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 1. – Let T be any region that is filled with a homogeneous or heterogeneous incompressible 

fluid whose boundary S consists of, say, a finite number of pieces of analytic and regular surfaces. 

Let S   be one part of the surface that is defined by rigid walls, while the remaining part S  is free. 

 might denote the density, which is assumed to be continuous on the pieces, while d denotes the 

volume element, and d denotes the surface element. The fluid considered might be found to be 

in equilibrium under the action of volume forces  X d,  Y d,  Z d, as well as the surface 

forces X d, Y d, Z d. The unit forces X, Y, Z will be assumed to be continuous functions of 

position in the interior of T and on its boundary, or more briefly, in T + S, while X, Y, Z are the 

same sort of functions of position on S . 

 Now, let , ,  be any functions that are declared to be continuous in T + S and have first-

order derivatives that are continuous or just piece-wise continuous and satisfy the equation: 

 

(1)  
x y z

    
+ +

  
 = 0 , 

along with the relation: 

 

(2)   cos (n, x) +  cos (n, y) +  cos (n, z) = 0 . 

 

In (2), (n) denotes the direction of the interior normal. That equation states that the vector , ,  

falls in the tangent plane to the surface S  . On some edges, it is possibly tangent to that direction, 

while it is equal to zero on the corners of the body. 

 Let  be a real parameter. We set x =  , y =  , z =  . The transformation: 

 

(3)   x
 = x + x , y

 = y + y , z  = z + z , 
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viz., a “virtual displacement,” associates T with a region T   in a continuous, single-valued, and 

invertible way for all sufficiently-small |  |, as one easily shows. (1) and (2) imply the relations: 

 

(4)  
x y z

x y z

    
+ +

  
 = 0 

in T, and 

 

(5)  x cos (n, x) + y cos (n, y) + z cos (n, z) = 0 

 

on S  . 

 The principle of virtual displacements says that as long as the volume and surface forces remain 

in equilibrium, as was assumed, the work that they do under all virtual displacements will vanish: 

 

(6)  ( ) ( )
T S

X x Y y Z z d X x Y y Z z d          


+ + + + +   = 0 . 

 

One can, with Lagrange, derive the equilibrium conditions from that relation when one appeals 

to the use of Lagrange multipliers that are customary in the mechanics of systems of mass-points 

and understands  to mean a function that is continuous in T + S and has piece-wise continuous 

first-order partial derivatives there, and one exhibits the conditions for that by saying that: 

 

(7) ( ) ( )
T S

x y z
X x Y y Z z d X x Y y Z z d

x y z
  

  
         



    
+ + + + + + + +  

    
   = 0 . 

 

Partial integration will yield, in the known way: 

 

T
X x Y y Z z d

x y z

  
      

       
− + − + −     

       
  

(8) 

+ {( cos ( , )) ( cos ( , )) ( cos ( , )) }
S

X n x x Y n y y Z n z z d        


− + − + − = 0 , 

 

from which the equilibrium conditions will follow in T : 

 

(9)   X = 
x




,  Y = 

y




,  Z = 

z




, 

and 

 

(10)  cos (n, x) = X ,    cos (n, y) = Y ,  cos (n, z) = Z 

 

on S . The multiplier  has the meaning of the fluid pressure. 
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 Trying to establish the method of Lagrange multipliers directly raises certain difficulties. 

When one rises from equations (9) and (10) to formulas (7) and (6), one can use the present 

argument to prove that the relations (9) and (10) are sufficient for the vanishing of the virtual work 

(6) when the condition equations (4) and (5) are fulfilled, but not that they are also necessary. That 

this is actually the case, so the system of equations (9) and (10) is completely equivalent to the 

statement of principle of virtual displacements, can be shown with no difficulty as long as one 

assumes that  X,  Y,  Z have continuous first-order derivatives. The proof when one drops that 

assumption is not as obvious. In that case, a lemma of Haar will provide the required tool for that, 

and a very simple proof of it will be given at the conclusion of this article. 

 

 

 2. – Let (x0, y0, z0) be any point in T at which  X,  Y,  Z behave continuously, and let K be 

a cube whose edges have length 2h and are parallel to the coordinate axes and lies completely in 

the interior of T with (x0, y0, z0) as its midpoint. We now take the functions x, y, z, which are 

continuous in T + S, as before, have piece-wise continuous first-order derivatives and satisfy 

equations (4) and (5), and in particular, they equal zero in T – K. We must then have: 

 

(11) ( )
K

X x Y y Z z d    + +  = 0 . 

 

 Now, let x and y be any pair of infinitely-small functions that are continuous in the square: 

 

(12) x0 – h  x  x0 + h , y0 – h  y  y0 + h , 

 

along with their first-order partial derivatives, satisfy the conditions: 

 

(13) 
x y

x y

  
+

 
 = 0 , 

 

and vanish on its periphery. We assert that for all z in: 

 

(14) z0 – h  z  z0 + h , 

 

we have: 

 

(15) ( )
Q

X x Y y dxdy  +  = 0 . 

 

In contrast to that assertion, for some value z1 in (14) and a certain pair of functions x , y  that 

satisfy the present conditions, one might have, say: 

 

(16) ( )
Q

X x Y y dxdy  +  > 0 . 
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In the interval: 

 

(17) z0 –   z  z0 +    ( < h), 

 

we then choose: 

 

(18) x = 1| |
1

z z
x



− 
− 

 
 , y = 1| |

1
z z

y


− 
− 

 
 , 

 

while x = y = 0 for all other z in (14). Due to (13), the present functions x, y, as well as the 

function z = 0, define a system of virtual displacements. For sufficiently-small , we will have: 

 

(19) ( )
K

X x Y y Z z d    + + > 0 , 

 

due to (16), which is not possible. Thus, the relation (15) is, in fact, true. 

 The condition (13) is obviously the condition for there to be a function  that is continuous in 

the interior and boundary of Q, along with its first-order partial derivatives, such that one will 

have: 

(20) x = 
y




, y = −

x




. 

 

Let (x0, y0) be any point on the boundary of Q. One can set: 

 

(21)  = − 
0 0

( , )

( , )

( )

x y

x y

y dx xdy − . 

Due to (20), one has: 

(22)  = 
x




 = 

y




 = 0 . 

 

When that is substituted in (15), that will give: 

 

(23) 
Q

X Y dx dy
y x

 
  

− 
  

  = 0 , 

 

or, in the event that  X and  Y have continuous, or at least piece-wise continuous, first-order 

partial derivatives, after a partial integration, one will have: 

 

(24) ( ) ( )
Q

X Y dx dy
y x

 
  

−  
  

 = 0 , 
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due to (22). However, it will follow from this that: 

 

(25) ( ) ( )X Y
y x

 
 

−
 

 = 0 . 

 

Namely, if the bracketed expression (24) is, say, > 0 at a point (x1, y1) in Q then one can choose a 

certain  (even one that does not satisfy any conditions that are introduced) to be positive in a 

neighborhood of (x1, y1), but otherwise equal to zero, such that the integral (24) will prove to be 

positive. One will then have: 

(26) ( )X
y





 = ( )Y

x





 

in K and analogously: 

(27) ( )X
z





 = ( )Z

x





, ( )Z

y





 = ( )Y

z





 . 

 

 The formulas (26) and (27) are valid in the neighborhood of any point in T where one has 

continuity. On the grounds of continuity, they will be valid in the interior and on the boundary of 

any region in which  X,  Y,  Z are continuous, and in particular, on S, as well then. Hence, there 

is one continuous function p  in T + S that is determined up to an additive constant and has 

continuous, or at least piece-wise continuous, first and second order partial derivatives, such that: 

 

(28)  X = 
p

x




,  Y = 

p

y




,  Z = 

p

z




. 

 Due to the fact that: 

 

( )
T

X x Y y Z z d    + + = 
T

p p p
x y z d

x y z
    

   
+ + 

   
  

= − ( cos( , ) cos( , ) cos( , ))
S

p x n x y n y z n z d   + +  

= − ( cos( , ) cos( , ) cos( , ))
S

p x n x y n y z n z d   


+ + , 

equation (6) will go to: 

 

(29) {( cos( , )) ( cos( , )) ( cos( , )) }
S

X p n x x Y p n y y Y p n z z d     


− + − + −  = 0 . 

 

 That formula is true for all x, y, z on S that are continuous there and are arranged such 

that: 

 

(30) [ cos( , ) cos( , ) cos( , )]
S

x n x y n y z n z d   


+ +  = 0 , 
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moreover. One gets the relation (30) from (4) by integrating over T : 

 

T

x y z
d

x y z

  


   
+ + 

   
  

 

(31) = − [ cos( , ) cos( , ) cos( , )]
S

x n x y n y z n z d   + +  

 = − [ cos( , ) cos( , ) cos( , )]
S

x n x y n y z n z d   


+ + = 0 . 

 

From known theorems, it follows from (29) and (31) that: 

 

(32) X = ( )cos( , )p n x+ , Y = ( )cos( , )p n y+ , Z = ( )cos( , )p n z+ , 

( = constant). 

 

 The formula brings us back to the statement that the pressure has been defined only up to an 

additive constant up to now. As is known, one cares to establish the value of the pressure in such 

a way that one lets it vanish at those points on the surface at which 2 2 2X Y Z  + +  = 0 (1). If one 

sets p +  = p then one will find that: 

 

(33)  X = 
p

x




,  Y = 

p

y




,  Z = 

p

z




, 

and 

 

(34) X = p cos (n, x) , Y = p cos (n, y) , Z = p cos (n, z) 

 

on S . Formulas (33) and (34) are the basic equations for hydrostatics. 

 The relations (20) are included in the known general formulas: 

 

(35) x = 
V W

z y

 
−

 
, y = 

V W

z y

 
−

 
, z = 

V W

z y

 
−

 
 

 

for the components of a vector x, y, z whose divergence 
x y z

x y z

    
+ +

  
 vanishes as the 

case where U = 0, V = 0. Naturally, one can also arrive at formulas (33) and (34) in such a way 

that one substitutes the expressions (35) for x, y, z in (11) and partially integrates, as before. 

Herglotz arrived at the equations of motion for an electron from Hamilton’s principle along a 

similar path in a paper that already goes back a long way in time (2). The method breaks down as 

 
 (1) One recalls Torricelli’s classical experiment.  

 (2) Cf., G. Herglotz, “Zur Elektronentheorie,” Gött. Nachr. (1903), 357-382.  
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soon as  X,  Y,  Z do not have piece-wise continuous first-order derivatives. One can do without 

that assumption when one appeals to a lemma due to Haar (1), which reads as follows: 

 Let F be any bounded, simply-connected planar region whose boundary C has piece-wise 

continuous tangent. Let U and V two functions that are continuous F + C, and let: 

 

(36) 
F

U V dxdy
x y

  
+ 

  
  = 0  

 

for all  that are continuous in F + C, vanish on C, and have continuous first-order partial 

derivatives in F. Thus, the integral that is extended along an arbitrary, closed, continuous curve  

in F : 

 

(37) ( )U dy V dx


−  = 0 . 

 

There is then a function  (x, y) that is continuous in F + C, along with its first-order partial 

derivatives, such that: 

(38)     U = 
y




, V = − 

x




. 

 

As will be shown below, that theorem is also true when one assumes, for the time being, that the 

functions U and V are piece-wise continuous in F + C. 

 Obviously, in order to arrive at the relations (33), is it sufficient to replace U, V, , and  with 

–  Y,  X, , − p, respectively, and in so doing, to demonstrate the equivalence of the equilibrium 

conditions (33) and the statement of the principle of virtual displacements when it is based upon 

piece-wise continuous  X,  Y,  Z. 

 Now, there is a simple proof of the Haar lemma. Let  be a closed, continuously-curved curve 

in F that has no double points, let 1 be a curve that is parallel to it at a distance of , and let D be 

the finite region that is bounded by , while D1 is the one that is bounded by 1. Moreover,  might 

lie in D1. Furthermore, let  (h) be any function that is continuous in < 0,  >, along with its 

derivative, and satisfies the following conditions: 

 

(39)   (0) = 1 ,  () = 0 , (0)  = 0 , ( )   = 0, (0)  < 0 , 

for 0 < h <  . 

 

 We take  = 1 in D, equal to 0 in F – D1, and equal to  (h) along any curve h that is parallel 

to  in D1 – D and whose distance from  has the value h  . Let (n) be an arbitrary normal to  

that points outward and let  be the angle that (n) makes with the x-axis. Finally, let Ph be the point 

of intersection of (n) with h . We convince ourselves almost immediately that we have: 

 
 (1) A. Haar, “Über die Variation der Doppelintegrale,” J. reine angew. Math. 149 (1919), 1-18.  
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(40) 
x




 = cos ( )h  , 

y




 = sin ( )h   

 

in Ph . If we now introduce the arc-length s along  and the distance h as new independent variables 

then, due to (40), we will get: 

 

(41)   
0

( cos sin ) ( ) 1
h

ds U V h dh



  


 
+ + 

 
  r

 = 0 

 

for all sufficiently-small , in which r is understood to mean the radius of curvature of the curve  

at the point s.  Since: 

 

(42)  sin  = − 
dx

ds
,  cos  = 

dy

ds
, 

0

( )h hdh



  < 
0

( )h dh



   =   

 

(41) will give the desired formula as  → 0: 

 

( )U dy V dx


−  = 0 . 

 

___________ 

 


