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Introduction.

Since their introduction by Henri Poincar, the role that integral invariants play in
the theory of differential systems and Pfaff systdras not ceased to expand. One
knows about all of that theory due to the work of Eliet&@af).

It seems to me that along with “invariant forms” forddferential system and
“invariant equations,” there is some interest in congideexterior differential forms
whose associated system can be verified by taking cdouat the proposed differential
system in their own right. Here, one will find theerakents of a theory of integral
invariance relations to which one will be led and somdiegipns to the dynamics of
non-conservative systems. That theory is closddyee to a special case of my theory of
generalized variational space$. ( However, | shall try to present it in an autonomous
manner here.

Some the most elementary results of that work h@wgeared in a note to the
Comptes rendus de I’Académie des ScieftesIn what follows,d Q will denote the
exterior differential of the form.

l. — INTEGRAL INVARIANCE RELATIONS.

1. Definition of integral invariance relations. — Suppose that we are given a
system of first-order differential equationsnnvariables:

(1.1) % _dx o _dx
Xl Xz X

m

in which the functions (x4, X2, ..., X) are not simultaneously zero and have c@$3
in a certain regioiR of the representativedimensional space.

() H. POINCARE, B], pp. 4.

(®) Cf., in particular, E. CARTANI].

() Cf., LICHNEROWICZ M.
)

() LICHNEROWICZ [3].
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Let us consider an arbitrapsdimensional domainp(< m) D{” of the regionR and
suppose that we displace the various pointsDP along the integral curves of the
system (1.1) arbitrarily in such a way that we obtairtlzerp-dimensional domairD .
We let 7, denote the + 1)-dimensional domain that is generated by the art¢heof
integral curves that are limited by the points@§” and D{”. Naturally, we suppose
that the various points df, are interior to the regioR.

Finally, letQ denote an exterior differential form of degrpe+(1) and clas€ ® that
belongs tdR .

Definition. — We say tha@ generates aabsolute integral invariance relaticior the
system (1.1) when for any domab{® and any domair?, that one deduces from it,
one has:

(1.2) [.@=0.

Q generates eelative integral invariance relatioif one has the relatio(iL.2) when the
domain D{” is restricted to being closed.

We shall ultimately establish that, contrary to whappens in the case of integral
invariants, that distinction between absolute and relagations, which seems natuaal
priori, is, in fact, superfluous.

2. Absolute integral invariance relation.— We propose to look for the condition
under which a fornf) can generate an absolute integral invariance relatiotihé system
(1.1). Let 1, Yo, ...,Ym1) be a system ofif— 1) independent first integrals of (1.1). The
differential system (1.1) is locally equivalent to thi#erential system:

(2.1) dy; =dy, = ...= dym1 = 0.

Suppose thaX, (for example) is non-zero in the region considened adoptyi, Yo,
..., Ym1 andxm, as new variables. When expressed in terms of thege/awgables, the
form Q will include two types of terms: Ones that contain diféerential dx,, and ones
from which that differential is absent. Hence, therf® can be written:

Q=Q:+Q,

in which Q; involves only the differentials of the first integrals differentials:

(2.2) Q=2 Ay, dy,0dy, 00 dy
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andQ; has the form:
(2.3) Q=% B, dx OdyOdy0-0dy=dx 00N,

in which 1 denotes an exterior differential form of orgber
In order to define the domain of integratidhy that is associated witR, we

introduce an auxiliary variabke To that effect, we take an arbitrary non-zero fismcb
of the variablesx , x2, ..., Xn) and complete the system (1.1) by writing:

(2.4) P _de - 9%y

Upon integrating the differential system (2.4), we wbtain a parametric representation
of the integral curves of (1.1) in terms of the paramete

Having said that, define the domal{” by a parametric representation of the
variablesx; as functions of the parametersdy, a», ..., &) . On the manifold that is

generated by the integral curves that issue from the vapinings of D{”, the variables
X will be expressed by relations of the form:

X =fi(vi, 1, 2, ..., @) .

We can choose that domain to be the portio diat is bounded by two domains=

const.; we thus restrietto vary within an intervalv, vi).
It is clear that one has:

(2.5) [.=0

Indeed, upon passing to the parametric representation is tdrthe variablesv( , ai,
a, ..., ap), each term:
dy, Ody O---0 d)/p+l

of Q1 will correspond to the determinant whose first row is:

dy, _dy, _ _dy,

dvv dv ~  dv

which will be composed of only zeroes, from (2.1).
If Q generates an absolute integral invariance relationdhemmust have:

j%lQZ: j%ldxn on =o.



Lichnerowicz — Integral invariance relations and tlagiplications to dynamics. 4

Suppose that; varies whilevo remains fixed and consider the integral functiom;af

| (Vo) = IT& Q,= '[V\: dVJDw) pX, M,

in which the domairD® corresponds to the valueof the auxiliary variable. When
tends tovo, the function will obviously admit the integral:

dy) _
(2.6) (EJV:V = [ PX, T

for its derivative a =Vvp . When that derivative is zero, it will result tiat any domain
D!, one must have:

jDép) pX,M =0.

One deduces from the continuity conditions that:

p X, M =0,
and as a result:
n=o.

Hence, in order tQ to generate an absolute integral invariance relations it
necessary and sufficient that it can be put into thenf(2.2), in which theAlyiz'_‘_ipﬂ are

functions of them variables %) . The formQ only includes the differentials of the first
integrals as differentials in the sum.

Theorem:

If the formsQ and d) generate integral invariance relations of the diffietial
system(1.1) then the formQ will define an absolute integral invariant ¢i.1), and
conversely.

Indeed, it is the union of the associated systemstHerformsQ and dQ that
constitutes the characteristic system of the fmAs a result, it will be an invariant for
the differential system (1.1).

Geometrically, suppose th@thas degrep and apply Stokes’s formula to the domain
V; that is bounded byp{”, D{”, and 7;. That domain is generated by arcs of the

integral curves that issue from the points@f” . If Q satisfies the stated hypotheses
then one can deduce that:

J.D{")Q_.[Dg‘”Q = ITéP>Q+IngQ =0.
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5. Uniqueness theorems for differential systems that adt certain integral
invariance relations.— It is often convenient to seek to characterize ferdiftial system
of the type (1.1) by the fact that it admits a certaiagral invariance relation. To that
effect, we shall make use of the following two theorems

Theorem:

There exists one and only one differential systef@nn+ 1) variables that admits a
guadratic integral invariance relation of maximum rank.

Indeed, lefQ be a quadratic exterior form in(2 1) variables. Since the ranlof
that form is even, it will be a maximum for= 2n. In that casef) can be put into the
canonical form:

Q=wlUwp+ala+..+an10akh,

in which the Pfaff formsw are linearly independent. The associated syste fihren
consists of the Pfaff system:

W=0=..=wn=0,
which is equivalent to one and only one differentialeysof the form (1.1).
Theorem:

There exists one and only one differential system in m variablesadmaits an
integral invariance relation of degrgen— 1).

Indeed, letQ be an exterior differential form of degre®m £ 1) inm variables. The
rank of that form is equal tan(— 1), andQ can be put into the canonical form:

Q=awUal...Oan,

in which the Pfaff formsuy are linearly independent. The associated systehisothen
written:

W=0=...=h1=0,
which then proves the theorem.

Il. — APPLICATIONS.

6. The dynamical equations for non-conservative holonomic systemsConsider
a not-necessarily-conservative material systeinthat has perfect holonomic constraints
and admits1 degrees of freedong;j. The forces to which the system is subpantnot
be derived from a potential and can even depend upon the velocities oatéraim
elements ofM).
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In their Lagrangian form, the equations of motionte tnaterial system\) can be
written:

(6.1) —=q, ——-—=Q (=12, ..n),

in whichL denotes a Lagrangian function can possibly amount eehaif thevis vivaT
of the system, and th@ are functions of;, ¢ , and timet. We let M) denote a material

system that is mechanically identical td)( but is subject to forces that make Qe
zero.

Let £ be the (B + 1)-dimensional state space of the syst®th (A trajectory of )
is a curve off that is a solution of the differential system (6.1Jonsider the action
integral:

S= .[tOLdt,

which is evaluated along an arc of a trajectoryMi. ( Upon looking for the variation of
S for an arbitrary variation of that arc, including tb&tremities, one will get by a
classical calculatiornt):

55= [@(31 - [@(J]o - jz[%g—L g—;jaidt,

into which one has introduced the elements that redafd *):
oL
a)(a):Zpidq—Hdt, pi:a_q,, H:Zpiq_L-

One deduces from the differential system (6.1) that:
t1
(6.2) 6= [w(J)1~ [@(do- [ >Q 9 dt.

Let 7then be a tube that is generated by a closed continequsrice of trajectories

of (M). On each trajectory that is limited by an 5{@1 whose extremities generate two

closed curve€, andC;, and let7; denote the portion of that is bounded bg, and

C:. Upon integrating the two sides of (6.2) over the closatinuous sequence of
trajectories, one will get the relatiof):(

() Cf., E. CARTAN [1], pp. 10.
() That relation is equivalent to a relation that wagwgiky D. C. LewisZ] [pp. 280, formula (10)] in a
considerably more complicated, purely analytical ftnat does not lend itself well to applications.
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(6.3) jqw(é)— jcow(a) = L&ZQ dq O dt.

By applying Stokes’s formula to the left-hand side @BJ and the domair?,, it will
become:

(6.4) [[.2.dn qu—[ dH-Y Q dng d=0.

Hence, the system of dynamical equations (9.1) adh&tstegral invariance relation
that is generated by the quadratic form:

(6.5) Q=>dp qu—(dH—Zng}D d.

That obviously generalizes Cartan’'s integral invaridat the dynamics of
conservative systems.

If one takesCy, andC; in the relation (6.3) to be closed sequences of sinmedias
states that relate to the instafatst; then one will get:

(6.6) qup, dq —ICDZ p dg= jt?dtjCZQ dq,

in which the closed curv€ corresponds to the instant If the Q; are derived from a
potentialU (g, t) then one will immediately get Poincaré’s relatimegral invariant.

If the equations of motion (6.1) admit infinitesimalriséormations then one can
deduce some new integral invariance relations from tlegral invariance relation that is
generated by (6.5) . In particular, suppose that the caristend forces that are given
for the system NI) are independent of time. The equations of motion adha
infinitesimal transformation:

It will then result that the Pfaff form:
Qx=dH-[ > Qdg

generates a new integral invariance relation. In otleeds, for any instant , t;, the

integral:
J';l(dH -¥Q dqj

will be zero when it is evaluated along an arc of ge¢tary. We thus recover a classical
result of Painlevé.
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7. Characterization of the dynamical equations.— By its very structure, the
guadratic form (6.5) in {2+ 1) variables admits a maximum rank of By virtue of the
theorem in paragraph it will then result that there exists one and o dlifferential
system in (8 + 1) variables that admits the corresponding integralianee relation.

Explicitly construct the associated system to thenf@. Upon successively equating
the coefficients of the differentiatky , dp , dt in Q, which have previously been moved
to the first position, to zero, one will get the Pf&fstem:

(7.1) dp + [a—H—Qij dt=0,
ofo}
(7.2) dg _6_H dt=0,
op
oH oH B

That system reduces to the differential system:

(7.4) d_p:_a_H+Qi, a9q o1
dt 0q dt  dp

since equation (7.3) is a consequence of equations (7.1) and (Hehce, the only
differential system of type (1.1) that admits the gné& invariance relation that is
generated by (6.5) is the pseudo-canonical differentiaésy$7.4) that is equivalent to
the Lagrangian system (6.1). From now on,@hevill be considered to be functions of
pi, Gt

We are thus led to state the following theorem:

Theorem:

The motions of a material system with perfect hahoic constraints are governed by
first-order differential equations that involve tiparameters of position, velocity, and
time. Those equations are characterized by thepgnyg that they admit the integral
invariance relation that is generated by the form:

Q= de qu—[dH—Z Q dng d.

In my paper 4], one will find a study of the extended cases in whicl skeement
can be put into a form that is independent of the frantiveg is adopted for the
configuration space-time of the system.
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8. An extension of Liouville’s integral invariant. — If the exterior differential form
of even degre€ generates an integral invariance relation for thedifitial system (1.1)
then it will be clear, by virtue of the theorems inggaaphsl and2, that the same thing
will be true for the form® P (p=1, 2, ..)).

In particular, consider the quadratic forth that is defined by (6.5) and whose
associated system is given by (7.4). As a resultfonat can be written:

(8.1) Q= }:{mq+{ -de% {dq—gg—d}

The differential system of dynamical equations thémié the integral invariance
relation that is generated 1§y will likewise admit integral invariance relations tteae
generated b ? (p = 1, 2, ...) . In particular, fop = n, one will obtain the form of
degree B8 :

oH

o oo

We then arrive at the following theorem:
Theorem:

The dynamical equations for systems with perfetnomic constraints admit the
integral invariance relation of degre#n that is generated by the foi(@.2).

Under what condition will the form (8.2) define an & invariant for the
dynamical equations? In order for that to be trues tacessary and sufficient that the
associated system of the fodQ" should be verified when one takes the system (7.4)
into account. Now, that will be possible only when:

dQ"=0.
Evaluate the exterior differential:
dQ"=nQ"0dQ.
One will first have:
dQ :ZdQI Odq U dt.

One will then deduce that:

dQ”:n[ZngdpldelD . Odp, Odop Odaoy O... Odg, Odt.

One is then led to the condition:

> 220

— op,
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We state:
Theorem:

In order for the form(8.2) of degree2n to define an absolute integral invariant for
the dynamical equations, it is necessary and sufficient that one should have:

(8.3) zg_gz 0.

It is equivalent to say that under that hypothesis, ymamhical equations admit the
multiplier 1, which one can verify directly.

If we confine ourselves to the consideration of siemdous states then the fof
will reduce to the form inf2variables:

dp Odp O ... Odpy Odap Odop O... Odg, -

Hence, the material systems that satisfy the camdi(B.3) will admit the Liouville
integral invariant:

j dp. Odp, O ... Odp, Oda Odge O... Odg,

whose importance is well-known in its applicationsstatistical mechanics and ergodic
theory.

9. Case of non-holonomic systems- The case in which the material system
considered is non-holonomic will immediately reducehi® tase of holonomic systems.
Suppose that the systeM)(is subject to the non-holonomic constraints:

>a,00+b dt=0 k=1,2,..9<n),

in which theay and theby denote functions ajfj and time. The Lagrangian equations of
motion can be put into the form:

d , d oL oL
d_?:q’ ——-—=Q+Q,

9.1
®-D dtoq 0q

with:

(9.2) Q= zaki A
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The Lagrange multipliersly can be considered to be functions of the parameters of
position, velocity, and time that are chosen in sudhsaion that equations (9.1) will
admit the first integrals'):

2.8 q+b.

The results that are established for holonomic systeithpersist if one replaces thg;
with the quantitiesQ; +Q”. Hence, the equations of motion will admit the inaégr
invariance relation that is generated by the form:

(9.3) Q=3dp qu{dH—Z[ Q+> g/\kj dlq}D d,

which coincides (up to notation) with the result of A.-TRylor [6]. In conclusion, | will
point out that the various results that are estaldisbethe equations of dynamics easily
extend to the equations of the hydrodynamics of perfeadsflwith non-conservative
forces, as well as to viscous fluids.
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