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1. 
 

 The collected mathematical works of Riemann, whose publication defines an 
enduring contribution by R. Dedekind and H. Weber, contains his response (written in 
Latin) to a problem that the Paris Academy posed in the year 1858 in regard to a problem 
in the distribution of heat, which was an article that was extended most remarkably to 
Riemann’s paper “Über die Hypothesen, welche der Geometrie zu Grunde liegen.”  In 
the second part of the aforementioned article, Riemann developed the conditions for a 
given quadratic form in n differentials whose coefficients are arbitrary functions of the n 
variables in question to be transformable into a form with constant coefficients, and in it, 
he summarized the conditions for all of the coefficients of a certain form [which is 
denoted by (II) on page 382 in the cited location] that is quadratic in two systems of 
differentials and covariant to the given form to vanish.  That criterion can be combined 
with the one that I derived for that question in my treatise “Untersuchungen in Betreff der 
ganzen homogenen Functionen von n Differentialen” (vol. 70 of this journal, page 71).  
The form Ψ, which was defined on page 84 of that reference by four systems of linear 
forms, which were also equal to the form that Christoffel  denoted by G4 in the same 
volume of the journal on page 58, will go to Riemann’s aforementioned form (II) as long 
as two plus two of the associated systems of differentials to the former system are set 
equal to each other, and from page 94 of the cited volume, the necessary and sufficient 
condition for the given quadratic form in n differentials to be convertible into a quadratic 
form with constant coefficients consists of the identical vanishing of the associated 
quadrilinear form Ψ.  With the help of the aforementioned form (II), Riemann exhibited 
an analytical expression (III) for the concept of the curvature in a manifold of nth order in 
that reference under which the given quadratic form in n differentials represented the 
square of the line element, but the expression (III) emerged from the analytical 
expression for that concept that was given in the treatise: “Fortgesetze Untersuchungen in 
Betreff der ganzen homogenen Functionen von n Differentialen,” vol. 72 of this journal, 
page 1, and especially page 24 (which was the quantity k0 in that treatise), and it 
coincided completely with the expression that was cited in vol. 4 of Darboux’s Bulletin 
on page 150 and reiterated in vol. 81 of this journal on page 241. 
 Riemann communicated yet another way of representing the form that he denoted by 
(II), once the law of defining its coefficients is given, in which different types of variation 
signs were used, and three second-order equations in the variations were prescribed.  That 
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curious algorithm is explained by a fact that has been known to me for some years now.  
The form (II), which is covariant to the given quadratic form in n differentials, can in fact 
be regarded as the aggregate of two covariants, one of which equals Riemann’s second 
expression that is in question, while the other one will vanish, due to the equations that 
Riemann indicated.  Now the essential components of the latter covariant make it the 
same covariant that the principle of least constraint required to be a minimum, and that 
will define the subject of the present article. 
 The result that was just quoted can be concluded from an equation that appeared as 
(37) in the second-cited treatise in vol. 72 of this journal on page 16.  As in that location, 
let the given quadratic form in n differentials dxa , whose coefficients are arbitrary 

functions of the n variables xa , and in which the indices a, b, … go from 1 to n, be the 

following one: 
 
(1)      f (dx) = 1

,2
,

a dx dx∑ a b a b

a b

. 

 
Let the bilinear form that is derived from it be: 
 

(2)      f (dx, 
1

dx ) = 
1

1
,2

,

a dx dx∑ a b a b

a b

. 

One further has the equation: 
 

(3)  − δ f (dx, 
1

dx ) + df (δx, 
1

dx ) +
1

df (δx, dx) = 
1 1

,
,

( , )a d dx x f dx dx xδ δ+∑ ∑a b b a a a

a b a

 

for the unrestricted application of the three variation symbols.  fa (dx, 
1

dx ) is then a form 

that is bilinear in the differentials dxa and 
1

dx
b
 that has this developed form: 

 

(4)   fa (dx, 
1

dx ) = 
1

1
, ,2

, ,

f dx dx∑ a g b g b

a g b

= 
1

, ,,1
2

,

a aa
dx dx

x x x

 ∂ ∂∂
+ −  ∂ ∂ ∂ 

∑ a g g ba b

g b

g b b g a

. 

In addition, let: 

(5)     
1 1

, ( , )a d dx f dx dx+∑ a b b a

b

 = Ψa (dx, 
1

dx ), 

so 

(6)   − δ f (dx, 
1

dx ) + df (δx, 
1

dx ) +
1

df  (δx, dx) = 
1

( , )dx dx xδΨ∑ a a

b

. 

 
If one forms the same linear expressions in the coefficients ,1a

a
, ,2a

a
, …, ,na

a
 that one 

finds in 
1

( , )dx dxΨ
a

, i.e.: 

(7)    
1 1

, [ ( , )]a d dx dx dxξ+∑ a b b a

b

 =
1

( , )dx dxΨ
a

, 
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then the combinations 
1

( , )dx dxξ
a

 will be defined by: 

 

(8)     
1

( , )dx dxξ
a

 = 
1

, ( , )
A

f dx dx
∆∑ b c

c

c

, 

 
with the help of the non-zero determinant | aa,b | = ∆ and the adjoint element ∂∆ / ∂aa,b = 

Aa,b .  The aforementioned form
1 1

( , , , )dx x dx xδ δΨ , which is linear in the four systems of 

differentials 
1

dxa , 
1

xδ a , dxg , δxb and covariant to the given form f (dx), will then be 

expressed in terms of the likewise-cited equation (37) as: 
 

(9)   

1 1 1 1 1 1
1
2

1 1 1 1

( , , , ) [ ( , ) ( , ) ( , )]

[ ( , ) ( , ) ( , )].

dx x dx x d x dx x x dx dx x

dx dx x dx dx x x

δ δ δ δ δ ξ δ

δ δ ξ δ δ

 Ψ = Ψ − Ψ

 − Ψ − Ψ


∑

∑

b b b b

b

b b b b

b

 

 

 One now obtains the desired conversion when one replaces the expression 
1

( , )dx xξ δ
a

 

with the combination of the expressions –
1

d xδ
b

 and 
1 1

( , )d x dx xδ ξ δ+
b b

, and replaces the 

expression 
1

( , )dx xξ δ
a

with the combination of the corresponding expressions –
1

xδ δ
b
 and 

1 1

( , )x x xδ δ ξ δ δ+
b b

.  In that way, the form 
1 1

1
2 ( , , , )dx x dx xδ δΨ  will be equal to the 

aggregate of the combination: 
 

(10) 
1 1 1 1

[ ( , ) ( , ) ]d x dx x x dx d xδ δ δ δΨ + Ψ∑ b b b b

b

−
1 1 1 1

[ ( , ) ( , ) ]dx dx x dx dx xδ δ δδΨ + Ψ∑ b b b b

b

 

 
and the combination: 
 

(11) −
1 1 1

( , )[ ( , )]x dx d x dx xδ δ ξ δΨ +∑ b b b

b

+
1 1 1

( , )[ ( , )]dx dx x x xδ δ ξ δ δΨ +∑ b b b

b

. 

 

The combination (10) is obviously equal to the complete variation 
1 1

( , )d x dx xδ δΨ∑ b b

b

, 

minus the complete variation 
1 1

( , )dx dx xδ δΨ∑ b b

b

.  However, the sums to be varied can 

be represented as aggregates of first variations by means of formula (6).  Thus, the 
combination (10) will appear to be the aggregate of second variations: 
 

(12)  d 
1

df (δx, 
1

xδ ) + δ 
1

fδ (dx, 
1

dx ) − d 
1

fδ (dx, 
1

dx ) − δ 
1

df (dx, 
1

xδ ). 
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The expressions d 
1

dx
b
+ ξb (dx, 

1

dx ) can be represented as follows: 

 

(7*)    d 
1

dx
b
+ ξb (dx, 

1

dx ) = 
1

, ( , )
A

dx dxΨ
∆∑ b c

c

c

, 

 
so the combination (11) will assume the form: 
 

(13)   
1 1 1 1

,

,

[ ( , ) ( , ) ( , ) ( , )]
A

dx dx x x x dx dx xδ δ δ δΨ Ψ − Ψ Ψ
∆∑ b c

b c b c

b c

 . 

 
The combination (12), as well as the combination (13), is a covariant of the form f (dx), 
and the basis for that is given in the cited location (vol. 72 of this journal, pages 16 and 

17).  One therefore has the theorem that one-half the value of the form 
1 1

( , , , )dx x dx xδ δΨ  
equals the aggregate of the covariant (12) and the covariant (13).  Both covariants 
contain first and second variations of the variables, but all of the second variations will 
cancel when one forms their aggregate, and all that will remain are the first variations. 

 In order to make the transition to Riemann’s formulas, the variation symbol 
1

d  must 

now be set equal to the variation symbol d, and the symbol 
1

δ  must be set equal to the 
symbol δ.  The covariant (12) will then be converted into the expression: 
 
(14)   1 1

2 2
, , ,

dd a x x d a dx x a dx dxδ δ δ δ δδ− +∑ ∑ ∑a,b a b a,b a b a,b a b

a b a b a b

 

 
by the complete representation of the quadratic and bilinear forms, and the covariant (13) 
will be converted into the expression: 
 

(15)   
,

[ ( , ) ( , ) ( , ) ( , )]
A

dx dx x x dx x dx xδ δ δ δΨ Ψ − Ψ Ψ
∆∑ a,b

b c b c

b c

. 

 
At the same time, as a result of the theorem that was proved, the aggregate of the two 
expressions (14) and (15) will be equal to one-half the value of the form Ψ (dx, δx, dx, 
δx).  In the investigations that are connected with the present ones, the square of the line 
element for the manifold of n variables xa was denoted by 2f (dx) = 

,

a dx dx∑ a,b a b

a b

in vol. 

72 of this journal, page 24.  Therefore, that quadratic form will have the same meaning as 
Riemann’s form ,b ds ds′ ′∑ i i i i

, and at the same time, the form Ψ (dx, δx, dx, δx) will 

correspond to the first representation of Riemann’s form (II).  One thus recognizes that 
one-half the value of Riemann’s form (II) is equal to the aggregate of the covariants (14) 
and (15).  Furthermore, with the notation that was introduced, the expression (14) above 
will be equal to one-half the expression that one will find on page 381 of Riemann’s 
paper in the fifth line from the bottom, and will define the second representation of his 
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form (II).  Now, Riemann’s three equations that appear at the bottom of that page say 
that the combinations Ψb (dx, δx), Ψb (dx, dx), Ψb (δx, δx) should be taken to be zero, 

since on the basis of equation (6) above, the left-hand sides of the three equations will 
coincide with the three expressions: 

 −
1

2 ( , )dx x xδ δΨ∑ a a

a

, 

 −
1

2 ( , )dx dx xδΨ∑ a a

a

, 

 −
1

2 ( , )x x xδ δ δΨ∑ a a

a

, 

respectively, so those sums must vanish independently of the n variations 
1

xδ
a

, and that 
can happen only if the combinations that were spoken of themselves vanish.  That 
confirms that the covariant (15) will be equal to zero as a result of the three equations that 
Riemann exhibited.  Now, since one-half the value of the form Ψ (dx, δx, dx, δx) is equal 
to the aggregate of the covariants (14) and (15), under the stated assumption, the 
covariant (14) will yield a representation of one-half the value of the form Ψ (dx, δx, dx, 
δx) in its own right.  As was mentioned before, the form Ψ (dx, δx, dx, δx) is equal to 
Riemann’s form (II), and the covariant (14) is equal to one-half the value of Riemann’s 
second representation of the form (II).  We have then derived Riemann’s second way of 

representing his form (II) from the property of the form 
1 1

( , , , )dx x dx xδ δΨ  that was 
proved just now that it equals an aggregate of two covariants. 
 
 

2. 
 

 We shall now address the development of the connection between the covariant (15) 
of the previous article and the expression that must be a minimum under the principle of 
least constraint.  However, there is a certain complication that must be overcome.  As is 
known, Gauss expressed his principle in words, but not analytical symbols, in vol. 4 of 
this journal (page 232), and then used synthetic considerations to reduce it to 
d’Alembert ’s principle and the principle of virtual velocities.  Thus, Gauss himself 
lacked an analytical formulation for his own principle, and that is all the more regrettable, 
since the words that Gauss used in his formulation admitted more than one interpretation 
at one point.  Namely, he did not establish from the outset what sense he was imparting to 
the expression “the free motion of a point.”  In order to shed some light upon the 
question, we imagine that the mass-points of the system that is in motion are referred to a 
system of rectangular coordinates.  For the first mass-point, they might be z1, z2, z3, for 
the second one z4, z5, z6, …, and for the last mass-point, they might be zn−2 , zn−1 , zn .  The 
mass of the first point will be denoted by m1 = m2 = m3 , the mass of the second point m4 
= m5 = m6 , …  Let the components of the applied forces, when decomposed along those 
three axes, be Z1, Z2, Z3, respectively, for the first point, Z4, Z5, Z6, for the second point, 
…  Let the system of points be subject to a sequence of condition equations Φ1 = const., 
Φ2 = const., …, Φl = const., which depend upon only the coordinates and contain neither 



Lipschitz – Remarks on the principle of least constraint 6 

time t nor the derivatives of the coordinates with respect to time.  Now, there can be no 
doubt that the given values of the coordinates of all mass-points at a moment in time t 
must satisfy the l condition equations: 

 
Φ1 = const.,  Φ2 = const.,  …, Φl = const. 

 
By contrast, as far as the components of the velocities of the individual mass-points 
relative to the rectangular coordinate system are concerned, there exist two possibilities: 
Either the components of the velocity are chosen such that they are found to agree with 
those l condition equations and satisfy the l equations: 

 

1d

dt

Φ
= 0, 2d

dt

Φ
= 0, …, 

d

dt

Φ
l = 0, 

 
which follow from them, or they are chosen in such a way that they contradict them.  The 
expression “free motion of a point” that Gauss used is consistent with both of those 
assumptions.  Therefore, in order to ascertain the true content of the principle of least 
constraint, nothing seems to remain but to formulate it analytically under each of the two 
assumptions using Gauss’s words and examine whether the principle leads to a correct 
representation of the problem of motion in both cases.  That exercise would show that the 
principle is valid only for the first assumption. 
 Under the first assumption that was pointed out, the coordinates of the individual 
mass-points, as well as their first derivatives with respect to time t, must be considered to 
be given at the moment in time t.  By contrast, the second derivatives of the coordinates 
with respect to time t are considered to be unknown and must be determined by precisely 
that principle of least constraint.  If τ means a small increment in time t then the 
rectangular coordinates of a mass-point that belongs to a moving system (for example, 
the first mass-point) at the time t + τ will assume the values: 
 

 z1 +
2

21 1
2

1

2

dz d z

dt dt
τ τ+ , 

 

 z2 +
2

22 2
2

1

2

dz d z

dt dt
τ τ+ , 

 

 z3 +
2

23 3
2

1

2

dz d z

dt dt
τ τ+ , 

 
respectively, for a well-defined actual motion that is described with a precision that goes 
up to order τ 2.  By contrast, the coordinates of that point at the same time when the 
motion that results from the influence of the given applied force at that point proves to be 
free would be: 
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 z1 +
21 1

1

1

2

dz Z

dt m
τ τ+ , 

 

 z2 +
22 2

2

1

2

dz Z

dt m
τ τ+ , 

 

 z3 +
23 3

3

1

2

dz Z

dt m
τ τ+ , 

 
respectively.  Therefore, the square of the deviation of the first point from its free motion 
will be measured by the sum of the squares of the corresponding coordinate differences, 
and will have the expression: 
 

22 2 22 2 4
3 31 1 2 2

2 2 2
1 2 3 4

d z Zd z Z d z Z

dt m dt m dt m

τ     
 − + − + −    
       

. 

 
From the rule that Gauss gave, that will be multiplied by the mass of the point in 
question, which we have called m1 = m2 = m3 , and the sum of the products that are 
defined in the same way for all of points of the system will then represent the expression 
that must be a minimum.  That sum will be equal to the product of the factor τ 4 / 4, 
which is considered to be unvarying, with the combination: 
 

(1)     
22

2

d z Z
m

dt m

 
− 

 
∑ a a

a

a a

, 

 
in which the symbol a runs through the sequence of numbers from 1 to n, as in art. 1.  

The principle of least constraint can then be expressed by saying that for the given values 

of za and 
dz

dt
a , the quantities 

2

2

d z

dt
a  can be determined in such a way that the combination 

(1) will become a minimum. 
 In order to address that problem, above all, one must ponder the equations that the 

desired quantities 
2

2

d z

dt
a must satisfy.  If any of the functions Φ1, Φ2, …, Φl is denoted by 

Φa then what will follow first from each condition equation Φa = const. is the 

aforementioned equation: 
 

(2)     
d

dt
αΦ

= 
dz

z dt
α∂Φ

∂∑ a

a a

 = 0, 

 
which is fulfilled by the first derivatives of the coordinates, and then secondly, the 
equation: 
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(3)    
2

2

d

dt
αΦ

= 
2 2

2
,

d z dz dz

z dt z z dt dt
α α∂Φ ∂ Φ+

∂ ∂ ∂∑ ∑a a b

a a ba a b

 = 0, 

 
which the second derivatives of the coordinates must fulfill.  However, since the values 

of za and 
dz

dt
a  are fixed by the prevailing relations, the l equations (3) express only the 

idea that the aggregate 
2

2

d z

z dt
α∂Φ

∂∑ a

a a

that appears in them must have unvarying values.  

When one applies the undetermined multipliers λ1 , λ2 , …, λl , the minimum problem to 

be solved will lead to the n equations: 
 

(4)    
2

2

d z Z
m

dt m

 
− 

 

a a
a

a

= 1 2
1 2z z z

λ λ λ∂Φ ∂Φ ∂Φ+ + +
∂ ∂ ∂

⋯
l

l

a a a

, 

 
from the well-known rules.  However, these are nothing but the differential equations of 
the problem of motion that was posed.  The principle of least constraint is therefore 
justified for the first assumption that was made. 
 The second assumption can be characterized by saying that the given velocity 
components do not correspond to the equations (2).  The values of the velocity 
components might be called ζ1, ζ2, ζ3 for the first point, ζ4, ζ5, ζ6 for the second point, 
etc.  Therefore, values of the first derivatives of the coordinates for the motion of the 
individual points cannot, in fact, prove to be equal to the given values, and on those 
grounds, the first, as well as the second, derivatives of the coordinates with respect to 
time must now be regarded as unknowns.  For that reason, the rectangular coordinates of 
the first mass-point at time t + τ will have the previously-exhibited expressions for the 
actual motion that is to be determined, up to a precision that goes to order τ 2.  By 
contrast, the coordinates in question of that point will have the following expressions: 
 

 z1 + ζ1 τ + 21

1

1

2

Z

m
τ , 

 

 z2 + ζ2 τ + 22

2

1

2

Z

m
τ , 

 

 z3 + ζ3 τ + 23

3

1

2

Z

m
τ , 

 
for the free motion that is now supposed to result with the given velocity components and 
under the influence of the associated applied force.  The square of the deviation of the 
first point from its motion will then equal the sum of the squares of the coordinate 
differences: 
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2
2

21 1 1
1 2

1

1

2

dz d z Z

dt dt m
ζ τ τ

   − + −   
    

+

2
2

22 2 2
2 2

1

1

2

dz d z Z

dt dt m
ζ τ τ

   − + −   
    

 

 

 +

2
2

23 3 3
3 2

3

1

2

dz d z Z

dt dt m
ζ τ τ

   − + −   
    

. 

 
When one multiplies that by the mass m1 = m2 = m3 of the point in question, deals with all 
points of the system similarly, and takes the sum of the resulting expressions, what one 
will get is the combination to be minimized: 
 

(5)    

2
2

2

1

2

dz d z Z
m

dt dt m
ζ τ

   − + −   
    

∑ a a a
a a

a a

, 

multiplied by the factor τ 2. 
 The conception of the principle of least constraint that is assumed in that is the basis 
for the generalization of that principle that Schering presented in the essay “Hamilton-
Jacobische Theorie für Kräfte, deren Mass von der Bewegung der Körper abhängt,” in 
volume XVIII of the Abh. de K. G. d. Wiss. zu Göttingen.  In order to obtain the 
expression (5) above from Schering’s formulas, the more general assumptions that he 
made in them must be replaced with the simpler assumptions for a problem that actually 
arises in mechanics.  With that simplification, the specifics of Schering’s conception of 
the principle of least constraint will emerge quite clearly, and one can make a more 
confident decision about the justification for that concept. 
 The problem that was posed of minimizing the expression (5) above differs from the 
minimum problem that one solves for the expression (1) by the fact that the values of 

2

2

d z

dt
a , as well as the values of 

dz

dt
a , must be determined for the former, while only the 

values of 
2

2

d z

dt
a must be determined for the latter.  For that reason, the l condition 

equations (2) and the l condition equations (3) must be considered in such a way that the 
2

2

d z

dt
a and the 

dz

dt
a  prove to be variable.  Therefore, if one introduces l multipliers ρα , as 

well as l multipliers that might be denoted by τ σα , then the requirement in question 

might be expressed by saying that the expression: 
 

(6)  

2
2

2

2

,

1

2

2

dz d z Z
m

dt dt m

dz dz dz dz

z dt z dt z z dt dt
α α α

α α
α α

ζ τ

ρ τ σ

     − + −   
     


  ∂Φ ∂Φ ∂ Φ− − +  ∂ ∂ ∂ ∂ 

∑

∑ ∑ ∑ ∑ ∑

a a a

a a

a a

a a a b

a a a ba a a b
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must be a minimum. 
 From the well-known rules, that will yield the equations: 
 

(7)  

2 2

2

2

2

,
2

.
2

dz m d z Z dz
m

dt dt m z z z dt

dz m d z Z
m

dt dt m z

α α
α α

α α

α
α

α

ζ τ ρ τ σ

ζ τ σ

   ∂Φ ∂ Φ − + − = +    ∂ ∂ ∂   


  ∂Φ  − + − =   ∂   

∑ ∑ ∑

∑

a a a a b
a a

ba a a b

a a a a
a a

a a

 

 
The fact that these equations do not embody the nature of the corresponding mechanical 
problem can be seen with no further discussion.  When one subtracts the two equations, it 
will follow that: 

2

( )
dz

z z z dt
α α

α α α
α α

ρ σ τ σ∂Φ ∂ Φ− +
∂ ∂ ∂∑ ∑ ∑ b

ba a b

= 0, 

 
and in the case where l = 1, in which only one condition equation Φ1 = const. is given, 

that will demand that the quotient: 
2

1

1

1 dz

z z dt
z

∂ Φ
∂Φ ∂ ∂
∂

∑ b

b a b

a

 

 
must have the same value for each index a.  However, such a prescription is entirely 

foreign to theoretical mechanics.  On those grounds, the principle of least constraint 
cannot be applied when Gauss’s words are formulated under the assumption that we 
called the second one. 
 Earlier I said that in the expression that Gauss gave to his principle, the meaning of 
the words “free motion of a point” could not be established from the outset.  However, 
that opinion was based upon the fact that Gauss could only recognize the meaning that 
those words should have from the proof that he carried out.  Gauss based his proof on the 
principle of virtual velocities, and that depended upon whether the virtual displacements 
of the points could all be regarded as small quantities of the same order under the 
principle of virtual velocities.  If that were allowed then those quantities, which Gauss 
called cγ, c′γ′, c″γ″, … in his proof, would all have to be small quantities of the same 
order.  However, that assumption will hold true only under our first assumption, where 
the curve that a point of the system of masses that is considered to be in motion describes 
and the curve that point of the fictitious free system would describe would have the same 
tangent, while the convention that relates to the second assumption would not hold true 
unconditionally.  For myself, I do not doubt that the principle of virtual velocities must 
include the convention that was referred to intrinsically.  However, due to the nature of 
the principle of virtual velocities, since a rigorous proof of the necessity of that condition 
probably cannot be achieved, I have preferred an analytical discussion that is completely 
convincing, as far as I can see. 
 At the same time, the consideration that was just discussed shows the way by which 
the principle of least constraint must be modified in order to deduce results that are 
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acknowledged in theoretical mechanics for those values of the velocity components that 
are compatible with the condition equations of the problem.  It suffices that for a first 
application of the principle, the coordinates of the mass-points that relate to the time-
point t + τ should be taken with a precision that goes up to only order τ.  The second 
derivatives of the coordinates will not enter into consideration of the actual motion that 
results, nor will the given applied forces come into play for the consideration of the 
fictitious free motion, and the first derivatives of the motion that actually results will be 
determined by the requirement that the expression: 
 

(8)      
2

dz
m

dt
ζ − 

 
∑ a

a a

a

 

 
must be a minimum.  The second requirement can then be satisfied when one includes the 

values 
dz

dt
a  that are obtained in that way, namely, that the expression (1) can be 

minimized by a choice of the second derivatives 
2

2

d z

dt
a .  Meanwhile, I cannot suppress a 

remark in regard to that subject that does not refer to the treatment of the mechanical 
problem in question as much as it does to the essence of it.  If one assumes that the 
velocity components of a system of moving mass-points contradict the governing 
condition equations at some time-point and that after a vanishingly-small time τ has 
elapsed the individual points of the system will assume velocities that satisfy the 
condition equations, and under which the motion will proceed according to the given 
applied forces, then the conversion of the given velocity components into the velocity 
components that are actually maintained can take place only in such a way that the sum 
of the vis vivas that are impressed upon the system inside of the vanishingly-small time τ 
will experience a loss.  However, while the formulas of theoretical mechanics can 
represent such a process, the approximation to the true state of affairs must be much 
closer than the one that is attained in those mechanical problems whose representation 
does not assume a momentary violation of continuity and momentary loss of vis viva. 
 
 

3. 
 

 Once it has been emphasized that the principle of least constraint should refer to those 
quantities that were referred to in (1) of the previous article, their expressions should be 
ascertained under the assumption that an arbitrary system of n independent variables must 
be introduced in place of the rectangular coordinates za for the mass-points of the system 

in motion.  It is known that the transformation of the system of differential equations (4) 
in article 2 depends upon only the fact that the quadratic form 21

2 m dz∑ a a

a

 in the n 

differentials dza and the expression Z dz∑ a a

a

 that is defined by the components of the 

applied forces must be represented in the new variables.  Consistent with the notation in 
article 1, one will have: 
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(1)     21
2 m dz∑ a a

a

= 1
,2

,

a dx dx∑ a b a b

a b

= f (dx), 

and furthermore: 
 
(2)      Z dz∑ a a

a

= X dx∑ a a

a

. 

 
The l functions Φα of the coordinates za are converted into functions of the variables xa , 

and equations (2) and (3) of the previous article will be replaced by the equations: 
 

(3)    
d

dt
αΦ

= 
dx

x dt
α∂Φ

∂∑ a

a a

 = 0, 

 

(4)    
2

2

d

dt
αΦ

= 
2 2

2
,

d x dx dx

x dt x x dt dt
α α∂Φ ∂ Φ+

∂ ∂ ∂∑ ∑a a b

a a ba a b

. 

 
The following equations will enter in place of equations (4) of the previous article, which 
are likewise constructed with the undetermined multipliers λ1 , λ2 , …, λl , and in which 

the notations for differentials that were defined in article l are adapted to differential 

quotients: 

(5)   
2

2 ,
d x dx dx

a
dt dt dt

ξ
  +  

  
∑ b

a,b b

b

− Xa = 1
1 x x

λ λ∂Φ ∂Φ+ +
∂ ∂

⋯
l

l

a a

. 

 
By means of equation (7) of article 1, they can also assume the form: 
 

(6)    ,
dx dx

dt dt
 Ψ  
 
a − Xa = 1

1 x x
λ λ∂Φ ∂Φ+ +

∂ ∂
⋯

l
l

a a

. 

 

Now, it follows from equation (6) of article 1 that the sum ,
dx dx

x
dt dt

δ Ψ  
 

∑ a a

a

, and from 

the nature of the quantities Xa , the sum X xδ∑ a a

a

, will go over to an analogously-

constructed expression when one introduces another arbitrary system of variables; that is, 
the expression is covariant to the form f (dx) and the current problem.  Therefore the sum: 
 

(7)     ,
dx dx

X x
dt dt

δ  Ψ −  
  

∑ a a a

a

 

 
will also have that property.  The form f (dx) might now go over to the form g (dy) = 
1
2 e dy dy∑ k,l k l

k,l

 by the introduction of another arbitrary system of variables yl , and one 



Lipschitz – Remarks on the principle of least constraint 13 

further lets the determinant be | ek,l | = E and the adjoint element by ∂E / ∂ek,l = Ek,l .  When 

the linear expressions: 
aa,1 dx1 + aa,2 dx2 + … + aa,n dxn = pa  

and 
ea,1 dy1 + ea,2 dy2 + … + ea,n dyn = ql  

 
are introduced into the forms in question, each of the forms will be converted into its 
adjoint form as follows: 

2 f (dx) = 
A

p p
∆∑ a,b

a b

a,b

, 2 g (dy) = 
E

q q
E

∑ k,l

k l

k,l

, 

and likewise the equation: 

(8)     
A

p p
∆∑ a,b

a b

a,b

=
E

q q
E

∑ k,l

k l

k,l

 

 
must be true, as a result of the equation f (dx) = g (dy).  As soon as one applies another 
system of independent variations dxa and the corresponding system of variations dyl , one 

will also get the equation: 
a dx xδ∑ a,b a b

a,b

 = e dy yδ∑ k,l k l

k,l

 

 
from the transformation that was performed, which can be replaced with the equation: 
 
(9)     p xδ∑ a a

a

 = q yδ∑ k k

k

 

 
by means of the quantities pa and qk .  That equation exhibits the linear dependency that 

exists between the quantities pa and qk , and it illuminates the fact that as long as equation 

(9) between two systems of quantities pa and qk is fulfilled, equation (8) must follow. 

 The fact that the sum (7) above is covariant to the form f (dx) in our mechanical 

problem means that the expressions ,
dx dx

dt dt
 Ψ  
 
a  − Xa have the same relationship to the 

corresponding expressions that are formed with a new system of variables that is 
prescribed between the quantities pa and qk in (9).  Therefore, the expression that is found 

on the left-hand side of (8): 
 

(10)   , ,
A dx dx dx dx

X X
dt dt dt dt

      Ψ − Ψ −      ∆       
∑ a,b

a a b b

a,b

 

 
must be equal to the analogously-constructed expression when one introduces a system of 
new variables.  The expression (10) is then covariant to the form f (dx) and the 
mechanical problem in question. 
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 One will likewise get the form that the combination (10) assumes from that property 
as soon as one again introduces the rectilinear coordinates za in place of the variables xa .  

Due to equation (1), for the case when a and b are different from each other, the adjoint 

elements Aab / ∆ must be replaced with 1 / ma , which are, by contrast, zero for the case of 

a = b.  From (6), ,
dx dx

dt dt
 Ψ  
 
a  will go to the expression 

2

2

d z
m

dt
a

a , and from (2), the 

quantities Xa will go to the quantities Za .  The expression: 

 

(11)    
22

2

1 d z
m Z

m dt

 
− 

 
∑ a

a a

a a

 

 
will then arise, which is equal to the expression (1) in article 2 identically.  The quantity 
that is minimized by the principle of least constraint will then be represented by the 
covariant (10) of the given mechanical problem.  A comparison of the covariant (10) with 
the covariant (13) in article 1 will show that their structures agree completely.  Both 
covariants are based upon the form that is adjoint to the form 2f (dx).  The covariant (13) 
in article 1 is equal to a difference of two values of the adjoint form, one of which is 

constructed from the variables Ψb (dx, 
1

dx ) and Ψk (δx, 
1

xδ ), while the other is 

constructed from the system of variables Ψb (δx, 
1

dx ) and Ψk (dx, 
1

xδ ).  The covariant 

(10) above is equal to a value of the adjoint form in which only one system of variables 

appears that is represented by the difference ,
dx dx

dt dt
 Ψ  
 
a  − Xa . 

 One can further convert the covariant (10) by consulting the differential equations (6) 

when one replaces ,
dx dx

dt dt
 Ψ  
 
a  − Xa with the sum 

x
α

α
α

λ ∂Φ
∂∑
a

 and replaces 

,
dx dx

dt dt
 Ψ  
 
b  − Xb with the sum 

x
β

β
β

λ
∂Φ
∂∑
b

, which amounts to the same thing.  One will 

then get the expression: 

(12)    
,

A

x x
βα

α β
α β

λ λ
∂Φ∂Φ

∆ ∂ ∂∑∑ a,b

a,b a b

, 

 
If one now introduces the schema that was given on page 277 of vol. 71 of this journal: 
 

(13)    
A

x x
βα ∂Φ∂Φ

∆ ∂ ∂∑ a,b

a,b a b

= (α, β) 

 
then the covariant (10) will be equal to the following double sum, in which the indices α 
and β go from 1 to l : 
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(14)     
,

( , )α β
α β

λ λ α β∑ . 

 
I cited this expression for the quantity that must be minimized by the principle of least 
constraint under the assumption that the system of mass-points in motion is subject to 
condition equations, but no accelerating forces, in vol. 81 of this journal on page 231. 
 
 

4. 
 

 When one extends the problem in mechanics in such a way that for each mass-point, 
the square of the line element in space is equal to an arbitrary essentially-positive 
quadratic form in the coordinate differentials, such that consistent with that, the sum of 
the vis vivas of all mass-points of the system in motion will be equal to an essentially-

positive quadratic form 2
dx

f
dt

 
 
 

 in the differential quotients of the coordinates xa with 

respect to time t, and such that the expression X xδ∑ a a

a

 and the l condition equations Φa 

= const. take on a corresponding meaning, one will obtain a system of differential 
equations by means of the fundamental theorems that were developed in the treatise 
“Untersuchung eines Problem der Variationsrechnung, in welchem das Problem der 
Mechanik enthalten ist” (vol. 74 of this journal, page 116, et seq.) that has exactly the 
same form as the system of differential equations (6) of the previous article.  An 
expression that is constructed under the cited assumptions from the given quadratic form 
2f (dx) and the sum X xδ∑ a a

a

 by the prescription that was given for constructing the 

combination (10) must, on the same grounds, be a covariant relative to the extended 
mechanical problem, and that covariant must be considered to be the extension of that 
concept that was represented by the expression (10) for the original mechanical problem.  
That also easily shows that when one considers the values xa and dxa / dt to be given and 

imposes the demand that the values of d 2 xa / dt2 must be determined in such a way that 

the covariant that was spoken of becomes a minimum, a system of equations will arise 
that coincides with the system of differential equations of the extended mechanical 
problem in question.  However, that embodies the associated extension of the principle of 
least constraint. 
 The treatise that is found in volume 74 of this journal refers to a further extension of 
the mechanical problem that replaces the line element for each mass-point in space with 
the pth root of an essentially-positive form of degree p in the coordinate differentials, and 
the vis viva of each mass-point is measured by multiplying the mass of the point by the 
pth power of the line element and dividing by the pth power of the time-element.  The pth 
part of the sum of the vis vivas of all mass-points of a moving system is then equal to an 
essentially-positive form f (dx / dt) of degree p in the differential quotients with respect to 
time t of the coordinates xa of all points, a function U of the variables xa that represents 

the force function, and l condition equations Φa = const., and the analogy with 
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Hamilton ’s variational problem will lead to the requirement that the first variation of the 
integral: 

(1)      
1

0

t

t

dx
f U dt

dt

   +  
  

∫  

 
must be made to vanish.  In the cited place, it was assumed that the variables in the 
problem were chosen in such a way that they fulfilled the given condition equations.  By 
contrast, the problem is formulated precisely as above in my treatise “Sätze aus dem 
Grenzgebiet der Mechanik und Geometrie” in vol. VI of Clebsch and Neumann’s 
Mathematischen Annalen on page 416.  There, the function U that appears under the 
integral sign in the integral (1) was added to the expression λ1 Φ1 + λ2 Φ2 + … + λl Φl 
that is formed with the undetermined multipliers.  The system of differential equations 
that is associated with the variational problem will then read as follows: 
 

(2)    

dx dx
f f

d dt dt
dxdt x
dt

    ∂ ∂    
     −

∂ ∂
  

a a

 = 1
1

U

x x x
λ λ∂Φ ∂Φ∂ + + +

∂ ∂ ∂
⋯

l
l

a a a

. 

 
 Now, that shows that the principle of least constraint is sufficiently robust that it will 
also be valid in this domain.  When one separates the terms in the left-hand side of (2) 
that contain the second differential quotients d 2 xa / dt2 from the terms in which only the 

first differential quotients occur, the following expression will arise: 
 

(3)     

2
2

2

dx
f

d x dxdt
f

dx dx dt dt
dt dt

 ∂  
   +  
 ∂ ∂

∑ b
a

a bb

, 

 

in which 
dx

f
dt

 
 
 
a  means a homogeneous function of degree p in the dxa / dt.  That 

representation is taken from vol. 70 of this journal on page 76, and, at the same time, 
formula (10) there says that the sum: 
 

(4)     

2
2

2

dx
f

d x dxdt
f x

dx dx dt dt
dt dt

δ

  ∂      +  
  ∂ ∂

  

∑ ∑ b
a a

a ba b

 

 
is covariant with the form f (dx).  Similarly, the sum: 
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(5)      
U

x
x

δ∂
∂∑ a

a a

 

 
has a value that is independent of the chosen system of variables xa .  As long as the 

system of differential equations (2) must be convertible into the system of differential 
equations (5) of the previous article in such a way that the arbitrary functions Xa will 

enter in place of the ∂U / ∂xa , one must maintain the condition that the sum X xδ∑ a a

a

 is 

likewise independent of the chosen system of variables xa in order for the system of 

differential equations to be meaningful independently of it, respectively.  For the sake of 
brevity, I will introduce the notation: 

(6)      

2 dx
f

dt
dx dx

dt dt

 ∂  
 

∂ ∂a b

 = aa,b  

 

for the second derivatives of the form 
dx

f
dt

 
 
 

.  As long as p = 2, the expressions aa,b will 

coincide with the coefficients of the 2
dx

f
dt

 
 
 

 form and take on their previous meaning 

accordingly.  However, for a form of degree p when p > 2, they will be equal to forms of 
degree p – 2 in the elements dxa / dt.  Furthermore, let the determinant be | aa,b | = ∆ and 

let the adjoint element be ∂∆ / ∂aa,b = Aa,b . 

 If the form f (dx) goes to the form g (dy) when one substitutes a new system of 
arbitrary variables yl , and the variations δxa again correspond to the variations δyl , then a 

basic algebraic property of homogeneous functions will imply the equation: 
 

(7)    
2

,

( )f dx
x x

dx dx
δ δ∂

∂ ∂∑ a b

a b a b

 = 
2

,

( )g dy
y y

dy dy
δ δ∂

∂ ∂∑ k l

k l k l

, 

 
and by means of the notation (6) and the corresponding notation: 
 

2 dy
g

dt
dy dy

dt dt

 ∂  
 

∂ ∂k l

 = ek,l 

 
that will lead to the following equation: 
 
(7)     ,

,

a x xδ δ∑ a b a b

a b

= ,e x xδ δ∑ k l k l

k,l

. 
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One can now conclude from this, in the way that was developed in the previous article, 
that as long as the determinant | ek,l | equals E and the adjoint element ∂E / ∂ek,l is set to 

Ek,l, and when the equation: 

p xδ∑ a a

a

= q yδ∑ k k

k

 

 
is true for the arbitrary variations δxa and δyk that correspond to the two systems of 

quantities pa and qk , the equation: 

 

,

A
p p

∆∑
a b

a b

a b

, = ,

,

E
q q

E
∑ k l

k l

k l

 

 
will exist.  Therefore, since the sums (4) and (5) in our problem are covariant, from the 
remarks that were made, and the same thing will also be true for the sum X xδ∑ a a

a

 that 

replaces (5), the expression: 
 

(8)   
2 2

2 2
,

A d x d xdx U dx U
a f a f

dt dt x dt dt x

   ∂ ∂   + − + −      ∆ ∂ ∂      
∑ ∑ ∑

a b c b
a,c a b,b b

a b c ba b

,
 

 
will be a covariant for the variational problem that was posed, and the expression: 
 

(9)   
2 2

2 2
,

A d x d xdx dx
a f X a f X

dt dt dt dt

      + − + −      ∆       
∑ ∑ ∑

a b c b
a,c a a b,b b b

a b c b

,
 

 
will be a covariant for the system of differential equations that arises from the system (2) 
when one substitutes Xa for ∂U / ∂xa , namely: 

 

(10)   
2

2

d x dx
a f

dt dt
 +  
 

∑ b

a,b a

b

= Xa + 1
1 x x

λ λ∂Φ ∂Φ+ +
∂ ∂

⋯
l

l

a a

 . 

 
As long as the form f (dx) is a quadratic form and the assumptions that are actually true 
for mechanics are accepted, the covariant (9) will be converted into the covariant (10) of 
article 3, and as the general rules of minimization problems will show, the former will 
have the common property with the latter that the associated system of differential 
equations (10) will emerge from the requirement that for given values of xa and dxa / dt, 

the value of (9) will be minimized when one determines the values of the d 2 xa / dt2 .  In 

fact, as a result of the l condition equations Φa = const., the equations that correspond to 

equations (3) and (4) of article 3 will also be definitive here: 
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d

dt

Φ
a = 

dx

x dt
α∂Φ

∂∑ a

a a

 = 0, 

 

 
2

2

d

dt

Φa = 
2 2

2
,

d x dx dx

x dt x x dt dt
α α∂Φ ∂ Φ+

∂ ∂ ∂∑ ∑a a b

a a ba a b

 = 0. 

 
Moreover, since the quantities xa and dxa / dt can be considered to be unvarying in the 

minimum problem, the combinations aa,b will also figure in a form of degree p, where p > 

2, only as unvarying quantities, and for the same reason, the sums 
2

2

d x

x dt
α∂Φ

∂∑ a

a a

 will 

have unvarying values, as before.  That is the basis for the assertion that was made that 
the principle of least constraint can be adapted to that extension of the problem in 
mechanics that is included in the system of differential equations (10) by the use of the 
covariant (9). 
 
 

5. 
 

 The study by Schering that was cited in article 2 refers to the assumption that the 
square of the line element in space is equal to an essentially-positive quadratic form in 
the coordinate differentials and pursues the objective of arriving at the system of 
differential equations in that domain that would be obtained from the corresponding 
generalization of Hamilton ’s variational problem by means of an extension of the 
concept of force and an extension of the principle of least constraint.  Under the intended 
application of the principle of least constraint, Schering’s deduction is connected 
precisely with the expressions that Gauss chose, but it also raises the aforementioned 
objection yet again.  That deduction must satisfy the requirement that it represents no 
other concept than the one that was included in the original train of thought for the case 
in which the square of the line element in space can be represented as an aggregate of 
squares of three differentials, so the space in question must be Euclidian space itself.  
However, for the case of Euclidian space, the coordinates that were used in Schering’s 
deduction, which were not assigned any special properties, would differ by a small 
amount from the general coordinates by which a point in Euclidian space is determined.  
In Schering’s way of looking at things, the square of the deviation of a point from its free 
motion would be equal to the square of the distance between two points whose 
coordinates differ from each other by quantities that are not all of only first order.  Now, 
that sheds some light upon the fact that when a point in Euclidian space is referred to 
rectangular coordinates z1 , z2 , z3 , the square of the line element in space will have the 
expression: 
 
(1)      2 2 2

1 2 3dz dz dz+ + , 
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and at the same time, that the square of the distance between two arbitrary points (1)
1z , 

(1)
2z , (1)

3z  and (2)
1z , (2)

2z , (2)
3z  will have the expression: 

 
(2)    (2) (1) 2 (2) (1) 2 (2) (1) 2

1 1 2 2 3 3( ) ( ) ( )z z z z z z− + − + − . 

 
By contrast, as soon as the same point z1 , z2 , z3 in space is referred to arbitrary 
coordinates x1 , x2 , x3 , and the square of the line element (1) goes over to the form: 
 
(3)   2 2 2

11 1 22 2 33 3a dx a dx a dx+ + + 2a23 dx2 dx3 + 2a31 dx3 dx1 + 2a12 dx1 dx2 , 

 
it cannot be asserted that the square of the distance between the points (1)

1z , (1)
2z , (1)

3z  and 
(2)
1z , (2)

2z , (2)
3z  will generally be expressed correctly when one forms the expression: 

 

(4)  
(2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (1) (2) (1)

11 1 1 22 2 2 33 3 3 23 2 2 3 3
(2) (1) (2) (1) (2) (1) (2) (1)

31 3 3 1 1 12 1 1 2 2

( ) ( ) ( ) 2 ( )( )

2 ( )( ) 2 ( )( )

a x x a x x a x x a x x x x

a x x x x a x x x x

 − + − + − + − −
 + − − + − −

 

 
from the associated coordinates (1)

1x , (1)
2x , (1)

3x  and (2)
1x , (2)

2x , (2)
3x  of those points.  The 

transformation from rectangular coordinates to polar coordinates already suffices to show 
that this process is inadmissible.  However, it was precisely that process that Schering 
appealed to on page 11 of his paper, where he wished to express the square of the 
deviation of a possible motion of a point from the free motion.  There, Schering called 
the coordinate differences differentials, in general.  However, the expressions that he 
gave for the coordinate differences as aggregates of terms that were of first and second 
order in the element of time and the points that would follow from those terms in the 
formulas alluded to terms of even higher order.  In order for the process to also be valid 
for the terms of first and second order, one would generally have to be able to draw the 
conclusion from the equality of the expressions (1) and (3) that when the differences  

(2) (1)z z−
a a

 are replaced with the aggregate dza +
21

2 d z
a
 for the values a = 1, 2, 3, and at the 

same time, the differences (2) (1)x x−
a a

 are replaced with the corresponding aggregate dxa 

+ 21
2 d x

a
, the expression (2) will be equal to the expression (4).  Thus, as a result of setting 

terms of the same higher order equal to each other, the equation: 
 

2dz d z∑ a a

a

= 2

,

a dx d x∑ a,b a b

a b

 

 
must exist, which would also be incorrect in the cited example of the transformation from 
rectangular coordinates to polar coordinates. 
 Schering’s work aroused the desire in me to see how the concept of a force that acts 
upon a point in that domain would carry over to the one that pertained to the variational 
problem of the integral that was denoted by (1) in the previous article.  It will now be 
assumed in that problem that only a single point of unit mass moves freely.  The line 
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element for the point that is referred to by the coordinates xa will then have the expression  

( )p p f dx , and the requirement that the first variation of the integral: 

 

(5)      ( )p p f dx∫  

 
must vanish will determine the first-order manifold that corresponds to the shortest line in 
the relevant space for the coordinates xa .  When one thinks of the variables xa as 

independent of a variable t, the integral (5) can take on the form: 
 

(5*)     
1

0

t
p

t

dx
p f dx

dt
 
 
 

∫ , 

 
from which the differential drops out.  Therefore, it still remains completely 
undetermined how the variables xa should depend upon the variable t in the variational 

problem for the integral (5*).  The associated system of differential equations that is given 
on page 124 of vol. 74 of this journal reads: 
 

(6)    

p p
dx dx

p f p f
dt dtd

dxdt x
dt

    ∂ ∂    
     −

  ∂∂ 
  

a a

 = 0. 

 
The quantities xa will be determined completely by it when initial values xa (0) and the n 

– 1 ratios of the initial differentials dxa (0) are given for the value t = t0 , and we assume 

that the integration was carried out for that data.  The value of the integral (5*), which 
might be called r, accordingly represents the length of the shortest line that goes from the 
point xa (0) to the point xa , or the distance between the point xa and the point xa (0), and 

when it is represented as a pure function of the system of values xa (0) and xa , it must 

satisfy the equation that is included in (7b) in the cited location: 
 

(7)  δr = 1

1
p

p

dx
f

dt
x

dx
dx

p f dt
dt

δ−

 ∂  
 

∂  
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The addition of the symbol 0 to the form f (dx) means the substitution of the quantities 

(0)x
a

for the corresponding xa in the coefficients of the form.  The differential dt can also 

appear in the foregoing equation (7) only formally, and will cancel by means of the 
homogeneity of the form f (dx). 
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 We shall now consider the variational problem of the integral: 
 

(8)      
1

0

t

t

dx
f U dt

dt

   +  
  

∫ , 

 
under the assumption that the force function U is a pure function of the function r that is 
referred to a fixed system xa (0) and the moving system xa ; it will be called P (r).  That 

problem defines a generalization of the problem for the free motion of a point in which 
the given force function is a pure function of the distance between the moving point and a 
fixed point.  That problem was solved under the assumption that the form f (dx) is a 
quadratic form that belongs to a certain genus of forms in the treatise “Extension of the 
planet problem to a space of n dimensions and constant integral curvature” (Quarterly 
Journal of Mathematics, no. 48, pp. 349), and indeed under the condition that the values 
of xa and dxa / dt are given arbitrarily for a time-point t = t1 .  Schering solved the same 

problem for a space of n dimensions and constant curvature by a somewhat more 
extended assumption in regard to the force function on page 35 of the treatise that was 
cited above.  In the present discussion, the degree p of the form f (dx) can be arbitrary, 
although it was established that the variables xa should assume the values xa = xa (0) for 

the time-point t = t0 , which was chosen for the definition of the quantity r.  We will then 
focus our attention on the free motion of a point that moves under the influence of a force 
function P (r), and whose motion begins from that fixed point, and whose distance to that 
point is measured by r.  The differential equations of the variational problem that was just 
posed can be obtained from the differential equations (2) of the previous article when one 
drops the condition functions and replaces U with P (r).  They will then be these: 
 

(9)    

dx dx
f f

d dt dt
dxdt x
dt

    ∂ ∂    
     −

∂ ∂
  

a a

= 
( )r dP r

x dr

∂
∂ a

. 

 
 It can now be verified that under the assumption in question, by which the equations 
xa = xa (0) must be true for t = t0 , those differential equation for the variables xa will 

prescribe the same first-order manifold that is determined by the system (6).  That is, a 
point that is under the influence of the force function P (r) must move along a shortest 
line from the point xa (0).  One can give the system (6) above the following form: 

 

(10)  

dx dx
f f

d dt dt
dxdt x
dt

    ∂ ∂    
     −

∂ ∂
  

a a

= 

1

1

1
p

p

p

p

dx
f

d dxdt
p f

dx dt dt
dx

p f dt
dt

−

−

 ∂      
  
  ∂  

  
  

a
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by means of a conversion that was performed in (3b*) on page 124 of vol. 74 of this 
journal.  Due to equation (7), the partial differential quotient of the function r that is 
expressed in terms of the quantities xb and xb (0) with respect to the individual values xa 

will have the expression: 

(11)    
r

x

∂
∂ a

= 1

1
p

p

dx
f

dt
dx

dx
p f dt

dt

−
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a

. 

 
Therefore, the system (10) will be converted into this one: 
 

(12)  

dx dx
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dt
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Since r is the value of the integral (5*), one will have the equation: 
 

(13)     
dr

dt
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1

pdx
p f

dt

  
  
  

. 

 
For that reason, one will also have the following expression for the system (12): 
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dx dx
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The left-hand side of equation (14) is identical to the left-hand side of equation (9) for 
every value of the index a, and similarly the factor that is found on the right-hand side 

will coincide with ∂r / ∂xa .  Now since the system (14) determined only the first-order 

manifold for the variables xa , the dependency of the individual variables on the variable t 

will, however, remain undetermined, so it is possible to arrange that dependency in such 
a way that the system (6) coincides with the system (9), and that will come about when 
one assumes that the equation: 
 

(15)    
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is valid.  The desired integration of the system (9), in which the equations xa = xa (0) must 

be true for t = t0 and the initial values 
dx

dt
a = 

(0)dx

dt
a  should be proportional to the 

corresponding differentials that were chosen in the integration of the system (6) or (14), 
will then yield the first-order manifold for the variables xa that is predicted by the system 

(14), as was stated, while equation (15) determined the dependency of the path length r, 
which follows the shortest line, on time t.  Here, the differential quotient of the function P 
(r) with respect to the quantity r will take over the role of the force that acts upon the 
point of unit mass.  Equation (15) says that under the motion that is spoken of, which 
results in the shortest line that starts from the point xa (0), the differential quotient with 

respect to time of the (p − 1)th power of the first differential quotient of the path length r 
with respect to time will be equal to the given quantity dP (r) / dr.  However, for the 
value p = 2, that rule will go over to the rule that under the motion in question, the second 
differential quotient with respect to time of the path length r must be equal to the given 
quantity dP (r) / dr.  For the sake of simplicity of expression, I have assumed that the 
initial values xa = xa (0) were prescribed in the integration of the system (9), and that the 

initial values 
dx

dt
a = 

(0)dx

dt
a  were given to be proportional to the values of the initial 

differentials that were chosen in the integration of the system (6).  However, the 
reduction of the system (9) to the system (6) can be accomplished in the same way when 
one demands that for the system (9) at an arbitrary time-point t = t1 , only those values of 

xa = xa (1) and 
dx

dt
a = 

(1)dx

dt
a should be valid that are taken from the first-order manifold 

that is determined by the integration of the system (6) that was performed.  That is, in a 
different language, the motion of point that is under the influence of the force function P 
(r) when it begins from an arbitrary point of a shortest line that goes through the fixed 
point xa (0), and indeed in the direction of that shortest line, will always remain on that 

shortest line and obey equation (15). 
 When equation (15) is multiplied by dr/ dt, it will take on the form: 
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1 2
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That equation admits the undetermined integration: 
 

(16)    
1

p
p dr

p dt

−  
 
 

= P (r) + H, 

 
in which H means an arbitrary constant whose value is determined by the given initial 
values.  Equation (16) will go to the equation: 
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(17)    ( 1)
dr

p f
dt

 −  
 

= P (r) + H, 

 
by means of (13).  For the present problem that is nothing but the equation that was 
denoted by (5a) on page 123 of vol. 74 of this journal, and the integral will then represent 
the vis viva.  Equation (16) will imply the equation: 
 

(18)    dt = 

[ ( ) ]
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p

dr

p
P r H

p
+

−

, 

 
which will yield the dependency of the path length r on time t by performing a quadrature 
and inverting the resulting equation. 
 
 Bonn, 13 November 1876. 

__________ 
 


