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 Since mechanics considers bodies in a state of motion, it must take advantage of 
geometry in order to establish its foundations and must always exploit it in order to 
achieve its goals. 
 However, it was first by the ongoing construction of mechanics and geometry that 
attention was directed to questions whose exploration both sciences have an equal interest 
in, and which depend upon precisely the same algorithms when they are expressed 
analytically.  The development of a concept that touches upon the interface of mechanics 
and geometry can be found in the treatise “Über einen algebraischen Typus der 
Bedingungsgleichungen eines bewegten Massensystems” (Borchardt’s Journal for 
Mathematics, vol. 66, pp. 363).  One imagines a system of material points whose masses 
might be called m1 , m2 , …, mq , respectively.  The position of each individual mass me 
will be referred to the rectangular coordinates xe , ye , ze .  For a certain arrangement of the 
system, the coordinates of the individual points will take on the well-defined values xe = 
ae , ye = be , ze = ce .  The concept in question can then be defined to be the sum over all q 
points of the products of those masses me with the squares of the distance from the 
position (xe , ye , ze) to the position (ae , be , ce) : 
 
(1)    2G = 2 2 2[( ) ( ) ( ) ]e e e e e e e

e

m x a y b z c− + − + −∑ . 

 
 The assumption that the system of material points me moves in space free from the 
influence of accelerating forces and with no restricting conditions leads to a new 
definition of that concept.  The uniform advance of each point along a straight line will 
necessarily follow from the requirement that the first variation of the associated integral 
of least action: 
 

(2)     R = 2 2 2( )e e e e
e

m dx dy dz+ +∑∫ , 

 
must vanish at the initial and final positions of the individual points.  Now when the 
coordinates (ae , be , ce) determine the initial position of the mass me and the coordinates 
(xe , ye , ze) determine the final position that will easily imply the equation: 
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(3)      R2 = 2G. 
 
The function 2G is then equal to the square of the associated integral of least action for a 
motion of the system from the point me from the position (ae , be , ce) to the position (xe , ye, 
ze), respectively.  On the other hand, the representation of the integral of least action by 

the equation R = 2G  coincides with the representation that Hamilton introduced as the 

characteristic function of the mechanical problem in question. 
 In order to derive the relationship of the function 2G to a more general motion of the 
system of points me , it will be assumed that the system is under the influence of 
accelerating forces for which there exists a force function U and that it is subject to a 
series of condition equations: 
 
(4)    Φ1 = const., Φ2 = const., …, Φl = const., 
 
in which the l functions contain only the coordinates of the q individual points and not 
time t.  In that case, the principle that goes back to Hamilton prescribes that the first 
variation of the integral: 
 

(5)   
2 2 2

1
1 12

e e e
e l l

e

dx dy dz
m U dt

dt dt dt
λ λ

        + + + + Φ + + Φ       
         

∑∫ ⋯  

 
must be made equal to zero, while one draws upon the l equations (4) for fixed initial and 
final values of the 3q coordinates.  The multipliers λ1, …, λl to be determined prove to be 
pure functions of time t.  Due to the rules of the calculus of variations, that problem will 
produce the equation: 
 

(6)  
2 2 2

2 2 2
e e e

e e e e
e

d x d y d z
m x y z

dt dt dt
δ δ δ

 
+ + 

 
∑  = δU + λ1 δ Φ1 + λ2 δ Φ2 + … λl δ Φl , 

 
which must be fulfilled independently of the 3q variations δ xε , δ yε , δ zε , and in that 
way, conclude the system of differential equations of the mechanical problem in its own 
right.  The variations δ xε , δ yε , δ zε  in equation (6) can be replaced with final differences 
xε  − aε , yε  − bε , zε  − cε , respectively (*).  The left-hand side will then go to an 
expression that is connected with the function G by the characteristic relation: 
 

(7)   
2 2 2

2 2 2( ) ( ) ( )e e e
e e e e e e e

e

d x d y d z
m x a y b z c

dt dt dt

 
− + − + − 

 
∑  

= 
2 2 22

2
e e e

e
e

dx dy dzd G
m

dt dt dt dt

      − + +      
       

∑ , 

 

                                                
 (*) Jacobi, Vorlesungen über Dynamik, 4th Lecture, pp. 21.  
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and on the right-hand side, the variation δU will be converted into the expression: 
 

(8)    ( ) ( ) ( )e e e e e e e
e e e e

U U U
m x a y b z c

x y z

 ∂ ∂ ∂− + − + − ∂ ∂ ∂ 
∑ , 

 
while the variation δ Φγ is converted into an expression that is formed analogously.  That 
implies the equation: 
 

(9)   
2 2 22

2
e e e

e
e

dx dy dzd G
m

dt dt dt dt

      − + +      
       

∑  

 

    = ( ) ( ) ( )e e e e e e e
e e e e

U U U
m x a y b z c

x y z

 ∂ ∂ ∂− + − + − ∂ ∂ ∂ 
∑  

 

    + ( ) ( ) ( )e e e e e e
e e e e

x a y b z c
x y z

γ γ γ
γ

γ
λ

∂Φ ∂Φ ∂Φ 
− + − + − ∂ ∂ ∂ 

∑∑ . 

 
 Under the assumptions that Φ1 , Φ2 , …, Φl are homogeneous functions of the 
combinations xe – ae , ye – be , ze – ce and that the constant values that are prescribed in 
(4) are all zero, the double sum on the right-hand side of the last equation will vanish, 
and that equation will be identical to equation (6) in the cited treatise. 
 If one would like to draw upon those cases of the motion of a system of material 
points for which the condition equations (4) are true, but the components along the x, y, z 
axes of the forces Xe , Ye , Ze that act upon the individual mass points me cannot be derived 
from a force function, then it is known that the differential equations of the problem can 
be summarized in one equation that will emerge from equation (6) above when one 
substitutes the expression: 
 
(10)    ( )e e e e e e

e

X x Z y Z zδ δ δ+ +∑  

 
for the variation δU (*).  For that reason, all of the conclusions that we inferred will 
remain in full force, as long as one uses the expression: 
 
(8*)   [ ( ) ( ) ( )]e e e e e e e e e

e

X x a Z y b Z z c− + − + −∑  

 
in place of the expression (8) above. 
 The existence of a force function for the applied forces is not assumed in the treatise 
by Clausius: “Über einen auf die Wärme anwendbaren mechanische Satz,” 
(Sitzungsberichte der Niederrheinishcn Gesellschaft in Bonn, June 1870, and Comptes 

                                                
 (*) Lagrange, Mécanique analytique, Part two, Section IV, arts. 10 and 11.  
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rendu de l’Academie des Sciences Paris, T. LXX, 20 June 1870), and in the treatise of 
Ivan Villarceaux “Sur un nouveau théorème de mécanique générale” (C. R. Acad. Sci., 
t. LXXV, no. 5, 29 July 1872).  The relationship between those two treatises, which start 
from purely-mechanical considerations and apply the results that are found to the 
mechanical theory of heat, and the paper that was just cited, along with the earlier works 
of Jacobi in regard to it in (Crelle’s Journal, Bd. 17, pp. 97), and Vorlesungen über 
Dynamik, pp. 21, are discussed in the Bulletin des sciences mathématiques et 
astronomiques, which is edited by G. Darboux and J. Houel, tome III, November 1872, 
pp. 349.  Another paper by Clausius belongs with them, namely “Über die Beziehungen 
zwischen den bei Centralbewegungen vorkommenden charakteristischen Grösse,” 
(Nachrichten v. d. K. G. d. Wiss. zu Göttingen, 25 December 1872, pp. 600).  De 
Gasparis gave applications of the function that was just denoted by 2G to the theory of 
attraction in “Lettre sur un nouveau théorème de mécanique, communiquée par M. Ivan 
Villarceaux” (C. R. Acad. Sci. tone LXXV, no. 9, August 1872), along with S. Newcomb 
“Note sur un théorème de mécanique céleste” (C. R. Acad. Sci., tome LXXV, no. 26, 23 
December 1872).  F. Lucas gave applications to the theory of small oscillations in 
“Théorèmes généraux sur l’équilibre et le mouvement des systèmes matérials” (C. R. 
Acad. Sci., tome LXXV, no. 23, 2 December 1872), as well as a report by de Saint-
Venant and “Partage de la force vive, due à un mouvement vibratoire composé, en celles 
qui seraient dues aux mouvement pendulaires simples et isochrones composants, de 
diverses périodes et amplitudes.  Partage du travail dû su même mouvement composé, 
entre deux instants quelconques, en ceux qui seraient dus aux mouvements composants” 
(C. R. Acad. Sci., ibid.) 
 The oft-cited article “Über einen algebraisdchen Typus der Bedingungsgleichungen 
eines bewegten Massensystems” contains applications to two types of mechanical 
problems, where one type is concerned with small oscillations of a system of material 
points, while the other is concerned with the attraction of a material point to a fixed 
center.  I think that I will treat some further applications of the function 2G to the 
problems of theoretical physics on a later occasion. 
 The present study mainly has to do with the assumption that the system of points me 
is not driven by any accelerating forces and is subject to only one condition equation.  
Accordingly, the force function U will be equal to zero in the problem that was just 
referred to, and the l conditions (4) will reduce to the one: 
 
(4*)     Φ1 = const. 
 
As long as only one mass point m1 is present, that condition will mean that the mass-point 
cannot leave the surface Φ1 = const., and that the function 2G will be equal to the product 
of the mass m1 with the square of the distance from the position (x1 , y1 , z1) to the position 
(a1, b1, c1).  If one now imagines that the position (x1 , y1 , z1) on the surface Φ1 = const. is 
given arbitrarily at a certain time t, along with the advance of the point on the surface 
during the next time-element dt, then the element of the path of the point in question will 
be associated with a certain normal section of the surface and the point (a1, b1, c1) can be 
determined as the center of curvature for that normal section.  As a result of this, the 
function 2G can be connected with the associated radius of curvature ρ by the equation: 
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(11)     2G = m1 ρ2. 
 
When the equation (6) above corresponds to the simple assumption that was spoken of, 
the expression λ1 δ Φ1 that appears on the right-hand side will represent the moment of 
the pressure that the motion of the point m1 exerts upon the surface Φ1 = const.  The 
known relation between the value of the pressure and the radius of curvature ρ can then 
be expressed as follows by means of the relation (11): 
 

(12)    
1

2G

−
= 

2 2 2

1 1 1
1

1 1 1

2 2 2
3 1 1 1
1

x y z

dx dy dz
m

dt dt dt

λ      ∂Φ ∂Φ ∂Φ+ +     ∂ ∂ ∂     

      + +      
       

. 

 
 It will now be shown how one can determine a system of q associated points (ae , be , 
ce) from a system of q points (xe, ye, ze) by the demand that the first and second complete 
differentials of the function G in question differ from the first and second complete 
differentials, respectively, of the given function Φ1 only by a finite factor.  The system of 
q points thus-defined will represent a generalization of the concept of the center of 
curvature of a surface.  There is then a complete analogy to equations (2) above that 
exists between the corresponding values of the function 2G and the values λ1 that enter 
into equation (6), for which the function U equals zero and the number λ is assumed to be 
equal to unity.  It will generalize the previously-cited theorem that when a point that is 
free of the influence of an accelerating force moves on a given surface, the reciprocal 
value of the radius of curvature is proportional to the pressure that acts upon the surface. 
 After I have established that fact, I will discuss the place that the associated concepts 
of mechanics and geometry assume from the standpoint that leads to the investigations 
that were published in Borchardt’s Journal für Mathematik (Bd. 70, pp. 71-102 and Bd. 
72, pp. 1-56) with the title “Untersuchungen in Betreff der ganzen homogenen 
Functionen von n Differentialen” and in (ibid., Bd. 74, pp. 116-149) with the title 
“Entwicklung einiger Eigenschaften der quadratischen Formen von n 
Variationsrechnung, in welchem das Problem der Mechanik enthalten ist.”  Some parts of 
the theory that have been separate up to now will be connected with each other by that 
consideration and will make one aware of a new confirmation of the fact that the 
assumptions of mechanics and geometry that are, in fact, valid are distinguished from 
some other closely-related assumptions in a characteristic way. 
 
 

1. 
 

 When one juxtaposes the first complete differential of the function G and that of the 
function Φ1 : 
 
(13)   dG = e

e

m∑ [(xe – ae) dxe + (ye – be) dye + (ze – ce) dze] 
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(14)    dΦ1 = 1 1 1
e e e

e e e e

dx dy dz
x y z

 ∂Φ ∂Φ ∂Φ+ + ∂ ∂ ∂ 
∑ , 

 
and demands that the differential dG should be equal to the differential dΦ1 , up to a finite 
factor for given values of the 3q variables xe , ye , ze independently of the values of the 
differentials dxe , dye , dze , one can then determine the combinations: 
 

me (xe – ae), me (ye – be), me (ze – ce) 
 
for the 3q quantities ae , be , ce , which must be equal to the partial differential quotients: 
 

1

ex

∂Φ
∂

, 1

ey

∂Φ
∂

, 1

ez

∂Φ
∂

, 

 
respectively, up to a factor that coincides throughout.  By means of the expression: 
 

(15)   (1, 1) = 
2 2 2

1 1 11

e e e e em x y z

      ∂Φ ∂Φ ∂Φ
 + +     ∂ ∂ ∂       

∑ , 

 
that state of affairs can be represented by the equations: 
 

(16)    

1

1

1

( )
,

2 (1,1)

( )
,

2 (1,1)

( )
.

2 (1,1)

e e e e

e e e e

e e e e

m x a x

G

m y b y

G

m z c z

G

∂Φ
 − ∂
 =

 ∂Φ
 − ∂=

 ∂Φ


− ∂ =



 

 
At the same time, one has the relation between the differentials dG and dΦ1 that has the 
prescribed behavior: 

(17)     
2

dG

G
= 1

(1,1)

dΦ
. 

 
 We shall now define the second complete differentials of the function G and the 
function Φ1 : 
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(18)  d 2 G = e
e

m∑ [(xe – ae) d 2xe + (ye – be) d 2ye + (ze – ce) d 2ze]  

 + 2 2 2( )e e e e
e

m dx dy dz+ +∑ , 

 

(19) d 2 Φ1 = 2 2 21 1 1
e e e

e e e e

d x d y d z
x y z

 ∂Φ ∂Φ ∂Φ+ + ∂ ∂ ∂ 
∑  

 

  + 
2 2 2

1 1 1

, , ,
e e e e e e

e e e e e ee e e e e e

dx dx dx dy dz dz
x x x y z z

′ ′ ′
′ ′ ′′ ′ ′

∂ Φ ∂ Φ ∂ Φ+ + +
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑⋯ , 

 
and then express the requirement that the differential d 2 G must be equal to the 
differential d 2 Φ1, up to a finite factor, for arbitrarily-varying values of the second 
differentials d 2 xe, d 2 ye , d 2 ze , and arbitrary, but fixed, values of the first differentials 
dxe , dye , dze .  Equation (18) is then converted into the characteristic relation (7) by 
dividing by dt2.  Equations (16) have the consequences that the first component of d 2 G 
and first component of d 2 Φ1 , which include the second differentials, have the desired 
character and that the former of them has the same relationship to the latter that the 

expression 2G  has to the expression (1,1) .  For that reason, the equation: 
 

(20)    
2

2

d G

G
= 

2
1

(1,1)

d Φ
 

must be true. 
 In order for our requirement to be fulfilled, it is necessary and sufficient that the 
second components of d 2 G and the second component of d 2 Φ1 , which are equal to 
quadratic forms in the 3q differentials dxe , dye , dze , should likewise have that 
relationship.  The equation thus arises: 
 

2 2 2( )

2

e e e e
e

m dx dy dz

G

+ +∑
 

(21) 

= 

2 2 2
1 1 1

,

(1,1)

e e e e e e
e e e e e e e e

dx dx dx dy dz dz
x x x y z z′ ′ ′

′ ′ ′ ′

∂ Φ ∂ Φ ∂ Φ+ + +
∂ ∂ ∂ ∂ ∂ ∂∑ ⋯

. 

 
 The 3q quantities ae , be , ce will be determined completely by that equation, in 
conjunction with equations (16), for given values of the variables xe , ye , ze and the 
differentials dxe , dye , dze , so the system of values (ae , be , ce) that emerges will represent 
a generalization of the center of curvature. 
 In the mechanical problem for which the force function U vanishes, and only one 
condition equation (4*) is given, the equation (6) above will become the following one: 
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(22)   
2 2 2

2 2 2
e e e

e e e e
e

d x d y d z
m x y z

dt dt dt
δ δ δ

 
+ + 

 
∑  = λ1 δ Φ1 . 

 
Therefore, the expression λ1 δ Φ1 represents the sum of the moments of all pressures that 
are produced by the condition equation (4*).  One can infer the following consequences 
from that equation: 

(23)    1d

dt

Φ
 = 0, 

2
1

2

d

dt

Φ
= 0 . 

 

The choice of the differential quotients e
dx

dt
, edy

dt
, edz

dt
 will be restricted by the first of 

those systems.  One can employ the second one to represent the expression λ1 .  When 
one divides the second differential d 2 Φ1 that is written out explicitly in (19) by the 

quantity dt 2, the quantities 
2

2
ed x

dt
, 

2

2
ed y

dt
, 

2

2
ed z

dt
 will contain the factors 1

ex

∂Φ
∂

, 1

ey

∂Φ
∂

, 

1

ez

∂Φ
∂

, while the corresponding quantities on the left-hand side of (22) will exhibit the 

factors me δxe , me δye , me δze .  As soon as those expressions are replaced with the 

expressions 1

ex

∂Φ
∂

, 1

ey

∂Φ
∂

, 1

ez

∂Φ
∂

 in (22), the components in question will coincide, and at 

the same time, the expression: 
 

δ Φ1 = 1 1 1
e e e

e e e e

x y z
x y z

δ δ δ
 ∂Φ ∂Φ ∂Φ+ + ∂ ∂ ∂ 

∑  

 
will be converted into the expression: 
 

2 2 2

1 1 11

e e e e em x y z

      ∂Φ ∂Φ ∂Φ
 + +     ∂ ∂ ∂       

∑  = (1, 1) . 

 
In that way, the determination of the quantity λ1 will follow from (19) and (22): 
 

(24)  λ1 (1, 1) =
2 2 2 2

1 1 1 1
2 2 2 2
e e e

e e e

d x d y d z d

dt x dt y dt z dt

 ∂Φ ∂Φ ∂Φ Φ+ + − ∂ ∂ ∂ 
∑ , 

 
which one can also give the form: 
 

(24*)      λ1 (1, 1) = 
2 2

1 1

, ,

e e e e

e e e ee e e e

dx dx dx dy

x x dt dt x y dt dt
′ ′

′ ′′ ′

∂ Φ ∂ Φ−
∂ ∂ ∂ ∂∑ ∑ − … − 

2
1

,

e e

e e e e

dz dz

z z dt dt
′

′ ′

∂ Φ
∂ ∂∑  
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by another application of (19).  A comparison of that result with the one in (21) will then 
produce the equation: 

(25)   
1

2G

−
= 1

2 2 2

(1,1)

e e e

e

dx dy dz

dt dt dt

λ
      + +      
       

∑
. 

 
That includes equation (12) within it, and describes the connection between the function 

2G and the function 1 (1,1)λ , the first of which represents a generalization of the 

radius of curvature, while the second one represents a generalization of the concept of 
pressure. 
 It can be noted in passing that when one chooses the function G itself, instead of the 
function Φ1, in the variational problem that leads to equation (22), the relevant system of 
differential equations will belong to the category that was integrated completely in 
Journal f. Math., Bd. 72, pp. 38.  At the same time, it will follow from what was done 
there that the form: 

2 2 2( )e e e em dx dy dz+ +∑ , 

 
which consists of 3q = n positive squares, will go to a form in (n – 1) differentials when 
one variable is eliminated by using the equation G = 1 / 2α, in place of (4*), and that form 
will represent the square of the line element for the manifold of (n – 1) remaining 
variables and with constant positive curvature α. 
 
 

2. 
 

 From the ideas that were presented earlier, the concepts in mechanics and geometry 
that were just spoken of can be extended as follows: Let xa be a system of n variable 

quantities, in which the symbol a, like b, c, …, as well later on, runs through the numbers 

1, 2, …, n.  Let f (dx) mean an essentially-positive form of degree p in the differentials 
dxa , in which the coefficients depend upon the variables xa arbitrarily.  Let the 

determinant of the second derivatives 
2 ( )f dx

dx dx

∂
∂ ∂a b

 be not equal to zero identically, and let 

U and Φ1, Φ2, …, Φl be functions of the only variables xa .  One now demands that the 

variables xa should be made to depend upon an independent variable t in such a way that 

the first variation of the integral: 
 

(26)   1 1 2 2 l l

dx
f U dt

dt
λ λ λ  + + Φ + Φ + + Φ  

  
∫ ⋯  

 
will vanish for fixed initial and final values of the variables xa , while the l equations: 
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(27)     Φα = const. 
 
must be fulfilled.  That problem will be converted into the variational problem for the 
integral (5) when the n variables xa go to the 3q coordinates xe , ye , ze , and the form f (dx) 

goes to the form 2 2 21
2 ( )e e e em dx dy dz+ +∑ .  The functions U, Φ1, …, Φl, and the 

multipliers to be determined λ1 , λ2 , …, λl are denoted in the same way in both cases. 
 We shall next consider the integral (26) under the assumptions that no conditions (27) 
are present, and that the function U is equal to zero.  The demand that was just expressed 
will coincide with the other demand that the first variation of the integral: 
 

(28)     R = ( )p f dx∫  

 
must be zero (*).  The integration values xa that satisfy that requirement and are 

determined by the conditions that they must satisfy the equations xa = xa(0) and x′
a
= (0)x′

a
 

for a value t = t0 , in which the addition of a prime suggests differentiation with respect to 
the variable t and the constants xa(0) and (0)x′

a
 are given arbitrarily, will be functions of 

only the quantities xa(0) and the combinations (** ): 

 
(29)     (0)x′

a
(t – t0) = ua  

 
in this case.  When the quantities xa(0) are constant and the combinations ua are variable, 

the latter will represent a system of normal variables for the form f (dx) (*** ).  The 
associated value of the integral R, when extended from the system xa(0) to the system xa , 
will then be expressed by the equation (†): 
 
(30)     Rp = p f0 (u). 
 
f0 (u) emerges from the form f (dx), when the relevant values xa(0) are substituted for the 

variables xa , and the relevant values ub are substituted for the differentials dxb .  When 

one introduces the variables ub into the form f (dx) that will yield the transformation 

equation: 
 
(31)     f (dx) = ϕ (du). 
 
The resulting form of degree p in the differentials dua , ϕ (du) will be called a normal type 

for the form f (dx). 

                                                
 (*) Journal f. Mathematik, Bd. 74, pp. 120, et seq.  
 (** ) Journal f. Mathematik, Bd. 70, pp. 86, et seq. 
 (*** ) Journal f. Mathematik, Bd. 72, pp. 1, et seq. 
 (†) Journal f. Mathematik, Bd. 74, pp. 126. 
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 When one introduces the normal variables ua into the functions U, Φ1, …, Φl will 

convert the more general integral to be varied (26) into the integral: 
 

(26*)   1 1 2 2 l l

dx
U dt

dt
ϕ λ λ λ   + + Φ + Φ + + Φ  
  

∫ ⋯ . 

 
Under the aforementioned special assumption that the coordinates xe , ye , ze should enter 
in place of the variables xa , the form: 

 
2 2 21

2 ( )e e e em dx dy dz+ +∑  

 
will appear in place of f (dx), and we imagine that the coordinates ae , be , ce will enter in 
place of the initial values xa (0).  Now, since the variational problem for the integral (2) 

will enter into the variational problem for the integral (28), and since the variational 
problem for the integral (2) will be solved by the advance of each mass-point me along a 
straight line with uniform velocity, and therefore by the equations: 
 
 xe = ae + (0)ex′ (t – t0), 

 ye = be + (0)ey′ (t – t0), 

 ze = ce  + (0)ez′ (t – t0), 

 
under the prevailing relationships, the normal variables ua will be nothing but the 

coordinate differences: 
xe − ae , ye − be , ze − ce . 

 
For that reason, the normal type ϕ (dx) will be equal to the given form: 
 

2 2 21
2 ( )e e e em dx dy dz+ +∑  

 
identically, and the function 2 f0 (u) will coincide with the function: 
 

2G = em∑ [(xe − ae)
2 + (ye − be)

2 + (ze − ce)
2] . 

 
 The variational problem for the integral (26*) will generally imply the equation: 
 

(32)   
( ) ( )d u u

u
dt u u

ϕ ϕ δ
 ′ ′∂ ∂− ′∂ ∂ 

∑ a

a a a

 = δU + λ1 δ Φ1 + … + λl δ Φl , 

 
which must be satisfied independently of the values of the variations δua .  We replace the 

variations δua with the normal variables themselves ua , respectively, and obtain the 

equation: 
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(33)   
( ) ( )d u u

u
dt u u

ϕ ϕ ′ ′∂ ∂− ′∂ ∂ 
∑ a

a a a

= 
,

U
u u

u u
γ

γ
γ

λ
∂Φ∂ +

∂ ∂∑ ∑a a

a aa a

. 

 
Everything now comes down to showing how the expression that is found on the left-
hand side of this equation is connected with the function f0 (u).  If one once more 
introduce the differentials dua in place of the differential quotients u′

a
 in the normal type 

ϕ (u′ ) then one will define the identity relation: 
 

(34)  
( )du

d u
du

ϕ δ∂
∂∑ a

a a

 = 
( ) ( )du u

d u du
du u

ϕ ϕ δδ
δ

 ∂ ∂− ∂ ∂ 
∑ a a

a a a

 

 

 + 
( ) ( )u du

d du d u
u du

ϕ δ ϕ δ
δ

∂ ∂−
∂ ∂∑ ∑a a

a aa a

, 

 
which is valid for all systems dua and δua .  Now, the complete differential df0 (u) can be 

represented in the following way, in which the substitution of the quantities ua for the δua 

is suggested by enclosing the expression in question with square brackets (*): 
 

(35)    df0 (u) = 
( )u

du
u

ϕ δ
δ

 ∂
 ∂ 

∑ a

a a

. 

 
The fact that ϕ (du) is a homogeneous function of degree p in the differentials dua further 

implies that: 

(36)    p ϕ (du) = 
( )du

du
du

ϕ∂
∂∑ a

a a

. 

 
When one substitutes ua for δua in (34), that will yield the equation: 

 

(37) 
( )du

d u
du

ϕ∂
∂∑ a

a a

= 
( ) ( )du u

d u du
du u

ϕ ϕ δδ
δ

  ∂ ∂ −  ∂ ∂   
∑ a a

a a a

− d 2 f0 (u) – p ϕ (du), 

 
which reveals the desired connection completely.  As long as the number p = 2, the 
expression: 

( ) ( )du u
u du

du u

ϕ ϕ δδ
δ

 ∂ ∂− ∂ ∂ 
∑ a a

a a a

 

 
will be equal to zero, from a basic property of quadratic forms.  Therefore, under the 
assumption that p = 2, one will have the characteristic relation: 

                                                
 (*)  Journal f. Mathematik, Bd. 72, pp. 8. 
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(38)    
( )du

d u
du

ϕ∂
∂∑ a

a a

=  d 2 f0 (u) – 2 ϕ (du) . 

 
From now on, we will assume that this assumption has been made.  Hence, equation (33) 
will take on the definitive form: 
 

(39)  
2

0
2

( )
2

d f u du

dt dt
ϕ  −  
 

 = 
,

du
U u u

u dt u
γ

γ
γ

ϕ λ
∂Φ∂    + +  ∂ ∂  

∑ ∑a a

a aa a

, 

 
when we apply (38).  The equation (9) above is included in this equation as a special 
case, and it can be linked with considerations that are similar to the ones that were made 
in regard to that equation. 
 
 

3. 
 

 In the case where the function U is equal to zero and one again sets the number p = 2, 
the variational problem of the integral (26) will become the one that was presented in 
(Journal f. Mathematik, Bd. 71, pp. 275).  In agreement with the notations that are used 
there, let: 
 
(40)    f (dx) = 1

,2
,

a dx dx∑ a b a b

a b

, 

and further: 

(41)    | aa, b | = ∆, 
,a

∂∆
∂
a b

= Aa, b . 

 
The functions y1, y2, …, yl , which were set equal to constant in that article, presently 
correspond to the functions Φ1, Φ2, …, Φl .  The multipliers λ1, λ2, …, λl will be denoted 
by the same signs.  We shall ponder the assumption that only one function Φ1 is present.  
The vanishing of the first variation of the given integral (26) will then yield the equation: 
 

(42)    
( ) ( )d f x f x

x
dt x x

δ
 ′ ′∂ ∂− ′∂ ∂ 

∑ a

a a a

= λ1 δ Φ1 . 

 
 In order to determine the expression λ1 by means of the equations: 
 

(43)   

1 1

22 2
1 1 1

2 2
,

0,

0,

dxd

dt x dt

d x dx dxd

dt x dt x x dt dt

Φ ∂Φ = = ∂


Φ ∂Φ ∂ Φ = + =
 ∂ ∂ ∂

∑

∑ ∑

c

c c

c a b

c a bc a b
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which will be true from now on, one can introduce expressions in place of the variations 

δxa in (42) such that the factor of 
2

2

d x

dt
c  on the left-hand side of that equation coincides 

with  1

x

∂Φ
∂ c

, which is the corresponding factor in the expression for 
2

1
2

d

dt

Φ
.  Since the 

coefficient aa,c of the form 2f (dx) appears on the left-hand side of (42) as a factor of the 

combination 
2

2

d x

dt
a δxa , the variation δxa must be replaced with the expression: 

 

(44)     , 1
A

x

∂Φ
∆ ∂∑ a k

k k

 

 

for the given purpose.  With that substitution, the complete variation δ Φ1 = 1 x
x

δ∂Φ
∂∑ a

a a

 

will go to the expression: 

(45)    , 1 1

,

A

x x

∂Φ ∂Φ
∆ ∂ ∂∑ a c

a c a c

= (1, 1), 

 
and that will imply the following representation for λ1 : 
 

(46)   λ1 (1, 1) = 
2

, 1 1
2

( ) ( ) A dd f x f x

dt x x x dt

 ′ ′ ∂Φ Φ∂ ∂− − ′∂ ∂ ∆ ∂ 
∑ ∑ a k

a ka a a

, 

 
which coincides with the representation that was given in the cited reference.  At this 
point, it should be emphasized that when an arbitrary system of new independent 
variables is introduced in place of the system of variables xa in the relevant variational 

problem, the expression (1, 1), as well as the expression λ1 , will go to corresponding 
expressions that are constructed from the new elements (*).  Therefore, if the previously-
defined system of normal variables ua is introduced and one appeals to the notations: 

 

(47)    

1
,2

,

, ,
,

( ) ,

| | , ,

du p du du

p P
p

ϕ =

 ∂Π= Π =

∂

∑ a b a b

a b

a b a b

a b

 

 
for the normal type ϕ (du), then (45) and (46) will imply the new equations: 
 

                                                
 (*) When the function Φ1, which is to be set to a constant, is replaced with function of that function, 

which is to be set to a constant, the product 
1

(1,1)λ , which represents the generalization of the concept of 
pressure, will still remain invariant. 
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(48)    , 1 1

,

P

u u

∂Φ ∂Φ
Π ∂ ∂∑ a k

a k a k

= (1, 1), 

 

(49)  λ1 (1, 1) = 
2

, 1 1
2

( ) ( ) P dd u u

dt u u u dt

ϕ ϕ ′ ′ ∂Φ Φ∂ ∂− − ′∂ ∂ Π ∂ 
∑ ∑ a k

a ka a a

. 

 
 The associated system of quantities xa (0) has a decisive meaning for the system of 

normal variables ua .  From the definition that is given in (29), all of the normal variables 

ua will vanish whenever the system of values xa satisfies the equations xa = xa (0).  

Moreover, a manifold of first order that starts from the system of values ua = 0 and for 

which the ratios of the variables ua to each other remain unchanged will satisfy the 

variational problem of the integral (28).  The fact that, under the assumptions of article 1, 
this first-order manifold represents nothing but the advance of each mass-point me from 
the position (ae , be , ce) along a straight line with uniform velocity has been mentioned 
numerous times.  Just as the system of values ae , be , ce was determined before, we will 
now determine the system of values xa (0) by certain requirements, and indeed the 

explicit expression of the variables xa in terms of the variables ua and the fixed values 

xa(0) will not be required for that. 

 The first of those requirements points to the fact that the differential df0 (u) must be 
equal to the differential δ Φ1 for arbitrary values of the differentials dua , up to a finite 

factor.  Therefore, due to the relation (35), the quantities 
( )u

u

ϕ δ
δ

 ∂
 ∂ a

 must have just the 

same relationship to the corresponding quantities 1

u

∂Φ
∂ a

.  Since, from (47), one has: 

( )u

u

ϕ δ
δ

∂
∂ a

= pa,1 δu1 + pa,2 δu2 + … + pa,n δun , 

the quantities [δua] = ua must have same relationship to the combination , 1
P

u

∂Φ
Π ∂∑ a k

k a

, and 

the expression [2 ( )]uϕ δ , which is equal to the expression 02 ( )f u  (*), must have the 

some relationship to the expression (1,1) , which is defined by equation (48).  On those 
grounds, the equations: 

(50)    
02 ( )

u

f u
a = 

, 1

(1,1)

P

u
∂Φ

Π ∂∑ a k

k a  

and the equation: 

                                                
 (*)  Journal f. Mathematik, Bd. 72, pp. 7, formula (13). 
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(51)    0

0

( )

2 ( )

df u

f u
= 1

(1,1)

dΦ
 

 
must be true.  The second requirement, under which, the second differentials d 2 ua must 

vary independently, but the first differentials are regarded as chosen to be fixed, will be 
represented by the equation: 
 

(52)   

2
0

0

( )
( )

2 ( )

du
d f u u

u

f u

ϕ∂−
∂∑ a

a a = 
2

1

(1,1)

d Φ
. 

 
The same equation will be satisfied by the second differentials, since equation (51) is 
true.  The characteristic relation (38), which was appealed to for the intended conversion 
of (33) into (39), will also effect the intended conversion of (52) into the equation: 
 

(53)   
0

( ) ( )
2 ( )

2 ( )

du du
d u u du

du u

f u

ϕ ϕ ϕ∂ ∂− +
∂ ∂∑ ∑a a

a aa a  =
2

1

(1,1)

d Φ
. 

 
An application of (50) will lead to the representation: 
 

(54)  
0

2 ( )

2 ( )

du

f u

ϕ
= −

1
2

1( ) ( )

(1,1) (1,1)

P

u ddu du
d

du u

ϕ ϕ
∂Φ

  Π ∂ Φ∂ ∂− + ∂ ∂ 

∑
∑

a,k

k k

a a a

. 

 
Now, since the right-hand side of this equation, when divided by dt2, coincides with the 
right-hand side of (49), up to sign, that will yield the result that: 
 

(55)     
0

1

2 ( )f u

−
= 1 (1,1)

2 ( )u

λ
ϕ ′

, 

 
which includes equation (25) as a special case. 
 
 

4. 
 

 The n quantities xa (0) that belong to the system of normal variables, are determined 

indirectly by equation (51), which represents a system of (n – 1) independent equation, 
due to the independence of the differentials dua and equation (55) that we just obtained.  

In order to get a direction determination, we turn our attention on the aforementioned 
first-order manifold that solved the variational problem for the integral (28) and extended 
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from the system of values ua = 0 to the given system of values ua that satisfies the 

equation Φ1 = const.  When that first-order manifold is referred to the variables xa , it will 

extend from the system of values xa (0) to the system of values xa that satisfies the 

equations Φ1 = const. and corresponds to the system of values ua .  Since p = 2, the 

associated values of the integral R in terms of normal variables ua will be expressed by 

the equation: 
 

(56)     R = 02 ( )f u . 

 
When the variables take on the increments Dxa as one advances along the first-order 

manifold that was spoken of, the expression 0

0

( )

2 ( )

df u

f u
 will admit the following 

representation in terms of the variables xa (
*): 

 

(57)    0

0

( )

2 ( )

df u

f u
= 

( )

2 ( )

f Dx
dx

Dx

f Dx

∂
∂∑ a

a a . 

 
The combination (1, 1) is expressed in terms of the variables xa by equation (45).  We can 

therefore replace (51) with the equation: 
 

(58)     

( )

2 ( )

f Dx
dx

Dx

f Dx

∂
∂∑ a

a a = 1

(1,1)

dΦ
. 

 
The ratios of the differentials Dxa will be determined by them; i.e., the final element of 

the indicated first-order manifold will be determined in such a way that the final element 
Dxa is normal to the manifold of order (n – 1) Φ1 = const. when one recalls the form 

2f(Dx), which is discussed in (Journal f. Math., Bd. 74, pp. 144). 
 The form 2ϕ (u′ ) in equation (55) can also be replaced by the form 2 f (x′ ) by means 
of (31), and will represent a combination in the system of values xa and dxa / dt by means 

of equations (45) and (46).  That will yield the equation: 
 

(59)     
1

R

−
 = 1 (1,1)

2 ( )f x

λ
′

, 

 
which will imply the value of the integral R in the system of values xa and dxa / dt . 

                                                
 (*)  Journal f. Mathematik, Bd. 74, pp. 128. 
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 Equations (58) and (59) then determine the system of values xa (0) by the conditions 

that the first-order manifold that starts from it and makes the first variation of the integral 
(28) vanish will emerge from a given system of values xa that belongs to the manifold of 

order (n – 1), while the final element Dxa will be normal to that manifold of order (n – 1) 

relative to the form 2f (Dx), and that the associated integral R must assume the prescribed 
value.  Conversely, if one imagines that the first-order manifold that is spoken of starts 
from the system of values xa then its evolution will be determined completely by that 

system and the element Dxa , and the prescribed value of the integral R ultimately 

determine the system of values xa (0) in question (*).  The possibility of that 

determination assumed in that.  One easily recognizes that equations (58) and (59) have 
the property that when a new system of independent variables are introduced in place of 
the variables xa and also when the function Φ1 that is to be set to a constant is replaced 

with a function of that function, those equations will go to equations that are formed 
analogously from the new elements.  The given determination is therefore completely 
independent of the choice of the form of the function Φ1 .  As soon as only one mass-point 
is assumed in the considerations of article 1, the indicated first-order manifold will be the 
straight line that starts from the point (x1, y1, z1) and points normally to the surface Φ1 = 
const., and which cuts out the length of the radius of curvature that is determined from 
the point (x1, y1, z1) to the center of curvature (a1, b1, c1). 
 When one regards the quantities xa to be fixed and the quantities dxa / dt to be variable 

and, from (43), restricted by only the equation: 
 

1d

dt

Φ
= 0, 

 
and when one raises the question of what system of values dxa / dt for the first differential 

in the expression that is defined in (59) will make 1 / R vanish, one will have expressed a 
maximum-minimum problem, which emerges from the general maximum-minimum 
problem that is presented in (Journal f. Math., Bd. 71, pp. 277) and discussed under the 
assumption that l = 1.  The results that were published in that reference for that problem 
are therefore applicable to the present problem with no further discussion.  That sheds 
light upon the fact that the indicated problem will become the problem of largest and 
smallest radii of curvature in the aforementioned simplest case of article 1. 
 When one compares the more general results that were just found with the more 
specialized ones that were presented earlier, it must emerge that equations (39) and (52) 
contain one of the expressions: 
 

du

dt
u

u

ϕ  ∂  
 
∂∑ a

a a

 and 
( )du

u
u

ϕ∂
∂∑ a

a a

 

 
                                                
 (*)  Journal f. Mathematik, Bd. 74, pp. 130, et seq. 
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respectively, which do not enter into the corresponding equations (9) and (20). As was 
emphasized, the form with constant coefficients 2 2 21

2 ( )e e e e
e

m dx dy dz+ +∑  appears in the 

latter equations in place of the form f (dx), so the normal variables ua will go to the 

differences (xe – ae), (ye – be), (ze – ce), the normal type ϕ (du) will coincide with the form 
2 2 21

2 ( )e e e e
e

m dx dy dz+ +∑  itself, and the function f0 (u) will become the function G.  Under 

those circumstances, the normal type ϕ (du) will be a form with constant coefficients, and 
whenever  ϕ (du) becomes a form with constant coefficients, the expression 

( )du
u

u

ϕ∂
∂∑ a

a a

 must obviously vanish.  However, it is also proved in (Journal f. Math., 

Bd. 70, pp. 92, et seq.) that when the form f (dx) can be transformed into a form with 
constant coefficients, the normal type ϕ (du) will represent such a form, and that the 

expression 
( )du

u
u

ϕ∂
∂∑ a

a a

 can vanish only when the form f (dx) can be transformed into a 

form with constant coefficients.  Namely, the left-hand side of the equation that was 

denoted by (59) on (loc. cit., pp. 94) will go to the expression 
( )u

u
u

ϕ δ∂
∂∑ a

a a

 when it is 

multiplied by (t – t0).  The necessary and sufficient condition for the vanishing of the 

expression 
( )du

u
u

ϕ∂
∂∑ a

a a

then consists of saying that the form f (dx) can be transformed 

into a form with constant coefficients (*).  Since it was initially demanded that the 
quadratic form f (dx) must be essentially-positive and have a non-vanishing determinant, 
the normal type ϕ (du) must have the same property, and when the form f (dx) can be 
transformed into a form with constant coefficients, that normal type must necessarily 
equal an aggregate of squares of n differentials.  On those grounds, the assumption that 
are actually true in mechanics, which were founded in article 1, represent the most 
general situation under which an essentially-positive quadratic form f (dx) is compatible 

with the vanishing of the expression 
( )du

u
u

ϕ∂
∂∑ a

a a

. 

 When one lets the variables xa coincide with the combinations em (xe – ae), 

em (ye – be), em (ze – ce), the form 2 2 21
2 ( )e e e e

e

m dx dy dz+ +∑  will coincide with the 

form 21
2 dx∑ a

a

.  It was already set down in (Journal f. Math., Bd. 71, pp. 284) how, under 

the assumption that f (dx) = 21
2 dx∑ a

a

, the theory of the function 1 (1, 1)λ  is very closely 

connected with the extension of the theory of curvature that Kronecker gave 
(Monatscbericht der Berliner Akademie, August 1869).  In fact, the quantity that 

                                                
 (*) A direct criterion for the form f (dx) to have that character is presented and proved in Journal f. 
Math., Bd. 70, pp. 94, et seq. 
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Kronecker called ρ coincides with the one that was called 2G  or R above, and the 

extension that we gave in article 1 for the concept of center of curvature differs from the 
one that Kronecker developed only by its connection with the mechanical representation 
and the choice of the steps that would lead to that objective.  Moreover, the maximum-
minimum problem that was suggested corresponds precisely to the one that Kronecker 
treated in the aforementioned place.  However, in order to explain why admission to those 
investigations is even possible when one starts in mechanics and geometry, and why the 
results of mechanics that are contained in equations (9) and (39) and the results of 
geometry that are based upon equations (20) and (52) can depend upon the same 
algorithms, I would like to recall something that Gauss said in the paper “Beiträge zur 
Theorie der algebraischen Gleichungen” in regard to the manner by which one proves 
fundamental theorems about algebraic equations that nonetheless takes on a much 
broader sense.  He said: 
 

 “However, at its basis, the actual content of all argumentation belongs 
to a higher realm in which one studies general, abstract quantities that are 
independent of spatial ones, and in which one addresses those 
combinations of quantities that are connected with continuity, which is a 
realm that has been explored only slightly at this time, and in which one 
also cannot move without having a language that is borrowed from spatial 
structures.” 

 
 Bonn, 16 February 1873. 
 

__________ 


