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Abstract. — The theory of gravitational radiation based on the analogy that exists
between the behavior of the curvature tensor and that of the elegnatic field in
general relativity. Contributions to field quantization.

INTRODUCTION

One of the most important questions of the relativigteéory of gravitation concerns the
definition and properties of gravitational waves and ramliatin latter years this problem
has been the object of numerous interesting works.

In the framework of special relativity a satisfactoglassical theory of
electromagnetic waves and radiation has been eladpeatd it seems to me to be a good
method to develop in the framework of general relativityaimanner that is easily
adapted to the gravitational case. In this case, it aptiesrs is the curvature tensor that
plays the essential role from either a mathemawbecaphysical viewpoint, and this is
found to be plainly in accord with the viewpoint of PIRIAN, 2]. For a metric that
satisfies EINSTEIN'S equationB,z = O the curvature tensor satisfies two groups of
relations that formally bear a striking resemblancthéovacuum MAXWELL equations,
namely:

S3,Ryp0s =0, 0,R%,, =0,

y Au T

wherell, is the covariant derivative operator éahdicates a summation over all cyclic
permutations of the three indicesg, y. These are relations that play a fundamental role
in the gravitational part of this work.

Chapter | is dedicated to the theory of electromagmedies and radiation in general
relativity. After reviewing the classical results thation of a singular 2-form is defined
and applied to the definition of the notion of purecgl@magnetic radiation as in the
study of the discontinuities of the derivative of theceomagnetic field tensor. In this
case, one sees the points of a wave front of a peatae 4" order tensor appear in a
natural manner.
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In chapter Il the discontinuities of the curvature terese studied. This study leads
us to distinguish tensors that correspond to what we g ¢singular double 2-form”
amongst the tensots,z.,, that admit the symmetry type of the curvature teriBbree
corresponding conditions imply a remarkable form for ¢bhatracted tensofz An
analysis of the differential relationd that the discontinuities of the curvature tenser ar
subject to in the cad®,z = 0 lead to conservation identities for*aatder tensor. This is
again the case when there are simultaneously discaigmin the curvature tensor and
the derived tensor of an electromagnetic field thaisfsss the vacuum MAXWELL
equations.

In chapter Ill, | give a definition of the notions aétal radiation and pure
gravitational radiation, notions that correspond toemarkable particular case of the
PIRANI-PETROV classification. The field of isotropiectors that comes into play
admits null geodesics of null length for trajectorieBhanks to some work of BONDI,
perfecting an example of ROSEN, one may construct tefleexamples of such
radiation. In the case wheR,; = 0 (or, more generallydg.g), | have studied the
properties of a 4 order tensor that was introduced by L. BEL [2] in accaith my
viewpoint. These properties are formally very simitathose of the MAXWELL tensor
of an electromagnetic field that satisfies the vaclXWELL equations, and it seems
that this tensor appeals to new and important researches

Chapter 1V is dedicated to the behavior of the relatieeeleration of two close
particles relative to a wave or radiation accordim@ tviewpoint developed by SYNGE
and by PIRANI [2]. The study of the case of charged pestiln the presence of an
electromagnetic field points to a difference in tie@dwvior of a gravitational wave and an
electromagnetic one.

In chapter V, | have adopted the five-dimensional franmkwio order to translate
electromagnetic radiation and gravitational radiatioto the same formalism, which
leads to the “truncation” of the curvature tensoref five-dimensional manifold.

In chapter VI, | finally exploit the aforementionadalogies between gravitation and
electromagnetism in order to develop the process of quadioi of the electromagnetic
field in special relativity and the gravitational field ithe linear approximation in a
parallel fashion. In the first case, the quantizatisnperformed directly on the
electromagnetic field tensor and leads naturally to dlassical representation of the
photon. In the second case, it is performed on the wue/éensor and leads, as | will
show, to an equivalent representation of the gravittdeanwhile, it seems that this
guantization process is more satisfactory, both mattealig and physically, to the one
put into play by the classical theory of the graviton. e Tdguations written at the
beginning of this introduction appear precisely as the fuedéah field equations; the
conditionRys = 0 is then presented as a simple initial condition.

! Relations that were given by TRAUTMANN and the authdejpendently.
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l. — Electromagnetic waves and radiation
in general relativity.

1. Generalities. In any relativistic theory of the gravitational fieldetlprimitive
element is defined by a four-dimensional “space-time” roéhiV, endowed with a
differentiable structure concerning which it is essemtidde precise: for reasons entirely
related to the covariance of the formalism and whagipear in the analysis of the
gravitational field (see sec. 17-18) we are led to supposertiihe intersection of the
domains of two admissible local coordinate systemddt@ coordinates of a point in
one of the systems are four times differentiable fanst— with non-null Jacobian — of
the coordinates of this point in the other system, wltbe first and second derivatives
are continuous and the third derivative is only piecewasgicuous. We interpret this by
saying that the manifoll, is of class C?, piecewiseC*). Unless stated to the contrary,
V4 is supposed to barientable.

A riemannian metricls’ of hyperbolic normal type, with one positive square and 3
negative ones, is defined &. The local expression of this metric in an admissible
coordinate system is:

ds’ = ggpdx@d¥’ (a, B any Greek index = 0, 1, 2, 3).

The metric tensogab — or gravitation tensor is supposed to be exactl¥
piecewiseC*), which is strictly compatible with the differentiatdéructure imposed on
Va.

The equatiomls’ = 0 defines a real cor@ - called theslementarycone aix — at each
point x of V4. For a direction, its interior and its exterioridefthe time orientation and
the space orientation, respectively. A tangent veotWy is called normal if the modulus
of its square is equal to 1. Amthonormal frameat the poinix of V4 is an ordered set of
4 vectorg€, )atx such that

& [E,=0 forazhb, ez =1 &> =-1, (u=1,2, 3).

&, defines dime direction,and the perpendicular 3-plane defined by &hes called the

spaceassociated with this time direction. We recall tha-plan or a 3-plane is called
oriented in space if all of its directions are oriente space; in the contrary case, it is
oriented in time.
If a neighborhoodJ of V, is endowed with an orthonormal frame, t& may be
locally written
dSZ — (80)2 _Z(QU)Z’

u

where the#” are linearly independent local Pfaff forms.

Naturally, V4 may be the MINKOWSKI spacetime of special relayivi An
orthonormal frame is then an ordinary Galilean ®afwithc = 1). In the Riemannian
case, the metric defines the structure of a MINKQWSpace on any tangent vector
space at any poimtof V4. The physical interpretation of a tensor defiagthe point of
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V, is immediately deduced from the consideration of thagént vector space: when
referred to an orthonormal frame, this space may be ifigehivith the spacetime of
special relativity as referred to a Galilean frame, WHhigrnishes the desired physical
interpretation directly in terms of the time and spassociated to that frame.

2. The electromagnetic field in the absence of induction.

In the absence of any induction phenomena, the eleagreetia field is represented by
an anti-symmetric tensor fiel,s of class C°, piecewiseC? on a domain ivs. One
may associate the 2-form:

(2-1) F=1F,67 06”,

with this tensor. 7,5, is the volume element tensor of the riemannian minie
then one deduces thadjoint” anti-symmetric tensor B),s which is defined by:

(2_2) (*F)aﬂ :%”aﬂdeyd’

from F. We denote the associated 2-form By twhich we call the adjoint df. Note
that since the discriminant d€ is negative *£ = - F.

With respect to an orthonormal franfe,) atx, the physical interpretation &f and
*F is furnished by the following rule: i =& the electric field vector and the magnetic
field relative to time and space defined by the frameleepace vectors (i.e, the vectors

orthogonal toli) determined by

(2-3) E:E’=F%u,  H:H’=-("F)%u,.

If (X,, 2) and (, M, N) are the components & and H, respectively, with respect
to the frame(€, )one has the table:

X=F%=F,=(F),, =(*F)* L=(*F)°=(F),=F,=F?*
(2-4) Y =F%=Fy =(*F), = (*F)* M =(*F)* = (*F),, = Fyy = F™.
Z=F%= Foo =(F)p, = (*F)* N=(F)*= (*Fles=Fy, = F*

Note that sincee(;)doo = 1, guu = —1, in this frame this shows how the lowering of a
space index is carried out with a change of sign, whereas fat the same for the time
index, 0. One may attach two interesting scalaithé¢ electromagnetic field: the scalar
product of the form F with itself or with the fortk, namely:

(2-5) W= (F,F)=iF,F” ® =(*F,*F) =1F,,(*F)”.
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@ = 0 expresses the idea that the fdfjrand, as a result, the fornk *are of rank less
than 4. In an orthonormal frame, the scattrand¥ have the expressions:

(2-6) W=1*+M*+N*-X?-Y?-2% ® =2(LX + MY + N2),

namely, when the squares and scalar products ahlea¢ed with the help of the positive
definite space metric:

W=H2-E? ® =2E[H,

and the right-hand sides are spacetime invariants.

3. Maxwell tensor and Poynting vector.

The study of special relativity has led us to idtroe the MAXWELL tensor defined by:
(3'1) Taﬂ = % gaﬂ F/l,uF - Fap F; (Ta = O)

to be the energy-momentum tensor of the electrostagfield. When one refers the
electromagnetic field to an orthonormal fraif@) one sees that this MAXWELL tensor

is constructed with the space tensar,)( of electromagnetic tensions, the spatial
POYNTING vector with components:

(3-2) Po=0 Py = Tou,
and the electromagnetic field energy:
Too =1(E*+H?).
If n" is a normal space vector, the electromagneticggnéux that traverses a 2-
surface element orthogonalibin space is proportional f8, n". In order for this flux to

be zero for any surface element it is necessarysafittient that the POYNTING vector
that corresponds t@& be null. However, ifi =€, ,the corresponding POYNTING

vector may be written:
P, = (9} —u,ut)r 4 u”.

In order forP, to be null, it is necessary and sufficient that:
T’ = (13, 0° U Uy,

i.e., thatli be aproper vector of the Maxwell tensor with respectie metric tensor.
One is thus led to study the proper vectorggfvith respect t@gz .
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4. The electromagnetic field equations.

a) The electromagnetic field satisfies MAXWELL'S eqgoat, where the first group
expresses thdt is locally derivable from a vector potential and the sdo@tatesF to
the field sources, i.e., to a electric current vecldrese equations may be written:

(4-1) ET =47 0,F,=0 D =0,F# =J°

wherel is the covariant derivative operator for the riemammiannection and” is the
electric current vector. Inthese equations, it redudtm a classical calculation that:

(4-2) 0,75 =FpJ°.

Here | place myself in theurely electromagneticase: in the domain oV,
envisioned the electric current vector is null and thetedenagnetic field contributes
only to the energy-momentum. 3z = Ry — (1/2)g4sR is the EINSTEIN tensor of the
metric, then the gravitational and electromagnetiddieare related by the EINSTEIN
equations:

(4-3) Sep= X Tap -

From the vanishing of the current, it results from (4-2j:th
(4-4) 0,75 =0.

This also results from the EINSTEIN equations (4-3) sitlue tensorS,s satisfies
conservation identities. (4-3) is therefore compatiwiith the vanishing of the current.

Let d be the operator of exterior differentiation on for(ds = 0), and letd be the
operator of codifferentiation on a form of degpedefined byd = (-1)P**d *(& = 0).
The MAXWELL equations may be written:

(4-6) dF=0 or A*F) =0,
and in the purely electromagnetic case:
(4-6) d*F)=0 or & =0.
b) In this section, we do not avail ourselves of thiRETEIN equations. We remark

only that if one substitutes a material fluid withoutgsuae for the pure electromagnetic
field, then one must substitute the energy-momentusoten

(4_7) Taﬁ = mauﬁ = (\/Eua)(\/zuﬁ)a
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for the tensorr,s wherep is the proper matter density and is the unitary velocity
vector (G* = 1) of the fluid. From the conservation conditionstthee satisfied by the

energy momentum tensar, T7 =0, and the unitary character Gione deduces:

(4-8) Oa(u) =0,
and
(4-9) u OauP = 0.

(4-8) is the continuity equation; from (4-9), the curranes of the fluid, which are
trajectories of the vector field are time-oriented geodesics in the manifé{d

5. Proper vectors of the Maxwell tensor(®). The study of the vanishing of the
POYNTING vector leads to the study of the proper valuespoper vectors of,z with
respect tog,s . Here, it comes down to a purely algebraic studylcored at a given
point of V, and which leads to reduced expressions for the pair ofsf@, *F) in an

orthonormal frameg(€, ).In this sectionfF may be an arbitrary 2-form that is interpreted
in terms of the electromagnetic field.

We start with an arbitrary time-oriented vector tog & of (€,). There are electric
and magnetic field vector® and H that correspond to it. It is possible to choose the 2-
plane (&, @) to be parallel to botle and H. The vectorg is then fixed up to sign, and
one hasX =L = 0. An orthonormal frame that satisfies thisditian will be called an
adapted framdor the formF. In the fixed 2-plang€,,& )pne may then choose the
vectors€, and & in such a manner that they are proper vectorBeofitatrix ¢ag) (A, B

= 2, 3) with respect to the identity. One then ¥ast MN = 0. An adapted frame that
satisfies this condition will be callesimplefor F. If one introduces two numbeés n7
that satisfy

(5-1) Y2 +M?= &, 72+ N? = 17, ZM - YN= &

then one can show that the matrix4 takes the form:

2 2
‘(;’7 0 0 0
&2 +n? 0 0
(5-2) (T,5) = 2 -
L S
n*-¢&?
2

2 Here, we summarize the results discussed by LICHNEROWfi@Réorie relativistes de la gravitation
et de I'electromagnétismeChap. 1.
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for a simple frame. Conversely, if the matrixd) takes the form:

relative to a frame, then one easily establishastiieaframe is simple.
This said, it is easy to obtain the proper valueg,gfvith respect t@,z by means of
(5-2). The equation of the proper values is then written:

e

THEOREM. —The Maxwell tensor of an electromagnetic field admireal proper
values that are pairwise equal and oppogitk, —k, —k.

It then results that:

It is easy to relatk to the invariantt¥ and®. One has:
K= [(H* -2 - (N* - Y)]* = [M? = Z% + N> - Y)* - 4 - Z2) (NP - YP).
Now, from (2-6) and the simplicity conditions, @sults that:
[M?=Z2+ N° - Y)* =% —4(M? - Z°)(N? - Y?) = 4MY + N2)* = %,

Therefore:
(5-4) 4 = W2 + 9%,

6. The regular case. It is now convenient to distinguish tket O case from th& =
0 case. In the first case, we say that the férms regular; in the second case, it is
singular. Let us examine the regular case; there then axestdistinct proper valuels
and —k, and, as a result, two 2-planes of orthogonal @rogectors, where one is
necessarily oriented in time and the other in spdcé, is a time-oriented normal vector

of the first 2-planeg, is the normal vector that is orthogonal to thenel, ande, and &,
are two orthogonal normal vectors of the spaceatea 2-plane, then the fran{€,) is
an orthonormal frame composed of proper vectonse las:

(6- C}) Jap = €0)a €08~ 1) a®1)8 ~ €2 €28~ €3)a €3)5,
an

(6-2) Tap = K[€0)a€0)8 + 1€+ €20 €28~ €3)a€3)4-
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When referred to thég, flame, the MAXWELL tensor gives a null POYNTING vect
and is necessarily represented by a matrix of the {6r&), with 7 = 0, since, from a
preceding remark(€, i$ a simple frame. Sincé, and & have the same proper value,

one hasf =0, hencer =M = 0.
OnlyZ andN are non-null in general. As a resl#itand *+ admit the expressions:

(6-3)

F=-z6°06% + NG* 067
*F=Ng°06° +26' 06>

F and * are linearly independent, and it is clear that there doe®xist any non-null
linear form such that the exterior products of this fevith F and * are both null.

We observe that,z admitstwo isotropic proper vectorsyhich one may define by:

(6-4) | =& +8&, " =8 -&,.
These vectors are also proper vectors ahd *#. For example, from (6-3), one deduces:
|aFaﬁ:—Z|ﬁ, |a(*F)aﬂ:N|g.

Conversely, any proper vector Ibfis obviously a proper vector a@fg as a result, if it is
isotropic, then it is collinear tb or i .

7. The singular case. Fork = 0, one hasV¥ = ® = 0. The electric field and the
magnetic field are orthogonal and have the samgtlenelative to any orthonormal
frame.

a) In this caser? = & and, as aresulg =+ £. In a simple frameg, =+ & Upon
changing € into —€, and, simultaneouslyg, into —€&,, in order to not change the

orientation of the frame, one may do this in suckay thaty=- ¢ For such a frame,
the MAXWELL tensor admits the components:

& - 00
& 00
7-1 T,p) =
(7-1) (Top) 0 0
00
Introduce the null-length vector:
=& +8,

which admits the covariant components:
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|o:1, |1:—1, |2:|3:0,

(7-1) translates into the relation:
(7-2) Tap=&Elalp.

r,gadmits proper vectors that are vectors in the 3-plangent to the elementary cone
ds’ = 0 alongl. Except for the isotropic direction defined by they define space-
oriented directions. It is therefore impossibleeht® find a time-oriented proper vector,
and, as a result, tannihilate the Poynting vector.The form (7-2) of the energy-

momentum tensor for the electromagnetic field, whieris an isotropic vector, is in
agreement with the form (4-7) of the energy-momentiensor for a material fluid
without pressure.

b) Let (€, ) be anadaptedframe. If E has component¥(Z) in the 2-plang(g,, &)

then the vectorH that is orthogonal toE and has the same length will have the
componentdM = —¢Z andN = &Y (wheree = +1). SinceYZ + MN = 0, the frame is
simple. Therefore in the singular cas® adapted frame is simpl&rom (5-1), one has

ZN-YN=- &
in a simple frame. It follows that:
-qY+Z7)=-&,

and, as a resulg= 1. Therefore, with our sign conventions, ong: ha
M=-2 N=Y
in an adapted frame. Upon using these expres&wwrte components df and *, it
follows that:
F=Y0’~(©6°-0")+Z6°" (6°-0"
*F=70°70°-0") - YB3~ (6°-0Y.

Upon introducing the linear forvhthat is defined by,:

A=1,07=0°-0"
one obtains:
_ 2 3
(7-3) F=(Y&*+Z6% 0A
*F =(Z26%-Y6°) 0.

In particular, one may choose, parallel to the electric field an@, parallel to the

magnetic field in thg€,, €, R-plane; one will then havé= 0.

It is clear that in order for a form to annihildbeth F and * it is necessary and
sufficient that they be proportional #o The existence of such forms that simultaneously
annihilateF and * characterizes the singular cas@&lote that1 * (*F) = 0 is equivalent
to|“Fgs=0. Therefore:
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(7-4) 1“Fa=0 19(*F)gs=0.

c) LetVm:1 be ant1)-dimensional manifold endowed with a Riemannian mefric o
hyperbolic normal type. IF # 0 is a 2-form on this manifold we say tikais a singular

2-form if there exists a vectdr such that

(7-5) loaFp, +15F e+ 1,Fap=0 @ pBy=0,1,...m
and
(7-6) 1“Fgaz=0.

The vectorl which is defined up to a scalar factor, will be called fimedamental
vector of F. In the case of general relativityn(= 3), (7-5) and (7-6) completely
characterize the 2-forms that correspond to the singake since these relations express
that there exists a linear form that simultaneouslyhalatesF and * (which is a 2-form
here).

In the general caséhe vector| is necessarily isotropic.Indeed, if this is not true
then one may choose an orthonormal fra@g such that one of the vectors, namély
is collinear tol . Let us temporarily designate the indices thaé téle values 1, ..m by
u, v. Ifweseta=0,8=u, y=vin (7-5) then we gef,, = 0. On the other hand, from

(7-6),Fo3=0. Therefore il is not isotropic then we necessarily h&ve 0.
It is easy to deduce expressionsFdrom (7-5) and (7-6) that will be useful in what
follows.

At the pointx of Vi1, we denote an isotropic direction defined by ataet, and
denote a system ofmt-1) orthogonal normal vectors that are tangent edlementary
cone along the generatrix defined byby (i”)(I = 1, ...,m = 1). There is a time-
oriented 2-plane that contaitisand is orthogonal to thent1)-plane determined by the

i, We choose an arbitrary unitary vec&r(€& =1) in this 2-plane and leg  be the
normal vector orthogonal td, so that we may takes, +& =I. Consider the

orthonormal frame(g,) defined bye,,& =i, & ; if F is a singular 2-form with the
fundamental isotropic vectdrthen (7-5) translates into:

(7-7) Fi=0 Foi + Fmi =0,
and (7-6) into:
(7'7) F()a + Fmﬁ = 0,

and the fornf is determined by the knowledge ai{1) numbersy = Fo; .
Introduce therf-1) singular 2-forme" that are defined by:

O =] n® =1 0
Pop =105 =150,
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The squares and scalar products of these forms are olyvioukl In the frame in
question(€, ),we have:

) = _n0) = 5i
¢j0 =-n}’ = Jj.
It results from this that i is a singular 2-form with fundamental vectothen:

(7-9) Fop = 2800 = 28,0y ~1,n).

If Fandi are given, then tha may depend only on the systemfdf. This system

may be subjected to the transformatiofl — A" +k®T or to a rotation in thenf-1)-
plane that it determines. In the first case, oy heave the€,, €, fixed and theFo
determine a vector in the plane envisioned;gh@re thus the components of a vector in
the (n-1)-planeii® .

If one setsh, 22 an’ one sees that there exists a vetiporthogonal td,, such
that:
(7-10) Fop=labs—Isba,

Such a vector is defined up to the transformabgn- b, + kl,. One notes that the
positive scalar:

|b? |=-b"h, = > ()
depends only on the forf and on the choice of vectbr

d) Finally, we establish the following lemma for anitrary 2-formF onVa:

LEMMA. — In order for a proper vectod of the form F# O to also be a proper
vector of the formiF, it is necessary and sufficient that it be isotropic

Indeed, ifl is the common proper vectorbfand ¥ then:

1 Faﬁ:aLg |°‘(*|:)aﬁ:b |ﬁ.
From this, one deduces:
algl’=0  blg#=0.

If I is not isotropic one will hava = b = 0, and if relations (7-5) and (7-6) are
satisfied then one can deduce that 0. Conversely, if” is an isotropic proper vector of
F then it is an isotropic proper vector nfz — hence of (F) — whetherF is regular or
singular.
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8. Discontinuities of the derivatives of the electromagneticéid.

a) We consider an electromagnetic field in the absehemyinduction phenomena
that satisfies MAXWELL'’S equationgith a continuous electric current vector the
domain in question. Since the fiefid if of class C°, piecewiseC?) by hypothesis we
are led to study the crossing of hypersurfeé§eshere the first derivatives of that field
present discontinuities, as well as the structurbadd discontinuities themselves.

We designate the local equation of a hypersurfadkat produces discontinuities
when traversed bf(x”) = 0. Since the metric tensor if a clag®,(piecewiseC?) the
associated riemannian connection is continuous and, ifotsenthe discontinuity of a
guantity as its traversé&sby the sign, [], then one has:

[O,F,z]1=[0,F;] (0, is the Pfaffian derivative).

One immediately deduces from the HADAMARD conditiomswave propagation that
there exists an anti-symmetric tengog on the points o6 such that:

(8-1) [OyFad = @aply,

wherel, =0, f. We letg denote the 2-form defined on the pointsSaby the tensor
@qp. Upon symmetrizing (8-1), it results frowtH] = O that:

(8-2) la @py+ 1P+ 1, @ap= 0.
Upon contracting (8-1), it results frordH] = O that:
(8-3) 1Y @ap= 0.

Thereforethe form ¢ is singular at any point of S is necessarily isotropidhe
hypersurfacé satisfies the first order partial differential equatio

(8-4) A f=9%0,0,=0.
The electromagnetic wave front®r characteristic hypersurfacess of the Maxwell

equations, are the hypersurfaces that are tangent abktmhr points to the elementary
cone at that point. On the other hand, sihce 0, f is a gradient:

As a result:
1#(ply— 04l =0,
and, sincd is of null length, one has:

(8-5) 1# Opla= 0,
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which expresses that the trajectories of the vectd fi on S are geodesics of null
length. Therefore thelectromagnetic rayyr bicharacteristics, which are characteristics
of (8-4), arenull-length geodesicsf the metric.

b) Let (€,) be a frame at [J Sthat is adapted to the forgn If:
A=0°-@',

then there exists a scakaisuch thadf =aA . From (7-3), one may find two numbéfs
andZ such thatp is expressed by:

-Lver+z6%y 0
a

From (8-1), it results that the only non-null compdsenf the tensorl],F,4 relative to
the frame in question, are given by:

(8-6) HoF20] = - [UoFa1] = = [O1F2o] = [O1F21] =Y,
and
(8'7) [DO F30] = - [D0F31] == [D1F3o] = [D1F31] =27

One may then choose the frart@&) in such a fashion that = 0, so that the only non-

null discontinuities are then given by (8-6). We thusealown to a canonical form for
the components of the tensar,Fq4.

¢) One may observe that it is possible to choosestesyof local coordinates in a
neighborhood of a poing of S, with respect to which$ admits a simple equation, and
which has the property that its natural framegatoincides with a given adapted frame

(€,). Indeed, letdS be the linear forms ag that have the property:
Hg (éﬂ) = Jal

and letu be a variable such that the local equatio @fu = 0; from the previous study,
it results that there exists a numbesuch that:

(du)o = a(6° —8%),.

Upon modifyinga by a constant factor, one may make 1. This said, if we are
given a linear fornx, there always exists a local function of clag$ piecewiseC?) in a
neighborhood o%, such that its differential coincides with the lindamm atx,. We may
thus find functions, X%, X® such that ako:

(@v)o = 8° + 6" (dx?), = &7 (dx®), =62.
If we set:
2° =v+u xt=v-u
then we see that:
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(8-8) (dx"), =6 .

From the independence of the for@s, the 4 functionx? have a non-null Jacobianat

. We have thus defined local coordinate§ éuch thalS admits the equatioxy —x; = 0,
and for which the natural framextis the given adapted frame. With these coordinates:

[DoFed = = [02Fad = @op  [H2Fad = [0sF44 = 0.

9. Differential relation obeyed by [[yFpJ). Suppose that when we croSghe
curvature tensorof V4 remains continuous. The tensor [J,F,4 then satisfies a
remarkable differential relation @that we shall deriven the assumption thaf & null.

Let f(x?) = 0 be the local equation & wheref is supposed to be of clags; the
vector |, =d,f is, as a result, of clags', and gl is continuous when we croSs

Moreover, sincé, is a gradient:

a) We adopt local coordinates on a neighborhdaslich thatS admits the equation
x® = 0. One then hag® = 0 and the vectdr,, which is the gradient of, admits the
covariant components:

lb=1 l,=0 t=1,2 93).

Sincel, has null length:

lo 017 = 1o Opl° +1,041" = 0p1° = 0.
In particular:
(9-2) Ool°=0.

OnS§ the tensor(ll,F,4 satisfies the relations:

(9-3) lo[OoFag + 15[06F 0] + 1, [OoFasd =0
and
(9-4) I, [0,F;1=0.

In the adopted local coordinates, (9-3) may be written

(9-5) [, Fu] =0,
and

(9-6) [O,F;1=0.
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Finally, we note thatl,[] = [0,], and that ifF and the curvature tensor are continuous
when we crosSthen it results from the RICCI identity that:

(9-7) DloFs) = [OddpFpl-

b) Since the relation (9-3) is satisfied & one may differentiate it on that
hypersurface and we obtain:

0, ([0, Fg D) + 0, (,00,F ] +0,0,[0,F;1) =0,

namely, upon giving the valueto a and summing:

I Ou0oFad + (Bul)[HoFpl + Qo =0,

where one has set:
Qa,ﬂy = Dulﬂ[DUFyu] + Duly[DUF[L;] +Iﬂ[|:|u|:|UFyu] +Iy[|:|u|:|UF[;J]'
Upon taking (9-2) and (9-6) into account, one has:

(9-8) PO040sFg) + (0p1)[06Fg) + Qo= 0,
with
Qgﬁy I[Dﬂ|pDUFyy] + Dy|ngF;] +|ﬂ[DUDquu] +|y[DUDuF;].

From the vanishing of the current vector, it results that:

Q, 5 =[0,,0,F/1+0,1,0,F7] —Iﬂ[DUDOFVO] —Iy[DUDOF[?].

p—o'y
Now:

o) 0F/+0)0 0 F,=0,0,0F"+0,( 0F)-1 (0,0 Ff+0,0F7f),
B B\ p—a'y y\ip—o' B p\—p—0c vy y—o' B

Bp—oay yip—o

where the discontinuity in the last term may be @atdd upon taking into account that
dF = 0. One therefore has:

Q, 5 =170,[0,F,1+[0,(,0,FF)+ Dy(IpDUF;)—Iﬂ[DODUFVO] —Iy[DODUF[?].
Now, for S=u:
[O,0,0°F1=0,0,[0,F1) =0.

From this, it results that:
(9-10) Q,u =1 ”Dp[Dng”]) =0.

On the other hand, fgf= 0, y=u:
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[DO(IpDUFup)] = [DOI pDaFup +Ip|:|0|:|UFup = [DODUFUO]7
sincellpl° = 0. One therefore has:

Qa,Ou = I pr[DUFOU]'
Namely, from (9-10)
Q.5 =170,[0,F].

Substituting this into (9-8), one sees that on S theotdhsF,4 satisfies the differential
relation:

2°0p[0,Fad + (0°1,) [0,Fad =0,

which clearly show the propagation of discontinuitiestipf .z along the null length
geodesics o&. In particular, if [1,F,5 = 0 at a poin of S it is the same all along the
null-length geodesic that issues frarand is situated o8

Upon setting [I,F44 = @asl, in (9-11), and taking into account thH&t1,l, = 0, it
results that:

2°[0p@ad + (0°1,) $ap= 0.

Let = be aspace-orientedhypersurface and c& (X° = 0) along a 2-surface. We
associate the points of with a 2-form Egps whose first derivatives present
discontinuities [0,F,;], =(#,5), upon crossingS where @ggu is a 2-form that is
defined on the points df, and is singular with an arbitrarily give fundamentattoe
(Iz)u. By means of the CAUCHY dat& {gs on Z, the vacuum MAXWELL equations
determine an electromagnetic field outside&ofhose first derivatives are discontinuous
upon crossing. The corresponding discontinuity tengiys is necessarily the obviously
singular solution of (9-12) that corresponds to the initsda, (¢,z)u onU.

10. A conservation identity. Sincegzis a singular 2-form with fundamental vector
|, there exists a vectdy, that is orthogonal t,, and is such that:

¢aﬁ: Iabﬂ_ Iﬁbq .
Upon substituting this expression f@gz into (9-12), it becomes, on account of the fact
thatl’O,l, = 0,
142170, + (O,1°) bgt — 14217 O,bs + (0,1°) bay = 0,
namely:
wherek is a scalar. Upon multiplying both sides of this relatbyb“, one obtains:
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namely,
0, b*| + @191 b°| = 0.

From this, one deduces the identity:
(10-1) O,( %19 = 0.

If F is giventhen the vectol, is defined up to a constant factbalong the isotropic
geodesic trajectories &f. If 1 - A°, @¢,5 — A '@ap, and, as a resub, -~ A2 b, .
Therefore, p?| - A b?. The tensor:

(10-2) Tapys = |b2 [alplyls= _[Dapr][DﬂdeL
depends only oR 4 and, from (10-1), is conservative:

(10-3) Ug Taﬁyaz 0.

11. Pure electromagnetic radiation.

a) The study made in sec. 8 showed us that the presertiscohtinuities in the
derivatives of the electromagnetic field as you cr$g/persurfac& defines a singular
2-form on the points 0. We are thus led to represent a pure electromagmaeli|tion
field in vacuo by a field=, which is defined by aingular form. From (7-2), for such a
field there exists an isotropic vector fiefd, such that the MAXWELL tensor may be
written:

(11-1) Top = Mg Mg.

We express the conservation conditions:

(11-2) Oa7%=0
by means of (11-1). They become:

(O,m%) mf +m?0,m’ =0,
namely:

(11-2) m?0,m? = ~(0,m?) nf.

Equation (11-3) expresses that the absolute diffel of the vectom in its proper
direction is collinear tan. From this, it results that the trajectories @ tkector fieldm
are auto-parallel, i.e., araill-length geodesics of the metric.

The study of the geodesics of a linear connectlmows that there exists an “affine
parameter’c along each geodesic, which is defined up to stoamationo - ao + b,

such that for the corresponding velocity vedtardx/ do one has:

(11-4) 19041 =0.
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The vectordx/ dsis therefore defined up to a scalar factor, which istemhslong each
geodesic.

We are thus led to substitute fat, a vectorl that is collinear tom and satisfies
(11-4). Set
my = 77l 4,
whererris a scalar. We then have:
(11-5) Tap = 772|a|/3,

and the conservation conditions may be written:
Oa(710) |5+ 7819041 5= 0.

From this, by the introduction of the vector fidlfi in question, it results that the
conservation conditions for the MAXWELL tensor ts&ate into (11-4) and the relation:

(11-6) Oa(7714) =0.

Therefore, a singular electromagnetic field iseddfivhose MAXWELL tensor may be
put into the form (11-5), wherel is an isotropic vector field such that
i(NCF =i()(*F) =0, (wherei(l) is the operator defined by the “interior produsith

'), and which may be constrained to satisfy (11-4his Tield may be associated with a

photon fluid whose “current lines” — i.e., trajectories bf- are null-length geodesic
electromagnetic rays that admit an equation ofinaity (11-6). Such a field translates
into electromagnetic radiation whose propagatiagoierned by the elementary cone.

b) If I defines an isotropic vector field such that (1liSkatisfied then the LIE
derivative L(I')F of F with respect to the field is given by:

L()F =di()F +i()dF.

Sincei(I')F =0, dF = 0, we have:
(11-7) L(NF =0.

ThereforeF is invariant with respect td. If F is null at a poink of V4 then it is null all
along the isotropic geodesic trajectoryldhat issues from. The explicit form of (11-7)
is:

(11-8) 1?0 ,F,; -0, ,Ff —04 ,F7 =0.

Bpa

One may combine this relation with a slightly diéfat one that we proceed to derive. By
hypothesis:

1°Fz +1,F7 +1,Ff =0.
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By derivation, and taking MAXWELL'’S vacuum equation int@aent, one deduces:
(11-9) Dp(IpFaﬂ)+DplaF;+DplﬂFap=O.

c) SinceF is singular, one knows that there exists a velgtdhat is orthogonal t,,
such that:
The MAXWELL tensorr,stherefore admits the following expression:

Top =—F/F, ==(,b% =17b,)(1;b, =1 by),
namely:
Tap=— (0°b)) lal g = |b* |14l p.

Therefore, for the same choice of vectothat satisfies (11-4¢ = |b? | and (11-6) may
be written:
(11-11) O,(b% 1) = 0.

d) The identity (11-11) may be established by a direchotethat does not involve
the MAXWELL tensor, and which may be extended to the tgtgnal case. Upon
substituting (11-10) into (11-8), we obtain:

Upon multiplying this byb“ one obtains:
(11-12) 1”b?0,bg + Oal ,b7bP = 0.
Upon proceeding in a similar manner after staring with ), one first obtains:
After multiplying byb,, it becomes:
(11-13) 1”b0,bg + (0,17 bbby = O,lob“b? = 0.
By term-wise addition of (11-12) and (11-13), one obtains:
21°b0ybg + (0,1°) bbby = 0;

i.e., identity (11-11).
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12. Electromagnetic field of integrable type. Suppose we have an arbitrary
electromagnetic field on a neighborhoot) of V4. At a pointx, whereF is regular it
admits two distinct isotropic proper directions, and, abmt where it is singular, only
one. Consider the 3-plam$(x) that is tangent to the elementary c@jeat x along one
such generatrix of the cone. We therefore have twe whassociating: with a field of
3-planesl1(x) that is tangent to the elementary cones. We lsatythie electromagnetic
field is of integrable typé the field I is completely integrable. For this to be the cdse, i
is necessary and sufficient tHatadmit a definition by an equation of the foda = 0,
where o a function, i.e., that one may define the isotropieation field in question by a
gradient.

If 14 is a gradient then one has:

(12-1) Dﬁ|a— Da|ﬁ: 0,
and, as a result:

1#(0pla— Oalp =0,
I.e., sincd, has null length:
(12-2) 1#04l,=0.

Therefore, in order for a field to be of integrable tyfiee trajectories of one of its
isotropic direction fields must also be null-lengtlodesics.

13. Permanence of a singular field of integrable type. Consider an
electromagnetic fieléF of integrable typehat satisfies the vacuum MAXWELL equations,
and suppose that there existspace-orientethypersurfac& on whichF is singular.

We say thaf is of integrable type, i.e., that there exists anrégnt vector field|
that is a gradient, and which satisfies:

(13-1) |, F% =al’.
One then also has:
(13-2) lo(*F)? = bl~.

The formF is singular ork, and, as a result, one necessarilydad = 0 onZ.
Upon deriving (13-1), we obtain:

Op(al®) = 0pl ,F% + 1, 0F%,

From (12-1) and MAXWELL’s equations, it results that thght-hand side is zero.
Therefore:

(13-3) Dﬂ(alﬂ)zlﬂaﬂa+aDﬂlﬂ=O,
and similarly,
(13-4) Dﬂ(blﬂ):lﬂaﬂb+bDﬂlﬂ=O.
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Sincea andb are null onZ, it results from (13-3) and (13-4) that= b = 0 outside ot.
As a result, the electromagnetic field is singular idetefZ. We assert):

THEOREM. —If an electromagnetic field of integrable type is singular on a space-
oriented hypersurfac& and satisfies the vacuum MAXWELL equations then it singular
outside of.

14. Study of the singular field of integrable type.

a) If we are given a completely integrable singulaldfien a neighborhoot) then
there exists a functiooron this neighborhood, which is defined up to a transfoomati
- f(0), wheref is an arbitrary function, such thatis defined by an equatiato = 0. It
results from this that:

(14-1) do"F=0 do”(*F) =0.

One calls the functioorthe phase functiorfor the field in question. The relations (14-1)
characterize the singular fields of integrable type.e Timanifoldso = const. are the
characteristic manifolds of the MAXWELL equations.

b) Suppose we are given a singular field that we refantadapted frame. Af=6°
— 6" then the fieldlm may be defined by the equation= 0. From the method of
FROBENIUS, in order for a field to be completely eigtable it is necessary and
sufficient that:

(14-2) AndA=0.

Condition (14-2) is equivalent to the annihilation of therfforms:

(14-3) P rANdA=0 (=0,1,2,3).

For p= 0 and 1, one obtains the unique condition:
6°70'rda=0.

For p = 2 or 3, one obtains two conditions that found to bisfead identically by virtue
of the MAXWELL equations. By means of (7-3), taken with O, they are:

F=Y&" A *F=-YO 1A
SincedF = d*F = 0, differentiation produces:
d(Y®) *A-Ye*rdA=0 d(Y®®) *A-Ye*~rdA=0.
Upon taking the exterior product with one sees that (14-3) is satisfied for 2 and 3.

Doing this for a pure electromagnetic radiation fieldraégrable type introduces only
one supplementary scalar condition.

3 A slightly more general result has been establishdd MARIOT.
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If F issingular of integrable typehen
From (11-8) and (11-9), by term-wise addition, we obtairdifferential relation:
a relation that is analogous to (9-11) or (9-12).

15. Application. Suppose we are given a non-constant functioon U and an
electromagnetic field that satisfies the vacuum MAKM!. equations. Consider the 2-
form defined by:

(15-1) H=f(o) F,
wheref is an arbitrary non-constant function. One obviously. h

(15-2) H =1(g)(*F).
By exterior differentiation, we obtain:

dH =f'(g)do CF d(*H) = f'(o)do C (*F).
In order forH to satisfy the vacuum MAXWELL equations, it is agsary and sufficient
et do"F=0 do”*F =0,
i.e., thatF define a singular field of integrable type thainitd the phase functioa

THEOREM. —If we are given a non-constant functiorand an electromagnetic field
F that satisfies the vacuum MAXWELL equations themder for the field:

H =1(s)F,
(where f is an arbitrary non-constant function) satisfy the same equations, it is
necessary and sufficient thatldeé a singular field of integrable type that admitas a

phase function.

Note thatH then satisfies the vacuum MAXWELL equations foy &n
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. Gravitational wavefronts in general relativity.

16. Expressions for the curvature tensor and the Ricci ters. In this section, we
propose to study the notion of gravitational wavefrorgeneral relativity. The curvature
tensor of the Riemannian manifold, will play an essential role in the course of this
study, and we must analyze how the second derivativéiseogravitational potentials
with respect to the local coordinates which enter ifi® expression of this tensor.
Consider a riemannian manifoM,.; of arbitrary signature. In a neighborhobdon

which local coordinatesx{) are defined, lef” 5, be the coefficients of the Riemannian

connection o¥m1 relative to the local coordinates. By definitiolme tcurvature tensor of
Vme1 is the tensor with components:

(16-1) RE,, =0, —0, g+ T2 —T2T4.
Upon expressing thE;, with the aid of the CHRISTOFFEL symbols, we obtain:
R34 = 970,184, p1 -0, (1A, P]) + K5 s

where the Kz, depend only on the first derivatives of the potent@gs and the
potentials themselves. From this, one deduces:

R =0,[8u,a]1-0,[8A,a]+ K5,

and, upon developing the CHRISTOFFEL symbols:

Raﬁ = (am gap aApgaﬁ _am 94 _aﬁygm _aApgaﬁ +aapgﬂ/1) + Ka/mp-

One thus obtains:

(16-2) Raﬂ oy = (6 o)) gap aap 9 ~ aﬁp 9 ~ am gﬂ,u) + Ka/mp-

The RICCI tensor oW1 is defined by:
(16'3) R = Rgcm = gpa Rpﬂ,cm'

By contracting the indiceg and A in (16-2) and changing the name of the indices, this
becomes:

1
(16'4) Raﬁ = E 9,00'(6 ﬂagap + aap gﬂﬂ a aﬂﬂ gpﬂ B aﬂ”g”ﬁ) * K”ﬂ
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17. Discontinuities of the second derivatives of the potentialsSSuppose we have a
neighborhood of the “spacetime” manifold with a system of local coordinates”
Since the gravitational tensor is supposed taepiecewiseC®), the second derivatives
of the gravitational potentials,z with respect to the local coordinates may admit oerta
discontinuities upon crossing certain hypersurfégesnd it is those discontinuities that
we proceed to study.

Therefore, leVm:1 be a differentiable manifold of clas§’( piecewiseC’) endowed
with a Riemannian metric of hyperbolic normal type atas< C, piecewiseC?®). If a
neighborhoodJ of Vi1 is referred to a system of local coordinate€ then letf(x?) = 0
be the local equation of a hypersurf&that produces discontinuities when one crosses
it. From the HADAMARD conditions on the propagationvedives, it results that there
exists a system of local quantitiagz at the points of5 such that the discontinuities
[0,,9,5] may be expressed by the formula:

(17-1) [0,,9,:]1=2a,,0,f0,f.
namely, upon designating the gradient by ,:
(17_2) [a/lpgaﬂ] = aaﬂl/ll,u'

We study how the system @af,;z transforms under a change of local coordinates. If
x? =x%(x?) defines this change of coordinates, one has:

a a ox“
Uor = ALA Gy (AU, = j

ox°?

By derivation, this becomes:
av’ga’r’ = AgArﬂAja/i gaﬂ +(av’A‘g’ DA‘rﬂ + ArﬂavArﬂ)gaﬂ
The third derivativesd,,, A’ may be discontinuous upon crossi® while the

discontinuities in the second derivatives of the pieaénof the metric upon crossirsg
are related by the formula:

[av’p’ga’r’] = Ag’Ar[’;Aj’Ag’[a/ipgaﬂ] +[av’p’Ag’]Ar[’; + A‘g[avarﬂ]) gaﬂ'

Conforming to the HADAMARD conditions, if we set:

(17-3) [av,p.AZ] = talv.lp.lg.
and:
(17-4) ts= t”gaﬁ

then we obtain:
(17'5) aa’r’ = AgArﬂ (aaﬂ +tﬂ|a +ta|ﬂ)'
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Therefore, if the coordinate change is of cl@én a neighborhood o8 then thea,s
transform according to the tensor law:

(17-6) a, = ALA a,,.

If the coordinate transformation in question is tangerthé identity transformation
along S and admits discontinuous third derivatives when oneserss then theays are
subject to the transformation:

(17-7) Agp — Agp+talp+ tsla.

Formula (17-5) may be considered as the result of thgpasition of (17-7) and (17-6).
Taking formula (17-2) into account, one obtains, uporistafrom (16-2):

1
(17-8) [Ropiud =5 @l +3slol, =11, =2l

Since theRy3.,, define a tensor, the same is true for Rezf,], and formula (17-8) is
necessarily invariant under the transformation (17-7pnaseasily verifies.
As far as the RICCI tensor is concerned, one has) {16-4):

al glo alp 1l s —agl L)

1,
(17-9) [Raﬁ]:Egﬁ(a 5l +agl,l

18. Characteristic manifolds of the Einstein equations.
a) Suppose that the metric of the manifddg., satisfies generalized “EINSTEIN
equations” of the form:

(18-1) Ses=XTag,

where Ty is a given symmetric tenset which is supposed to be continuous in the
domain in questior y is a constant, and,z denotes the tensor:

o 1
(18-2) Sip = Rus =5 9gsR

From (18-2), one deduces, by contraction:

s=Rp-M*lp-_m-ip
2 2
When m# 1, this implies:
(18-3) Ry =S ———0,,S

m-1
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From the continuity oT 45 one deduces from (18-1) th& = 0, and, as a result, by
virtue of (18-3) and the continuity of the metric:

(18-4) Rod = 0.

b) Choose a system of local coordinates such thathtipersurfaceS that is
responsible for the discontinuities that we are shglfias the local equatiofl = 0; in
this casel, admits the components:

(18-5) lh=1 lu,=0 L, v, etc. ... =1, 2, ...m).

The only second derivatives that may be discontinuous opmssingS are thed,,d,,
and one has:
[aooguv] = a'uv [60090[7] = aOa ’

where thea,, are invariant under the transformation (17-7) and dke transform
according to:

Qg —» A T ta"'tola-

The choice ot, or of t” permits us to annihilate the discontinuitiesafg,, or make
them appear. Moreover, from (17-9), one obtains:

(18-6) R =-20%a, =0
(18-7) Rul= 59, =0
(18-8) [Rel =->9"a,, =0

and the left-hand sides of (18-6), (18-7), and (18-8) do notvewbe[d ,g,, ]. We say
that the derivative® ,9,, aresignificantrelative to the hypersurface, and that time-X)
derivatives d,,9,, are insignificant. It is the case where the significant derivatives
present discontinuities that we now proceed to examine

If all of the discontinuities of the significant deatives are non-null, then there exists
anay, # 0, and from (18-6) it results that
(18-9) g°=o.
The vectoll, then admits the components:
lb=0 lu = b,

and, from (18-7), it satisfies the relations:
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(18-10) awl'=0.
Moreover, from (18-8):
(18-11) a=g%ags= 29" ag, = 2ap,1".

In arbitrary local coordinates, (18-9) may be written:
9%lalp=0,

and the gradient df has null length. Therefor§ is necessarily a solution of the first
order partial differential equation:

A f=9g%9,f0,=0

i.e., the general relativistic analog of (9-4).

Therefore, in this casem(= 3), thegravitational wavefronts— or characteristic
manifolds— of the EINSTEIN equations are the hypersurfaces thataagent to the
elementary cone at each of their points. @tevitational rays,which are trajectories of

the vector field defined by on such a hypersurface are always null-length geodesics.
Recall the general case of a manifdigi. Equations (18-10) and (18-11) may be
translated into arbitrary local coordinates by the ratati

a
_Ia

(18-12) al’ = >

In particular, one sees that the null-length vettas a proper vector of the matria).
One immediately verifies that (18-12) is invariant urithertransformation (17-7).
Conversely, it” has null length and satisfies (18-12) then one Rag f 0.

19. Lemma on the manifolds that admit a group of isometries. Fiveimensional
case. It is known that the consideration of a five-dimenal manifold endowed with a
one-parameter group of isometries permits the geometification of the gravitational
field and the electromagnetic field (in the absence of imal)c More generally, we
shall review the formulas that relate to a manifdld; that admits a one-parameter group
of isometries.

a) Consider a manifoldVy: of dimension if+1l) that satisfies the same
differentiability hypotheses as the spacetime manifakel, iC?, piecewiseC. We
suppose that a Riemannian mettif is defined on this manifold, which is of hyperbolic
normal type, with 1 positive square amdnegative ones, and clasd'( piecewiseC?).
Throughout this section, we suppose that Greek indicesthakealues O, 1, ..m and
Latin indices take the values 1, 2, m, In local coordinates, the metric may be written:

(19-1) dd? = yapdx?dy,

and in a neighborhood they may be decomposed into the afgsbna of squares:
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(19-2) dd® = ™2 - (892 —(8")? - ... (™M),

where thed” are linearly independent local PFAFF forms. By dualltg, neighborhood
of Vms1 in question is found to be endowed with an orthonormaidra

We suppose that,.; admits a connected global one-parameter group of is@wetri
with trajectories that are oriented so ttaf < 0, leaving no point 0¥ invariant, and
enjoying the following property: upon passage to the quotient uthgeequivalence
relation defined by the group of isometries, one obtaid#ferentiable manifoldvy, of
class C? piecewiseC*); the pointsz of Vi, may be identified with the different
trajectories of the group My 1.

Let & be the infinitesimal generator of the group of isomsfrsnce no point 01
is invariant,& is non-null. It satisfies the KILLING equations:

(19-3) L()gap=0péa+ Dads=0.

Let (X) be an arbitrary system of local coordinates\an. A pointx of Vi1 may be
represented by its trajectorfx), and, on that trajectory, by a coordingt€  In the
local coordinategx’) the trajectories of the vector fielfl are the linesx' = const., and
one has:

& =0 &% #0.
We perform the change of local coordinates defined by:

x'=x" x® = f(x%,x").

One may chooskin such a manner that the new components are:

of
50:'6\;)1 go'_axo'go _l
It suffices to take:
of 1 '
NG :? (&° 20,

and the functiorf is found to be defined up to an additive functafrthe coordinates
(x"). In the system of coordinates thus defired: (

&=0 &=1,

andx’ is calledadapted to the group of isometrisquestion. In this systend” = geo,
and, as a resultlzé, = [, a]. As a result, the KILLING equations (19-3) tréate
into:

(19-4) 0oV =0.
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Systems of local coordinates adapted to the group of is@wedre defined up to a
change:

(19-5) X' =gt (x)) X7 =x% (X)),

wherey is an arbitrary function of thé .

To each poinx of a neighborhood/..1, there is an associated orthonormal frame
whose first vector is tangent &atto the trajectory passing through this point. Such a
frame is calledadapted to the group of isometrieRRelative to the adapted frame, we
have:

(19-6) dd® = - (8%% + (0™)? - (8Y)? — ... (0™ H)?,

and the®' are annihilated along the trajectories. ) (is an adapted system of local
coordinates, then thg are PFAFF forms with respect to tthé and (19-6) is none other
than the decomposition into squaresdaf, with the variabledX’ playing the role of
directrix variable. From this, one deduces:

(19-7) dd? = - (8%? + d<,
with
1 _
(19'8) eo :—(yoodx0 Yo dX')
VI Vool

and

— my 2 142 m-1y2 _ inij i j
(19-9) ds = (@™ -(@H>----- (6™ —(yij ——jdxdx’.

From (19-9), it results thats® is independent of the chosen system of adapted local
coordinates, and, in this system, it is independent’of The quadratic fornds’
determined a Riemannian metric of hyperbolic type/anwhich is called theuotient
metric, with coefficients:

ViV

Yoo

(19-10) g =,

b) The square of the vectdr is strictly negative, and we designate it by?- In

adapted coordinatggy = — & and & defines ascalarfield onVi,.
Now consider the vectas, of V.1 that is collinear taf,, and is defined by:

$a

-<

(19-11) Be, =

wheref designates a suitable constant. In adapted cades:
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(19-12) pg, = Lo Bho=1.

00

Considelf 45 which is the rotation of,. From (19-12):
Foa :ao¢a _aa¢0 =0.

On the other hand, if one performs the change of adaptadl doordinates defined by
X' =x, x¥ =x"+yg(x'):
10y

(19-13) ¢ =@+ ﬁ&

and, as a resulf;, =F... Therefore thé;; definean anti-symmetric tensor on,V

T .

It is easy to see the geometric significance efwanishing of; . If it is possible to
find adapted local coordinates for a neighborhdbof V., such that the trajectories
corresponding tdJ areorthogonal trajectorie®f the hypersurface$ = const. then one
hasé = yi = 0, ¢ = 0 in this system, and, as a redtit= 0. Conversely, iF; = 0 then
the tensoifF,, of V.1 is null, and o = 1, B¢ locally defines a gradient field. There
thus exists a functiog( &) in a neighborhootl of Vi, such that:

B, =0,[x° +y(X)].

Therefore,F; = O expresses the idea that there exist adaptad doordinates such
that the corresponding trajectories of the groupsometries on a neighborhodd are
orthogonal trajectories of the hypersurfate const.

c) We have thus defined a metric (19-10)\6xn a scalaré, and an anti-symmetric
tensorfF;, after starting with the metric o1 and the group of isometries.

ReferVm1 to an adapted orthonormal frame. From (19-9) ntheifold Vy,, which is
considered to be a Riemannian manifold for the ignbimetric, is therefore found to be
referred to the orthonormal frame. One may exptésscomponent®ysz,s of the
curvature tensor of.1 as a function of the components of the curvatemnsdr forVy, of
& and of the components of the anti-symmetric tefsor

Indeed, one proves the following formuldk (

* 2¢2 1g2
(19-14) R = RiLk#%(Fik Fi —F ij)+—'3§ F; Fy

(19-15) R =L (€00F +20,8F, -0, +0,F)

* See LICHNEROWICZThéories relativistes de la gravitation et de I'electromagmedi,pp. 119; the
formulas have been transformed according to the signafutbe metric and the orientation of the
trajectories.



32 A. LICHNEROWICZ: Electromagnetic waves and radiation, etc.

1 BE L
(19'16) RiO,kO —5Dk(0if)+ 4 Fir Fk’

where the elements that relate to the metichave been given a *.

d) We place ourselves in the five-dimensionalecéas = 4). For the theories of
JORDAN-THIRY and KALUZA-KLEIN, the preceding hypotkes are satisfied, and the
anti-symmetric tensor,;Fmay be interpreted as the electromagnetic field.

From the preceding formulas, it results that upoossing a hypersurfac® the
discontinuities of the components of the curvatarsor ofVs may be written:

(19-17) [R o] =[Rix]
(19-18) [Rikel = gﬂﬂk Fyl
(19-19) [Roso] =§[ék(6if)].

(19-18) show that the study of the discontinuitséghe first derivativedx F;] of the

electromagnetic field are equivalent to those @ tliscontinuities of the components
Ri ko of the curvature tensor .

If we wish to analyze the structure of gravitasbmvaves in spacetime, we are
therefore led to study the discontinuities in tbenponents of the curvature tensor of the
metric of general relativity.

20. Formulas that relate to the discontinuities of the curvatve tensor for V1.
Let us return to the case of a Riemannian maniféld; that is endowed with a
Riemannian metric of hyperbolic normal type witheopositive square am negative
squares.

a) From formula (17-8), it is possible to deduceiteresting relation betwedp
=0, f and the tensoys,,] that expresses the discontinuity in the curvatensor upon

crossing the hypersurfa&that has the local equatif(x”) = 0. One has:
(20-1) ly[Rapad =5 (@aulply=aglla) 1a + 5 (@aul gly = agulpl)) 1y
By cyclic permutation of the indices S, yone obtains:

(20-2) la[Rayadd =35 @aul e = aplalg 1h + 5 (@ulalg=amlyla) 14

and:
(20-3) |,3[Rya/,1/1] :%(aw|a|'g— aa,,lﬁly) )+ %(aa,]|'g|y— amlalﬁ) |/1.
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By adding (20-1), (20-2), and (20-3), we obtain the relations:

(20-4) la[Rayau + 1p[Rard + 1y[Ragr] =0

b) Suppose, moreover, that the metric \9n; satisfies the generalized “Einstein
equations” with a continuous right-hand side.
Upon crossing the hypersurface:

(20-5) Rad =0

and from the analysis that was done in sec. 18, ttt@ng satisfies relation (18-12).
From (17-18), one deduces:

1“[Ragad =3 (@au 1511 —aar 1“6l )+ 5 (@mlu — amla) 14l

and sincd” has null length, the second term of the right-hade & zero. Moreover,
from (18-12):
a
aa,,l"u - aml"l,, :E(I/‘Iﬂ_lllh) =0
Thus, (20-5) entails that:
(20-6) la[Rapid =0

c) One may also establish relations (20-4) and (20-6) drrectlthe following
manner: since the coefficienftsof the Riemannian connection in local coordinates are
continuous upon crossirty it results from the HADAMARD conditions that theegists

a system of quantitiesy, such that:

[0,F %] =ugl, (Ix=09,f).
From (16-1), it results that:
(20-7) R ﬂ/‘/l] Uﬁﬂ UZA |#.

By multiplying with |, and cyclically permuting, 4, v it follows that:

(20-8) LA[Rg] + 1u[R%ud + 1V [R5 = O

which is equivalent to (20-4).
If the relation (20-7) is satisfied then one deduces {{20r7) that:

— P
uﬂﬂlp uﬁplﬂ =0.

After multiplying (20-7) byl,, it thus follows that:

a —) P -
la[R%4d = UL L1~ U2 11 =0,



34 A. LICHNEROWICZ: Electromagnetic waves and radiation, etc.

i.e., (20-6). Introduce the curvature forms:

Q3

A
%R"We 0.
We associate 2-forms that are defined on S to the dinodres of the curvature tensor:

[QF]=4R7,, 16" 06".
Relations (20-6) and (20-8) express thibf the local forms are singulg®}] since the

— necessarily isotropic — vectayis a common proper isotropic vector.

21. General case of a tensor that admits the symmetry type of eurvature
tensor. Consider a tensdflza, (2 0) at a poinx of a Riemannian manifoltf,.; that
admits a metric of hyperbolic normal type, and which enjolye same symmetry
properties as the curvature tensor:

(21-1) Hapay == Hpaiu =—Hagm Hogiu =Hayap.

Suppose that there exists a vedtothat satisfies the relations:

(21-2) laHgyau+ 15Hyaan + 1y Hapau = 0
and:

(21-3) |aHaﬂAy: 0.

If we set:

(21-4) My =4 Hepiu 697 6F

then relations (21-2) and (21-3) express that the féhmsare all singular and admit the
vector |, which, from sec. 7, is necessarily isotropic, asomrmon isotropic proper
vector.

Thereforethe vector } that we envision is necessarily isotropic.

We propose to study the structure of the contractedrtenso

(21'5) Haﬁ: gpaHap/ﬁg'

Upon contracting the indiceg and A in (21-2), and on account of the symmetry
properties, it follows that:

(21-6) 1“Happy+ 1 Hpu = 14, = 0,

which is just a consequence of (21-2).
Upon accounting for (21-3) in (21-6), it follows that:
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If V¥ is an arbitrary vector at
|yHﬁqu— |5HWVU =0.
It then results that:
Hﬁqu = /](V) |ﬁ,
in which A(v) is a linear form irv. There thus exists a scalasuch that:

b) Conversely, suppose that the tensigg,, admits the properties (21-1), and the
vectorl, satisfies the relations (21-2) and (21-8). We have $eer{21-2) entails (21-6).
Taking (21-8) into account, one thus obtains:

IaHalu”By: 0,
i.e., (21-3), and” is necessarily isotropic. We state:

THEOREM. —If one is given a tensdfiy, g, at a point x of a Riemannian manifold
Vme1 that admits a hyperbolic normal metric, and this tensor enjoys the syynme
properties(21-1),as well as a vectorlfor which these elements are coupled by relations
(21-2), (21-3)and (21-8)then it is necessary and sufficient that either the relat{@ts
2) and(21-3)are satisfied or the relation21-2)and (21-8);l is then isotropic.

c) If the indicesA and i are fixed then the 2-fori,, at x is singular, with a

fundamental isotropic vectdr If we introduce the basig® of singular 2-forms with
fundamental vectdrthat was defined in sec. 7 then it follows that:

Haupy =D 8ounbey (=1 ..., -1)).

For a fixedi theay,, also define a singular 2-form with fundamental vettmd:

aiy =Y a8y .
j
From this, it results that:
H :z __¢(i)¢(i)
apAu au aB¥Au
i

and from the symmetry propettlsi, = Hayop it follows thata; = &;. Therefore:

(21-9) Hagau =28 (lLng =,ng)(Lng = 1,n}”) .
1]

By contraction, one obtains:
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(21-10) Haﬂ:_Z(aﬂ)lalﬂ-

WhenH ., andl” are given they; may not depend on the”. The formsg®, and
consequently they;, are invariants of the transformatiof? T n’ + k?I: the a; are the
components of a symmetric tensor under a rotatfothe system oh® in the (n-1)-
plane that they determine. In particular, wheis given it is possible to choos® to be
a system of proper vectors of the matay) (with respect to the unit matrix, and to thus
annulg; fori #J.

If we introduce the symmetric quantities:

(21-11) bo =24, n® )
then, according to (21-9) it follows that:
(21-12) Hagau =Daalply + bgulals = boulgls — bailal,

and one obviously has:
(21-13) baa ! = 0.

Therefore, there exist quantitieg; that satisfy (21-13) and are such that the teHsgj,
admits the expression (21-12). We look for the sbtransformation up to which these
quantities are defined: To that effect, we multift-12) byv”, in whichv* denotes an
arbitrary vector. If the tensat is null then it follows that:
{(V*19) boy =VPbg 1} 1= {(V*1) bay = VPbg, 131, = 0.
From this, it results that there exist quantitigsuch that:
(Vlp) bay = VP 1o = tal s (VA1 ).
Therefore, thd,, necessarily have the form:
bao =ty +thla =t + 01, + (Ll,] —t,]) I

From the symmetry of thég, uy — t) is collinear tol, and may annulled by
modifying thet,. When we take (21-13) into account one seesthed,, that satisfy
(21-12), (21-13) are defined up to a transformatibthe form:
One will note that by virtue of (21-14) the scalar:

e = by b?
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depends only on the tenddrand the choice of vectbr Moreover, if theb,, are defined
by starting with (21-11), one has:

(21-15) e=> ()"

Thereforeg s strictly positive and is annulled onlyHif= 0.

d) We place ourselves in the casegeheral relativity,for whichm = 3. Letey be a
normal vector that is oriented so thif > 0, e;, a normal vector that is orthogonaleg
and such that one may take:

| =gy + €.

By starting withey, €1, we construct an orthonormal frane)(at the pointx of Va.
Here, we shall denote indices that take the valuy&s 3 by, v, ..., and indices that take
the values 2, 3 bg, B, ... For this frame, relations (21-3) translat®int

(21-16) Hogu + Higau = 0.
We seta =A, =B, y=01in (21-12). It follows that:
(21-17) Hag iy = 0.
If one setsr = 1, 5=B, y= 0 in the same formula then one has:
(21-18) Hog iy + Hig 4y = 0

and the set of relations (21-17), (21-18) is edemato (21-2). As a result, H,3,, and
|, are isotropic and related by relations (21-3) &18) then the relations (21-2) only
amount to (21-17), namely:

H23,/1,u =0.

We propose to establish that for= 3, (21-2) is a consequence of (21-3) and (21r8),
which |, is assumed to be isotropic. From (21-});10 = 0. Moreover, from the same
relation:

Hao,80 = — Haog1 = Hap1 -

In order to bring (21-8) into the picture, we rekntrat in an orthonormal frame, because
of its signature, one has:

Haﬁ = Hao”a) - Hau”aj.

From (21-8), one thus deduces:
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HAB = HAD,BO_ H ALBL H AC,BC— 0,
(21'19) HlB = _HlA,BA =0,
HOB = _HOA,BA =0.

If we giveA, B, C the values 2, 3, in (21-19) then one has:

H2323=0 H2s31 = H2312, H2320 = H2330 = O;
i.e., (21-17); (21-2) is thus established. We tttase:

THEOREM. —Suppose we are given a tensoghj, at a point x of a Riemannian
manifold \4 that admits a metric of hyperbolic normal type, a tensor that enjoys the
symmetry propertie€21-1),and an isotropic vector’l If these elements satisf¥1-3)
and(21-8)then they also satisf21-2).

€) The tensoHgz., may be identified with a symmetric tensor thatagmstructed
over the space of bivectors :at This space admits the metric that is definedthsy
tensor:

(21-20) Vap i = 9ar 9pu — Yar Opu -

In the case of the manifold,, of general relativity the space of bivectors uestion is
six-dimensional. &, is an orthonormal frame &tin V4, then we agree to set:

e,le=r1, elg=1,
(21-21) e, Ug =1, e, g =r1,
g le =1, e, g =7,
Thern; (I, J=1, ..., 6) define a basis for the space envisipaddch is orthonormal for

the metric determined by (21-20). In this badig, metric tensor (21-20) admits for its
only non-null components:

J/ilzlézzlés:l 1/414:%5:}66:_1-

This gives us the signature of that metric. Weppse to study theatrix representative
of the tensoH .1, in the basis thus introduced. It is a symmetratrir 6x6, which we
denote byld,;).

Fore; =n™®, e3 =n® the two formsp®” have the components:

(l) =0 ¢(1) - (2) =0 ¢(2) -

— — 2 — 2) —
3(,11) 0 ¢(1) ( ) -1 ¢( )
1) — 1) — 2 — 2) _
l(2) 1 ¢() ( ) =0 ¢( ) )
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From (21-9), the matrix{,;) has the resulting form:

0 0 0 O 0 0
0 &, ~a, 0 - Q, ~ay
0 —a, Ay, 0 Ay, a,

21-22 =

( ) Hw) 0 0 0 0 0 0
0 —a, Ay, 0 Ay, a,
0 —a, a, 0 a, ay,

H,p satisfies (21-8) with:

(21-23) T =—(a11 + ax).

22. —Matrix of the curvature discontinuity tensor in general relativity.

a) We now study the matrix®[;]) (I, J =1, ..., 6) that represents the tend®¥s).]
at a pointx of a hypersurfac& at which the curvature tens&;s,, of the spacetime
manifold V4 is discontinuous, relative to an orthonormal frame $uck, + e;.

From the results of the preceding paragraph, it iy ¢éasdeduce its form since
[Rasy) satisfies the relations (21-2) and (21-3). The contdat#asor R,4 is assumed
to be null here; it then results from (21-23) that:

app +ap=0.
Set:
A =—"ax=0 ap =P

One thus obtains the following forr) for the matrix (Ry]):

0O O 0O 0 0
O g -p 0 -p o
O -p o 0 o p
22-1 = :
(22-1) (RJ]) O 0 00 0 o0
O -p o 0 o p
O o p 0 p -0

When one is given the tensd®,p,,] one may naturally make = O by a choice of
convenient choice of vectoes ande;. According to (21-9), (22-1) may be translated
into:

(22'2) RJ] = U(¢|(l) J(l) - ¢I(1)¢J(2)) + p(¢|(l)¢;|(l) + ¢J(l)¢ |(2)) :

® This form was obtained by PIRANI [2] by using the locabrdinates that were introduced in sec. 8.
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b) We have seen (cf. (17-8)) that:
(22-3) Rosid =% (@aulgls + agulgls — @il gl — agulaly)

in which thea,, are restricted only by condition (18-12), namely:
(22-4) an !’ :%u,,

and are defined up to the transformation:

a transforms according to:
a-a+ 2,
and it is possible to choos$gin such a fashion as to anraul Suppose that this is the
case; for these specil, the transformation (22-5) is restricted by the conditid? = O;
if we then set:

boy =—% am

then (22-3) take the form (21-12), and, from (22-4),bhesatisfy (21-13) precisely. It
then results, in particular, thany tensorat the pointx of V, satisfies the symmetry
properties (21-1) and the relations (21-2), and (21-3) mighiideiscontinuity tensor at
x for the curvature tensor upon crossing the 3-plane shiiahgent to the elementary cone
atx alongl.

One immediately verifies that the scar (

ag) aCM _% a2

is invariant under the general transformation (22-5). Assalt, one has for the tensor
[Rapadl:
e:%(a\[M a” -4 a2)= barb™ > 0.

23. — Differential relations for the discontinuities of the cuvature tensor. We
return to a manifol®&.1 that is endowed a metric of hyperbolic normal type shdisfies
the Einstein equations wittull right-hand side.If the curvature oY1 is discontinuous
upon crossing a hypersurfaSghen the tensoiR,z.,,] satisfies an interesting differential
relation onSthat is analogous to (9-11).

® The introduction of this quantity is due to STELLMACHER.
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Let f(x*) = O be the local equation f& wheref is assumed to be of cla€8. Forl,
=0, f , one has:

a) For a neighborhood, we adopt local coordinates and notations that areiodé¢n
to the ones in sec. 9. In particular, we haig® = 0 in these coordinates. The tensor
[Ras ] satisfies the relations:

(23-2) lp[Ragad + 1a[Ragud + 1u[Ragm] = 0
and:
(23-3) lo[Rag”] = 0

onS Inthese local coordinates, (23-2) and (23-3) canriieew.

(23'4) Raﬂ/uv] = O
(23-5) Raﬁ,o,u] = Oa
respectively.

b) Since the relation (23-2) is satisfied 8rby differentiating on this hypersurface, it
follows that:

Ou(1p[Ragad) + Ou (i [Ragif1) + Ou (14 [Rap’a]) = 0.

If we setp equal tou and sum then one obtains a relation that, sifid® = 0, may be
written:

(23-6) 1”0p[Ragad + (Cpl))[Rapad + Qapay = 0,
in which we have set:
(23-7) Qupau = 0ola[Rag ) + 0ol u[Rap”a] + 11 [OuRaga] + 1, [OuRag"Al-

SinceRyz = 0, one knows that:

As a resultQqz., may be put into the form:

N Qapiu = [ |pRa/i/1p + D/I';)Raﬂp/l] =14 [Do Raﬂ/lo] - |/1[DO Raﬂoxl]-
ow:

L |p' Ra/i/fp + D/Ilp ) Ra/ip/l =L ('pRa/i/z p) + D/z( |pRa[ip/1) - |p(D/1 Raﬂ/zp + 0y Raﬂp/l)-
From the BIANCHI identity, one thus deduces that:

Qapu =1 0p[Rapad + [04(1pRas”) + OulpRas”n)] = 14 [Do Raﬂuo] = 1u[Do Raﬂoxl]-

If we setA =u in the second term on the right-hand side then we: have
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[Ou(1pRa")] = Du(Ip[Ragu”) = 0.

As a result:
Qaﬂ,uv = Ipr[Ra,B,uv]-

Similarly, whenA = 0 andu = u:

[DO(IpRaﬂ,up)] = [DolpRaﬂ,up+ Dp|0 Raﬂ,upj = [DORa,B,uO]

sincellpl® = 0. One thus obtains:
Qapau =1°0p[Rapad.

If we substitute this into (23-6) then one sees thattémsor R,z.,] satisfies the
differential relation {):

(23-8) 2°05[Rapad + (1P0)[Ragad = 0

on S which entails consequences that are analogous to (8slIar as Rapa IS
concerned: if the tensoR}z,,] is annulled at a point of Sthen it is annulled all along
the isotropic geodesic that issues freand is situated o8&

Let = be spatially oriented hypersurface that &i{g’ = 0) along a 2-surfadd. We
choose CAUCHY dataggp)s, (9,9,,); On Z such that the second derivatives experience

discontinuities[d,9,,] ,= (aup)4 When crossing, in which the &5y are restricted only
by the condition (18-12):
a
;=0 |I°F =0.
(]

This amounts to being given a tensBg4,,Ju at the points o) that admitsI€)y for a
fundamental vector and whose contracted tensor is néllsolution to the EINSTEIN
equationR,z = 0 corresponds to the CAUCHY data in question suchtkieaturvature
tensor experiences a discontinuiti®,f,] upon crossingS The tensor Rega.] is
necessarily the solution to (23-8) that correspondsetanttial data Ros.1.]u -

c) We have seen that the tendRs4,,] may be written:

[Ragaul = baalgly + bgulals — bgulals = baalal,

in which theb,, satisfy:
baal* = 0.
Set:
Cax = ZprbM + (Dp|p) baj.

" This relation was established independently by A. TRMAN [1].
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If one takes into account th&t 1,1, = 0 then one sees that (23-8) may be written:
(23-9) Cm]'ﬂ'y"'cﬁylal/]_Caylﬂl/l_cﬂ/llal/z: 0.
If one takes the product (23-9) with' then one obtains:

ba/‘ Ca/] = O,
that is:
(23-10) b 0,bas+ (0,17 b%bys = 0.
Therefore, the scalar:

1 1
—hBh . — aBa
e=b" baﬂ_z(a g —2a2j> 0

satisfies the conservation identity:
(23-11) Oy(e P) =0,
a relation that is similar to (10-1). We introdube fourth order tensor:

(23-12) Topru=©€ Ialﬁl/‘lll'

If | is subjected to the transformatibn— Al, thenbs,y — A?bg, ande — A™e. The
tensor 7 thus depends only upon the tensByg),), and, sincel’U,l, = 0, (23-11)
expresses the idea thaits conservative:

(23-13) Ua Talg//]lu: 0.
Furthermore, from expression fd®Jsz ] in terms ofb,, one immediately verifies that:

(23-14) Tapau =2 {[ RO ARz + [R% ARz anl}-

23 bis. —Case in which there exists an electromagnetic fieldin the case where
there exists an electromagnetic field Va that satisfies the vacuum MAXWELL
equations and relates to the gravitational fiefdulgh the EINSTEIN equations:

(23 bis-1) Rag = XTop (7ap = MAXWELL tensor),

suppose that the derived tensors of the electroet&gireld and the curvature tensor are
discontinuous upon crossing the hypersurface

a) With the same hypotheses and notations as in %eformula (9-11) may be
modified: here, the RICCI identity gives:

[0,00Fs - 0s0,Fg) = = [R's0d Fay= [R'y0d Fr.
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From this, it easily results that:
[l;0,0,F,2+1,0,0,F4 = = 1,F*Rusp)
and:
(1o 0p 06 F)P +1,0,06F4 = = 1” 0,[0s Fg) + LF R ).

By the same argument as in sec. 9, one then deduces:

(23 bis-2) ¥ O,[0,Fg) + (1, 0905 Fg) = 2, F¥Rasp).

In (23 bis-2), if we set:

(23 bis-3) HoFgl = dplo= (sby—1ybg lo

and:

(23 bis-4) Roo.8l = Boslaly +boy lplp = bplolp = boplply (b[f: 0)

in (23 bis-2) then it follows that:

(23 bis-5) 2 0p(1gby=1y0g) + (,09(1by—1,b9) = 22 FAbysly — byl ).
(Szest'bis-e) €em=—0Pbg>0 e, =b" by > 0.

If we multiply (23 bis-5) by” then it follows that:

(23 bis-7) Op(€eml?) = 2, F*b%b,.

b) Now recall the argument of sec. 23, while noting thahe present case one has
(23 bis-1) instead dR,z= 0. It follows that:

[ORapu”1 = =X [Oalge — OpTay.
As a result, instead of the formula (23-8) one now stubes:

(23 bis-8)  2°0,[Rapad +(1, 0A[Rasd
==X [Oatge = Uptay] =X 1u[Uatp — Uplan].

Now:

[Op7aa] =2 9oa F05F 5] = FAAA0F a0 — Fap[OF a4,
namely:
(23 bis-9) D57a1] =2 9aa F?’ ool 5= FaP Papla = Fap @171 5.

If we substitute the expressions &k ,,] and [Op7a] in (23 bis-8) and multiply by
then we obtain:

(23 bis-10) Op(g1°) == 2x1,F*b%b,s.

From (23 bis-7) and (23 bis-10), one concludes:
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(23 bis-11) Op{€g + €enp =0,

which can be interpreted as the conservation of tts tehergy of the discontinuity”
relative to the gravitational field and the electronsgnfield. The fourth order tensor
that is obtained by combining (23-14) and (10-2) is thus conservat
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lll. Gravitational radiation in general relativity.

24. Notion of pure gravitational radiation.

a) From the study that was made in part Il, it restitg in general relativity one
must focus on metrics for which there exists a velgtsuch that curvature tensBgs .
satisfies the relations:

(24-1) laRayau + 1 sRyarp + 1yRagru =0
and:
(24-2) |aRalg/Alu =0.

If Rap.au is not identically null thefy is necessarily isotropicThe RICCI tensor of the
metric then has the form:
(24-3) Ras = Tlalp.

If this is true at a point of the manifoldV, then we say that the metric corresponds to a
state ofpure total radiationat this point. If, in addition, the RICCI tend®yz is null then
we say that we have a statepofe gravitational radiation

We shall ultimately come upon an example in which thig pwssibly be the case at
all of the points of a four-dimensional domain of thenifidd V4. In such a domain,
defines a field of generatrices of elementary conesamd,result, a field of 3-planes that
are tangent to these cones along the generatricethis lfield of planes is completely
integrable then we say thidae radiation in question is of integrable type.

b) Suppose that there exists a vector flgldn the manifoldVy.; such that (24-1)
and (24-2) are satisfied. From the BIANCHI identity:

UoRagau + UaRppau +UpRoann =0,
if one takes the contracted product withhen, on account of (24-2), one deduces:
(24-4) 1” OpRapau — Oal pRs% 2 — OplpRPapu =0,
a relation that plays the same role here that (11-8)(I9F = O plays in the case of

electromagnetic radiation.
Suppose thaR,z = 0. By contracted differentiation of:

lpRagau +1aRgor +15Roau =0,
one obtains, sinc€,R,”,, = 0:
(24-5) Op(1°Raga) + OplaRs”ay +0pl R0 =0,

which plays the same role here as (11-9).
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Suppose, in addition, that the fieldaSintegrable typel.l, = U,l,. By adding (24-4)
and (24-5) one obtains the relations:

which is similar to (14-4).

c) If the RICCI tensoR,p of Vi1 is # O then it is clear that the trajectories of the

vector field that is defined bly, are isotropic geodesics. Indeed, one necesdRri\0,
and, as a result:

Saﬁ: T|a|ﬁ (r£0).
From the conservation identities, one deduces:
Therefore, forr # 0,19 O,z is precisely collinear tby.
It is easy to extend this result to the general casethat effect, we use (24-4), and
introduce the tensor that is defined by:

(24-7) Paﬂ,/l,u = Ipr Raﬂ,A,u,

so it has the same symmetry type as the curvaturerteRsom (24-4), one deduces that
the tensoP ., satisfies the relations:

(24'8) vaaﬂ,/l,u + I/l Paﬂ,,uv + |,u Paﬁ,vA =0
and:
(24-9) 1" Puga, = 0.

On the other hand, differentiate (24-1) and take the attettgproduct with,. If we set
1”Opla = ug then one obtains:

UaRagay + UsRyaau + UyRagay + 1aPpyau +15Pyaau + 1, Pagay = 0.
If we proceed as we did with (24-2) then we have:
UaRaﬂAy + |apaﬁ/glu =0.

From (24-8) and (24-9), one thus deduces that the vagtamd the curvature tensor also
satisfy the relations (24-1) and (24-2). Since the curgaenmsor is not identically null,
Uy IS necessarily isotropic; however, it is orthogdodl. Hence, it may not be collinear.
Therefore:

THEOREM. —If a vector field la exists that satisfies relatid@g-1)and (24-2)on a
Riemannian manifold W1 whose metric of normal hyperbolic type has non-null
curvature then the trajectories of that vector field are null-langeodesics of that
metric.
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25. The conservation identity. We propose to establish a conservation identity for
pure gravitational radiationthat is analogous to (11-11). To that effect, we adapt th
method that was indicated in secd1@ the gravitational case.

By virtue of (24-1) and (24-2), we may set:

Ragau = bar 1l + 0 Lol s = bay 1sla =g laly
in which theb,, satisfy:
baal*=0
andl is restricted by:
(25-1) 1”Ople=0.

Setbg =1 0,ba. If we substitute the preceding expressionRigs,, in (24-4) then
we obtain:

daalgly + dailaly = daylsly = dailal, = Ogl o (05, 1515 =025 151 ,)
Upon multiplying byb‘“ one obtains the relations:
(25-2) 1,b% O,bgs + 04l ,0% b™ = 0.

Similarly, if we substitute the expression R4z, into (24-5) then one has:

(daa + (1,07 bap) 1l + Age + (1,07 bg) 1 1 = (day + (1, 0°) bay) 1514
= (da + (1,09 b)) la |y + Opla (67 1515 =02 151) + Opl s (0% 1gl = 74 1 512) = 0.

After multiplying this byb® one obtains:
(25-3) 1”b% O,bas + (1,07 b%bas — Ol 0% b? = 0.
Adding corresponding sides of equations (25-1) and (25-2) gives:
21°b% Oybgs + (1,07 b%Phae=0
namely:
(25-4) O e)=0 with e=b%bgs> 0.
If we introduce the fourth order tensor:
Taﬁ/]/[ =e Ialﬁl/] I/[,

which depends only upon the curvature tensor, one seescou of (25-1), (25-4), that
Tis conservative.
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26. The Bel tensor.

1) Consider a tenstf,z,s at the poinix of the Riemannian manifold, that satisfies
the symmetry properties (21-1) of the curvature tensor, Is that its contracted tensor
satisfies:

(26-1) Kap =1 Jap.
We associate it with the tensor:
1
(26-2) KEﬁ,yé = > Napys K 5.

It is easy to show that under the hypothesis (26-1) éhsot (26-2) also enjoys the
symmetry properties (21-1), i.e., it satisfies:

:KD

v.aB -

O
(26-3) Kas o
Indeed, if S denotes the summation after cyclic permutation of ttree indices

a, B, y; which are assumed to be distinct, then we obtain:

1
SKp,6 = 5 S K 5 = Napys K s

One thus sees that for aayg, y, oone has:

+ KUY

(26-4) K" By.ac + KE?ﬁJ =A Napys.

ag.y

(26-4) may also be written:

O
Kﬂmdy

+ K

+ K, Bay — A Napys -

ad,py

Adding both sides of these last two equations gives:

in which one has set:
O

— 0o
2Laﬂy5 = Kaﬂ,y6+ Kyd,aﬂ'

By exchangingr andy, S8, anddin (26-5), one sees that (26-3) is satisfied.
Now consider the tensor:

m —1,,0 Aupo _ 1 O Au
Kaﬂ,yd _Znaﬂ/ip OVJPUK _Enaﬂ/i,uKyJ, .

From (26-3), it results that:
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Kapyo=3 Napu T Kyspo = ~3 €45 Koo,
that is:
(26-6) Kapo =~ Kapys.

One may derive a formula from relation (26-6) that Wdlimportant in what follows. To
the end, we form the quantity:

K**aﬂ,y/l KDD :inaﬂpany/lzu

w.xm
af, 16 K .

Napay Myyr Koo,

Upon introducing the KRONECKER indicators, one obtains:

FaBy M — 1 opopATu @ xT _ 1 Aap po,yo
K Kﬂﬂ,w - §£W gﬂX}TKpU/mK - Egpyc)' KpaaﬂK y
namely:
“afyA M — 1 3 poaB — KPOAD
K Kﬂﬂ,w - 55# K Kpaaﬂ K K,D(T,/Id_

One thus obtains:
(26-7) K™ K+ KPP Kapp = 10 KPP Kagye.
From (26-6), it then follows that:

(26-8) KPP Kapyp =2 ) KPPK apys.

2) If we are given anitary vectoru then we can associate the tensgg,s with two
symmetric tensor:

(26-9) Ea(U) = Kgppo WPUC, Hafu) == K. . uPUe,

ap,fo

which obviously satisfy:
Eaﬂuﬂ: O Haﬁuﬂ: O

The data of these two tensors completely determmes$ensoiKz,5 Which is assumed
to satisfy (26-1). Indeed, we adopt an orthonormal framsé ghatey = u; E andH are
spatial tensors with the components:

Ers = Kr()’g) Hrs = _KI’DO,SO (r, S, cery — 1, 2, 3)

and one sees that the compondfts, are given by the tens&, while the components
Krs,0 by the tensoH. In particular, we evaluate:

(26-10) A =2KPPK 15 05.

From this, it follows that:
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- r0,s0 rsto rs,tu
A —% K Kroso +% K™ Krsio +% K™ Krs tu-

Now:

On the other hand:
Krs,tO KrS’tO - ,7rS\/O /7r5\,0 KUDO‘tO K*VO’ 0 - _J\llj KEOVtO K*VO’ 0 - 2Hrs HrS ,
and finally, we have:

*% — O' 0
Krs,tu Krs,tu =K rs,itu thu - ,7r5\0,7tuw,7rsp0 Mo KvO,wO KP4 ,

namely:
g KUK o1y = K"K om0 = 4E° Ere
rs,iu — A - .

3) The fourth order tensor that appeared in sec. 23, andnddogous tensor for a
pure gravitational radiation led Bel [2] to associate \&itly metric that satisfies:

(26-12) Rap—A Gap = 0

a fourth order tensor:
(26-13) Bapiy =2 (R0 A Rogau + R4 Rog ).

This tensor is symmetric ia, £, as well as iM, 4, and is also symmetric in the paarg?
andA,u; we evaluate its contracted covariant derivative.nfro

Da Raﬁ/yd_ = O,

which is a consequence of (26-12), it results that:

ZDaBaﬂycy: Raﬁ,yg DaRaﬂyg'i' Rpa,ay DaRpﬂg'/] .
Hence:

4|:|aBaﬁ//]lu = Rpa/a/] (DaRpﬁ/g;u - DaRpﬁ/g;u) + Rpa/ay(DaRpﬁ/g/] - DaRpﬁ/g’/])

Therefore, by virtue of the BIANCHI identity:

4DaBaﬂAy = Rpa,aA DaRpﬂg;u + Rpa,ay DaRp'H/g'/] .
Hence:

4|:|a Baﬁ//]lu = D'B(Rpa/a/] Rpa/g;u).

From (26-8), it thus results that:

0B, =4 Op(Agy) (with A =2 R®"Ryz.,0).

Therefore, the tensor:
(26-14) Tapiu=Bagiu _% AQupiy,
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which exhibits the same symmetry propertie8 asatisfies the conservation identity:
(26-15) DaTalg/Alu =0.

For pure gravitational radiatioiRg, = 0), Tz, reduces to the tensagg, of sec. 25. If
u is a unitary vector then we study the quantity:

T(u) = Togau U Pt U
In an orthonormal frame such that= u:

T(u) = Too0,00= Boo,oo—% A = R, %0 Ru,00 —% A = E®(U)Ers(u) —1 A,
namely:
T(U) :% | Ers(u)EfS(u) + HrS(U)Hrs(U) | > 0.

Therefore,T(u) is strictly positive, and it is null only if the cuature tensor is null. The
tensorTyz., therefore seems to generalize the MAXWELL tenedhis case.

27. Construction of an example of radiation.
a) Suppose we have a neighborhabdf Vi, that is endowed with the metric:

ds’ = goo(X)(dxX0)? + ds? (Qo=-&<0;i=1,...m)

in which ds? is a quadratic form in the variableg)( The metricds admits a one-
parameter group of isometried, - X° + const., whose generatbras the components
(& =1,&=0). The quotient metric s, and the anti-symmetrig; of sec. 19 is null.

If rs, (a,...,=0,1,..mand F?ki are the coefficients of the Riemannian connection on

V1 andV, relative to the coordinates envisioned:
M =r.

With the notations of sec. 19, the antisymmetric tefigas null, and if one referd to
an adapted orthonormal frame then formulas (19-14), (19-48),1®€-16) become:

We shall use the preceding formulas in order tsraot an example of radiation.
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b) Let the numerical spa@' be referred to the coordinates:

t=x° X=X y=x z=x (@...=0,1,2,3),
set:
(27-1) u=t—x=x"-x,

and endow a domald with the metric that is defined by:
(27-2) ds’ = € (df? — dxX) — (Cdy? + h*dZ) = gup dX" ¥,

in which ¢, £ > 0, 7 > 0 are three functions of the variahble If we are given a function
f(u) then we denote its derivative with respectitay f '(u) ; one then has:

0,f =1’ o,f =—f' 0,f=0 A ...,=2,3)
and:
Opof =17 0,f=—-f" o,f=1" 0,,f=0.

The metric (27-2) admits two one-parameter graxfgsometries that are defined by
the two generators:

E=&=86=0 &=1
n’=r=r=0 =1
which both satisfy the hypotheses of the precedewjion. The numbeiSand/; are the

scalar numbers that are associated with the twergtors.
Consider the decompositionad into squares:

and:

ds’ =(6°)* - (6%)° - (%)~ (89’
with:
° =e?d¥’ 6 =e?dd B2 =¢d &% =npdé

We thus define orthonormal frames that are adajatdzbth groups of isometries. The
matrix(A;) for the transition from the coordinateg’)( to the orthonormal frame is

diagonal, and it has the elements:

@) K= AN=¢  N=E A=
and the only non-null elements of the inverse matre:

(27-5) A =e” A =e? A= A=

¢) We propose to compute tikemponents of the curvature tensur(27-2) with
respect to the orthonormal frame described.
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From preliminary formulas, it results that if exaabiye of the indice®, S, A, i is equal
to the values 2 or the value 3 thBy, ,, = 0.

One thus obtains:

Ry33.= 0 Ry315= 0 Risi0=0  Ry5=0 Ryss0 =0
Ry 1,=0 Riy10=0  Ryyp=0

Riz10=0 Rip30 =0

Rio2o =0  Rigse=0

0,30 — 0

With the notations of sec 22, the components of the tunerdéensor may be arranged
into the matrix:

R, 0 0 0 0 O

R, 0 0 0 R,
0 R, 0 R, 0
O 0 R, O O
0 Ry O R, O
Re 0 0 0 R,

(27-6) Ru) =

o O O O O

Now we must evaluate the various elements that afipé2r-6).
First of all, the isometry¢ — x* + const., gives us, upon passing to the quotient, the

metric:
ds? = € (dt?* —dxX®) — rPdZ,
which further admits the isometny® — x2 + const., which leads us to the new metric:
ds™ = e(dt” —d¥) — rPdZ = 2V du(t + x),

which is obviously Euclidian. From the preliminary foramil and using an obvious
notation, it results that:

One thus has:
(27-7) Rioa0 =0

We now evaluate,, ,,. From (26-5), it results that:

N m|
Rgg@gz ElD:"’ (aga
From (27-4), it follows that:

[}
Rosz23= é03(0,¢) .
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Sincex depends only on, and recalling the preliminary formulas, one has:

8]
D3(634() = _(rgs - rlas)fl .
Now:
rgsz 900[33' 0] :_% googés rée,: 911[33’ 1] :_% googés-

From this, it results thd&k,; ,3= 0, and, as a result:
(27-8) R,5.5 = 0.

d) One likewise has:

namely, from (27-4):
m]
Ri212= ¢01(0,¢) .

By specifying the covariant derivative, one gets:

Riz12=¢[¢" = (T3 — )&
Now:
M=ol 01 =1g%g=¢'  Th=g"{1L 0]=-3g"g,=¢"

From this, one deduces that:
Ri212= (" - 2¢'¢"),
and, from (27-5):
(27-9) R,.,=€?&NE-29'¢).

On the other hand:
O
RlZ, 0 = _5_1 Dl (aga )

l.e.: 7
(27-10) Riz20= =0, (0,6) = {[&" —(Mp, - T1)<ET.

Now:

o=0"10,0]=-49"g,=-¢" ,=g"[10, 0] =3g"g5=¢".

One thus obtains:

(27-11) Rip00 = Rogzo = €78 (E"-2¢'¢").

As far as the matrix (27-6) is concerned, we haus established:

Ri1=Rss=0
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and:
(27-12) Ri1=Ru=Rss= e -2¢'E).

If we consider the other group of isometries then tasvise establishes:

(27-13) Ro2=-Res =Res = €17 (17" = 2¢'7").
If we set:
(27_14) a= e_2¢§(_1(§("_2¢'g(') b — e—2¢,7—1(,7"_2¢1,7;)

then the matrixR;) takes the form (21-27). From this, it results thatdinvature tensor
Rag,s0f (27-2) and the vectdy whose components are:

|o:1, |1:—1 IAZO,

which is the gradient af, satisfy the relations (24-1), (24-2). As a resultrdlexists a
scalarr such that:

Therefore, at the various points of the domaiwhere it is regular, the metric (27-2)
represents @ure total radiation of integrable typeln order to be dealing with a pure
gravitational radiation, it is necessary and sufficigrata + b = 0, i.e., thatf and
satisfy the relation:

(27-16) nn" =29'n')+ &N (E-2¢'¢")= 0.

This state will be non-trivial if the curvature tengoquestion is non-null, i.e., if the
relation:

(27-17) nn"-29'n") -7 -2¢'E)=0
is not also satisfied. Set:
&n=¢€“ n/&=e*
The relation (27-16) takes the form:
(27-18) a"+a'’+ [ -2a'¢'=0,
and the relation (27-17) takes the form:

(27-19) B +2a'B -28'¢' = 0.

€) We remark that in the case where the metricRig-Euclidian, one has:
2p = =
< n

By integration, one deduces that there exist twest@antsC; andC, such that:
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C.1¢ + Cyn = const.

If £ and s are themselves constants themay be chosen arbitrarily. If this is not the
case then:

¢’ =C¢.

28.—Rosen form for the metric. A d<° of the type (27-2) was introduced in 1937 by
ROSEN §) in a different optical context. However, itgsssible to reduce (27-2) to the
form that was indicated by ROSEN. Indeed, the expreggipi®) for ourds’ admits an
arbitrary change - f(u), it is possible to use this fact to simplify the foofrour metric.

a) If én = const., that isga = const., then it results from (27-18) that in the
gravitational caseR,z = 0) one then hag/ é = const., namelyé = const.,/7 = const.,
and theds’ envisioned is necessarily Euclidian. We thus chooseariableu to be the
one defined by:

én =17,
and set:
V=t+X

Consider the subs@R*)* of R* that is defined by:
u=t—-x>0.

On this subset, the metric that is defined by:

(28-1) ds’ = € (df — dx®) —u?(e dy? + e d7)

is regular if the functions(u) and¢(u) are of class@", piecewiseC?) for u> 0. We then
have:

U

a =logu a' =

c |
|_\

In order for (28-1) to satisfy the equatiBpsz = O, it is necessary and sufficient that:
(28-2) 2¢'= up'’.

We may arbitrarily choos&u) to be a function of clas€t, piecewiseC®) for u > 0,
and ¢ will be found by a quadrature from starting wighation (28-2). The metric that is
obtained orfR*)" has a non-null curvature if the relation:

8 ROSEN, Phys. Z. Sovjet Union, 12, pp. 366 (1937); EINSTEMNR@®SEN J., Frankiin Inst., 223, 43,
(1937).
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(28-3) uB"+2p -up3=0

is not satisfied byS. In particular, the curvature tensor is non-null atpoint
where' = 5" = 0.

We have thus obtained the metric that was indicated®$BEN, but it is valid only
on(R*)*, which seems to limit its interest.

b) If we adopt other coordinates then it is easy to erRbwith an everywhere
regular metric that is Euclidian in some domains andades with the ROSEN metric in
other domains.

One may reduce (28-1) to the Galilean form at a poirgres’'(u) = 0, namely:

(28-4) ds’ = € du dv—u’(e #dy’ + €’ d7).

To that effect, we adopt the coordinates and:

(28-5) y=uery z=uéz
By differentiation, it follows that:
ue?dy = y-Y du uédz =z-=du.
u u

From this, one deduces that:

(e dy +PdP) = dy? + dZ -2 7"7:762 dw Y2 g
u
and:

d< = du[e”’ dw27®:7dz+ _f’ut_é d% —(dy+ @).

By performing a new change of variables:

72 + 72
l'12

v=¢6?+

Il
<

(28-6) u

and after taking (28-2) into account, one obtatrith@ point considered:
ds’ =dudv-( dy + d?),

and it sufficestosal =t — X,V =1t + X in order to reduce it to the Galilean form.
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Having said this, suppose thaiis an arbitrary function of clas€{, piecewiseC?), and
perform the transformatiorf)(on (28-4) that is defined by:

(28-7) G=u v=e?v+y *z

This transformation defines a bijective map with a nol-tacobian fronfR*)* to itself.
It follows that:

uefdy = dy-Ldu+t Byd,  uédz = dz- du+ B zdL
u u
As a result:

(e dy + @PdP) = d2° + dZ - 2 Wy:_zdz du —§/u+2—2 d

dg da 87 (Cy+2

g2 _ =52

+2,8’[37d7—‘zd*z— y -

On the other hand:

dy+7zdz §+ 7
u u’

v = & dw 27 dur B2 uv (5+-2)] d.

From this, one deduces that:

(28-8) d$ = dudv- (dy + d?) —Zﬁ'[_yﬂy_z_dz Y’ ;72 %u duB'> ~uvt.

If up andu; are two positive numbershen choos@'to be a function of classCt,
piecewiseC?) that is defined omg < u < uy, and is such that:

B'() =pF(w)=0 B" () = B"(u) = 0.

Consider the numerical spaRéto be the set of al{u,V,y,
that is defined in the following manner:

)and give it the metric

for u< up ds’ = dudv-( dy + d?)
forup<us<u ds’ is given by (28-8)
foruz u ds’ = dudv-( dy + d?).

The metric that is thus defined Bisatisfies the equatiorR,s = 0, and is likewise of
classC? everywhere. It is non-Euclidian fos < u < u; whenf' does not satisfy (28-3).

® This transformation and the argument that followsdareto BONDI, “Nature,” t. 179, 1072, (1957).
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In that region, it representsséate of pure gravitational radiatiorand it is of integrable
type; of course, it is non-Euclidian in the domaingtgl infinity.
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IV. Deviation formulas.

29. —Geodesic deviation formula. In order to study the physical effects of either the
existence of a gravitational wave front with discomities in the curvature tensor or
radiative state, we shall use the formulas that caleed “the equations of geodesic
deviation.” Consider the spatio-temporal trajectories damily of test particles in a
domainA of V. Each of these trajectories is a geodesig,ahat is time-oriented. We
propose to study the “relative acceleration” (with resgecs) of two infinitely close
particles at points d¥, that define a vector that is orthogonal to the trajees.

a) The following considerations are naturally local. \&keta congruence of time-
oriented curves in a neighborhood\afand denote the unitary tangent vectouby We
extract a one-parameter family of cur¥g@drom this congruence that generates a surface
S of dimension 2. We use the given paramstein each curve df;, starting from a
suitable origin. The surfacgis thus parameterized by two paramesaadt, andx(s, 1),
wherex [J S is assumed to be twice continuously differentiablénwaspect tog, ). The
unitary vectoru that is tangent tb; at x is the vectodx/ds, and we denote the
vectorox/ dt by v.

If the neighborhood envisioned is referred to locardimates x“) then the vectora
andv have the components:

U = ox? V= ox?

0s ot
and:
(20-1) ou” _ oV,

ot 0s

respectively.
In terms of absolute differentiation, it followsath

Ou®  ou” ox oV
= +T9uP === +T9 PV,
dd ot " ot os P
One thus has:
(29-2) Du :E.
dt ds

Having said this, we apply the RICCI identityuto
We take the product of the left-hand side witi’ and get:

VU (O, O, u@ -0, 0, 0 = u"% (0, U —\ﬂ% (0a U9

namely:
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O Ou* 0O Ou*  Ou Ov?
VWO, 0,0 - 0,0, u%) = — -— - u? + [, ue.
(B2 B ””a)dtds ds dt dt * da
From (29-2), one obtains:
O Ou* O3
VU, O, 08 -0, 0, u%) = — - .
(B B p D) dt ds d<

From (29-3), one thus derives the formula:

02V O Ou”
— 4R,V =— .
d? M dt ds

(29-4)

b) Suppose that the curvEsenvisioned are geodesics\of One then has:

(29-5) o
ds

Since the vecton“ is unitary:
LOu  0u

u'—-=u =0,
dt ds
and, from (29-5):
0 Ou“ Ou“
— (upV%) = vy + u? =0.
ds( av) ds ds

Therefore, one each curlieone has:
uyVv? = const.

Let C be an orthogonal trajectory @wof the geodesicE;, and adopt a point ¢ to be
the origin of the ars on eacl”. n andv are orthogonal at the points Gf(s = 0); as a
result,u,v’ = 0 on any§ andv is orthogonal to the geodesics.

From (29-4), it results that:

2
(29-6) dD—szva + R, WPV U = 0.

We give this formula the name of “the geodesic deviatimnmula.” Since the
corresponding points on two infinitely close geodesicsl@enes that are defined by the
direction ofv? that is orthogonal to the geodesics, they give us whatmay call the
relative acceleration, with respect & of the two test particles that describe these
geodesics.
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30.—Applications.

a) Consider the spatio-temporal trajectories of ths particles envisioned in a
neighborhood of the point, and assume that these particles are subject to baly t
gravitational field. Ifl" is the trajectory that issues fromthen we introduce an
orthonormal framesd;) such that the first vecta coincides with the unitary vector that
is tangent td” atx. At the pointx the vectomu admits the components:

(30-1) w=0 =0 u=1,2,3),
and sincey is orthogonal ta it admits the components:
(30-2) V=0 V.
We parallel transport the initial frame alohgnd endow a neighborhoodlofwith a
family of orthonormal frames that isGf extension of the frames that are thus attached to

the various points of. If }f5, are the coefficients of the Riemannian connectiok,of
relative to that family of frames then one hadon

(30-3) Vg, u'=0.
DZ
We evaluate the components—gsf\; at the points of . At these points, one obtains:

OV dv

ds ds Vor
and, by derivation:
0%v" _ d*v d O02vP
30-4 = +— V) + UV _
From (30-3), one thus has bn
O0%v" _ d?v*
d$ ds

and the equation (29-6) takes the form:

d*v

(30-5) =

b) The trajectories of test particles that are suliponly the gravitational field are
time-oriented geodesics Wy. From this, it results tha = u at any point of5, and, as a
result,\* = 0 onr".

At the chosen point (30-5) may be written foar = u:
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d?v

(30-6) 3

+ Ruo/\,o Vv = 0,

and, from the preceding remark, we obtain only an idemtiiena = 0. Suppose that
there exists a gravitational wave front \é@nthat passes throughand has discontinuities
in its curvature tensor. From (30.6), it results:

30-7 =-[Rvw] V',
(30-7) 2 [Riovo]
namely:

Fgoy
30-8 =KV,
(30-8) a2
if we set:

KUV =- [Ruo/\,o].

If the vectore is fixed atx then we have to choose the veatpof the frame at that
point in such a fashion that the discontinuity madfixhe curvature tensor takes the form
(22.1). The matrixK",) may then be written (witpp= 0):

O 0 O
(30-9) KY=0 o O
0 0 -o

and (30-10) may be specified by the relations:

dv]_ o [dAv]_ d?v]__
(30-10) {dsz}o {dsz}avz {dsz} oV,

which gives us the components of the discontinuity ef idlative acceleration. The
component alongy, i.e., in the spatial direction of the wave propagatisralways null.
Since the discontinuity envisioned depends linearly ervéttorv atx, we may study the
general case as a superposition of the following two péaticases:

1) If v is collinear withe; then one has? = v* = 0, and the discontinuity in the
relative acceleration is null.

2) Ifvis in the 2-planee, &), i.e., it is orthogonal to the spatial directionvedve
propagation:
(30-11) V2 =V cosd Vv’ =vsing,

in whichd is the angle betwees andv. One then has:

2

(30-12)

{dzvz

}z gV C0SdY, {d Vz}z -0V Siny,
ds?

ds’
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and the discontinuity is carried by the directiorthe @, ;) that is defined by starting
with e; and the angled.

One has exhibited the transversal character of the gtiavial wave and located the
discontinuity of the relative acceleration thapisduced by the wave front.

In a domain oW/, where the metric represents a statpwok gravitational radiation
one sees from (30-6) that the results are identic#hd¢ocones that relate to the relative
acceleration itself.

31. Deviation of the trajectories of charged particles in the pesence of an
electromagnetic field. We suppose that there exists an electromagnetic Figddn a
domain A of V4 and we propose to study, by analogy with the geodesic tase,
deviation of the trajectory of a charged test particlet tisa subject to both the
gravitational electromagnetic fields. The spatio-terapdrajectories of the charged
particles satisfy the differential system that ipressed in local coordinates by:

d2><"+ . dX d%:kF” dX

31-1 -z - ,
(31-1) ds? A ds ds £ ds

in which the constark characterizes the ratio of the charge to the nasthé particle in
guestion.

a) We assume that we have a cloud of charged particlesar which the ratiork is
the same, and we isolate a one-parameter famila@ictoried ; from the congruence of
their trajectories idd. With the same hypotheses and notations that wede masec. 29,
the differential system (31-1) may be written:

Ou“

(31-2) <

= kFaﬂ U’B.

On the other hand, one has (29-4), namely:

RV O Ou”
31-3 — + R, PV =— .
(31-3) @@ dt ds
From (31-1), it results that:
00 (o pewv s p, B0
dt ds s £ ds |

Therefore, the vector” satisfies the differential system:



66 A. LICHNEROWICZ: Electromagnetic waves and radiation, etc.

ag%

(31-4) o

B
+ RO WPV U = k(DpF”ﬂuﬂ\/’ + F”ﬂmdlsj.

Let C be an orthogonal trajectory of the cur¥geenvisioned one the surface that is
generated. We adopt a point ©fto be the origin of the arc on eaCh u andv are
orthogonal to the points & (s = 0), but the same thing is not true outsid€ aince:

d du“
- UQ'\/a =
dt (Ua) d

Va = k Faﬂva uﬂ,
S
is not identically null.
Formula (31-4) provides the relative acceleration, wepect tcs, of two infinitely
close test particles, such that the corresponding pantghe two spatio-temporal

trajectories are the ones with the ssam@hen measured fro.

b) If x is a definite point of one of the preceding spatioperal trajectorie$ then
we introduce an orthonormal frameg,) at this point such that the first vecrcoincides
with the unitary vectou that is tangent t& atx. From a preceding remark, we may
assume thav is orthogonal tou at this pointx. Therefore, the vectons v, admit the
components (30-1) and (30-2)xat

If we adopt a family of frames in a neighborhood=othat are identical to the ones
that were defined in sec. 30 then (31-4) takes the form:

d*v
ds’

dv’

(31-5) + RO PV U = k(DpF”ﬂuﬂv"+ F”ﬂ—j.

ds

Suppose that there exists a wave fr&bn V, that is both gravitational and
electromagnetic and passes througthere are discontinuities in the curvature tensor and
the derived tensor of the electromagnetic field upon arg$si

We naturally suppose that the metric satisfies theSHERIN equations with a
continuous right-hand side, and thajs satisfies the MAXWELL equations with a
continuous current vector. From (31-5), it results #hdhe poinix in question:

(31-6) {dz‘ﬁ

e } + [R%1] WV U = KO,F WPV,

Fora =0, if we keep in mind the choice of framexa31-6) gives:

(31-7) {W } 0.

ds’

For a = u, keeping in mind the expressions (30-1) and (30-2) for the caanp®nfu and
Vi
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(31-8) {dz‘ﬁ

- [= KV + K [OFY] VY,
e } [ ol

in which the notations are identical to the onesm 80.

If the vectorey is fixed atx and the vectol is determined bys then we choose; in
such a way that one may tdke ey + €;. For a convenient choice ef in the 2-planed;,
&), the matrixk", has the form (30-9). As for the matrix,fF"o), from the considerations
of sec. 9, all of its elements are null fo¥ 1, and, from (7, 3):

[D]_Flo] =0.
We set:
[O:F%) = u [0:F%] = v

and (31-8) may be specified by the relations:

|:d2\/1}20, |:d2vz}:0'\/2+k/j\/1, |:d2V2}:_0_V3+kVV1,

ds’ ds’ ds’

which gives the components of the discontinuity inreHative acceleration at

The component of this discontinuity aloegis always null. 1fv is collinear withe;
then the discontinuity is of purely electromagnetigia. If v is orthogonal te; then the
discontinuity is of purely gravitational origin.
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V. Remarks on the penta-dimensional case

32. Components of the curvature tensor, the Ricci tensor andhe Einstein
tensor. The preceding results lead us to study the wave feomdsdiscontinuities of the
curvature tensor in the context of the penta-dimenkithemries of KALUZA-KLEIN
and the theory of JORDAN-THIRY.

We consider a Riemannian manifdlg that satisfies the hypotheses of sec. 19, and
we recall first the expressions for the compon&ysi, (a, ..., any Greek index =0, 1,

2, 3, 4) of the curvature tensor in an adapted orthondramrake. Ifi, j, ... =1, 2, 3,4
then one obtains:

@21 Ru=R.+E(RE-E LR R
(32-2) Ry ko :g(fﬁk R, +20,6F, ~0,&F, +0,€F,)
(32-3) Rowo=¢" i(@gﬁﬁz‘ﬂ F R

in whichF;; is identified with the electromagnetic tendors a constant, and the elements
that are marked with a * are defined relative ®dlotient metric.
From (32-1), one deduces by contraction:

(32-4) Rix =R+ /J’Ezli R
From (32-2), it follows:
(32-5) Rio ’B(ED Fr +30, EFr ).

By starting with:

and from (32-4) and (32-5) one obtains the folloyvexpressions for the components of
the RICCI tensor:

(32-6) R, = Ry +%252 F R -&T Eg(aij)
(32-7) R, = 55-2 00 (EF,)
(32-8) RQQ _lA E+—— B 52 FrS

Finally, if we evaluate the components of the ETIREN tensor inVs:
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Sop = Rap =3 VapR.
From (32-6), it results:

Ril — RD_*_ﬁzzgz I:L Fré—g(_lADg(

and, from (32-8):

R07_ Q(lAQ( ﬁg Frs

Therefore, the Riemannian scalar curvafies the values:
2
(32-9) R=R"+ ’3 5 FrS -28N\E.

One thus obtains the following components of fer BINSTEIN tensor:

(32-10) Sk = Sﬁk—%(% 9 & E E) 6‘1(DDK615— g A %)
(32-11) =5 <“2Dr(<“°’Fr )
(32-12) o =4 R+ /3525

The field equations for the JORDAN-THIRY may be tbamn:
(32-13) Sop = Ogp,

in which the tenso®,z0n the right-hand side describes the field sourdasa domain
with no sources this tensor is null (exterior unjitease).

33. Field equations in the Kaluza-Klein In the KALUZA-KLEIN theory¢= 1,
and the preceding formulas that relate to the ¢ureaensor take the form:

(33-1) Riw =R +%2( RA-F 'fk)+ﬁ—22 hh
(33-2) R ko :gﬁk R
(33-3) RQM:’BZ F E".
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The ones that relate to the RICCI tensor may beesmrit

(33-4) R =R+ ¢ B
B

< fe
O

(33-5) Ro=" 0 F,
2

(33-6) =P g s

2
(33-7) Sk = S?k—%(% G R F°)
(33-8) Se=50 7y
(33-9) oo :% F?+:_;IBZ E Fs.

The fourteerfield equationsnay then be written:

(33-10) Sﬁ = Fik —% 9 Rz@ﬁ
and:
(33-11) So=Ro=6,,

in which the® describe field sources. From (33-10), one dedbge®ntraction:

g“R,-2R=0 ©=g"0,)
namely:
R+Ryp—R=0.
From this, it results that:
R= Roo—@

and (33-10) may be put into the form:

2
(33-12) R, =5 g, F,F*+(0, -1 0,0).

34. Discontinuities in the curvature tensor ofVs. The metricy,s of Vs and the
infinitesimal generato# of the isometry group are assumed to be of cla§spjecewise
C%. It then results that the quotient metric anel skalar are also ¢*, piecewiseC?),
whereas the tenséi is continuous, and has discontinuous first deisrest
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We put ourselves in a domain \8f where the right-hand sides of the field equations are
continuous, and we study the discontinuities in theature tensor o¥s upon crossing a
hypersurfaceS that is generated by the trajectories of the isometoymgr In local
adapted coordinates, any vectdhat is collinear with the gradient bfsatisfiesly = 0,
I.e., it is orthogonal to the vector that is tangerthe trajectory of the isometry group. In
an adapted orthonormal frare= 0.

Under the hypotheses that we made in the JORDAN-THHRYry, by virtue of (18-
4), when one crossé&; one has:

(34_1) Raﬂ] =0.

By virtue of (33-12), (33-11), and (33-6), this relation is fartkerified under the same
hypotheses in the KALUZA-KLEIN theory.

From the general study that was made in secl B@s null length, and the tensor
[Ras ] satisfies the relations:

(34-2) la[Rayad + 18[RgAd + 1y[Raprd = 0
(34-3) |a[RaﬂAy] = 0,
at a pointx of S.
At this point, we consider the normed vectgrthat is collinear withé, and give
ourselves a unitary vectey (€= 1) that is restricted only to be orthogonakio The

vectorsey andl define a 2-plane that is orthogonaktoln this 2-plane, le¢; be a normal
vector that is orthogonal & such that one may take:

(34-3) | =ey + €.

One may complete this frame with two vectesse; in the 2-plane that is orthogonal to
the 3-plane that is defined by €1, &) in such a fashion as to obtain an adapted
orthonormal framed,) at x that satisfies (34-4) (?). We shall reason relativeuch a
frame in what follows.

35. Representative matrix of a tensoHgg,, at X. LetHgga, # 0 be a tensor that
enjoys the same symmetry properties as the curvaturma teng satisfies (21-2) and (21-
3) for a vectoll that isorthogonal toey. This vector necessarily has null length, and we
may adopt the framee{) atx that was introduced in the preceding section.

(21-2) and (21-3) then translate into the relations:

(35-1) Haopau = Booup 8 + D 80a(8og B + 8as' 83) + 2 B Bap B
A AB

in which the tensorgare the exterior products bfvith the vectors® = ey, " = &, @
= g3, and the indices, B take the values 1, 2.
If we set:
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e,Ue=r, glg=7, ¢l g=7,
e,llg=7, gllg=1, &l =7,
ele=7, gllg=7, gl §=7T,

e4|]e0:TlO

then one is led, as in sec. 21, to reprebkgh, by a symmetric matrix{;) (I,J=1, ...,

10); because of the components of the tep9@5.1) leads to the matrii(;) having the
form:

(35.2)

1 2 3 4 5 6 7 8 9 10
110 O 0O 0 O 0 0O 00 O
210 &, -a, 0 -a, -a,|-a, 0 0 a,
310 -a, a, 0 a; &, 3, 0 0 -ay
410 O 0O 0 O 0 0O 00 O
510 a, a, 0 a; a, 3, 0 0 -ay
6|10 -a, a, 0 a, a, 8 0 0 -a,
710 -—a, a, 0 a,; a, 8, 0 0 -ay
8|10 O 0O 0 O 0 0O 00 O
910 O 0O 0 O 0 0O 00 O

1010 &, -8, 0 -ay, -a,| a, 0 0 a,
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One knows that it is necessary that:
Haﬂ = Tlalﬂ

By contracting (35.1), it follows that:

Hap = —(aoo + @11 + a22) lolp
namely:

r=-(ago +ay1 + apo).

Therefore, in order that,z= 0 it is necessary and sufficient tlaag + a1 + ax» = 0.

36. Discontinuity matrix for the curvature tensor in the penta-dimensional
theories. In the case of the tensd® s, one hasRys = 0, and, as a result, thado +
i1 + ap = 0. For the KALUZA-KLEIN theory, one obviously hfiRo ] = 0, and, as a
result, thatago = a1 + ax2 = 0. Therefore, the matrixR{;]) has the form (35.2) so either
ago + a11 + a2 = 0 (JORDAN-THIRY theory) oBgo = a;1 + a2 = 0 (KALUZA-KLEIN

theory).
One easily recovers that reduced form by starting théhformulas:
O
Rl =Rl Ry =5 d0cF], [Roed =€ 100,81

and from the prior results. We first note thagnirthe HADAMARD condition, there
exists a scalaapo atx such that:

(36.1) &t 55 (0,6) = agli | -

If the adapted orthonormal frame is chosen in sue@bay that = e, + e then it results
from (36.1) that the submatrix ofR[]) that corresponds to<1, J < 10 has the form that
is described in (35.2). Moreover, from (32.6) deeuces that:

(36.2) [Ry]=¢&7 Dk(af) ok k-

Therefore| RE w1 » Which satisfies:

|g[ kl]+| [R|kk|] + 1 [Rk| kl] =

and (36.2), represents the submatrix of;{jRhat corresponds to @1, J < 6) in (35.2)
with ago = — (a11 + az2). Finally, from:

B a5 i
EHDKF ]_¢i4||£
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in whichg;; is singular, and the expression for this form where, + e;, one deduces the

submatrix that corresponds tax1 <6, 7<J< 10.

37. Radiation in the Kaluza-Klein theory.

1) We place ourselves in the context of the KalulwrKtheory and refer the
manifold Vs to an adapted orthonormal frame. To simply the rantafiwe suppress the
index underline in what follows. Suppose that the spacetieteicds’ corresponds to a
state of pure total radiation and that the electromagfietd itself represents a state of
electromagnetic radiation with the same isotropic fomelatal vector. We introduce the
isotropic vector orVs that is orthogonal td, and project it ontd/, along the preceding
vector.

(37-1) @ SLRL=0 ® 'R =0,
in which Sdenotes the sum over all cyclic permutations ofridecesh, i, j here, and, on
the other hand: _
(37-2) @) S|h Fij =0 (D) [ Fij =0.
For a singular 2-forrk, the formula (33-1) leads us to study the tensor:
S h(Fic Fy — Fi Fy).
From this, it follows that:
Sh(Fik Fy = Fir Fi) == Sh(Fik Fy + Fir Fy).
Now, sinceF is a singular 2-form it is an exterior product, and:
Fi Fy + Fi F + Fij Fa = 0.

Therefore:

Sh(Fik Fji — Fi Fi) = (ShFij)Fu.
We therefore see that for a singular 2-fdfm
(37-3) Sh(FiFy —FiFg) =0, I'(Fi Fyi — Fi Fg) = 0.
If we start with (37-3) then the hypotheses (37-1) and (372 éntail:
(37-4) @ ShRju=0 ©® I'Rju=0.

On the other hand, from (33-3), one deduces:
2

[hRio ko — liRno ko :,37 (InFir = InFrr)Fx'.

From (37-2), one thus has:

(37-5) @  IhRok — liRnw=0 0) I'Row=0.
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2) We introduce the tensor &3 that has the same symmetry type as the curvature
tensor, and is defined, relative to an adapted orthonorarakf by:

(37-6) Pix =Rjk, Pixo=0, Pioko = = Rio ko,

in which the “* sign appears for signature reasons. The tefsgr which is a
contraction oP s, verifies:

(37-7) Pio = 0, Poo = — Roo.

Sincelg is null, relations (37-4) and (37-5) may be expressed by:
(37-8) @ SkPguw=0 ©) 1“Pagiu=0,
in which the vectol, is orthogonal taf,.

3) Conversely, suppose that the tenBgy,, is defined by (37-6) in a adapted
orthonormal frame is such that there exists a vekiahat is orthogonal taf, and
satisfies the relations (37-8).

Pag is proportional td,l5 Sincelp = 0, one ha®o = 0, namelyRyo = 0, and, from
(33-6):

(37-9) F.F*®=0.

Moreover, from (37-5) _
(37-10) |I Fir Fkr = 0.

I" is thus a proper vector with proper value 0 for the MAKIMW tensor ofF and the 2-
formF is singular. From (37-4), because of (37-3), one deduces that

Sk I'{Yk, =0, IiRi,jk,kI =0,
and the metrids’ defines a state of pure total radiation.

Suppose that the field equations (33-12) are satisfied iali®ence of source®i = 0).
From (37-9), one deduces that:
Rk = 0.
Since the 2-fornk is singular:
2

%Fir F=-1lily,
and, from (33-4):
R, =-Tlilk,

which explains the expression “state of pure t@dlation.”
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(page 75 missing in original...)

O
in whichl(v) is a linear form inv. From this, it results thak 0, = A«l;, and by reason
of symmetry:

]
(39-2) Lk 6i5= Tlilk,

in which 7 is a scalar. Therefore, in order that the relati(@9-1) are satisfied, it is
necessary and sufficient that one have (39-2), wihere an isotropic vector. In
particular:

(39-3) A*&E=0.

When the hypotheses (39-1) are satisfied we say that#har sield £ corresponds to a
state of pure total radiation.

2) In context of the JORDAN-THIRY theory we suppdsat the quotient metrids’
(which differs here from the spacetime metds®*= & d<’), the formF and the scalaf
satisfy the radiation conditions for the same moitr fundamental vector. One has (39-2)
in an adapted orthonormal frame:

(39-4) S|, F{',m =0 IiRi’jk,kI =0,
and: _
(39-5) ShFj =0 I'F;j = 0.

By virtue of (32-1) and (32-3), these relations entail:
Slapﬂy,/l,u =0 |aPaﬂAy = 0,
in which P, is again defined by (38-5).

40. Construction of an example of pure radiation with an electromgnetic field.
We propose to construct an example of pure total radidttminsatisfies the KALUZA-
KLEIN equations in the absence of sources. We mustftiierebtain a gravitational
field on the spacetimesMhat satisfies (37-1) and (37-2) and a singular electroetign

field that satisfies the EINSTEIN-MAXWELL equations géneral relativity.

1) Consider a domaid of spacetime that is endowed with the metric (27-Diciv
may be written, with the following notations:

(40-1) ds’ = &¥(dx")? ~ (dx)?] — [£(dx)* + &(dxX)?] = gy dxX dX,
in which ¢, £> 0,1 > 0 are three functions of one variable:

u=x*-xb
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Introduce the potential vectg that is defined inX) coordinates by:

$1=02=¢4=0 $3 = @(U).

A 2-form F corresponds to the potential vector, and its only noneauliponents are:
Fss=-0,0 =—¢' Fa1=-0,¢ = ¢'.

The vectol;, which is the gradient af, in which covariant components are:

satisfies:
(40-2) ShF;=0

in which Sindices summation over cyclic permutations. Thisti@hais indeed satisfied
for h = 4, and either = 2,j = 3, ori = 3,j =1, ori = 1,j = 2. On the other hand, sinke
admits the contravariant components:

I*=1'=e® 1>=1*=0

one has: _
(40-3) ||Fij =0.

Therefore, the forrk is singular and admits the isotropic fundamental vdctor

O O
2) We evaluatl; |, wherel];jis the symbol for the covariant derivative in the neetri
(40-1). One first has:

O o, o,
Ol = =T+,

Now:
0 [}
r,=g“li2 4 =3¢*d, T,=g"li21]=3e"d,.
One thus obtains:
D 0
Dzli: Di |2: O,
and, similarly:
0 O
D3|i =0 |3: 0.
On the other hand:
O O O
D1|l: —rf1+ ril.

Now, from the results of sec. 27:

D4 ] Dl ]
r11: 40 r11: —40 .
From this, it results that:
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[}
D1|l: —240',
and likewise:
[} [} [}
Oa1, =01, = 2¢", Oal,=-2¢".
We have thus established that:
[}
(40-4) Ol = —2¢/’Iilj .

From relation (40-2), one deduces by derivation:

O O
ShOkFij + Shk- F = 0,
that is, by virtue of (40-4):

d
Sth Fij - Zw'|hS|kFij = 0,
le.:

O
(40-5) ShkF; = 0.
Similarly, by deriving (40-3), one obtains:

| o .
||Dk Fij + Dk|lFij =0.
That is, by virtue of (40-4):

(40-6) 1nOF; = 0.

3) On the manifold/s of the Kaluza-Klein theory, consider the metric:
(40-7)  dd® = €Y(dx)? - (dx)?] = [E(d¥)? + E(dX)?] — (dX — @ d)® = yapdX dX.
The quotient metric under the isometry grofip- x° + const. coincides witls’, and the

relations (33-1), (33-2), (33-3) apply in adapted orthonorraahds with the constagt=
1. Since thé is singular, one has:

Sh(FF, —F, F) =0, Il(FmFy, -F,F) =0.

On the other hand, from the results of sec. 27:

SLRj=0 I'Rj =0.
Therefore, one has:
(40-8) Sk, Fi&: 0 ILRH;& =0.

The relations (40-5) and (40-6) express that:
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(40-9) Sy Rijk0=0 IiRMO:O.
Finally, from the singular character of F and freec. 37, no. 1, it results that:

(40-10) 1R 0 * 1 Ron 0= O I'Rioko= 0.

Therefore, the vectd);, whose components el[eis orthogonal te’g and satisfies:

(40-11) SRy, =0 1“Rgy. = 0.

One knows that it then results that:
Raﬂ = Tlalﬂ

4) From (40-12) R, = 0 and the MAXWELL equations are satisfiedfyIn order
to verify the field equations (33-12) in the absené source, namelR, = 0O, from (40-
12), it suffices for us to verifiR,, = 0, that is, from (33-4):

O
Ru= ~&HE"-20'8) - (" - 2'n").
On the other hand:
FaFd =FasFd =— 179",

From this, it results that the functioéss, 77, @ must be coupled by the relation:
(40-13) ENE -2 - 0" -2 )+ 50T ¢ = 0.

If we limit ourselves tai > 0, and sefr = W%, /&= €e?’. (40-13) may then be put into the
form:

(40-14) 2y = up? +4i el
U

If # and ¢ are given functions fou > 0 then (40-10) allows us to determigeby
guadrature in the same domain.

For the subs¢R*)" (u > 0) of spacetim®*that is defined by, we perform the
change of variables (28-7) on the metd€. Because of (40-14), one obtains the
following expression for the metric ¢R*)":

d€ = dudv—( ay + 62)—2,8'(‘yﬂy‘z‘dz y’ ;72 %u duB”? Uk

=2, =2
_[\_/_y :Z duj4—1ué2ﬂ¢'2d&.
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Sinceu is strictly positive, we choog® andg'to be functions of clas&? that arenull

for u< up. One thus obtains a metric that is Euclidianu&r uy and non-Euclidian fou
> up, and which, when combined with the foErthat we introduced, defines a solution to
the problem that we had posed.
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VI. A process of field quantization.

A. THE ELECTROMAGNETIC FIELD.

41. Fourier transformation. In the quantum theory of fields the electromagnetic
field Fys is generally quantized by making recourse to the potem@or and the study
of gauge transformations. We shall indicate a direct tquaion process for the
electromagnetic field in special relativity. This prageshich is entirely linked with the
notion of electromagnetic radiation, may be adaptedveawill see, to the quantization of
the gravitational field.

In all of this sectiony, is the spacetime of special relativity, which we asstonbe
referred to some orthonormal frame)((a, or any Greek index = 0, 1, 2, 3). The metric
onV,, when referred to such a frame, will be denoted by:

(41-1) ds’ = 77,5dx7 ¥,

in which thex OV, admits the coordinatex®. Consider an electromagnetic fiefk
which is assumed to satisfy the MAXWELL equations withedectric current vector that
is identically null, i.e.:

(41-2) 9 F, =0 d F7, =0,

in which Sdenotes the sum over all cyclic permutations of hheet indices.

With these simple hypotheses, the current that isneeéfibby F is a FOURIER
transformation on spacetime, and one may write th &n obvious meaining (by abuse
of the usual notation amongst the school of physjciats

1

(41-3) Fok) = s

[ Uodp) €"*dr(p),

in which p describes Minkowski space, aud(p) is the corresponding hypervolume
element:

dz(p) = dp’~ dp'~ dp’~ dp’.
From (41-2), one deduces that:
S FbU,gy:O anaﬁ: 0.

As a resultp is different from zero only when it is isotropitf V, is referred to a frame
(ea) then we lep be an arbitrary vector of spacetime, and set:

p=I1+Ae,

in which the components of tigotropic vector:
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| = 1%y +1'e, u=1,2,3)

(|0)2 ZZ(IU)Z .

satisfy:

From the expression faz(p), one has:

dr(p) = A° dA"dQ(e),
in which:
di* Odl? Odi®
IO

dQ(l) =

is the invariant volume element of the isotropia&€&. Upon introducing a DIRAC
measure for the variableone may put (41-3) into the form:

1
(2my

FaiX) = [ Ga)) € *da).

42. Quantization conditions. We substitute a 2-form for the 2-fofmwith scalar
values, which still has the same notation, but sake values in a vector space of
operators on a complex HILBERT space. We makédait@ving hypotheses:

a) The values oF are Hermitian operators.

b) F verifies equations (41-2).

We denote the passage to an adjoint operator By &ormula (41-4) is again valid
here, provided thab,zis a tensor with values in M. In this formularesults that:

g _L | il-x
Fos )= 5 [.Gas(1) € da),

that is, after exchangingwith —I:
F2(x) :Lj G_(-1) "™ dQ()).
p (2m)* e

From the Hermitian character of the value&obne thus deduces that:
(42-1) G,z (-1) = GaAl).

It is possible to transform formula (41-4) in sughway as to reduce the domain of
integration to the positive nap@ of the isotropic cone. It thus follows that:

1

FadX) = 2n)

[ (Ga) €™+ Gag-)e™) da(),
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namely, from (42-1):
— 1 il-x O /_ Cil-x
(42-2) Faa(X) _WJ" (Gedl) €7+ G, (=1) €77) dQ(l).
The Hermitian character of the values Fofis clear in the formula (42-2). The
hypothesid translates into the relations:

(42-3) SLGg=0 1%Gz=0.

Suppose thabB,z is a 2-form with scalar values that satisfies 81-These relations
express that the 2-form envisioned is singulart &) andn®(l) denote two arbitrary
normed orthogonal vectors in the 3-plane that igeat to the isotropic cone alohg
These vectors define a spatially oriented 2-plarte atime-oriented orthogonal 2-plane
that containd. If e is an arbitrary unitary vector in this 2-planerthene obtains an
orthonormal framese(;) such that:

(42-4) Iiol =g +e, e=nb, e=n®,

From the study in sec. 7 (in particular, see (7i3)¢sults that for an,z that satisfies
(42-3), it is necessary and sufficient that:

(42-5) Gadl) =Y a(i,1)(1,nY ~1,n),

in which the indices, |, ..., take the values 1 and 2, and #(e ) are scalars.

By introducing a linear form ol with scalar values one immediately sees th@i, i
is a 2-form with values iM that satisfies (42-3) then the formula (42-5)dsia valid,
with the condition that one take thé, |) to be elements dl.

The quantization of the field is accomplished by postulating the bracket cooliti

[a(i.1).a(j,1)]=0

429 SONEDE: EATE)

in which | andl’ are two vectors o€", d; is the KRONECKER symbol, and, is the
DIRAC measure, relative to the isotropic cone tlagiven volume elemerdQ. One
may thus obtain a more condensed formalism by dioticing the indice#, B, which take
the values +1 and —1, and by setting:

a*i,D) =a(,)forA=1, &%) =axi,l) forA=-1.

With these notations, the quantization conditict-§) may be written:
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(42-7) [, 1), a(j,1)] =?A5ABJU59(I 1.

43. An auxiliary formula. In the course of calculating the commutation refetio
that field F must, by virtue of (42-7), satisfy, we will lzgl to evaluate the following
tensor, which is defined by starting witm™(1), n)(1):

(43-1) Pagidl) =29, n") Iﬂng))(lﬂnl‘j) —Iﬂng”).

For this evaluation, we start with the orthonormahfe that was introduced in sec. 42
that satisfies (42-4); we set:

&=, elzliol—u:kl—u k=1/19.

By starting with the components of the vectors in thitharormal frame, the metric
tensors,z of V4 may be expressed by:

Nap=Ualp— (Klo = Ug)(Klg— ug) —n’nf’—nf@n.
From this, one deduces that:

25 nnd = nPnd + nPnP=k(laus+ 1 pug) =K lal g~ Nap

ij o

If we develop the right-hand side of (43-1) then we obtain

Pagil) = lala{k(gUy + 1,ug) =Kol 5= Nagh + sl {k(laUs + 13Ug) =Kl s = Do}
—lal AK( g + 11up) = K514 = Nad = 1 g k(laUy + 1,Ug) =K g1y = Do

After simplification, the following formula follows:

(43:2) 32,0,0 ~L,n )0 =1,00) == (aalaly +1a.lals = 1ol = 1ol

44. The commutation relations. By virtue of (42-5), at the point of Va4, FaA(X)
may be written:

(44-1) FaX) = A (I, = 1,n7)dQ() .

(2)

Let x be another point of, for which:
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] 1 s N ABlU X 711 (] 1 oAr( 1
F”"(X):WBZL* a®(j,1Ne®™ (In® - I n@)dQ( "),
N

in which then'’(I")are normal orthogonal vectors that are tanger€ tongl’. We
evaluate the bracket:

-A i(—Al ex+Bl"ex")

[Fas(X), F

(2 m)°
x (I,n® - |ﬂng>)(|;n;}l> ~12ni)dQ(l)dQ(").

After integrating over the variable, one obtains:

[Faﬁ(x) (X')]

= 2 & e A E A L)t i) o)

From the earlier formula (43-2), one thus deduces:

_ —|AI o(x-X')
(44-2) Fas), F),(X)] = 2(277) s> LA
X Nagl gl 050 4 =10 by = k00 Q).

We are thus led to introduce the invariant distidiuthat is defined by:

1

(44-3) D() =5 2

'[ Ae—IAI oX CK)(I)
which is nothing but the JORDAN-PAULI “propagatorOne thus immediately obtains:

0,D(x) =

2(277) Z j Ae | dQ(l)

and:

9,0,D(x) =- j A 1,dQ(l).

2(277)

As a result, formula (44-2) may be written:

I h I
(44_4) IFU,B(X)! F/Lu(x )] :i_ (’7[7/16[?6;1 +,7ﬂyaaa/1 _Oapaﬂaﬂ _Oﬂﬂaaap)D(X -X ) )
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in which the derivatives are taken with respect to teablex. Formula (44-4) may
also be written by substituting the scalar prodycte, of the frame vectors fag,, and
introducing the derivatives with respect to the coordsatehe poink’.

(44-5) For), Fy, (0] = ~4(e, () 00 0,+(  08) 0 0
~(e, (8,)9501-(6,0§)d0 ,}D( * §.

In (44-4) or (44-5), we recover the classical commutatitetion for the quantum theory
of the electromagnetic field'). As one immediately verifies, the bracket thaeo
obtains is completely compatible with equations (41-X#,, denotes the bracket:

S0, Ky pu= 0 0K =0,

a

in which Sindicates a summation over all cyclic permutatiofhe three indices, S, y.
This quantization defines an irreducible unitary representaif the inhomogeneous
LORENTZ group that may be characterized by its resbncto the “little group,” in the
sense of WIGNER (viz., the subgroup that leaves arnosotvector invariant). As one
knows, the representation thus obtained is charaaliebzex null mass and a spin that is
equal to 1.

45. Form of the commutation relation in an arbitrary frame. Suppose that we
have two arbitrary neighborhoods of pointsandx’that are referred to two different
frames €;) and(e, ). We thus refer the electromagnetic fieldxab the frameg,) and

the electromagnetic field atto(e, ). Upon multiplying by the frame transition matrices,
formula (44-5) may be written, after suppressing the isdki@ndx’ as no longer useful:

(45-1) Foo). F, 0] = ~1(e, 83,0, +(§,05)0,0,
e, [8,)0,0, ~ (& 08)3,9,} x 3,

in which the two sides represent a bitensor, an anti-synentehsor of order two, &,
and an anti-symmetric tensor of order twa'at The right-hand side clearly involves the

bitensor that is defined by the produegsl®, ), and it is easy to obtain an interesting
expression for it. Indeed, one has:
x'-x=x"e, - Xe,.

As a result, ik denotes the spatio-temporal interval that joins thetpoia the point.

19 For example, see G. WENTZEQuantum Theory of Fieldgp. 115.
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F=(xX-x2=x"xe, B, +¥¥elg-2X X ele.
L8 & Le gL g

By differentiation, one obtains:
9,0,5°=-2e,[&,.

Therefore, if we introduce the bitensorxandx’ that are defined by:
(45-2) Haﬂ,:aaawsz

then one obtains the following form for the commutatielation:

ay' —pB—A

I h I
(45-3) Fadx), Fyy, (N ==16,0,0, +85,0,0; =6,,0,0, ~65,0,0,)D(x~X).

In this form, the relation is valid in an arbitrary mayiframe, and, in particular, if one
refers spacetime to local curvilinear coordinai} in a neighborhood of, and(x")in a
neighborhood aof’.

B. THE GRAVITATIONAL FIELD.

46. The field equations Consider a Riemannian spacetivie and denote its
curvature tensor bR ,,. It enjoys the following symmetry properties:

(46-1) Rapiu = = Raaau = = Ragur = Rigap,
and satisfies the identity:
(46-2) SF?/;//]/, =0,

which is nothing but the integrability condition for tmgsion in the case where it is zero.
We assume that the spacetime in questipsatisfies the EINSTEIN conditions:

The analogue of the MAXWELL equations, and the study nefdihe state of pure
radiation lead us to adopt theld equations:

(46'4) @) SDaR/‘,u,ﬁy = 0; (D) DaRa,B,/l,u = 0,
in which [, is the covariant derivative operator for the Riemann@mection. (46-4)
is nothing but the BIANCHI identity, an integrability abition for the equations that

couple the curvature tensor to the connection. From (4®&#¢ deduces, by contraction:

(46-5) OaR5,= UpRyy— OyRyg,
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and one sees that (46-3) entails that (46-4)

2) We propose to show that, conversely, if the figlJdagions (46-4) are satisfied
then (46-3) may be considered to be a simple initial comditMore precisely, leX be a
spatially oriented hypersurface My on which Ry is annulled identically. If the
equations (46-4) are satisfied then we shall establishRhats also necessarily null
outside ofz.

Let X’ = 0 be the local equation fa. Since this hypersurface is spatially oriented
one hag® > 0. From (46-4)and (46-5), it results that:

(46-6) OpRyy— O,R,=0,
and after contracting (46-4it follows that:

0.R% =0,
which may also be written:
(46-7) 9’ OaRz = 0.

Letu, v,..., denote inidces that take the values 1, 2, 3. By expandnteft-hand side
of (46-7), one has:

g® OoRos + g™ (oRus + OuRoy) + g™ OuRw = 0,

namely, from (46-6):
(46-8) 9% OoRoa = — 2g™'04Ros — 9" OuRw -

If we setff =0 andy= 0 in (46-6) andl = O in (46-8) then one obtains the following
linear homogeneous first order partial differential equation

{DORJU :DURJO
QOODOR)OZ_ZQQJDU F%o_ ngu Ro

in whichg® # 0. For an initial daturR,sthat is null or, this system admits no solution
but the null solution, which proves the property.

3) Suppose tha¥, is supported by a Minkowski space. If the gravitationdtfie
envisioned is weak then the metric tenggron Vs may be written:

(46-9) g = Nap + EWap,

in which 77,5 defines the Minkowski metric anglis infinitesimal. 1fV, is referred to an
orthonormal frame, relative to the metrjgs then the corresponding coefficients of the
Riemannian connection o¥y are of orderg, as well as the components of the curvature
tensor. If the indices are raised and lowered by meftine tensor),s then the principal
part of the curvature tensbt’s,,, satisfies the identity (46-1) and (46-2) and is restricted
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by equations that are deduced from (46-4) if we substitute avydoterivatives for the
covariant derivatives relative th.

47. Quantization conditions. Therefore, take spacetimg to be MINKOWSKI
space, which we always assume to referred to orthaaldrames ¢,). We are thus led
to describe the gravitational field by means of a tehkgy,, that satisfies the identities:

(47-1) Hogiu == Hpaiu = —Hagu = Hipag,
and the identity:
(47-2) SH',5 =0,

where the indices are raised and lowered by means spawetime metrig,z We take
our field equations to be:

(47-3) @ S, H”aﬁy =0 0 0,H,,,=0,

and add the supplementary condition to these equations that
(47-4) Hop=H"4p =0.

The same reasoning as in the preceding paragraph 2, in amechubstitutes the tensor
Hapau for Resauw shows that for a solution of (47-3) it suffices toifyethis condition on
a hypersurfac& that is spatially oriented.

An ordinary tensor, such abkl, may be identified with a multilinear form

HapauViNV 5 Via Vi, With scalar values. We replace it with a multilindarm that we

denote with the same notation, but it takes its valluéise vector spadel and, naturally,
it satisfies the conditions (47-1) and (47-2). In a marthat is analogous to the
electromagnetic case, we assume that:

a) The values oH are Hermitian operators.
b) H satisfies equations (47-3).

Under some simple hypotheses that permit the introduationhe FOURIER
transformation, and with notations that are analogousdones that were used in the
electromagnetic caskl may be put into the form:

1 il X ] il X
(47-5) Homaul) = o [ (Kapau(DE™ + Ky, () €"™) (),

in which x 0 V4 and is a tensor with values M. The hypothesel translates into the
relations:

(47-6) 2)) S bKgu=0 © 1“Kagay = 0.
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Suppose that gz, is an ordinary tensor that enjoys the symmetry propsef4ié-1) and
satisfies (47-3). The corresponding terisgg (1) enjoys the same symmetry properties
and, from (21-9), the solutions to (47-6) are given by:

(47-7) Kapaul) Za(l iD0ng =1 )ng =1,n)

with:
a, j, h=a(, i, 1),
by reason of symmetry.

By introducing a linear form with scalar valuesMnone also sees thatKf,z,, is a
tensor with values in that enjoys some specifiadragtry properties and satisfies (47-6)
then the formula (47-7) is always valid, on theditan that thea(i, j, |) take their values
in M.

The quantization of the fied is effected by postulating the bracket conditions:

[a(i, j.1).a(h, kI )]=

(47-8) 0 g T :
[a (i, J.1).alh, k)= 7 (9n 0y +0i0 = 69 )0a (L17)

in which | andl’are vectors inC". By means of the condensed formalism that was
introduced in the electromagnetic case, one maglaite (47-8) into:

(47-9) [a (i, j,1),@° (. k| ')1=?AAB (3u0y + 0,0y, = 3,3,) (11 ).

48. The commutation relations. At the pointx of V4, by virtue of (47-5) and (47-7),
Hags,s(X) may be written:

(48-1) Hap,d(X) —mz j a’(i, j,ne™™(, n(l) lﬁng))(lyné”—|5nﬁ”)dQ(|)-

Letx' be another point of, for which:

H

a (h k' )ésm rjfh) Lrj(h))(L fj,(k) _ Lrj(k)) CQ(|'),

(2 &

in which then'™ (1") are orthogonal vectors that are tanger€ tongl’ .
From (47-9), one has:

[H aﬂ,yé(x)1 H/l,u,vp(xl)]



A. LICHNEROWICZ: Electromagnetic waves and radiation, etc. 84

ho1

(2]T)6 AZ; .[C+ IC* MAB(éihajk + 5ik5jh - 5|J5hk) 59 (I ,l r) é(_AI R+Bl'H)

i,jkh
x (1,09 =1,n0)(1 N9 = 1,09 )1 =110 ~17n%)dQ(l)dQ( ) .

After integrating over the variableone obtains:

n1 — h 1 =i X=X
[Haﬁ,ya(x)1 H/Lu,vp(x )] _i_ 2(2,7-)6 ZA:.[G Ae Mt )iygk(dihdjk +5ik5jh _5ijd1k)

i i j j k k
x(1,nS =1,n)(1,nd =108 (1,0 =10 (A,nE =1 n8)dQ().

From the auxiliary formula (43-2), it thus resuhst:

w1 i (AlX-X)
[H16(X), H o (X] T 2277y ZA:.[G Ae

{(Uaﬁlalﬁ +,7ﬂyln] A _,7nJ ;! A _”ﬂj Jy y)(’u/ |5 p) +’7}p|y A _’ﬂgul;; v _’7|5|J y y)
+(,7m/|ﬁ|p +’7ﬁplnl v _,7a;! ;! v _”ﬁl L p)(’];JA |6 U +,7cl,u|y A _,7141|6 v _,jd) yy)
+(’7ny|ﬁ|6 +’7ﬁc5|nl y _”aJ ;! y _”ﬁJ/L 6)(’7}1 !u 7 +,7Jp|/1 v _”Jpl,u v _”LJA pd} Q(II) '

Upon introducing the JORDAN-PAULI propagator, oregldces that:

(48_2) [Haﬂ,yd(x)1 H/l,u,vp(xl)] =
h
I_{ (17,0050, +174,0,0, =1,,0,0, =150,0,) (1,050, +1,0,0, -1,050, =150,0,)

+(,7m/aﬂap +,7ﬂpaaav _napaﬂav _nﬁvaaap) (,7;//1666;1 +,7c§uaya/l _,7141666/1 _Odﬂayap)
_(nayaﬂad +,7ﬂdaaay _nadaﬂay _nﬂyaaad) (,7/1va,uap +,7;1pa/lav _nﬂpapav _npva/lap)}
x D(x -X").

We have thus obtained the commutation relatiortHerfieldH. One easily verifies
that if H satisfies the identity (47-2) then the relatioattbne obtains is compatible with
this identity; it is naturally compatible with thHeld equations (47-3). The study of the
“little group,” a la WIGNER, easily shows that theeceding quantization defined by
(47-9) generally gives a mixture of particles thave null masses and spin 0 or 2. If one
introduces the supplementary conditidas = O then one necessariy,z = K45 = 0,
and one deduces from (47-7):

> dadi.j, 1) =0,
ij
namely, the trace condition:
a(1,1,h+a(2 21) =0,

which leaves only the representation that is chiarged by a null mass and a spin equal
to two.
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49. Interpretation of the tensor H in terms of the metric.

1) In Minkowski spacetime, which we refer to a fratimet is orthonormal relative to
Nas We consider an ordinary tensor fi¢dd,, s, that satisfies the algebraic identities (47-
1) and (47-2) and the field equations (47-3), as well as theesupptary condition that

Has= 0. From (47-3)a, there exists a system of quariﬁf,}gsuch that:

A —
(49-1) H e = 0,07,-0,T7,,
a system of quantities that is found to be defined upranaformation of the form:
A A A
(49-2) Fop = Togt0,A,,
in which theA] are arbitrary. We set:
So=3(Mos—T%).
From (49-1), when written in the form:
A — A A
H a]ﬂy - aﬂray_ayraﬂ,
one infers, after summation over cyclic permutatioing,qs, yand from the identity (47-

2), that:
wygﬂ = _% Sl_r‘a/ﬂy: 0

From this, it results that there exists a system ahtjties B/ such that:
A - A A
(49-3) xS, =0,B; - 0,8,

a system of quantities that is defined up to the transfoom

(49-4) B - B/ +9,¢0".
From (49-3), it results that:

A A — A A
(49-5) Mot 058, =T7%,+0,B;.

If we replace the original ?, with the left-hand side of (49-5), which is permissitidg,
aB

the transformation (49-2), one sees thatftlﬁ);that satisfy (49-1) may be restricted to be

symmetric in their lower two indices. They are themnd to be defined up to a
transformation:

(49-6) Mo — Tos+0,0,0".
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We raise and lower the indices by means of the tepgorand, in particular, we set:
raﬂﬂ: nﬂpriﬂ :
The relation (49-1) may be put into the form:

Hippa = aar,u/w 0,0

B wa:

From the identity (47-1) that H verifies, it resultsttha
H/\,u,aﬂ‘l' H,u/l,aﬁ: aa(rmﬂ+FMH)—6ﬂ(FMa+FﬂM)= 0.

As a result, there exists a system of quantiigsthat are symmetric in the indicdsand
M such that:

(49'7) r/]/ja'l' ry/m:aal/l/]ﬂ.
On account of (49-6)/, is defined up to the transformation:

(49-8) Wy — Y +0,4,+0,0,+ const.

From the symmetry properties Iofand (49-7), one deduces that:

in which the right-hand side denotes the CHRISTOFFIgbrithm applied to the system
of ¢n,. Therefore, from the hypotheses that were made dihdte exists a system of

quantities¢y, (with ¢, = @), which is defined up to the transformation (49-8) and is
such that the quantities (49-9) that are derived from daisfy:

(49-10) Hipap = 0,1 ;=0T

a’ B a

Consider the tensor that is defined, relative to the tadogoordinates, by:
Qi = M+ EWppu,
in which € is an infinitesimal. If we effect the change of mdinates:
X? =X + &xA(X)
then one sees thgh,, is subjected to the transformation (callegbaige transformation

(49-11) W — Yu+0,0,+0,8,.
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We may thus interpret the preceding results by giving spaedtie Riemannian metric
that is defined by,,. This metric is close to the Minkowskian metric tisatlefined by
My in local coordinates that are orthonormal for théenkdwski spacetime. This
deviation persists under the change of coordinates (49+idM.a oz is the principal part
of the curvature tensor fay,, .

2) It remains for us to examine the equations:

By a convenient choice @, one may restrict th’ef,ﬂ to the coordinate conditions:
(49-12) n*ri=0,
which is nothing but the principal part of tisethermal conditions One then has:
(49-13) 77 @atl s +0 Wy = 0,4005) = 0,
and in order to respect (49-12) must be restricted by the conditions:
(49-14) 7% ,,8,= 0.
From (49-10), one deduces (see (16-4)):
Hu =3 1 0l g, + 0 lon = 0ustlns = 018lap) -

The coordinate conditions and principal parts of theh&smhal conditions permit us to
give a simple expression fold,,, the principal part of the RICCI tensor. By
differentiating (49-13) one deduces:

1% 0, Wos= 11" (00 3+ 0 p401,) 1% 0pl3= 17 (00l s +0 g lp)-
From this, one deduces that, with the conditions ordbedinates, one has:
Hiy=~3 n 0,3, W05 -
Therefore, with the coordinate conditions that wereoduced, the equatiorts,, = 0

translate into:
(49-15) n*o,W.;=0.
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50. Relationship with the theory of the graviton. One may finally show that our
process is equivalent to the classical process thds leathe theory of the graviton;
however, it reveals itself to be more coherent agla result, more satisfying, both
mathematically and physically.

Under the simple hypotheses that permit us to introduee FOURIER
transformation, one has, by virtue of (49-14) and (49-15):

- 1 il-x
Ynhx) = o [ x0udn) €™ dq)
and:
- 1 il-x
$(X) =GP [ f0) €™ daq),

in which C is the isotropic cone that is defined by,. ¢, is thus defined up to a gauge
transformation, ang, is defined up to the transformation:

(50-1) Xa1) = Xua(1) + 1 £.41) + 1, £a(1),
in whichf,(l) is then restricted by the condition:
1“£() = 0.

If n®(1), n®(1) are two vectors that are normal and orthogondltangent tcC along
| thenf,(I) is an arbitrary vector of the form:

(50-3) full) =% a()l, +Y_b(i, Q,j=12).

In order for the coordinate conditions to be seikft is necessary and sufficient that:
1*c,A) = 0.

From this, it results that there exist scak(l$, b(i, 1), c(i, j, 1) (with c(i, j, 1) =c(, i, I))
such that:

Xudl) :a(I)IAI,,+Zb(i,I)(IAn2) -I-I#nf))+ZC(i, Jl hﬂ)n/‘j) :

By using the transformation (50-1) with (50-3), a®es thajy,, may be restricted to be
of the form:

(50-4) Xoudl) =3 (i, juIning

and is then entirely determined. In order to ha{l¢ = O it is necessary and sufficient
that one have:
(50-5) c(1, 1,1) +c(2, 2,1) = 0.
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According to our process, the quantization of the figld is effected by imposing
conditions that are analogous to (47-8) on the operttatare substituted for the scalars
c(@i, j, I) in (50-4). A somewhat long calculation then permitstasdeduce the
commutation relations (48-2).
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