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 Abstract. – The theory of gravitational radiation based on the analogy that exists 
between the behavior of the curvature tensor and that of the electromagnetic field in 
general relativity.  Contributions to field quantization. 
 
 

INTRODUCTION 
 

One of the most important questions of the relativistic theory of gravitation concerns the 
definition and properties of gravitational waves and radiation.  In latter years this problem 
has been the object of numerous interesting works. 
 In the framework of special relativity a satisfactory classical theory of 
electromagnetic waves and radiation has been elaborated, and it seems to me to be a good 
method to develop in the framework of general relativity in a manner that is easily 
adapted to the gravitational case.  In this case, it appears that it is the curvature tensor that 
plays the essential role from either a mathematical or physical viewpoint, and this is 
found to be plainly in accord with the viewpoint of PIRANI [1, 2].  For a metric that 
satisfies EINSTEIN’S equations Rαβ = 0 the curvature tensor satisfies two groups of 
relations that formally bear a striking resemblance to the vacuum MAXWELL equations, 
namely: 

,0, =∇ λµαβγ RS  ,0, =∇ α
λµβα R  

 
where ∇α is the covariant derivative operator and S indicates a summation over all cyclic 
permutations of the three indices α, β, γ.  These are relations that play a fundamental role 
in the gravitational part of this work. 
 
 Chapter I is dedicated to the theory of electromagnetic waves and radiation in general 
relativity.  After reviewing the classical results the notion of a singular 2-form is defined 
and applied to the definition of the notion of pure electromagnetic radiation as in the 
study of the discontinuities of the derivative of the electromagnetic field tensor.  In this 
case, one sees the points of a wave front of a conservative 4th order tensor appear in a 
natural manner. 
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 In chapter II the discontinuities of the curvature tensor are studied.  This study leads 
us to distinguish tensors that correspond to what we may call a “singular double 2-form” 
amongst the tensors Hαβ,λµ that admit the symmetry type of the curvature tensor. Three 
corresponding conditions imply a remarkable form for the contracted tensor Hαβ.  An 
analysis of the differential relations (1) that the discontinuities of the curvature tensor are 
subject to in the case Bαβ = 0 lead to conservation identities for a 4th order tensor.  This is 
again the case when there are simultaneously discontinuities in the curvature tensor and 
the derived tensor of an electromagnetic field that satisfies the vacuum MAXWELL 
equations. 
 In chapter III, I give a definition of the notions of total radiation and pure 
gravitational radiation, notions that correspond to a remarkable particular case of the 
PIRANI-PETROV classification.  The field of isotropic vectors that comes into play 
admits null geodesics of null length for trajectories.  Thanks to some work of BONDI, 
perfecting an example of ROSEN, one may construct effective examples of such 
radiation.  In the case where Rαβ = 0 (or, more generally, λgαβ), I have studied the 
properties of a 4th order tensor that was introduced by L. BEL [2] in accord with my 
viewpoint.  These properties are formally very similar to those of the MAXWELL tensor 
of an electromagnetic field that satisfies the vacuum MAXWELL equations, and it seems 
that this tensor appeals to new and important researches. 
 Chapter IV is dedicated to the behavior of the relative acceleration of two close 
particles relative to a wave or radiation according to a viewpoint developed by SYNGE 
and by PIRANI [2].  The study of the case of charged particles in the presence of an 
electromagnetic field points to a difference in the behavior of a gravitational wave and an 
electromagnetic one. 
 In chapter V, I have adopted the five-dimensional framework in order to translate 
electromagnetic radiation and gravitational radiation into the same formalism, which 
leads to the “truncation” of the curvature tensor of the five-dimensional manifold. 
 In chapter VI, I finally exploit the aforementioned analogies between gravitation and 
electromagnetism in order to develop the process of quantization of the electromagnetic 
field in special relativity and the gravitational field in the linear approximation in a 
parallel fashion.  In the first case, the quantization is performed directly on the 
electromagnetic field tensor and leads naturally to the classical representation of the 
photon.  In the second case, it is performed on the curvature tensor and leads, as I will 
show, to an equivalent representation of the graviton.  Meanwhile, it seems that this 
quantization process is more satisfactory, both mathematically and physically, to the one 
put into play by the classical theory of the graviton.  The equations written at the 
beginning of this introduction appear precisely as the fundamental field equations; the 
condition Rαβ = 0 is then presented as a simple initial condition. 

                                                
 1 Relations that were given by TRAUTMANN and the author independently. 
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I. – Electromagnetic waves and radiation 
in general relativity. 

 
 1.  Generalities.  In any relativistic theory of the gravitational field the primitive 
element is defined by a four-dimensional “space-time” manifold V4 endowed with a 
differentiable structure concerning which it is essential to be precise:  for reasons entirely 
related to the covariance of the formalism and which appear in the analysis of the 
gravitational field (see sec. 17-18) we are led to suppose that in the intersection of the 
domains of two admissible local coordinate systems the local coordinates of a point in 
one of the systems are four times differentiable functions – with non-null Jacobian – of 
the coordinates of this point in the other system, where the first and second derivatives 
are continuous and the third derivative is only piecewise continuous.  We interpret this by 
saying that the manifold V4 is of class (C2, piecewise C4).  Unless stated to the contrary, 
V4 is supposed to be orientable. 
 A riemannian metric ds2 of hyperbolic normal type, with one positive square and 3 
negative ones, is defined on V4.  The local expression of this metric in an admissible 
coordinate system is: 
 

ds2 = gαβ dxα dxβ (α, β, any Greek index = 0, 1, 2, 3). 
 
 The metric tensor gab − or gravitation tensor − is supposed to be exactly (C2, 
piecewise C4), which is strictly compatible with the differentiable structure imposed on 
V4. 
 The equation ds2 = 0 defines a real cone Cx − called the elementary cone at x − at each 
point x of V4.  For a direction, its interior and its exterior define the time orientation and 
the space orientation, respectively.  A tangent vector to V4 is called normal if the modulus 
of its square is equal to 1.  An orthonormal frame at the point x of V4 is an ordered set of 
4 vectors ),( αe

�
at x such that 

 
0=⋅ βα ee

��
 for α ≠ b, ,12

0 =e
�

  ,12 −=ue
�

 (u = 1, 2, 3). 

 

0e
�

 defines a time direction, and the perpendicular 3-plane defined by the ue
�

 is called the 

space associated with this time direction.  We recall that a 2-plan or a 3-plane is called 
oriented in space if all of its directions are oriented in space; in the contrary case, it is 
oriented in time. 
 If a neighborhood U of V4 is endowed with an orthonormal frame, the ds2 may be 
locally written 

∑−=
u

uds ,)()( 2202 θθ  

 
where the θα are linearly independent local Pfaff forms. 
 Naturally, V4 may be the MINKOWSKI spacetime of special relativity.  An 
orthonormal frame is then an ordinary Galilean frame (with c = 1).  In the Riemannian 
case, the metric defines the structure of a MINKOWSKI space on any tangent vector 
space at any point x of V4.  The physical interpretation of a tensor defined at the point x of 
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V4 is immediately deduced from the consideration of that tangent vector space: when 
referred to an orthonormal frame, this space may be identified with the spacetime of 
special relativity as referred to a Galilean frame, which furnishes the desired physical 
interpretation directly in terms of the time and space associated to that frame. 
 
 

2.  The electromagnetic field in the absence of induction. 
 

In the absence of any induction phenomena, the electromagnetic field is represented by 
an anti-symmetric tensor field Fαβ of class (C0, piecewise C2) on a domain in V4.  One 
may associate the 2-form: 
(2-1)    ,2

1 βα
αβ θθ ∧= FF  

 
with this tensor.  If ηαβγδ  is the volume element tensor of the riemannian manifold V4 
then one deduces the “adjoint”  anti-symmetric tensor (*F)αβ, which is defined by: 
 
(2-2)    ,)(* 2

1 γδ
αβγδαβ η FF =  

 
from F.  We denote the associated 2-form by *F, which we call the adjoint of F.  Note 
that since the discriminant of ds2 is negative **F = − F. 
 With respect to an orthonormal frame ( )eα

�
 at x, the physical interpretation of F and 

*F is furnished by the following rule:  if 0u e=� �
 the electric field vector and the magnetic 

field relative to time and space defined by the frame are the space vectors (i.e, the vectors 
orthogonal to )u

�
 determined by 

 
(2-3)   α

αββ uFEE =:
�

 .)(*: α
αββ uFHH −=

�
 

 

 If (X, Y, Z) and (L, M, N) are the components of E
�

 and ,H
�

 respectively, with respect 

to the frame ),( αe
�

one has the table: 
 

(2-4) 








====
====
====

12
1230

03

31
3120

02

23
2310

01

)(*)(*

)(*)(*

)(*)(*

FFFFZ

FFFFY

FFFFX

  .

)(*)(*

)(*)(*

)(*)(*

12
1203

30

31
3102

20

23
2301

10









====
====

====

FFFFN

FFFFM

FFFFL

  

 
 Note that since (eα)g00 = 1, guu = −1, in this frame this shows how the lowering of a 
space index u is carried out with a change of sign, whereas it is not the same for the time 
index, 0.  One may attach two interesting scalars to the electromagnetic field:  the scalar 
product of the form F with itself or with the form *F, namely: 
 
(2-5)  αβ

αβ FFFF 2
1),( ==Ψ  .)(*),*(* 2

1 αβ
αβ FFFF ==Φ  
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Φ = 0 expresses the idea that the form F, and, as a result, the form *F, are of rank less 
than 4.  In an orthonormal frame, the scalars Φ and Ψ have the expressions: 
 
(2-6)  222222 ZYXNML −−−++=Ψ   ),(2 NZMYLX ++=Φ  
 
namely, when the squares and scalar products are evaluated with the help of the positive 
definite space metric: 

22 EH
��

−=Ψ   ,2 HE
��

⋅=Φ  
 
and the right-hand sides are spacetime invariants. 
 
 

3.  Maxwell tensor and Poynting vector. 
 
The study of special relativity has led us to introduce the MAXWELL tensor defined by: 
 
(3-1)   ρ

βαρ
λµ

λµαβαβτ FFFFg −= 4
1   )0( =α

ατ  

 
to be the energy-momentum tensor of the electromagnetic field.  When one refers the 
electromagnetic field to an orthonormal frame ( )eα

�
 one sees that this MAXWELL tensor 

is constructed with the space tensor (τuv) of electromagnetic tensions, the spatial 
POYNTING vector with components: 
 
(3-2)    P0 = 0  Pu = τ0u , 
 
and the electromagnetic field energy: 
 

).( 22
2
1

00 HE +=τ  
 

 If nu is a normal space vector, the electromagnetic energy flux that traverses a 2-
surface element orthogonal to nu in space is proportional to Pu n

u.  In order for this flux to 
be zero for any surface element it is necessary and sufficient that the POYNTING vector 
that corresponds to 0e

�
be null.  However, if ,0eu

�� =  the corresponding POYNTING 
vector may be written: 

.)( β
βγ

λ
α

γ
αα τ uuugP −=  

 
In order for Pα to be null, it is necessary and sufficient that: 
 

ταβ u
β = (τβγ u

β uγ) uα , 
 
i.e., that u

�
 be a proper vector of the Maxwell tensor with respect to the metric tensor.  

One is thus led to study the proper vectors of ταβ with respect to gαβ . 
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4.  The electromagnetic field equations. 
 

 a)  The electromagnetic field satisfies MAXWELL’S equations, where the first group 
expresses that F is locally derivable from a vector potential and the second relates F to 
the field sources, i.e., to a electric current vector.  These equations may be written: 
 
(4-1)   02

1 =∇≡ γδβ
βγδαα η FE  aJFD =∇≡ βα

β
α  

 
where ∇ is the covariant derivative operator for the riemannian connection and Jα is the 
electric current vector.  In these equations, it results from a classical calculation that: 
 
(4-2)     .ρ

ρβ
α
βατ JF=∇  

 
 Here I place myself in the purely electromagnetic case: in the domain of V4 
envisioned the electric current vector is null and the electromagnetic field contributes 
only to the energy-momentum.  If Sαβ = Rαβ – (1/2) gαβ R is the EINSTEIN tensor of the 
metric, then the gravitational and electromagnetic fields are related by the EINSTEIN 
equations: 
(4-3) Sαβ = χ ταβ . 
 
From the vanishing of the current, it results from (4-2) that: 
 
(4-4)     .0=∇ α

βατ  

 
This also results from the EINSTEIN equations (4-3) since the tensor Sαβ satisfies 
conservation identities.  (4-3) is therefore compatibility with the vanishing of the current. 
 Let d be the operator of exterior differentiation on forms (d2 = 0), and let δ be the 
operator of codifferentiation on a form of degree p defined by **)1( 1 dp−−=δ  (δ2 = 0).  
The MAXWELL equations may be written: 
 
(4-6)    dF = 0  or δ(*F) = 0, 
 
and in the purely electromagnetic case: 
 
(4-6)    d(*F) = 0 or δF = 0. 
 
 b)  In this section, we do not avail ourselves of the EINSTEIN equations.  We remark 
only that if one substitutes a material fluid without pressure for the pure electromagnetic 
field, then one must substitute the energy-momentum tensor: 
 

(4-7)    ),)(( βαβααβ ρρρ uuuuT ==  
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for the tensor ταβ, where ρ is the proper matter density and uα is the unitary velocity 
vector )1( 2 =u

�
 of the fluid.  From the conservation conditions that are satisfied by the 

energy momentum tensor ,0=∇ α
βαT  and the unitary character of u

�
one deduces: 

 
(4-8) ∇α(ρuα) = 0, 
and 
(4-9) uα ∇α u

β = 0. 
 
(4-8) is the continuity equation; from (4-9), the current lines of the fluid, which are 
trajectories of the vector field u

�
 are time-oriented geodesics in the manifold V4. 

 
 
 5.  Proper vectors of the Maxwell tensor (2).  The study of the vanishing of the 
POYNTING vector leads to the study of the proper values and proper vectors of ταβ with 
respect to gαβ .  Here, it comes down to a purely algebraic study conducted at a given 
point of V4 and which leads to reduced expressions for the pair of forms (F, *F) in an 
orthonormal frame ).( αe

�
  In this section, F may be an arbitrary 2-form that is interpreted 

in terms of the electromagnetic field. 
 We start with an arbitrary time-oriented vector for the 0e

�
 of ).( αe
�

  There are electric 

and magnetic field vectors E
�

 and H
�

 that correspond to it.  It is possible to choose the 2-

plane 2 3( , )e e
� �

 to be parallel to both E
�

 and .H
�

  The vector 1e
�

 is then fixed up to sign, and 

one has X = L = 0.  An orthonormal frame that satisfies this condition will be called an 
adapted frame for the form F.  In the fixed 2-plane ),,( 32 ee

��
 one may then choose the 

vectors 2e
�

 and 2e
�

 in such a manner that they are proper vectors of the matrix (τAB) (A, B 

= 2, 3) with respect to the identity.  One then has YZ + MN = 0.  An adapted frame that 
satisfies this condition will be called simple for F.  If one introduces two numbers ξ, η 
that satisfy 
(5-1)  Y2 + M2 = ξ2,  Z2 + N2 = η2,  ZM − YN = ξη 
 
then one can show that the matrix (ταβ) takes the form: 
 

(5-2)   





























−

−

+

+

=

2

0
2

00
2

000
2

)(

22

22

22

22

ξη

ξη

ηξ

ηξ

τ αβ  

 
                                                
 2 Here, we summarize the results discussed by LICHNEROWICZ in Théorie relativistes de la gravitation 
et de l’electromagnétisme.  Chap. 1. 
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for a simple frame.  Conversely, if the matrix (ταβ) takes the form: 
 

,
0

00

00

2233

22

11

0100





















−= ττ
τ

τ
ττ

 

 
relative to a frame, then one easily establishes that the frame is simple. 
 This said, it is easy to obtain the proper values of ταβ with respect to gαβ by means of 
(5-2).  The equation of the proper values is then written: 
 

.0
2

2222
2 =






















 −− ηξ
s  

It then results that: 
 
 THEOREM. – The Maxwell tensor of an electromagnetic field admits 4 real proper 
values that are pairwise equal and opposite k, k, −k, −k. 
 
 It is easy to relate k to the invariants Ψ and Φ.  One has: 
 

k2 = [(H2 − Z2) − (N2 − Y2)]2 = [M2 − Z2 + N2 − Y2]2 − 4(M2 − Z2)(N2 − Y2). 
 
Now, from (2-6) and the simplicity conditions, it results that: 
 

[M2 − Z2 + N2 − Y2]2 = Ψ2, − 4(M2 − Z2)(N2 − Y2) = 4(MY + NZ)2 = Φ2. 
 
Therefore: 
(5-4) 4k2 = Ψ2 + Φ2. 
 
 
 6.  The regular case.  It is now convenient to distinguish the k ≠ 0 case from the k = 
0 case.  In the first case, we say that the form F is regular; in the second case, it is 
singular.  Let us examine the regular case; there then exist two distinct proper values k 
and – k, and, as a result, two 2-planes of orthogonal proper vectors, where one is 
necessarily oriented in time and the other in space.  If 0e

�
 is a time-oriented normal vector 

of the first 2-plane, 3e
�

 is the normal vector that is orthogonal to this plane, and 1e
�

 and 2e
�

 

are two orthogonal normal vectors of the space-oriented 2-plane, then the frame ( )eα
�

 is 

an orthonormal frame composed of proper vectors.  One has: 
 
(6-1)  gαβ = e(0)α e(0)β − e(1)α e(1)β − e(2)α e(2)β − e(3)α e(3)β , 
and 
(6-2)  ταβ = k[e(0)α e(0)β + e(1)α e(1)β + e(2)α e(2)β − e(3)α e(3)β]. 
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When referred to the )( αe

�
frame, the MAXWELL tensor gives a null POYNTING vector, 

and is necessarily represented by a matrix of the form (5-2), with ξη = 0, since, from a 
preceding remark, )( αe

�
is a simple frame.  Since 0e

�
 and 3e

�
 have the same proper value, 

one has ξ = 0, hence Y = M = 0. 
 Only Z and N are non-null in general.  As a result, F and *F admit the expressions: 
 

(6-3)   




∧+∧=
∧+∧−=

2130

2120

* θθθθ
θθθθ

ZNF

NZF
. 

 
F and *F are linearly independent, and it is clear that there does not exist any non-null 
linear form such that the exterior products of this form with F and *F are both null. 
 We observe that ταβ admits two isotropic proper vectors, which one may define by: 
 

(6-4)   ,30 eel
���

+=   .30
* eel

���
−=  

 
These vectors are also proper vectors of F and *F. For example, from (6-3), one deduces: 
 

lα Fαβ = − Z lβ , lα(*F)αβ = N lβ . 
 
Conversely, any proper vector of F is obviously a proper vector of ταβ; as a result, if it is 

isotropic, then it is collinear to l
�

 or .*l
�

 
 
 
 7.  The singular case.  For k = 0, one has Ψ = Φ = 0.  The electric field and the 
magnetic field are orthogonal and have the same length relative to any orthonormal 
frame. 
 
 a)  In this case, η2 = ξ2, and, as a result, η = ± ξ.  In a simple frame, τ01 = ± ξ2.  Upon 
changing 1e

�
 into ,1e

�−  and, simultaneously, 2e
�

 into ,2e
�−  in order to not change the 

orientation of the frame, one may do this in such a way that η = − ξ.  For such a frame, 
the MAXWELL tensor admits the components: 
 

(7-1)    .

00

00

00

00

)(
2

22



















 −

=
ξ
ξξ

τ αβ  

Introduce the null-length vector: 

,10 eel
���

+=  

 
which admits the covariant components: 
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l0 = 1,  l1 = −1,  l2 = l3 = 0, 
 

(7-1) translates into the relation: 
(7-2) ταβ = ξ2 lα lβ . 
 
ταβ admits proper vectors that are vectors in the 3-plane tangent to the elementary cone 

ds2 = 0 along .l
�

  Except for the isotropic direction defined by ,l
�

 they define space-
oriented directions.  It is therefore impossible here to find a time-oriented proper vector, 
and, as a result, to annihilate the Poynting vector.  The form (7-2) of the energy-

momentum tensor for the electromagnetic field, where l
�

 is an isotropic vector, is in 
agreement with the form (4-7) of the energy-momentum tensor for a material fluid 
without pressure. 

 b)  Let )( αe
�

 be an adapted frame.  If E
�

 has components (Y, Z) in the 2-plane 2 3( , )e e
� �

 

then the vector H  that is orthogonal to E
�

 and has the same length will have the 
components M = −εZ and N = εY (where ε = ± 1).  Since YZ + MN = 0, the frame is 
simple.  Therefore in the singular case any adapted frame is simple.  From (5-1), one has 
 

ZN – YN = − ξ2 
in a simple frame.  It follows that: 

− ε(Y2 + Z2) = − ξ2, 
 
and, as a result, ε = 1.  Therefore, with our sign conventions, one has: 
 

M = − Z, N = Y 
 
in an adapted frame.  Upon using these expressions for the components of F and *F, it 
follows that: 
      F = Y θ2 ^ (θ0 – θ1) + Z θ3 ^ (θ0 – θ1) 
    *F = Z θ2 ^ (θ0 – θ1) − Y θ3 ^ (θ0 – θ1). 
 
Upon introducing the linear form λ that is defined by lα: 
 

λ = lα θα = θ0 – θ1, 
one obtains: 

(7-3)    




∧−=
∧+=

.)(*

)(
32

32

λθθ
λθθ

YZF

ZYF
 

 
In particular, one may choose 2e

�
 parallel to the electric field and 3e

�
 parallel to the 

magnetic field in the ),( 32 ee
��

 2-plane; one will then have Z = 0. 

 It is clear that in order for a form to annihilate both F and *F it is necessary and 
sufficient that they be proportional to λ.  The existence of such forms that simultaneously 
annihilate F and *F characterizes the singular case.  Note that λ ^ (*F) = 0 is equivalent 
to lα Fαβ = 0.  Therefore: 



A. LICHNEROWICZ:  Electromagnetic waves and radiation, etc. 
 

11 

(7-4)    lα Fαβ = 0    lα (*F)αβ = 0.   
 
 c)  Let Vm+1 be an (m+1)-dimensional manifold endowed with a Riemannian metric of 
hyperbolic normal type.  If F ≠ 0 is a 2-form on this manifold we say that F is a singular 

2-form if there exists a vector l
�

 such that 
 
(7-5)    lα Fβγ + lβ Fγα + lγ Fαβ = 0  (α, β, γ = 0, 1, …, m) 
and 
(7-6) lα Fαβ = 0. 
 

 The vector l
�

 which is defined up to a scalar factor, will be called the fundamental 
vector of F.  In the case of general relativity (m = 3), (7-5) and (7-6) completely 
characterize the 2-forms that correspond to the singular case since these relations express 
that there exists a linear form that simultaneously annihilates F and *F (which is a 2-form 
here). 

 In the general case, the vector l
�

 is necessarily isotropic.  Indeed, if this is not true 
then one may choose an orthonormal frame ( )eα

�
 such that one of the vectors, namely ,0e

�
 

is collinear to .l
�

  Let us temporarily designate the indices that take the values 1, …, m by 
u, v.  If we set α = 0, β = u, γ = v in (7-5) then we get Fuv = 0.  On the other hand, from 

(7-6), Fαβ = 0.  Therefore if l
�

 is not isotropic then we necessarily have F = 0. 
 It is easy to deduce expressions for F from (7-5) and (7-6) that will be useful in what 
follows. 

 At the point x of Vm+1, we denote an isotropic direction defined by a vector ,l
�

 and 

denote a system of (m−1) orthogonal normal vectors that are tangent to the elementary 

cone along the generatrix defined by l
�

 by )( )( in
�

(I = 1, …, m – 1).  There is a time-

oriented 2-plane that contains l
�
 and is orthogonal to the (m−1)-plane determined by the 

.)(in
�

  We choose an arbitrary unitary vector 2
0 0( 1)e e =� �

 in this 2-plane and let me
�

 be the 

normal vector orthogonal to 0l
�

 so that we may take .0 lee m

��� =+   Consider the 

orthonormal frame ( )eλ
�

 defined by ;,, )(
0 m

i
i enee

���� =  if F is a singular 2-form with the 

fundamental isotropic vector l
�
 then (7-5) translates into: 

 
(7-7)    Fij = 0  F0i + Fmi = 0, 
and (7-6) into: 
(7-7) F0α + Fmβ  = 0, 
 
and the form F is determined by the knowledge of (m−1) numbers ai = F0i . 
 Introduce the (m−1) singular 2-forms ϕ(i) that are defined by: 
 

.)()()( iii nlnl αββααβϕ −=  
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The squares and scalar products of these forms are obviously null.  In the frame in 
question ),( λe

�
 we have: 

.)()(
0

i
j

i
j

i
j n δϕ =−=  

 
It results from this that if F is a singular 2-form with fundamental vector l

�
 then: 

 
(7-9)    ∑ ∑ −==

i i

ii
i

i
i nlnlaaF ).( )()()(

αββααβαβ ϕ  

 

 If F and l
�

 are given, then the ai may depend only on the system of .)(in
�

  This system 
may be subjected to the transformation ( ) ( ) ( )i i in n k l→ +

� �� �
 or to a rotation in the (m−1)-

plane that it determines.  In the first case, one may leave the mee
��

,0  fixed and the Fi0 
determine a vector in the plane envisioned; the ai are thus the components of a vector in 
the (m−1)-plane .)(in

�
 

 If one sets ( )i
ib a nα α=∑  one sees that there exists a vector bα orthogonal to lα , such 

that: 
(7-10) Fαβ = lα bβ – lβ bα , 
 
Such a vector is defined up to the transformation bα → bα + klα .  One notes that the 
positive scalar: 

2 2| | ( )ib b b aα
α= − =∑  

 

depends only on the form F, and on the choice of vector .l
�

  
 
 d)  Finally, we establish the following lemma for an arbitrary 2-form F on V4: 
 

 LEMMA. – In order for a proper vector l
�

 of the form F ≠ 0 to also be a proper 
vector of the form *F, it is necessary and sufficient that it be isotropic. 
 
 Indeed, if l is the common proper vector of F and *F then: 
 
    lα Fαβ = alβ lα (*F)αβ = b lβ . 
From this, one deduces: 
    a lβ l

β = 0 b lβ l
β = 0. 

 

 If l
�

 is not isotropic one will have a = b = 0, and if relations (7-5) and (7-6) are 
satisfied then one can deduce that F = 0.  Conversely, if lα is an isotropic proper vector of 
F then it is an isotropic proper vector of ταβ − hence of (*F) − whether F is regular or 
singular. 
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 8.  Discontinuities of the derivatives of the electromagnetic field. 
 a)  We consider an electromagnetic field in the absence of any induction phenomena 
that satisfies MAXWELL’S equations with a continuous electric current vector in the 
domain in question.  Since the field Fαβ if of class (C0, piecewise C2) by hypothesis we 
are led to study the crossing of hypersurfaces S, where the first derivatives of that field 
present discontinuities, as well as the structure of those discontinuities themselves. 
 We designate the local equation of a hypersurface S that produces discontinuities 
when traversed by f(xα) = 0. Since the metric tensor if a class (C0, piecewise C2) the 
associated riemannian connection is continuous and, if we notate the discontinuity of a 
quantity as its traverses S by the sign, [], then one has: 
 

][][ αβγαβγ FF ∂=∇   γ∂(  is the Pfaffian derivative). 

 
One immediately deduces from the HADAMARD conditions on wave propagation that 
there exists an anti-symmetric tensor ϕαβ on the points of S such that: 
 
(8-1) [∇γ Fαβ] = ϕαβ lγ, 
 
where .fl γγ ∂=   We let ϕ denote the 2-form defined on the points of S by the tensor 

ϕαβ .  Upon symmetrizing (8-1), it results from [dF] = 0 that: 
 
(8-2)    lα ϕβγ + lβ ϕγα + lγ ϕαβ = 0. 
 
Upon contracting (8-1), it results from [δF] = 0 that: 
 
(8-3)      lγ ϕαβ = 0. 
 
Therefore the form ϕ is singular at any point of S is necessarily isotropic.  The 
hypersurface S satisfies the first order partial differential equation: 
 
(8-4)    .01 =∂∂=∆ βα

αβgf  

 
The electromagnetic wave fronts, or characteristic hypersurfacess of the Maxwell 
equations, are the hypersurfaces that are tangent at each of their points to the elementary 
cone at that point.  On the other hand, since fl αα ∂=  is a gradient: 

 
∇β lα − ∇α lβ = 0. 

As a result: 
lβ (∇β lα − ∇α lβ) = 0, 

 

and, since l
�

 is of null length, one has: 
 
(8-5) lβ ∇β lα = 0, 
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which expresses that the trajectories of the vector field l
�

 on S are geodesics of null 
length.  Therefore the electromagnetic rays, or bicharacteristics, which are characteristics 
of (8-4), are null-length geodesics of the metric. 
 b)  Let )( αe

�
 be a frame at x ∈ S that is adapted to the form ϕ.  If: 

 
λ = θ0 – θ1, 

 
then there exists a scalar a such that df = aλ .  From (7-3), one may find two numbers Y 
and Z such that ϕ is expressed by: 

.)(
1 32 λθθϕ ∧+= ZY
a

 

 
From (8-1), it results that the only non-null components of the tensor [∇γ Fαβ] relative to 
the frame in question, are given by: 
 
(8-6)     [∇0 F20] = − [∇0 F21] = − [∇1 F20] = [∇1 F21] = Y, 
and 
(8-7)   [∇0 F30] = − [∇0F31] = − [∇1F30] = [∇1F31] = Z. 
 
One may then choose the frame ( )eα

�
 in such a fashion that Z = 0, so that the only non-

null discontinuities are then given by (8-6).  We thus come down to a canonical form for 
the components of the tensor [∇γ Fαβ]. 
 c)  One may observe that it is possible to choose a system of local coordinates in a 
neighborhood of a point x0 of S, with respect to which, S admits a simple equation, and 
which has the property that its natural frame at x0 coincides with a given adapted frame 

).( αe
�

  Indeed, let αθ 0  be the linear forms at x0 that have the property: 

 
,)(0

α
ββ

α δθ =e
�

 

 
and let u be a variable such that the local equation of S is u = 0; from the previous study, 
it results that there exists a number a such that: 
 

(du)0 = a(θ0 – θ1)0 . 
 
 Upon modifying a by a constant factor, one may make a = 1.  This said, if we are 
given a linear form x0 there always exists a local function of class (C2, piecewise C4) in a 
neighborhood of x0 such that its differential coincides with the linear form at x0 .  We may 
thus find functions v, x2, x3 such that at x0: 
 
  (dv)0 = (θ0 + θ1)0 

2
00

2)( θ=dx   .)( 3
00

3 θ=dx  

If we set: 
2x0 = v + u  2x1 = v – u 

then we see that: 
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(8-8)     .)( 00
αα θ=dx  

 
From the independence of the forms ,0

αθ  the 4 functions xα have a non-null Jacobian at x0 

.  We have thus defined local coordinates (xα) such that S admits the equation x0 – x1 = 0, 
and for which the natural frame at x0 is the given adapted frame.  With these coordinates: 
 

[∇0 Fαβ] = − [∇2 Fαβ] = ϕαβ [∇2 Fαβ] = [∇3 Fαβ] = 0. 
 
 
 9.  Differential relation obeyed by [∇α Fβγ].  Suppose that when we cross S the 
curvature tensor of V4 remains continuous.  The tensor [∇γ Fαβ] then satisfies a 
remarkable differential relation on S that we shall derive on the assumption that Jα is null. 
 Let f(xα) = 0 be the local equation of S, where f is supposed to be of class C2; the 
vector l fα α= ∂  is, as a result, of class C1, and ∇β lα is continuous when we cross S.  

Moreover, since lα is a gradient: 
(9-1) ∇α lβ − ∇β lα = 0. 
 
 a)  We adopt local coordinates on a neighborhood U such that S admits the equation 
x0 = 0.  One then has g00 = 0 and the vector lα , which is the gradient of x0, admits the 
covariant components: 

l0 = 1  lu = 0   (u = 1, 2, 3). 
 
Its contravariant components are therefore: 
 

l0 = 0  lu. 
Since lα has null length: 

lα ∇β l
α = l0 ∇β l

0 + lu∇β l
u = ∇β l

0 = 0. 
In particular: 
(9-2) ∇0 l

0 = 0. 
 
On S, the tensor [∇γ Fαβ] satisfies the relations: 
 
(9-3)    lα [∇σ Fαβ] + lβ [∇σ Fγα] + lγ [∇σ Fαβ] = 0 
and 
(9-4)     .0][ =∇ α

βσα Fl  

 
In the adopted local coordinates, (9-3) may be written: 
 
(9-5)      [∇γ Fuv] = 0, 
and 
(9-6)      .0][ 0 =∇ βσ F  
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Finally, we note that ∇u[] = [∇u ], and that if F and the curvature tensor are continuous 
when we cross S then it results from the RICCI identity that: 
 
(9-7)     [∇ρ∇σ Fβγ] = [∇σ∇ρ Fβγ]. 
 
 b)  Since the relation (9-3) is satisfied on S, one may differentiate it on that 
hypersurface and we obtain: 
 

,0])[(])[(])[( =∇∇+∇∇+∇∇ α
βσγ

α
γσββγσ

α FlFlFl uuu  

 
namely, upon giving the value u to α and summing: 
 

lu ∇u[∇σ Fαβ] + (∇u l
u)[∇σ Fβγ] + Qσ,βγ  = 0, 

 
where one has set: 
 

].[][][][,
u

u
u

u
u

u
u

u FlFlFlFlQ βσγγσββσγγσββγσ ∇∇+∇∇+∇∇+∇∇=  

 
Upon taking (9-2) and (9-6) into account, one has: 
 
(9-8)    lρ ∇ρ[∇σ Fβγ] + (∇ρ l

ρ)[∇σ Fβγ] + Qσ,βγ = 0, 
with 

].[][]][,
u

u
u

u FlFlFlFlQ βσγγσβ
ρ

βσργ
γ

γσρββγσ ∇∇+∇∇+∇∇+∇∇=  

 
From the vanishing of the current vector, it results that: 
 

].[][]][ 0
0

0
0, βσγγσβ

ρ
βσργ

γ
γσρββγσ FlFlFlFlQ ∇∇−∇∇−∇∇+∇∇=  

Now: 
 

),()()( ρ
βσγ

ρ
γσβρ

ρ
βσργ

ρ
γσρβ

ρ
βσργ

γ
γσρβ FFlFlFlFlFl ∇∇+∇∇−∇∇+∇∇=∇∇+∇∇  

 
where the discontinuity in the last term may be evaluated upon taking into account that 
dF = 0.  One therefore has: 
 

].[][)()([][ 0
0

0
0, βσγγσβ

ρ
βσργ

ρ
βσρββγσρ

ρ
βγσ FlFlFlFlFlQ ∇∇−∇∇−∇∇+∇∇+∇∇=  

 
Now, for β = u: 

.0])[()]([ =∇∇=∇∇ ρ
γσρ

ρ
γ

σ
ρ FlFl uu  

From this, it results that: 
(9-10)    .0])[, =∇∇= ρ

γσρ
ρ

σ FlQ uv  

 
On the other hand, for β = 0, γ = u: 
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],[][)]([ 0
0000 uuuu FFlFlFl σ

ρ
σρρσ

ρρσ
ρ ∇∇=∇∇+∇∇=∇∇  

 
since ∇0 l

0 = 0.  One therefore has: 
 

].[ 00, uu FlQ σρ
ρ

σ ∇∇=  

Namely, from (9-10) 
].[, βγσρ

ρ
βγσ FlQ ∇∇=  

 
Substituting this into (9-8), one sees that on S the tensor [∇γ Fαβ] satisfies the differential 
relation: 

2lρ ∇ρ [∇γ Fαβ] + (∇ρ lρ) [∇γ Fαβ] = 0, 
 
which clearly show the propagation of discontinuities of ∇γ Fαβ along the null length 
geodesics of S.  In particular, if [∇γ Fαβ] = 0 at a point x of S, it is the same all along the 
null-length geodesic that issues from x and is situated on S. 
 Upon setting [∇γ Fαβ] = ϕαβ lγ in (9-11), and taking into account that lρ ∇ρ lγ = 0, it 
results that: 

2lρ [∇ρ ϕαβ] + (∇ρ lρ) ϕαβ = 0. 
 
 Let Σ be a space-oriented hypersurface and cut S (x0 = 0) along a 2-surface U.  We 
associate the points of Σ with a 2-form (Fαβ)Σ whose first derivatives present 
discontinuities 0[ ] ( )U UFαβ αβϕ∂ =  upon crossing S, where (ϕαβ)U is a 2-form that is 

defined on the points of U, and is singular with an arbitrarily give fundamental vector 
(lα)U .  By means of the CAUCHY data (Fαβ)Σ on Σ, the vacuum MAXWELL equations 
determine an electromagnetic field outside of Σ whose first derivatives are discontinuous 
upon crossing S.  The corresponding discontinuity tensor ϕαβ is necessarily the obviously 
singular solution of (9-12) that corresponds to the initial data, (ϕαβ)U on U. 
 
 
 10.  A conservation identity.  Since ϕαβ is a singular 2-form with fundamental vector 
lρ, there exists a vector bρ that is orthogonal to lρ, and is such that: 
 

ϕαβ = lα bβ − lβ bα . 
 
Upon substituting this expression for ϕαβ into (9-12), it becomes, on account of the fact 
that lρ ∇ρ lα = 0, 

lα{2 lρ∇ρ bα + (∇ρ l
ρ) bβ} – lβ{2 lρ ∇ρ bα + (∇ρ lρ) bα} = 0, 

namely: 
2 lρ∇ρ bα + (∇ρ l

ρ) bβ = k lα , 
 
where k is a scalar.  Upon multiplying both sides of this relation by bα, one obtains: 
 

2 lρ bα∇ρ bα + (∇ρ l
ρ) bα bβ = 0, 
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namely, 
 lρ∇ρ | b

2 | + (∇ρ l
ρ)| b2 | = 0. 

 
From this, one deduces the identity: 
(10-1)      ∇ρ (| b

2 | lρ) = 0. 
 
 If F is given then the vector lρ is defined up to a constant factor λ along the isotropic 
geodesic trajectories of lρ .  If l

ρ → λlρ, ϕαβ → λ−1ϕαβ , and, as a result, bα → λ−2 bα .  
Therefore, | b2 | → λ−4| b2|.  The tensor: 
 
(10-2)    ταβγδ = | b2 | lα lβ lγ lδ = ],][[ ρδβ

ρ
γα FF ∇∇−  

 
depends only on Fαβ, and, from (10-1), is conservative: 
 
(10-3)     ∇α τα

βγδ = 0. 
 
 
 11.  Pure electromagnetic radiation. 
 a)  The study made in sec. 8 showed us that the presence of discontinuities in the 
derivatives of the electromagnetic field as you cross a hypersurface S defines a singular 
2-form on the points of S.  We are thus led to represent a pure electromagnetic radiation 
field in vacuo by a field F, which is defined by a singular form.  From (7-2), for such a 
field there exists an isotropic vector field ,m

�
 such that the MAXWELL tensor may be 

written: 
(11-1) ταβ = mα mβ . 
 
We express the conservation conditions: 
 
(11-2)     ∇α ταβ = 0 
by means of (11-1).  They become: 
 

(∇α m
α) mβ + mα ∇α m

β = 0, 
namely: 
(11-2) mα ∇α m

β = −(∇α m
α) mβ. 

 
 Equation (11-3) expresses that the absolute differential of the vector m

�
 in its proper 

direction is collinear to .m
�

  From this, it results that the trajectories of the vector field m
�

 
are auto-parallel, i.e., are null-length geodesics of the metric. 
 The study of the geodesics of a linear connection shows that there exists an “affine 
parameter” σ along each geodesic, which is defined up to a transformation σ → aσ + b, 
such that for the corresponding velocity vector /l dx dσ=

�
 one has: 

 
(11-4)     lα ∇α l

β = 0. 
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The vector dx / ds is therefore defined up to a scalar factor, which is constant along each 
geodesic. 

 We are thus led to substitute for ,m
�

 a vector l
�

 that is collinear to m
�

 and satisfies 
(11-4).  Set 

mα = π lα , 
where π is a scalar.  We then have: 
(11-5)     ταβ = π2 lα lβ , 
 
and the conservation conditions may be written: 
 

∇α(π2 lα) lβ + π2 lα ∇α lβ = 0. 
 
From this, by the introduction of the vector field lα in question, it results that the 
conservation conditions for the MAXWELL tensor translate into (11-4) and the relation: 
 
(11-6)     ∇α (π2 lα) = 0. 
 
Therefore, a singular electromagnetic field is a field whose MAXWELL tensor may be 

put into the form (11-5), where l
�

 is an isotropic vector field such that 

,0))(*()( ==⋅ FliFli
��

 (where )(li
�

 is the operator defined by the “interior product” with 

),l
�

 and which may be constrained to satisfy (11-4).  This field may be associated with a 

photon fluid whose “current lines” – i.e., trajectories of l
�

− are null-length geodesic 
electromagnetic rays that admit an equation of continuity (11-6).  Such a field translates 
into electromagnetic radiation whose propagation is governed by the elementary cone. 

 b)  If l
�

defines an isotropic vector field such that (11-5) is satisfied then the LIE 

derivative ( )L l F
�

 of F with respect to the field l
�

 is given by: 
 

.)()()( dFliFldiFlL
���

+=  
 
Since ,0)( =Fli

�
 dF = 0, we have: 

(11-7)      FlL )(
�

 = 0. 
 

Therefore F is invariant with respect to .l
�

  If F is null at a point x of V4 then it is null all 

along the isotropic geodesic trajectory of l
�

that issues from x.  The explicit form of (11-7) 
is: 
(11-8)    .0=∇−∇−∇ ρ

αρβ
ρ

βρααβρ
ρ FlFlFl  

 
One may combine this relation with a slightly different one that we proceed to derive.  By 
hypothesis: 

.0=++ ρ
αβ

ρ
βααβ

ρ FlFlFl  

 



A. LICHNEROWICZ:  Electromagnetic waves and radiation, etc. 
 

20 

By derivation, and taking MAXWELL’S vacuum equation into account, one deduces: 
 
(11-9)     .0)( =∇+∇+∇ ρ

αβρ
ρ

βαραβ
ρ

ρ FlFlFl  

 
 c)  Since F is singular, one knows that there exists a vector bρ that is orthogonal to lρ , 
such that: 
(11-10)   Fαβ = lα bβ – lβ bα . 
 
The MAXWELL tensor ταβ therefore admits the following expression: 
 

),)(( βρρβα
ρρ

αβρ
ρ

ααβτ blblblblFF −−−=−=  

namely: 
ταβ = − (bρ bρ) lα lβ = | b2 | lα lβ . 

 

Therefore, for the same choice of vector l
�

 that satisfies (11-4) π1 = | b2 | and (11-6) may 
be written: 
(11-11)   ∇ρ (| b

2 | lρ) = 0. 
 
 d)  The identity (11-11) may be established by a direct method that does not involve 
the MAXWELL tensor, and which may be extended to the gravitational case.  Upon 
substituting (11-10) into (11-8), we obtain: 
 

lα l
ρ∇ρ bβ − lβ l

ρ∇ρ bα − ∇α lρ lβ b
ρ + ∇β lρ lα b

ρ = 0. 
 
Upon multiplying this by bα, one obtains: 
 
(11-12)   lρ bα ∇ρ bα + ∇α lρ b

α bρ = 0. 
 
Upon proceeding in a similar manner after staring with (11-9), one first obtains: 
 

lα l
ρ ∇ρ bβ − lβ l

ρ ∇ρ bα + (∇ρ l
ρ)(lα lβ – lβ lα) + ∇ρ lα lβ b

ρ − ∇ρ lβ lα b
ρ = 0. 

 
After multiplying by bα, it becomes: 
 
(11-13)    lρ bα ∇ρ bα + (∇ρ l

ρ) bα bα − ∇ρ lα b
α bρ = 0. 

 
By term-wise addition of (11-12) and (11-13), one obtains: 
 

2lρ bα ∇ρ bα + (∇ρ l
ρ) bα bα = 0; 

 
i.e., identity (11-11). 
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 12.  Electromagnetic field of integrable type.  Suppose we have an arbitrary 
electromagnetic field F on a neighborhood U of V4.  At a point x, where F is regular it 
admits two distinct isotropic proper directions, and, at a point where it is singular, only 
one.  Consider the 3-plane Π(x) that is tangent to the elementary cone Cx at x along one 
such generatrix of the cone.  We therefore have two ways of associating F with a field of 
3-planes Π(x) that is tangent to the elementary cones.  We say that the electromagnetic 
field is of integrable type if the field Π is completely integrable.  For this to be the case, it 
is necessary and sufficient that Π admit a definition by an equation of the form dσ = 0, 
where σ a function, i.e., that one may define the isotropic direction field in question by a 
gradient. 
 If lα is a gradient then one has: 
(12-1)     ∇β lα − ∇α lβ = 0, 
and, as a result: 

lβ (∇β lα − ∇α lβ) = 0, 
i.e., since lα has null length: 
(12-2)      lβ ∇β lα = 0. 
 
Therefore, in order for a field to be of integrable type, the trajectories of one of its 
isotropic direction fields must also be null-length geodesics. 
 
 
 13.  Permanence of a singular field of integrable type.  Consider an 
electromagnetic field F of integrable type that satisfies the vacuum MAXWELL equations, 
and suppose that there exists a space-oriented hypersurface Σ on which F is singular. 

 We say that F is of integrable type, i.e., that there exists an isotropic vector field l
�

 
that is a gradient, and which satisfies: 
 
(13-1)     lα F

αβ = alβ. 
One then also has: 
(13-2)     lα (*F)αβ = blβ. 
 
The form F is singular on Σ, and, as a result, one necessarily has a = b = 0 on Σ. 
 Upon deriving (13-1), we obtain: 
 

∇β (alβ) = ∇β lα F
αβ + lα ∇β F

αβ. 
 
From (12-1) and MAXWELL’s equations, it results that the right-hand side is zero.  
Therefore: 
(13-3)    ,0)( =∇+∂=∇ β

ββ
ββ

β laalal  

and similarly, 
(13-4)     .0)( =∇+∂=∇ β

ββ
ββ

β lbblbl  
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Since a and b are null on Σ, it results from (13-3) and (13-4) that a = b = 0 outside of Σ.  
As a result, the electromagnetic field is singular outside of Σ.  We assert (3): 
 
 THEOREM. – If an electromagnetic field of integrable type is singular on a space-
oriented hypersurface Σ and satisfies the vacuum MAXWELL equations then it singular 
outside of Σ. 
 
 14.  Study of the singular field of integrable type. 
 a)  If we are given a completely integrable singular field on a neighborhood U then 
there exists a function σ on this neighborhood, which is defined up to a transformation σ 
→ f(σ), where f is an arbitrary function, such that Π is defined by an equation dσ = 0.  It 
results from this that: 
(14-1)    dσ ^ F = 0 dσ ^ (*F) = 0. 
 
One calls the function σ the phase function for the field in question.  The relations (14-1) 
characterize the singular fields of integrable type.  The manifolds σ = const. are the 
characteristic manifolds of the MAXWELL equations. 
 b)  Suppose we are given a singular field that we refer to an adapted frame.  If λ = θ0 
– θ1 then the field Π may be defined by the equation λ = 0.  From the method of 
FROBENIUS, in order for a field to be completely integrable it is necessary and 
sufficient that: 
(14-2) λ ^ dλ = 0. 
 
Condition (14-2) is equivalent to the annihilation of the four forms: 
 
(14-3)    θρ ^ λ ^ dλ = 0  (ρ = 0, 1, 2, 3). 
 
For ρ = 0 and 1, one obtains the unique condition: 
 

θ0 ^ θ1 ^ dλ = 0. 
 
For ρ = 2 or 3, one obtains two conditions that found to be satisfied identically by virtue 
of the MAXWELL equations.  By means of (7-3), taken with Z = 0, they are: 
 

F = Y θ2 ^ λ  *F = − Y θ3 ^ λ. 
 
Since dF = d*F = 0, differentiation produces: 
 

d(Yθ2) ^ λ − Yθ2 ^ dλ = 0  d(Yθ3) ^ λ − Yθ3 ^ dλ = 0. 
 
Upon taking the exterior product with λ, one sees that (14-3) is satisfied for ρ = 2 and 3.  
Doing this for a pure electromagnetic radiation field of integrable type introduces only 
one supplementary scalar condition. 

                                                
 3 A slightly more general result has been established by L. MARIOT. 
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If F is singular of integrable type, then 
 

∇α lβ − ∇β lα = 0. 
 
From (11-8) and (11-9), by term-wise addition, we obtain the differential relation: 
 
(14-3) 2lρ ∇ρ Fαβ + (∇ρ l

ρ) Fαβ = 0, 
 
a relation that is analogous to (9-11) or (9-12). 
 
 
 15.  Application.   Suppose we are given a non-constant function σ on U and an 
electromagnetic field that satisfies the vacuum MAXWELL equations.  Consider the 2-
form defined by: 
(15-1)     H = f(σ) F, 
 
where f is an arbitrary non-constant function.  One obviously has: 
 
(15-2)     *H = f(σ)(*F). 
By exterior differentiation, we obtain: 
 

FdfdH ∧′= σσ )(   ).(*)()(* FdfHd ∧′= σσ  
 
In order for H to satisfy the vacuum MAXWELL equations, it is necessary and sufficient 
that: 

dσ ^ F = 0  dσ ^ *F = 0, 
 
i.e., that F define a singular field of integrable type that admits the phase function σ. 
 
 THEOREM. – If we are given a non-constant function σ and an electromagnetic field 
F that satisfies the vacuum MAXWELL equations then in order for the field: 
 

H = f(s) F, 
 
(where f is an arbitrary non-constant function) to satisfy the same equations, it is 
necessary and sufficient that F be a singular field of integrable type that admits σ as a 
phase function. 
 
Note that H then satisfies the vacuum MAXWELL equations for any f. 
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II. Gravitational wavefronts in general relativity. 
 

 16.  Expressions for the curvature tensor and the Ricci tensor.  In this section, we 
propose to study the notion of gravitational wavefront in general relativity.  The curvature 
tensor of the Riemannian manifold V4 will play an essential role in the course of this 
study, and we must analyze how the second derivatives of the gravitational potentials 
with respect to the local coordinates which enter into the expression of this tensor.  
Consider a riemannian manifold Vm+1 of arbitrary signature.  In a neighborhood U on 
which local coordinates (xα) are defined, let α

βγΓ  be the coefficients of the Riemannian 

connection of Vm+1 relative to the local coordinates.  By definition, the curvature tensor of 
Vm+1 is the tensor with components: 
 
(16-1)    .,

ρ
βλ

α
ρµ

ρ
βµ

α
ρλ

α
βλµ

α
βµλ

α
λµβ ΓΓ−ΓΓ+Γ∂−Γ∂=R  

 
 Upon expressing the αβγΓ  with the aid of the CHRISTOFFEL symbols, we obtain: 

 
,]),[],[( ,,

α
λµβµλ

αρα
λµβ ρµλρβµ KgR +∂−∂=  

 
where the α

λµβ ,K  depend only on the first derivatives of the potentials gρσ and the 

potentials themselves.  From this, one deduces: 
 

,],[],[ ,, λµαβµλλµαβ αβλαβµ KR +∂−∂=  

 
and, upon developing the CHRISTOFFEL symbols: 
 

.)(
2

1
,, λµαββλαµαβλµαλβµβµαλαβλµαµβλλµαβ KggggggR +∂+∂−∂−∂−∂+∂=  

 
One thus obtains: 

(16-2)   .)(
2

1
,, λµαββµαλαλβµβλαµαµβλλµαβ KggggR +∂−∂−∂+∂=  

 
The RICCI tensor on Vm+1 is defined by: 
 
(16-3)    .,, σαρβ

ρσσ
σαβαβ RgRR ==  

 
By contracting the indices α and λ in (16-2) and changing the name of the indices, this 
becomes: 

(16-4)  .)(
2

1
αβαβρσρσαββσαραρβσαβ ρσ KgggggR +∂−∂−∂+∂=  
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 17.  Discontinuities of the second derivatives of the potentials.  Suppose we have a 
neighborhood of the “spacetime” manifold V4 with a system of local coordinates (xα).  
Since the gravitational tensor is supposed to be (C1, piecewise C3), the second derivatives 
of the gravitational potentials gαβ with respect to the local coordinates may admit certain 
discontinuities upon crossing certain hypersurfaces S, and it is those discontinuities that 
we proceed to study. 
 Therefore, let Vm+1 be a differentiable manifold of class (C2, piecewise C4) endowed 
with a Riemannian metric of hyperbolic normal type and class (C1, piecewise C3).  If a 
neighborhood U of Vm+1 is referred to a system of local coordinates (xα) then let f(xα) = 0 
be the local equation of a hypersurface S that produces discontinuities when one crosses 
it.  From the HADAMARD conditions on the propagation of waves, it results that there 
exists a system of local quantities aαβ at the points of S, such that the discontinuities 
[ ]gλµ αβ∂  may be expressed by the formula: 

 
(17-1)     .][ ffag µλαβαβλµ ∂∂=∂  

 
namely, upon designating the gradient of f by lλ : 
 
(17-2)     .][ µλαβαβλµ llag =∂  

 
We study how the system of aαβ transforms under a change of local coordinates.  If 

)( σαα ′= xxx  defines this change of coordinates, one has: 
 

αβ
β

τ
α
στσ gAAg ′′′ =   .









∂
∂= ′′ σ

α
α
σ x

x
A  

By derivation, this becomes: 
 

.)( αβ
β

τν
β

τ
β

τ
α
σναβλ

λ
ν

β
τ

α
στσν gAAAAgAAAg ′′′′′′′′′′′′ ∂+⋅∂+∂=∂  

 
The third derivatives Aα

ν ρ σ′ ′ ′∂  may be discontinuous upon crossing S, while the 

discontinuities in the second derivatives of the potentials of the metric upon crossing S 
are related by the formula: 
 

.])[][][][ αβ
β

τρν
α
σ

β
τ

α
σρναβλµ

µ
ρ

λ
ν

β
τ

α
στσρν gAAAAgAAAAg ′′′′′′′′′′′′′′′′ ∂+∂+∂=∂  

 
Conforming to the HADAMARD conditions, if we set: 
 
(17-3)    [ ]A t l l lα

ν ρ σ α ν ρ σ′ ′ ′ ′ ′ ′∂ =  

and: 
(17-4)     tβ = tα gαβ  
then we obtain: 
(17-5)    ).( βααβαβ

β
τ

α
στσ ltltaAAa ++= ′′′′  
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 Therefore, if the coordinate change is of class C3 in a neighborhood of S then the aαβ 
transform according to the tensor law: 
 
(17-6)     .αβ

β
ν

α
στσ aAAa ′′′ =  

 
 If the coordinate transformation in question is tangent to the identity transformation 
along S and admits discontinuous third derivatives when one crosses S then the aαβ are 
subject to the transformation: 
(17-7)     aαβ → aαβ + tα lβ + tβ lα . 
 
Formula (17-5) may be considered as the result of the composition of (17-7) and (17-6). 
 Taking formula (17-2) into account, one obtains, upon starting from (16-2): 
 

(17-8)    ).(
2

1
][ , µβαλµβαλµαβλλβαµλµαβ llallallallaR −−+=  

 
 Since the Rαβ,λµ define a tensor, the same is true for the [Rαβ,λµ], and formula (17-8) is 
necessarily invariant under the transformation (17-7), as one easily verifies. 
 As far as the RICCI tensor is concerned, one has, from (16-4): 
 

(17-9)   ).(
2

1
][ σραββαρσραβσσβαρ

αβ
αβ llallallallagR −−+=  

 
 
 18.  Characteristic manifolds of the Einstein equations. 
 a)  Suppose that the metric of the manifold Vm+1 satisfies generalized “EINSTEIN 
equations” of the form: 
(18-1)     Sαβ = χTαβ , 
 
where Tαβ is a given symmetric tensor − which is supposed to be continuous in the 
domain in question – χ is a constant, and Sαβ denotes the tensor: 
 

(18-2)     .
2

1
RgRS αβαβαβ −=  

 
From (18-2), one deduces, by contraction: 
 

.
2

1

2

1
R

m
R

m
RS

−−=+−=  

When m ≠ 1, this implies: 

(18-3)     .
1

1
Sg

m
SR αβαβαβ −

−=  
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 From the continuity of Tαβ, one deduces from (18-1) that [Sαβ] = 0, and, as a result, by 
virtue of (18-3) and the continuity of the metric: 
 
(18-4)     [Rαβ] = 0. 
 
 b)  Choose a system of local coordinates such that the hypersurface S that is 
responsible for the discontinuities that we are studying has the local equation x0 = 0; in 
this case, lα admits the components: 
 
(18-5)    l0 = 1  lu = 0  (u, v, etc. … = 1, 2, …, m). 
 
The only second derivatives that may be discontinuous upon crossing S are the ,00 αβg∂  

and one has: 

uvuv ag =∂ ][ 00   ,][ 0000 αα ag =∂  

 
where the auv are invariant under the transformation (17-7) and the a0α transform 
according to: 

a0α → a0α + tα + t0 lα . 
 
The choice of tα or of tα permits us to annihilate the discontinuities of α000g∂ or make 

them appear.  Moreover, from (17-9), one obtains: 
 

(18-6)    0
2

1
][ 00 =−≡ uvuv agR  

(18-7)     0
2

1
][ 0

0 =≡ uv
v

u agR  

(18-8)     ,0
2

1
][ 00 =−≡ uv

uvagR  

 
and the left-hand sides of (18-6), (18-7), and (18-8) do not involve the ].[ 000 αg∂   We say 

that the derivatives 00 uvg∂  are significant relative to the hypersurface, and that the (m+1) 

derivatives 00 0g α∂  are insignificant.  It is the case where the significant derivatives 

present discontinuities that we now proceed to examine. 
 If all of the discontinuities of the significant derivatives are non-null, then there exists 
an auv ≠ 0, and from (18-6) it results that 
 
(18-9)     g00 = 0. 
 
The vector lα then admits the components: 
 

l0 = 0  lu = g0u , 
 
and, from (18-7), it satisfies the relations: 
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(18-10)    auv l
v = 0. 

Moreover, from (18-8): 
(18-11)   a ≡ gαβ aαβ = 2g0u a0u = 2a0u l

u. 
 
In arbitrary local coordinates, (18-9) may be written: 
 

gαβ lα lβ = 0, 
 
and the gradient of f has null length.  Therefore, S is necessarily a solution of the first 
order partial differential equation: 

,01 =∂∂≡∆ βα
αβ fgf  

 
i.e., the general relativistic analog of (9-4). 
 Therefore, in this case (m = 3), the gravitational wavefronts − or characteristic 
manifolds − of the EINSTEIN equations are the hypersurfaces that are tangent to the 
elementary cone at each of their points.  The gravitational rays, which are trajectories of 

the vector field defined by l
�

 on such a hypersurface are always null-length geodesics. 
 Recall the general case of a manifold Vm+1.  Equations (18-10) and (18-11) may be 
translated into arbitrary local coordinates by the relation: 
 

(18-12)   α
β

αβ l
a

la
2

=      (a = gαβ aαβ). 

 
In particular, one sees that the null-length vector lα is a proper vector of the matrix (aαβ).  
One immediately verifies that (18-12) is invariant under the transformation (17-7). 
 Conversely, if lα has null length and satisfies (18-12) then one has [Rαβ] = 0. 
 
 
 19.  Lemma on the manifolds that admit a group of isometries.  Five-dimensional 
case.  It is known that the consideration of a five-dimensional manifold endowed with a 
one-parameter group of isometries permits the geometric unification of the gravitational 
field and the electromagnetic field (in the absence of induction).  More generally, we 
shall review the formulas that relate to a manifold Vm+1 that admits a one-parameter group 
of isometries. 
 a)  Consider a manifold Vm+1 of dimension (m+1) that satisfies the same 
differentiability hypotheses as the spacetime manifold, i.e., (C2, piecewise C4).  We 
suppose that a Riemannian metric dσ2 is defined on this manifold, which is of hyperbolic 
normal type, with 1 positive square and m negative ones, and class (C1, piecewise C3).  
Throughout this section, we suppose that Greek indices take the values 0, 1, …, m and 
Latin indices take the values 1, 2, …, m.  In local coordinates, the metric may be written: 
 
(19-1)      dσ2 = γαβ dxα dxβ, 
 
and in a neighborhood they may be decomposed into the algebraic sum of squares: 
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(19-2)     dσ2 = (θm)2 − (θ0)2 −(θ1)2 − ... (θm+1)2, 
 
where the θα are linearly independent local PFAFF forms.  By duality, the neighborhood 
of Vm+1 in question is found to be endowed with an orthonormal frame. 
 We suppose that Vm+1 admits a connected global one-parameter group of isometries 
with trajectories that are oriented so that dσ2 < 0, leaving no point of Vm+1 invariant, and 
enjoying the following property: upon passage to the quotient under the equivalence 
relation defined by the group of isometries, one obtains a differentiable manifold Vm of 
class (C2, piecewise C4); the points z of Vm may be identified with the different 
trajectories of the group in Vm+1. 

 Let ξ
�

 be the infinitesimal generator of the group of isometries; since no point of Vm+1 

is invariant, ξ
�

 is non-null.  It satisfies the KILLING equations: 
 

(19-3)    L(ξ
�

)gαβ = ∇β ξα + ∇α ξβ = 0. 
 
Let (xi) be an arbitrary system of local coordinates on Vm .  A point x of Vm+1 may be 
represented by its trajectory z(x), and, on that trajectory, by a coordinate ).( 0′x   In the 

local coordinates ( )xλ′  the trajectories of the vector field ξ
�

 are the lines ix ′ = const., and 
one has: 

0=′iξ   .00 ≠′ξ  
 
We perform the change of local coordinates defined by: 
 

ii xx ′=  ).,( 00 jxxfx ′′=  
 
One may choose f in such a manner that the new components are: 
 

,0
0

0 A=ξ  .10
0

0 =
∂
∂= ′

′
′ ξξ

x

f
 

It suffices to take: 

00

1
′′ =

∂
∂

ξx

f
  ),0( 0 ≠′ξ  

 
and the function f is found to be defined up to an additive function of the coordinates 

).( jx ′   In the system of coordinates thus defined (xλ): 
 

ξi = 0  ξ0 = 1, 
 
and xλ is called adapted to the group of isometries in question.  In this system, ξα = gα0, 
and, as a result, ∇β ξα = [β0, α].  As a result, the KILLING equations (19-3) translate 
into: 
(19-4)     .00 =∂ αβγ  
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Systems of local coordinates adapted to the group of isometries are defined up to a 
change: 
(19-5)    )( jii xx ′′ =ψ   ),(00 jxxx ψ+=′  
 
where ψ is an arbitrary function of the xj . 
 To each point x of a neighborhood Vm+1, there is an associated orthonormal frame 
whose first vector is tangent at x to the trajectory passing through this point.  Such a 
frame is called adapted to the group of isometries.  Relative to the adapted frame, we 
have: 
(19-6)    dσ2 = − (θ0)2 + (θm)2 − (θ1)2 − ... (θm−1)2, 
 
and the θi are annihilated along the trajectories.  If (xλ) is an adapted system of local 
coordinates, then the θi are PFAFF forms with respect to the dxj and (19-6) is none other 
than the decomposition into squares of dσ2, with the variable dx0 playing the role of 
directrix variable.  From this, one deduces: 
 
(19-7)     dσ2 = − (θ0)2 + ds2, 
with 

(19-8)    )(
||

1
0

0
00

00

0 i
i dxdx γγ

γ
θ +=  

and 

(19-9)  .)()()(
00

00212122 jiji
ij

mm dxdxds 







−=−−−= −

γ
γγ

γθθθ ⋯  

 
 From (19-9), it results that ds2 is independent of the chosen system of adapted local 
coordinates, and, in this system, it is independent of x0.  The quadratic form ds2 
determined a Riemannian metric of hyperbolic type on Vm, which is called the quotient 
metric, with coefficients: 

(19-10)   .
00

00

γ
γγ

γ ji
ijijg −=  

 

 b)  The square of the vector ξ
�

 is strictly negative, and we designate it by – ξ2.  In 

adapted coordinates γ00 = − ξ2 and ξ defines a scalar field on Vm . 
 Now consider the vector ϕα of Vm+1 that is collinear to ξα, and is defined by: 
 

(19-11)   ,
2ξ

ξβϕ α

−
=i  

 
where β designates a suitable constant.  In adapted coordinates: 
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(19-12)  
00

0

γ
γβϕ i

i =   βϕ0 = 1. 

 
Consider Fαβ, which is the rotation of ϕα .  From (19-12): 
 

.0000 =∂−∂= ϕϕ αααF  

 
On the other hand, if one performs the change of adapted local coordinates defined by 

,ii xx =′  :)(00 ixxx ψ+=′  

(19-13)    ,
1

iii
x∂

∂+= ′
ψ

β
ϕϕ  

 
and, as a result, .jiij FF ′′=   Therefore the Fij define an anti-symmetric tensor on Vm . 

 It is easy to see the geometric significance of the vanishing of Fij .  If it is possible to 
find adapted local coordinates for a neighborhood U of Vm , such that the trajectories 
corresponding to U are orthogonal trajectories of the hypersurfaces x0 = const. then one 
has ξi = γ0i = 0, ϕi = 0 in this system, and, as a result Fij = 0.  Conversely, if Fij = 0 then 
the tensor Fλµ of Vm+1 is null, and (βj0 = 1, βϕi) locally defines a gradient field.  There 
thus exists a function ψ(ξi) in a neighborhood U of Vm such that: 
 

)].([ 0 ixx ψβϕ αα +∂=  
 
 Therefore, Fij = 0 expresses the idea that there exist adapted local coordinates such 
that the corresponding trajectories of the group of isometries on a neighborhood U are 
orthogonal trajectories of the hypersurface x0 = const. 
 c)  We have thus defined a metric (19-10) on Vm, a scalar ξ, and an anti-symmetric 
tensor Fij, after starting with the metric on Vm+1 and the group of isometries. 
 Refer Vm+1 to an adapted orthonormal frame.  From (19-9), the manifold Vm, which is 
considered to be a Riemannian manifold for the quotient metric, is therefore found to be 
referred to the orthonormal frame.  One may express the components Rαβ,γδ of the 
curvature tensor of Vm+1 as a function of the components of the curvature tensor for Vm of 
ξ and of the components of the anti-symmetric tensor F. 
 Indeed, one proves the following formulas (4): 
 

(19-14) klijjkiljiikklijklij FFFFFFRR
2

)(
4

2122

,

*

,

ξβξβ +−+=  

(19-15) )2(
2

*

0, ikjjkiijkijkkij FFFFR ξξξξβ ∂+∂−∂+∇=  

                                                
 4 See LICHNEROWICZ, Théories relativistes de la gravitation et de l’electromagnetisme, pp. 119; the 
formulas have been transformed according to the signature of the metric and the orientation of the 
trajectories. 
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(19-16) ,
4

)(
1 22*

0,0
r

kirikki FFR
ξβξ

ξ
+∂∇=  

 
where the elements that relate to the metric ds2 have been given a *. 
 
 d)  We place ourselves in the five-dimensional case (m = 4).  For the theories of 
JORDAN-THIRY and KALUZA-KLEIN, the preceding hypotheses are satisfied, and the 
anti-symmetric tensor, Fij, may be interpreted as the electromagnetic field. 
 From the preceding formulas, it results that upon crossing a hypersurface S the 
discontinuities of the components of the curvature tensor of V5 may be written: 
 

(19-17)   ][][ ,

*

, klijklij RR =  

(19-18)   ][
2

][
*

0, ijkkij FR ∇= ξβ
 

(19-19)    )].([
1

][
*

0,0 ξ
ξ ikkiR ∂∇=  

 

(19-18) show that the study of the discontinuities of the first derivatives 
*

[ ]k ijF∇  of the 

electromagnetic field are equivalent to those of the discontinuities of the components 
Rij,k0 of the curvature tensor of V5. 
 If we wish to analyze the structure of gravitational waves in spacetime, we are 
therefore led to study the discontinuities in the components of the curvature tensor of the 
metric of general relativity. 
 
 
 20.  Formulas that relate to the discontinuities of the curvature tensor for Vm+1.  
Let us return to the case of a Riemannian manifold Vm+1 that is endowed with a 
Riemannian metric of hyperbolic normal type with one positive square an m negative 
squares. 
 
  a)  From formula (17-8), it is possible to deduce an interesting relation between lγ 
= fγ∂ and the tensor [Rαβ,λµ] that expresses the discontinuity in the curvature tensor upon 

crossing the hypersurface S that has the local equation f(xα) = 0.  One has: 
 
(20-1)  lγ [Rαβ,λµ] = 1

2 (aαµ lβ lγ − aβµ lγ lα) lλ + 1
2 (aαµ lβ lγ − aαµ lβ lγ) lµ . 

 
By cyclic permutation of the indices α, β, γ one obtains: 
 
(20-2)  lα [Rβγ,λµ] = 1

2 (aβµ lγ lα − aγµ lα lβ) lλ + 1
2 (aµλ lα lβ − aβλ lγ lα) lµ 

and: 
(20-3)  lβ [Rγα,λµ] = 1

2 (aγµ lα lβ − aαµ lβ lγ) lλ + 1
2 (aαλ lβ lγ − aγλ lα lβ) lµ . 
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By adding (20-1), (20-2), and (20-3), we obtain the relations: 
 
(20-4)  lα [Rβγ,λµ] + lβ [Rγα,λµ] + lγ [Rαβ,λµ] = 0. 
 
 b)  Suppose, moreover, that the metric on Vn+1 satisfies the generalized “Einstein 
equations” with a continuous right-hand side. 
 Upon crossing the hypersurface: 
 
(20-5)    [Rαβ] = 0, 
 
and from the analysis that was done in sec. 18, the vector lα satisfies relation (18-12). 
 From (17-18), one deduces: 
 

lα [Rαβ,λµ] = 1
2 (aαµ l

α lβ lλ − aαλ l
α lβ lµ )+ 1

2 (aβλ lµ − aβλ lλ) lα l
α, 

 
and since lα has null length, the second term of the right-hand side is zero.  Moreover, 
from (18-12): 

aαµlαlλ − aαλl
αlµ =

2

a
(lλlµ – lµlλ) = 0. 

Thus, (20-5) entails that: 
(20-6)    lα [Rαβ,λµ] = 0. 
 
 c)  One may also establish relations (20-4) and (20-6) directly in the following 
manner:  since the coefficients Γ of the Riemannian connection in local coordinates are 
continuous upon crossing S, it results from the HADAMARD conditions that there exists 
a system of quantities uα

βµ  such that: 

 
[ ] u lα α

λ βµ βµ λ∂ Γ =  (lλ = fλ∂ ). 

From (16-1), it results that: 
(20-7)    [Rα

β,λµ] =u lα
βµ λ − u lα

βλ µ . 

 
By multiplying with lν and cyclically permuting λ, µ, ν it follows that: 
 
(20-8)   lλ [R

α
β,µν] + lµ [R

α
β,νµ] + lν [R

α
β,λµ] = 0, 

 
which is equivalent to (20-4). 
 If the relation (20-7) is satisfied then one deduces from (20-7) that: 
 

u lρ
βµ ρ − u lρ

βρ µ  = 0. 

 
 After multiplying (20-7) by lα, it thus follows that: 
 

lα [R
α

β,λµ] = u l lρ
βρ λ µ − u l lρ

βρ λ µ  = 0, 
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i.e., (20-6).  Introduce the curvature forms: 
 

1
,2 Rα α λ µ

β β λµθ θΩ = ∧ . 

 
We associate 2-forms that are defined on S to the discontinuities of the curvature tensor: 
 

1
,2[ ] [R ]α α λ µ

β β λµ θ θΩ = ∧ . 

 
Relations (20-6) and (20-8) express that all of the local forms are singular[ ]α

βΩ  since the 

– necessarily isotropic – vector lα is a common proper isotropic vector. 
 
 
 21.  General case of a tensor that admits the symmetry type of a curvature 
tensor.  Consider a tensor Hαβ,λµ (≠ 0) at a point x of a Riemannian manifold Vn+1 that 
admits a metric of hyperbolic normal type, and which enjoys the same symmetry 
properties as the curvature tensor: 
 
(21-1)   Hαβ,λµ  = − Hβα,λµ = − Hαβ,µλ  Hαβ,λµ  = Hλµ,αβ . 
 
Suppose that there exists a vector la that satisfies the relations: 
 
(21-2)    lα Hβγ,λµ + lβ Hγα,λµ + lγ Hαβ,λµ = 0 
and: 
(21-3)     lα Hαβ,λµ = 0. 
If we set: 
(21-4)     Πλµ = 1

2 Hαβ,λµ θα ^ θβ 

 
then relations (21-2) and (21-3) express that the forms Πλµ are all singular and admit the 
vector lα, which, from sec. 7, is necessarily isotropic, as a common isotropic proper 
vector. 
 Therefore, the vector lα that we envision is necessarily isotropic. 
 We propose to study the structure of the contracted tensor: 
 
(21-5)     Hαβ = gρσ Hαρ,βσ . 
 
Upon contracting the indices α and λ in (21-2), and on account of the symmetry 
properties, it follows that: 
(21-6)    lαHαµ,βγ + lγHβµ − lβHγµ = 0, 
 
which is just a consequence of (21-2). 
 Upon accounting for (21-3) in (21-6), it follows that: 
 
(21-7)     lα Hβµ − lβ Hγµ = 0. 
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If vµ is an arbitrary vector at x: 
lγ Hβµvµ − lβ Hγµvµ = 0. 

It then results that: 
Hβµ v

µ = λ(v) lβ, 
 
in which λ(v) is a linear form in v.  There thus exists a scalar τ such that: 
 
(21-8)     Hαβ = τ lα lβ . 
 
 b)  Conversely, suppose that the tensor Hαβ,λµ admits the properties (21-1), and the 
vector lα satisfies the relations (21-2) and (21-8).  We have seen that (21-2) entails (21-6).  
Taking (21-8) into account, one thus obtains: 
 

lα Hαµ,βγ = 0, 
 
i.e., (21-3), and lα is necessarily isotropic.  We state: 
 
 THEOREM. – If one is given a tensor Hαµ,βγ at a point x of a Riemannian manifold 
Vm+1 that admits a hyperbolic normal metric, and this tensor enjoys the symmetry 
properties (21-1), as well as a vector lα for which these elements are coupled by relations 
(21-2), (21-3), and (21-8) then it is necessary and sufficient that either the relations (21-
2) and (21-3) are satisfied or the relations (21-2) and (21-8); l is then isotropic. 
 
 c)  If the indices λ and µ are fixed then the 2-form Πλµ at x is singular, with a 
fundamental isotropic vector l.  If we introduce the basis ϕ(i) of singular 2-forms with 
fundamental vector l that was defined in sec. 7 then it follows that: 
 

Hαµ,βγ =
( )

( )
i

i
i

a λµ αβϕ∑  (i = 1, …, (m – 1)). 

 
For a fixed i the ai(λµ) also define a singular 2-form with fundamental vector l and: 
 

ai(λµ) =
( )j

ij
j

a λµϕ∑ . 

From this, it results that: 
Hαβ,λµ = ( ) ( )

,

i j
ij

i j

a αβ λµϕ ϕ∑ , 

 
and from the symmetry property Hαβ,λµ = Hλµ,αβ, it follows that aij = aij .  Therefore: 
 
(21-9)   Hαβ,λµ = ( ) ( ) ( ) ( )

,

( )( )i i j j
ij

i j

a l n l n l n l nα β β α λ µ µ λ− −∑ . 

 
By contraction, one obtains: 
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(21-10)    Hαβ = − ( )ii
i

a∑ lα lβ . 

 
 When Hαβ,λµ and lβ are given the aij may not depend on the n(i).  The forms ϕ(i), and 
consequently the aij, are invariants of the transformation n(i) τ n(i) + k(i)l: the aij are the 
components of a symmetric tensor under a rotation of the system of n(i) in the (m−1)-
plane that they determine.  In particular, when H is given it is possible to choose n(i) to be 
a system of proper vectors of the matrix (aij) with respect to the unit matrix, and to thus 
annul aij for i ≠ j. 
 If we introduce the symmetric quantities: 
 
(21-11)    bαλ = ( ) ( )i j

ija n nα λ∑  

 
then, according to (21-9) it follows that: 
 
(21-12)  Hαβ,λµ = bαλ lβ lµ + bβµ lα lλ − bαµ lβ lλ − bβλ lα lµ 
 
and one obviously has: 
(21-13)    bαλ l

λ = 0. 
 
Therefore, there exist quantities bαλ that satisfy (21-13) and are such that the tensor Hαβ,λµ 
admits the expression (21-12).  We look for the sort of transformation up to which these 
quantities are defined: To that effect, we multiply (21-12) by vβ, in which vβ denotes an 
arbitrary vector.  If the tensor H is null then it follows that: 
 

{( vβ lβ) bαλ − vβ bβλ  lα} lµ − {(vβ lβ) bαµ − vβ bβµ lα} lλ  = 0. 
 
From this, it results that there exist quantities tα such that: 
 

(vβ lβ) bαλ − vβ bβλ lα = tα lλ (v
β lβ). 

 
Therefore, the bαλ necessarily have the form: 
 

bαλ = tα lλ + tλ lα = tα lλ + tλ lα + (uλ − tλ) lα. 
 
 From the symmetry of the bαλ , uλ − tλ is collinear to lλ and may annulled by 
modifying the tα.  When we take (21-13) into account one sees that the bαλ that satisfy 
(21-12), (21-13) are defined up to a transformation of the form: 
 
(21-14)   bαλ → bαλ + tα lλ + tλ lα   (with tα l

α = 0). 
 
One will note that by virtue of (21-14) the scalar: 
 

e = bαλ b
αλ 
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depends only on the tensor H and the choice of vector l.  Moreover, if the bαλ are defined 
by starting with (21-11), one has: 
(21-15)    e = 2

,

( )ij
i j

a∑ . 

 
Therefore, e is strictly positive and is annulled only if H = 0. 
 
  d)  We place ourselves in the case of general relativity, for which m = 3.  Let e0 be a 
normal vector that is oriented so that ds2 > 0, e1, a normal vector that is orthogonal to e0 
and such that one may take: 

l = e0 + e1. 
 
 By starting with e0, e1, we construct an orthonormal frame (eλ) at the point x of V4. 
Here, we shall denote indices that take the values 1, 2, 3 by u, v, …, and indices that take 
the values 2, 3 by A, B, …  For this frame, relations (21-3) translate into: 
 
(21-16)   H0β,λµ + H1β,λµ = 0. 
 
 We set α = A, β = B, γ = 0 in (21-12).  It follows that: 
 
(21-17)    HAB,λµ = 0. 
 
If one sets α = 1, β = B, γ = 0 in the same formula then one has: 
 
(21-18)   H0B,λµ + H1B,λµ = 0 
 
and the set of relations (21-17), (21-18) is equivalent to (21-2).  As a result, if Hαβ,λµ and 
lα are isotropic and related by relations (21-3) and (21-8) then the relations (21-2) only 
amount to (21-17), namely: 

H23,λµ = 0. 
 
We propose to establish that for m = 3, (21-2) is a consequence of (21-3) and (21-8), in 
which lα is assumed to be isotropic.  From (21-16), H23,10 = 0.  Moreover, from the same 
relation: 

HA0,B0 = − HA0,B1 = HA1,B1 . 
 
In order to bring (21-8) into the picture, we remark that in an orthonormal frame, because 
of its signature, one has: 

Hαβ = Hα0,β0 − Hαu,βu. 
 
From (21-8), one thus deduces: 
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(21-19)  
0, 0 1, 1 ,

1 1 ,

0 0 ,

0,

0,

0.

AB A B A B AC BC

B A BA

B A BA

H H H H

H H

H H

 = − − =
 = − =
 = − =

 

 
If we give A, B, C the values 2, 3, in (21-19) then one has: 
 

H23,23 = 0 H23,31 = H23,12,  H23,20  = H23,30  = 0; 
 
i.e., (21-17); (21-2) is thus established.  We thus state: 
 
 THEOREM. – Suppose we are given a tensor Hαβ,λµ at a point x of a Riemannian 
manifold V4 that admits a metric of hyperbolic normal type, a tensor that enjoys the 
symmetry properties (21-1), and an isotropic vector lα.  If these elements satisfy (21-3) 
and (21-8) then they also satisfy (21-2). 
 
 e)  The tensor Hαβ,λµ may be identified with a symmetric tensor that is constructed 
over the space of bivectors at x.  This space admits the metric that is defined by the 
tensor: 
(21-20)   γαβ,λµ = gαλ gβµ − gαλ gβµ . 
 
In the case of the manifold V4, of general relativity the space of bivectors in question is 
six-dimensional.  If eλ is an orthonormal frame at x in V4 then we agree to set: 
 

(21-21)   
2 3 1

3 1 2

1 2 3

τ
τ
τ

∧ =
 ∧ =
 ∧ =

e e

e e

e e

  
1 0 4

2 0 5

3 0 6.

τ
τ
τ

∧ =
 ∧ =
 ∧ =

e e

e e

e e

 

 
The τJ (I, J = 1, …, 6) define a basis for the space envisioned, which is orthonormal for 
the metric determined by (21-20).  In this basis, the metric tensor (21-20) admits for its 
only non-null components: 
 

γ11 = γ22 = γ33 = 1  γ44 = γ55 = γ66 = − 1. 
 

This gives us the signature of that metric.  We propose to study the matrix representative 
of the tensor Hαβ,λµ in the basis thus introduced.  It is a symmetric matrix 6×6, which we 
denote by (HIJ). 
 For e2 = n(1), e3 = n(2) the two forms ϕ(i) have the components: 
 

(1) (1)
23 10
(1) (1)
31 20
(1) (1)
12 30

0 0

0 1

1 0

ϕ ϕ
ϕ ϕ
ϕ ϕ

 = =
 = =
 = =

  

(2) (2)
23 10
(2) (2)
31 20
(2) (2)
12 30

0 0

1 0

0 1.

ϕ ϕ
ϕ ϕ
ϕ ϕ

 = =
 = − =
 = =
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From (21-9), the matrix (HIJ) has the resulting form: 
 

(21-22) (HIJ) =

22 12 12 22

12 11 11 12

12 11 11 12

22 12 12 22

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

0 0

a a a a

a a a a

a a a a

a a a a

 
 − − − 
 −
 
 
 −
  − 

 

 
Hαβ satisfies (21-8) with: 
(21-23)   τ  = − (a11 + a22). 
 
 
 22. – Matrix of the curvature discontinuity tensor in general relativity.  
 
 a)  We now study the matrix ([RIJ]) (I, J = 1, …, 6) that represents the tensor [Rαβ,λµ] 
at a point x of a hypersurface S at which the curvature tensor Rαβ,λµ of the spacetime 
manifold V4 is discontinuous, relative to an orthonormal frame such l = e0 + e1. 
 From the results of the preceding paragraph, it is easy to deduce its form since 
[Rαβ,λµ] satisfies the relations (21-2) and (21-3).  The contracted tensor [Rαβ] is assumed 
to be null here; it then results from (21-23) that: 
 

a11 + a22 = 0. 
Set: 

a11 = − a22 = σ  a12 = ρ. 
 
One thus obtains the following form (5) for the matrix ([RIJ]): 
 

(22-1)   ([RIJ]) =

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

0 0

σ ρ ρ σ
ρ σ σ ρ

ρ σ σ ρ
σ ρ ρ σ

 
 − − − 
 −
 
 
 −
  − 

. 

 
 When one is given the tensor [Rαβ,λµ] one may naturally make ρ = 0 by a choice of 
convenient choice of vectors e2 and e3.  According to (21-9), (22-1) may be translated 
into: 
(22-2)   [RIJ] =

(1) (1) (1) (2) (1) (1) (1) (2)
I J I J I J J I( ) ( )σ ϕ ϕ ϕ ϕ ρ ϕ ϕ ϕ ϕ− + + . 

 

                                                
 5 This form was obtained by PIRANI [2] by using the local coordinates that were introduced in sec. 8. 
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 b)  We have seen (cf. (17-8)) that: 
 
(22-3)   [Rαβ,λµ] = 1

2 (aαµ lβ lλ + aαµ lβ lλ − aαλ lβ lµ − aβµ lα lλ) , 

 
in which the aαλ are restricted only by condition (18-12), namely: 
 

(22-4)   aαλ l
λ  =

2

a
lα, 

 
and are defined up to the transformation: 
 
(22-5)   aαλ → aαλ + tα lλ + tα lλ . 
 
a transforms according to: 

a → a + 2tα l
α, 

 
and it is possible to choose tα in such a fashion as to annul a.  Suppose that this is the 
case; for these special aαλ the transformation (22-5) is restricted by the condition tα l

α = 0; 
if we then set: 

bαλ = − 1
2 aαλ  

 
then (22-3) take the form (21-12), and, from (22-4), the bαλ satisfy (21-13) precisely.  It 
then results, in particular, that any tensor at the point x of V4 satisfies the symmetry 
properties (21-1) and the relations (21-2), and (21-3) might be the discontinuity tensor at 
x for the curvature tensor upon crossing the 3-plane that is tangent to the elementary cone 
at x along l. 
 One immediately verifies that the scalar (6): 
 

aαλ a
αλ − 1

2 a2 

 
is invariant under the general transformation (22-5).  As a result, one has for the tensor 
[Rαβ,λµ]: 

e = ( )21 1
4 2a a aαλ

αλ − = bαλ b
αλ > 0. 

 
 
 23. – Differential relations for the discontinuities of the curvature tensor.  We 
return to a manifold Vm+1 that is endowed a metric of hyperbolic normal type that satisfies 
the Einstein equations with null right-hand side.  If the curvature of Vm+1 is discontinuous 
upon crossing a hypersurface S then the tensor [Rαβ,λµ] satisfies an interesting differential 
relation on S that is analogous to (9-11). 
 

                                                
 6 The introduction of this quantity is due to STELLMACHER. 
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 Let f(xα) = 0 be the local equation for S, where f is assumed to be of class C2.  For lα 
= fα∂ , one has: 

(23-1)    ∇α lβ − ∇β lα = 0.  
 
 a)  For a neighborhood U, we adopt local coordinates and notations that are identical 
to the ones in sec. 9.  In particular, we have ∇0 l

0 = 0 in these coordinates.  The tensor 
[Rαβ,λµ] satisfies the relations: 
 
(23-2)   lρ [Rαβ,λµ] + lλ [Rαβ,µρ] + lµ [Rαβ,ρλ] = 0 
and: 
(23-3)    lρ [Rαβ,

ρ
µ] = 0 

 
on S.  In these local coordinates, (23-2) and (23-3) can be written: 
 
(23-4)    [Rαβ,uv] = 0 
(23-5)    [Rαβ,

0
µ] = 0, 

respectively. 
 
 b)  Since the relation (23-2) is satisfied on S, by differentiating on this hypersurface, it 
follows that: 

∇u (lρ [Rαβ,λµ]) + ∇u (lλ [Rαβ,µ
ρ]) + ∇u (lµ [Rαβ,

ρ
λ]) = 0. 

 
If we set ρ equal to u and sum then one obtains a relation that, since ∇0 l

0 = 0, may be 
written: 
(23-6)   lρ ∇ρ [Rαβ,λµ] + (∇ρ l

ρ)[Rαβ,λµ] + Qαβ,λµ = 0, 
 
in which we have set: 
 
(23-7)  Qαβ,λµ = ∇ρ lλ [Rαβ,µ

ρ] + ∇ρ lµ [Rαβ,
ρ

λ] + lλ [∇u Rαβ,λ
u] + lµ [∇u Rαβ,

u
λ]. 

 
Since Rαβ = 0, one knows that: 

∇ρ [Rαβ,
ρ

λ] = 0. 
 
As a result, Qαβ,λµ may be put into the form: 
 

Qαβ,λµ = [∇λ lρ Rαβ,µ 
ρ + ∇µ lρ Rαβ,

ρ
λ] − lλ [∇0 Rαβ,λ

0] − lµ [∇0 Rαβ,
0

λ]. 
Now: 

∇λ lρ · Rαβ,µ 
ρ + ∇µ lρ  · Rαβ,

ρ
λ = ∇λ (lρ Rαβ,µ  

ρ) + ∇µ( lρ Rαβ,
ρ

λ) − lρ (∇λ Rαβ,µ 
ρ + ∇µ Rαβ,

ρ
λ). 

 
From the BIANCHI identity, one thus deduces that: 
 

Qαβ,λµ = lρ ∇ρ [Rαβ,λµ] + [∇λ (lρ Rαβ,µ 
ρ) + ∇µ (lρ Rαβ,

ρ
λ)] − lλ [∇0 Rαβ,µ 

0] − lµ [∇0 Rαβ,
0
λ]. 

 
If we set λ = u in the second term on the right-hand side then we have: 
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[∇u (lρ Rαβ,µ 
ρ)] = ∇u (lρ [Rαβ,µ 

ρ])  = 0. 
 
As a result: 

Qαβ,uv = lρ ∇ρ [Rαβ,uv]. 
 
Similarly, when λ = 0 and µ = u: 
 

[∇0 (lρ Rαβ,u 
ρ)] = [∇0 l

ρ Rαβ,uρ + ∇ρ l0 Rαβ,u 
ρ] = [∇0 Rαβ,u 

0] 
 
since ∇0 l

0 = 0.  One thus obtains: 
Qαβ,λµ = lρ ∇ρ [Rαβ,λµ]. 

 
If we substitute this into (23-6) then one sees that the tensor [Rαβ,λµ] satisfies the 
differential relation (7): 
 
(23-8)   2lρ ∇ρ [Rαβ,λµ] + (lρ ∇ρ)[Rαβ,λµ] = 0 
 
on S, which entails consequences that are analogous to (9-11) as far as [Rαβ,λµ] is 
concerned: if the tensor [Rαβ,λµ] is annulled at a point x of S then it is annulled all along 
the isotropic geodesic that issues from x and is situated on S. 
 Let Σ be spatially oriented hypersurface that cuts S (x0 = 0) along a 2-surface U.  We 
choose CAUCHY data (gαβ)Σ, ( )gλ αβ Σ∂ on Σ such that the second derivatives experience 

discontinuities 00 4[ ]gαβ∂ = (aαβ)4 when crossing Σ, in which the (aαβ)U are restricted only 

by the condition (18-12): 

2
U

a
a g lβ

αβ αβ
  −  
  

= 0. 

 
This amounts to being given a tensor [Rαβ,λµ]U at the points of U that admits (lρ)U for a 
fundamental vector and whose contracted tensor is null.   A solution to the EINSTEIN 
equation Rαβ = 0 corresponds to the CAUCHY data in question such that the curvature 
tensor experiences a discontinuity [Rαβ,λµ] upon crossing S.  The tensor [Rαβ,λµ] is 
necessarily the solution to (23-8) that corresponds to the initial data [Rαβ,λµ]U . 
 
 c)   We have seen that the tensor [Rαβ,λµ] may be written: 
 

[Rαβ,λµ] = bαλ lβ lµ + bβµ lα lλ − bβµ lα lλ − bβλ lα lµ 
 
in which the bαλ satisfy: 

bαλ l
λ = 0. 

Set: 
cαλ = 2lρ ∇ρ bαλ + (∇ρ l

ρ) bαλ. 
 

                                                
 7 This relation was established independently by A. TRAUTMAN [1]. 
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If one takes into account that lρ ∇ρ lα = 0 then one sees that (23-8) may be written: 
 
(23-9)    cαλ lβ lµ + cβµ lα lλ − cαµ lβ lλ − cβλ lα lµ = 0. 
 
If one takes the product (23-9) with bαλ then one obtains: 
 

bαλ cαλ = 0, 
that is: 
(23-10)   2lρ bαβ ∇ρ bαβ + (∇ρ l

ρ) bαβ bαβ = 0. 
 
Therefore, the scalar: 

e = bαβ bαβ =
21 1

4 2
a a aαβ

αβ
 − 
 

> 0 

 
satisfies the conservation identity: 
(23-11)    ∇ρ (e lρ) = 0, 
 
a relation that is similar to (10-1).  We introduce the fourth order tensor: 
 
(23-12)    ταβ,λµ = e lα lβ lλ lµ . 
 
 If l is subjected to the transformation lα → λlα then bαλ → λ−2 bαλ and e → λ−4e.  The 
tensor τ thus depends only upon the tensor [Rαβ,λµ], and, since lρ ∇ρ lα = 0, (23-11) 
expresses the idea that τ is conservative: 
 
(23-13)    ∇α τα

β,λµ = 0. 
 
Furthermore, from expression for [Rαβ,λµ] in terms of bαλ one immediately verifies that: 
 
(23-14)  ταβ,λµ = 1

2 {[ Rρ
β,

σ
λ][Rρβ,σµ] + [Rρ

α,
σ

µ][Rρβ,σλ]}. 

 
 
 23 bis. – Case in which there exists an electromagnetic field.  In the case where 
there exists an electromagnetic field in V4 that satisfies the vacuum MAXWELL 
equations and relates to the gravitational field through the EINSTEIN equations: 
 
(23 bis-1)    Rαβ = χταβ  (ταβ = MAXWELL tensor), 
 
suppose that the derived tensors of the electromagnetic field and the curvature tensor are 
discontinuous upon crossing the hypersurface S. 
 
 a)  With the same hypotheses and notations as in sec. 9, formula (9-11) may be 
modified: here, the RICCI identity gives: 
 

[∇ρ∇σ Fβγ − ∇σ ∇ρ Fβγ] = − [Rλ
β,ρσ] Fλγ − [Rλ

γ,ρσ] Fβλ . 
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From this, it easily results that: 
 

[lβ ∇ρ ∇σ Fγ 
β + lγ ∇σ ∇ρ F

ρ
β] = − lλ F

λρ[Rρσ,βγ] 
and: 

[lρ ∇β ∇σ Fγ 
ρ + lρ ∇γ ∇σ F

ρ
β] = − lρ ∇ρ [∇σ Fβγ] + lλ F

λρ[Rρσ,βγ]. 
 
By the same argument as in sec. 9, one then deduces: 
 
(23 bis-2)  2lρ ∇ρ [∇σ Fβγ] + (lρ ∇ρ)[∇σ Fβγ] = 2lλ F

λρ[Rρσ,βγ]. 
 
In (23 bis-2), if we set: 
(23 bis-3)   [∇σ Fβγ] = ϕβγ lσ = (lβ bγ – lγ bβ) lσ 
and: 
(23 bis-4) [Rρσ,βγ] = bρβ lσ lγ + bσγ  lρ lβ  − bργ lσ lβ  − bσβ lρ lγ   (bβ

β = 0)  
 
in (23 bis-2) then it follows that: 
 
(23 bis-5) 2lρ ∇ρ (lβ bγ – lγ bβ) + (lρ ∇ρ)(lβ bγ – lγ bβ) = 2lλ F

λρ(bµβ lγ  − bργ lβ). 
Set: 
(23 bis-6)   eem = − bβ bβ > 0  eσ = bαλ bαλ > 0. 
 
If we multiply (23 bis-5) by bβ then it follows that: 
 
(23 bis-7)   ∇ρ (eem l

ρ) = 2lλ F
λρ bσ bρσ . 

 
 b)  Now recall the argument of sec. 23, while noting that in the present case one has 
(23 bis-1) instead of Rαβ = 0.  It follows that: 
 

[∇Rαβ,µ 
ρ] = −χ [∇ατβµ − ∇βταµ]. 

 
As a result, instead of the formula (23-8) one now substitutes: 
 
(23 bis-8) 2lρ ∇ρ [Rαβ,λµ] +(lρ ∇ρ)[Rαβ,λµ]  

= −χ lλ [∇ατβµ − ∇βταµ] −χ lµ [∇ατβλ − ∇βταλ]. 
Now: 

[∇βταλ] = 1
2 gαλ F

ρσ[∇β Fρσ] − Fλ 
ρ[∇β Fαρ] − Fαρ [∇β Fλ 

ρ], 

namely: 
(23 bis-9)  [∇βταλ] = 1

2 gαλ F
ρσ ϕρσ lβ − Fλ 

ρ ϕαρ lα − Fαρ ϕλ 
ρ lβ . 

 
If we substitute the expressions for [Rαβ,λµ] and [∇βταλ] in (23 bis-8) and multiply by bαλ 
then we obtain: 
(23 bis-10)   ∇ρ (eg l

ρ) = − 2χ lλ F
λρ bσ bρσ . 

 
From (23 bis-7) and (23 bis-10), one concludes: 
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(23 bis-11)   ∇ρ { eg + eem} = 0, 
 
which can be interpreted as the conservation of the total “energy of the discontinuity” 
relative to the gravitational field and the electromagnetic field.  The fourth order tensor 
that is obtained by combining (23-14) and (10-2) is thus conservative. 
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III.  Gravitational radiation in general relativity. 
 
 24.  Notion of pure gravitational radiation.  
 a)  From the study that was made in part II, it results that in general relativity one 
must focus on metrics for which there exists a vector lα such that curvature tensor Rαβ,λµ 
satisfies the relations: 
(24-1)   lα Rβγ,λµ + lβ Rγα,λµ + lγ Rαβ,λµ = 0 
and: 
(24-2)     lα Rαβ,λµ = 0. 
 
If Rαβ,λµ is not identically null then lα is necessarily isotropic.  The RICCI tensor of the 
metric then has the form: 
(24-3)     Rαβ = τ lα lβ . 
 
If this is true at a point x of the manifold V4 then we say that the metric corresponds to a 
state of pure total radiation at this point.  If, in addition, the RICCI tensor Rαβ is null then 
we say that we have a state of pure gravitational radiation. 
 We shall ultimately come upon an example in which this may possibly be the case at 
all of the points of a four-dimensional domain of the manifold V4.  In such a domain, lα 
defines a field of generatrices of elementary cones and, as a result, a field of 3-planes that 
are tangent to these cones along the generatrices.  If this field of planes is completely 
integrable then we say that the radiation in question is of integrable type. 
 
 b)  Suppose that there exists a vector field lα on the manifold Vm+1 such that (24-1) 
and (24-2) are satisfied.  From the BIANCHI identity: 
 

∇ρ Rαβ,λµ  + ∇α Rβρ,λµ  + ∇β Rρα,λµ  = 0, 
 
if one takes the contracted product with lρ then, on account of (24-2), one deduces: 
 
(24-4)   lρ ∇ρ Rαβ,λµ  − ∇α lρ Rβ 

ρ
,λµ  − ∇β lρ R

ρ
α,λµ  = 0, 

 
a relation that plays the same role here that (11-8) or L(l)F = 0 plays in the case of 
electromagnetic radiation. 
 Suppose that Rαβ = 0.  By contracted differentiation of: 
 

lρ Rαβ,λµ  + lα Rβρ,λµ  + lβ Rρα,λµ  = 0, 
 
one obtains, since ∇ρ Rα 

ρ
,λµ  = 0: 

 
(24-5)   ∇ρ (l

ρ Rαβ,λµ) + ∇ρ lα Rβ 
ρ

,λµ  + ∇ρ lβ R
ρ

α,λµ  = 0, 
 
which plays the same role here as (11-9). 
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Suppose, in addition, that the field is of integrable type: ∇α lρ = ∇ρ lα .  By adding (24-4) 
and (24-5) one obtains the relations: 
 
(24-6)    2 lρ ∇ρ Rαβ,λµ  + (∇ρ l

ρ)Rαβ,λµ = 0 
which is similar to (14-4). 
 
 c)  If the RICCI tensor Rαβ of Vm+1 is ≠ 0 then it is clear that the trajectories of the 
vector field that is defined by lα are isotropic geodesics.  Indeed, one necessarily R = 0, 
and, as a result: 

Sαβ = τ lα lβ  (τ ≠ 0). 
 
From the conservation identities, one deduces: 
 

∇α S
α

β = ∇α (τ lα) lβ + τ lα ∇α lβ = 0. 
 
Therefore, for τ  ≠ 0, lα ∇α lβ is precisely collinear to lβ. 
 It is easy to extend this result to the general case.  To that effect, we use (24-4), and 
introduce the tensor that is defined by: 
 
(24-7)     Pαβ,λµ = lρ ∇ρ Rαβ,λµ , 
 
so it has the same symmetry type as the curvature tensor.  From (24-4), one deduces that 
the tensor Pαβ,λµ satisfies the relations: 
 
(24-8)    lν Pαβ,λµ + lλ Pαβ,µν + lµ Pαβ,νλ = 0 
and: 
(24-9)     lλ Pαβ,λν = 0. 
 
On the other hand, differentiate (24-1) and take the contracted product with lρ .  If we set 
lρ ∇ρ lα  = uα then one obtains: 
 

uα Rαβ,λµ + uβ Rγα,λµ + uγ Rαβ,λµ + lα Pβγ,λµ + lβ Pγα,λµ + lγ Pαβ,λµ = 0. 
 
If we proceed as we did with (24-2) then we have: 
 

uα Rαβ,λµ + lα Pαβ,λµ = 0. 

From (24-8) and (24-9), one thus deduces that the vector uα and the curvature tensor also 
satisfy the relations (24-1) and (24-2).  Since the curvature tensor is not identically null, 
uα is necessarily isotropic; however, it is orthogonal to lα.  Hence, it may not be collinear.  
Therefore: 

 THEOREM. – If a vector field la exists that satisfies relations (24-1) and (24-2) on a 
Riemannian manifold Vm+1 whose metric of normal hyperbolic type has non-null 
curvature then the trajectories of that vector field are null-length geodesics of that 
metric. 
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 25.  The conservation identity.  We propose to establish a conservation identity for 
pure gravitational radiation that is analogous to (11-11).  To that effect, we adapt the 
method that was indicated in sec. 11d to the gravitational case. 
 By virtue of (24-1) and (24-2), we may set: 
 

Rαβ,λµ = bαλ  lβ lµ + bβλ  lα lλ − bαµ  lβ lλ  − bβλ  lα lµ 
 
in which the bαλ satisfy: 

bαλ l
λ

 = 0 
and l is restricted by: 
(25-1)     lρ ∇ρ lα = 0. 
 
 Set bαλ = lρ ∇ρ bαλ.  If we substitute the preceding expression for Rαβ,λµ in (24-4) then 
we obtain: 

dαλ lβ lµ + dβλ lα lλ − dαµ lβ lλ  − dβλ lα lµ − ∇α lρ (b
ρ

µ  lβ lλ − bρ
λ  lβ lµ) 

− ∇β lρ (b
ρ

λ  lα lµ − bρ
µ  lα lλ) = 0. 

 
Upon multiplying by bαλ one obtains the relations: 
 
(25-2)    lρ b

αβ  ∇ρ bαβ  + ∇σ lρ b
ρ

λ
  bσλ = 0. 

 
Similarly, if we substitute the expression for Rαβ,λµ into (24-5) then one has: 
 

(dαλ + (lρ ∇ρ) bαλ) lβ lµ + (dβµ + (lρ∇ρ) bβµ) lµ  lλ − (dαµ + (lρ ∇ρ) bαµ) lβ lλ  
− (dβλ + (lρ∇ρ) bβλ) lα  lµ + ∇ρ lα (b

ρ
µ 

 lβ lλ − bρ
λ

  lβ lµ) + ∇ρ lβ (b
ρ

λ
  lβ lµ − bρ

µ
  lβ lλ) = 0. 

 
After multiplying this by bαλ one obtains: 
 
(25-3)   lρ bαβ ∇ρ bαβ  + (lρ ∇ρ) bαβ bαβ  − ∇ρ lσ b

ρ
λ  b

σλ   = 0. 
 
Adding corresponding sides of equations (25-1) and (25-2) gives: 
 

2 lρ bαβ ∇ρ bαβ  + (lρ ∇ρ) bαβ bαβ = 0 
namely: 
(25-4)    ∇ρ(e lρ) = 0 with e = bαβ bαβ > 0. 
 
If we introduce the fourth order tensor: 
 

ταβλµ = e lα lβ lλ lµ , 
 
which depends only upon the curvature tensor, one sees, on account of (25-1), (25-4), that 
τ is conservative. 
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 26.  The Bel tensor. 
 1)  Consider a tensor Kαβ,γδ at the point x of the Riemannian manifold V4 that satisfies 
the symmetry properties (21-1) of the curvature tensor, is such that its contracted tensor 
satisfies: 
(26-1)    Kαβ = λ gαβ . 
 
We associate it with the tensor: 

(26-2)    ,

1

2
Kαβ γδ

∗ = ηαβγδ  K
ρσ

,γδ . 

 
It is easy to show that under the hypothesis (26-1) the tensor (26-2) also enjoys the 
symmetry properties (21-1), i.e., it satisfies: 
 
(26-3)    , ,K Kαβ γδ γδ αβ

∗ ∗= . 

 
 Indeed, if S denotes the summation after cyclic permutation of the three indices 
α, β, γ, which are assumed to be distinct, then we obtain: 
 

S ,

1

2
Kαβ γδ

∗ =  Sηαβγδ  K
ρσ

,γδ  = ηαβγδ  K
σ

δ. 

 
One thus sees that for any α, β, γ, δ one has: 
 
(26-4)   ,Kαβ γδ

∗ + ,Kβγ αδ
∗  + ,Kγα βδ

∗  = λ ηαβγδ . 

 
(26-4) may also be written: 

,Kβα δγ
∗ + ,Kαδ βγ

∗ + ,Kδβ αγ
∗  = λ ηαβγδ  . 

 
Adding both sides of these last two equations gives: 
 
(26-5)    ,Kαβ γδ

∗ = Lαβ,γδ  + Lαδ,γβ  + λ ηαβγδ , 

in which one has set: 
2Lαβ,γδ  = ,Kαβ γδ

∗ + ,Kγδ αβ
∗ . 

 
By exchanging α and γ, β, and δ in (26-5), one sees that (26-3) is satisfied. 
 Now consider the tensor: 
 

,Kαβ γδ
∗∗  = 1

4 αβλµη∗ ηγδρσ Kλµ,ρσ  = 1
,2 K λµ

αβλµ γδη ∗ . 

 
From (26-3), it results that: 
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,Kαβ γδ
∗∗ = 1

4 ηαβλµ
 ηλµρσ Kγδ,ρσ  = 1

2
ρσ

αβε− Kρσ,γδ , 

that is: 
(26-6)    ,Kαβ γδ

∗∗  = − Kαβ,γδ . 

One may derive a formula from relation (26-6) that will be important in what follows.  To 
the end, we form the quantity: 
 

K** αβ,γλ  ,Kαβ γµ
∗∗ = 1

16 ηαβρσ ηγλτu ηαβφψ
 ηγµχπ

  Kρσ,τu K
γψ,χπ

 . 

 
Upon introducing the KRONECKER indicators, one obtains: 
 

K** αβ,γλ  ,Kαβ γµ
∗∗  = 1

8
uρσ λτ

φψ µχπε ε Kρσ,τu K
φψ,χπ = 1

4
λαβ
µγδε Kρσ,αβ K

ρσ,γδ, 

namely: 
K** αβ,γλ 

,Kαβ γµ
∗∗  = 1

2
λ
µδ Kρσ,αβ Kρσ,αβ − Kρσ,λδ Kρσ,µδ . 

 
One thus obtains: 
 
(26-7)  K** αβ,γλ  ,Kαβ γµ

∗∗  + Kαβ,γλ Kαβ,γµ = 1
2

λ
µδ Kαβ,γδ  Kαβ,γδ . 

 
From (26-6), it then follows that: 
 
(26-8)    Kαβ,γλ Kαβ,γµ = 1

4
λ
µδ Kαβ,γδ Kαβ,γδ . 

 
 2)  If we are given a unitary vector u then we can associate the tensor Kαβ,γδ. with two 
symmetric tensor: 
(26-9)   Eαβ(u) = Kαρ,βσ  u

ρ uσ,   Hαβ(u) = − ,Kαρ βσ
∗ uρ uσ, 

 
which obviously satisfy: 

Eαβ u
β = 0  Hαβ u

β = 0. 
 
The data of these two tensors completely determines the tensor Kαβ,γδ, which is assumed 
to satisfy (26-1).  Indeed, we adopt an orthonormal frame such that e0 = u; E and H are 
spatial tensors with the components: 
 

Ers = Kr0,s0  Hrs = − 0, 0r sK ∗   (r, s, …, = 1, 2, 3) 

 
and one sees that the components Krs,tu are given by the tensor E, while the components  
Krs,t0 by the tensor H.  In particular, we evaluate: 
 
(26-10)    A = 1

8 Kαβ,γδ Kαβ,γδ . 

 
From this, it follows that: 
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A = 1
2 Kr0,s0 Kr0,s0 + 1

2 Krs,t0 Krs,t0  + 1
8 Krs,tu Krs,tu. 

Now: 
Kr0,s0 Kr0,s0 = Krs Krs . 

On the other hand: 
 

Krs,t0 Krs,t0 = ηrsv0 ηrsv0 
0

0,
t

uK ∗  K*v0
, t0  = − 0

0,
u t
v uKδ ∗ K*v0

, t0 = − 2Hrs Hrs , 

 
and finally, we have: 
 

Krs,tu Krs,tu = K** rs,tu ,rs tuK ∗∗  = ηrsv0ηtuv0ηrsp0 ηtuq0 Kv0,w0 K
p0,q0, 

namely: 
Krs,tu Krs,tu = 4Kv0,w0 Kv0,w0 = 4Ers Ers . 

 
 3)  The fourth order tensor that appeared in sec. 23, and the analogous tensor for a 
pure gravitational radiation led Bel [2] to associate with any metric that satisfies: 
 
(26-12)    Rab – λ gab = 0 
 
a fourth order tensor: 
(26-13)  Bαβ,λµ = 1

2 (Rρ,
α,

σ
λ Rρβ,σµ + Rρ,

α,
σ

µ Rρβ,σλ). 

 
This tensor is symmetric in α, β, as well as in λ, µ, and is also symmetric in the pairs α,β 
and λ,µ; we evaluate its contracted covariant derivative.  From: 
 

∇α R
α

β,γδ  = 0, 
 
which is a consequence of (26-12), it results that: 
 

2∇α B
α

β,γδ  = Rαβ,γ
δ ∇α R

α
β,γδ  + Rρα,σ

µ ∇αRρβ,σλ . 
Hence: 

4∇α B
α

β,λµ  = Rρα,σ
λ (∇α Rρβ,σµ − ∇α Rρβ,σµ) + Rρα,σ

µ (∇α Rρβ,σλ − ∇α Rρβ,σλ). 
 
Therefore, by virtue of the BIANCHI identity: 
 

4∇α B
α

β,λµ  = Rρα,σ
λ ∇α Rρβ,σµ + Rρα,σ

µ ∇α Rρβ,σλ . 
Hence: 

4∇α B
α

β,λµ  = ∇β(R
ρα,σ

λ Rρα,σµ). 
 
From (26-8), it thus results that: 
 

∇α B
α

β,λµ  = 1
2 ∇β (Agλµ)   (with A = 1

8 Rαβ,γδ Rαβ,γδ). 

 
Therefore, the tensor: 
(26-14)   Tαβ,λµ = Bαβ,λµ − 1

2 Agαβ gλµ , 
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which exhibits the same symmetry properties as B, satisfies the conservation identity: 
 
(26-15)    ∇α T

α
β,λµ = 0. 

 
For pure gravitational radiation (Rαρ = 0), Tαβ,λµ reduces to the tensor ταβλµ of sec. 25.  If 
u is a unitary vector then we study the quantity: 
 

T(u) = Tαβ,λµ uα uβ uλ uµ. 
 
In an orthonormal frame such that e0 = u: 
 

T(u) = T00,00 = B00,00 – 1
2 A = Rρ

0,
σ

0 Rρ0,σ0 – 1
2 A = Ers(u)Ers(u) − 1

2 A, 

namely: 
T(u) = 1

2 | Ers(u)Ers(u) + Hrs(u)Hrs(u) | > 0. 

 
Therefore, T(u) is strictly positive, and it is null only if the curvature tensor is null.  The 
tensor Tαβ,λµ  therefore seems to generalize the MAXWELL tensor in this case. 
 
 
 27.  Construction of an example of radiation. 
 a)  Suppose we have a neighborhood U of Vm+1 that is endowed with the metric: 
 

ds2 = g00(x
i)(dx0)2 + ds*2  (g00 = − ξ2 < 0; i = 1, …, m) 

 
in which ds*2 is a quadratic form in the variables (xi).  The metric ds2 admits a one-
parameter group of isometries, x0 → x0 + const., whose generator ξξξξ has the components 
(ξ0 = 1, ξ1 = 0).  The quotient metric is ds*2, and the anti-symmetric Fij of sec. 19 is null.  
If α

βγΓ (α, …, = 0, 1, …, m) and i
jk
∗Γ are the coefficients of the Riemannian connection on 

Vm+1 and Vm relative to the coordinates envisioned: 
 

i
jk
∗Γ = i

jkΓ . 

 
With the notations of sec. 19, the antisymmetric tensor Fij is null, and if one refers U to 
an adapted orthonormal frame then formulas (19-14), (19-15), and (19-16) become: 
 
    ,R i j k l = ,R i j k l

∗  

    , 0R i j k = 0 

    0, 0R i k =
*

1 ( )k iξ ξ∇ ∂ . 

 
We shall use the preceding formulas in order to construct an example of radiation. 
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 b)  Let the numerical space4
ℝ be referred to the coordinates: 

 
t = x0  x = x1  y = x2  z = x3  (α … = 0, 1, 2, 3), 

set: 
(27-1)    u = t – x = x0 – x1, 
 
and endow a domain U with the metric that is defined by: 
 
(27-2)   ds2 = e2ϕ (dt2 – dx2) – (x2 dy2 + h2 dz2) = gαβ  dxα dxβ, 
 
in which ϕ, ξ > 0, η > 0 are three functions of the variable u.  If we are given a function 
f(u) then we denote its derivative with respect to u by ( )f u′ ; one then has: 
 
 0 f f ′∂ =  1 f f ′∂ = −  A 0f∂ =   (A, …, = 2, 3) 
and: 
 00 f f ′′∂ =  01 f f ′′∂ = −  11 f f ′′∂ =  A 0fα∂ = . 
 
 The metric (27-2) admits two one-parameter groups of isometries that are defined by 
the two generators: 
   ξ0 = ξ1 = ξ3 = 0 ξ2 = 1 
and: 
   η0 = η1 = η2 = 0 η3 = 1, 
 
which both satisfy the hypotheses of the preceding section.  The numbers ξ and η are the 
scalar numbers that are associated with the two generators. 
 Consider the decomposition of ds2 into squares: 
 

ds2 = 0 2 1 2 2 2 3 2( ) ( ) ( ) ( )θ θ θ θ− − −  
with: 

0θ  = eϕ dx0 1θ  = eϕ dx1 2θ  = ξ dx2 3θ  = η dx3. 
 
We thus define orthonormal frames that are adapted to both groups of isometries.  The 
matrix( )Aα

β  for the transition from the coordinates (xβ) to the orthonormal frame is 

diagonal, and it has the elements: 
 
(27-4)  0

0A  = eϕ 1
1A  = eϕ 2

2A  = ξ  3
3A  = η, 

 
and the only non-null elements of the inverse matrix are: 
 
(27-5)  0

0A  = e−ϕ 1
1A  =  e−ϕ 2

2A  = ξ −1 3
3A  = η−1. 

 
 c)  We propose to compute the components of the curvature tensor of (27-2) with 
respect to the orthonormal frame described. 
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From preliminary formulas, it results that if exactly one of the indices α, β, λ, µ is equal 
to the values 2 or the value 3 then ,Rαβ λµ  = 0. 

 One thus obtains: 
 
 23,3 1R = 0 23,1 2R = 0 23,1 0R  = 0 23,20R = 0 23,30R  = 0 

   3 1,1 2R = 0 3 1,1 0R  = 0 3 1,20R  = 0 

     1 2,1 0R  = 0   1 2,30R  = 0 

       1 0,20R  = 0 1 0,30R  = 0 

         20,30R  = 0. 

 
 With the notations of sec 22, the components of the curvature tensor may be arranged 
into the matrix: 

(27-6)   (RIJ) =

11

22 26

33 35

44

35 55

26 66

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

R

R R

R R

R

R R

R R

 
 
 
 
 
 
 
  
 

. 

 
Now we must evaluate the various elements that appear in (27-6). 
 First of all, the isometry, x2 → x2 + const., gives us, upon passing to the quotient, the 
metric: 

ds*2 = e2ϕ (dt2 – dx2) – η2dz2, 
 
which further admits the isometry, x3 → x3 + const., which leads us to the new metric: 
 

ds**2  = e2ϕ(u)(dt2 – dx2) – η2dz2 = e2ϕ(u) du(t + x), 
 
which is obviously Euclidian.  From the preliminary formulas, and using an obvious 
notation, it results that: 

1 0,1 0R = 1 0,1 0R∗ = 1 0,1 0R∗∗ . 

One thus has: 
(27-7)     1 0,1 0R  = 0. 

 
 We now evaluate 23,23R .  From (26-5), it results that: 

23,23R = ξ1
3 3( )ξ

∗
∇ ∂ . 

From (27-4), it follows that: 

R23,23 = ξ 3 3( )ξ
∗
∇ ∂ . 
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Since x depends only on u, and recalling the preliminary formulas, one has: 
 

3 3( )ξ
∗
∇ ∂ = − 0 1

33 33( )ξ ′Γ − Γ . 

Now: 
0
33Γ = g00[33, 0] = − 001

332 g g′  1
33Γ = g11[33, 1] = − 001

332 g g′ . 

 
From this, it results that R23,23 = 0, and, as a result: 
 
(27-8)     23,23R  = 0. 

 
  d)  One likewise has: 

1 2,1 2R = 1
11 ( )ξ ξ

∗

∇ ∂ , 

namely, from (27-4): 

R12,12 = ξ 1 1( )ξ
∗
∇ ∂ . 

 
By specifying the covariant derivative, one gets: 
 

R12,12 = 0 1
11 11[ ( ) ]ξ ξ ξ′′ ′− Γ − Γ . 

Now: 
0
11Γ = g00[11, 0] = 001

002 g g′ =ϕ ′  1
11Γ = g11[11, 0] = − 001

002 g g′ = −ϕ ′ . 
 

From this, one deduces that: 
R12,12 = ( 2 )ξ ξ ϕ ξ′′ ′ ′− , 

and, from (27-5): 
(27-9)    1 2,1 2R  = 2 1( 2 )e ϕξ ξ ϕ ξ− − ′′ ′ ′− . 

 
 On the other hand: 

    1 2,20R  = 1
1 0( )ξ ξ

∗
−− ∇ ∂ , 

i.e.: 
(27-10)   R12,20 = 1 0( )ξ ξ− ∇ ∂ = 0 1

11 11[ ( ) ]ξ ξ ξ′′ ′− Γ − Γ . 
Now: 

0
10Γ = g00[10, 0] = − 001

002 g g′ = −ϕ ′  1
10Γ = g11[10, 0] = 001

002 g g′ =ϕ ′ . 
 
One thus obtains: 
(27-11)   1 2,20R  = 20,20R  = 2 1( 2 )e ϕξ ξ ϕ ξ− − ′′ ′ ′− . 

 
As far as the matrix (27-6) is concerned, we have thus established: 
 

R11 = R44 = 0 
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and: 
(27-12)   R11 = R44 = R55 = 2 1( 2 )e ϕξ ξ ϕ ξ− − ′′ ′ ′− . 
 
 If we consider the other group of isometries then one likewise establishes: 
 
(27-13)   R22 = −R26 = R66 = 2 1( 2 )e ϕη η ϕ η− − ′′ ′ ′− . 
If we set: 
(27-14)  a = 2 1( 2 )e ϕξ ξ ϕ ξ− − ′′ ′ ′−  b = 2 1( 2 )e ϕη η ϕ η− − ′′ ′ ′−  
 
then the matrix (RIJ) takes the form (21-27).  From this, it results that the curvature tensor 
Rαβ,γδ of (27-2) and the vector lα whose components are: 

l0 = 1, l1 = −1  lA = 0, 

which is the gradient of u, satisfy the relations (24-1), (24-2).  As a result, there exists a 
scalar τ such that: 
(27-15)    Rαβ = τ lα lβ . 
 
 Therefore, at the various points of the domain U where it is regular, the metric (27-2) 
represents a pure total radiation of integrable type.  In order to be dealing with a pure 
gravitational radiation, it is necessary and sufficient that a + b = 0, i.e., that ξ and η 
satisfy the relation: 
(27-16)   1( 2 )η η ϕ η− ′′ ′ ′− + 1( 2 )ξ ξ ϕ ξ− ′′ ′ ′− = 0. 
 
 This state will be non-trivial if the curvature tensor in question is non-null, i.e., if the 
relation: 
(27-17)   1( 2 )η η ϕ η− ′′ ′ ′− − 1( 2 )ξ ξ ϕ ξ− ′′ ′ ′− = 0 
is not also satisfied.  Set: 

ξη = e2α η / ξ = e2β. 
 
The relation (27-16) takes the form: 
 
(27-18)   2 2 2α α β α ϕ′′ ′ ′ ′ ′+ + − = 0, 
 
and the relation (27-17) takes the form: 
 
(27-19)   2 2β α β β ϕ′′ ′ ′ ′ ′+ − = 0. 
 
 e)  We remark that in the case where the metric (27-2) is Euclidian, one has: 
 

2
ξ ηϕ
ξ η

′′ ′′′ = =
′ ′

. 

 
By integration, one deduces that there exist two constants C1 and C2 such that: 
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C1ξ + C2η = const. 
 
If ξ and η are themselves constants then ϕ may be chosen arbitrarily.  If this is not the 
case then: 

e2ϕ  = 3C ξ ′ . 
 
 
 28. – Rosen form for the metric.  A ds2 of the type (27-2) was introduced in 1937 by 
ROSEN (8) in a different optical context.   However, it is possible to reduce (27-2) to the 
form that was indicated by ROSEN.  Indeed, the expression (27-2) for our ds2 admits an 
arbitrary change u → f(u), it is possible to use this fact to simplify the form of our metric. 
 
 a)  If ξη = const., that is, α = const., then it results from (27-18) that in the 
gravitational case (Rαβ = 0) one then has η / ξ = const., namely, ξ = const., η = const., 
and the ds2 envisioned is necessarily Euclidian.  We thus choose our variable u to be the 
one defined by: 

ξη = u2, 
and set: 

v = t + x. 
 
Consider the subset 4( )+

R of 4
R that is defined by: 

 
u = t – x > 0. 

 
On this subset, the metric that is defined by: 
 
(28-1)   ds2 = e2ϕ (dt2 – dx2) – u2(e−2β dy2 + e2β dz2) 
 
is regular if the functions β(u) and ϕ(u) are of class (C1, piecewise C3) for u > 0.  We then 
have: 

α  = log u α ′  = 
1

u
  α ′′  = −

2

1

u
. 

 
In order for (28-1) to satisfy the equation Rαβ = 0, it is necessary and sufficient that: 
 
(28-2)     2ϕ ′= 2uβ ′ . 
 
 We may arbitrarily choose β(u) to be a function of class (C1, piecewise C3) for u > 0, 
and ϕ will be found by a quadrature from starting with relation (28-2).  The metric that is 
obtained on 4( )+

R has a non-null curvature if the relation: 
 

                                                
 8 ROSEN, Phys. Z. Sovjet Union, 12, pp. 366 (1937); EINSTEIN and ROSEN J., Franklin Inst., 223, 43, 
(1937). 
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(28-3)    2 32u uβ β β′′ ′ ′+ − = 0 
 
is not satisfied by β.  In particular, the curvature tensor is non-null at a point 
whereβ β′ ′′= = 0. 
 We have thus obtained the metric that was indicated by ROSEN, but it is valid only 
on 4( )+
R , which seems to limit its interest. 

 
 b)  If we adopt other coordinates then it is easy to endow4

R with an everywhere 
regular metric that is Euclidian in some domains and coincides with the ROSEN metric in 
other domains. 
 One may reduce (28-1) to the Galilean form at a point where ( )uβ ′ = 0, namely: 
 
(28-4)    ds2 = e2ϕ du dv – u2(e−2β dy2 + e2β dz2). 
 
To that effect, we adopt the coordinates u, v and: 
 
(28-5)    y = u e−β y z = u eβ z. 
 
By differentiation, it follows that: 

u e−β dy  = 
y

y du
u

−   u eβ dz  = 
z

z du
u

− . 

 
From this, one deduces that: 
 

u2(e−2β dy2 + e2β dz2) = 
2 2

2 2 2
2

2
ydy zdz y z

dy dz du du
u u

+ ++ − +  

and: 

ds2 = 
2 2

2 2 2
2

2 ( )
ydy zdz y z

du e dv du dy dz
u u

ϕ + ++ + − + 
 

. 

 
By performing a new change of variables: 
 

(28-6)   u = u  v = e2ϕ + 
2 2

2

y z

u

+
 

 
and after taking (28-2) into account, one obtains at the point considered: 
 

ds2 = 2 2( )dudv dy dz− + , 
 
and it suffices to set u t x= − ,v t x= +  in order to reduce it to the Galilean form. 
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Having said this, suppose that β is an arbitrary function of class (C1, piecewise C3), and 
perform the transformation (9) on (28-4) that is defined by: 
 

(28-7)  u =  u,  
2 2

2 y z
v e v

u
ϕ += + , y = u e−β y, z = u eβ y . 

 
This transformation defines a bijective map with a non-null Jacobian from 4( )+

R to itself.  
It follows that: 

u e−β dy  = 
y

dy du ydu
u

β ′− + , u eβ dz  = 
y

dz du zdu
u

β ′− + . 

As a result: 

u2(e−2β dy2 + e2β dz2) = 
2 2

2 2 2
2

2
ydy zdz y z

dz dz du du
u u

+ ++ − +  

2 2
2 2 2 22 ( )

y z
ydy zdz du du y z du

u
β β
 −′ ′+ − − + + 
 

. 

On the other hand: 
 

2 2
2 2 2 2

2
2 [ ( )]

ydy zdz y z
dv e dv du uv y z du

u u
ϕ β+ + ′= + − + − + . 

 
From this, one deduces that: 

(28-8)  ds2 = 
2 2

2 2 2 2( ) 2
y z

dudv dy dz ydy zdz du du uvdu
u

β β
 −′ ′− + − − − + 
 

. 

 
If u0 and u1 are two positive numbers then chooseβ ′ to be a function of class (C1, 

piecewise C3) that is defined on u0 ≤ u ≤ u1, and is such that: 
 

0 1( ) ( )u uβ β′ ′= = 0  0 1( ) ( )u uβ β′′ ′′= = 0. 

 
 Consider the numerical space4R to be the set of all ( , , , )u v y z and give it the metric 
that is defined in the following manner: 
 
 for u ≤ u0  ds2 = 2 2( )dudv dy dz− +  
 for u0 ≤ u ≤ u1  ds2 is given by (28-8) 
 for u ≥  u1  ds2 = 2 2( )dudv dy dz− + . 
 
The metric that is thus defined on4R satisfies the equations Rαβ = 0, and is likewise of 
class C2 everywhere.  It is non-Euclidian for u0 < u < u1 whenβ ′ does not satisfy (28-3). 
 

                                                
 9 This transformation and the argument that follows are due to BONDI, “Nature,” t. 179, 1072, (1957). 



A.  LICHNEROWICZ:  Electromagnetic waves and radiation, etc. 
 

60 

In that region, it represents a state of pure gravitational radiation, and it is of integrable 
type; of course, it is non-Euclidian in the domain at spatial infinity. 
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IV. Deviation formulas. 
 

 29. – Geodesic deviation formula.  In order to study the physical effects of either the 
existence of a gravitational wave front with discontinuities in the curvature tensor or 
radiative state, we shall use the formulas that are called “the equations of geodesic 
deviation.”  Consider the spatio-temporal trajectories of a family of test particles in a 
domain ∆ of V.  Each of these trajectories is a geodesic of V4 that is time-oriented.  We 
propose to study the “relative acceleration” (with respect to s) of two infinitely close 
particles at points of V4 that define a vector that is orthogonal to the trajectories. 
 
 a)  The following considerations are naturally local.  We take a congruence of time-
oriented curves in a neighborhood of V4 and denote the unitary tangent vector by u.   We 
extract a one-parameter family of curves Γt from this congruence that generates a surface 
S of dimension 2.  We use the given parameter s on each curve of Γt, starting from a 
suitable origin.  The surface S is thus parameterized by two parameters s and t, and x(s, t), 
where x ∈ S, is assumed to be twice continuously differentiable with respect to (s, t).  The 
unitary vector u that is tangent to Γt at x is the vector /x s∂ ∂ , and we denote the 
vector /x t∂ ∂ by v. 
 If the neighborhood envisioned is referred to local coordinates (xα) then the vectors u 
and v have the components: 

uα =
x

s

α∂
∂

 vα =
x

t

α∂
∂

 

and: 

(29-1)     
u v

t s

α α∂ ∂=
∂ ∂

, 

respectively. 
 In terms of absolute differentiation, it follows that: 
 

u u x v
u u v

dt t t s

α α γ α
α β α β γ
βγ βγ

∇ ∂ ∂ ∂= + Γ = + Γ
∂ ∂ ∂

. 

 One thus has: 

(29-2)     
u v

dt ds

α α∇ ∇= . 

 
 Having said this, we apply the RICCI identity to u: 
 
(29-3)    ∇λ  ∇µ u

α − ∇µ ∇λ u
α = Rα

ρ,λµ  u
ρ. 

 
We take the product of the left-hand side with vλ uµ and get: 
 

vλuµ (∇λ  ∇µ uα − ∇µ ∇λ u
α) = uµ

dt

∇
(∇µ u

α) – vλ

dt

∇
(∇λ u

α) 

namely: 
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vλuµ(∇λ ∇µ u
α − ∇µ ∇λ u

α) = 
dt

∇ u

ds

α∇ − 
ds

∇ u

dt

α∇ − 
u

dt

α∇ ∇µ u
α + 

v

dt

λ∇ ∇λ u
α. 

 
From (29-2), one obtains: 
 

vλuµ(∇λ ∇µ u
α − ∇µ ∇λ u

α) = 
dt

∇ u

ds

α∇ − 
2

2

v

ds

α∇
. 

 
From (29-3), one thus derives the formula: 
 

(29-4)    
2

2

v

ds

α∇
+ Rα

ρ,λµ u
ρ vλ uµ =

dt

∇ u

ds

α∇
. 

 
 b)  Suppose that the curves Γt envisioned are geodesics of V4.  One then has: 
 

(29-5)     
u

ds

α∇
= 0. 

Since the vector uα is unitary: 

uα u

dt

α∇
= uα u

ds

α∇
= 0, 

and, from (29-5): 

ds

∇
(uα v

α) =
u

ds

α∇
vα + uα u

ds

α∇
= 0. 

 
 Therefore, one each curve Γt one has: 
 

uα v
α = const. 

 
Let C be an orthogonal trajectory on S of the geodesics Γt, and adopt a point of C to be 
the origin of the arc s on each Γ.  n and v are orthogonal at the points of C (s = 0); as a 
result, uα v

α = 0 on any S, and v is orthogonal to the geodesics. 
 From (29-4), it results that: 

(29-6)    
2

2ds

∇
vα + Rα

ρ,λµ u
ρ vλ uµ = 0. 

 
We give this formula the name of “the geodesic deviation formula.”  Since the 
corresponding points on two infinitely close geodesics are the ones that are defined by the 
direction of vα that is orthogonal to the geodesics, they give us what one may call the 
relative acceleration, with respect to s, of the two test particles that describe these 
geodesics. 
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 30. – Applications. 
 a)  Consider the spatio-temporal trajectories of the test particles envisioned in a 
neighborhood of the point x, and assume that these particles are subject to only the 
gravitational field.  If Γ is the trajectory that issues from x then we introduce an 
orthonormal frame (eα) such that the first vector e0 coincides with the unitary vector that 
is tangent to Γ at x.  At the point x the vector u admits the components: 
 
(30-1)   u0 = 0  uu = 0  (u = 1, 2, 3), 
 
and since v is orthogonal to u it admits the components: 
 
(30-2)    v0 = 0  vu. 
 
 We parallel transport the initial frame along Γ and endow a neighborhood of Γ with a 
family of orthonormal frames that is a C2 extension of the frames that are thus attached to 
the various points of Γ.  If γα

βγ are the coefficients of the Riemannian connection of V4 
relative to that family of frames then one has on Γ: 
 
(30-3)     γα

βγ  u
γ = 0. 

 

 We evaluate the components of
2

2

v

ds

α∇
at the points of Γ.  At these points, one obtains: 

 
v

ds

α∇
= 

dv

ds

α

+ γα
βγ  u

γ vβ, 

and, by derivation: 

(30-4)   
2

2

v

ds

α∇
= 

2

2

d v

ds

α

+
d

ds
(γα

βγ u
γ vβ) + γα

βγ u
γ vβ 

2

2

v

ds

β∇
. 

 
From (30-3), one thus has on Γ: 

2

2

v

ds

α∇
=

2

2

d v

ds

α

 

 
and the equation (29-6) takes the form: 
 

(30-5)    
2

2

d v

ds

α

+ Rα
ρ,λµ u

ρ vλ uµ = 0. 

 
 b)  The trajectories of test particles that are subject to only the gravitational field are 
time-oriented geodesics in V4.  From this, it results that e0 = u at any point of G, and, as a 
result, v0 = 0 on Γ. 
 At the chosen point x (30-5) may be written for α = u: 
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(30-6)    
2

2

ud v

ds
+ Ru

0,v0 v
v = 0, 

 
and, from the preceding remark, we obtain only an identity when α = 0.  Suppose that 
there exists a gravitational wave front on V4 that passes through x and has discontinuities 
in its curvature tensor.  From (30.6), it results: 
 

(30-7)    
2

2

ud v

ds

 
 
 

= − [Ru
0,v0] v

v, 

namely: 

(30-8)    
2

2

ud v

ds

 
 
 

= Ku
v v

v, 

if we set: 
Ku

v = − [Ru
0,v0]. 

 
 If the vector e0 is fixed at x then we have to choose the vector eu of the frame at that 
point in such a fashion that the discontinuity matrix of the curvature tensor takes the form 
(22.1).  The matrix (Ku

v) may then be written (with ρ = 0): 
 

(30-9)    (Ku
v) =

0 0 0

0 0

0 0

σ
σ

 
 
 
 − 

 

 
and (30-10) may be specified by the relations: 
 

(30-10)  
2 1

2

d v

ds

 
 
 

= 0 
2 2

2

d v

ds

 
 
 

= σ v2  
2 3

2

d v

ds

 
 
 

= −σ v2, 

 
which gives us the components of the discontinuity of the relative acceleration.  The 
component along e1, i.e., in the spatial direction of the wave propagation, is always null.  
Since the discontinuity envisioned depends linearly on the vector v at x, we may study the 
general case as a superposition of the following two particular cases: 
 1)  If v is collinear with e1 then one has v2 = v3 = 0, and the discontinuity in the 
relative acceleration is null. 
 2)  If v is in the 2-plane (e2, e3), i.e., it is orthogonal to the spatial direction of wave 
propagation: 
(30-11)  v2 = v cos ϑ  v3 = v sin ϑ, 
 
in which ϑ is the angle between e2 and v.  One then has: 
 

(30-12)  
2 2

2

d v

ds

 
 
 

= σ v cos ϑ, 
2 2

2

d v

ds

 
 
 

= −σ v sin ϑ, 
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and the discontinuity is carried by the direction in the (e2, e3) that is defined by starting 
with e3 and the angle −ϑ. 
 One has exhibited the transversal character of the gravitational wave and located the 
discontinuity of the relative acceleration that is produced by the wave front. 
 In a domain of V4 where the metric represents a state of pure gravitational radiation, 
one sees from (30-6) that the results are identical to the ones that relate to the relative 
acceleration itself. 
 
 
 31.  Deviation of the trajectories of charged particles in the presence of an 
electromagnetic field.  We suppose that there exists an electromagnetic field Fαβ in a 
domain ∆ of V4, and we propose to study, by analogy with the geodesic case, the 
deviation of the trajectory of a charged test particle that is subject to both the 
gravitational electromagnetic fields.  The spatio-temporal trajectories of the charged 
particles satisfy the differential system that is expressed in local coordinates by: 
 

(31-1)    
2

2

d x dx dx dx
kF

ds ds ds ds

α β γ β
α α

βγ β+ Γ = , 

 
in which the constant k characterizes the ratio of the charge to the mass for the particle in 
question. 
 
 a)  We assume that we have a cloud of charged particles in ∆ for which the ration k is 
the same, and we isolate a one-parameter family of trajectories Γt from the congruence of 
their trajectories in ∆.  With the same hypotheses and notations that were made in sec. 29, 
the differential system (31-1) may be written: 
 

(31-2)    
u

ds

α∇
= kFα

β u
β. 

 
On the other hand, one has (29-4), namely: 
 

(31-3)    
2

2

v

ds

α∇
+ Rα

ρ,λµ u
ρ vλ uµ =

u

dt ds

α∇ ∇
. 

From (31-1), it results that: 
 

u

dt ds

α∇ ∇
=

v
k F u v F

ds

β
α β ρ α

ρ β β
 ∇∇ + 
 

. 

 
Therefore, the vector vα satisfies the differential system: 
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(31-4)   
2

2

v

ds

α∇
+ Rα

ρ,λµ u
ρ vλ uµ = 

v
k F u v F

ds

β
α β ρ α

ρ β β
 ∇∇ + 
 

. 

 
 Let C be an orthogonal trajectory of the curves Γt envisioned one the surface that is 
generated.  We adopt a point of C to be the origin of the arc on each Γt.  u and v are 
orthogonal to the points of C (s = 0), but the same thing is not true outside of C since: 
 

d

dt
(uαva) =

u

ds

α∇
vα = k Fαβ v

α uβ , 

is not identically null. 
 Formula (31-4) provides the relative acceleration, with respect to s, of two infinitely 
close test particles, such that the corresponding points on the two spatio-temporal 
trajectories are the ones with the same s, when measured from C. 
 
 b)  If x is a definite point of one of the preceding spatio-temporal trajectories Γ then 
we introduce an orthonormal frame (eα) at this point such that the first vector e0 coincides 
with the unitary vector u that is tangent to Γ at x.  From a preceding remark, we may 
assume that v is orthogonal to u at this point x.  Therefore, the vectors u, v, admit the 
components (30-1) and (30-2) at x. 
 If we adopt a family of frames in a neighborhood of G that are identical to the ones 
that were defined in sec. 30 then (31-4) takes the form: 
 

(31-5)   
2

2

d v

ds

α

+ Rα
ρ,λµ u

ρ vλ uµ  = 
dv

k F u v F
ds

β
α β ρ α

ρ β β
 
∇ + 
 

. 

 
 Suppose that there exists a wave front S on V4 that is both gravitational and 
electromagnetic and passes through x; there are discontinuities in the curvature tensor and 
the derived tensor of the electromagnetic field upon crossing S. 
 We naturally suppose that the metric satisfies the EINSTEIN equations with a 
continuous right-hand side, and that Fαβ satisfies the MAXWELL equations with a 
continuous current vector.  From (31-5), it results that at the point x in question: 
 

(31-6)   
2

2

d v

ds

α 
 
 

+ [Rα
ρ,λµ] uρ vλ uµ = k[∇ρ F

α
β] u

β vρ. 

 
For a = 0, if we keep in mind the choice of frame at x, (31-6) gives: 
 

(31-7)     
2 0

2

d v

ds

 
 
 

= 0. 

 
For α = u, keeping in mind the expressions (30-1) and (30-2) for the components of u and 
v: 
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(31-8)   
2

2

d v

ds

α 
 
 

= Ku
v v

v + k [∇vF
u
0] v

v, 

 
in which the notations are identical to the ones in sec. 30. 
 If the vector e0 is fixed at x and the vector l is determined by S then we choose e1 in 
such a way that one may take l = e0 + e1.  For a convenient choice of e2 in the 2-plane (e2, 
e3), the matrix Ku

v has the form (30-9).  As for the matrix (∇vF
u
0), from the considerations 

of sec. 9, all of its elements are null for v ≠ 1, and, from (7, 3): 
 

[∇1F
1
0] = 0. 

We set: 
[∇1F

2
0] = µ  [∇1F

3
0] = ν 

 
and (31-8) may be specified by the relations: 
 

2 1

2

d v

ds

 
 
 

= 0, 
2 2

2

d v

ds

 
 
 

= σ v2 + kµ v1 ,  
2 2

2

d v

ds

 
 
 

= −σ v3 + kν v1, 

 
which gives the components of the discontinuity in the relative acceleration at x. 
 The component of this discontinuity along e1 is always null.  If v is collinear with e1 
then the discontinuity is of purely electromagnetic origin.  If v is orthogonal to e1 then the 
discontinuity is of purely gravitational origin. 
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V.  Remarks on the penta-dimensional case 
 

 32.  Components of the curvature tensor, the Ricci tensor and the Einstein 
tensor.  The preceding results lead us to study the wave fronts and discontinuities of the 
curvature tensor in the context of the penta-dimensional theories of KALUZA-KLEIN 
and the theory of JORDAN-THIRY. 
 We consider a Riemannian manifold V5 that satisfies the hypotheses of sec. 19, and 
we recall first the expressions for the components Rαβ,λµ (α, …, any Greek index = 0, 1, 
2, 3, 4) of the curvature tensor in an adapted orthonormal frame.  If i, j, … = 1, 2, 3, 4 
then one obtains: 

(32-1)  
2 2 2 2

, , ( )
4 2i j k l i j k l i k j l i l jk i j k lR R F F F F F F

β ξ β ξ∗= + − +  

(32-2)  , 0 ( + 2 )
2

ki j k i j k i j i jk j i kR F F F F
β ξ ξ ξ ξ

∗
= ∇ ∂ − ∂ + ∂  

(32-3)  
2 2

1
0, 0 ( )

4
r

ki k i i r kR F F
β ξξ ξ

∗
−= ∇ ∂ + , 

 
in which Fij is identified with the electromagnetic tensor, b is a constant, and the elements 
that are marked with a * are defined relative to the quotient metric. 
 From (32-1), one deduces by contraction: 
 

(32-4)  2 2
,

3

4
r r

i j k i k i r jR R F Fβ ξ∗= + . 

 
From (32-2), it follows: 
 

(32-5)  0 ( + 3 )
2

r r
j r j r jR F F

β ξ ξ= ∇ ∂ . 

 
 By starting with: 

0
, 0,

r
i k i r k i kR R R= +  

 
and from (32-4) and (32-5) one obtains the following expressions for the components of 
the RICCI tensor: 

(32-6)  
2

2 1 ( )
2

r
ki k i k i r k iR R F F

β ξ ξ ξ
∗

∗ −= + − ∇ ∂  

(32-7)  2 3
0 ( )

2
r

ri iR F
β ξ ξ

∗
−= ∇  

(32-8)  
2 2

1
00 4

r s
rsR F F

β ξξ ξ− ∗= ∆ + . 

 
 Finally, if we evaluate the components of the EINSTEIN tensor in V5: 
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Sαβ = Rαβ − 1
2 γαβ R. 

From (32-6), it results: 
 

2 2
1

2
i rs

i r sR R F F
β ξ ξ ξ∗ − ∗= + − ∆  

 
and, from (32-8): 
 

2 2
0 1

0 2
rs

rsR F F
β ξξ ξ− ∗= − ∆ − . 

 
Therefore, the Riemannian scalar curvature R has the values: 
 

(32-9)  R =
2 2

12
4

rs
rsR F F

β ξ ξ ξ∗ − ∗+ − ∆ . 

 
One thus obtains the following components of for the EINSTEIN tensor: 
 

(32-10) ( )
2 2

11
4 ( )

2
rs r

i k i k i k rs i r k i i kkS S g F F F F g
β ξ ξ ξ ξ

∗
∗ − ∗= − − − ∇ ∂ − ∆

ɶ

 

(32-11) 2 3
0 ( )

2
r

ri iS F
β ξ ξ

∗
−= ∇  

(32-12) 2 21
00 2

3

8
r s

rsS R F Fβ ξ∗= + . 

 
The field equations for the JORDAN-THIRY may be written: 
 
(32-13)   Sαβ  =  Θαβ , 
 
in which the tensor Θαβ on the right-hand side describes the field sources.  In a domain 
with no sources this tensor is null (exterior unitary case). 
 
 
 33.  Field equations in the Kaluza-Klein.  In the KALUZA-KLEIN theory ξ = 1, 
and the preceding formulas that relate to the curvature tensor take the form: 
 

(33-1)  
2 2

, , ( )
4 2i j k l i j k l i k j l i l jk i j k lR R F F F F F F

β β∗= + − +  

(33-2)  , 0 2
ki j k i jR F

β ∗
= ∇  

(33-3)  
2

0, 0 4
r

i k i r kR F F
β= . 
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The ones that relate to the RICCI tensor may be written: 
 

(33-4)  
2

2
r

i k i k i r kR R F F
β∗= +  

(33-5)  0 2
r

ri iR F
β ∗

= ∇  

(33-6)  
2

00 4
r s

rsR F F
β=  

 
and the ones that relate to the EINSTEIN tensor: 
 

(33-7)  ( )
2

1
42

rs
i k i k i k rsS S g F F

β∗= −  

(33-8)  0 2
r

ri iS F
β ∗

= ∇  

(33-9)  21
00 2

3

8
r s

rsS R F Fβ∗= + . 

 
The fourteen field equations may then be written: 
 
(33-10) 1

2i k i k i k i kS R g R≡ − = Θ  

and: 
(33-11) 0 0 0i i iS R≡ = Θ , 

 
in which the Θ describe field sources.  From (33-10), one deduces by contraction: 
 

i k
i kg R − 2R = Θ    (Θ = i k

i kg Θ ), 

namely: 
R + R00 – 2R = Θ. 

 
From this, it results that: 

R = R00 – Θ 
 
and (33-10) may be put into the form: 
 

(33-12)  ( )
2

1
28

r s
i k i k rs i k i kR g F F g

β= + Θ − Θ . 

 
 
 34.  Discontinuities in the curvature tensor of V5.  The metric γαβ of V5 and the 
infinitesimal generator ξξξξ of the isometry group are assumed to be of class (C1, piecewise 
C3).  It then results that the quotient metric and the scalar ξ are also (C1, piecewise C3), 
whereas the tensor Fij is continuous, and has discontinuous first derivatives. 
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We put ourselves in a domain of V5 where the right-hand sides of the field equations are 
continuous, and we study the discontinuities in the curvature tensor of V5 upon crossing a 
hypersurface S that is generated by the trajectories of the isometry group.  In local 
adapted coordinates, any vector l that is collinear with the gradient of f satisfies l0 = 0, 
i.e., it is orthogonal to the vector that is tangent to the trajectory of the isometry group.  In 
an adapted orthonormal frame l0 = 0. 
 Under the hypotheses that we made in the JORDAN-THIRY theory, by virtue of (18-
4), when one crosses S, one has: 
(34-1)     [Rαβ] = 0. 
 
By virtue of (33-12), (33-11), and (33-6), this relation is further verified under the same 
hypotheses in the KALUZA-KLEIN theory. 
 From the general study that was made in sec. 20, l has null length, and the tensor 
[Rαβ,λµ] satisfies the relations: 
 
(34-2)   lα [Rβγ,λµ] + lβ [Rγβ,λµ] + lγ [Rαβ,λµ] = 0 
(34-3)     lα [Rαβ,λµ] = 0, 
at a point x of S. 
 At this point, we consider the normed vector e0 that is collinear with ξξξξ, and give 
ourselves a unitary vector e4 (

2
4e = 1) that is restricted only to be orthogonal to e4.  The 

vectors e0 and l define a 2-plane that is orthogonal to e.  In this 2-plane, let e1 be a normal 
vector that is orthogonal to e4 such that one may take: 
 
(34-3)     l = e4 + e1. 
 
One may complete this frame with two vectors e2, e3 in the 2-plane that is orthogonal to 
the 3-plane that is defined by (e0, e1, e4) in such a fashion as to obtain an adapted 
orthonormal frame (ea) at x that satisfies (34-4) (?).  We shall reason relative to such a 
frame in what follows. 
 
 
 35.  Representative matrix of a tensor Hαβ,λµ at x.  Let Hαβ,λµ  ≠ 0 be a tensor that 
enjoys the same symmetry properties as the curvature tensor and satisfies (21-2) and (21-
3) for a vector l that is orthogonal to e0.  This vector necessarily has null length, and we 
may adopt the frame (ea) at x that was introduced in the preceding section. 
 (21-2) and (21-3) then translate into the relations: 
 
(35-1)  Hαβ,λµ  = (0) (0) (0) (A) (A) (0) (A) (B)

00 0A AB
A A,B

( )a a aαβ λµ αβ λµ αβ λµ αβ λµϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + +∑ ∑ , 

 
in which the tensors j are the exterior products of l with the vectors n0 = e0, n

(1) = e2, n
(2) 

= e3, and the indices A, B take the values 1, 2. 
 If we set: 
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2 3 1 1 4 4 1 0 7

3 1 2 2 4 5 2 0 8

1 2 3 3 4 6 3 0 9

4 0 10

τ τ τ
τ τ τ
τ τ τ

τ

∧ = ∧ = ∧ =
 ∧ = ∧ = ∧ =
 ∧ = ∧ = ∧ =
 ∧ =

e e e e e e

e e e e e e

e e e e e e

e e

 

 
then one is led, as in sec. 21, to represent Hαβ,λµ by a symmetric matrix (HIJ) (I, J = 1, …, 
10); because of the components of the tensor ϕ (35.1) leads to the matrix (HIJ) having the 
form:
(35.2) 

 1 2 3 4 5 6  7 8 9 10 

1

2

3

4

5

6

 

22 12 12 22

12 11 11 12

12 11 11 12

22 12 12 22

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

0 0

a a a a

a a a a

a a a a

a a a a

− − −
−

−

 

02 02

01 01

01 01

02 02

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

a a

a a

a a

a a

−
−

−
−

 

7

8

9

10

 

02 01 01 02

02 01 01 02

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

a a a a

a a a a

−

− − −

 

00 00

00 00

0 0

0 0 0 0

0 0 0 0

0 0

a a

a a

−
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One knows that it is necessary that: 
Hαβ = τ lα lβ . 

 
By contracting (35.1), it follows that: 
 

Hαβ = −(a00 + a11 + a22) lα lβ 
namely: 

τ = − (a00 + a11 + a22). 
 
Therefore, in order that Hαβ = 0 it is necessary and sufficient that a00 + a11 + a22 = 0. 
 
 
 36.  Discontinuity matrix for the curvature tensor in the penta-dimensional 
theories.  In the case of the tensor [Rαβ,λµ], one has [Rαβ] = 0, and, as a result, that a00 + 
a11 + a22 = 0.  For the KALUZA-KLEIN theory, one obviously has [Ri0,k0] = 0, and, as a 
result, that a00 = a11 + a22 = 0.  Therefore, the matrix ([RIJ]) has the form (35.2) so either 
a00 + a11 + a22 = 0 (JORDAN-THIRY theory) or a00 = a11 + a22 = 0 (KALUZA-KLEIN 
theory). 
 One easily recovers that reduced form by starting with the formulas: 

, ,[ ] [ ]i j k l i j k lR R∗= , , 0[ ] [ ]
2

ki j k j iR F
β ξ

∗
= ∇ ,  1

0, 0[ ] [ ( )]ki k iR ξ ξ
∗

−= ∇ ∂ , 

 
and from the prior results.  We first note that, from the HADAMARD condition, there 
exists a scalar a00 at x such that:  
 

(36.1)    1
00( )k i i ka l lξ ξ

∗
− ∇ ∂ = . 

 
If the adapted orthonormal frame is chosen in such a way that l = e4 + e1 then it results 
from (36.1) that the submatrix of ([RIJ]) that corresponds to 7 ≤ I, J ≤ 10 has the form that 
is described in (35.2).  Moreover, from (32.6) one deduces that: 
 

(36.2)    1
00[ ] ( )ki k i i kR a l lξ ξ

∗
∗ −= ∇ ∂ = . 

 
Therefore, ,[ ]i j k lR∗  , which satisfies: 

 

,[ ]k i j k ll R∗ + ,[ ]i i k k ll R∗  + ,[ ]j k i k ll R∗  = 0 

 
and (36.2), represents the submatrix of ([RIJ]) that corresponds to (1 ≤ I, J ≤ 6) in (35.2) 
with a00 = − (a11 + a22).  Finally, from: 
 

[ ]
2

i j
k i j kF l

β ξ ϕ
∗
∇ =  

 



A. LICHNEROWICZ: Electromagnetic waves and radiation, etc. 
 

67 

in which i jϕ is singular, and the expression for this form when l = e4 + e1, one deduces the 

submatrix that corresponds to 1 ≤ I ≤ 6, 7 ≤ J ≤ 10. 
 
 
 37.  Radiation in the Kaluza-Klein theory. 
 1)  We place ourselves in the context of the Kaluza-Klein theory and refer the 
manifold V5 to an adapted orthonormal frame.  To simply the notations, we suppress the 
index underline in what follows.  Suppose that the spacetime metric ds2 corresponds to a 
state of pure total radiation and that the electromagnetic field itself represents a state of 
electromagnetic radiation with the same isotropic fundamental vector.  We introduce the 
isotropic vector on V5 that is orthogonal to ξξξξ, and project it onto V4 along the preceding 
vector. 
(37-1)  (a) ,h ij klSl R∗ = 0  (b) ,

i
ij kll R∗  = 0, 

 
in which S denotes the sum over all cyclic permutations of the indices h, i, j here, and, on 
the other hand: 
(37-2)  (a) S lh Fij = 0  (b) l i Fij = 0. 
 
For a singular 2-form F, the formula (33-1) leads us to study the tensor: 
 

S lh (Fik Fjl − Fil Fjk). 
From this, it follows that: 

Slh(Fik Fjl − Fil Fjk) = − Slh(Fik Flj + Fil Fjk). 
 
Now, since F is a singular 2-form it is an exterior product, and: 
 

Fik Fjl + Fil Fjk + Fij Fkl = 0. 
Therefore: 

Slh(Fik Fjl − Fil Fjk) = (SlhFij)Fkl . 
 
We therefore see that for a singular 2-form F: 
 
(37-3)   Slh(Fik Fjl − Fil Fjk) = 0 , l i(Fik Fjl − Fil Fjk) = 0. 
 
If we start with (37-3) then the hypotheses (37-1) and (37-2) thus entail: 
 
(37-4)  (a) Slh Rij,kl = 0  (b) l iRij,kl = 0. 
 
On the other hand, from (33-3), one deduces: 

lhRi0,k0 − liRh0,k0 =
2

4

β
(lhFir − lhFhr)Fk

r. 

 
From (37-2)b, one thus has: 
 
(37-5)  (a) lhRi0,k0 − liR0h,k0 = 0  (b) l iRi0,k0 = 0. 
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 2)  We introduce the tensor on V5 that has the same symmetry type as the curvature 
tensor, and is defined, relative to an adapted orthonormal frame, by: 
 
(37-6)  Pij,kl = Rij,kl ,  Pij,k0 = 0, Pi0,k0 = − Ri0,k0, 
 
in which the “−“ sign appears for signature reasons.  The tensor Pαβ, which is a 
contraction of Pαβ,γδ , verifies: 
 
(37-7)    Pi0 = 0,  P00 = − R00. 
 
Since l0 is null, relations (37-4) and (37-5) may be expressed by: 
 
(37-8)  (a) S lα Pβγ,λµ = 0   (b) lα Pαβ,λµ = 0, 
 
in which the vector lα is orthogonal to ξα . 
 
 3)  Conversely, suppose that the tensor Pβγ,λµ is defined by (37-6) in a adapted 
orthonormal frame is such that there exists a vector lα that is orthogonal to ξα and 
satisfies the relations (37-8). 
 Pαβ is proportional to lα lβ.  Since l0 = 0, one has P00 = 0, namely, R00 = 0, and, from 
(33-6): 
(37-9)     Frs F

rs = 0. 
 
Moreover, from (37-5)b: 
(37-10)    l i Fir Fk

r = 0. 
 
l i is thus a proper vector with proper value 0 for the MAXWELL tensor of F and the 2-
form F is singular.  From (37-4), because of (37-3), one deduces that: 
 

*
,h ij klSl R = 0, *

,
i

ij kll R = 0, 

 
and the metric ds2 defines a state of pure total radiation. 
 
Suppose that the field equations (33-12) are satisfied in the absence of sources (Θik = 0).  
From (37-9), one deduces that: 

Rik = 0. 
Since the 2-form F is singular: 

2

2

β
Fir Fk

r
 = −τ l i lk , 

and, from (33-4): 
*
ikR  = −τ l i lk , 

 
which explains the expression “state of pure total radiation.” 
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(page 75 missing in original…) 
 

in which l(v) is a linear form in v.  From this, it results thatk iξ
∗
∇ ∂ = λk l i , and by reason 

of symmetry: 

(39-2)     k iξ
∗
∇ ∂ = τ l i lk , 

 
in which τ is a scalar.  Therefore, in order that the relations (39-1) are satisfied, it is 
necessary and sufficient that one have (39-2), where l i is an isotropic vector.  In 
particular: 
(39-3)     ∆*ξ = 0. 
 
When the hypotheses (39-1) are satisfied we say that the scalar field ξ corresponds to a 
state of pure total radiation. 
 
 2)  In context of the JORDAN-THIRY theory we suppose that the quotient metric ds2 
(which differs here from the spacetime metric 2ds = ξ ds2), the form F and the scalar ξ 
satisfy the radiation conditions for the same isotropic fundamental vector.  One has (39-2) 
in an adapted orthonormal frame: 
 
(39-4)   *

,h ij klSl R = 0  *
,

i
ij kll R = 0, 

and: 
(39-5)   SlhFij = 0  l iFij = 0. 
 
By virtue of (32-1) and (32-3), these relations entail: 
 

SlαPβγ,λµ = 0  lαPαβ,λµ = 0, 
 
in which Pαβ,λµ is again defined by (38-5). 
 
 
 40.  Construction of an example of pure radiation with an electromagnetic field.  
We propose to construct an example of pure total radiation that satisfies the KALUZA-
KLEIN equations in the absence of sources.  We must therefore obtain a gravitational 
field on the spacetime V5 that satisfies (37-1) and (37-2) and a singular electromagnetic 
field that satisfies the EINSTEIN-MAXWELL equations of general relativity. 
 
 1)  Consider a domain D of spacetime that is endowed with the metric (27-2), which 
may be written, with the following notations: 
 
(40-1)  ds2 = e2ψ[(dx4)2 − (dx1)2] – [ξ2(dx2)2 + ξ2(dx3)2] = gij dxi dxj, 
 
in which ψ, ξ > 0, η > 0 are three functions of one variable: 
 

u = x4 – x1. 
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Introduce the potential vector ϕi that is defined in (xk) coordinates by: 
 

ϕ1 = ϕ2 = ϕ4 = 0 ϕ3 = ϕ(u). 
 
A 2-form F corresponds to the potential vector, and its only non-null components are: 
 

F34 = − 4ϕ∂  = −ϕ ′   F31 = − 1ϕ∂  = ϕ ′ . 
 
The vector l i, which is the gradient of u, in which covariant components are: 
 

l1 = −1  l2 = l3 = 0 l4 = 1 
satisfies: 
(40-2)     S lh Fij = 0 
 
in which S indices summation over cyclic permutations.  This relation is indeed satisfied 
for h = 4, and either i = 2, j = 3, or i = 3, j = 1, or i = 1, j = 2.  On the other hand, since l i 
admits the contravariant components: 
 

l4 = l1 = e−2ψ  l2 = l3 = 0 
one has: 
(40-3)     l iFij = 0. 
 
Therefore, the form F is singular and admits the isotropic fundamental vector l i . 
 

 2)  We evaluate j il
∗
∇ , where j

∗
∇ is the symbol for the covariant derivative in the metric 

(40-1).  One first has: 

j il
∗
∇  =  − 4 1

2 2i i

∗ ∗
Γ + Γ . 

Now: 
4
2i

∗
Γ = g44[i2, 4] = 21

22 ie gψ− ′  1
2i

∗
Γ = g11[i2, 1] = 21

22 ie gψ− ′ . 
One thus obtains: 

2 il
∗
∇ = 2i l

∗
∇ = 0, 

and, similarly: 

3 il
∗
∇ = 3i l

∗
∇ = 0. 

On the other hand: 

1 1l
∗
∇ = − 4 1

11 11

∗ ∗
Γ + Γ . 

Now, from the results of sec. 27: 
 

4
11

∗
Γ = ψ ′  1

11

∗
Γ = −ψ ′ . 

From this, it results that: 
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1 1l
∗
∇ = −2ψ ′ , 

and likewise: 

4 1l
∗
∇ = 1 4l

∗
∇ = 2ψ ′ ,  4 4l

∗
∇ = −2ψ ′ . 

 
We have thus established that: 

(40-4)     j il
∗
∇ = −2 i jl lψ ′ . 

 
From relation (40-2), one deduces by derivation: 
 

Slh k

∗
∇ Fij + Slh k

∗
∇ · Fij = 0, 

that is, by virtue of (40-4): 

Slh k

∗
∇ Fij − 2ψ ′ lh S lk Fij = 0, 

i.e.: 

(40-5)     Slh k

∗
∇ Fij = 0. 

 
Similarly, by deriving (40-3), one obtains: 
 

l i k

∗
∇ Fij + k

∗
∇ l iFij = 0. 

That is, by virtue of (40-4): 

(40-6)     lh k

∗
∇ Fij = 0. 

 
 3)  On the manifold V5 of the Kaluza-Klein theory, consider the metric: 
 
(40-7)    dσ2 = e2ψ[(dx4)2 − (dx1)2] – [ξ2(dx2)2 + ξ2(dx3)2] – (dx0 – ϕ dx3)2 = γαβ dxα dxβ. 
 
The quotient metric under the isometry group x0 → x0 + const. coincides with ds2, and the 
relations (33-1), (33-2), (33-3) apply in adapted orthonormal frames with the constant β = 
1.  Since the F is singular, one has: 
 

( )h i k j l i l jkSl F F F F−  = 0,  ( )i
i k j l i l jkl F F F F−  = 0. 

 
On the other hand, from the results of sec. 27: 
 

,h i j k lSl R∗ = 0  ,
i

i j k ll R∗  = 0. 

Therefore, one has: 
(40-8)   ,h i j k lSl R = 0  ,

i
i j k ll R  = 0. 

 
The relations (40-5) and (40-6) express that: 
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(40-9)   , 0S Rh i j kl = 0  , 0Ri
i j kl = 0. 

 
Finally, from the singular character of F and from sec. 37, no. 1, it results that: 
 
(40-10) 0, 0 0 , 0h i k i h kl R l R+ = 0  0, 0

i
i kl R = 0. 

 
Therefore, the vectorlα , whose components areil  is orthogonal toαξ and satisfies: 

 
(40-11)  SlαRβγ,λµ = 0  lαRβγ,λµ = 0. 
 
One knows that it then results that: 

Rαβ = τ lα lβ . 
 
 4)  From (40-12), 0iR  = 0 and the MAXWELL equations are satisfied by F.  In order 

to verify the field equations (33-12) in the absence of source, namely i kR  = 0, from (40-

12), it suffices for us to verify 44R  = 0, that is, from (33-4): 

 

44R
∗

= 1 1( 2 ) ( 2 )ξ ξ ψ ξ η η ψ η− −′′ ′ ′ ′′ ′ ′− − − − . 
On the other hand: 

F4r F4
r = F43 F4

3 = − η2 2ϕ ′ . 
 
From this, it results that the functions ξ, η, η, ϕ must be coupled by the relation: 
 
(40-13)  1 1 1 21

2( 2 ) ( 2 )ξ ξ ψ ξ η η ψ η η ϕ− − −′′ ′ ′ ′′ ′ ′ ′− − − + = 0. 

 
If we limit ourselves to u > 0, and set ξη = u2, η/ξ = e2β.  (40-13) may then be put into the 
form: 

(40-14)   2ψ ′ = uβ12 + 2 21

4
e

u
β ϕ− ′ . 

 
If β and ϕ are given functions for u > 0 then (40-10) allows us to determine ψ by 
quadrature in the same domain. 
 For the subset 4( )+

R (u > 0) of spacetime 4
R that is defined by xi, we perform the 

change of variables (28-7) on the metric ds2.  Because of (40-14), one obtains the 
following expression for the metric on 4( )+

R : 
 

ds2 = 
2 2

2 2 2 2( ) 2
y z

dudv dy dz ydy zdz du du uvdu
u

β β
 −′ ′− + − − − − 
 

 

−
2 2

2 2 21

4

y z
v du e du

u u
β ϕ− + ′− 

 
. 
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Since u0 is strictly positive, we chooseβ ′ andϕ ′ to be functions of class C2 that are null 

for u ≤ u0.  One thus obtains a metric that is Euclidian for u ≤ u0 and non-Euclidian for u 
> u0, and which, when combined with the form F that we introduced, defines a solution to 
the problem that we had posed. 
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VI.  A process of field quantization. 
 

A.  THE ELECTROMAGNETIC FIELD. 
 

 41.  Fourier transformation.  In the quantum theory of fields the electromagnetic 
field Fαβ is generally quantized by making recourse to the potential vector and the study 
of gauge transformations.  We shall indicate a direct quantization process for the 
electromagnetic field in special relativity.  This process, which is entirely linked with the 
notion of electromagnetic radiation, may be adapted, as we will see, to the quantization of 
the gravitational field. 
 In all of this section, V4 is the spacetime of special relativity, which we assume to be 
referred to some orthonormal frame (eα) (α, or any Greek index = 0, 1, 2, 3).  The metric 
on V4, when referred to such a frame, will be denoted by: 
 
(41-1)    ds2 = ηαβ dxα dxβ, 
 
in which the x ∈ V4 admits the coordinates (xα).  Consider an electromagnetic field F, 
which is assumed to satisfy the MAXWELL equations with an electric current vector that 
is identically null, i.e.: 
(41-2)   S Fα βγ∂  = 0  Fα

α β∂  = 0, 

 
in which S denotes the sum over all cyclic permutations of the three indices. 
 With these simple hypotheses, the current that is defined by F is a FOURIER 
transformation on spacetime, and one may write it, with an obvious meaining (by abuse 
of the usual notation amongst the school of physicists), as: 
 

(41-3)    Fαβ(x) =
4

1

(2 )π ∫ Uαβ(p) eip·x dτ(p), 

 
in which p describes Minkowski space, and dτ(p) is the corresponding hypervolume 
element: 

dτ(p) = dp0 ^ dp1 ^ dp2 ^ dp3. 
 
From (41-2), one deduces that: 
 

S pα Uβγ = 0  pαUαβ = 0. 
 
As a result, p is different from zero only when it is isotropic.  If V4 is referred to a frame 
(ea) then we let p be an arbitrary vector of spacetime, and set: 
 

p = l + λe0,       
 
in which the components of the isotropic vector: 
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l = l0e0 + lueu         (u = 1, 2, 3) 
satisfy: 

(l0)2 = 2( )u

u

l∑ . 

 
From the expression for dτ(p), one has: 
 

dτ(p) = λ0 dλ^dΩ(e), 
 in which: 

dΩ(l) =
1 2 3

0

dl dl dl

l

∧ ∧
 

 
is the invariant volume element of the isotropic cone C.  Upon introducing a DIRAC 
measure for the variable l one may put (41-3) into the form: 
 

Fαβ(x) =
4

1

(2 )π ∫ Gαβ(l) e
il  · x dΩ(l). 

 
 
 42.  Quantization conditions.  We substitute a 2-form for the 2-form F with scalar 
values, which still has the same notation, but takes its values in a vector space of 
operators on a complex HILBERT space.  We make the following hypotheses: 
 a)  The values of F are Hermitian operators. 
 b)  F verifies equations (41-2). 
 
 We denote the passage to an adjoint operator by an *.  Formula (41-4) is again valid 
here, provided that Gαβ is a tensor with values in M.  In this formula, it results that: 
 

3

1
( ) ( )

(2 ) C
F Gαβ αβπ

∗ ∗= ∫x l  e−il ·x dΩ(l), 

that is, after exchanging l with –l: 
 

3

1
( ) ( )

(2 ) C
F Gαβ αβπ

∗ ∗= −∫x l e il·x dΩ(l). 

 
From the Hermitian character of the values of F, one thus deduces that: 
 
(42-1)    ( )Gαβ

∗ −l = Gαβ(l). 

 
It is possible to transform formula (41-4) in such a way as to reduce the domain of 
integration to the positive nappe C+ of the isotropic cone.  It thus follows that: 
 

Fαβ(x) =
+3

1

(2 ) Cπ ∫  (Gαβ(l) e
il·x+ Gαβ(−l)e-il·x) dΩ(l), 
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namely, from (42-1): 

(42-2)   Fαβ(x) =
+3

1

(2 ) Cπ ∫  (Gαβ(l) e
il·x+ ( )Gαβ

∗ −l e-il·x) dΩ(l). 

 
 The Hermitian character of the values of F is clear in the formula (42-2).  The 
hypothesis b translates into the relations: 
 
(42-3)    S lα Gβγ = 0 lαGαβ = 0. 
 
 Suppose that Gαβ is a 2-form with scalar values that satisfies (41-3).  These relations 
express that the 2-form envisioned is singular.  Let n(1)(l) and n(2)(l) denote two arbitrary 
normed orthogonal vectors in the 3-plane that is tangent to the isotropic cone along l.  
These vectors define a spatially oriented 2-plane and a time-oriented orthogonal 2-plane 
that contains l.  If e0 is an arbitrary unitary vector in this 2-plane then one obtains an 
orthonormal frame (eα) such that: 
 

(42-4)    
0

1

l
l = e0 + e1,  e2 = n(1), e2 = n(2). 

 
From the study in sec. 7 (in particular, see (7-3)) it results that for any Gαβ that satisfies 
(42-3), it is necessary and sufficient that: 
 
(42-5)    Gαβ(l) =

( ) ( )( , )( )i i

i

a i l n l nα β β α−∑ l , 

 
in which the indices i, j, …, take the values 1 and 2, and the a(i, l) are scalars. 
 By introducing a linear form on M with scalar values one immediately sees that if Gαβ 
is a 2-form with values in M that satisfies (42-3) then the formula (42-5) is again valid, 
with the condition that one take the a(i, l) to be elements of M. 
 The quantization of the field F is accomplished by postulating the bracket conditions: 
 

(42-6)    
[ ( , ), ( , )] 0

[ ( , ), ( , )] ( , ),ij

a i a j

a i a j
i

δ δ∗
Ω

′ =

 ′ ′=

ℏ

l l

l l l l
 

 
in which l and ′l are two vectors of C+, δij is the KRONECKER symbol, and δΩ is the 
DIRAC measure, relative to the isotropic cone that is given volume element dΩ.  One 
may thus obtain a more condensed formalism by introducing the indices A, B, which take 
the values +1 and –1, and by setting: 
 

aA(i, l) = a(i, l) for A = 1, aA(i, l) = a*( i, l) for A = −1. 
 
With these notations, the quantization conditions (42-6) may be written: 
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(42-7)    [ ( , ), ( , )] ( , )AB ija i a j A
i

δ δ δ∗
Ω′ ′= ℏl l l l . 

 
 
 43.  An auxiliary formula.   In the course of calculating the commutation relations 
that field F must, by virtue of (42-7), satisfy, we will be led to evaluate the following 
tensor, which is defined by starting with l, n(1)(l), n(2)(l): 
 
(43-1)   Pαβ,λµ(l) = ( ) ( ) ( ) ( )( )( )i i j j

ij l n l n l n l nα β β α λ µ µ λδ∑ − − . 

 
For this evaluation, we start with the orthonormal frame that was introduced in sec. 42 
that satisfies (42-4); we set: 

e0 = u,  e1 = 0

1

l
l – u = kl – u   (k = 1 / l0). 

 
By starting with the components of the vectors in this orthonormal frame, the metric 
tensor ηαβ of V4 may be expressed by: 
 

ηαβ = uα uβ − (klα − uα)(klβ − uβ) − (1) (1)n nα β − (2) (2)n nα β . 

 
From this, one deduces that: 
 

( ) ( )

,

i j
ij

i j

n nα βδ∑ = (1) (1)n nα β  + (2) (2)n nα β = k(lα uβ + lβ uα) – k2 lα lβ − ηαβ. 

 
If we develop the right-hand side of (43-1) then we obtain: 
 

Pαβ,λµ(l) = lα lλ{ k(lβ uµ + lµ uβ) – k2lα lβ − ηαβ} + lβ lµ{ k(lα uλ + lλ uα) – k2lα lλ − ηαλ} 
  − lα lµ{ k(lβ uλ + lλ uβ) – k2lβ lλ − ηαβ} − lβ lλ{ k(lα uµ + lµ uα) – k2lα lµ − ηαµ}. 
 
After simplification, the following formula follows: 
 
(43-2) ( ) ( ) ( ) ( )

,

( )( )i i j j
ij

i j

l n l n l n l nα β β α λ µ µ λδ − −∑ = − (ηαλ lβ lµ +ηβµ lα lλ − ηβµ lα lλ − ηβλ lα lµ ).  

 
 
 44.  The commutation relations.  By virtue of (42-5), at the point x of V4, Fαβ(x) 
may be written: 

(44-1)  Fαβ(x) =
+

A A ( ) ( )
3 C

A,

1
( , ) ( ) ( )

(2 )
i j j

j

a i e l n l n dα β β απ
− Ω∑∫

il xl l . 

 
Let x be another point of V4 for which: 
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( )Fλµ ′x =
+

B B ( ) ( )
3 C

B,

1
( , ) ( ) ( )

(2 )
i j j

j

a j e l n l n dλ µ µ λπ
′ ′′ ′ ′ ′ ′ ′− Ω∑∫
il xl l , 

 
in which the ( ) ( )j′ ′n l are normal orthogonal vectors that are tangent to C along ′l .  We 
evaluate the bracket: 
 

[Fαβ(x), ( )]Fλµ ′x =
+ +

A B ( A B )
6 C C

1
[ ( , ), ( , )]

(2 )
ia i a j e

π
′ ′− −′∫ ∫

xi il x+ ll l  

     × ( ) ( ) ( ) ( )( )( ) ( ) ( )i i j jl n l n l n l n d dα β β α λ µ µ λ′ ′ ′ ′ ′− − Ω Ωl l . 

 
After integrating over the variable′l , one obtains: 
 
 [Fαβ(x), ( )]Fλµ ′x  

=
+

A ( ) ( ) ( ) ( ) ( )
3 C

A ,

1
A { ( )( )} ( )

2(2 )
i i i j j

ij
i j

e l n l n l n l n d
i α β β α λ µ µ λδ

π
′− − − Ω∑ ∑∫

xiℏ l x - l . 

 
From the earlier formula (43-2), one thus deduces: 
 

(44-2)  [Fαβ(x), ( )]Fλµ ′x  = 
+

A ( )
3 C

A

1
A

2(2 )
ie

i π
′−− ∑ ∫

xiℏ l x-  

× ( ) ( )l l l l l l l l dαβ β µ βµ α µ αµ β λ αλ α µη η η η+ − − Ω l . 

 
We are thus led to introduce the invariant distribution that is defined by: 
 

(44-3)   D(x) =
+3 C

A

1
( )

2(2 )
iAAe d

π
− Ω∑ ∫
il x l , 

 
which is nothing but the JORDAN-PAULI “propagator.”  One thus immediately obtains: 
 

   ( )Dα∂ x  =  −
+3

( )
2(2 )

iA

C
A

i
Ae l dαπ

− Ω∑ ∫
il x l  

and: 

   ( )Dα β∂ ∂ x  = −
+3

( )
2(2 )

iA

C
A

i
Ae l l dα βπ

− Ω∑ ∫
il x l . 

 
As a result, formula (44-2) may be written: 
 

(44-4)  [Fαβ(x), ( )]Fλµ ′x  = ( ) ( )D
i αλ β µ βµ α λ αµ β λ βλ α µη η η η ′∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ −x x
ℏ

, 
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in which the derivatives are taken with respect to the variable x.  Formula (44-4) may 
also be written by substituting the scalar product eα · eλ of the frame vectors for ηαλ and 
introducing the derivatives with respect to the coordinates of the point ′x . 
 

(44-5)  [Fαβ(x), ( )]Fλµ ′x  = {( ) ( )
x x x x

i
β µ α λα λ β µ

′ ′
− ⋅ ∂ ∂ + ⋅ ∂ ∂e e e e
ℏ

 

( ) ( ) } ( )
x x x x

Dβ λ α µα µ β λ

′ ′
′− ⋅ ∂ ∂ − ⋅ ∂ ∂ −e e e e x x . 

 
In (44-4) or (44-5), we recover the classical commutation relation for the quantum theory 
of the electromagnetic field (10).  As one immediately verifies, the bracket that one 
obtains is completely compatible with equations (41-2); if Kαβ,λµ denotes the bracket: 
 

,S Kγ αβ λµ∂ = 0  ,Kα
α β λµ∂  = 0, 

 
in which S indicates a summation over all cyclic permutations of the three indices α, β, γ.  
This quantization defines an irreducible unitary representation of the inhomogeneous 
LORENTZ group that may be characterized by its restriction to the “little group,” in the 
sense of WIGNER (viz., the subgroup that leaves an isotropic vector invariant).  As one 
knows, the representation thus obtained is characterized by a null mass and a spin that is 
equal to 1. 
 
 
 45.  Form of the commutation relation in an arbitrary frame .  Suppose that we 
have two arbitrary neighborhoods of points x and ′x that are referred to two different 
frames (eα) and( )λ ′e .  We thus refer the electromagnetic field at x to the frame(eα) and 

the electromagnetic field at′x to( )λ ′e .  Upon multiplying by the frame transition matrices, 

formula (44-5) may be written, after suppressing the indices x andx′ as no longer useful: 
 

(45-1)  [Fαβ(x), ( )]Fλ µ′ ′ ′x  = {( ) ( )
i α λ β µ β µ α λ′ ′ ′ ′− ⋅ ∂ ∂ + ⋅ ∂ ∂e e e e
ℏ

 

( ) ( ) }( )α µ β λ β λ α µ′ ′ ′ ′ ′− ⋅ ∂ ∂ − ⋅ ∂ ∂ −e e e e x x , 

 
in which the two sides represent a bitensor, an anti-symmetric tensor of order two, at x, 
and an anti-symmetric tensor of order two at′x .  The right-hand side clearly involves the 
bitensor that is defined by the products( )α λ′⋅e e , and it is easy to obtain an interesting 

expression for it.  Indeed, one has: 
′x − x = x xλ α

λ α
′

′ −e e . 

 
As a result, if s denotes the spatio-temporal interval that joins the point x to the point. 
 

                                                
 10 For example, see G. WENTZEL, Quantum Theory of Fields, pp. 115. 
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s2 = ( ′x − x)2 = 2x x x x x xλ µ α β α λ
λ µ α β α λ

′ ′ ′
′ ′ ′⋅ + ⋅ − ⋅e e e e e e. 

 
By differentiation, one obtains: 

2sα λ′∂ ∂ = − 2 α λ′⋅e e . 

 
Therefore, if we introduce the bitensors at x and ′x that are defined by: 
 
(45-2)     αλθ ′ =

2sα λ′∂ ∂  

 
then one obtains the following form for the commutation relation: 
 

(45-3) [Fαβ(x), ( )]Fλ µ′ ′ ′x = { )
i αλ β µ βµ α λ αµ β λ βλ α µθ θ θ θ′ ′ ′ ′ ′ ′ ′ ′− ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇ℏ

D(x − ′x ). 

 
In this form, the relation is valid in an arbitrary moving frame, and, in particular, if one 
refers spacetime to local curvilinear coordinates (xα) in a neighborhood of x, and( )xλ′ in a 
neighborhood of ′x . 
 
 

B.  THE GRAVITATIONAL FIELD. 
 
 46.  The field equations.  Consider a Riemannian spacetime V4 and denote its 
curvature tensor by Rα

β,λµ.  It enjoys the following symmetry properties: 
 
(46-1)    Rαβ,λµ = − Rβα,λµ = − Rαβ,µλ = Rλµ,αβ ,  
and satisfies the identity: 
(46-2)    SRα

β,λµ = 0, 
 
which is nothing but the integrability condition for the torsion in the case where it is zero.  
We assume that the spacetime in question V4 satisfies the EINSTEIN conditions: 
 
(46-3)    Rαβ = 0. 
 
The analogue of the MAXWELL equations, and the study made of the state of pure 
radiation lead us to adopt the field equations: 
 
(46-4)   (a)  S ∇α R

λ
µ,βγ  = 0; (b)  ∇α R

α
β,λµ  = 0, 

 
in which ∇α is the covariant derivative operator for the Riemannian connection.  (46-4)a 
is nothing but the BIANCHI identity, an integrability condition for the equations that 
couple the curvature tensor to the connection.  From (46-4)a, one deduces, by contraction: 
 
(46-5)    ∇α R

α
µ,βγ = ∇β Rµγ − ∇γ Rµβ , 
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and one sees that (46-3) entails that (46-4)b. 
 
 2)  We propose to show that, conversely, if the field equations (46-4) are satisfied 
then (46-3) may be considered to be a simple initial condition.  More precisely, let Σ be a 
spatially oriented hypersurface in V4 on which Rαβ is annulled identically.  If the 
equations (46-4) are satisfied then we shall establish that Rαβ is also necessarily null 
outside of Σ. 
 Let x0 = 0 be the local equation for Σ.  Since this hypersurface is spatially oriented 
one has g00 > 0.  From (46-4)b and (46-5), it results that: 
 
(46-6)    ∇β Rµγ − ∇γ Rµβ = 0, 
 
and after contracting (46-4)b it follows that: 
 

∇α R
α

λ = 0, 
which may also be written: 
(46-7)    gαβ  ∇αRβλ = 0. 
 
Let u, v, …, denote inidces that take the values 1, 2, 3.  By expanding the left-hand side 
of (46-7), one has: 

g00 ∇0R0λ + g0u(∇0Ruλ + ∇uR0λ) + guv ∇uRvλ = 0, 
 
namely, from (46-6): 
(46-8)   g00 ∇0R0λ = − 2g0u∇uR0λ − guv ∇uRvλ . 
 
If we set β = 0 and γ = 0 in (46-6) and λ = 0 in (46-8) then one obtains the following 
linear homogeneous first order partial differential equation: 
 

0 0
00 0

0 00 00 02
uu u u

u uv
u u v

R R

g R g R g R

∇ = ∇
 ∇ = − ∇ − ∇

 

 
in which g00 ≠ 0.  For an initial datum Rαβ that is null on Σ, this system admits no solution 
but the null solution, which proves the property. 
 
 3)  Suppose that V4 is supported by a Minkowski space. If the gravitational field 
envisioned is weak then the metric tensor gαβ on V4 may be written: 
 
(46-9)    gαβ = ηαβ + εψαβ , 
 
in which ηαβ defines the Minkowski metric and ε is infinitesimal.  If V4 is referred to an 
orthonormal frame, relative to the metric ηαβ, then the corresponding coefficients of the 
Riemannian connection on V4 are of order ε, as well as the components of the curvature 
tensor.  If the indices are raised and lowered by means of the tensor ηαβ then the principal 
part of the curvature tensor Hα

β,λµ  satisfies the identity (46-1) and (46-2) and is restricted 
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by equations that are deduced from (46-4) if we substitute ordinary derivatives for the 
covariant derivatives relative to gαβ. 
 
 
 47.  Quantization conditions.  Therefore, take spacetime V4 to be MINKOWSKI 
space, which we always assume to referred to orthonormal frames (eα).  We are thus led 
to describe the gravitational field by means of a tensor Hαβ,λµ that satisfies the identities: 
 
(47-1)   Hαβ,λµ = − Hβα,λµ = − Hαβ,µλ = Hλµ,αβ , 
and the identity: 
(47-2)    SHλ

α,βγ  = 0, 
 
where the indices are raised and lowered by means of the spacetime metric ηαβ.  We take 
our field equations to be: 
 
(47-3)   (a)  ,S Hλ

α α βγ∂  = 0 (b) ,H α
α β λµ∂ = 0, 

 
and add the supplementary condition to these equations that: 
 
(47-4)    Hαβ = Hλ

α,βγ  = 0. 
 
The same reasoning as in the preceding paragraph 2, in which one substitutes the tensor 
Hαβ,λµ  for Rαβ,λµ, shows that for a solution of (47-3) it suffices to verify this condition on 
a hypersurface Σ that is spatially oriented. 
 An ordinary tensor, such as H, may be identified with a multilinear form 
Hαβ,λµ (1) (2) (3) (4)V V V Vα β λ µ  with scalar values.  We replace it with a multilinear form that we 

denote with the same notation, but it takes its values in the vector space M and, naturally, 
it satisfies the conditions (47-1) and (47-2).  In a manner that is analogous to the 
electromagnetic case, we assume that: 
 
  a)  The values of H are Hermitian operators. 
  b)  H satisfies equations (47-3). 
 
 Under some simple hypotheses that permit the introduction of the FOURIER 
transformation, and with notations that are analogous to the ones that were used in the 
electromagnetic case, H may be put into the form: 
 

(47-5)  Hαβ,λµ(x) =
+ , ,3

1
( ( ) ( ) ) ( )

(2 )
i i

C
K e K e dαβ λµ αβ λµπ

⋅ ∗ − ⋅+ Ω∫
l x l xl l l , 

 
in which x ∈ V4 and is a tensor with values in M.  The hypotheses b translates into the 
relations: 
(47-6)  (a) S lα Kβγ,λµ = 0  (b) lα Kαβ,λµ = 0. 
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Suppose that Hαβ,λµ is an ordinary tensor that enjoys the symmetry properties (47-1) and 
satisfies (47-3).  The corresponding tensor Kαβ,λµ(l) enjoys the same symmetry properties 
and, from (21-9), the solutions to (47-6) are given by: 
 
(47-7)  Kαβ,λµ(l) = ( ) ( ) ( ) ( )

,

( , , )( )( )i i j j

i j

a i j l n l n l n l nα β β α λ µ µ λ− −∑ l  

with: 
a(i, j, l) = a(j, i, l), 

by reason of symmetry. 
 By introducing a linear form with scalar values on M, one also sees that if Kαβ,λµ is a 
tensor with values in that enjoys some specified symmetry properties and satisfies (47-6) 
then the formula (47-7) is always valid, on the condition that the a(i, j, l) take their values 
in M. 
 The quantization of the field H is effected by postulating the bracket conditions: 
 

(47-8)  
[ ( , , ), ( , , )] 0

[ ( , , ), ( , , )] ( ) ( , )ih jk ik jh ij hk

a i j a h k

a i j a h k
i

δ δ δ δ δ δ δ∗
Ω

′ =

 ′ ′= + −

ℏ

l l

l l l l
 

 
in which l and ′l are vectors in C+.  By means of the condensed formalism that was 
introduced in the electromagnetic case, one may translate (47-8) into: 
 

(47-9)  A B
AB[ ( , , ), ( , , )] A ( ) ( , )ih jk ik jh ij hka i j a h k

i
δ δ δ δ δ δ δ−

Ω′ ′= + −ℏ
l l l l . 

 
 
 48.  The commutation relations.  At the point x of V4, by virtue of (47-5) and (47-7), 
Hαβ,γδ(x) may be written: 
 

(48-1)  Hαβ,γδ(x) =
+

( ) ( ) ( ) ( )
3

, ,

1
( , ) ( )( ) ( )

(2 )
A iA i i j j

C
A i j

a i j e l n l n l n l n dα β β α γ δ δ γπ
⋅ − − Ω∑ ∫

l x, l l . 

 
Let ′x  be another point of V4 for which: 
 

+

( ) ( ) ( ) ( )
, 3

, ,

1
( ) ( , ) ( )( ) ( )

(2 )
B iB h h k k

C
B h k

H a h k e l n l n l n l n dλµ νρ λ µ µ λ ν ρ ρ νπ
⋅′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − Ω∑ ∫x l x,l l , 

 
in which the ( ) ( )h′ ′n l are orthogonal vectors that are tangent to C along ′l . 
 From (47-9), one has: 
 
 , ,[ ( ), ( )]H Hαβ γδ λµ νρ ′x x  
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 = 
+ +

( + )
6

,

, , ,

1
( ) ( , )

(2 )
i A B

AB ih jk ik jh ij hkC C
A B

i j k h

A e
i

δ δ δ δ δ δ δ δ
π

′− ⋅ ⋅
Ω ′+ −∑ ∫ ∫

x xℏ l ll l  

× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )( )( ) ( ) ( )i i j j h h k kl n l n l n l n l n l n l n l n d dα β β α γ δ δ γ λ µ µ λ ν ρ ρ ν′ ′ ′ ′ ′ ′ ′ ′ ′− − − − Ω Ωl l . 

 
After integrating over the variable l, one obtains: 
 

+

( ( )
, , 6

, , ,

1
[ ( ), ( )] ( )

2(2 )
i A

ih jk ik jh ij hkC
A i j h k

H H Ae
iαβ γδ λµ νρ δ δ δ δ δ δ

π
− ⋅ −′ = + −∑ ∑∫

x xx x
ℏ l  

× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )( )( ) ( )i i j j h h k kl n l n l n l n l n l n l n l n dα β β α γ δ δ γ λ µ µ λ ν ρ ρ ν− − − − Ω l . 

 
From the auxiliary formula (43-2), it thus results that: 
 

 
+

( ( )
, , 3

1
[ ( ), ( )]

2(2 )
i A

C
A

H H Ae
iαβ γδ λµ νρ π

− ⋅ −′ = ∑∫
x xx x

ℏ l  

{( )( )l l l l l l l l l l l l l l l lαβ α β βµ α λ αµ β λ βλ α µ γν δ ρ δρ γ λ δµ β ν δν γ µη η η η η η η η+ − − + − −  

+( )( )l l l l l l l l l l l l l l l lαν β ρ βµ α ν αρ β ν βν α ρ γλ δ µ δµ γ λ γµ δ ν δλ γ µη η η η η η η η+ − − + − −  

+( )( )} ( )l l l l l l l l l l l l l l l l dαγ β δ βδ α γ αδ β γ βγ α δ γλ µ ρ µρ λ ν λρ µ ν µν λ ρη η η η η η η η ′+ − − + − − Ω l . 

 
Upon introducing the JORDAN-PAULI propagator, one deduces that: 
 
(48-2)  , ,[ ( ), ( )]H Hαβ γδ λµ νρ ′x x = 

{
i

ℏ
( )αλ β µ βµ α λ αµ β λ βλ α µη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ ( )γν δ ρ γδ ρ ν γρ δ ν δν γ ρη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂  

+ ( )αν β ρ βρ α ν αρ β ν βν α ρη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ ( )γλ δ µ δµ γ λ γµ δ λ δλ γ µη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂  

− ( )αγ β δ βδ α γ αδ β γ βγ α δη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ ( )λν µ ρ µρ λ ν λρ µ ν µν λ ρη η η η∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ } 

     × D(x - )′x . 
 
 We have thus obtained the commutation relation for the field H.  One easily verifies 
that if H satisfies the identity (47-2) then the relation that one obtains is compatible with 
this identity; it is naturally compatible with the field equations (47-3).  The study of the 
“little group,” à la WIGNER, easily shows that the preceding quantization defined by 
(47-9) generally gives a mixture of particles that have null masses and spin 0 or 2.  If one 
introduces the supplementary condition Hαβ = 0 then one necessarily Hαβ = Kρ

α,ρβ = 0, 
and one deduces from (47-7): 

,i j
∑ δija(i, j, l) = 0, 

namely, the trace condition: 
a(1, 1, l) + a(2, 2, l) = 0, 

 
which leaves only the representation that is characterized by a null mass and a spin equal 
to two. 
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 49.  Interpretation of the tensor H in terms of the metric. 
 1)  In Minkowski spacetime, which we refer to a frame that is orthonormal relative to 
ηαβ, we consider an ordinary tensor field Hλ

µ,βα that satisfies the algebraic identities (47-
1) and (47-2) and the field equations (47-3), as well as the supplementary condition that 
Hαβ = 0.  From (47-3)a, there exists a system of quantitiesλ

αβΓ such that: 

 
(49-1)    Hλ

µ,βα  = λ
α µβ∂ Γ − λ

β µα∂ Γ , 

 
a system of quantities that is found to be defined up to a transformation of the form: 
 
(49-2)    λ

αβΓ  → λ
αβΓ + A λ

β α∂ , 

 
in which theAλ

α are arbitrary.  We set: 

 
Sλ

αβ = 1
2 ( λ

αβΓ − λ
βαΓ ). 

 
From (49-1), when written in the form: 
 

Hλ
α,βγ  = λ

β αγ∂ Γ − λ
γ αβ∂ Γ , 

 
one infers, after summation over cyclic permutations of α, β, γ and from the identity (47-
2), that: 

S Sλ
γ αβ∂  =  − 1

2 SHλ
α,βγ = 0. 

 
From this, it results that there exists a system of quantities Bλ

α such that: 

 
(49-3)    2Sλ

αβ  = Bλ
α β∂  − Bλ

β α∂ , 

 
a system of quantities that is defined up to the transformation: 
 
(49-4)    Bλ

α  → Bλ
α + λ

αϕ∂ . 

From (49-3), it results that: 
(49-5)    λ

αβΓ + Bλ
β α∂  = λ

βαΓ + Bλ
α β∂ . 

 
If we replace the original λ

αβΓ  with the left-hand side of (49-5), which is permissible, by 

the transformation (49-2), one sees that the λ
αβΓ  that satisfy (49-1) may be restricted to be 

symmetric in their lower two indices.  They are then found to be defined up to a 
transformation: 
(49-6)    λ

αβΓ  → λ
αβΓ + λ

β αϕ∂ ∂ . 
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We raise and lower the indices by means of the tensor ηλµ , and, in particular, we set: 
 

Γαµβ = λ
λµ αβη Γ . 

 
The relation (49-1) may be put into the form: 
 

Hλµ,βα  = α µλβ∂ Γ − β µλα∂ Γ . 

 
From the identity (47-1) that H verifies, it results that: 
 

Hλµ,αβ + Hµλ,αβ = (α µλβ∂ Γ + )µλαΓ − (β λµα∂ Γ + )µλαΓ = 0. 

 
As a result, there exists a system of quantities ψλµ that are symmetric in the indices λ and 
µ such that: 
(49-7)    Γλµα + Γµλα = α λµψ∂ . 

 
On account of (49-6), ψλµ is defined up to the transformation: 
 
(49-8)   ψλµ  → ψλµ + λ µϕ∂ + µ λϕ∂ + const. 

 
From the symmetry properties of Γ and (49-7), one deduces that: 
 
(49-9)    Γλνµ = [λµ, ν], 
 
in which the right-hand side denotes the CHRISTOFFEL algorithm applied to the system 
of ψλµ.  Therefore, from the hypotheses that were made on H, there exists a system of 
quantities ψλµ (with ψλµ = ψµλ), which is defined up to the transformation (49-8) and is 
such that the quantities (49-9) that are derived from them satisfy: 
 
(49-10)   Hλµ,αβ  = α µλβ∂ Γ − β µλα∂ Γ . 

 
Consider the tensor that is defined, relative to the adopted coordinates, by: 
 

gλµ = ηλµ + εψλµ , 
 
in which ε is an infinitesimal.  If we effect the change of coordinates: 
 

xρ ′ = xρ + εxρ(x) 
 
then one sees that ψλµ is subjected to the transformation (called a gauge transformation): 
 
(49-11)   ψλµ  → ψλµ + λ µϕ∂ + µ λϕ∂ . 
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We may thus interpret the preceding results by giving spacetime the Riemannian metric 
that is defined by gλµ .  This metric is close to the Minkowskian metric that is defined by 
ηλµ in local coordinates that are orthonormal for the Minkowski spacetime. This 
deviation persists under the change of coordinates (49-11), and Hλµ,αβ is the principal part 
of the curvature tensor for gλµ . 
 
 2)  It remains for us to examine the equations: 
 

Hλµ = 0. 
 
By a convenient choice of ϕρ, one may restrict theλ

αβΓ to the coordinate conditions: 

 
(49-12)    ηαβ λ

αβΓ = 0, 

  
which is nothing but the principal part of the isothermal conditions.  One then has: 
 
(49-13)   ηαβ ( )α βµ β αµ µ αβψ ψ ψ∂ + ∂ − ∂ = 0, 

 
and in order to respect (49-12) ϕλ must be restricted by the conditions: 
 
(49-14)    ηαβ αβ λϕ∂ = 0. 

 
From (49-10), one deduces (see (16-4)): 
 

Hλµ = 1
2 ηαβ ( )αλ βµ βµ αλ αβ λµ λµ αβψ ψ ψ ψ∂ + ∂ − ∂ − ∂ . 

 
The coordinate conditions and principal parts of the isothermal conditions permit us to 
give a simple expression for Hλµ , the principal part of the RICCI tensor.  By 
differentiating (49-13) one deduces: 
 

ηαβ λµ αβψ∂ = ηαβ ( αλ βµψ∂ + βλ αµψ∂ )  ηαβ αβ λµψ∂ = ηαβ ( αµ βλψ∂ + βµ αλψ∂ ). 

 
From this, one deduces that, with the conditions on the coordinates, one has: 
 

Hλµ = − 1
2 ηαβ 

λµ αβψ∂ . 

 
Therefore, with the coordinate conditions that were introduced, the equations Hλµ = 0 
translate into: 
(49-15)    ηαβ 

λµ αβψ∂ = 0. 

 
 
 
 



A. LICHNEROWICZ: Electromagnetic waves and radiation, etc. 
 

88 

 50.  Relationship with the theory of the graviton.  One may finally show that our 
process is equivalent to the classical process that leads to the theory of the graviton; 
however, it reveals itself to be more coherent and, as a result, more satisfying, both 
mathematically and physically. 
 Under the simple hypotheses that permit us to introduce the FOURIER 
transformation, one has, by virtue of (49-14) and (49-15): 
 

ψλµ(x) =
3

1

(2 ) Cπ ∫ χλµ(l) e
il·x dΩ(l) 

and: 

ϕµ(x) =
3

1

(2 ) Cπ ∫ fµ(l) eil·x dΩ(l), 

 
in which C is the isotropic cone that is defined by ηλµ: ψλµ is thus defined up to a gauge 
transformation, and χλµ is defined up to the transformation: 
 
(50-1)    χλµ(l) − χµλ(l) + lλ  fµ(l) + lµ  fλ(l), 
 
in which fµ(l) is then restricted by the condition: 
 

lµ  fµ(l) = 0. 
 
 If n(1)(l), n(2)(l) are two vectors that are normal and orthogonal and tangent to C along 
l then fµ(l) is an arbitrary vector of the form: 
 
(50-3)    fµ(l) = 1

2 a(l)lµ + ( )( , ) i

i

b i µ∑ nl    (i, j = 1, 2). 

 
In order for the coordinate conditions to be satisfied it is necessary and sufficient that: 
 

lλ cλµ(l) = 0. 
 
From this, it results that there exist scalars a(l), b(i, l), c(i, j, l) (with c(i, j, l) = c(j, i, l)) 
such that: 

χλµ(l) = a(l)lλlµ + ( ) ( ) ( ) ( )

,

( , )( ) ( , , )i i i j

i i j

b i l n l n c i j n nλ µ µ λ λ µ+ +∑ ∑l l . 

 
By using the transformation (50-1) with (50-3), one sees that χλµ may be restricted to be 
of the form: 
(50-4)    χλµ(l) = ( ) ( )

,

( , , ) i j

i j

c i j n nλ µ∑ l , 

 
and is then entirely determined.  In order to have χ(l) = 0 it is necessary and sufficient 
that one have: 
(50-5)    c(1, 1, l) + c(2, 2, l) = 0. 
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According to our process, the quantization of the field χλµ is effected by imposing 
conditions that are analogous to (47-8) on the operators that are substituted for the scalars 
c(i, j, l) in (50-4).  A somewhat long calculation then permits us to deduce the 
commutation relations (48-2). 
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