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Theorems at the inter face between mechanics and geometry
By R. LIPSCHITZin Bonn

Translated by D. H. Delphenich

Since mechanics considers bodies in a state of moitianust take advantage of
geometry in order to establish its foundations and musayalvexploit it in order to
achieve its goals.

However, it was first by the ongoing construction of hagcs and geometry that
attention was directed to questions whose explorattim $ciences have an equal interest
in, and which depend upon precisely the same algorithms wiegnare expressed
analytically. The development of a concept that tosicigon the interface of mechanics
and geometry can be found in the treatise “Uber eingebeaischen Typus der
Bedingungsgleichungen eines bewegten Massensystems” héBdrs Journal for
Mathematics, vol. 66, pp. 363). One imagines a systematdrial points whose masses
might be calledn , mp, ..., mq, respectively. The position of each individual mas
will be referred to the rectangular coordinatesy., z.. For a certain arrangement of the
system, the coordinates of the individual points will takethe well-defined values =
A, Ye=Dbe, Z =C.. The concept in question can then be defined to bsutheover all q
points of the products of those masseswith the squares of the distance from the
position(Xe, Ye, Z) to the positior{ae, be, Co) :

(1) G=) ml(x-a)’+(y.- b’+(z- Q7.

The assumption that the system of material pamtsnoves in space free from the
influence of accelerating forces and with no restrg conditions leads to a new
definition of that concept. The uniform advanceeath point along a straight line will
necessarily follow from the requirement that thstfvariation of the associat@ategral
of least action:

) R:j\/Zme(d>§+ dy + d3),

must vanish at the initial and final positions b€ tindividual points. Now when the
coordinatesd., be, C;) determine the initial position of the massand the coordinates
(Xe, Ye, Z) determine the final position that will easily itpghe equation:
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(3) R = 2G.

The functior2G is then equal to the square of the associated integral of least aatian f
motion of the system from the pointfram the positior{ae, be, Ceo) to the positior(Xe, Ve,
Z), respectively. On the other hand, the representation of the intedriglast action by
the equatioR = ,/ 2G coincides with the representation thimilton introduced as the
characteristic function of the mechanical problem in question.

In order to derive the relationship of the functida t» a more general motion of the
system of pointan. , it will be assumed that the system is under the inflaeof
accelerating forces for which there exists a forcection U and that it is subject to a
series of condition equations:

(4) ®, = const., ®d,=const.,, ..., & =const.,

in which thel functions contain only the coordinates of thendividual points and not
time t. In that case, the principle that goes back#milton prescribes that the first
variation of the integral:

(5) j{ Zm{( = j +( ?{ejz{%f}u+;|1q>1+...+;|,q>|}dt

must be made equal to zero, while one draws upohdteations (4) for fixed initial and
final values of the @ coordinates. The multipliets, ..., A to be determined prove to be
pure functions of timé¢. Due to the rules of the calculus of variationst grablem will
produce the equation:

dzy &z
(6) Zm{ e dtze5ye+ v 5Zej =+ 0P+ 0D+ ... A 0Dy,

which must be fulfilled independently of the ¥ariationsdx,, dy,, 0z, and in that
way, conclude the system of differential equationthefmechanical problem in its own
right. The variation®Xx,, dY,, 0z in equation (6) can be replaced with final differences
Xe — @ Ye — be, ze — C., respectively ). The left-hand side will then go to an
expression that is connected with the funct®hy thecharacteristic relation:

2

(7 Zm{ e (x—a)+ dtz v S5z Cl}
_d’G_ )L (A%, (92
C ot Zm{( dtj { dtj { dtj }

() Jacobi, Vorlesungen tiber Dynamik” Lecture, pp. 21.

(ye b) +
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and on the right-hand side, the variat@hwill be converted into the expression:
ouU ouU ouU

8 — (x—a)+—(y-b)+—(z- q/,

(8) Ee m{axe(xe a) aye(ye ) aze(ze 02}

while the variationo ®, is converted into an expression that is formed analogoUsiat
implies the equation:

d*G _ dx ) (dy) L[ dz)
@  Ge-wm|( %)% %]]

:Zm{g—fe(xe—awg—y(ye— 0)+5 (2 cz}

0P 0P 0P
+ A L(x—a)+—L(Yo—b)+—L(z~ Q) |.
Zy}Z {axe (% —a) m (Y= b) aze( : 9}
Under the assumptions tha®; , ®, , ..., ® are homogeneous functions of the

combinations x— &, Ye — be , Z — Ge and that the constant values that are prescribed in
(4) are all zerg the double sum on the right-hand side of the last equation will vanish
and that equation will be identical to equation (6) indited treatise.

If one would like to draw upon those cases of the motiba system of material
points for which the condition equations (4) are true thatcomponents along tikey, z
axes of the forceX., Ye, Ze that act upon the individual mass poimtscannot be derived
from a force function, then it is known that thefeliéntial equations of the problem can
be summarized imne equationthat will emerge from equation (6) above when one
substitutes the expression:

e

for the variationdU (). For that reason, all of the conclusions thatimferred will
remain in full force, as long as one uses the egwe:

*

(8) DX (%—a)+ Z(y—~ b+ Z( zz Q]

in place of the expression (8) above.

The existence of a force function for the apphextes is not assumed in the treatise
by Clausius. “Uber einen auf die Warme anwendbaren mechanis&adz,”
(Sitzungsberichte der Niederrheinishcn GesellscimBonn, June 1870, and Comptes

() Lagrange, Mécanique analytiquePart two, Section 1V, arts. 10 and 11.
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rendu de I'Academie des Sciences Paris, T. LXX, 20 June 18T®)nahe treatise of
Ivan Villarceaux “Sur un nouveau théoreme de mécanique générale” (C. R. Bcag.
t. LXXV, no. 5, 29 July 1872). The relationship between ¢hwg treatises, which start
from purely-mechanical considerations and apply the reshds are found to the
mechanical theory of heaand the paper that was just cited, along with theegawvibrks
of Jacobi in regard to it in (Crelle’'s Journal, Bd. 17, pp. 97), &adlesungen Uber
Dynamik pp. 21, are discussed in the Bulletin des sciences maihaesmtet
astronomiques, which is edited 8y Darboux andJ. Houel, tome Ill, November 1872,
pp. 349. Another paper I§lausius belongs with them, namely “Uber die Beziehungen
zwischen den bei Centralbewegungen vorkommenden chasakthen Grosse,”
(Nachrichten v. d. K. G. d. Wiss. zu Goéttingen, 25 Ddoeml872, pp. 600).De
Gagsparis gave applications of the function that was just denbtefG to thetheory of
attraction in “Lettre sur un nouveau théoréme de mécanique, communjpréM. lvan
Villarceaux” (C. R. Acad. Sci. tone LXXV, no. 9, August72), along witls. Newcomb
“Note sur un théoréme de mécanique céleste” (C. R. Aaad.t@ne LXXV, no. 26, 23
December 1872).F. Lucas gave applications to ththeory of small oscillationsn
“Théorémes généraux sur I'équilibre et le mouvement geemes matérials” (C. R.
Acad. Sci., tome LXXV, no. 23, 2 December 1872), as waglla report byle Saint-
Venant and “Partage de la force vive, due a un mouvement vibratoimposé, en celles
qui seraient dues aux mouvement pendulaires simplesoehrones composants, de
diverses périodes et amplitudes. Partage du travail d0 swe m@uvement compose,
entre deux instants quelconques, en ceux qui seraient duscawements composants”
(C. R. Acad. Sci.ibid.)

The oft-cited article “Uber einen algebraisdchen TypusBislingungsgleichungen
eines bewegten Massensystems” contains applications dotypes of mechanical
problems, where one type is concerned wsitiall oscillations of a system of material
points while the other is concerned withe attraction of a material point to a fixed
center. | think that | will treat some further applicationd the function & to the
problems of theoretical physics on a later occasion.

The present study mainly has to do with the assumpt@anthe system of points
is not driven by any accelerating forces and is subjecntp one condition equation.
Accordingly, the force functiotJ will be equal to zero in the problem that was just
referred to, and thieconditions (4) will reduce to thene:

*

4) ®; = const.

As long aonly one mass pointis presentthat condition will mean that the mass-point
cannot leave thsurface®; = const., and that the functio®2will be equal to the product
of the massm with the square of the distance from the positian ¥, z;) to the position
(ag, by, ¢1). If one now imagines that the positioa (Y1, z1) on the surface; = const. is
given arbitrarily at a certain timeg along with the advance of the point on the surface
during the next time-elemedt, then the element of the path of the point in questibin

be associated with a certain normal section of tinfase and the poing{, b, c1) can be
determined as theenter of curvature for that normal sectiorAs a result of this, the
function 25 can be connected with the associasetius of curvaturep by the equation:
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(11) L =m &

When the equation (6) above corresponds to the simplenasien that was spoken of,
the expressionl; d®; that appears on the right-hand side will represiemtmoment of
the pressure that the motion of the point ererts upon the surface; = const. The

known relation between the value of the pressure andathes of curvaturg can then

be expressed as follows by means of the relation (11):

e SRR
T GEORE]

It will now be shown how one can determine a systémassociated point&d, be,
Ce) from a system od] points &, Ye, Z) by the demand that the first and second complete
differentials of the functiorG in question differ from the first and second complete
differentials, respectively, of the given functidq only by a finite factor. The system of
g points thus-defined will represent a generalization ef ¢bncept of the center of
curvature of a surface. There is then a completeogpab equations (2) above that
exists between the corresponding values of the fun@®and the valued; that enter
into equation (6), for which the functidhequals zero and the numbkis assumed to be
equal to unity. It will generalize the previously-cite@dhem that when a point that is
free of the influence of an accelerating force moersa given surface, the reciprocal
value of the radius of curvature is proportional togressure that acts upon the surface.

After | have established that fact, | will discuss piece that the associated concepts
of mechanics and geometry assume from the standpoinletus to the investigations
that were published in Borchardt’s Journal fur Mathem@itt. 70, pp. 71-102 and Bd.
72, pp. 1-56) with the title “Untersuchungen in Betreff demzgm homogenen
Functionen vonn Differentialen” and in ipid., Bd. 74, pp. 116-149) with the title
“Entwicklung einiger Eigenschaften der quadratischen Formeon n
Variationsrechnung, in welchem das Problem der Mechaniiaken ist.” Some parts of
the theory that have been separate up to now wilob@erted with each other by that
consideration and will make one aware of a new confionabf the fact that the
assumptions of mechanics and geometry that are, invabd are distinguished from
some other closely-related assumptions in a charstiteniay.

(12)

1.

When one juxtaposes the first complete differemdfahe functionG and that of the
function®; :

(13) dG= ) m [(X—a) dx + (Ve — k) dye + (Z — &) dz]
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0P 0P 0P
14 dd, = Lax +—2 dy +—21 dz |,
(14) 1 Ee [axe X dy Ye 37 %j

e e

and demands that the differentls should be equal to the differentd; , up to a finite
factor for given values of thegdvariablesxe , Ve, Z independently of the values of the
differentials dx, dy., dz, one can then determine the combinations:

Me(Xe—a), Me(Ye—h), Me(z-0)
for the 3y quantitiesae, be, Ce, Which must be equal to the partial differential qudsen

I, D, D,
ox, Oy, 0z,

respectively, up to a factor that coincides throughout. Bgna of the expression:

< 1o (od,) (0d,)
(19) &3 _EEKMJ {MJ {629} }

that state of affairs can be represented by the eggation

oD,

m(x-a)__0x

J26 @y’

oD,

(16) m(Y—h) __9Y
J26 @y’

oD,

m(z-¢)_ 0z

J26 @y

At the same time, one has the relation between iffexahtialsdG andd®d, that has the
prescribed behavior:

(17) dG _ do,

NEI)

We shall now define the second complete differentidishe functionG and the
function®; :
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(18) d?G=>"m [(X%—a) d X+ (Ve — b) d ?ye + (2 — &) d °z]
+y m(dX+ dyf + d2),

2 GCD

(19) d?e, = Z[ ST

e

0P
1 d2 + 1 d2
Ye 37 %j

e

6xe 6><é axea ye 6 ze

and then express the requirement that the diffialedt® G must be equal to the
differential d > ®;, up to a finite factorfor arbitrarily-varying values of the second
differentials d”xe, d?ye, d?z, and arbitrary, but fixed, values of the firstfdientials
dx , dy, dz . Equation (18) is then converted into ttearacteristic relation(7) by
dividing by df. Equations (16) have the consequences thatrgtecimponent ofl 2 G
and first component af @, , which include the second differentials, have disired
character and that the former of them has the gaméionship to the latter that the

expression/ 2G has to the expressiqyﬂ(l,l). For that reason, the equation:

d’G _ d’o,

(20) NEEN

must be true.

In order for our requirement to be fulfilled, & necessary and sufficient that the
second components df? G and the second componentf ®; , which are equal to
quadratic forms in the B differentials dx. , dy , dz , should likewise have that
relationship. The equation thus arises:

> m (dx + dy + d2)
J2G

(21)

azdbl 0°® 0°P
dx_ dx, + Lodx dy+---+ 1 dz d
_;}axeaxé % 0% oy % 0% 0z0 Z, ¢ ¢

€

The 3gq quantities a, b, ¢ will be determined completely by that equation, in
conjunction with equation§l6), for given values of the variables xy., z and the
differentials dx, dy, dz, so the system of valugs, b, ) that emerges will represent
a generalization of the center of curvature.

In the mechanical problem for which the force tioxt U vanishes, andnly one
condition equation (4 is given, the equation (6) above will becomeftilewing one:
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dZ d2 d2
(22) Zm{ dt§5>g+ dtg’eay; dtfeazej =h 0D, .

Therefore, the expressioh 0P, represgntshe sum of the moments of all pressuhes
are produced by the condition equatior).(40One can infer the following consequences
from that equation:

(23)

do, _, 4’0,

dt ’ dt?

dx dy, dz
dt = dt’ dt
those systems. One can employ the second one tesesprthe expressioh . When

one divides the second differentil® ®; that is written out explicitly in (19) by the

The choice of the differential quotie will be restricted by the first of

2 2 2
quantity dt %, the quantitiesoI } d Ze, d fe will contain the factorsﬂ, &
dt dt dt ox, 0y,

%cbl , while the corresponding quantities on the left-hand eidé€@2) will exhibit the
Z,
factorsme o , me & , M A . As soon as those expressions are replaced with the

expressions(;ch : %q)l : %q)l in (22), the components in question will coincide, and at
Ye 0%

the same time, the expression:

0P 0P 0P
od, = Lox, +—L0y.+—10
! Z[axe X ay Y™ 5z Zej

e e e

will be converted into the expression:

1|(00,) (90,) (90, | _
EEKMJ {MJ {629} } i

In that way, the determination of the quan#igywill follow from (19) and (22):

2 2 2
(24) (L 1) :Z[d X 00, , d*y, 00, d zeadblj_ do,

dt? ox, df dy, df daz dt
which one can also give the form:

2 2 2
(24) Al(l’l)zz6CDld_&d)g_zad)l%d)é_m_zadbld_zedzé
o 0X,0x, dt dt “zdx0dy dt dt o 02,0z, dt dt
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by another application of (19). A comparison of tlesutt with the one in (21) will then

produce the equation:
(25) -1 A @)
- 2 2 27"
I RERE
=\ dt dt dt

That includes equatio(il2) within it, and describes the connection between the function
\/ 2G and the function/, 4/ (1,1), the first of which represents a generalization of the

radius of curvature, while the second one represents a generalizatitve abhcept of
pressure.

It can be noted in passing that when one choosesnbadnG itself, instead of the
function ®4, in the variational problem that leads to equation (2 relevant system of
differential equations will belong to the category theds integrated completely in
Journal f. Math., Bd. 72, pp. 38. At the same time, it fwilow from what was done

there that the form:
> m(dX + dy + dZ),

which consists of @ = n positive squares, will go to a form in £ 1) differentials when

one variable is eliminated by using the equa€ion 1 / 20, in place of (4), and that form
will represent the square of the line element for thanifald of (h — 1) remaining

variables and with constant positive curvatare

2.

From the ideas that were presented earlier, the canaeptechanics and geometry
that were just spoken of can be extended as followsxlbé a system of variable

guantities, in which the symba] like b, ¢, ..., as well later on, runs through the numbers
1, 2, ...,n. Letf (dX) mean an essentially-positive form of degpem the differentials
dx, , in which the coefficients depend upon the variablesarbitrarily. Let the

2
determinant of the second derivativgg% be not equal to zero identically, and let
X, 00X
U and®q, &, ..., ®; be functions of the only variables. One now demands that the
variablesx, should be made to depend upon an independent varimbsich a way that

the first variation of the integral:

(26) j{f(%‘jw +)l1¢1+)l2¢2+~~-+)l,¢,}dt

will vanish for fixed initial and final values of the vabilesx, , while thel equations:
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(27) ®, = const.

must be fulfilled. That problem will be converted into thaiational problem for the
integral (5) when tha variablesx, go to the § coordinates, Ve, Z, and the forni (dx)

goes to the formi) m,(d¥+ dy+ dZ). The functionsU, ®;, ..., @, and the

multipliers to be determined, A», ..., A are denoted in the same way in both cases.

We shall next consider the integral (26) under themagtans that no conditions (27)
are present, and that the functldns equal to zero. The demand that was just expressed
will coincide with the other demand that the first afian of the integral:

(28) R= j«/ p f(dY

must be zero’). The integration values, that satisfy that requirement and are

determined by the conditions that they must satiséyequationg, = x,(0) and x, = x’ (0)
for a valuet =t , in which the addition of a prime suggests défgration with respect to
the variable and the constantg(0) and x (0) are given arbitrarily, will béunctions of

only the quantities 0) and the combinations ):
(29) X (0) (t-1) =y,

in this case. When the quantitieé0) are constant and the combinatiopsre variable,

the latter will represent aystem of normal variables for the form(dxX) ( ). The
associated value of the integRalwhen extended from the systeq(0) to the systerg, ,

will then be expressed by the equatidn (
(30) R =pf (u).

fo (u) emerges from the form(dx), when the relevant valueg0) are substituted for the
variablesx, , and the relevant valueg are substituted for the differentialg, . When
one introduces the variables into the formf (dx) that will yield the transformation
equation:

(31) f (dx) = ¢ (du).

The resulting form of degrgein the differentialglu, , ¢ (du) will be called anormal type
for the formf (dx).

() Journal f. Mathematik, Bd. 74, pp. 120,seq.
(") Journal f. Mathematik, Bd. 70, pp. &8,seq.
(") Journal f. Mathematik, Bd. 72, pp.¢t,seq.
(" Journal f. Mathematik, Bd. 74, pp. 126.
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When one introduces the normal variablesnto the functiondd, ®, ..., ®; will
convert the more general integral to be varied (26)timtantegral:

(26) j{¢(%‘j+u +;|lq>1+/12q>2+.--+/1|q>,}dt.

Under the aforementioned special assumption that the&licabesx. , Ye, Z should enter
in place of the variableg , the form:

1> m(dX + dyf+ d)

will appear in place off (dx), and we imagine that the coordinasgsbe, c. will enter in
place of the initial valueg, (0). Now, since the variational problem for the gntd (2)

will enter into the variational problem for the inta 28), and since the variational
problem for the integral (2) will be solved by the advarniceach mass-pointy along a
straight line with uniform velocity, and therefore by tequations:

Xe =ae + %, (0) (t — 1),
Ye =be + Y, (0) (t — ),
Z=C *+ 7(0)(t-10),

under the prevailing relationships, the normal variableswill be nothing but the
coordinate differences:
Xe ~ e, Ye — De, Ze — Ce.

For that reason, the normal tyge(dx) will be equal to the given form:

1> m(dX + dyf+ d)

identically, and the functiof, (u) will coincide with the function:
2G= ) m [(%—a)* + (e~ be)* + (Z— )] -

The variational problem for the integral (R@ill generally imply the equation:

d dg(u) dg(u
(32) Z{E g&‘)— g(%)}auu =AU+ A 0P+ ...+ D,

a

which must be satisfied independently of the valueb@Variationsdu, . We replace the
variations au, with the normal variables themselves,uespectively, and obtain the
equation:
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Vau e

d 9¢(u) _94(u)
(33) Za‘[dt ou, oy, } e Z

Everything now comes down to showing how the expressianhis found on the left-
hand side of this equation is connected with the functjofu). If one once more

introduce the differentialdy, in place of the differential quotientg in the normal type
@ (u’) then one will define the identity relation:

S D ]

Cl

0p(du) 4 0¢(du)
* dz odu, z 0duy, ®

which is valid for all systemdu, anddu, . Now, the complete differentidf, (u) can be
represented in the following way, in which the subson of the quantities, for the A,
is suggested by enclosing the expression in questiih square brackets){

(35) dfo () = Z{agg_iu)}dua |

a

The fact thaip (du) is a homogeneous function of degpeia the differentialslu, further
implies that:

J0¢(du
(36) pg @y =320 ay.

odu,

When one substitutesg for Au, in (34), that will yield the equation:

0g(du) ~ _ 0¢(du) 5 _94(dy) g2 B
(37) Za:d 3du u, d{za‘[ adu, oy, e dql}} d“fo (u) —p ¢ (du),

a

which reveals the desired connection completelys l#fg as the numbegr = 2, the
expression:

dp(du) . 0p(du)
Z{ adu " ooy dq‘}

will be equal to zero, from a basic property of dpadic forms. Therefore, under the
assumption that p 2, one will have the characteristic relation:

() Journal f. Mathematik, Bd. 72, pp. 8.
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0B _ o
(38) Za:d To U= 4T -2¢ @Y.

a

From now on, we will assume that this assumptionbdeen madeHence, equatiof33)
will take on the definitive form:

d’f(u) _, (du) _« @ [ (du 0D,
(39) dt? 2¢(dtj_;6uc[¢(dtj+u} aua e

when we apply38). The equation9) aboveis included in this equation as a special
case and it can be linked with considerations thatsanglar to the ones that were made
in regard to that equation.

3.

In the case where the functibhis equal to zero and one again sets the numbez,
the variational problem of the integral (26) wikdome the one that was presented in
(Journal f. Mathematik, Bd. 71, pp. 275). In agneat with the notations that are used
there, let:

(40) f(d)=4>a,,dx dx,
a,b
and further:
oA
(41) la,,, | =4, 3 =A.,-
a

a,b

The functionsys, y», ..., ¥i , which were set equal to constant in that artipkesently
correspond to the function®,;, ®,, ..., ®,. The multipliersis, Az, ..., A will be denoted
by the same signs. We shall ponder the assumfitaiionly onefunction ®; is present.
The vanishing of the first variation of the givenegral (26) will then yield the equation:

d af(x) _af(X)) , _
(42) Z(E > ox jé’xa M OD; .

In order to determine the expressihrby means of the equations:

do, 0P, dx _
dt _Zax dt
2(D 0P, d°x 0°®, dx dx _
_Zax dt ;MM dt dt

(43)
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which will be true from now on, one can introduce expogssin place of the variations

2
X, in (42) such that the factor ngt% on the left-hand side of that equation coincides

2
with %cbl , which is the corresponding factor in the expressiong}&%. Since the

X.
coefficienta,, of the form 2 (dxX) appears on the left-hand side of (42) as a factor of the
2
d é‘ X, , the variationdx, must be replaced with the expression:
A, [
44
(44) e o
. . L . 0P
for the given purpose. With that substitution, the cetepvariationo ®; = z 3 L Ox,
. 0%
will go to the expression:
A, 00D, 0D,
45 =(1,1
(45) 2 S oo D

and that will imply the following representation féy :

d of(x) of(X 0D, d°O,
(46) AL D= Z[dt agg)_ a;)jzpi ox  dt

which coincides with the representation that was givethe cited reference. At this
point, it should be emphasized that when an arbitrasgesy of new independent
variables is introduced in place of the system of emx, in the relevant variational

problem, the expression (1, 1), as well as the expgeslsiomvill go to corresponding
expressions that are constructed from the new elerG@nt3 herefore, if the previously-
defined system aformal variables pis introduced and one appeals to the notations:

#(du) =33 p, dy dy,
ab

on _

apaYh ab?

(47)

| pa,h |: I_I

for thenormal typeg (du), then (45) and (46) will imply the new equations:

() When the functiorb;, which is to be set to a constant, is replaced witiction of that function,
which is to be set to a constant, the prodzqgf(l,l), which represents the generalization of the concept of
pressure, will still remain invariant.
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P, ob, 9
4 a,t 1 1 - 1’ 1 ,
(48) QZ;‘ M du, Ju, ( )
_x[ d ag(u) _ag(U) P.o®, d’®,
(49) A (L, 1)_;[dt ol ou jzéln oy  dt

The associated system of quantiteg0) has a decisive meaning for the system of
normal variablesi, . From the definition that is given in (29), alltbé normal variables
u, will vanish whenever the system of valuessatisfies the equations = x, (0).
Moreover, a manifold of first order that starts frore g#ystem of valueg, = 0 and for
which the ratios of the variablag to each other remain unchanged will satisfy the

variational problem of the integral (28). The fact thaiger the assumptions of artidle
this first-order manifold represents nothing but the advafi@ach mass-pointe from

the position &, be, Cs) along a straight line with uniform velocity has beeentioned
numerous times. Just as the system of vaddeb., c. was determined before, we will
now determine the system of valugs (0) by certain requirements, and indeed the

explicit expression of the variables in terms of the variables, and the fixed values
x,(0) will not be required for that.
The first of those requirements points to the faet the differentiatif, (u) must be

equal to the differentiad @, for arbitrary values of the differentiathi, , up to a finite

0¢(ou)

factor. Therefore, due to the relation (35), the qu'est{ 3 } must have just the
u

a

same relationship to the corresponding quanta%igé. Since, from (47), one has:
u

a

0¢(du
990u) _ Po1 AU+ P2 Az + ...+, Ay,
odu,
. . . . P od,
the quantitiesqu,] = u, must have same relationship to the combma@n; 0 and
¢ U,

the expression/[2¢(du)] , which is equal to the expressiq,h_z f, () (), must have the
some relationship to the expressigrl,1), which is defined by equation (48). On those
grounds, the equations:

Z&ﬂ
+ M ou,

u,_
J2hw)  J@D

(50)

and the equation:

() Journal f. Mathematik, Bd. 72, pp. 7, formula (13).
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dfy(v) _ do,
J2fw) @Y

(51)

must be true. The second requirement, under which, tomaalifferentialsd * u, must

vary independently, but the first differentials are regadrae chosen to be fixed, will be
represented by the equation:

d f(U) za¢(du) u, dzq)

4/2f u) - Jay’

The same equation will be satisfied by the secaffdrdntials, since equation (51) is
true. The characteristic relatio38), which was appealed to for the intended conversion
of (33) into (39), will also effect the intended conversion(s2) into the equation:

(52)

6¢(du) d0¢(dy
(53) Za:d ddu, % Za: ay, 4+2p(dy _ d*o,

V 2f, ) Jay

An application of (50) will lead to the represeruat

(54) _2¢(du) _ Z[d a¢(0|U)_6¢(du)j 0 I'I 6u , 4,

J2fo 4 ady, oy, Jay @y

Now, since the right-hand side of this equationemvidivided by dt coincides with the
right-hand side 0{49), up to sign, that will yield the result that:

(55) -1 _AJ@D)
J2f,u)  2pW)

which includes equatiof25) as a special case.

4.

Then quantitiesx, (0) that belong to the system of normal variabdes, determined
indirectly by equation (51), which represents aeaysof ff — 1) independent equation,
due to the independence of the differentéilsand equation (55) that we just obtained.

In order to get a direction determination, we tour attention on the aforementioned
first-order manifold that solved the variationabblem for the integral (28) and extended
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from the system of valueg, = 0 to the given system of values that satisfies the
equationd; = const. When that first-order manifold is referredhe variables, , it will
extend from the system of values (0) to the system of valuesg that satisfies the
equations®; = const. and corresponds to the system of valiles Sincep = 2, the
associated values of the integRain terms of normal variablas, will be expressed by
the equation:

(56) R=.21,(u).

When the variables take on the incremebis as one advances along the first-order

manifold that was spoken of, the expressi diy (W will admit the following
NEAD

representation in terms of the variabte§):

of (DX)
df (u) _ Z DX, d

J2f,u)  J2f(Dx)

(57)

The combination (1, 1) is expressed in terms ofHr@blesx, by equation (45) We can
therefore replacé51) with the equation:

of (Dx)
> dx,
(58) = dDx, _ do,

J2fDx)  J@D

The ratios of the differentiaBx, will be determined by them,; i.ethe final element of

the indicated first-order manifoldill be determined in such a way that the finahetat
Dx, is normal to the manifold of ordén — 1) ®; = const.when one recalls the form

2f(Dx), which is discussed in (Journal f. Math., Bd. @@, 144).
The form 26 (u”) in equation (55) can also be replaced by the Bfr{x") by means
of (31), and will represent a combination in thetsyn of values, anddx, / dt by means

of equations (45) and (46).hat will yield the equation:

(59) 240y
R 2f(X)

which will imply the value of the integral R in thgstem of valueg anddx, / dt .

() Journal f. Mathematik, Bd. 74, pp. 128.
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Equations (58) and (59) then determine the system of va]{é% by the conditions

that the first-order manifold that starts from it andkes the first variation of the integral
(28) vanish will emerge from a given system of valgethat belongs to the manifold of
order 1 — 1), while the final elemeri2x, will be normal to that manifold of orden £ 1)
relative to the form2(Dx), and that the associated integRahust assume the prescribed
value. Conversely, if one imagines that the first-ordanifold that is spoken of starts
from the system of values then its evolution will be determined completely byttha
system and the elemeimlx, , and the prescribed value of the integralultimately
determine the system of values (0) in question ). The possibility of that
determination assumed in that. One easily recognizé®dguations (58) and (59) have
the property that when a new system of independent variatdeistroduced in place of
the variablex, and also when the functioh; that is to be set to a constant is replaced
with a function of that function, those equations witl to equations that are formed
analogously from the new element$he given determination is therefore completely
independent of the choice of the form of the funsbion As soon as only one mass-point
is assumed in the considerations of article 1, the atedtfirst-order manifold will be the
straight line that starts from the poin,(y1, z1) and points normally to the surfadg =
const., and which cuts out the length of the radiusuofature that is determined from
the point &1, yi1, z1) to the center of curvature( by, c1).

When one regards the quantibedo be fixed and the quantitieg, / dt to be variable

and, from (43), restricted by only the equation:

do, _
dt

and when one raises the questionvbht system of values ddt for the first differential

in the expression that is defined(B9) will makel /R vanish one will have expressed
maximum-minimum problemwhich emerges fronthe general maximum-minimum
problemthat is presented in (Journal f. Math., Bd. 71, pp. 277) sulissed under the
assumption that= 1. The results that were published in that referémcthat problem
are therefore applicable to the present problem witfurtber discussion. That sheds
light upon the fact that the indicated problem will b@eotheproblem of largest and
smallest radii of curvaturen the aforementioned simplest case of article 1.

When one compares the more general results that wsrdound with the more
specialized ones that were presented earlier, it nmstge that equations (39) and (52)
contain one of the expressions:

oo )
> audt u and Za¢(du)u

a
— du

a a

() Journal f. Mathematik, Bd. 74, pp. 120 seq.
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respectively, which do not enter into the correspondaugagons (9) and (20). As was
emphasizedthe form with constant coefficienisy m,(d¥ + dy + dZ) appears in the

latter equations in place of the forfm(dx), so thenormal variables ywill go to the

differencegxe —ae), (Ye —be), (Z —Ce), the normal typep (du) will coincide with the form
1> m(dX + dy + d2) itself, andthe function § (u) will becomethe function G.Under

those circumstances, thermal typeg (du) will be a form with constant coefficientnd
whenever ¢ (du) becomes a form with constant coefficients, thepression

0¢(du . . L :
Z#ua must obviously vanish. However, it is also prowedJournal f. Math.,
a ua

Bd. 70, pp. 92t seq). thatwhen the form {dx) can be transformed into a form with
constant coefficients, the normal type(du) will represent such a form, and that the
6¢(du)

ou

a

expressionz u, can vanish only when the fornfdx) can be transformed into a

form with constant coefficientsNamely, the left-hand side of the equation thasw

denoted by (59) ondc. cit, pp. 94) will go to the expressioﬁwua when it is
. u

a

multiplied by ¢ — ). The necessary and sufficient condition for the slaing of the

: 0¢(du . .
expressmnz#ua then consists of saying that the forrfdX) can be transformed
. u

a

into a form with constant coefficien(s). Since it was initially demanded that the
quadratic form f(dx) must be essentially-positive and have a non-vamgstieterminant,
the normal typep (du) must have the same property, and when the fofux)fcan be
transformed into a form with constant coefficierits&at normal type must necessarily
equal an aggregate of squares of n differential®n those grounds, the assumption that
are actually true in mechanics, which were foundedrticle 1, represent the most
general situation under which an essentially-pesitjuadratic fornd (dx) is compatible
¢(du) !

with the vanishing of the expression g

o
a

When one lets the variableg coincide with the combinationg/ m, (Xe — &),
J M (Ve — be), /M, (2 — co), the form1> m (dX + oy + dZ) will coincide with the
form %dej . It was already set down in (Journal f. Math., Bil, pp. 284) how, under
the assumption thét(dx) = %dej , the theory of the function,/ (1, 1) is very closely

connected with theextension of the theory of curvatutbat Kronecker gave
(Monatscbericht der Berliner Akademie, August 1869)n fact, the quantity that

() A direct criterionfor the formf (dx) to have that character is presented and proved in Jdurnal
Math., Bd. 70, pp. 94t seq.
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Kronecker called p coincides with the one that was caIIQ’dZG or R above, and the

extension that we gave in article 1 for the concemeoter of curvature differs from the
one thatk ronecker developed only by its connection with the mechanical sgmtation
and the choice of the steps that would lead to that elgectMoreover, thenaximum-
minimum problenthat was suggested corresponds precisely to the on& tbaecker
treated in the aforementioned place. However, inrdodexplainwhy admission to those
investigations is even possible when one starts in mechanics and ge@meétwyhy the
results of mechanics that are contained in equati(@sand (39) and the results of
geometry that are based upon equatiq@9) and (52) can depend upon the same
algorithms | would like to recall something th&auss said in the paper “Beitrage zur
Theorie der algebraischen Gleichungen” in regard to thener by which one proves
fundamental theorems about algebraic equations thatthedess takes on a much
broader sense. He said:

“However, at its basis, the actual content of ejuanentation belongs
to a higher realm in which one studies general, abstractitjes that are
independent of spatial ones, and in which one addresses those
combinations of quantities that are connected with comyinwhich is a
realm that has been explored only slightly at thisetiand in which one
also cannot move without having a language that is boddreen spatial
structures.”

Bonn, 16 February 1873.



