
elements relative to the symmetric connection.  However, the corresponding formulas are 
not particularly interesting. 
 In elaborating his theory, Einstein introduced a tensor that we shall not use as a basis, 
but which it is still convenient to point out.  This tensor Eλµ is expressed as a function of 
the coefficients α

βγΓ  of the affine connection by: 

 
(65-3)   Eλµ  = 1

( ) ( ) ( )2 [ ]σ σ σ σ ρ σ ρ
σ λµ µ λσ λ µσ ρσ λµ ρµ λσ∂ Γ − ∂ Γ + ∂ Γ + Γ Γ − Γ Γ . 

 
We shall relate the quantities Eλµ to the preceding tensors that we introduced, and having 
done this, we shall then establish that the Eλµ essentially define a tensor. 
 Start with the Ricci tensor of the connection: 
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(65-4)   Rλµ = σ σ σ ρ σ ρ
σ λµ µ λσ ρσ λµ ρµ λσ∂ Γ − ∂ Γ + Γ Γ − Γ Γ  

 
and add the Ricci tensor Rµλ of the affine connection α α

βγ γβΓ = Γ  to it.  One has: 

 
Rµλ = σ σ σ ρ σ ρ

σ λµ µ λσ ρσ λµ ρµ λσ∂ Γ − ∂ Γ + Γ Γ − Γ Γ  

 
or, by reverting to theα

βγΓ : 

 
(65-5)   Rµλ = σ σ σ ρ σ ρ

σ λµ λ σµ σρ λµ λρ σµ∂ Γ − ∂ Γ + Γ Γ − Γ Γ . 

 
By adding (65-4) and (65-5) term-by-term, one will obtain: 
 

1 1
2 2( ) ( )R R E S Sλµ λµ λµ µ λ λ µ+ = − ∂ − ∂ . 

 
We have thus obtained: 
 
(65-6)   Eλµ = 1 1

2 2( ) ( )R R S Sλµ λµ λ µ µ λ+ − ∂ − ∂ , 

 
which establishes that Eλµ essentially defines a tensor. 
 On the other hand, one has: 
 

Eλµ − Rλµ = 1
( ) ( )2 [ ] Sσ σ σ ρ

σ λµ µ λσ λ µσ λµ ρ∂ Γ − ∂ Γ + ∂ Γ + Γ  

 
so, upon replacing the first term of the right-hand side with Sµ λ∂ : 

 
Eλµ − Rλµ = 1

( ) ( )2 [ ] Sσ σ σ ρ
σ λµ µ λσ λ µσ λµ ρ∂ Γ − ∂ Γ + ∂ Γ + Γ . 

 
 If Wλµ denotes the contracted anti-symmetric curvature tensor of the connection ( )

α
βγΓ  

then one will have: 
(65-7)   Eλµ − Rλµ = D Sµ λ − Wλµ , 

 
in which the covariant derivative Dµ always corresponds to the initial affine connection. 
 
 
 66. – Parallelism and geodesics. – Let l be a continuously differentiable path in Vn 
that is defined parametrically by x = x(t).  In the local coordinate domain (xα), we set xα 
= dxα / dt.  If one is given a tangent direction to Vn at each point of l (i.e., an equivalence 
class of vectors whose origin is at x that is obtained by considering two non-zero 
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collinear vectors as equivalent) then one knows (1) that this is what one intends by saying 
that these directions are parallel relative to l and the connection, and that this notion 
does not depend on the parametric representation that is chosen for l. 
 In order for this to be true, it is necessary and sufficient that one must have: 
 

(66-1)   
dv dv

v x v v x v
dt dt

α β
α ρ σ β β ρ σ α
ρσ ρσ

   
+ Γ − + Γ   

   
ɺ ɺ = 0 

 
on l and for every pair α, β, and for an arbitrary vector v that admits this direction at each 
point of l. 
 We take the directions tangent to l to be a system of directions along l, which we may 
define by the vector xα.  If this system of directions is parallel relative to l then the path l 
will be called a geodesic arc of the connection.  One will then have: 
 

(66-2)   
dv dv

x x x x x x
dt dt

α β
α ρ σ β β ρ σ α
ρσ ρσ

   
+ Γ − + Γ   

   
ɺ ɺ ɺ ɺ ɺ ɺ = 0, 

 
and one will see that the geodesics of the affine connection α

βγΓ  depend upon only the 

associated symmetric connection ( )
α

βγΓ . 

 Consider two affine connection on Vn with the coefficients α
βγΓɺ  and α

βγΓ , and look for 

the conditions under which parallelism along any path is the same for both connections.  
Starting from (66-1), one will easily establish that the most general change of connection 
that preserves parallelism is: 
(66-3)    α

βγΓɺ = 2 pα α
βγ β γδΓ + , 

 
in which pγ denotes an arbitrary covariant vector.  (66-3) obviously translates into the 
relations: 
(66-4)    ( )

α
βγΓɺ  = ( ) p pα α α

βγ β γ γ βδ δΓ + +  

and: 
Sα

βγ
ɺ = Sα

βγ + p pα α
β γ γ βδ δ+ . 

 
 Such a change naturally preserves geodesics, a fortiori.  An analogous argument 
shows that the most general change of connection that preserves geodesics is obtained by 
performing the change (66-4) on the symmetric connection and modifying the torsion 
tensor arbitrarily. 
 
 
 67. – Variational formulas for the curvature tensors. – Suppose that the 
connection envisioned is varied in a domain of the manifold Vn, in the sense of the 

                                                
 (1) Cf. EISENHART, Non-Riemannian Geometry, Amer. Math. Soc. Colloquium, pp. 12-13 and pp. 30-
31. 
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calculus of variations, and let α
βγδΓ  be the variation of the coefficient αβγΓ  of the affine 

connection.  It is clear that α
βγδΓ  defines a tensor that is once-contravariant and twice-

covariant: one may either reason as in sec 20 or observe that the definition of the αβγδΓ  

involves the difference of two connections, i.e., the components of a tensor of the 
indicated type (1).  Moreover, one recalls that the operator δ commutes with the ordinary 
partial derivative with respect to a local coordinate. 
 In what follows, we shall need the variations of the curvature tensor and the Ricci 
tensor that corresponds to such a variation of the connection.  We thus propose to extend 
and adapt the calculations that were done in sec. 20 for a Riemannian connection to the 
case of an affine connection that has torsion.  We start with the explicit expression for the 
curvature tensor: 

Rα
β,λµ = α α α ρ α ρ

λ βµ µ βλ ρλ βµ ρµ βλ∂ Γ − ∂ Γ + Γ Γ − Γ Γ . 

 
One deduces from this by variation that: 
 

δRα
β,λµ = α α α ρ ρ α α ρ ρ α

λ βµ µ βλ ρλ βµ βµ ρλ ρµ βλ βλ ρµδ δ δ δ∂ Γ − ∂ Γ + Γ Γ + Γ Γ − Γ Γ − Γ Γ . 

 
We then calculate the covariant derivative of the tensor α

βµδΓ .  We get: 

 
Dλ

α
βµδΓ = α α ρ ρ α ρ α

λ βµ ρλ βµ βλ ρµ µλ βρδ δ δ∂ Γ + Γ Γ − Γ Γ − Γ Γ  

and: 
   Dµ

α
βλδΓ = α α ρ ρ α ρ α

µ βλ ρµ βλ βµ ρλ λµ βρδ δ δ∂ Γ + Γ Γ − Γ Γ − Γ Γ . 

 
By subtracting term-by-term, one obtains: 
 
(67-1)   δRα

β,λµ = Dλ
α
βµδΓ − Dµ

α
βλδΓ − 2Sρ

λµ 
σ
λρδΓ . 

 
These formulas differ from the ones that were obtained in sec. 20 by the presence of 
torsion terms. 
 
 
 68. – Local transformations on a differentiable manifold. – Let U be a 
neighborhood of Vn and let f be a differentiable homeomorphism of U onto a 
neighborhood V.  This differentiable homeomorphism induces an isomorphism of the 
vector space Ty that is tangent to y ∈ U onto the vector space Tf(y), and, more generally, an 
isomorphism of the space of tensors of a definite type at y onto the corresponding space 
at y.  We denote this isomorphism by yf . 

 

                                                
 (1) Of course, the α

βγδγ  are the components of the “variation of the connection” tensor in an arbitrary 

frame.  However, since we shall have recourse to an explicit expression for the curvature tensor, it is more 
convenient to reason in local coordinates. 
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 Suppose that one is given a tensor field Θy on a domain D that covers U.  We refer to 
the transform of this tensor field by f, which we denote by ( )xf Θ , when we mean the 

tensor field on V that is defined by: 
 
(68-1)    ( )xf Θ = 1 1

( ) ( )f x f xf − −Θ  in which x ∈V,  1( )f x− ∈ U. 

 
 Let (xα) be local coordinates whose domain covers V and (yβ) local coordinates whose 
domain covers U.  The map f may be defined in these local coordinates by the relations: 
 
(68-2)    xα = fα(yβ)  yα = gβ(xα). 
 
 It is then easy to modify the local coordinates of V in such a way that f  is exhibited 
in the simplest manner.  It suffices to take new local coordinates for x: 
 
(68-3)    xβ ′ = gβ(xα). 
 
The map f is then described by the relations: 
 

xβ ′ = yβ 
 
between the coordinates (yβ) of y ∈ U and the coordinates( )xβ ′ of x ∈ V; f  is then the 

map that makes any tensor at y that is referred to the natural frame for the coordinates (yβ) 
correspond to the tensor at x that has the same components  relative to the natural frame 
for the coordinates( )xα ′ . 

 By the same procedure, an affine connection Γy defined on U may be transformed 
into an affine connection that is defined on V that will have the same coefficients with 
respect to the natural frame relative to the coordinates( )xα ′ . 
 
 
 69. – Lie derivative. –  Consider a non-zero vector field ξα in a neighborhood U to 
which local coordinates are referred.  One knows that the integration of the differential 
system: 

dx

dt

α

= ξα, 

 
with the initial condition that the point y must has the coordinates (yα) at t = 0, defines a 
local transformation group of one parameter t that makes the point y(yα) correspond to the 
point x = ft(y) whose coordinates are (xα) in the same local coordinate system.  Suppose 
that one defines a field of geometric objects – tensor or connections – on U.  For a 
sufficiently small t, one thus finds the object ( )t xf Φ  defined at x.  The Lie derivative of 

Φ relative to the vector field ξξξξ, or the corresponding infinitesimal transformation X = 
α

αξ ∂  is defined by: 
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(69-1)    XΦx = 
0

1
lim [ ( ) ]x t xt

f
t→

Φ − Φ . 

 
One sees immediately that for the geometric objects considered here XΦx will always be a 
tensor.   One has: 

( )t xf Φ = Φx – t X Φx + tO, 

 
in which the notation O will denote a term that goes to zero with t in the sequel.  The 
relation XΦx = 0 say that the field F is invariant under the local transformation group 
considered. 
 In order to evaluate the Lie derivative in the various cases, we must seek the principal 
part at t of the bracket that appears in the right-hand side of (69-1).  At the point y(yα), the 
transformation ft makes the point with coordinates: 
 

xα = yα + t ξα(y) + t O 
 
in the same local coordinate systems.  As a result: 
 

yα = xα − tξα(x) + tO 
 
and, conforming to (68-3), we perform the change of local coordinates: 
 
(69-2)    xα ′ = xα − tξα + tO ( = a, numerically). 
 
 If ϕ(x) denotes a scalar field then one will have: 
 

( )( )tf xϕ  = ϕ(y) = ϕ(x) − t ρ
ρξ ϕ∂ + tO, 

and, as a natural result: 
Xϕ = ρ

ρξ ϕ∂ . 

 
 We now evaluate the Lie derivative of an arbitrary covariant tensor γαβ of rank two.  
It follows from the considerations of sec. 68 that: 
 

( ) ( )tf xλ µγ ′ ′  = γλµ(y) = γλµ(x) − ( )t xρ
ρ λµξ γ∂ + tO. 

 
 One deduces from this, as well as reverting to the coordinates (xα), with the aid of 
(69-2) that: 
 
( ) ( ) ( ) ( )t tf x A A f xλ µ

αβ α β λ µγ γ′ ′
′ ′=  

 
  = ( )( )( )t t O t t O t t Oβ λ µ µ ρ

α α β β λµ ρ λµδ ξ δ ξ γ ξ γ− ∂ + − ∂ + − ∂ + . 
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 As a result, by taking the coefficient of the terms in t in the right-hand side, and 
subtracting from γαβ(x), one will obtain: 
 
(69-3):    Xγαβ = ρ ρ ρ

ρ αβ ρβ α αρ βξ γ γ ξ γ ξ∂ + ∂ + ∂ . 

 
 One establishes in an identical manner that if γαβ is a contravariant tensor of rank two 
then one will has: 
(69-4)    Xγαβ  = ρ αβ ρβ α αρ β

ρ ρ ρξ γ γ ξ γ ξ∂ − ∂ − ∂ , 

 
and the rule that gives the Lie derivative of a tensor will become apparent. 
 Finally, we propose to evaluate the Lie derivative of an affine connection α

βγΓ .  If one 

affects the transformed connection with index t then one will first obtain: 
 

t λ

µ ν

′

′ ′Γ  = ( ) ( )y x tλ λ ρ λ
µν µν ρ µνξΓ = Γ − ∂ Γ + tO. 

 
The coefficients of the transformed connection in the initial local coordinates will be 
given by: 

t α

βγ
 

Γ 
 

= ( )
t

A A A x A A
λ

α µ ν α ν
µ νλ β γ λ β γ

′
′ ′ ′

′ ′′ ′
 

Γ + ∂ 
 

 

or, explicitly: 
 

t α

βγ
 

Γ 
 

==( )( )( )t t O t t O t t Oβ α µ µ ν ν
λ λ β β γ γδ ξ δ ξ δ ξ+ ∂ + − ∂ + − ∂ +  

   ( ) + ( )( )t t O t t O t t Oλ ρ λ α α ν
µν ρ µν ν ν β γξ δ ξ ξΓ − ∂ Γ + + ∂ + − ∂ ∂ + . 

 
 One deduces from this that: 
 
(69-5)  X α ρ α ρ α α ρ α ρ α

βγ ρ βγ βγ ρ ργ β βρ γ β γξ ξ ξ ξ ξΓ = ∂ Γ − Γ ∂ + Γ ∂ + Γ ∂ + ∂ ∂ . 

 
 One will observe that one can express the right-hand sides of the preceding formulas 
as the sums of tensors with the aid of an affine connection.  For example, by substituting 
covariant derivatives for the ordinary partial derivatives in (69-3), one will obtain: 
 

Xγαβ = ξρ (Dρ γαβ  + )λ λ
αρ λβ βρ αλγ γΓ + Γ + γλβ (Dα ξλ − )λ ρ

ραξΓ + γαλ (Dβ ξλ − )λ ρ
ρβξΓ . 

 
By introducing the torsion tensor of the connection, one will then deduce that: 
 
(69-6)  Xγαβ = ξρ Dρ γαβ  + γλβ Dα ξλ + γαλ Dβ ξλ + 2ξρ ( )S Sλ λ

λβ αρ αλ βργ γ+ . 
 

____________



CHAPTER V 
 

THE FIELD EQUATIONS OF EINSTEIN’S THEORY 
 
 

I. – STUDY OF THE TENSOR gαβ 
 
 

 70. – The tensors gαβ and gαβ . – Starting with the four-dimensional vector space T4, 
we give ourselves a real covariant tensor of rank two with no particular symmetry 
properties that satisfies some hypotheses that we shall specify.  We propose to first give a 
certain number of elementary results that concern the tensors that one may deduce by 
symmetrization, anti-symmetrization, and passing to an associated tensor. 
 For the tensor gαβ, we suppose that: 
 
  a)  g = det(gαβ) ≠ 0; 
 
  b)  The quadratic form Φ(X) = gαβ X

α Xβ is a non-degenerate form of hyperbolic normal 
type with one positive square and three negative ones. 
 
 Since g ≠ 0, the matrix (gαβ) will always be invertible and admit an inverse matrix, 
which we denote by (gαβ), such that: 
 
(70-1)  gαρ g

βρ
  = gρα g

ρβ
  =

β
αδ    ( β

αδ = 0 for α ≠ β, = 1 for β = α). 

 
 The gαβ are obviously the components of a contravariant tensor of rank two.  The 
tensors gαβ and gαβ  are called the associated tensors.  One obviously has: 
 

det(gαβ) =
1

g
≠ 0. 

 
 In the sequel, we let the same root letter – g, here – denote both tensors, one of which 
is covariant and the other of which is contravariant. 
 We also introduce the tensorial density: 
 

(70-2)    | |g g gαβ αβ= . 

 One will note that: 
2 1

| det( ) | | |
| |

g g
g

αβ =  = | g |. 

 
 It will then result that one may substitute the given of the tensorial density gαβ  for the 

given of a tensor gαβ or the associated tensor gαβ ; for example, one has: 
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gαβ =
1

| det( ) |
g

g

αβ
αβ

. 

 
 
 71. – The tensors that are deduced by symmetrization and anti-symmetrization.  
− Henceforth, we set: 
(71-1)   gαβ = hαβ + kαβ ;  gαβ = lαβ + mαβ, 
in which: 
(71-2)  hαβ = g(αβ) , kαβ = g[αβ] ;  lαβ = g(αβ), mαβ = g[αβ]; 
 
are symmetric (anti-symmetric, resp.) tensor. 
 We propose to study the relations that exist between the various tensors that were just 
introduced. 
 First observe that, from (71-1), the quadratic form Φ(X) may be written: 
 

Φ(X) = hαβ X
α Xβ. 

 
From hypothesis b, one will thus have: 
 

h = det (hαβ) < 0, 
 
and in particular it will be non-zero.  We shall also introduce the associated tensor hαβ. 
 From (70-1), one has the obvious relation: 
 
(71-3)     gαβ = gλµ g

λα gµβ . 
 
Upon symmetrizing this, one will obtain: 
 

lαβ = 1
2 (gλµ g

λα gµβ  + gλµ g
λα gµβ) = 1

2 (gλµ + gµλ) g
λα gµβ. 

 
One will thus have: 
(71-4)     lαβ = hλµ  g

λα gµβ, 
and one will likewise establish that: 
(71-5)     lαβ = hλµ g

αλ gβµ. 
 
Upon anti-symmetrizing (71-3), one will obtain: 
 
(71-6)     mαβ = kλµ  g

λα gµβ = kλµ g
αλ gβµ. 

On the other hand, set: 
Yα = gλα X

λ,  Xλ = gλα Yα . 
 
 For Xλ and Yα that are related in this way, one sees that: 
 

Ψ(Y) = lαβ Yα Yβ = hλµ X
λ Xµ = Φ(X). 
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It results from this that the quadratic form: 
 
(71-7)   Ψ(Y) = gαβ Yα Yβ = lαβ Yα Yβ  
 
will also be non-degenerate and of hyperbolic normal type.  In particular: det(lαβ) < 0. 
 One will likewise establish that: 
 
(71-8)   hαβ = lλµ gλα gµβ , kαβ = mλµ gλα gµβ = mλµ gαλ gβµ . 
 
 
 72. – Explicit expression for g with the aid of the hαβ and kαβ . – Let G, H, K denote 
the matrices whose general elements are gαβ, hαβ, kαβ, respectively.  If l denotes a scalar 
constant then one will obviously have: 
 
(72-1)    K + λH = (KH−1 + λI) H. 
 
By making λ = 1 in (72-1) and multiplying by H−1, it will follow that: 
 
(72-2)    GH−1 = KH−1 + I. 
 
 We propose to evaluate the determinant in the right-hand side of (72-2), and, to that 
effect, to evaluate: 

ψ(λ) = det (KH−1 + λI). 
 One first sees that: 
 

det(K + λH)  = det (kαβ + λhαβ) = det (kβα + λhαβ) = det (−kαβ + λhαβ) 
   = det (−K + λH). 
 
 Since the matrices envisioned are 4×4 one thus has: 
 

det (K + λH) = det (K – λH). 
 
As a result, by virtue of (72-1), ψ(λ) will be an even function of λ.  One will thus have: 
 

ψ(λ) = λ4 + cλ2 +
k

h
, 

 
so it will suffice for us to evaluate the coefficient c.  It will be the sum of the diagonal 
minors of order two in the matrix: 
 

KH−1 = (aα 
β)  aα

β = kαρ h
βρ. 

 One will note that: 
a α

α
α
∑ = 0. 
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 One of these minors corresponds to any pair (α, β) (α ≠ β): 
 

aα
α aβ

β − aα
β aβ

α   (no summation). 
 
Twice the sum of these minors is therefore: 
 

2c = a aα β
α β

α β≠
∑ − a aβ α

α β
α β≠
∑ = − ( )2

a α
α

α
∑ − a aβ α

α β
α β≠
∑ = −

,

a aβ α
α β

α β
∑ . 

 
One then deduces that: 
 

2c = − kαρ h
βρ kβσ hασ = kαβ  kρσ h

αρ hβσ. 
 
By taking the determinants of both sides of (72-2), one obtains: 
 

g

h
= ψ(1) = 1 +1

2 kαβ kρσ h
αρ hβσ +

k

h
, 

and, as a result: 

(72-1)   g = h +
2

h
kαβ kρσ h

αρ hβσ  + k. 

 
 
 73. – Explicit expressions for lαβ and mαβ as a function of the tensors hαβ and kαβ . 
– In order to evaluate gαβ one may remark that: 
 

g gαβ =
g

gαβ

∂
∂

. 

As a result: 

g lαβ =
1

2

g g

g gαβ βα

 ∂ ∂+  ∂ ∂ 
 g mαβ =

1

2

g g

g gαβ βα

 ∂ ∂−  ∂ ∂ 
. 

 
 
Consider g to be a function of hαβ and kαβ by the intermediary of the gαβ .  One will get: 
 

dg =
g

gαβ

∂
∂

(dhαβ + dkαβ) = 
1

2

g g

g gαβ βα

 ∂ ∂+  ∂ ∂ 
dhαβ + 

1

2

g g

g gαβ βα

 ∂ ∂−  ∂ ∂ 
dkαβ. 

 
One deduces from this that: 
 

(73-1)   g lαβ =
g

hαβ

∂
∂

,  g mαβ =
g

kαβ

∂
∂

, 
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which provides a convenient way of evaluating the lαβ and mαβ. 
 We begin with the mαβ, whose expression is simplest.  One deduces from (72-1) by 
derivation that: 

g

kλµ

∂
∂

= h kρσ h
λρ hµσ + 

k

kλµ

∂
∂

. 

 
If Kλµ denotes the minor of k relative to the element kλµ then one will have: 
 

k

kλµ

∂
∂

= Kλµ, 

and one will obtain: 

(73-2)    mλµ =
h

g
kρσ h

λρ hµσ +
1

g
Kλµ. 

 
 In the case where k ≠ 0, kαβ will admit an associated tensor kαβ, and one will have: 
 

(73-3)    mλµ =
h

g
kρσ h

λρ hµσ +
k

g
kλµ. 

 
 From (72-1), in order to evaluate the lλµ, we shall need to evaluate the 

derivatives
h

h

αβ

ρσ

∂
∂

.  It follows from the relation: 

hαλ hβλ = α
βδ , 

by derivation and inversion that: 
 

h

h

αβ

ρσ

∂
∂

= − hαλ hβµ h

h
λµ

ρσ

∂
∂

= − 1
2 (hαλ hβµ  + hαµ hβλ)

h

h
λµ

ρσ

∂
∂

, 

namely: 

(73-4)   
h

h

αβ

ρσ

∂
∂

= − 1
2 (hαρ hβσ  + hασ hβρ). 

 
By differentiating (72-1) with respect to hλµ one will obtains, from (73-4): 
 

g

hλµ

∂
∂

=
h

hλµ

∂
∂

(1 + 1
2 kαβ  kρσ  h

αρ hβσ ) – 
2

h
kαβ  kρσ  (h

αλ hρµ + hαµ hρλ) hβσ. 

 
There naturally exist inverse formulas that are analogous to (73-3) and (73-5) and express 
hαβ and kαβ as functions of lλµ and mλµ. 
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II.  – DEFINING THE FIELD EQUATIONS  
 
 
 74. – The fundamental manifold. – The primitive element of our formula consists of 
a four-dimensional spacetime manifold V4 that is endowed with the same structure of a 
differentiable manifold that one finds in general relativity.  V4 is first assumed to be of 
class C2.  One denotes an admissible coordinate system by (xα) (α, any Greek index = 0, 
1, 2, 3).  In the intersection of the domains of two admissible coordinate systems, one 
assumes, moreover, that the second derivatives of the coordinate change are functions of 
class piecewise-C2.  This is what we mean when we say that the manifold V4 is a 
differentiable manifold of class (C2, piecewise-C4). 
 We assume that two geometric elements are defined on this manifold V4: 
 
 1.  A tensor field gαβ of class (C1, piecewise-C3), i.e., whose components are 
continuously differentiable and whose derivatives gγ αβ∂  are functions of class 

piecewise-C2.   At each point x of V4, the tensor gαβ satisfies the hypotheses of sec. 70; in 
particular, the determinant g is non-zero.  The tensor gαβ is called the fundamental tensor. 
 
 2.  An arbitrary affine connection whose coefficients α

βγΓ  are continuous and have 

class piecewise-C2. 
 
 These are the elements that we shall restrict with the “field equations,” which we 
shall derive from a variational principle, by analogy with general relativity or with the 
Jordan-Thiry theory (see sec. 21)  
 
 
 75. – Several derivation formulas. − Before we specify this variational principle, we 
propose to point out several elementary derivation formulas that relate to the tensor gαβ, 
the associated tensor gαβ, and the determinant g. 
 Suppose that the gαβ are differentiable functions of one variable u.  One deduces from 
the relation: 

gλσ gρσ = λ
ρδ , 

by derivation, that: 

(75-1)    
dgdg

g g
du du

λσ
ρσλσ

ρσ + = 0. 

 
By multiplying both sides of the preceding relation by gρµ, one will obtain: 
 

(75-2)    
dgdg

g g
du du

λµ
ρσλσ ρµ= − . 

 
 Likewise, one will deduce from (75-1) that: 
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(75-3)    
dg dg

g g
du du

λµ
ρσ

λσ ρµ= − . 

 
 We evaluate the logarithmic derivative of | g |.  From a well-known formula on the 
derivative of a determinant, one will get: 
 

(75-4)    
log | | dgd g

g
du du

αβαβ= . 

 

By replacing
dg

du
αβ with its value from (75-3), one will get: 

 
log | |d g dg

g g g
du du

λµ
αβ

αµ λβ= − ; 

namely: 

(75-5)    
log | |d g dg

g
du du

λµ

λµ= − . 

 
 We shall use these formulas in what follows.  In particular, we apply (75-4) and (75-
5) to the case where u = xρ.  We set: 
 

(75-6)    γρ =
| |

| |

g

g

ρ∂
 = 1

2 ρ∂ log | g |. 

It will thus follow that: 
(75-7)    γρ = 1

2 gαβ gρ αβ∂  = − 1
2 gαβ gαβ

ρ∂ . 

 
 
 76. – The variational principle. – Let C be a four-dimensional, differential chain in 
the manifold and arbitrarily vary the fundamental tensor and the connection in such a 
fashion that the variations will be zero on the boundary C∂ of the chain envisioned.  
Consider the corresponding variation of the scalar-valued integral: 
 

(76-1)    I = | |
C

g R gαβ
αβ∫  dx0 ^ … ^ dx3, 

 
in which Rαβ denotes the Ricci tensor of the affine connection α

βγΓ . 

 
 The field equations of the theory are the ones that define the extremum of the integral 
I vis-à-vis all variations of the fundamental tensor and the connection that are restricted 
by only the requirement that they should vanish on the boundary of C. 
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 We evaluate the variation of I, while distinguishing the contribution that is made by 
the variation of the connection, as well as the one that is made by the variation of the 
fundamental tensor.  We obtain: 
 

(76-2)    δI = | |
C

g R gαβ
αβδ∫ dx0 ^ … ^ dx3 + [ | |]

C
g R g gαβ αβ

αβ δ∫  dx0 ^ … ^ dx3. 

 
 We set: 

(76-3)   δ1I = | |
C

g R gαβ
αβδ∫  dx0 ^ … ^ dx3 

and: 

(76-4)   δ2I = [ | |]
C

g R g gαβ αβ
αβ δ∫  dx0 ^ … ^ dx3. 

 
 We first occupy ourselves with the evaluation of δ1I by making the variation ρ

αβδΓ  of 

the affine connection appear explicitly. 
 
 
 77. – First form of the field equations. – By evaluating the variation of the Ricci 
tensor as we did in sec. 67, one has: 
 

δRαβ = D ρ
ρ αβδΓ − D ρ

β αρδΓ − 2Sσ
ρβ 

ρ
αβδΓ . 

 
One deduces from this that: 
 

(77-1) 
( ) ( )

2 .

g R D g D g D g

D g S g

αβ αβ ρ αβ ρ αβ ρ
αβ ρ αβ β αρ ρ αβ

αβ ρ σ ρ αβ
ρ αβ ρβ ασ

δ δ δ δ
δ δ

 = Γ − Γ − Γ
 + Γ − Γ

 

 
 We will thus be led to introduce the vector: 
 
(77-2)    Aρ = gαβ ρ

αβδΓ − gαρ σ
ασδΓ , 

 
and we note that since the variation of the connection is zero on the boundary of C, one 
will have Aρ = 0 on that boundary.  Formula (77-1) will then become: 
 
(77-3)  gαβ δRαβ = Dρ A

ρ − Dρ g
αβ ρ

αβδΓ + Dβ g
αβ ρ

αρδΓ − 2 gαβ Sσ
ρβ 

ρ
ασδΓ . 

 
 We therefore propose to evaluate the integral: 
 

J(δ) = | |
C

D A gρ
ρ ⋅∫  dx0 ^ … ^ dx3. 

 One has: 
 

Dρ A
ρ ⋅ | |g  =( ) | |A A gρ ρ λ

ρ λρ∂ + Γ  = ( | |) ( ) | |A g A gρ σ ρ
ρ ρσ ργ∂ + Γ −  
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in which γρ is defined by (75-6).  Under these conditions, one obtains: 
 

J(δ) = ( | |)
C

A gρ
ρ∂∫  dx0 ^ … ^ dx3 + ( ) | |

C
A gσ ρ

ρσ ργΓ −∫  dx0 ^ … ^ dx3. 

 
By applying Stokes’s formula, the first integral in the right-hand side will be transformed 
into an integral that is taken over the boundary of C, which will be zero since Aρ is zero 
on that boundary.  One deduces from (76-3) and (77-3) that: 
 

(77-4)   δ1I = | |
C

M g∫  dx0 ^ … ^ dx3, 

with: 
(77-5)  M = Dρ g

αβ ρ
ασδΓ − Dρ g

αβ ρ
ασδΓ − ( )σ

ρσ ργΓ − Aρ + 2 gαβ Sσ
ρβ 

ρ
ασδΓ , 

 
in which Aρ is given by (77-2).  We propose to exhibit the coefficient of ρ

αβδΓ in the 

various terms of the scalar M.  One has: 
 
(77-6)  M = [Dρ g

αβ  − β
ρδ Dλ g

αλ  − ( )σ
ρσ ργΓ − gαβ + ( )β σ

ρ λσ λδ γΓ − gαλ + 2gασ Sβ
ρσ] ⋅ ρ

αβδΓ . 

 
 Given a scalar θ, which we shall choose in a moment, consider the quantities: 
 

Gαβ
ρ (θ) = Dρ g

αβ  − ( )σ
ρσ ργΓ − gαβ + 2θ β

ρδ gασ Sσ . 

 
By contraction, we will obtain: 
 

Gαλ
λ (θ) = Dλ g

αλ  − ( )σ
λσ λγΓ − gαλ + 2gασ Sσ (4θ – 1). 

 
One deduces from this that: 
 

[Gαβ
ρ (θ) − β

ρδ Gαλ
λ (θ)] ρ

αβδΓ = M + 2(θ − 4θ + 1) β
ρδ gασ Sσ 

ρ
αβδΓ . 

 
We thus take θ = 1

3  and set: 

 
(77-7)  Gαβ

ρ = Dρ g
αβ  − ( )σ

ρσ ργΓ − gαβ + 2gασ Sβ
ρσ + 2

3
β
ρδ gασ Sσ . 

 
 Thanks to the introduction of these quantities, one will have the simple formula: 
 

M = [Gαβ
ρ − β

ρδ Gαλ
λ]

ρ
αβδΓ . 

 
Thus, for any variation of the affine connection that vanishes on C∂ one will have: 
 

(77-8)  δ1I = − | |
C

G G gαβ β αλ ρ
ρ ρ λ αβδ δ − Γ ∫  dx0 ^ … ^ dx3. 
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 On the other hand, from the considerations of sec. 70, it amounts to the same thing to 
impose arbitrary variations on gαβ or gαβ, and on gαβ orgαβ .  Therefore, for an arbitrary 

variation of the tensorial density gαβ , one has: 

 

(77-9)  δ2I = 
C

R gαβ
αβ δ∫  dx0 ^ … ^ dx3. 

 
 Suppose that we vary the coefficients of the affine connection without varying the 
fundamental tensor or the tensorial density gαβ .  Conforming to the variational principle, 

one must have δI = δ1I = 0 for any variation of the affine connection that is zero on the 
boundary of C.  One deduces from (77-8) by a classical argument that one must have: 
 
(77-10)    Gαβ

ρ − β
ρδ Gαλ

λ  = 0. 

 
One obtains by contraction that: 
 

Gαλ
λ − 4Gαλ

λ = − 3Gαλ
λ  = 0. 

 
It results from this that the system (77-10) thus obtained will be equivalent to the system: 
 
(77-11)   Gαβ

ρ = 0, 
 
in which the Gαβ

ρ are given by equations (77-7). 
 On the contrary, if we vary the gαβ without varying the affine connection then we 

must have δI = δ2I = 0 for any variation of the gαβ that is zero on the boundary of C.  The 
following system of equations will result from this by the same classical argument: 
 
(77-12)    Rαβ = 0. 
 
 The set of the two systems (77-11) and (77-12) constitutes “the system of field 
equations.”  In the following sections, we shall transform these systems – mainly (77-11) 
– in such a fashion that we will obtain a system that is infinitely more manageable. 
 
 
 78. – Introduction of a new connection. – In order to simplify the form of equations 
(77-11), we shall replace the original connection α

βγΓ  with a new affine connection with 

coefficients Lα
βγ , which will be defined by the following lemma: 

 
 LEMMA – Given an arbitrary affine connection α

βγΓ , there exists one and only one 

affine connection Lα
βγ  that defines the same parallelism and whose covariant torsion 

vector is zero. 
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 Indeed, from (66-3), let: 
Lα

βγ  = 2 pα α
βγ β γδΓ +  

 
be an affine connection that defines the same parallelism as the connection Γ.  Its torsion 
tensor is: 

Σα
βγ  = Sα

βγ + pα
β γδ − pα

γ βδ , 

 
and, as a result, its covariant torsion vector will be: 
 

Σβ = Sβ + pβ – 4pβ = Sβ – 3pβ . 
 
 In order for Σβ to be zero, it is necessary and sufficient that: 
 

pβ = 1
3 Sβ . 

 
 One deduces from this that the only affine connection that answers the question is: 
 
(78-1)    Lα

βγ = 2
3 Sα α

βγ β γδΓ + , 

 
and that connection will be such that: 
 
(78-2)    2Σβ = Lα

βγ − Lα
ρβ = 0. 

 
 Having said that, we specify the Gα

βγ with the aid of the new connection Lα
βγ .  Upon 

specifying the covariant derivatives, we will first get: 
 

Gα
βγ  = gαβ

ρ∂ + gα σβ
σρΓ + gβ ασ

σρΓ + 2gασ Sβ
ρσ  − ( σ

ρσΓ − γρ) g
αβ + 2

3
α
βδ  gασ Sσ . 

 
If we take into account that: 

β
σρΓ − 2Sβ

ρσ  = β
ρσΓ  

then it will follow that: 
 

Gαβ
ρ  = gαβ

ρ∂ + gα σβ
σρΓ + gβ ασ

ρσΓ − ( σ
ρσΓ − γρ) g

αβ + 2
3

β
ρδ  gασ Sσ . 

 
By introducing the L instead of the Γ, one will deduce that: 
 

Gαβ
ρ = gαβ

ρ∂ + 2
3( )L S gα α σβ

σρ σ ρδ− + 2
3( )L S gβ β ασ

ρσ ρ σδ− − (Lσ
ρσ − γρ) g

αβ  

+ 2
3 gασ Sρ + 2

3
β
ρδ gασ Sσ . 

 After simplification, one will obtain: 
 
(78-3)  Gαβ

ρ  = gαβ
ρ∂ + L gα σβ

σρ + L gβ ασ
ρσ − (Lσ

σρ − γρ) g
αβ. 
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 One will deduce an expression for the γρ immediately from the field equations (77-
11) − namely, Gαβ

ρ = 0, in which the Gαβ
ρ may be provided by the formulas (78-3) − with 

the aid of L.  Indeed, by multiplying the two sides of (78-2) by gαβ , one will have, as a 
consequence of (77-11): 

− 2γρ + Lσ
σρ + Lσ

ρσ − 4(Lσ
σρ − γρ) = 0, 

namely: 
γρ  = Lσ

σρ , 

 
from (78-2).  It will result from this that equations (77-11) entail the equations: 
 
(78-4)    gαβ

ρ∂ + L gα σβ
σρ + L gβ ασ

ρσ = 0. 

 
 Conversely, suppose that we are given an affine connection Lα

βγ  with zero torsion 

vector and a covariant vector Sγ .  If equations (78-4) are satisfied then upon multiplying 
both sides of (78-4) by gαβ , one will get 
 
(78-5)    2γρ  = Lσ

σρ + Lσ
ρσ . 

 
If one now takes into account the fact that the torsion vector is zero then one will get: 
 
(78-6)    γρ  = Lσ

σρ , 

and for: 
(78-7)    α

βγΓ = Lα
βγ − 2

3
α
βδ Sγ 

 
one will see from (78-3) that equations (77-11) are satisfied. 
 Thus, the first system of field equations (77-11) will be equivalent to (78-4) when the 
connection L is restricted to admit a zero torsion vector. 
 
 
 79. – New form of the field equations. – From now on, we shall try to replace the 
connection α

βγΓ  with the connection Lα
βγ , which satisfies equations (78-4) and admits a 

zero torsion vector. 
 
 a)  If one takes (78-4) into account then one may replace the four conditions (78-2), 
Σβ = 0, with four interesting conditions that involve the fundamental tensor.  Consider an 
affine connection Lα

βγ  that satisfies (78-4), but we make no hypothesis on its torsion 

vector.  One will then get (78-5).  One deduces from (78-4) by contraction that: 
 
(79-1)    gρβ

ρ∂ + L gρ σβ
σρ + L gβ ρσ

ρσ = 0. 

 
On the contrary, the other possible contraction will give: 
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(79-2)    gβρ
ρ∂ + L gβ σρ

σρ + L gρ βσ
ρσ = 0. 

 
By subtracting the last two equations, one will obtain: 
 

2 [ ]g ρβ
ρ∂ + L gσ ρβ

ρσ − L gσ βρ
σρ = 0. 

 Now: 
L Lσ σ

ρσ σρ= + Σρ . 

One deduces from this that: 
 

L gσ ρβ
ρσ − L gσ βρ

σρ = ( Lσ
σρ + Σρ)(l

ρβ + mρβ) − Lσ
σρ (lρβ + mρβ) = Σρ l

ρβ + (2Lσ
σρ + Σρ) m

ρβ ; 

 
namely, from (78-5): 

L gσ ρβ
ρσ − L gσ βρ

σρ = Σρ l
ρβ + 2γρ m

ρβ. 

 One will thus obtain: 
(79-3)    [ ]g ρβ

ρ∂ + γρ g
[ρβ] = − 1

2 Σρ l
ρβ. 

 
Since det(lρβ) ≠ 0 (see sec. 71), it results that in order for the torsion vector Σρ of the 
connection envisioned to be zero, it is necessary and sufficient that one have: 
 
(79-4)    [ ]g ρβ

ρ∂ + γρ g
[ρβ] = 0 ; 

namely: 
[ ]g ρβ

ρ∂ = 0. 

 
Therefore the search for a connection α

βγΓ  that satisfies the first system of field equations 

is equivalent to the following problem: Find a connection Lα
βγ  that satisfies the equations: 

 
(79-5)    gαβ

ρ∂ + L gα σβ
σρ + L gβ ασ

ρσ = 0, 

 
while the derivatives of the fundamental tensor are assumed to satisfy the four relations: 
 
(79-6)     [ ]g ρβ

ρ∂  = 0. 

 The formula: 
(79-7)    ρ

αβΓ  = Lρ
αβ − 2

3
ρ

αδ Sβ , 

 
in which Sβ is an arbitrary covariant vector, will then gives the desired connection. 
 One may replace formulas (79-5) with the equivalent formulas that are obtained by 
multiplying both sides of (79-5) by gλβ gαµ.  It will then follow from (75-3) that: 
 
(79-8)    gρ λµ∂ − L gσ

λρ σµ − L gσ
ρµ λσ = 0. 
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 b)  Let Pαβ denote the Ricci tensor of the connection.  It is easy to evaluate the tensor 
Rαβ by starting with Pαβ .  Indeed, one has: 
 

Pαβ = L L L L L Lρ ρ σ ρ σ ρ
ρ αβ β αρ ρσ αβ ρβ ασ∂ − ∂ + − . 

 
On the other hand, one gets from (79-7) that: 
 
Rαβ = ( ρ

ρ αβ∂ Γ − 2
3

ρ
αδ Sβ) − ( ρ

β αρ∂ Γ − 2
3

ρ
αδ Sρ) 

  + ( σ
ρσΓ − 2

3
σ
ρδ Sσ)( ρ

αβΓ − 2
3

ρ
αδ Sβ) − ( σ

ρβΓ − 2
3

ρ
σδ Sβ)(

ρ
ασΓ − 2

3
ρ

αδ Sσ). 

 
One deduces from this that: 
 

Rαβ = Pαβ  − 2 2 2 2
3 3 3 3( ) ( )S S L S L S L S L S S S S Sρ σ σ σ

α β β α αβ ρ ασ β αβ σ ασ β α β α β∂ − ∂ − + − − + − ; 

 
namely: 
(79-9)    Rαβ = Pαβ  − 2

3 ( )S Sα β β α∂ − ∂ . 
 
 It results from this that one may replace equations (77-12), which relate to the 
connection Γ, with the equations: 
 
(79-10)   Pαβ  − 2

3 ( )S Sα β β α∂ − ∂  = 0. 
 
 c)  We are thus led to adopt as our new quantities that determine the unitary field, not 
the fundamental tensor gαβ, but the affine connection Lα

βγ , which is arbitrary a priori, and 

the covariant tensor Sα .  The field equations will then be given by equations (79-6), (79-
8), and (79-10). 
 The field quantities consist of the sixteen gαβ, sixty-four Lα

βγ , and four Sα , and we 

effectively have the four equations (79-6), the sixty-four equations (79-8), and the sixteen 
equations (79-10) at our disposal.  We ultimately establish that these equations are not 
independent, but that there exist four “conservation identities” that insure the role that is 
played by the admissible coordinate changes, exactly as they do in general relativity. 
 One may remark that the system of equations (79-10) is equivalent to the set of the 
two systems: 
(79-11)   P(αβ)  = 0 
and: 
(79-12)   P[αβ]  = 2

3 ( )S Sα β β α∂ − ∂ . 
 
 If P denotes the quadratic exterior differential form whose coefficients are P[αβ] then 
it clearly must follow as a consequence of (79-12) that: 
 
(79-13)   [ ] [ ] [ ]P P Pα βγ β γα γ αβ∂ + ∂ + ∂  = 0. 
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 Conversely, equation (79-13) entails only the local existence of a vector-potential.  
That is why it is preferable to use equations (79-12) instead of (79-13). 
 
 
 80. – The contracted, anti-symmetric, curvature tensor and Einstein tensor of L. 
– Consider a solution gαβ, Lρ

αβ of equations (79-6) and (79-8).  As we saw in sec. 79, from 

it results these equations that the torsion vector Σρ of the connection L is zero, and, as a 
result, from (78-5), that one will have: 
 

(80-1)    γρ = 
| |

| |

g

g

ρ∂
 = Lσ

σρ  = Lσ
ρσ . 

 
 If the manifold V4 is orientable then there will exist an exterior differential form on V4 

: 

(80-2)    η = | |g dx0 ^ … ^ dx3 

 
that has zero covariant derivative for the connection Lρ

αβ , as well as the associated 

symmetric connection ( )Lρ
αβ .  In any event, from (80-1), the contracted, anti-symmetric, 

curvature tensors Vλµ and Wλµ relative to the connections Lρ
αβ  and ( )Lρ

αβ  are identically 

null: 
(80-3)    Vλµ = 0, Wλµ = 0. 
 
 In what follows, we shall denote the covariant derivative relative to the connection 
Lρ

λµ  by dµ .  If Eλµ is the Einstein connection of this connection then one sees that (65-7) 

may be written here: 
Eλµ = Pλµ + dµ Σλ  − Wλµ , 

 
which reduces, with the conditions (79-6) and (79-8), to: 
 
(80-4)    Eλµ = Pλµ . 
 
On the other hand, with the same conditions, (65-6) gives: 
 

Eλµ = 1
2 (Pλµ + )Pµλ − 1

2 ( )λ µ µ λ∂ Σ − ∂ Σ = 1
2 (Pλµ + )Pµλ . 

 
 In particular, one sees from (80-4) that one may replace equations (79-10) with the 
equations: 
(80-6)    Eαβ − 1

2 ( )S Sα β β α∂ − ∂  = 0. 

 
 
 81. – A symmetry theorem. – We make the following tensor correspond to the 
fundamental tensor gαβ : 



The Einstein-Schrödinger theory 

 

266 

(81-1)    gαβ = gαβ = hαβ − kαβ .  

 
 The tensor gαβ  obviously satisfies the same hypotheses as the tensor gαβ ; in 

particular, det( )g gαβ= = g ≠ 0.  The associated tensor is: 

 
gαβ = gαβ = lαβ  − mαβ. 

 
We have attached any affine connection Lρ

αβ  to the affine connection with coefficients: 

 
(81-2)    Lρ

αβ  = Lρ
βα . 

 
If ρ

αβΓ denotes the affine connection that thus corresponds to ρ
αβΓ  then its torsion tensor 

will be: 
Sρ

αβ = − Sρ
αβ 

 
and, as a result, its torsion vector will be: 
 
(81-3)    Sα = − Sα . 

 
 Having said that, we propose to establish the following theorem: 
 
 THEOREM  – If (gαβ, L

ρ
αβ , Sα) define a solution to the field equations (79-6), (79-8), 

(79-10) then the same is true for( , , )g L Sρ
αβ αβ α . 

 
 The field equations are, as we have seen, defined by the set of three systems: 
 
(81-4)    [ ]g ρβ

ρ∂ = 0 

(81-5)    g L g L gσ σ
ρ λµ λρ σµ ρµ λσ∂ − − = 0 

(81-6)    Pαβ − 2
3 ( )S Sα β β α∂ − ∂ = 0. 

 
 If ( , , )g L Sρ

αβ αβ α  is the set of quantities that that are deduced from the solution (gαβ, 

Lρ
αβ , Sα) by the operations that we just introduced then one will first have, from (81-4), 

and sinceg = g, that: 

(81-7)    [ ]g ρβ
ρ∂  = [ ]g ρβ

ρ∂  = 0. 

On the other hand: 
 

g L g L gσ σ
ρ λµ λρ σµ ρµ λσ∂ − − = g L g L gσ σ

ρ λµ λρ σµ ρµ λσ∂ − − . 
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Now, the right-hand side differs from the left-hand side of (81-5) only by the exchange of 
the letters λ and µ.  One deduces from this that: 
 
(81-8)    g L g L gσ σ

ρ λµ λρ σµ ρµ λσ∂ − − = 0. 

 
Finally, since (80-5) gives us that: 

Pαβ = Pβα , 
it will follow from (81-6) that: 
 
(81-9)   Pαβ − 2

3 ( )S Sα β β α∂ − ∂  = Pβα − 2
3 ( )S Sα β β α∂ − ∂  = 0. 

 
Our theorem is thus proved.  Einstein assigned the name of “pseudo-Hermiticity” to the 
property that this theorem suggests. 
 
 
 82. – Tensorial form of the field equations. - It is easy to exhibit the tensorial form 
of the first group of field equations (81-4) and (81-5).  To that effect, we are thus led to 
introduce the tensor: 

(82-1)   Fλµ = [ ]1 1
2 2 | |g g mαβ αβ

λµαβ λµαβε ε= , 

 
in which ελµαβ is the classical indicator of the permutation.  We let F denote the quadratic 
exterior form that is defined by Fλµ .  In order to facilitate the evaluation of its exterior 
differential dF, we calculate: 
 

[ ] [ ]1 1 1
2 4 4F g gλµνρ λµνρ αβ νρ αβ

ν λµ λµαβ ν αβ νε ε ε ε∂ = ∂ = ∂ , 

namely: 
1
2 Fλµνρ

ν λµε ∂  = [ ]1
2 g αρ

α∂ . 

 
One deduces from this that the system (81-4) is equivalent to: 
 
(82-2)     dF = 0. 
 
 On the other hand, we evaluate the covariant derivative dρ gλµ of the fundamental 
tensor for the connection L.  We will get: 
 

dρ gλµ = g L g L gσ σ
ρ λµ λρ σµ ρµ λσ∂ − − . 

 
One deduces from this that equations (81-5) may be put into the form: 
 

dρ gλµ + ( )L L gσ σ
µρ ρµ λσ− = 0 ; 

namely: 
(82-3)    dρ gλµ = 2Sσ

ρµ gλσ . 
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III. – CONSERVATION IDENTITIES 
 
 
 83. – First form of the conservation identities. – The fact that we used a variational 
procedure that involves the integral of a scalar density in order to form the field equations 
offers two advantages:  This process leads to equations that are invariant under 
admissible coordinate changes, and the left-hand sides automatically satisfy four 
conservation identities, which we shall form by a method that is due to Hermann Weyl, in 
principle. 
 Recall the integral: 

I = | |
C

R g gαβ
αβ∫  dx0 ^ …^ dx3 = 

C
Rη∫ , 

in which one has set: 

R = Rαβ g
αβ,  η = | |g dx0 ^ …^ dx3. 

 
 Consider an arbitrary vector field ξρ on a chain C that is zero on the boundary of C.  
That field will define an infinitesimal transformation.  If X(Rη) denotes the Lie derivative 
of the form Rη then we will set: 

XI = ( )
C

X Rη∫ . 

 
From (69-4), one has the following expression for the Lie derivative of the tensor gαβ : 
 
(83-1)   Xgαβ = g g gρ αβ λβ α αλ β

ρ λ λξ ξ ξ∂ − ∂ − ∂ . 

 
One deduces from this and the formula for the logarithmic derivative of g that: 
 

| |

| |

X g

g
= − 1

2 gαβ Xgαβ = − 1
2 [ 2 ]g gρ αβ λ

αβ ρ λξ ξ∂ − ∂  ; 

namely: 

(83-2)   
| |

| |

X g

g
 =  ξρ γρ +

ρ
ρξ∂  = 

( | g |)

| g |

ρ
ρ ξ∂

. 

 
One deduces from this that: 
 

X(R η) = ( | |g XR + RX | |g ) dx0 ^ …^ dx3 

 

    = [ξρ | |g  ⋅⋅⋅⋅    Rρ∂ + R ( | |)gρ
ρ ξ∂ ] dx0 ^ …^ dx3 ; 

namely: 

   X(R η) = ( | |)R gρ
ρ ξ∂  dx0 ^ …^ dx3. 

One thus has: 
   XI = ( | |)

C
R gρ

ρ ξ∂∫  dx0 ^ …^ dx3. 
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 By applying Stokes’s formula to the integral in the right-hand side, one will transform 
that integral into an integral that is taken over the boundary of C, and it will be zero since 
ξρ = 0 on C∂ .  One will thus have XI = 0 for any field that satisfies the hypotheses that 
were made. 
 Let (gαβ , )Lρ

αβ be a solution of equations (81-4) and (81-5).  If Sα denotes an arbitrary 

covariant vector then we have seen that one can deduce an affine connection: 
 
(83-3)    ρ

αβΓ = 2
3L Sρ ρ

αβ α βδ−  

that satisfies the equations: 
(83-4)     Gαβ

ρ = 0. 
 
 Suppose that the field x vanishes on the boundary of C, along with its first-order 
derivatives.  From (69-5), one has onC∂ : 
 

X ρ
αβΓ = 0. 

 
With these hypotheses, one has, from (77-8), that: 
 

| |
C

XR g gαβ αβ⋅∫  dx0 ^ …^ dx3 = 0, 

 
and XI will then reduce to: 

XI = 
C

R Xgαβ
αβ∫ dx0 ^ …^ dx3. 

 
Now, by virtue of (83-1) and (83-2), it will follow that: 
 

Xgαβ = g g g gρ αβ αβ ρ λβ α αλ β
ρ ρ λ λξ ξ ξ ξ∂ + ∂ − ∂ − ∂ , 

and, as a result: 
 
(83-5)  Rαβ Xgαβ = ( )R g R g R g R gρ αβ ρ αβ λσ σλ ρ

αβ ρ ρ αβ ρσ σρ λξ ξ ξ∂ + ∂ − − ∂ . 

 
 In the sequel, we set: 
 
(83-6)  2Lρ

λ = Rρσ g
λσ + Rσρ g

σλ, 2L R g R gλ λσ σλ
ρ ρσ σρ= + . 

 
One deduces from this, by contraction, that: 
 
(83-7)   Lτ

τ  = Rαβ  g
αβ   L R gτ αβ

τ αβ= . 

One will thus obtain: 
R gρ αβ

ρ αβξ∂ ⋅ = ( )L Lρ τ ρ τ
ρ τ ρ τξ ξ∂ − ∂ . 

 
 The relation (83-5) may then be expressed in the form: 
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Rαβ X gαβ = ( 2 ) 2 ( 2 )L L L L R gλ τ ρ λ ρ λ λ τ ρ αβ
λ τ ρ λ ρ ρ τ αβ ρξ ξ ξ δ ξ∂ − ∂ + ∂ − + ∂ . 

 
 We are thus led to introduce the tensor and tensorial density: 
 
(83-8)  Mρ

λ  =  Lρ
λ − 1

2 Lλ τ
ρ τδ ,  1

2M L Lλ λ λ τ
ρ ρ ρ τδ= − . 

 
One obtains: 

Rαβ X gαβ = 2 ( ) 2M M R gρ λ ρ λ ρ αβ
λ ρ λ ρ αβ ρξ ξ ξ− ∂ + ∂ + ∂ . 

 
Now, by applying the Stokes formula: 
 

( )
C

Mρ λ
λ ρξ∂∫  dx0 ^ …^ dx3 = 0. 

It results from this that: 
 

XI = 1
2[ ]

C
M R gρ λ αβ

λ ρ αβ ρξ ∂ + ∂∫  dx0 ^ …^ dx3. 

 
 Since XI = 0 for any ξρ that satisfy the hypotheses made, it will result from a classical 
argument that one must necessarily have: 
 
(83-9)    1

2M R gλ αβ
λ ρ αβ ρ∂ + ∂  = 0. 

 
 We have thus established that the identities (83-9) are satisfied for any set (gαβ , )Lρ

αβ  

that is deduced by (83-3) for a solution (gαβ , )Lρ
αβ  of the equations (81-4), (81-5); Mρ

λ is 

given by starting with gαβ and the Ricci tensor by (83-6) and (83-8). 
 
 
 84. – Second form of the conservation identities. – With (gαβ , )Lρ

αβ  always 

denoting a solution of the system (81-4), (81-5), we now start with the integral: 
 

J = | |
C

P g gαβ
αβ∫  dx0 ^ …^ dx3. 

 
Since the connection L admits a zero torsion vector, one will have moreover: 
 

| |
C

XP g gαβ
αβ∫  dx0 ^ …^ dx3 = 0. 

 
One deduces from this that: 
 

XJ =
C

P Xgαβ
αβ∫  dx0 ^ …^ dx3 = 0, 
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and an argument that is identical to the preceding one will lead to a new form for the 
conservation identities (83-9).  We set: 
 
(84-1)  2Hρ

λ = Pρσ g
λσ + Pσρ g

σλ,  2H P g P gλ λσ σλ
ρ ρσ σρ= + , 

and: 
(84-2)  Kρ

λ   = Hρ
λ − 1

2 Hλ τ
ρ τδ  ,  1

2K H Hλ λ λ τ
ρ ρ ρ τδ= − . 

 
For any solution (gαβ , )Lρ

αβ of equations (81-4), (81-5), one will thus obtain the four 

identities: 
(84-3)    1

2K P gλ αβ
λ ρ αβ ρ∂ + ∂ = 0. 

 
 One may express Hρ

λ in a more convenient way by writing: 
 

2Hρ
λ = [P(ρσ) + P[ρσ]][g

(λσ) + g[λσ]] + [P(ρσ) − P[ρσ]][g
(λσ) − g[λσ]]. 

 
After reduction, it will follow that: 
 
(84-4)    Hρ

λ = P(ρσ) g
(λσ) + P[ρσ] g

[λσ]. 
One will note that since: 

Pαβ = Rαβ + 2
3 ( )S Sα β β α∂ − ∂ , 

one will have: 
Hρ

λ = Lρ
λ + 2

3 ( )S Sα β β α∂ − ∂ g[λσ]. 

One deduces from this that: 
Kρ

λ = Mρ
λ + Sρ

λ, 
with: 

Sρ
λ  = 2

3 [( )S Sα β β α∂ − ∂ g[λσ] − 1
2 ( )S Sλ

ρ α β β αδ ∂ − ∂ g[αβ]]. 

 
One easily sees in a direct manner that for any vector Sα one will have the identity: 
 

[ ]1
3( | |) ( )S g S S gλ αβ

λ ρ α β β α ρ∂ + ∂ − ∂ ∂  = 0. 

 
 If gαβ is a symmetric tensor and Lρ

αβ  is the associated Riemannian connection then 

one will verify immediately that the identities (84-3) reduce to the classical conservation 
identities of general relativity. 
 

__________ 



CHAPTER VI 
 

THE CAUCHY PROBLEM FOR THE FIELD EQUATIONS 
 
 

 85. – The equations that couple the fundamental tensor with the connection. −−−−  
Among the explicit field equations in (81-4), (81-5), and (81-6), we first occupy 
ourselves with equations (81-5), namely: 
 
(85-1)    g L g L gσ σ

ρ λµ λρ σµ ρµ λσ∂ − − = 0, 

 
which couple the fundamental tensor gλµ and its first-order derivatives with the affine 
connection Lρ

αβ .  It is clear that these equations constitute an extension of the classical 

relations that determine the coefficients of a Riemannian connection by starting with the 
metric to the case of an asymmetric tensor gλµ and an asymmetric connection. 
 Given a tensor field gµν on a manifold Vn, consider the system of equations (85-1) as a 
system of equations with the coefficients of the connection as the unknowns.  By very 
long-winded calculations (which we shall not detail), one may establish that this system 
admits a unique solution, except in some exceptional cases (1).  In the case of our 
manifold V4 and for a tensor gµν that satisfies the hypotheses that were made in sec. 70, 
Hlavaty and Saenz (2) have shown that the only exceptional case is the one for which one 
has both: 
(85-2)   k = det (kλµ) = 0 and g = 2h. 
 
 If we discard this case in what follows then we may confirm that the system (85-1), 
when given our hypotheses, admits one and only one solution.  We will thus be led to 
introduce the quantities that define the field in the form of the fundamental tensor gµν and 
the covariant tensor Sα , which satisfy the equations: 
 
(85-3)    [ ]g ρβ

ρ∂ = 0, 

 
(85-4)   Pαβ − 2

3 ( )S Sα β α β∂ − ∂  = 0, 

 
in which the Lα

βγ  are considered to be the functions of the gµν and their first derivatives 

that are defined by the unique solution to the system (85-1). 
 
 

                                                
 (1) See HLAVATY, Journ. of Rat. Mech. and Anal., 2, (1953), 2-52; see also M. A. TONNELAT., 
Journ. de Phys., 12  (1951), . 81-88. 
 (2) HLAVATY and SAENZ, Journ. of Rat. Mech. and Anal., 2 (1953), 523-536. 
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 86. – The Cauchy problem for equations (85-3), (85-4). – We are thus led to study 
the following purely local problem, which generalizes the Cauchy problem of general 
relativity (see I, sec. 14). 
 
 CAUCHY PROBLEM  – Given the components of the fundamental tensor and their 
first derivatives on a hypersurface S, as well as the components of the covariant vector 
Sα , determine the fundamental tensor and the vector Sα in a neighborhood of S, assuming 
that they satisfy equations (85-3) and (85-4). 
 
 We assume that the hypersurface S is represented locally by the equation x0 = 0, and 
that it satisfies the relation: 
(86-1)     g00 ≠ 0. 
 
It is easy to interpret this hypothesis geometrically.  If S is represented locally by the 
equation f(x0, x1, x2, x3) = 0 then that hypotheses will say that: 
 
(86-2)    ∆1f  = g f fαβ

α β∂ ∂  = l f fαβ
α β∂ ∂  

 
is non-zero.  If lαβ represents the tensor that is associated with the tensor lαβ then thar 
relation will say that the hypersurface S is not tangent to the cone Cx that has the 
equation: 

lαβ  dxα dxβ = 0. 
 
 Moreover, ∆1f is nothing but the first-order differential parameter of the function f in 
the metric of hyperbolic normal type: 
(86-3)     ds2 = lαβ  dxα dxβ. 
 
 In the sequel, we will make the following convention: 
 

i, j, any Latin index = 1, 2, 3. 
 
 Having said that, we establish the following theorem: 
 
 THEOREM  – In the neighborhood of a hypersurface S that is represented locally by 
x0 = 0 and has the property that g00 ≠ 0, knowing the system of quantities gij, g

[0i], (0 )g λ  is 

equivalent to knowing the fundamental tensor gλµ . 
 
 Consider the system of local coordinates for which S is represented locally by x0 = 0.  
One has g00 ≠ 0 in a certain neighborhood in which we shall place ourselves.  First, 
observe that knowing the quantities gij,

[0 ]ig , (0 )g λ  will give us the quantities gij, 
0 jg , 0jg , 00g ≠ 0.  We must therefore show that the knowledge of these quantities leads to 

the knowledge of the components g0j, gj0, g00.  One deduces from the relations: 
 

g00g0j + gi0gij  = 0, g00gj0 + g0igji  = 0, g00g00 + g0ig0i  = 1, 
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upon multiplying by | |g , that: 

 
(86-4)   00

0 jg g + 0i
ijg g = 0,  00

0jg g + 0i
jig g = 0, 

and: 

(86-5)     00
00g g + 0

0
i

ig g = | |g . 

 
 Relations (86-4), in which00g ≠ 0, give us the values of g0j and gj0.  On the other 

hand, one may observe that | |g  is given by the relation: 

 

| |g  =
00

det( )ijg

g
 . 

 
 One may then deduce the value of g00 from (86-5).  Our theorem is thus established. 
 We are thus led to take our Cauchy data on the hypersurface S to be the values of the 
following quantities on S: 
 
(86-6)   gij, 

[0 ]ig , (0 )g λ , 0 ijg∂ , (0 )
0g λ∂ , Si, S0 . 

 
 As we confirm, the values of the quantities00 0S∂ , 000 0S∂ , etc., on S do not result from 

the field equations.  This seems to suggest that we should restrict the vector Sα by an 
invariant auxiliary condition, for example: 
 

(86-7)    ( )( | |)g S gαβ
α β∂ = 0. 

 
That is what we shall do from now on. 
 
 
 87. – A theorem that is deduced from the conservation identities. – We shall 
deduce the following theorem from the conservation identities (84-3): 
 
 THEOREM  – For any solution of the system (85-3), the four quantities Kρ

0 will be 
expressed uniquely as functions of the quantities gij, [0 ]ig , (0 )g λ , 0 ijg∂ , (0 )

0g λ∂ , and their 

derivatives with respect to the variables (xk). 
 
 Indeed, one first has that the quantities [0 ]

0
ig∂  may be expressed in terms of the 

[ ]ki
k g∂  with the aid of equations (85-3).  On the other hand, since the coefficients of the 

connection are functions of the components of the fundamental tensor and their first 
derivatives − or the quantities gij, [0 ]ig , (0 )g λ  and their first derivatives − the components 

K λ
ρ  (like the components Pαβ) will be, a priori, functions of the following quantities: 
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(87-1)       
[0 ] (0 ) [0 ] (0 ) [0 ] (0 )

(0 ) (0 ) (0 )
0 0 0 0 00 00

[ , , , , , , , , ,

, , , , , ].

i i i
ij k ij k k kl ij kl kl

ij k ij k ij

K g g g g g g g g g

g g g g g g

λ λ λ λ λ
ρ ρ

λ λ λ

 = Φ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂
 

 
 Consider the four quantities 0Kρ .  The conservation identities (84-3) may be put into 

the form: 
0

0Kρ∂  =  − 0
k Kρ∂ + 1

2 P gαβ
αβ ρ∂ . 

 
 It results from this that the four quantities 0

0Kρ∂  depend upon only the arguments of 

the functions Φρ
λ and the first derivatives of these arguments with respect to the xk.  

Those quantities are thus independent of the arguments 000 ijg∂ and (0 )
000g

λ∂ , whose 

numerical arguments will be arbitrary on S.  One deduces the following identities from 
this: 

0

00( )ijg
ρ∂Φ

∂ ∂
≡ 0,  

0

(0 )
000( )g

ρ
λ

∂Φ
∂ ∂

≡ 0. 

 
 The 0Kρ and, as a result, the Kρ

0 depend only upon the arguments that were indicated 

in our statement.  Therefore, for any solution of (85-3), one will have: 
 

(87-2)
0 0 [0 ] (0 ) [0 ] (0 )

[0 ] (0 ) (0 ) (0 )
0 0 0 0

[ , , , , , ,

, , , , , , ].

i i
ij k ij k k

i
kl ij kl kl ij k ij k

K g g g g g g

g g g g g g g

λ λ
ρ ρ

λ λ λ

 = Φ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ∂
 

 
 
 88. – A theorem about coordinate changes upon crossing S. – Our purely local 
study is carried out in the domain of a certain coordinate system.  However, being given 
the Cauchy data on S in the domain envisioned leaves open the possibility of coordinate 
changes that preserve the numerical values of the coordinates at any point of S, as well as 
the Cauchy data.  As in general relativity, we will thus be led to consider the coordinate 
changes that are defined by the formula: 
 

(88-1)  xλ′ = xλ +
0 3( )

6

x
[ϕ(λ)(xi) + ελ]   (λ ′ = λ numerically), 

 
in which ελ goes to zero when x0 goes to zero. 
 Recall that the partial derivatives of our new coordinates on S with respect to the old 
ones are such that: 
(88-2)   ( )SAλ λ

µ µδ′ = ,  0 0( ) ( )S SA Aλ λ
µ µ

′ ′∂ = ∂ = 0, 

(88-3)    00 0 0( ) ( )i S i SA Aλ λ′ ′∂ = ∂ = 0, 

 
in such a way that of the second derivatives of A, only the derivatives 00 0Aλ′∂  are non-zero 
on S: 
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(88-4)    00 0( )SAλ′∂ = ϕ(λ). 

 
 Under a coordinate change, one will obviously have: 
 
(88-5)  Sµ = A Sλ

µ λ
′

′ , gλµ = A A gα β
λ µ α β

′ ′
′ ′ , g A A gα β α β λµ

λ µ
′ ′ ′ ′= , 

 
and, by derivation: 
 
(88-6)  0 0 0 0g A A A g A A g A A gα β ρ α β β α

λµ λ µ ρ α β λ µ α β µ λ α β
′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′∂ = ∂ + ∂ ⋅ + ∂ , 

 
(88-7)  0 0 0 0g A A A g A A A g A A A gα β α β ρ λµ ρ α β λµ ρ β α λµ

λ µ ρ ρ λ µ ρ µ λ
′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′∂ = ∂ + ∂ + ∂ . 

 
 Having said that, we shall establish the following theorem: 
 
 THEOREM  – The coordinate change (88-1): 
 
 a)  preserves the numerical values of the coordinates of any point of S, along with the 
Cauchy data. 
 
 b)  preserves the numerical values of 00 ijg∂  and (0 )

00
ig∂  on S. 

 
 c)  allows one to give arbitrary values to the (0 )

00g λ∂ on S. 

 
 Property a) results from equations (88-2), (88-5), and (88-6) in an obvious way.  In 
order to establish properties b) and c), we begin by differentiating (88-6) and (88-7).  We 
thus obtain: 
(88-8)   00 0 0 00 0g A A A A g A A g A A g Oα β ρ σ α β β α

λµ λ µ ρ σ α β λ µ α β µ λ α β
′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′∂ = ∂ ∂ + ∂ ⋅ + ∂ + , 

 

(88-9)  0 0 0 0 0 0

0 0 ,

g A A A A g A A A A g

A A A A g O

α β α β ρ σ λµ ρ σ α β λµ
λ µ ρ σ ρσ λ µ

ρ σ β α λµ
ρσ µ λ

′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′

′ ′
′ ′

 ∂ = ∂ ∂ + ∂
 + ∂ +

 

 
in which O denotes terms that contain first derivatives of A, and which will be, as a result, 
annulled on S.  One first deduces from immediately (88-8) that: 
 
(88-10)   00 ijg∂ = 0 0 i jg′ ′ ′ ′∂ . 

 
 On the other hand, one will have: 
 
(88-11) 00 0ig∂ = 0 0 0 ig′ ′ ′ ′∂ + ϕ(ρ) gρi , 00 0ig∂ = 0 0 0ig′ ′ ′ ′∂ + ϕ(ρ) giρ , 
and: 
(88-12)   00 00g∂ = 0 0 0 0g′ ′ ′ ′∂ + ϕ(ρ) gρ0 + ϕ(ρ) g0ρ . 
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 We now study how 00 | |g∂  gets modified.  One has: 

 

0 | |

| |

g

g

∂
= 1

02 g gαβ
αβ∂ . 

One deduces from this that: 
 

(88-13) 00 | |

| |

g

g

∂
−

2

0 | |

| |

g

g

 ∂
 
  

 = 1
002 g gαβ

αβ∂ + 1
0 02 g gαβ

αβ∂ ∂ . 

 

By writing relation (88-13) for the derivatives of0x ′ with respect to | |g and subtracting 

term-by-term, one will obtain: 
 

D ≡ 00 | |

| |

g

g

∂
− 0 0 | |

| |

g

g
′ ′ ′∂

′
 = 1

002 (g gαβ
αβ∂ − 1

0 02 )g gα β
α β

′ ′
′ ′ ′ ′∂ ; 

 
namely, from (88-10): 
 

D ≡ 0 0 0 0 00 0 01
00 0 0 0 0 00 0 0 0 0 00 00 0 0 0 02 ( )i i i i

i i i ig g g g g g g g g g g g′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∂ − ∂ + ∂ − ∂ + ∂ − ∂ . 

 
By virtue of (88-11) and (88-12), one will have: 
 

D = 1
2 (g0i gρi ϕ(ρ) + gi 0 giρ ϕ(ρ) + g00 g0ρ ϕ(ρ)) ; 

namely: 
D = 1

2 (g0λ gρλ ϕ(ρ) + gλ 0 gλρ ϕ(ρ)) = ϕ(0), 

 

since | |g′  = | |g , from which, one will deduce that: 

 

(88-14)  00 | |g∂ − 0 0 | |g′ ′ ′∂ = ϕ(0) | |g . 

 
 Now consider formulas (88-4) for the coordinate change (88-1).  It follows that: 
 

0 0 (0) 0 ( ) 00
0 0 00

0 0 (0) 0 ( ) 00
0 0 00

0 0 00 (0) 00
0 0 00

,

,

2 .

i i i i

i i i i

g g g g

g g g g

g g g

ϕ ϕ
ϕ ϕ

ϕ

′ ′
′ ′

′ ′
′ ′

′ ′
′ ′

 ∂ = ∂ + +
 ∂ = ∂ + +
 ∂ = ∂ +

 

 
One deduces from this that: 

[0 ] [0 ] (0) [0 ]
00 0 0

i i ig g gϕ′ ′
′ ′∂ = ∂ − , 

(0 ) (0 ) ( ) 00
00 0 0g g gλ λ λϕ′ ′

′ ′∂ = ∂ − , 
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and, from (88-14): 
(88-15)  [0 ] [0 ] (0) [0 ] [0 ] (0)

00 0 0
i i i ig g g gϕ ϕ′ ′

′ ′∂ − ∂ = − + = 0, 

 
(88-16) (0 ) (0 ) (0) (0 ) ( ) 00 (0) (0 )

00 0 0g g g g gλ λ λ λ λϕ ϕ ϕ′ ′
′ ′∂ − ∂ = − − +  = − ϕ(λ) g00. 

 
(88-15) succeeds in establishing property b).  From (88-16), it results that since g00 ≠ 0, 
one may attribute arbitrary values to the (0 )

0 0 g λ′ ′
′ ′∂  on S by choosing the functions ϕ(λ).  

Our theorem is thus established. 
 
 Recall once more the definition of the index of a derivative with respect to the local 
coordinates (xα) to which S is referred, which will be the number of times that the index 0 
appears in it.  For any affine connection that is a solution to equations (85-1), it is clear 
that the Ricci tensor Pαβ will be expressed as a function of the gij, 

[0 ]ig , (0 )g λ , and their 

derivatives up to order two.   On the other hand, under a change of coordinates (88-1), 
one will have: 

Pα β′ ′  = Pαβ 

 
on S, and the coordinate change allows us to arbitrarily modify the values of 
the (0 )

00g λ∂ on S.  One thus deduces from the preceding theorem that: 

 
 COROLLARY  – In order for any affine connection Lα

βλ  to be a solution of (85-1) , 

the only derivatives of index two that may appear in the components of the Ricci tensor 
Pαβ are the 00 ijg∂ and [0 ]

00
ig∂ , but not the (0 )

00g λ∂ . 

 
 
 89. – Decomposing the problem of integrating the field equations. −−−−  We first 
propose to show that the system (85-4) is equivalent to a system such that one part of it 
involves the quantities Kρ

λ that figure in the conservation identities. 
 
 THEOREM  – In the neighborhood of S the system (85-4) is equivalent to the system 
composed of the following equations: 
 
(89-1)a   P[ij] = 0, 
 
(89-2)b   P[ij] − 2

3 ( )i j j iS S∂ − ∂ = 0, 

 
(89-2)c   P[i0] − 2

0 03 ( )i iS S∂ − ∂  = 0, 

and: 
(89-2)  Mρ

0 ≡ Kρ
0 − 2

3 [( )S Sρ σ σ ρ∂ − ∂ g[0σ] − 01
2 ( )S Sρ α β β αδ ∂ − ∂  g[αβ] = 0. 

 
 Indeed, set: 
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Rαβ = Pαβ − 2
3 ( )S Sα β β α∂ − ∂ . 

 
 The system (85-4) is equivalent to the system: 
 

R(αβ) = 0, R[αβ] = 0. 
 
 Now, equations (89-1) may be written: 
 
(89-3)    R(ij) = 0, R[αβ] = 0, 
 
and it will suffice for us to show that for any solution of (89-3), the equations: 
 

Mρ
0 ≡ R(ρσ) g

(0σ) + R[ρσ] g
[0σ] − 01

2 ρδ [R(ρσ) g
(ρσ) + R[ρσ] g

[ρσ]]  = 0 

 
imply the equations: 

R(ρ 0) = 0. 
 For ρ = i , one first has: 

Mi
0 ≡ R(0σ) g

(0σ) + R[0σ] g
[0σ]. 

 
For a solution of (89-3): 

Mi
0 = R(i0) g

00, 
 
and since g00 ≠ 0, the equations Mi

0 = 0 will imply that R(i0) = 0. 
 For ρ = 0, one has: 
 

M0
0 ≡ R(0σ) g

(0σ) + R[0σ] g
[0σ] − 1

2 [R(ρσ) g
(ρσ) + R[ρσ] g

[ρσ]], 

 
and for a solution of (89-3), it will follow from the preceding analysis that: 
 

M0
0 = R00 g

00 − 1
2 R00 g

00 = 1
2 R00 g

00, 

 
and M0

0 = 0 entails that R00 = 0, which proves our theorem. 
 One will observe that equations (89-2) may be explicitly written as: 
 
(89-4)   Mi

0 ≡ Ki
0 − 2

3 ( )i k k iS S∂ − ∂ g[0k] = 0 

and: 
M0

0 ≡ K0
0 − 2

0 03 [( )k kS S∂ − ∂ g[0k] − 0 0( )k kS S∂ − ∂ g[0k] − 1
2 ( )i j j iS S∂ − ∂ g[ij]] = 0 ; 

namely: 
(89-5)   M0

0 ≡ K0
0 − 2

3 ( )i j j iS S∂ − ∂ g[ij] = 0. 

 
 By virtue of the theorem in sec. 87, we see that the left-hand sides of equations (89-2) 
take values on S that depend upon only the Cauchy data and their derivatives with respect 
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to the xk, and, as a result, these equations will provide conditions that must be satisfied by 
the Cauchy data on S. 
 Likewise, the system (85-3) may be divided into the equations: 
 
(89-6)   [ ] [0 ] [ ]

0
i i ki

kg g gρ
ρ∂ ≡ ∂ + ∂  = 0 

and: 
(89-7)   [ 0] [ 0]k

kg gρ
ρ∂ ≡ ∂  = 0. 

 
 Equations (89-6) provide the values of the [0 ]

0
ig∂  as functions of the fundamental 

tensor with respect to the xk.  The last equation provides a condition that must be satisfied 
by the [ 0]kg  on S. 

 We are thus led to decompose the system of field equations (85-3) and (85-4) into 
two systems of equations that are defined in the following manner: The first system is 
composed of equations (89-1) and (89-6), and the second one is composed of equations 
(89-2) and (89-7). 
 On the subject of this decomposition, we propose to establish the following theorem: 
 
 THEOREM  – Given a solution (gλµ , Sα) of the system (89-1), (89-6) on S that 
satisfies equations (89-2), (89-7), the set (gλµ , Sα) satisfies (89-2) and (89-7) outside of S. 
 
 Indeed, first of all, the left-hand sides [ ]g ρσ

ρ∂  of equations (85-3) satisfy the relation: 

 
[ ][ ]g ρσ

σ ρ∂ ∂ = 0 

 
identically.  It results from this identity that for a solution of (89-6) one will have: 
 

[ 0]
0[ ]g ρ

ρ∂ ∂ = 0, 

 
and since [ 0]g ρ

ρ∂  is zero on S, it is also zero outside of S.  The system (85-3) is thus 

satisfied.  It results from this that one can deduce a set (gλµ , )α
βγΓ  from the set envisioned 

(gλµ , Sα) that satisfies the conservation identities (83-9), namely: 
 
(89-8)    1

2M R gλ αβ
λ ρ αβ ρ∂ + ∂ = 0, 

or: 
0 1

0 2
i

iM M R gαβ
ρ ρ αβ ρ∂ + ∂ + ∂ = 0. 

 Now: 
Mρ

i = R[ρσ] g
(iσ) + R[ρσ] g

[iσ] – 1
2

i
ρδ [R(αβ) g

(αβ) + R[αβ] g
[αβ]]. 

 
For a solution of (89-1): 
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Mj
i = R(j0) g

(i0) − 1
2

i
ρδ R(λ0) g

(λ0),  Mj
i = R(0λ) g

(iλ). 

 
 It results from the calculations of the preceding theorem that the conservation 
identities (89-8) imply that one will have relations of the form: 
 
(89-9)    0 0 0

0
i

iM A M B Mλ λ
ρ ρ λ ρ λ∂ = ∂ +  

 
for a solution to (89-1), in which the A and B are regular functions.  For given (Mρ

0)S that 
are zero on S, the system (89-9) will admit no other solution than the zero solution.  It 
will result from this that Mρ

0 = 0 outside of S. 
 The problem local integration of the field equations is thus found to come down to: 
 
 a)  The search for Cauchy data that satisfy equations (89-2) and (89-7) on S; 
 
 b)  The study of the system (89-1) and (89-6) for such Cauchy data. 
 
 This situation is completely analogous to the one in general relativity that we have 
encountered in various forms already. 
 
 
 90. – Remarks on the search for Cauchy data. – It is possible to make several 
remarks concerning the search for Cauchy data that suggest possibility conditions and the 
order of difficulty for the problem.  Suppose that we have chosen Cauchy data relative to 
the fundamental tensor such that: 

[ 0]k
k g∂ = 0. 

 
 We discard the case in which the g[0i] are all zero.  The quantities Kρ

0 are known on S, 
and in order to determine the components of Sα , one has the relations: 
 
(90-1)     g[0i] Sik = 3

2 Ki
0, 

(90-2)     g[ij] Sij  = − 3K0
0, 

in which one has set: 
Sij = i j j iS S∂ − ∂ . 

 
 One obviously has the following possibility condition for equations (90-1): 
 
(90-3)     Ki

0 g[0i] = 0. 
 
 If this condition is satisfied then equations (90-1) will provide a solution for the Sij 
that depends on one scalar parameter λ.  If ui denotes a covariant vector such that ui g

[0i] = 
1 then one will have the explicit solution: 
 

Sik = 3
2 ( Ki

0 uk – Kk
0 ui) + λ εikl 

[0 ]ig , 
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in which εikl is the indicator of the permutation.  Equation (90-2) fixes the value of λ 
uniquely in the case for which: 
 

g[23] g[01] + g[31] g[02] + g[12] g[03] ≠ 0, 
i.e., the one for which: 

m = det (mαβ) ≠ 0. 
 
 If this is not the case then the problem of determining the Sik by means of (90-1) and 
(90-2) might be impossible or undetermined.  In any case, it will be convenient to impose 
the requirement upon the Sik that are obtained that they must define a quadratic exterior 
form with zero exterior differential.  If this is the case then the Si will be found to be 
defined locally up to a gradient, while S0 naturally remains arbitrary. 
 
 
 91. – Relations between the derivatives of index 2 of the fundamental tensor and 
the derivatives of the coefficients of the connection. – In order for us to proceed with 
the study of the system of equations (89-1), (89-6), we shall first analyze certain relations 
that exist between the derivatives of order 2 of the fundamental tensor and the derivative 

0L
α
βγ∂  of the coefficients of the connection. 

 In the present section, we suppose that the fundamental tensor and the connection L 
satisfy: 
 
 1.  The connecting relations (85-1): 
 
 2.  Equations (89-6) and (on S) equation (89-7). 
 
 It will result from the argument that was given in sec. 89 that the system (85-3) is 
then satisfied; as a result, the connection Lα

βγ  will admit a zero torsion vector.  Equations 

(89-6) will provide the values of the [0 ]
0

ig∂  and, by derivation, those of the [0 ]
00

ig∂ , as a 

function of the Cauchy data and their derivatives with respect to the (xk).  We will always 
suppose in what follows that one has replace the quantities [0 ]

0
ig∂  and [0 ]

00
ig∂  with their 

expressions as provided by (89-6). 
 By solving the connecting relations (85-1), one will see that the Lα

βγ  are expressed by 

linear functions of the first derivatives of the components of the fundamental tensor 
whose coefficients are functions of these components. 
 In order to simplify the notation, we shall use a congruence symbol (~); this 
congruence is intended to mean modulo functions of the Cauchy data relative to the 
fundamental tensor and their first derivatives with respect to the (xk).  One deduces from 
the expression for the components of the Ricci tensor that: 
 
(91-1)     Pij ~ 0

0 ijL∂ . 
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 From the theorem in sec. 88, and on account of equations (89-6), the only derivatives 
of index 2 that will appear in the Pij are the 00 klg∂ .  One will then have: 

 
(91-2)    0

0 ijL∂  ~ 00
kl
ij klA g∂ . 

 
 We propose to establish that equations (91-2) are, in general, soluble with respect to 
the 00 klg∂ ; in other words, the matrix A that figures in (91-2) is generally invertible. 

 To that end, we use the following relations that are easily deduced by deriving 
relations (85-1) − or, equivalently, relations (78-4) − with respect to x0: 
 
(91-3) 0k ijg∂ ~  0

h
ikL∂  ghj + 0

h
kjL∂ gih +

0
0 ikL∂ g0j + 0

0 kjL∂ gi0 , 

 
(91-4) 00

0k g∂ ~  − 0
0 hkL∂ gh0 − 0

0 khL∂ g0h − 0
0 0kL∂ g00 − 0

0 0kL∂ g00 , 

 
(91-5) 0

0
i

k g∂ ~  − 0
0 hkL∂ ghi − 0

i
khL∂ g0h − 0

0 0kL∂ g0i − 0 0
i
kL∂ g00 , 

 
(91-6) 0

0
i

k g∂ ~  − 0
0 hkL∂ gih − 0

i
khL∂ gh0 − 0

0 0kL∂ gi0 − 0 0
i
kL∂ g00. 

 
 On the other hand, by the same process, one will get: 
 
 0

00
ig∂ ~  − 0

0 0hL∂ ghi − 0 0
i

hL∂ g0h − 0
0 00L∂ g0i − 0 00

iL∂ g00 , 

 
 0

00
ig∂ ~  − 0

0 0hL∂ gih − 0 0
i
hL∂ gh0 − 0

0 00L∂ gi0 − 0 00
iL∂ g00. 

 
Upon subtracting term-by-term, it will follow that: 
 
(91-7)  [0 ]

002 ig∂ ~ − 0
0 0hL∂ ghi + 0

0 0hL∂ gih − 0 0
i

hL∂ g0h − 0 0
i
hL∂ gh0 − 2 0

0 00L∂ g[0i]. 

 
On the other hand, from (78-6): 

γ0 = 0
0

| |

| |

g
L

g
ρ

ρ
∂

= . 

One deduces from this that: 
 

[0 ]
00

ig∂ ~ [0 ] [0 ]
00 0 0| |i ig g L gρ

ρ∂ + ∂ . 

 
It will then follow from (91-7) that: 
 
(91-8)  [0 ]

002 ig∂ ~ − 0
0 0

hi
hL g∂ + 0 0

0 0
h

hL g∂  − 0
0 0

i h
hL g∂ − 0

0 0
i h
hL g∂ − 2 [0 ]

0 0
j i

jL g∂ . 

 
Finally, one has, from (85-1): 
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(91-9)  00 ijg∂ ~ 0 0
h
iL∂  ghj + 0 0

h
jL∂  gih + 0

0 0iL∂  g0j + 0
0 0 jL∂  gi0 . 

 
 Having said that, one will note that equations (91-3), when they are considered to be 
equations in the unknowns 0

h
ikL∂ , have a form that is identical to the connecting relations 

(85-1), since the coefficients of the unknowns are the gij for which: 
 

det(gij) = g g00 ≠ 0. 
 
 From the cited results of Hlavaty, one deduces that this system is invertible, except 
for the exceptional case that we discarded (1).  One will thus obtain: 
 
(91-10)    0

h
ikL∂  ~ h

ikT , 

 
in which the letter T will henceforth denote terms that depend linearly upon the 0

0 rsL∂ . 

 Since g00 ≠ 0, one will then have, from (91-4), that: 
 
(91-11)   0

0 0kL∂ + 0
0 0kL∂  ~ Tk . 

 
Now take equations (91-5) and (91-6).  They may be written: 
 

(91-12)   0 0
i
kL∂  ~ 

0
0

0 0 00

i
i

k k

g
L T

g
∂ + , 

(91-13)   0 0
i

kL∂  ~ 
0

0
0 0 00

i
i

k k

g
L T

g
′∂ + . 

 
 One deduces from this, by contraction, that: 
 

0 0
j
jL∂  = 0 0

j
jL∂  ~  −

0
0

0 0 00

j

j

g
L

g
∂ + T  ~  −

0
0

0 0 00

j

j

g
L T

g
′∂ + . 

 
By replacing 0

0 0jL∂  with its value in (91-11), it will follow that: 

 

(91-14)   0 0
j
jL∂  = 0 0

j
jL∂  ~  − 

[0 ]
0

0 0 00

j

j

g
L T

g
′′∂ + . 

 
Upon substituting the values of0 0

i
hL∂ , 0 0

i
hL∂ , 0 0

j
jL∂  that one finds in (91-12), (91-13), 

(91-14) into (91-8), one will obtain a system in the unknowns 0
0 0hL∂  of the form: 

                                                
 (1) That case has been studied by Mlle TISON. 
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0 0 0 0 [0 ] [0 ]
0 0

0 0 0 000 00 002
i h i h h i

ih hi
h h

g g g g g g
L g g L

g g g

 
∂ + − − − ∂ 

 
 ~ 2T i, 

 
which, by a simple calculation, can be put into the form: 
 

(91-15)   
(0 ) (0 )

0 ( )
0 0 00

h i
ih

h

g g
L g

g

 
∂ − 

 
 ~ T i ; 

namely: 
0

0 0
ih

hL l∂ ɺ ~ T i, 

in which we have set: 

ihlɺ = l ih −
0 0

00

h il l

l
. 

 One obviously has: 

det( )ihlɺ  ≠ 0, 
 

since the quadratic formihlɺ Yi Yh is deduced from the form lαβ Yα Yβ by suppressing the 
square that is associated with the direction variable Y0.  One deduces from this that one 
may solve equations (91-15) and obtain relations of the form: 
 
(91-16)   0

0 0hL∂  ~  Th ,  0
0 0hL∂  ~ hT′ . 

 
 By substituting the values of 0

0 0hL∂ , 0
0 0hL∂  into (91-9), as well as those of 0 0

h
iL∂  and 

0 0
h

iL∂   that are deduced from (91-12), (91-13), the following relations ensue: 

 
(91-17)    00 ijg∂  ~ 0

0
kl
ij klB L∂ , 

 
which realize the inversion of relations (91-2). 
 Therefore, provided that equations (91-3) in the unknowns 0

k
ihL∂  are invertible, one 

may express the 00 ijg∂  as linear combinations of the 0
0 klL∂ , up to the addition of a 

function of the Cauchy data and their derivatives with respect to the (xk). 
 
 
 92.– The integration of the field equations. – Now consider a solution of equations 
(89-1), (89-6) that corresponds to the Cauchy data on S and satisfies (89-2) and (89-7).  
We propose to evaluate the values on S of the successive derivatives of the fundamental 
tensor and the vector Sα . 
 First of all, as we have already observed, equations (89-6) provide the values on S of 
the derivatives [0 ]

0
ig∂  and [0 ]

00
ig∂ .  Equations (89-1)a and (89-1)b then provide the 

values on S of the Pij, and, as a result, those of the 0
0L ij∂ .  One will then deduce the values 

of the 00 ijg∂  from the preceding analysis and (91-17) for these values of 00 ijg∂ .  
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Conversely, it results from our analysis that the left-hand sides of (89-1)a and (89-1)b 
have the values that were imposed for these values of 00 ijg∂ . 

 Equations (89-1)c then provide the values of 0 iS∂ .  As for the 0 iS∂ , they are provided 

by the auxiliary condition (86-7). 
 Conforming to the theorem of sec. 88, no equation will contain the (0 )

00g λ∂ , which 

corresponds precisely to the possibility of the coordinate changes that we studied.  The 
(0 )

00g λ∂  may admit discontinuities upon crossing S, but, from the differential structure of 

V4, these discontinuities will be devoid of any intrinsic significance, and may be annulled 
by an admissible coordinate change. 
 Therefore, the second derivatives 00 ijg∂  and [0 ]

00
ig∂ are continuous upon crossing a 

hypersurface S (x0 = 0) for which g00 ≠ 0, and the same thing will be true for the 
derivatives 0 iS∂ , 0 0S∂ .  These results may be extended to derivatives of higher order by 

differentiating equations (89-1), (89-6), and the auxiliary condition with respect to x0. 
 One sees that, except for a singular case that we pointed out, the Cauchy problem that 
relates to the field equations (85-3), (85-4) and the Cauchy data (gij, 

[0 ]ig , (0 )g λ , 0 ijg∂ , 
(0 )

0g
λ∂ , Si, S0), which are defined on the hypersurface S (x0 = 0, g00 ≠ 0) and satisfy 

equations (89-2) and (89-7) on S admit a unique solution(at least for the analytic case), 
up to an admissible coordinate change.  It seems, moreover, that the method of Mme. 
Fourés may be extended to this case, as well. 
 The results will be totally different when S is tangent to the cone Cx that was defined 
in sec. 86.  The hypersurfaces that are tangent to this cone will appear to be the wave 
surfaces of the unitary field envisioned.  The associated rays will be the characteristics of 
the equation: 
(92-1)    ∆1f  ≡ ∇ l f fαβ

α β∂ ∂ = 0 ; 

 
i.e., they will be the null-length geodesics of the Riemannian metric of hyperbolic normal 
type: 
(92-2)    ds2 = lαβ  dxα dxβ. 
 
 We are thus led to consider that, in the present theory, it is the tensor lαβ (or a tensor 
that is proportional to it) that defines the gravitational part of the unitary field, and that it 
is the behavior of such a tensor that must be compared to that of the gravitational tensor 
gαβ of general relativity. 
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