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Introduction.  
 

 Since their introduction by Henri Poincaré (1), the role that integral invariants play in 
the theory of differential systems and Pfaff systems has not ceased to expand.  One 
knows about all of that theory due to the work of Élie Cartan (2). 
 It seems to me that along with “invariant forms” for a differential system and 
“invariant equations,” there is some interest in considering exterior differential forms 
whose associated system can be verified by taking into account the proposed differential 
system in their own right.  Here, one will find the elements of a theory of integral 
invariance relations to which one will be led and some applications to the dynamics of 
non-conservative systems.  That theory is closely related to a special case of my theory of 
generalized variational spaces (3).  However, I shall try to present it in an autonomous 
manner here. 
 Some the most elementary results of that work have appeared in a note to the 
Comptes rendus de l’Académie des Sciences (4).  In what follows, d Ω will denote the 
exterior differential of the form Ω. 
 
 

I. – INTEGRAL INVARIANCE RELATIONS.  
 

 1. Definition of integral invariance relations. – Suppose that we are given a 
system of first-order differential equations in m variables: 
 

(1.1)    1

1

dx

X
= 2

2

dx

X
= … = m

m

dx

X
, 

 
in which the functions Xi (x1, x2, …, xm) are not simultaneously zero and have class C (2) 
in a certain region R of the representative m-dimensional space. 

                                                
 (1) H. POINCARÉ, [5], pp. 4. 
 (2) Cf., in particular, E. CARTAN [1].  
 (3) Cf., LICHNEROWICZ [4].  
 (4) LICHNEROWICZ [3].  
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 Let us consider an arbitrary p-dimensional domain (p < m) ( )
0

pD of the region R and 

suppose that we displace the various points of ( )
0

pD  along the integral curves of the 

system (1.1) arbitrarily in such a way that we obtain another p-dimensional domain ( )
1

pD .  

We let 1
0T  denote the (p + 1)-dimensional domain that is generated by the arcs of the 

integral curves that are limited by the points of ( )
0

pD and ( )
1

pD .  Naturally, we suppose 

that the various points of 10T  are interior to the region R. 

 Finally, let Ω denote an exterior differential form of degree (p + 1) and class C (2) that 
belongs to R . 
 
 Definition.  – We say that Ω generates an absolute integral invariance relation for the 
system (1.1) when for any domain ( )

0
pD  and any domain 1

0T  that one deduces from it, 

one has: 
 

(1.2)     
1
0

Ω∫T = 0 . 

 
Ω generates a relative integral invariance relation if one has the relation (1.2) when the 
domain ( )

0
pD  is restricted to being closed. 

 
 We shall ultimately establish that, contrary to what happens in the case of integral 
invariants, that distinction between absolute and relative relations, which seems natural a 
priori , is, in fact, superfluous. 
 
 
 2. Absolute integral invariance relation. – We propose to look for the condition 
under which a form Ω can generate an absolute integral invariance relation for the system 
(1.1).  Let (y1, y2, …, ym−1) be a system of (m – 1) independent first integrals of (1.1).  The 
differential system (1.1) is locally equivalent to the differential system: 
 
(2.1)    dy1 = dy2 = …=  dym−1 = 0. 
 
 Suppose that Xm (for example) is non-zero in the region considered and adopt y1, y2, 
…, ym−1 and xm as new variables.  When expressed in terms of these new variables, the 
form Ω will include two types of terms: Ones that contain the differential dxm and ones 
from which that differential is absent.  Hence, the form Ω can be written: 
 

Ω = Ω1 + Ω2 , 
 

in which Ω1 involves only the differentials of the first integrals as differentials: 
 
(2.2)   Ω1 = 

1 2 1 1 2 1p pi i i i i iA dy dy dy
+ +

∧ ∧ ∧∑ ⋯
⋯ , 
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and Ω2 has the form: 
 
(2.3)   Ω2 = 

1 2 1 1 2p pi i i m i i iB dx dy dy dy
+

∧ ∧ ∧ ∧∑ ⋯
⋯ = dxm ∧ Π , 

 
in which Π denotes an exterior differential form of order p. 
 In order to define the domain of integration 10T  that is associated with Ω, we 

introduce an auxiliary variable v.  To that effect, we take an arbitrary non-zero function ρ 
of the variables (x1 , x2 , …, xm) and complete the system (1.1) by writing: 
 

(2.4)    1

1

dx

X
 = 2

2

dx

X
 = … = m

m

dx

X
 = ρ dv . 

 
Upon integrating the differential system (2.4), we will obtain a parametric representation 
of the integral curves of (1.1) in terms of the parameter v. 
 Having said that, define the domain ( )

0
pD  by a parametric representation of the 

variables xi as functions of the p parameters (α1 , α 2 , …, αp) .  On the manifold T that is 

generated by the integral curves that issue from the various points of ( )
0

pD , the variables 

xi will be expressed by relations of the form: 
 

xi = fi (v1 , α1 , α2 , …, αp) . 
 

We can choose that domain to be the portion of T that is bounded by two domains v = 

const.; we thus restrict v to vary within an interval (v0, v1). 
 It is clear that one has: 
 

(2.5)     
1

0
1Ω∫T = 0. 

 
Indeed, upon passing to the parametric representation in terms of the variables (v1 , α1 , 
α2, …, αp), each term: 

1 2 1pi i idy dy dy
+

∧ ∧ ∧⋯  

 
of Ω1 will correspond to the determinant whose first row is: 
 

1i
dy

dv
 = 2i

dy

dv
= … = 1pi

dy

dv
+ , 

 
which will be composed of only zeroes, from (2.1). 
 If Ω generates an absolute integral invariance relation then one must have: 
 

1
0

2Ω∫T = 
1

0
mdx ∧ Π∫T  = 0. 
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Suppose that v1 varies while v0 remains fixed and consider the integral function of v1 : 
 

I (v1) = 
1
0

2Ω∫T = 
1

( )
0

p

v

nv D
dv Xρ Π∫ ∫ , 

 
in which the domain D(p) corresponds to the value v of the auxiliary variable.  When v 
tends to v0, the function I will obviously admit the integral: 
 

(2.6)    
0v v

dI

dv =

 
 
 

= 
( )p nD

Xρ Π∫  

 
for its derivative at v = v0 .  When that derivative is zero, it will result that for any domain 

( )
0

pD , one must have: 

( )
0

p nD
Xρ Π∫  = 0. 

 
One deduces from the continuity conditions that: 
 

ρ Xn Π = 0, 
and as a result: 

Π = 0. 
 

 Hence, in order to Ω to generate an absolute integral invariance relation, it is 
necessary and sufficient that it can be put into the form (2.2), in which the 

1 2 1, , pi i iA
+⋯

 are 

functions of the m variables (xi) .  The form Ω only includes the differentials of the first 
integrals as differentials in the sum. 
 
 Theorem: 
 
 If the forms Ω and dΩ generate integral invariance relations of the differential 
system (1.1) then the form Ω will define an absolute integral invariant of (1.1), and 
conversely. 
 
 Indeed, it is the union of the associated systems for the forms Ω and dΩ that 
constitutes the characteristic system of the form Ω.  As a result, it will be an invariant for 
the differential system (1.1). 
 Geometrically, suppose that Ω has degree p and apply Stokes’s formula to the domain 

1
0V  that is bounded by ( )

0
pD , ( )

1
pD , and 1

0T .  That domain is generated by arcs of the 

integral curves that issue from the points of ( )
0

pD .  If Ω satisfies the stated hypotheses 

then one can deduce that: 
 

( ) ( )
1 0

p pD D
Ω − Ω∫ ∫  = 

( ) 1
00

p V
dΩ + Ω∫ ∫T

 = 0. 
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 5. Uniqueness theorems for differential systems that admit certain integral 
invariance relations. – It is often convenient to seek to characterize a differential system 
of the type (1.1) by the fact that it admits a certain integral invariance relation.  To that 
effect, we shall make use of the following two theorems: 
 
 Theorem: 
 
 There exists one and only one differential system in (2n + 1) variables that admits a 
quadratic integral invariance relation of maximum rank. 
 
 Indeed, let Ω be a quadratic exterior form in (2n + 1) variables.  Since the rank r of 
that form is even, it will be a maximum for r = 2n.  In that case, Ω can be put into the 
canonical form: 

Ω = ω1 ∧ ω2 + ω3 ∧ ω4 + … + ω2n−1 ∧ ω2n , 
 
in which the Pfaff forms ωi are linearly independent.  The associated system for Ω then 
consists of the Pfaff system: 

ω1 = ω2 = … = ω2n = 0, 
 
which is equivalent to one and only one differential system of the form (1.1). 
 
 Theorem: 
 
 There exists one and only one differential system in m variables that admits an 
integral invariance relation of degree (m − 1). 
 
 Indeed, let Ω be an exterior differential form of degree (m – 1) in m variables.  The 
rank of that form is equal to (m – 1), and Ω can be put into the canonical form: 
 

Ω = ω1 ∧ ω2 ∧ … ∧ ωm−1 , 
 
in which the Pfaff forms ωi are linearly independent.  The associated system to Ω is then 
written: 

ω1 = ω2 = … = ωm−1 = 0, 
which then proves the theorem. 
 
 

II. – APPLICATIONS.  
 

 6. The dynamical equations for non-conservative holonomic systems. – Consider 
a not-necessarily-conservative material system (M) that has perfect holonomic constraints 
and admits n degrees of freedom (qi).  The forces to which the system is subject cannot 
be derived from a potential and can even depend upon the velocities of the material 
elements of (M). 
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 In their Lagrangian form, the equations of motion of the material system (M) can be 
written: 
 

(6.1)   idq

dt
= iq′ , 

i i

d L L

dt q q

∂ ∂−
′∂ ∂

= Qi  (i = 1, 2, …, n), 

 
in which L denotes a Lagrangian function can possibly amount to one-half the vis viva T 
of the system, and the Qi are functions of qi , iq′ , and time t.  We let (M) denote a material 

system that is mechanically identical to (M), but is subject to forces that make the Qi 
zero. 
 Let E be the (2n + 1)-dimensional state space of the system (M).  A trajectory of (M) 

is a curve of E that is a solution of the differential system (6.1).  Consider the action 

integral: 

S = 
0t
L dt∫ , 

 
which is evaluated along an arc of a trajectory in (M).  Upon looking for the variation of 
S for an arbitrary variation of that arc, including the extremities, one will get by a 
classical calculation (1): 

δ S = [ω (δ)]1 – [ω (δ)]0 − 
1

0

t

it
i i i

d L L
q dt

dt q q
δ

 ∂ ∂− ′∂ ∂ 
∑∫ , 

 
into which one has introduced the elements that relate to (M′ ): 
 

ω (δ) = i i
i

p qδ∑ − H dt, pi = 
i

L

q

∂
′∂
, H = i i

i

p q′∑ − L . 

 
One deduces from the differential system (6.1) that: 
 

(6.2)   δ S = [ω (δ)]1 – [ω (δ)]0 − 
1

0

t

i it
i

Q q dtδ∑∫ . 

 
 Let T then be a tube that is generated by a closed continuous sequence of trajectories 

of (M).  On each trajectory that is limited by an arc �0 1P P  whose extremities generate two 

closed curves C0 and C1 , and let 1
0T  denote the portion of T that is bounded by C0 and 

C1.  Upon integrating the two sides of (6.2) over the closed continuous sequence of 
trajectories, one will get the relation (2): 
 

                                                
 (1) Cf., E. CARTAN [1], pp. 10.  
 (2) That relation is equivalent to a relation that was given by D. C. Lewis [2] [pp. 280, formula (10)] in a 
considerably more complicated, purely analytical form that does not lend itself well to applications. 
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(6.3)    
1 0

( ) ( )
C C

ω δ ω δ−∫ ∫  = 
1

0
i iQ dq dt∧∑∫∫T

�

. 

 
By applying Stokes’s formula to the left-hand side of (6.3) and the domain 1

0T , it will 

become: 

(6.4)    
1

0
i i i idp dq dH Q dq dt

 ∧ − − ∧ 
 

∑ ∑∫∫T
� �

 = 0. 

 
 Hence, the system of dynamical equations (9.1) admits the integral invariance relation 
that is generated by the quadratic form: 
 

(6.5)    Ω = i i i idp dq dH Q dq dt
 ∧ − − ∧ 
 

∑ ∑
� �

. 

 
 That obviously generalizes Cartan’s integral invariant for the dynamics of 
conservative systems. 
 If one takes C0 and C1 in the relation (6.3) to be closed sequences of simultaneous 
states that relate to the instants t0 , t1 then one will get: 
 

(6.6)    
1 0

i i i iC C
i i

p dq p dq−∑ ∑∫ ∫ = 
1

0

t

i it C
dt Q dq∑∫ ∫ , 

 
in which the closed curve C corresponds to the instant t.  If the Qi are derived from a 
potential U (qi , t) then one will immediately get Poincaré’s relative integral invariant. 
 If the equations of motion (6.1) admit infinitesimal transformations then one can 
deduce some new integral invariance relations from the integral invariance relation that is 
generated by (6.5) .  In particular, suppose that the constraints and forces that are given 
for the system (M) are independent of time.  The equations of motion admit the 
infinitesimal transformation: 

X f = 
f

t

∂
∂

. 

It will then result that the Pfaff form: 
 

ΩX = dH − i iC
Q dq∑∫  

 
generates a new integral invariance relation.  In other words, for any instants t0 , t1, the 
integral: 

1

0

t

i it
i

dH Q dq
 − 
 

∑∫  

 
will be zero when it is evaluated along an arc of a trajectory.  We thus recover a classical 
result of Painlevé. 
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 7. Characterization of the dynamical equations. – By its very structure, the 
quadratic form (6.5) in (2n + 1) variables admits a maximum rank of 2n.  By virtue of the 
theorem in paragraph 5, it will then result that there exists one and only one differential 
system in (2n + 1) variables that admits the corresponding integral invariance relation. 
 Explicitly construct the associated system to the form Ω.  Upon successively equating 
the coefficients of the differentials dqi , dpi , dt in Ω, which have previously been moved 
to the first position, to zero, one will get the Pfaff system: 
 

(7.1)    dpi + i
i

H
Q

q

 ∂ − ∂ 
 dt = 0, 

 

(7.2)     dqi −
i

H

p

∂
∂

dt = 0, 

 

(7.3)    i i i
ii i

H H
dp Q dq

p q

 ∂ ∂+ − ∂ ∂ 
∑ ∑ = 0. 

 
 That system reduces to the differential system: 
 

(7.4)    idp

dt
 = − 

i

H

q

∂
∂

+ Qi , idq

dt
 = 

i

H

p

∂
∂

, 

 
since equation (7.3) is a consequence of equations (7.1) and (7.2).  Hence, the only 
differential system of type (1.1) that admits the integral invariance relation that is 
generated by (6.5) is the pseudo-canonical differential system (7.4) that is equivalent to 
the Lagrangian system (6.1).  From now on, the Qi will be considered to be functions of 
pi , qi , t. 
 We are thus led to state the following theorem: 
 
 Theorem: 
 
 The motions of a material system with perfect holonomic constraints are governed by 
first-order differential equations that involve the parameters of position, velocity, and 
time.  Those equations are characterized by the property that they admit the integral 
invariance relation that is generated by the form: 
 

Ω = i i i i
i i

dp dq dH Q dq dt
 ∧ − − ∧ 
 

∑ ∑ . 

 
 In my paper [4], one will find a study of the extended cases in which that statement 
can be put into a form that is independent of the framing that is adopted for the 
configuration space-time of the system. 
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 8. An extension of Liouville’s integral invariant. – If the exterior differential form 
of even degree Ω generates an integral invariance relation for the differential system (1.1) 
then it will be clear, by virtue of the theorems in paragraphs 1 and 2, that the same thing 
will be true for the forms Ω p (p = 1, 2, …) . 
 In particular, consider the quadratic form Ω that is defined by (6.5) and whose 
associated system is given by (7.4).  As a result, that form can be written: 
 

(8.1)   Ω = i i i
i i i

H H
dp Q dt dq dt

q p

    ∂ ∂+ − ∧ −    ∂ ∂    
∑ . 

 
 The differential system of dynamical equations that admit the integral invariance 
relation that is generated by Ω will likewise admit integral invariance relations that are 
generated by Ω p (p = 1, 2, …) .  In particular, for p = n, one will obtain the form of 
degree 2n : 

(8.2)   Ωn = i i i
i i i

H H
dp Q dt dq dt

q p

    ∂ ∂+ − ∧ −    ∂ ∂    
∏ . 

 
 We then arrive at the following theorem: 
 
 Theorem: 
 
 The dynamical equations for systems with perfect holonomic constraints admit the 
integral invariance relation of degree 2n that is generated by the form (8.2). 
 
 Under what condition will the form (8.2) define an integral invariant for the 
dynamical equations?  In order for that to be true, it is necessary and sufficient that the 
associated system of the form d Ωn should be verified when one takes the system (7.4) 
into account.  Now, that will be possible only when: 
 

d Ωn = 0. 
Evaluate the exterior differential: 

d Ωn = n Ωn−1 ∧ d Ω . 
One will first have: 

d Ω = i i
i

dQ dq dt∧ ∧∑ . 

One will then deduce that: 
 

d Ωn = i

i i

Q
n

p

 ∂
 ∂ 
∑  dp1 ∧ dp1 ∧ … ∧ dpn ∧ dq1 ∧ dq1 ∧ … ∧ dqn ∧ dt . 

 
One is then led to the condition: 

i

i i

Q

p

∂
∂∑ = 0. 
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We state: 
 
 Theorem: 
 
 In order for the form (8.2) of degree 2n to define an absolute integral invariant for 
the dynamical equations, it is necessary and sufficient that one should have: 
 

(8.3)     i

i i

Q

p

∂
∂∑ = 0. 

 
It is equivalent to say that under that hypothesis, the dynamical equations admit the 
multiplier 1, which one can verify directly. 
 If we confine ourselves to the consideration of simultaneous states then the form Ωn 
will reduce to the form in 2n variables: 
 

dp1 ∧ dp1 ∧ … ∧ dpn ∧ dq1 ∧ dq2  ∧ … ∧ dqn . 
 

Hence, the material systems that satisfy the condition (8.3) will admit the Liouville 
integral invariant: 

∫ dp1 ∧ dp1 ∧ … ∧ dpn ∧ dq1 ∧ dq2  ∧ … ∧ dqn , 

 
whose importance is well-known in its applications to statistical mechanics and ergodic 
theory. 
 
 
 9. Case of non-holonomic systems. – The case in which the material system 
considered is non-holonomic will immediately reduce to the case of holonomic systems.  
Suppose that the system (M) is subject to the non-holonomic constraints: 
 

ki i
i

a qδ∑ + bk δ t = 0  (k = 1, 2, …, q < n), 

 
in which the aki and the bk denote functions of qi and time.  The Lagrangian equations of 
motion can be put into the form: 
 

(9.1)   idq

dt
= iq′ , 

i i

d L L

dt q q

∂ ∂−
′∂ ∂

 = Qi + iQ∗ , 

with: 
 
(9.2)     iQ∗ = ki i

k

a λ∑ . 
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The Lagrange multipliers λk can be considered to be functions of the parameters of 
position, velocity, and time that are chosen in such a fashion that equations (9.1) will 
admit the first integrals (1): 

ki i
i

a q′∑ + bk . 

 
The results that are established for holonomic systems will persist if one replaces the Qi 
with the quantities Qi + iQ∗ .  Hence, the equations of motion will admit the integral 

invariance relation that is generated by the form: 
 

(9.3)   Ω = i i i kl k i
i k

dp dq dH Q a dq dtλ
  ∧ − − + ∧  

  
∑ ∑ ∑ , 

 
which coincides (up to notation) with the result of A. E. Taylor [6].  In conclusion, I will 
point out that the various results that are established for the equations of dynamics easily 
extend to the equations of the hydrodynamics of perfect fluids with non-conservative 
forces, as well as to viscous fluids. 
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