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Remarks on the principle of least constraint
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Translated by D. H. Delphenich

1.

The collected mathematical works &iemann, whose publication defines an
enduring contribution byR. Dedekind andH. Weber, contains his response (written in
Latin) to a problem that the Paris Academy posed in ¢glae ¥858 in regard to a problem
in the distribution of heat, which was an article thats extended most remarkably to
Riemann's paper “Uber die Hypothesen, welche der Geometrie rmnd® liegen.” In
the second part of the aforementioned artiReemann developed the conditions for a
given quadratic form im differentials whose coefficients are arbitrary fumes of then
variables in question to be transformable into a forth wonstant coefficients, and in it,
he summarized the conditions for all of the coeffitseof a certain form [which is
denoted by (Il) on page 382 in the cited location] that iddte in two systems of
differentials and covariant to the given form to @mi That criterion can be combined
with the one that | derived for that question in myatise “Untersuchungen in Betreff der
ganzen homogenen Functionen voDifferentialen” (vol. 70 of this journal, page 71).
The formY¥, which was defined on page 84 of that reference by fotersgsof linear
forms, which were also equal to the form tiidtristoffel denoted byG, in the same
volume of the journal on page 58, will goRtemann's aforementioned form (1) as long
as two plus two of the associated systems of diffexlsnto the former system are set
equal to each other, and from page 94 of the cited voltheeecessary and sufficient
condition for the given quadratic form imdifferentials to be convertible into a quadratic
form with constant coefficients consists of the ideadtivanishing of the associated
quadrilinear form¥. With the help of the aforementioned form (Riemann exhibited
an analytical expression (l11) for the concept of thievature in a manifold of" order in
that reference under which the given quadratic form ohfferentials represented the
square of the line element, but the expression (lll) gewerfrom the analytical
expression for that concept that was given in theised'Fortgesetze Untersuchungen in
Betreff der ganzen homogenen Functionen nddifferentialen,” vol. 72 of this journal,
page 1, and especially page 24 (which was the quakfity that treatise), and it
coincided completely with the expression that wagdditevol. 4 ofDarboux’s Bulletin
on page 150 and reiterated in @1 of this journal on page 241.

Riemann communicated yet another way of representing the foathe denoted by
(1), once the law of defining its coefficients is given which different types of variation
signs were used, and three second-order equations in tAgoresiwere prescribed. That
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curious algorithm is explained by a fact that has been kriovme for some years now.
The form (I1), which is covariant to the given quadrdbrm inn differentials, can in fact
be regarded as the aggregate of two covariants, onéiohwqualsRiemann's second
expression that is in question, while the other one waitlish, due to the equatiotisat
Riemann indicated. Now the essential components of theratbvariant make it the
same covariant that the principle of least constnaguired to be a minimum, and that
will define the subject of the present article.

The result that was just quoted can be concluded froegaation that appeared as
(37) in the second-cited treatise in vol. 72 of this joLomapage 16. As in that location,
let the given quadratic form in differentials dx, , whose coefficients are arbitrary
functions of then variablesx, , and in which the indices b, ... go from 1 ton, be the

following one:

(1) f(d)=4>a,,dx dx,.
a,b
Let the bilinear form that is derived from it be:

1 1
) f(dx, dx) =1> a,, dx dx, .
ab

One further has the equation:
1 1 1 1 1
(3) —of(dx, dx) +df (o, dx) +df (o, dx) = Zaayh ddx, Ox, +z f, (dx, dx) ox,
a,b a

1
for the unrestricted application of the three vi@oia symbols. f, (dx, dx) is then a form

1
that is bilinear in the differentiatix, and dx, that has this developed form:

1 1 da,  0Oa, Oa 1
4 fo(dx, dx)=21> f  dx dx =1 e L [s Vals O
( ) a( 2(;, a,g,b g Xb 2;( axb axg axa j g Xb
In addition, let:
1 1 1
(5) Zaayh ddx, + f, (dx,dx) =W, (dx, dx),
b
SO
1 1 1 1
(6) - of (dx, dx) +df (Jx, dx) +df (o, dx) = ZWa(dx, dx) ox. .
b
If one forms the same linear expressions in thdficemts a ,, a,,, ..., a , that one

1
finds in W_(dx,dx), i.e.:

7) S, [ddx, + & (dx d)] =W, (dx,d),
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1
then the combinationg, (dx, dx) will be defined by:
1 A, 1
(8) £ (ded) = Y= A, (dx, dx),

with the help of the non-zero determinaai | | =A and the adjoint elemedf\ / da,, =
1 1
A,, - The aforementioned for#(dx, ox,dx,0x), which is linear in the four systems of

1 1
differentials dx, , ox, , dx, , &, and covariant to the given form(dx), will then be
expressed in terms of the likewise-cited equatd¥) és:

%W(dlx, é}x, dx,ox) = Z [dW, (Ox, dlx)é'i(b -, (é’x,dlx)g‘h (dx,é'lx)]
b

(9) 1 1 1 1
= [, (dx, dx) Ix, = W, (dx, dx) & (I, IX)].

One now obtains the desired conversion when gplages the expressiaf) (dx, 5lx)
with the combination of the expressiond élxb and déxﬁfh(dx, Jlx), and replaces the
expressioné, (dx, Jlx) with the combination of the corresponding expre&sieéé&b and
Jéxbﬂ‘h (Ox, Jlx). In that way, the form%‘v(dlx, 51x,dx,5x) will be equal to the

aggregate of the combination:

(10) S [dW, (3% d¥) O%, + W, (3% dX) ddx,] - 3" [, (cx dX) 3%, + W, (cx, dX) a0 ]

b

and the combination:

(11) -3 W, (0% dX)[d 0%+, (d, 3X)] + 3" W, (d, dX)[ 3%, + &, (3%, X))

1 1
The combination (10) is obviously equal to the ctmqpvariationdz W, (0x,dx) o, ,
b

1 1
minus the complete variatiodz W, (dx,dx)ox, . However, the sums to be varied can
b

be represented as aggregates of first variationsnégins of formula (6). Thus, the
combination (10) will appear to be the aggregatseabnd variations:

1 1 1 1 1 1 1 1
(12) d df (&, 8x) + 5 F (dx, dx) —d S (dx, dx) - & df (dx, IX).
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1 1
The expressiond dx, + &, (dx, dx) can be represented as follows:

N 1 1 1
(7) ddx, + & (dx, dx) = z AZ‘ W (dx,dx),
so the combination (11) will assume the form:
A!c 1 1 1 1
(13) z A [W,(dx dX)W (0%, Ox) =W, (0%, dx)¥_(dx,Ox)] .
b

The combination (12), as well as the combinatia®),(is a covariant of the forin(dx),
and the basis for that is given in the cited laatjvol. 72 of this journal, pages 16 and

1 1
17). One therefore has the theorem that one-half the value of the form W (dx, dx, dx,dx)
equals the aggregate of the covariant (12) and the covariant (13). Both covariants
contain first and second variations of the varigplaut all of the second variations will
cancel when one forms their aggregate, and alMilbatemain are the first variations.

1
In order to make the transition Riemann’'s formulas, the variation symba must

1
now be set equal to the variation symdpbnd the symbod must be set equal to the
symbold. The covariant (12) will then be converted irte expression:

(14) 1dd> a,, dx dx -ddY a , dx Ox +1d0) a,, dx, dx,
a,b a,b ab

by the complete representation of the quadraticlalimear forms, and the covariant (13)
will be converted into the expression:

(15) Z%[wh(dx dx)W_ (Ox, ox) — W, (dx,ox)W. (dx,ox)].

At the same time, as a result of the theorem tlet proved, the aggregate of the two
expressions (14) and (15) will be equal to one-tiafvalue of the forn¥ (dx, &, dx,
o). In the investigations that are connected whih ppresent ones, the square of the line
element for the manifold of variablesx, was denoted byfZdx) = Zaa,h dx, dx, in vol.

a,b
72 of this journal, page 24. Therefore, that gaidiform will have the same meaning as
Riemann's form me. ds ds, , and at the same time, the fokh(dx, &, dx, o) will

correspond to the first representatiorRdémann’s form (lI). One thus recognizes that
one-half the value dRiemann's form (1) is equal to the aggregate of the caavais (14)
and (15). Furthermore, with the notation that weioduced, the expression (14) above
will be equal to one-half the expression that onk fimd on page 381 oRiemann's
paper in the fifth line from the bottom, and wikfthe the second representation of his
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form (II). Now, Riemann's three equations that appear at the bottom of that @age s
that the combination¥, (dx, &), W, (dx, dx), W, (&, &) should be taken to be zero,

since on the basis of equation (6) above, the left-hates ©f the three equations will
coincide with the three expressions:

1
—2> W (dx,0x)X, ,

1
=2>"W_(dx,dx)Jdx, ,

1
—2>"W_(0x,0x)0X, ,

1
respectively, so those sums must vanish indepelydeithe n variationsdx_ , and that

can happen only if the combinations that were sposk themselves vanish. That
confirms that the covariant (15) will be equal Bv@as a result of the three equations that
Riemann exhibited. Now, since one-half the value of thenfWV (dx, o, dx, o) is equal

to the aggregate of the covariants (14) and (18yeu the stated assumption, the
covariant (14) will yield a representation of oredflthe value of the forrd (dx, ox, dx,

o) in its own right. As was mentioned before, thenf W (dx, o, dx, &) is equal to
Riemann’s form (1), and the covariant (14) is equal toeemalf the value oRiemann’'s
second representation of the form (lI). We hawntterivedRiemann's second way of

1 1
representing his form (Il) from the property of thmm W(dx,ox,dx,0x) that was
proved just now that it equals an aggregate ofdex@riants.

2.

We shall now address the development of the caiamebetween the covariant (15)
of the previous article and the expression thattrbasa minimum under the principle of
least constraint. However, there is a certain dmagpon that must be overcome. As is
known, Gaussexpressed his principle in words, but not ana#t&ymbols, in vol. 4 of
this journal (page 232), and then used synthetiosiderations to reduce it to
d’Alembert’s principle and the principle of virtual velocsie Thus,Gauss himself
lacked an analytical formulation for his own priplei, and that is all the more regrettable,
since the words th&aussused in his formulation admitted more than onerptetation
at one point. Namely, he did not establish fromdhtset what sense he was imparting to
the expression “the free motion of a point.” Irder to shed some light upon the
guestion, we imagine that the mass-points of tiséesy that is in motion are referred to a
system of rectangular coordinates. For the firassrpoint, they might ba, z, z, for
the second ong, z, z, ..., and for the last mass-point, they mightzbe, z,-1, z,. The
mass of the first point will be denoted oy = m, = mg, the mass of the second poing
=ms =mg, ... Letthe components of the applied forces, wihecomposed along those
three axes, b&i, Z,, Zs, respectively, for the first poing,, Zs, Zs, for the second point,

. Let the system of points be subject to a sequencondition equation®; = const.,
®, = const., ...®, = const., which depend upon only the coordinatesantain neither
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time t nor the derivatives of the coordinates with respetinte. Now, there can be no
doubt that the given values of the coordinates of aisapmints at a moment in tinte
must satisfy thé condition equations:

@, = const., ®,=const.,, ...P, =const.

By contrast, as far as the components of the vedsciif the individual mass-points
relative to the rectangular coordinate system are conedethere exist two possibilities:
Either the components of the velocity are chosen thaththey are found to agree with
thosel condition equations and satisfy thequations:

d¢l =0 d¢2 =0 ﬂ: 0
dt dt dt

which follow from them, or they are chosen in suchag what they contradict them. The
expression “free motion of a point” th&auss used is consistent with both of those
assumptions. Therefore, in order to ascertain the domeent of the principle of least
constraint, nothing seems to remain but to formulad@alytically under each of the two
assumptions usin@ausss words and examine whether the principle leads to eecor
representation of the problem of motion in both cagdwt exercise would show that the
principle is valid only for the first assumption.

Under the first assumption that was pointed out, therdinates of the individual
mass-points, as well as their first derivatives wéspect to timé¢, must be considered to
be given at the moment in tinhe By contrast, the second derivatives of the coordmat
with respect to time are considered to be unknown and must be determined bygbyecis
that principle of least constraint. If means a small increment in tintethen the
rectangular coordinates of a mass-point that belongs mmving system (for example,
the first mass-point) at the time 7 will assume the values:

2
a8ty 102

dt 2 dt?

2
22+d_zzr+1d % g2

dt 2 dt?

2
23+d—23T+1d =¥

dt = 2 dt?

respectively, for a well-defined actual motion tigatescribed with a precision that goes
up to orderr®. By contrast, the coordinates of that point & same time when the
motion that results from the influence of the giagaplied force at that point proves to be
free would be:
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12, .

z+3arsl
dt 2rnl

respectively. Therefore, the square of the denmadif the first point from its free motion
will be measured by the sum of the squares of tieesponding coordinate differences,
and will have the expression:

A&z _z7,) (d%2,_2z,) (dz_z,) |
d> m at m, da> m ) | 4

From the rule thatGauss gave, that will be multiplied by the mass of theinp in
guestion, which we have calledy = mp = mz, and the sum of the products that are
defined in the same way for all of points of thetsyn will then represent the expression
that must be a minimum. That sum will be equathe product of the factor? / 4,
which is considered to be unvarying, with the camabbn:

d2z z Y
1 m| —-—« ,
@) Za: {dtz maj

in which the symbob runs through the sequence of numbers from @, tas in art.1.

The principle of least constraint can then be esged by saying that for the given values
2

(1) will become a minimum.

In order to address that problem, above all, onstrponder the equations that the
2

desired quantitieso(ljt—zz“ must satisfy. If any of the functio;, ®», ..., ®, is denoted by

®, then what will follow first from each condition eation ®, = const. is the
aforementioned equation:

0d, dz,
z 0z, dt

(2)

which is fulfilled by the first derivatives of theoordinates, and then secondly, the
equation:
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00, d’z, 0°d, dz, dz,
3 a " 7 —
() Z 0z, dt’ ;azuazb dt dt

which the second derivatives of the coordinates musgtl.fulowever, since the values

of z, and O(Ij“ are fixed by the prevailing relations, thequations (3) express only the

d’z . .
= dtza that appears in them must have unvarying values.

When one applies the undetermined multipligrs Az, ..., A, , the minimum problem to
be solved will lead to the equations:

2
@ [d za_zaj:)llaqn 0D, oD,

> —L+), +ooet A —L,
dt® m, 0z, 0z, 0z,

from the well-known rules. However, these are notliagthe differential equations of
the problem of motion that was posed. The principleeastl constraint is therefore
justified for the first assumption that was made.

The second assumption can be characterized by sayinghehagiten velocity
componentsdo not correspond to the equations (2). The values of thecislo
components might be called, &, s for the first point,{s, ¢s, {s for the second point,
etc. Therefore, values of the first derivatives of tberdinates for the motion of the
individual points cannot, in fact, prove to be equal to ghen values, and on those
grounds, the first, as well as the second, derivativethetcoordinates with respect to
time must now be regarded as unknowns. For thatme#s® rectangular coordinates of
the first mass-point at time+ 7 will have the previously-exhibited expressions for the
actual motion that is to be determined, up to a precidian goes to order?. By
contrast, the coordinates in question of that poirthave the following expressions:

a+Gresar,
2m

+ o r+ 1% 02
2m,

z+G r+iér2,
2m,

for the free motion that is now supposed to resith the given velocity components and
under the influence of the associated applied forthe square of the deviation of the
first point from its motion will then equal the suaf the squares of the coordinate
differences:
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2 2r 2 G
(e g -o)-5)
m dt 20 dt® m ) |

P 2
+ [d—zs—fsjr+1 dz_2, r’
dt 2( d® m ) |

When one multiplies that by the mamss= m, = ms of the point in question, deals with all
points of the system similarly, and takes the sunmhefresulting expressions, what one
will get is the combination to be minimized:

dz, ldzza_i ’
®) ;m“lIdt Z“j+2[dt2 mjr}’

a

multiplied by the factor?.

The conception of the principle of least constrématt is assumed in that is the basis
for the generalization of that principle tHfathering presented in the essadmilton-
JacobischeTheorie fur Krafte, deren Mass von der Bewegung der Képbkangt,” in
volume XVIII of the Abh. de K. G. d. Wiss. zu Géttingenn order to obtain the
expression (5) above froMcherings formulas, the more general assumptions that he
made in them must be replaced with the simpler assunsplis a problem that actually
arises in mechanics. With that simplification, thec#jges of Scherings conception of
the principle of least constraint will emerge quiteacly, and one can make a more
confident decision about the justification for thahcept.

The problem that was posed of minimizing the expressioal{éye differs from the

minimum problem that one solves for the expressiorbyl)he fact that the values of
2

z : ,
dtza , as well as the values eqd% must be determined for the former, while only the

2

d<z ) .
values of dtza must be determined for the latter. For that reasha,l tcondition

equations (2) and thecondition equations (3) must be considered in such a vehyHé

2
d i“ and the dz,
dt dt

prove to be variable. Therefore, if one introduicesiltipliers p,, as

well as{ multipliers that might be denoted hyo, , then the requirement in question
might be expressed by saying that the expression:

2.m dz“—( +1 d*z, 7, rz
— "ld ") 2( dt? m,

- 0b, dz, _ 0P, &z, , 5 0°0, dz, dz,
ng"; oz, dt T;U"[z oz, dt +zazuazb dt dtj

a a,b

(6)
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must be a minimum.
From the well-known rules, that will yield the eqoa:

dz m (d’z Z 0P
m a + a a a =
“(dt Z“j z[dt2 jr ;p"

°d, dzb
Z Z62 0z, dt '

mu a a b
) d m (d’z Z 0P
Z Z
- 40|~ Ta_Ta - a.
m“( dt Z“j 2 ( o mujr 2.9,

The fact that these equations do not embody the natuhe arresponding mechanical
problem can be seen with no further discussion. Vdmensubtracts the two equations, it
will follow that:

> (e, - 0,)° a+rz 5 0P, 92 _ g

a 0z, 0z, dt

and in the case whefe= 1, in whichonly one condition equatiorP; = const. is given,
that will demand that the quotient:
1 9°®, dz,
00, 40z 0z, dt
0z

a

must have the same value for each indexHowever, such a prescription is entirely

foreign to theoretical mechanics. On those groutlas principle of least constraint
cannot be applied wheGausss words are formulated under the assumption that w
called the second one.

Earlier | said that in the expression tkedussgave to his principle, the meaning of
the words “free motion of a pointiould not be established from the outset. However,
that opinion was based upon the fact tGatisscould only recognize the meaning that
those words should have from ghr@of that he carried outGaussbased his proof on the
principle of virtual velocities, and that dependgmbn whether the virtual displacements
of the points could all be regarded as small qtiestiof the same order under the
principle of virtual velocities. If that were alleed then those quantities, which Gauss
calledcy, c'y, "y’ ... in his proof, would all have to be small quaes of the same
order. However, that assumption will hold trueyoanhder our first assumption, where
the curve that a point of the system of massesstainsidered to be in motion describes
and the curve that point of the fictitious freeteys would describe would have the same
tangent, while the convention that relates to #@sed assumption would not hold true
unconditionally. For myself, | do not doubt thhetprinciple of virtual velocities must
include the convention that was referred to intcally. However, due to the nature of
the principle of virtual velocities, since a rigasoproof of the necessity of that condition
probably cannot be achieved, | have preferred atytral discussion that is completely
convincing, as far as | can see.

At the same time, the consideration that wasdisstussed shows the way by which
the principle of least constraint must be modifiadorder to deduce results that are
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acknowledged in theoretical mechanics for those valuelseobelocity components that
are compatible with the condition equations of the probldimsuffices that for a first
application of the principle, the coordinates of thessapoints that relate to the time-
pointt + 7 should be taken with a precision that goes up to only arderhe second
derivatives of the coordinates will not enter intosideration of the actual motion that
results, nor will the given applied forces come intaypfor the consideration of the
fictitious free motion, and the first derivatives detmotion that actually results will be
determined by the requirement that the expression:

dz, ’
)

must be a minimum. The second requirement can theatlsied when one includes the

®) Zma[

a

values O(Ijzt“ that are obtained in that way, namely, that the egmes(l) can be

2
minimized by a choice of the second derivati\%té. Meanwhile, | cannot suppress a
remark in regard to that subject that does not refehectrieatment of the mechanical
problem in question as much as it does to the essende df one assumes that the
velocity components of a system of moving mass-pointstradict the governing
condition equations at some time-point and that aftearashingly-small timer has
elapsed the individual points of the system will assuratcities that satisfy the
condition equations, and under which the motion will pest according to the given
applied forces, then the conversion of the given wglammponents into the velocity
components that are actually maintained can take plagerosuch a way that the sum
of thevisvivas that are impressed upon the system inside of the vanigtan@lll timer
will experience a loss. However, while the formutastheoretical mechanics can
represent such a process, the approximation to the fatee ¢t affairs must be much
closer than the one that is attained in those mecalaproblems whose representation
does not assume a momentary violation of continuitynramohentary loss ofis viva.

3.

Once it has been emphasized that the principleast onstraint should refer to those
guantities that were referred to in (1) of the previotislar their expressions should be
ascertained under the assumption that an arbitrargraysin independent variables must
be introduced in place of the rectangular coordinatésr the mass-points of the system
in motion. It is known that the transformation bétsystem of differential equations (4)
in article 2 depends upon only the fact that the quadratic f@{Ema dzZ’ in then

differentialsdz, and the expressioE Z dz, that is defined by the components of the

applied forces must be represented in the new varial@essistent with the notation in
article 1, one will have:
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(1) %Zma dz? = %Zaayh dx, dx, = f (dx),
a a,b

and furthermore:

2) > Z,dz, = > X, dx, .

The functions®, of the coordinateg, are converted into functions of the variabtes
and equations (2) and (3) of the previous article will Ipdad by the equations:

0d, dx,
3) s Zaxu el

o0, d? 9’0, dx, d
(4) z %4y 2% O 0%

dt>  4ox ox, dt dt

The following equations will enter in place of equatiofisdf the previous article, which
are likewise constructed with the undetermined multipliar, A2, ..., A, and in which

the notations for differentials that were defined incketl are adapted to differential
guotients:

dx dx 0P 0P,
X =2 %P2 9P
®) Z:‘5‘“{o|t2 (dt dtﬂ T T A

By means of equation (7) of articlethey can also assume the form:

©) "’a(%’%j‘xaﬂlaq’u 442
dt dt 0X, 0X,

dx dx
dt ' dt
the nature of the quantities, , the sumZXad ., will go over to an analogously-

Now, it follows from equation (6) of artictethat the sumzqJ ( jdx and from

constructed expression when one introduces anatbérary system of variables; that is,
the expression is covariant to the fdrax) and the current problem. Therefore the sum:

dx dx
” R

will also have that property. The forin(dx) might now go over to the form (dy) =
%Zeﬂ[ dy, dy, by the introduction of another arbitrary systemvafiablesy, , and one
[
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further lets the determinant be, || =E and the adjoint element ¥ / 0e,, = E,, . When
the linear expressions:

a1 dx; + a2 dx, + ... +a,n dx, = Pa
and

€.,1 dyl +e. dyz +...+ten dyn =q

are introduced into the forms in question, each of thedowill be converted into its
adjoint form as follows:

E
20@=Y2pp,  20(@)=Y Yaq,
a,b A el E
and likewise the equation:
A\lh EE[
8 _ne =\t
( ) e A pa ph m E qE q[

must be true, as a result of the equatigax) = g (dy). As soon as one applies another
system of independent variatiothg and the corresponding system of variatidps one

will also get the equation:
z aa,b an 5Xb :z e&,[ dyE 5y[
a,b el

from the transformation that was performed, which carep&aced with the equation:

(9) z pa 5Xa :qu 5y€
4

a

by means of the quantitigs andg, . That equation exhibits the linear dependency that
exists between the quantitipsandg, , and it illuminates the fact that as long as equation
(9) between two systems of quantit@sandg, is fulfilled, equation (8) must follow.

The fact that the sum (7) above is covariant toftmen f (dx) in our mechanical

problem means that the expressidh§( dx %j — X, have the same relationship to the

dt ' dt
corresponding expressions that are formed with & Bgstem of variables that is
prescribed between the quantitgsndg, in (9). Therefore, the expression that is found

on the left-hand side of (8):

A ax dx) _ dx dx) _
(10) ;T{w“(dt’dtj X‘Mwh(dt’dtj X"}

must be equal to the analogously-constructed esjmresvhen one introduces a system of
new variables. The expresson (10) is then covariant to the form f (dx) and the
mechanical problem in question.
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One will likewise get the form that the combination (&83umes from that property
as soon as one again introduces the rectilinear coaedinah place of the variables .
Due to equation (1), for the case wheandb are different from each other, the adjoint
elementA,, / A must be replaced with I, , which are, by contrast, zero for the case of
N dx dx) . : d’z
a =b. From (6),¥ (E Ej will go to the expressiomm, dtza , and from (2), the

guantitiesX, will go to the quantitieZ, . The expression:

m

2
1 d’z,

(11) z a (ma e -Z j
will then arise, which is equal to the expressibhi( article2 identically. The quantity
that is minimized by the principle of least constraint will then be represented by the
covariant (10) of the given mechanical problem. A comparison of the covariant (10) with
the covariant (13) in articlé will show that their structures agree completeBoth
covariants are based upon the form that is adfoitthe form 2 (dx). The covariant (13)
in article 1 is equal to a difference of two values of the adjdorm, one of which is

1 1
constructed from the variable®, (dx, dx) and W, (&, Ox), while the other is

1 1
constructed from the system of variab¥es (o, dx) andW¥, (dx, 0x). The covariant
(10) above is equal to a value of the adjoint fammvhich only one system of variables
dx dxj
X, .
dt dt
One can further convert the covariant (10) by atimg) the differential equations (6)
dx dx

when one replaceslva(—,—j - X, with the sum Z)l,, 0D, and replaces
dt dt z  OX

appears that is represented by the dlfferéﬁgé

0o,
W (3? zxj X, with the sumzﬂl —6 which amounts to the same thing. One will
%,

then get the expression:

@2 >30T

ab a,p Xa axb

If one now introduces the schema that was givepage 277 of vol. 71 of this journal:

, 00, 00,
ZAI

13
13) A 0x, axb

=B

then the covariant (10) will be equal to the foliovdouble sum, in which the indices
andfgo from 1 tol :
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(14) D A, Ay(a,B).
a.p

| cited this expression for the quantity that miostminimized by the principle of least
constraint under the assumption that the systemass-points in motion is subject to
condition equations, but no accelerating forcespin81 of this journal on page 231.

4.

When one extends the problem in mechanics in aushy that for each mass-point,
the square of the line element in space is equadrtcarbitrary essentially-positive
guadratic form in the coordinate differentials, lsubat consistent with that, the sum of
the vis vivas of all mass-points of the system in motion will égual to an essentially-

positive quadratic forn2 f (%) in the differential quotients of the coordinateswith

respect to timé, and such that the expressi@ X, 0X, and the condition equation®,

= const. take on a corresponding meaning, one atithin a system of differential
equations by means of the fundamental theoremswviba¢ developed in the treatise
“Untersuchung eines Problem der Variationsrechnungwelchem das Problem der
Mechanik enthalten ist” (vol. 74 of this journahge 116t seq.) that has exactly the
same form as the system of differential equatiod)s af the previous article. An
expression that is constructed under the citedngssons from the given quadratic form

2f (dx) and the sumz X, 0x, by the prescription that was given for construgtihe

combination (10) must, on the same grounds, bevarzmt relative to the extended
mechanical problem, and that covariant must beidered to be the extension of that
concept that was represented by the expressiorfdf@)e original mechanical problem.
That also easily shows that when one considersahmesx, anddx, / dt to be given and

imposes the demand that the values 8k, / dt* must be determined in such a way that

the covariant that was spoken of becomes a mininausystem of equations will arise
that coincides with the system of differential etipras of the extended mechanical
problem in question. However, that embodies tlse@ated extension of the principle of
least constraint.

The treatise that is found in volume 74 of thigrjml refers to a further extension of
the mechanical problem that replaces the line aekrfiee each mass-point in space with
the p™ root of an essentially-positive form of degpei the coordinate differentials, and
the vis viva of each mass-point is measured by multiplyingrtiass of the point by the
p"" power of the line element and dividing by gf&power of the time-element. T
part of the sum of thes vivas of all mass-points of a moving system is then eétuan
essentially-positive forrh(dx / dt) of degree in the differential quotients with respect to
time t of the coordinateg, of all points, a functiotJ of the variablex, that represents

the force function, and condition equationsd, = const., and the analogy with
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Hamilton’s variational problem will lead to the requirement ttie first variation of the
integral:

Y dx
1 fl—|+U |dt
2 (e (@)]
must be made to vanish. In the cited place, it wasnasd that the variables in the
problem were chosen in such a way that they fulfilledgiven condition equations. By
contrast, the problem is formulated precisely as aboveny treatise “Sétze aus dem
Grenzgebiet der Mechanik und Geometrie” in vol. VI @ebsch and Neumanns
Mathematischen Annalen on page 416. There, the funttidnat appears under the
integral sign in the integral (1) was added to the expneskiob; + A, @2 + ... + A, D,
that is formed with the undetermined multipliers. Thstem of differential equations
that is associated with the variational problem vidirt read as follows:

dx dx
(5] ()
i dt - dt :a_U+/]&+...+/]%

dt| 50 ox, ox, ' ox ox,
dt

(2)

Now, that shows that the principle of least comstra sufficiently robust that it will
also be valid in this domain. When one separates thester the left-hand side of (2)
that contain the second differential quotiethfsx, / dt? from the terms in which only the

first differential quotients occur, the following expresswill arise:

dx
asz
dt ) d?x, (dxj
3 +f | —1,
) hadxa dx, dt> “dt
dt  dt

in which f, (%} means a homogeneous function of degreie thedx, / dt. That

representation is taken from vol. 70 of this journal on p&eand, at the same time,
formula (10) there says that the sum:

*(a)
dt ) d’x, (dxj
4 +f | —|]|dx
“ 202 a0 e |
dt 7 ot

is covariant with the forrh(dx). Similarly, the sum:
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(5) Z— Ox.

has a value that is independent of the chosen systemariablesx, . As long as the
system of differential equations (2) must be convertible the system of differential
equations (5) of the previous article in such a way thatativitrary functionsX, will

enter in place of th@U / dx, , one must maintain the condition that the sEmXa ox, is

likewise independent of the chosen system of variaklas order for the system of

differential equations to be meaningful independentlyt,aespectively. For the sake of
brevity, I will introduce the notation:

FRi (‘;ﬂ
(6) — =

dx, 3 %
dt  dt

Qo

for the second derivatives of the forn{%) As long a9 = 2, the expressiors, will

coincide with the coefficients of th2f (%) form and take on their previous meaning

accordingly. However, for a form of degneevhenp > 2, they will be equal to forms of
degreep — 2 in the elementdx, / dt. Furthermore, let the determinant k& || =A and

let the adjoint element @A\ /da,, = A, -

If the formf (dx) goes to the forng (dy) when one substitutes a new system of
arbitrary variabley, , and the variation&, again correspond to the variatiodys, then a

basic algebraic property of homogeneous functiolismply the equation:

(7) s O D) 5 ¥ v TID) 5y 5y,

o5 0dx 0dx, % T 0dy, ddy,
and by means of the notation (6) and the correspgmbtation:

ity

a%a% eE,[
dt dt

that will lead to the following equation:

(7) D a,, 0% 0% = > &, 0% X,
ab el
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One can now conclude from this, in the way that wa®ldeed in the previous article,
that as long as the determinad,|| equal€E and the adjoint elemegE / dg,, is set to

E., and when the equation:

> p,0%,= Y q,dY,
a 3

is true for the arbitrary variation&, and dy, that correspond to the two systems of
quantitiesp, andg, , the equation:

ZAl»h B
ab A el E

will exist. Therefore, since the sums (4) and (5) in pnablem are covariant, from the
remarks that were made, and the same thing will alscubefdr the sumz X, 0x, that

replaces (5), the expression:

@ SOl sa e (%)L 5a, S5 (%)
zp [ =g T ) Tox || &% ae Tt ldr) T ox,

will be a covariant for the variational problem that was posed, and the expression:

N PN

will be a covariant for the system of differential equations that arises from the system (2)
when one substitutes X, for dU / 0x, , namely:

2
(10) zauhd )z(b (dxj X, + A 0Py, . +)lai :
. dt dt ' ox, 0X,

As long as the formh (dx) is a quadratic form and the assumptions that are actuad
for mechanics are accepted, the covariant (9) willdrererted into the covariant (10) of
article 3, and as the general rules of minimization problems stibw, the former will
have the common property with the latter that theo@ated system of differential
equations (10) will emerge from the requirement that feergvalues ok, anddx, / dt,

the value of (9) will be minimized when one determineswlues of thel ?x, / dt? . In
fact, as a result of thecondition equation®, = const., the equations that correspond to
equations (3) and (4) of articBwill also be definitive here:
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do, _ ZGCDH dx,
dt ox, dt

00, d*x, 0°d, dx dx, _
dt2 _Z @ ik di ok
o 0%, 0%, dt dt

Moreover, since the quantities anddx, / dt can be considered to be unvarying in the

minimum problem, the combinatioas, will also figure in a form of degrgg wherep >

L A%
> Wil

= Ox dt
have unvarying values, as before. That is the basithéassertion that was made that
the principle of least constraint can be adapted to ekegnsion of the problem in
mechanics that is included in the system of diffea¢r@quations (10) by the use of the

covariant (9).

5.

The study bySchering that was cited in articl@ refers to the assumption that the
square of the line element in space is equal to antedsepositive quadratic form in
the coordinate differentials and pursues the objectivaarafiing at the system of
differential equations in that domain that would beaot#d from the corresponding
generalization ofHamilton’s variational problem by means of an extension of the
concept of force and an extension of the principleea$t constraint. Under the intended
application of the principle of least constrai@¢cherings deduction is connected
precisely with the expressions thaausschose, but it also raises the aforementioned
objection yet again. That deduction must satisfy the reopgnt that it represents no
other concept than the one that was included in the okigaia of thought for the case
in which the square of the line element in space can presented as an aggregate of
squares of three differentials, so the space in queestiost beEuclidian space itself.
However, for the case d&uclidian space, the coordinates that were usefcinerings
deduction, which were not assigned any special propertiesjdwdiffer by a small
amount from the general coordinates by which a poifuiclidian space is determined.
In Scherings way of looking at things, the square of the deviatiba point from its free
motion would be equal to the square of the distance betwe/o points whose
coordinates differ from each other by quantities thatret all of only first order. Now,
that sheds some light upon the fact that when a poiguclidian space is referred to
rectangular coordinates , z, z3, the square of the line element in space will have the
expression:

(1) dz’ +dz} +dzZ,
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and at the same time, that the square of the distagtveeen two arbitrary pointg®,
2P,z and Z?, 27, Z? will have the expression:

@ (3= 2) 2+ (2= 2) 4 (2= 2 -

By contrast, as soon as the same paint z , zz in space is referred to arbitrary
coordinates , X2, X3, and the square of the line element (1) goes over tiotire

(3) a, de +a,, dXz2 + 8.33dX23+ 23,3 dxo dxs + 2331 dxz dxg + 2235 dxq dxo

it cannot be asserted that the square of the distateeén the pointg®, z, z” and
Z?, 2?7, 2? will generally be expressed correctly when one foittlesexpression:

@ | WO R a0 e e )
28,047 = X)X = X0)+ 22,7 - X ¥)x P-x )

from the associated coordinat&s, x, x{" and x®, x{?, x* of those points. The

transformation from rectangular coordinates to polardioates already suffices to show
that this process is inadmissible. However, it wasipedy that process th&chering
appealed to on page 11 of his paper, where he wished to expeesguare of the
deviation of a possible motion of a point from the freetion. ThereSchering called
the coordinate differences differentials, in generblowever, the expressions that he
gave for the coordinate differences as aggregates o$ tiath were of first and second
order in the element of time and the points that wouldviofrom those terms in the
formulas alluded to terms of even higher order. In ofalethe process to also be valid
for the terms of first and second order, one would gdiyelnave to be able to draw the
conclusion from the equality of the expressions (1) &)dtlfat when the differences

z? - z" are replaced with the aggregate +1d*z, for the values = 1, 2, 3, and at the
same time, the differenceg® —-x® are replaced with the corresponding aggregate

+1d?x_, the expression (2) will be equal to the expressionT#ys, as a result of setting
terms of the same higher order equal to each other, theaqua

D.dz, d?*z, = > a,, dx d?x,
a ab

must exist, which would also be incorrect in the citedvgta of the transformation from
rectangular coordinates to polar coordinates.

Scherings work aroused the desire in me to see how the coméeptorce that acts
upon a point in that domain would carry over to the oage plertained to the variational
problem of the integral that was denoted by (1) in the pusvarticle. It will now be
assumed in that problem that only a single point of ungsmmaoves freely. The line
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element for the point that is referred to by the comtdisx, will then have the expression
2Ip f(dx) , and the requirement that the first variation ofitttegral:

(5) [&/p ()

must vanish will determine the first-order manifolét corresponds to the shortest line in
the relevant space for the coordinates. When one thinks of the variables as

independent of a variabtethe integral (5) can take on the form:

R 4 dx
5 p f_dl
(5) J, p(dtjx

from which the differential drops out. Thereforé, still remains completely
undetermined how the variablgsshould depend upon the variablen the variational

problem for the integral (5 The associated system of differential equatibasis given
on page 124 of vol. 74 of this journal reads:

dx dx
op pf(j op pf(j
() d \/ dt) | \ dt) _ 0

dt 3 %% ox,
dt

The quantitiex, will be determined completely by it when initisdluesx, (0) and then
— 1 ratios of the initial differentialdx, (0) are given for the value=t, , and we assume
that the integration was carried out for that dafée value of the integral (6 which
might be called, accordingly represents the length of the sholitesthat goes from the
point x, (0) to the poink, , or the distance between the pogtand the poink, (0), and
when it is represented as a pure function of tlstesy of valuex, (0) andx, , it must
satisfy the equation that is included if)(in the cited location:

. of (‘:t‘j . of, ( d)((j(tO)j
7) &= e - Y oy 9RO

dx\|lr * 0 dx(O)pT“a
(T e

The addition of the symbol O to the foifnfdx) means the substitution of the quantities
X (0) for the corresponding, in the coefficients of the form. The differentdilcan also

appear in the foregoing equation (7) only formabyd will cancel by means of the
homogeneity of the form(dx).




Lipschitz — Remarks on the principle of least constraint 22

We shall now consider the variational problem of titegral:

4 dx
® [o(G oo

under the assumption that the force functibrs a pure function of the functianthat is
referred to a fixed system) (0) and the moving systery ; it will be calledP (r). That

problem defines a generalization of the problem for tee motion of a point in which
the given force function is a pure function of theaahse between the moving point and a
fixed point. That problem was solved under the assumphianthe formf (dx) is a
guadratic form that belongs to a certain genus of fammke treatise “Extension of the
planet problem to a space ofdimensions and constant integral curvature” (Quarterly
Journal of Mathematics, no. 48, pp. 349), and indeed undeotidition that the values

of x, anddx, / dt are given arbitrarily for a time-point=t; . Schering solved the same

problem for a space of dimensions and constant curvature by a somewhat more
extended assumption in regard to the force functiopage 35 of the treatise that was
cited above. In the present discussion, the degmfethe formf (dx) can be arbitrary,
although it was established that the varialleshould assume the values= x, (0) for

the time-pointt = tp, which was chosen for the definition of the quantitywe will then
focus our attention on the free motion of a point thates under the influence of a force
functionP (r), and whose motion begins from that fixed point, andsghdistance to that
point is measured by The differential equations of the variational probliat was just
posed can be obtained from the differential equationsf(@je previous article when one
drops the condition functions and replatewith P (r). They will then be these:

dx dx
0of|— of| —
d (dtj 3 (dtj: or dP(r)

dt| 9% X ox, dr
dt

(9)

It can now be verified that under the assumptioguestion, by which the equations
X, = X, (0) must be true fot =ty , those differential equation for the variableswill
prescribe the same first-order manifold that isedetned by the system (6). That is, a
point that is under the influence of the force fioc P (r) must move along a shortest
line from the point, (0). One can give the system (6) above the fatigviorm:

dx dx dx
216 R R P
(10) d dt)|_~ \dt)_ 1 dt d{p f(dxﬂp

dt| L dx ox P dx dt
e ] e
ot {p f (dxﬂ ™

dt
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by means of a conversion that was performed ) @n page 124 of vol. 74 of this
journal. Due to equation (7), the partial differential tipret of the functionr that is
expressed in terms of the quantitiesaandx, (0) with respect to the individual valugs

will have the expression:
dx
of | —
or _ 1 (dtj

=
o, f(dxj 5 6(2;“
P at

Therefore, the system (10) will be converted ihis bne:

(11)

dx dx
fl = fl = L=
0| 2'a)| 2*(a)_ o e
(12) — - =——|pf|— .
dt| 59 X ox, dt dt
dt

Sincer is the value of the integral (5 one will have the equation:

1
dr dx ) |p
13 —=|pf|—=| .
~ dt {p [dtﬂ
For that reason, one will also have the followingression for the system (12):
p-1
1@ 2 a) o ol
(14) d dt ) | dt)_ or \dt .
dt| 9% X ox,  dt
dt

The left-hand side of equation (14) is identicakhe left-hand side of equation (9) for
every value of the indeu, and similarly the factor that is found on thehtifpand side
will coincide withdr / dx, . Now since the system (14) determined only trst-brder
manifold for the variables, , the dependency of the individual variables onvdugablet

will, however, remain undetermined, so it is poksto arrange that dependency in such
a way that the system (6) coincides with the syst@mand that will come about when
one assumes that the equation:

(15) E(ﬂjp_ _ 9P(r)
dt\ dt dr
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is valid. The desired integration of the system (9ylch the equations, = x, (0) must

dx _ dx (0)

be true fort = to and the initial valuesd—t: should be proportional to the

corresponding differentials that were chosen in thegiattion of the system (6) or (14),
will then yield the first-order manifold for the variabbe that is predicted by the system

(14), as was stated, while equation (15) determined the depgnoletie path lengthn,

which follows the shortest line, on time Here, the differential quotient of the functiBn
(r) with respect to the quantitywill take over the role of the force that acts upbe t
point of unit mass. Equation (15) says that under theomdhat is spoken of, which
results in the shortest line that starts from thentpgi (0), the differential quotient with

respect to time of thep(- 1) power of the first differential quotient of the pathdeéhr
with respect to time will be equal to the given quandP (r) / dr. However, for the
valuep = 2, that rule will go over to the rule that under in&ion in question, the second
differential quotient with respect to time of the p&hgthr must be equal to the given
quantitydP (r) / dr. For the sake of simplicity of expression, | hagsumed that the
initial valuesx, = x, (0) were prescribed in the integration of the systemg® that the
initial values %z x(0)
dt dt
differentials that were chosen in the integrationtioé system (6). However, the
reduction of the system (9) to the system (6) can benaglished in the same way when
one demands that for the system (9) at an arbitrang-pointt = t; , only those values of
X, =X, (1) and%: %should be valid that are taken from the first-order foddhi
that is determined by the integration of the systemh®) was performed. That is, in a
different language, the motion of point that is undher influence of the force functidn
(r) when it begins from an arbitrary point of a shortes that goes through the fixed
point x, (0), and indeed in the direction of that shortest lind,always remain on that

shortest line and obey equation (15).
When equation (15) is multiplied loy/ dt, it will take on the form:

were given to be proportional to the values of th&aini

dr\*d¥r _ dP(r)
—1) = | — = .
(P )( dtj dt? dr

That equation admits the undetermined integration:

p-1fdr)’_
(16) 0 (dtj P(r)+H,

in which H means an arbitrary constant whose value is determined lyivitwe initial
values. Equation (16) will go to the equation:
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a7 (p—l)f(%j:P(r) +H,

by means of (13). For the present problem thatoihing but the equation that was
denoted by (B on page 123 of vol. 74 of this journal, and thiegral will then represent
thevisviva. Equation (16) will imply the equation:

(18) ot = ar ,

r\)/pril[P(r)+H]

which will yield the dependency of the path lengiin timet by performing a quadrature
and inverting the resulting equation.

Bonn, 13 November 1876.



