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FOREWORD

The publication of this book was delayed by unfortunatimistances; it was made
possible by its acceptance by the publisher Friedr. WiewegSam. Nevertheless,
nothing needs to be added at the moment. A recently-apgepaper by O.
HECKMANN, P. JORDAN, and W. FRICKE?Y represents only the first part of a
discussion (which is still in a state of flux) of thelutions of the general field equations
that are presented in this pamphlet.

In this presentation, a brief overview will be giveh the recent results in the
projective theory of relativity that have come abaote the appearance of the beautiful
summary of O. VEBLEN 9 in the year 1933. The essential step in this further
development was taken by P. JORDAN in the year 1944.

The general affine (i.e., EINSTEINIAN) theory of @y will be assumed to be
known. The projective theory will then be developeadrfrine ground up, but with the
inclusion of JORDAN’s extension. The reader will fiadthorough overview in the
initial introductory section of the matter that is tained in the results of some papers by
P. JORDAN, Cl. MULLER, and the author, as well as sampublished results.

| would like to thank Herrn P. JORDAN most warmly famoviding the impetus for
this investigation, for the great interest with which blofved the progress of the work,
and for stimulating the posing of interesting problems bythvehile discussions and
inspiration.

It is the author’s hope, as well as his wish, thainfight introduce this book into
discussion in such a way that its sphere of intereshtntig enlarged by some relevant
cosmological problems. Its implications extend tceréaesults, and perhaps even into
the structure of elementary particles, whose progesgem to be, in part, a mirror image
of the ambient matter.

Berlin, in May 1951.
Gunther Ludwig

() O. Heckmann P. Jordan, andW. Fricke, Zeit. Astrophysik28(1951), 113.
(®) 0. Veblen Projektive RelativitatstheorjeBerlin, 1933.
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CHAPTER |

UNIFIED FIELD THEORIES AND COSMOLOGY

The projective theory of relativity arose from EINSN’s general theory of
relativity as an attempt to solve the problem of findingnéied theory that subsumes
gravitation and electromagnetism. Among other things, gheat achievement of
EINSTEIN’s theory consisted of interpreting the gravitadibfield as the geometric
structure of the universal continuum — i.e., the four-disi@nal space-time manifold.
However, it raised the question of whether it might reopbssible to describe gravitation
and electromagnetism together as a geometric struzftine universe.

H. WEYL was the first to discover a theory along thtises in the year 1918 with
the mathematically beautiful theory that he presemelis bookRaum, Zeit, Materie
(Space, Time and Matder Since that theory was perceived to be not entsatisfying
from a physical standpoint, further attempts at presgmtianified field theory had to be
undertaken. One path, which we will not describe in dtle Ibook, was pursued by A.
S. EDDINGTON in the year 1923, then by EINSTEIN, and niownore recent times, by
E. SCHRODINGER. It consists of an extension of WE¥Ilgeometry, in which one
starts with only affine geometry in order to find field gtiges and field laws, and only
later identifies certain field quantities with the nietr We will go into the connection
between SCHRODINGER's theory and the one that is pexphsre at the conclusion of
our report.

In connection with our theory, we will be especiatiferested in an attempt to unify
gravitation and electromagnetism that T. KALUZA maddha year 1921. KALUZA
introduced a five-dimensional continuum and obtained #&ld &quations for gravitation
and electromagnetism from the five-dimensional metA&er O. KLEIN simplified that
theory, it was soon examined many times, although thdigoes just what one meant
by the fifth dimension was initially left open.

The explanation for it was then given by the work of \@BLEN, who could
interpret the five-dimensional theory as four-dimensigmaljective relativity. In the
year 1933, O. VEBLEN summarized the state of the thé&ooyoughly in his book
Projektive RelativitatstheorieOne will also find a thorough bibliography in this book of
the work that has appeared up to now, such that we stilbfily the recent works at the
end of the present report, especially since direct mefereo only those recent works will
be made in the following presentation.

In the same year 1933, the thus-completed theory appearedh iaspecially
symmetric and elegant representation in a paper by W.LRAW which the DIRAC
equation was also presented in terms of the projectaayh The theory, thus-presented,
was then applied many times, and in particular, by A. PA#® showed in that way that
the theory of meson fields could likewise be represeelegantly in projective form,
which was especially close to the “mixed” field theofesctor + scalar fields).

The theory experienced an entirely new extensionhbyideas of P. JORDAN, by
which one proposes an invariaht g, X X" as a field function [cf., no5 @) in the
present report], which had been somewhat artificiadlyts 1 in the past. Those ideas

() Boldfaced numbers will refer to the sections of Ghipll and IlI.



2 Chapter | — Unified theories and cosmology

arose in connection with an inductive argument that veaerned with dimensional
analysis and cosmology. Since that inductive theory appein a beautiful summary
form in P. JORDAN'’s boolDie Herkunft der SternéThe Birth of Stars we would like
to go into it only briefly here.

If one introduces atomic units (or so-called “naturatits), instead of C.G.S. units,
such that the speed of ligt= 1, PLANCK'’s constants (= h/ 27 = 1, and the
elementary length(= 2 x 103 cm) = 1, then one will get the gravitational constagt
877f / ¢ f = constant in Newton’s law of gravitation), the radidishe universe, the age
of the universé\, and the total mass of the univeMgin orders of magnitude:

~1

I

I
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with  y=10°. (1.1)
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Due to these order of magnitude relations, one might reggasdhe age of the universe,
which would also imply thak andM are not constant, but time-varying. Empirically, the
mass of a star proves to be:

Mg = 72, (1.2)

which leads up to the assumption that the mass inctieaisis established by (I.1) will be
compensated by the creation of new stars of mass (I.2).

In order to look for a theory in whick, as a result of (I.1), was not constant, but a
field function, P. JORDAN chose the quantity abave g,, X X in the projective
theory, since it proved to be essentially equal toA4ust

The working-out of the new extended theory was inaugdray some papers of P.
JORDAN, and then, together with Cl. MULLER, it was petied onward to the
presentation of possible field equations in vacuum and eusi®on of them. A
continuation of it in the direction of the represemtatof matter fields and the ultimate
formulation of the field equations, in particular, wagen by the author in some papers
in which he arrived at a basis for the relations @&rid (1.2) deductively.

The theory that will be presented in what follows &y formal, as any such
geometric theory would be, so it is precisely our itibenthat we shall go beyond the
formal mathematics, as much as possible, and to catl ppgsical experiments only to
test the results or to decide between several equatifigdspossibilities. Therefore, the
first half of our presentation is dedicated entiredy dstablishing the mathematical
foundations of the theory, without the previously-esshlgld physical concepts playing a
role. It is then in the second half that the physiealilts and consequences will come to
the foreground.

Let us now give a brief overview of the contentshef following sections:
Chapter Il of this report contains the mathematicahfof the theory. In it, we have

trod a somewhat different path from the one that vikasen in W. PAULI’s presentation
and transferred to P. JORDAN'’s new theory, as weld a@smewhat different path from
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the presentation that was given by P. JORDAN in a tquagwer, which is also essentially
more concise than the first presentation. We have dioat in order to subsume spinors
in the most natural way. N@& contains the basis for and deeper analysis of the
isomorphism theorem (2.19) that P. JORDAN found, in whpcsl attention will be
given to the connection between gauge transformatiodsl® homogeneity properties
of the field functions. Nos4, 5, 6 give the path that the author pursued in order to
represent the theory. N@.gives a brief introduction to spinors and recalls manghe
ideas in the paper by W. PAULI that was cited above. nd. 8, the symbol for
infinitesimal transformations that will be used latell be given, and the representation
of the rotation groups will be sketched out in 80.The theory of parallel translation and
differentiation of measurement that will be given in. 10 will differ from the
presentation that was given in the PAULI paper by the iaddaf an extra term for
tensors that are not normal (as it will be defined in2)aand by the calculation of the
affine splitting using the methods that are presented m #oto 6. The affine
decomposition of the curvature tensor will be calculatethbysame method in nbl, in
which the relations (11.15) and (11.16), and (11.19) were alrpaglyented by P.
JORDAN in the first paper. No42 and13 contain the essential general theorems upon
which the entire theory that follows will rest, ane tlerivation of equations (13.44) and
(13.55) in those numbers goes back to the investigations BAFS, as modified by the
introduction of the normal domain as in b. No. 13 gives a deeper meaning to the
isomorphism theorem that was explained inzo.

Chapter IIl then gives the actual physical applicatiohs.nos.14 to 18, the field
equations for gravitation and electromagnetism are prgesplicitly and solved for
some cosmological models, which yields a basis for @id (1.2). Ansatze fo®,

according to (14.1), were considered by P. JORDAN anMOLLER with V (J) = 0,W

(J) =0, andU (J) =J ¢, and were discussed for the case 0 in the absence of matter
fields, in particular. As will be shown in nb7, we believe that one must set 1/2 and

W (J) =-AJ2 In no.19, the meaning of the energy-impulse tensor, the chargentur
vector, and the matter invariants will be examinedhm simplest case of scalar matter
fields, as well as the influence of a variable gravitaticonstant. The last section shows
the beauty (but, at the same time, the limits) ofpitwgective theory, in which electrons,
nucleons, and meson fields can be represented elegditibse representations will be
given for the theories with constahof W. PAULI and A. PAIS.



CHAPTER I

MATHEMATICAL THEORY

1. Projective description of the world continuum.— The most important basic
assumptions of the projective theory of relativity s@ summarized, without placing
any value on axiomatic completeness.

Let the space-time manifold, in which physical eventy plat, and which will be
briefly called “the world,” be four-dimensional topolodicpace. Its points can also be
related to unique coordinate quadruples &, X2, x*) then, and they will be calleaffine
coordinates. Its points (viz., world points) can likewise be mappedhe raysix* (- «
< | < + ) of the five-dimensional manifold of quintuple${ X !, X2 X 3, X%. Thex*
then represent the projective coordinates of the worltgoi

We briefly denote the space of affine coordinated\byand the space of projective
coordinates by. W will then be four-dimensional, whiM is five-dimensional. In what
follows, Latin indices will run from 1 to 4, while Greekes will run from O to 4.

Any world pointP is represented by’ as well as byx*. Thex* must then be
functions of thex¥, and indeed, in such a way th&must be unchanging along a &%
(oo <l <+m):

XE=fFR X0 XY L X =R XD AX Y L AX). (1.1)

Thex* are homogeneous functions of degree zero then. Ohheril haveY):

In what follows, the continuity of all of the funehs that appear and their derivatives
(to the extent that they are used) will be assumed.

2. Transformations groups. — The choice of coordinated, as well asX¥ is
arbitrary, to a certain extent. One can then useratbordinate® in place of the
which will be functions of the®, and conversely:

X =x* (L 3, 3, XY, X = xR (¢ X2 X3, x4, (2.1)

All of these coordinate transformations define a greupch we would like to denote
by &4 . Whether or not a physical system is described ix‘theordinate system or that

of the x* changes nothing in its intrinsic structure. We therefieenand that the
description of physical objects should be invariant undegtbup®, .

) In what follows, for any functio (X°, ..., X%, one will havef, , = of / 9X*, and for any functiomy
| u

<, ..., X%, one will haveg; = g / ax*.
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We impose the requirement that the degree of homogeffeoctions ofX* should
remain unchanged under another choice of coordinate¥.f We shall thus consider
only those transformations:

XH=XHXP, ..., XY, (2.2)

that are homogeneous of degree onextHe The group of those transformations shall be
denoted briefly byys . The new requirement of the projective theory tdtraty, when

compared to the affine theory of relativity, is then timeariance of the description of
physical objects under the grofp .

One can apply the transformationssafand®, independently of each other, but the

functional connection (1.1) between affine and projecttoordinates will generally
change under that. However, one can also coupleahsformations ofys and®, with

each other in such a way that a certain functionahection (1.1) will remain preserved;
one will have:
X=X ...,x%) andalso xK=f% (X" ..., X, (2.3)

with the same functiong*. Any transformation of)s will then generate precisely one
transformation ir®, such thaths will be mapped homomorphically onty in that way,

as one easily establishes. As a resytmust be isomorphic to the factor grouptafby

the normal subgroufi that consists of all transformationss$ef that generate the identity
transformation in&, . Since thef ¥ are homogeneous of degree zero, they are the

transformations:
XH= (X0 ..., XY XA (2.4)

in which A is a homogeneous function of degree zero. One then has:
&4 095/ N. (2.5)
If a function of five variables is given:
FC . XY
then we would like to define a transformatidpin such a way that we set:
TLEXC, ., X)) =F (0X° ..., pXY, (2.6)

in which p (X%, ..., X*) is a homogeneous function of degree zero inXKe The ¥,
define an Abelian group that is briefly callgdd For a homogeneous function of degree

n, one will have:
ipF:p” F. (2.7)
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From EULER’s theorem, one will then also habe (
FiuX*=nF. (2.8)

In particular, one will then have:

T X=X, % =0,
4 (2.9)
T,X = pXH, XEX = XA

The important concepts of “scalars” and “invar&rdre defined by saying that is
called ascalarwheng is invariant under the transformationssgf and¢ is aninvariant

when g is a scalar that is also invariant unger
Let K be the field of real numbers. Furthermore, onghtnbe given &-modulet

(®) with elementsa, B, y; ... We refer to a system of quantitie€ in M that transform
under the transformation (2.3) £§ by way of:

a’’=a" X", (2.10)

as acontravariant vectorat a pointQ in V. Correspondingly, we refer toavariant
vectorby way of3, with:

BY=Bu X, [B. = BuX™ v, resp.]. (2.11)

Later on, we shall be concerned with the followapgcial examples &ft, among others:
M =K orM =K (i), which is the field of complex numbers.

The contravariant, as well as the covariant, wsceach define a five-dimensional
vector space that depends upon the pQntvhich we would like to caltoncomitant
vector spaces.

A t-fold contravariantand r-fold contravariant tensoof rank (r + t) is given by

quantitiesa;;jjj;r that transform like the formal productstafontravariant and covariant

vectors. A scalar will also be calledemsor of rank zero One can reduce the rank of a
tensor by 2 byontraction One understands a contracted tensor to mearsartethose
components arise by summing over an identical p&icontravariant and covariant
indices:

() In what follows, identical indices will always be suemirover.

(® The elements @it define an additive Abelian group; i.e,+ 8= S+ a is again an element af,
one hasq + B + y= B+ (a+ )), there is a null element 0 wilh+ 0 = a, and anya has an inverse-(q),
such thatr + (- @) = 0. Above and beyond that,afb, c, ... are real numbers thera will be an element
of Mand g+pPa=aa+fa a(@a+b)=aa+ ab, anda(ab) = (o a) b. For the first part of this report,
it will suffice to defineMt under the fields of complex or real numbers. The gérfermulation was
chosen although we will use it in only Chapter II.

For the concept of a module, cf., e.g., van der WAERDEbKlerne Algebra2™ ed., (v. 2), Berlin,
1940, pp. 98et seq.
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ﬁvl"'vo—lvoﬂ'"vt e aV1'“Vo-1'7Vo+1'“Vx (2 . 12)

e Hpaflper b~ 7 el ey by

The contraction of a second-rank tensor is theredosealar. Addition of tensors of
the same type will again give a tensor of the same tyje. multiplication of two tensors

a;;jjj;r and ,Blfl{'j_;f: will yield an ¢ + 9)-fold contravariant andr(+ p)-fold covariant

tensor:
avlmv1 O Ps — V’l'”v‘ PrPs

oo e 00, Mooy Oy--0y '

[In this, it is generally assumed that the product oftwhe quantitiesar and S is defined.
For exampleg and 5 can be real or complex numbers,aocan come from a modufgt,

while S is a real number, o and 8 are both from a modul®t, anda £ can be a real

number, such as the inner product of two vectorgy Srcan be a formal product, which
will then belong to the product modulg x Mt (4).]

If a tensor fielda is defined onV then the application of the operatdy to the
tensora’’ will also be defined. We write it in the form:

T " = pH g (2.13)

ot o et ?

in which H, is an operator that is defined by thaH, is then invariant under the
operation of contraction, as one easily confirms. tfasmore, the operatoks, define a
representation of the groujs, since H,, = H,H, . We define the infinitesimal

transformatiorH by way of the equation:

Hiwor = 1+ A, (2.14)

which is true up to terms of order onegrnwhich means that (2.14) is linear/An Since
B is Abelian, one can write:

H,=e™"?, (2.15)
Two important examples of this are:
1. Hy,=1. Inthis case, we call the tensnsmal tensors.A normal tensor of rank
one is also called mormal vectoy and a normal tensor of rank zero is identical whidn t

concept of an invariant.

2. M=K (i)andH,=e'""? with| real. Inthis case, one then asil.

() See remarlé) on page 6.
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Any tensor that is not normal can be normalized. €wmoses an arbitrary functign
(X% ..., X% that is homogeneous of degree one. One then defia¢srtbor:

a’=H'a: [a =H,a, resp.] (2.16)

with H7 = H* =’ """,

Tp g = (‘zp H”—l)(‘zp a) = Hp_llfl (‘zp a)
— t—r e t—r e t—r
- Hp—ln—al a - H”—l a - ,0 Q' ’

such thata~ will then be a normal tensor. However, the noimadion a of a is not

defined uniquely, sincey is arbitrary; it is undetermined up to a factomatths
homogeneous of degree zero. If we then go foim/7 by way of:

n=on (2.17)
thena willgoto a':

a=H.a=H_.H_.a= H'a. (2.18)
We call the transformations (2.17), (2.18) ¢aeige groupE. The coupling of (2.17),
(2.18) yields an isomorphic map $fonto &. ¢ itself is an affine group, sinag(which

is homogeneous of degree zero in Xfpdepends upon only the affine coordinates. The
two groups®, and € together generate a group of affine transformatign, &), which

we can also regard as the transformation groupugébles<, 7. One has:
(B4, ) UH5. (2.19)

In order to exhibit the isomorphic map &k onto B4, &), we start with the
homomorphic map afys onto &4 that was defined already in the beginning by (2.B9.

the demand of the preservation of the functionahneation (2.3), we add the
preservation of the functional connection for thedtion#:

n=f0 ...,x% and n/=f(X’° ...,.X"%, (2.20)

by which the transformations ¢fs also transforny;. Since the equations (2.3), (2.20)
can be solved for thX” uniquely, $s will then be mapped isomorphically to a certain
transformation group of the variables 7 that is precisely the grouy, €), as we shall
soon show. If we consider the transformationggfthat remain invariant under that
isomorphic mapy then they will define a subgroup 9% that we would like to calfy,,
and which is therefore mapped isomorphicallgta The transformations of the normal
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subgroupdt O $s will be mapped isomorphically t&. Hence $4, 91) will be mapped
isomorphically to &4, €). However, one hasg, N) = $Hs, so each element ¢fs will
belong to a cosdt, in whicht can be chosen from,, because every coset contains
one (and only one) element ©f, since all of the elements b9t will be mapped to the
same transformation a4, and since), &4, every element o4 will correspond to
one and only element o, .

With that, the structure of the grou®« €) is revealed, and linked with the
projective groups)s and‘.

To conclude this section, let us cite two examplesolldws from (2.11) and (2.9)

that theX # define a contravariant normal vector. (The affinerdinates¢ do not define
an affine vector!) The differentiatbx” transform undef)s according to:

dX”’=X"*,, dXx", (2.21)
and thus define a vector. However, it is not normatesbne will have:
TodX* =d (o X) =dp X¥ + pdX* = p (dX* + X#(In p);, dX"),
under3, such that one will have fakx* that:

H,dX* =3 +X#(In p);,] dX". (2.22)
From (2.14), one has:
M A dX*)=X#*A,,dX".

3. Transition from the projective description to the affire one.— Covariant and
contravariant vectors were defined in the previous sectidkewise, one can also define
covariant and contravariant affine vectmks(,[z’k, resp.) by demanding that they should
transformation undeb, like:

a=a.xt, p=p'x. (3.2)
An affine vector can also be represented by projectivegpoments:

We would like to regardr, and ax as different components of the same vector. To
abbreviate, we set:

X = gl (3.3)
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The set of all vectors of the form (3.2) defines a Hinmensional subspace of the
five-dimensional vector space of covariant projectivetees. In order to find a
corresponding coupling of contravariant vectors, we set:

BY=pB"gt (3.4)
for a contravariant affine vectg@@* and unknown coefficients and demand that:
a B =a,p" =gl B ot

It will then follow from this that:
gy o = 9. (3.5)

The g, can be determined from this, up to a multiple of theutsmis to the
homogeneous equations:

g, =g, +AX. (3.6)

The factor can be established with no arbitrarinesslatdy by an additional demand.

With the given definitions, the four-dimensional affinencomitant vector space
defines a subspace of the five-dimensional projectivearaitant spaces. Any vector in
that four-dimensional subspace can be represented me aftmponents, as well as
projective ones, if equations (3.2) and (3.4) can be sdtwed, (3%, resp.) on the basis
of the relation (3.5):

a=a, g/, B*=p"g. (3.7)

For an arbitrary projective normal vectass (8%, resp.), one can likewise define the
vectors ak (,[:’k, resp.) from (3.7). However, they are not identicahwhe vectorsa,
(B*, resp.) that were given originally, but rather one thas a, — ax gl'j B* - ,[:’kg,f,
resp.) is equal to zero only wham, (8, resp.) lies in the four-dimensional affine
subspace. For arbitrary vectors, one calls the vectatsatle defined by (3.7affine
reductions. The projective components of the affine reductions,qf3*, resp.) are then:

a,=a,glo and pB*=p9¢g". (3.8)
To abbreviate, we set:
d/ =g/gy. (3.9)

The tensord!’ then represents the projection of the five-dimeradiwactor space onto its
four-dimensional affine subspace by way of (3.8).

One hasX"g‘= 0 for the vectoX"”, such thatX” has no component in the affine
subspace. One also h&¢'= X"d* = 0 then.

One can define the reduction of normal tensors as cegefdonormal vectors; e.g.:
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kK — k
ai - alfl giV gy

is the reduction ofr}’. However, if a non-normal tensor is given — e/, - then the

expression 3, g¢'g, will not be homogeneous of degree zero in ¥ie and it will

therefore not be a function of only the affie Nevertheless, one can also get an affine
tensor from 3, as its reduction when one first normalizg$ and then reduces it as

above. One will then obtain affine, gauge-invariant aemgrom projective normal
tensors, but one will get affine tensors that are gege-invariant from projective
tensors that are not normal.

As an example, we consider the reductionX¥f. From (2.22)dX" is not a normal
vector. The normalization alX” is:

dX* =dX¢ = X“(In ), dX". (3.10)
One then obtains the reduction as:
(dX)© = dX” gf =dx* g =dX’ xt, = dx‘ (3.11)
The projective components df‘ are then:

dx” = drdXx" = dxq . (3.12)

We must then distinguish between the following threztors:dx*, dx*, anddX”. The

first of them is not normal, while the second and thindoare normal. The third one is
the projection of the second one onto the four-dimenkiaffimae subspace. The third

one cr;tg{n then be represented by its projective compomgtﬁs as well as by its affine
onesdx’.

4. Five-dimensional and four-dimensional integrals— A point set inW that
possesses a three-dimensional hypersurface with a gfeled normal direction as its
boundary will be referred to asveorld-domain or briefly adomain One can likewise
define domains itv. However, we would like to consider only entirely spedomains
in V that we will callnormal domains.A normal domain contains either no points at all
of each rayiX” (- «» < A < + ») or exactly those points of an intenal< A < A, with
In(11/ A2) =1 (i.e.,A2 = e A1), and only those points. Any normal domain determines a
unique world-domain. The points of a rayvialways correspond to a world-point then.
An additive measure of a point set that is invariant usidexnd‘3 is defined along a ray

of Vbym (A1 / A2) = In (A1 / A2) as a measure of the interval fromX” to A, X¥. When
one establishes a normal domain, the measure of thespoithe normal domain that
corresponds to a single point\WWwill be equal to unity.

The volume element M is defined by:
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dr=dXx%dx*!dx?dx3*dx*. (4.1)
For $s, one has:
dr’=||X"#|v||dr. (4.2)
Fors3, one has:
Todr=|lpd) +p X' ||dr.

The determinant can be calculated on the boundary:

(o +,0 o, X4y X*

I P +p XN = 18 + 0 p|v><”||—p5H )

Xl/

= A+0X".
pp, Lepio X" o L+p o X))

L

el

-p'p, 1
Sincep is homogeneous of degree zero, it follows that:
T,dr= o dr, (4.3)

such thatdr transforms like a normal tensor of rank five thstcontravariant and
antisymmetric in all indices.

One refers ta” as a tensor density whein dr7 is a tensor.£ dris then an invariant
for an invariant densitg. One then has that when

= der (4.4)

is taken over a normal domainVf it will be an absolute invariant.

If one introduces the affine coordinatésinto (4.4) as the new integration variables
and the homogeneous function of ¥teof degree one that was employed in n@.then
(4.4) will go to:

- [exdray, (4.5

4
in which dr= dxt d@ dx d¥ is the volume element in the world-domain that
corresponds to the normal domain, &8 equal to the functional determinant:

_ 00X X H (1) (4.6)

X% XY @

If one adds suitable multiples of the last four sdw the first one then one will get:
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_1 /7|0X0 M1
Af(goX® g a)

,7|va Mo M

(g“x" g d) - ,7H91 g5 - (4.7)

X0

One will then haveg¥ X" = xklv X"=0 andngy X' = . If one denotes the minors gf in
(4.6) byA, then since the zeroth row is not distinguished fromatitrer ones, one will
have:

A=n—"L=p_-2t=.=n—2=ng (4.8)

in which gtransforms unde®, like an antisymmetric, contravariant tensor of raor

4
e., like dr — and like an antisymmetric, contravariant, normaldens$ rank five under
$Hs andP. o is therefore homogeneous of degree — 5. Substituting i (&).5) will

yield:
a
w:jﬁdrdm n. (4.9)
g

£/ ois then homogeneous of degree zero, and therefore tiofuné only thex®, but not

n, such that integration over in (4.9) can be performed. However, since the integral
jd Inn for any normal domain is equal to exactly the mea®f the points along a ray
that belong to that normal domain, and that wilelg@al to unity, it will follow that:

w=[ cdr= £
3 5 o (4.10)

A, =0 X", b gl g d

In this, B4 is the four-dimensional world-domain that corresg®to the normal domain
Bs. It follows from (4.7) that:
(,7||/

(4.11)
nl(gy)

and that the right-hand side of (4.11) is indepeha¢ the choice of the homogeneous
function of degree ong; ois gauge-invariant.

If F is any function of thex” that is homogeneous of degree — 4 thgnwill be
homogeneous of degree — 5, dfd, dr will be homogeneous degree zero. When the
integral | F , dr is taken over a normal domain, it can be conveitéa a boundary
integral. The boundary of a normal domBican be decomposed into three parts in the
following sense: The intersection of a ray* with the boundary oB (when it is not
empty) consists of either just two points with teordinatesX* and X*“=eX* or an
entire interval\ of measure unity. All points of the boundaryBére either points like
X* or X* or points ofA. The corresponding parts of the boundary migtddseted by
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R, R, andR, . The boundary componeni and R are mapped to each other in a one-

to-one correspondence by way of the ray&/ofThe normal directions t®R and R at
two corresponding points are the same, up to sign, andntdgnitudes of surface
elements ofR are greater by a factor efthan the corresponding ones By althoughF
is e’-times smaller onR than it is onR. The boundary integrals ové® and R that
come about by the conversion Joff| , dr using Gauss’s theorem will then cancel each
other, such tha{tF“, dr will be equivalent to a boundary integral over Bst

Under the map oBs onto the affine domaiB, , the points oRx correspond to just

the points of the boundaify, of B, such that a boundary integral o\t will go to a
boundary integral oveR, .

5. Projective and affine metric.— The metric inV is defined by a symmetric,
normal tensor fieldg,, with g = || gw || # O, in which we agree that the covariant
componentsy, that are constructed from the contravariant compsr#rby:

a, = Quv a’ (518.)

should be regarded as different componentghef samevectors. The solution of
equations (5.1a) reads:
a’ =d" ay. (5.1.b)

It follows from this thaig”” is a contravariant normal tensor, and that:
g gu= 0. (5.2)

Just as one does for vectors, one can also use (5ldyvéo and raise the indices of
tensors with the help @f,, andg"”, resp.; e.qg.:

a’=akg”, Apo=a"up Qvo,  €tC. (5.3)

(5.2) then also means that the metric tensor is idertiche identity tensody; i.e., that,

e.g., theg”” are the doubly-contravariant components of the idetgitgor, and the,,
are the doubly-covariant ones.

The operatoH,, as it was defined in nd, is invariant under the raising and
lowering of indices.
We refer to the invariant” a, briefly as thelength-squaredf the vectora”. The
length-squared of” is:
J=X"X,=X" gy X" (5.4)

The arbitrariness in the definition of the quantitglsin (3.6) can be eliminated by
the requirement that the reduced vector should be indepeoidehether one starts with
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covariant or contravariant components. The reduatfot will be equal to zero, so one
must also demand that:

X, 0,=0

then. It will then follow, with (3.6) and (5.4), that:
9! X+ A =0,

from which thedy, and therefore the, , will be determined.
Since the reduction of” is zero, and since the relatiar) X" = 0 follows, with &, =
a, g¥, the operation of reduction is nothing but orthogonalgmtyn in the direction of

the vectorX” onto the subspace that perpendiculaX'to We would like to refer to the
projective five-dimensional concomitant vector spaceflgrees R here, and to the four-

4 4
dimensional affine subspace #s. R is then the subspace Bfthat is perpendicular to
X". It then follows from this that for the tensat” that is defined in (3.9) that

4
implements the projection ont& :

OF =df + It X, X, (5.5)
4
For the vectors ofR , one has:
ac=a,9,=a"g, 9= a'glg, ¢, B =49, 9" d,. (5.6)
Due to that relation:
gk=9/'9, d (5.7)

is the affine metric tensor. One can also read @s5)
Ow=0,G 9 +J" XuXo. (5.8)

The metric tensor then splits affinely into the rdfimetric tensor and the invariaht
Any tensor can be split into its affine parts with Hedp of the decomposition of the
metric tensor as in (5.5) or (5.8); e.q., it will folldar a tensor of rank two that:

A= 05 0, G + I (98 Xu X7 Go +0, Xo X7 @) + T Xy Xy XPX Qpor
It then splits affinely into a tensor (viz., its redoa):

au=9,9'a,,
two affine vectors:
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O'kyxy:g;: X’u avy, ay| XV:glﬂxVaVy,
and an affine scalar:
auw X XY,

A projective tensor equation then subsumes several affimsor equations. The special
elegance and harmony of the projective theory of refgtieists upon that fact.

One can introduce a basis of five normal vectg§$ [in which (V) enumerates the

vectors] in the vector spa@@ such that those vectors are orthogonal and orthoorma
le.:

in which g% = 0 when ¥) # (1) and is equal t&c 1 when ¢) = (). The number of
negativeg™* (which is called théndex defedtis independent of the choice of tigé”.

We assume that the index defect is equal to unity and set

0 for (V)% (u)
g"¥W=10 1 for (v)=(w)=0,1,2,3'=gu - (5.10)

-1 for )= (u)=(4).
One can refer vectors and tensors to this new basis:

a'=d?q),, a,= a9, d?= g2 a" etc. (5.11)

Thus,gu., 9%, 8, 9%, g, g%, g, %) are also components of the same metric

u ()
tensor.
The vector and tensor components with indices in pagsathare invariant undgg .

They will transform under the grodp by way of the operatdtl, in no.2. Nevertheless,
those components are not scalars, since the choite dfasisg!” is not unique. One
obtains all possible other bases from the bg&is by five-dimensional rotations:

g, =0%, g (5.12)
Since (5.9) must remain true under this, one will have:

09, g g% 0 g =g,
or

@(0)(p) @(T)(P) :5((5) and @m(/’) @(77(0) :5((5)) . (5.13)
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The ® (»,? in this are homogeneous functions of degree zero i theWe denote the
group of these rotations b¥s .The vector and tensor components with indices in

parentheses transform undex like:

a'V¥=0,d",  ay=0u" aw, (5.14)

and correspondingly for tensors.
One also refers to thg!” as “fiinfoeins” and the representation of tensors by their

components with indices in parentheses as the “funfie@iresentation.”
One can choose the fuinfbeins, in particular, suchahatthem falls in the direction
of X":
g, =J VX (5.15)

Let the remaining four of them bg,, with (k) = 1, 2, 3, 4. If a tensor is characterized

by the indices) in what follows then it must be based upon a genérdbéin, but if it
is described by splitting the indices into (Q)), then the it must be based upon the special
choice (5.15).

4
Since thegj,, are perpendicular t@,, those four vectors will lie iR then, and
will therefore be identical with their affine reductgne., e.g.:

o = 9o &' =909 9"
The affine components of these vectors are then:
o= Yo G- (5.16)
They therefore also define a vierbein relative to tfieemetricg; , such that, e.g.:

I —
k) Gim @T) = 0w s

4
so the affine metric will be identical with the prdjge metric in the subspacg .
If the vectorgy, is established by (5.15) then the grdpwill be restricted to the

group®, of all rotations leavey,, invariant. D4 is the Lorentz group.
The theorem follows from all of this:

If a projective tensor is given in the fiinfbein representation thenwdhéind its
affine splitting in such a way that one will denote the indice®py(r), instead of(0),

or, in a formulation that will be extended to arbgrapinors later:
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The transition from the projective to the affine description is \&demt to the
reduction of the five-dimensional rotation gro@ (or its representationsio ©, 0 ©s

when one fixes the vectgy = J ™ X,

For example, ifa(, is a projective vector thera, will decompose into the affine
vector ayy and the affine scalamg . In the language of groupsy, transforms like a
vector under®s , but ap will remain invariant unde®, (it then feels the identity

representation, and is therefore an affine scalad,amn will transform like an affine
vector unde®,. A tensorfy s splits in a corresponding way into an affine tenggg),

two affine vectorg3 o) andBoys), and an affine scalgfo o -
One will then have, e.g.:

d = gia, etc.
with the previous notations.
The rotations of)s then act upon only indices in parentheses, sincedbegspond

to a change of the basgg” . Along with the groufDs, we also introduce the grou,
of length-preserving automorphismsff If " is a vector irfR, andF is an element of
D, (for fixed basis vectors!) then we will have:

a’=d", (5.17)

for the vectora’’ thatF mapsa” to, or in a different component representation:

a™=Faqg™¥ =M g®
, W= (5.18)
a, =Fa, =0* a,etc.
The relation then follows:
O, 0 =0t =H, 0, (5.19)

which is equivalent to (5.13)®,, is a tensor. The rotations @, that leave the vector
X" invariant define a subgroup that we will denotedy. We introduce:

ds =mdr, }
(5.20)

with m:H g

as the volume of the volume elemalt dZ is an invariant, due to the previously-
presented transformation propertiesdaf In ®s, one multipliesm by the determinant

H G)(V)‘”)H. By squaring the determinant, it will follow fro(6.13) that the square has the

value unity, so it will have the value 1 or — 10W D5 is the direct producD; x 9B of
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the group®; of proper rotations with positive determinants and tliecgon group®
that consists of the two elements:

1(0) = H(9) n(0) — _ (o)
9y =9 v =79

m is then invariant unde®; , while under the rotations @s that do not belong t®; ,
m will be multiplied by — 1.
When one introduces the relatign = g% o'” g, » the determinarg = ||g, || will
be:
g=n’||go Il == n?, (5.21)
such one will also have:

dz = +/-gdr. (5.22)

If L is an invariant the® =L is an invariant density. (4.4) will then assume thenfo

W= dez = ijdr. (5.23)
(4.10) will then go over to:
m 4
W= jL—dr. (5.24)
o
However, one has:
gl(;) - glgl) gz , 510) = J—llz X/I ,
such that:
1 0 0
m = J—1/2 (xll) - J—1/2 0 ' (X#)
(9g;) : (9?) (9;)
0
-1/2 4 : 4 ()
m=J""mXA,  with m= H O, H

It follows fromA, = o X, upon multiplying byX,, that:

X, 0, =0,
and therefore:
4
m=J"?mo.
(5.24) ultimately goes to:
4 4 4
W= jLJ”Z mdr = jLJl’Zdz, (5.25)

4 4 4 4 4
inwhichdX = mdr = +y —g dr is the four-dimensional volume.
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6. Metric field components.— Although the metric tensay,, splits affinely into
only a tensogi and an invariand, the derivativeg),.» of g,v cannot be represented in
terms of onlygiy andJk . In what follows, we shall employ mostly 2’ and not the

g - The quantitieg®,, that are defined by:
g('u)pv - _ g('u)pv — g(/l) Up — g(/l) v (6.1)

indeed behave like normal tensor components ufidend‘3, but not unde®s . For
that reason, one must observe thatgHeg, are not tensor components. While we would
like to regard the components”’ of the metric tensor as potentials of the metritdfie

we will speak of thfg(”)p./ as the field strengths of the metric field. Thamieology will
later prove to be useful in the physical interpretatiotheftheory.

The affine quantities:
A

9 "W = i ~ Gl » (6.2)

are defined in analogy with (6.1). Singgy.) andgg are constant, one will have:

_ @ _
Yo = Yy 9 ov = Lupvie = Dupow

4 ‘o (6.3)
Jeom = Yo 9 m = Ggim ™ Lo
Since:
9 = gig, (6.4)
it will follow that:
gy = 9,00 +d d) = x,,0’+a d).
Subtracting the equation that arises by switckhiagd o will yield:
=0, -9 =0 0 g - g 47 I
or
m Gk 4
dnev =9, 9 9 (ymk -
For doaw = 9nov 9, 94, » ONe gets from this that:
4
Yoymm = 9 iymin:
) (6.5)
oo = 9 tymo= 0-
We introduce the vector:
Y =J'Xx" (6.6)

The antisymmetric tensor:
Fou=Yupy = Yoiu (6.7)
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can be derived from it. It will then follow that:

SinceY, X¥ = 1, one will have:
Yo XE+ Y, 0= 0,
such that:
Fo X'=0. (6.8)

The tensoF, is the identical with its affine reduction, such that:
Fu=0,0, F, Fu=9/'q F,. (6.9)

With the help of the functiory (X*), which is homogeneous of degree one and has been
employed several times already, we define:

$v=Yv— (N . (6.10)

4
The ¢, are then the components of a normal vectoRRinso (In#),, are normal vector
components that are invariaft and’l3, and one will havg, X" = 0. Therefore, one will

have:g,=g' @, , & =0, @, . It will then follow from (6.10) by differentiatiothat:

Pviu= 9.',(|;,¢k + gl£(¢k|| g;I;:YVI,U-I' (NP -

If one infers the equation that results from this by dwiitg the indices andu then that
will yield:

(B11 = @19 9 9= Yo = Yujv=Fuv.

With (6.9), that will yield:
Fik =&k — & k.- (6.11)

Since 7 was an arbitrary function that was homogeneous degreetleneectorg,
will not be gauge-invariant then. Under the gauge tramstbon (2.17):

n'=on, Innp'=Inn+ingo, (6.12)
@, will change by a gradient:

¢, =¢v—(no), B =@~ (In k. (6.13)
Under an infinitesimal gauge transformatigr 1 +&£ A, one then has:

%V:_‘SAWy %k:_fmk. (6.13a)
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With gy, = J2 X, = 3*?Y,, one then has:
Jowlp= Jv? Yvip +% Je JpYu.

If one infers the equation that arises from this by $wnigv and o then it will follow
that:
o =32 Fpu #3372 (3 X0 = Ju Xy - (6.14)

That will yield, in particular:
gomm = I Fmmn (6.15)
and

goor=2(Yo=J"J.) .
With J; = J, gy, it follows that:

Y00 =~ Jono =-J " Jp- (6.16)

Due to the antisymmetry afy,)., in the last two indices, all components with equal
indices — such agnmm) » 9oymm)» Ja)©)©) 9©0)©)©)~ will be equal to zero.

7. Spinors.— We start with the four DIRAC matrices (i is not a tensor index!)
with the relations:
2(aac+ ok ar) = O . (7.2)

All matrix representations of (7.1) can be reduced to-fowed ones that are all
equivalent to each other. If one irreducible solutib(rdl) is given then one will get all
other irreducible solutions in the form:

S'a S (7.2)

Since theai are an irreducible system, one will have that anyrim& that commutes
with all ai will be a multiple of the identity matrix. One iructs:

Q=01 0205y (7.3)
from a1, o, as, aa, SO it follows that:
av® =1, Qo Ok + ai ap = 0, (7.4)
such thata, (=0, 1, 2, 3, 4 is not a tensor index!) are five anti-commgutoots of
unity:

slavavtava) =dw. (7.5)
If we now set:
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Yy = A/ O @ [no summation overd)!] (7.6)
then we will get:
2 M Y + ) Ml = Viw - (7.7)

(1) is again a tensor index in this. The produgtyy W2 W3 U4 is the single linearly-
independent component of a fifth-rank tensor that issamimetric in all indices (i.e., a
pseudo-scalgr One calculates from (7.7) that:

[ o) Mo U Mo M)’ = 9w Il == 1. (7.8)

Furthermore,jo) 1) W2 W3 M4 commutes with ally,, so it will be a multiple of the
identity matrix:

Yo Mo W2 M) Moy = & 11900 I with e=+1. (7.9)

While (7.9) follows from just (7.7), one will get= + 1 by the special choice of (7.6) and
(7.3). If another solutiow, of (7.7) is given then one will set:

, £

au= Yw)
v Yww

s@uav+ayal)=adw

[no summation overd'].

One will then have:

and
— 12 -1/2 _ 12 /s
YoYoYeVeVe=Eelldw I aoo Vo= llgwy I ab.

Hence, one will also have:

7

a1a%a30%4=0s.
There will then exist a matri@ such thatr’, = S*a, S i.e.:
V=S yu S (7.10)
If (7.10) were also fulfilled for a matriX then one would need to have:
S S=T ' T,
from which:
TSy = TS
and therefore the commutability 8fS* with all y,) would follow, such that:
TS'=c1, T=cS

Howeverc Slikewise fulfills (7.10).
Since the Hermitian conjugates, of y, satisfy the equations:
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31V Yoy + Yoy Yool = 9y } (7.11)
Yo YoV VeV = 119wy
there will be a matriy3 such that:
Yoy == BWw B (7.12)

That implies:

Mu) :_ﬁD_l (y)ﬁD:ﬁl}lﬁ 1/51) ﬁrlﬁm-
BB will then commute with all, , so it will be a multiple of the identity matrix:

£p"=c1, pB"=cp pf=tpB =ctp, (7.13)
and therefore:
ct = 1. (7.14)

Now, c can be chosen freely, to some degree, since alonggvigi = p €3 also
satisfies equation (7.12).

ﬁ/D — pe_i¢/2ﬁ|] — pe_i¢/2Cﬁ: e_i¢/2Cﬁ/: c ﬁl, with c = e_i¢c.
We choose = - 1. It will then follow from (7.12) and (7.13) that:
Bwa)' =By,  B'=-B  (H=iB (7.15)

We associate the concomitant vector spacgith a four-dimensional spin spagk. By
its very definition, spin space is a four-dimensionatioie of linear forms:

MRs (Us, U, Us, Us). (7.16)

In what follows, spinor indices will always be cheterized by upper-case Latin
letters. The choice of basis is arbitrary, and wierefer to the transition from one basis
to another as aS-transformationand the associated group@&s A spinor in fRs can

be represented as:
w=U ¢, (7.17)

in which ¢/¥ are complex numbers [or, more generally, elemenssmbdduleK (i) 9t, as
in no. 2, in whichK (i) is the field of complex numbers].
We now regard thg,) as automorphisms &s, in whichy - ¢'= yy,) y; with

Uk =UL Y« - (7.18)
Under the transition to another bagisby way of:

V = Uy, Uz, U, Uy) 2, e, Vk = UL %, (7.19)
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the matrixy(,) = (y«) Will go to:
Vi =2 W Z. (7.20)

One will then obtain another representation of flae and by changing the basis as in
(7.20), all other representations, up to the fagtot: 1 in:

Yoy M) M2) M3 My = €. (7.21)
From (7.17) 4 can be written:

in the new basis (7.19); i.e.:
ZLK [//,K — wL, [//,K — (Z_l)LK wL. (722)

With (7.20), it will then follow from (7.15) that:

BE VI = yus™

or
CBYWIY =ZByuI? (7.23)
and
(A=Y =28 5=-5 pB%, (7.24)
p=% Bs (7.25)

will fulfill the same conditions fory{, that 5 does fory,, . From (7.25) and (7.22), the
guantities:

W =gt B, with  B=(5,). (7.26)

in which 1/7K is the complex conjugate af ¥, transform contragrediently to the". A
Hermitian form is then defined upon the spin spgdoy i £ (which is invariant under
&), for which one will have:

W.¢)=Ww.9), (UK’UL):i‘ KL
(.0)=i0" Bw", Ww)=ig"“ By, (7.27)
%(w,y(mt//) =g* B, Vs w" = real number.

If one goes to another basis in the vector spadey way of a rotation irbs using

(5.12) then the relations (7.7) will remain unchanged, fuwnich, the existence of a
matrix Swith [|S|| = 1 and:

Vi =0w? o= €Syp S* (7.28)

will follow from (7.10). Since:
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YoYoYeVeVa=I10w? 1K o e Ua .

one will havee = + 1 for the elements oD, and ¢ = — 1 for the other ones. The
transformationsS then define a representation of the five-dimensioatdtion group,
which we would like to denote b, ,,,.. If one performs a change of basiginat the
same time as a change of basiRtinsing (7.19) and (7.20), with= S, then the matrices
WL will remain invariant under the rotations @, and will be multiplied by — 1 for

the rotations with negative determinants. By conttastelements of the matricgg =

9%y, are not invariant unde®; , since theg’’ will be changed. Those couplings of

the transformations iR and®Rs shall always be assumed from now on.
Since the expressions (7.27) are invariant under arblibesig changes MRs, (@, )
will be invariant undef®s with the coupling that was established, whige ) ¢) are the

components of a vecto, ), Kvy) are the components of a tensor, etc.

If we perform a rotatior of the ), like the components of a vector using (5.18),
then it will follow, precisely as it did above, théere is a matrix with || T || = 1, such
that:

+ ~+
CD(p)(O) W = £le(,,) T with &= 1 forTh f_DS ’ (7.29)
-1 otherwise.
If we now ultimately define the application of the ogierF on they, by:
FHa=P 9 Ty T+ (7.30)
then it will follow that:
F Yo =€No- (7.31)

The matricesy, then remain invariant under the rotations®f. By contrast, from

(7.29), under the application of the operdtaio the spinory, it will be subjected to the
transformation:
Fy“=T" ¢~ (7.32)

The quantities &, y, ¢), as a vector, will go to another vectgr ¢,” ), ¢) underF, the
tensor @, y, w ¢) will transform similarly, etc.

The transformations (7.32) define a representalgy ,,,, of D.

Like any vector, ), can also be decomposed into an affine vegigrand a
component in the direction o that has the fornyoy . For the transformations @i,
from (7.28), one will then have:

Y= o) = €Sy S, W0 S=eSyQ.
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The representation of the proper Lorentz grdp (determinant equal to + 1) that is
given by D(Ei/z,uz) is reducible then, sincgp commutes with all of theS that are

represented. That will be explained once more irfno.
We assume that thg, that are invariant undeDs are absolute constants; i.e.,

independent oK", such thaty, , = 0. With that, we then establish that the sgme
must be chosen at all points\gfand imagine the basis in spin space as being established
accordingly. The spinor componenig® will be functions ofX”, in general. We
correspondingly set:

L =H, " (7.33)

If H, = 1 then we will calky anormal spinor Normalization is performed precisely as it
was for tensors in n@, and therefore needs no further clarification.

8. Infinitesimal transformations. — The most important tool for the investigation of
the groups$s, &, etc., is their infinitesimal transformations. Th&finitesimal

transformations of the groujs are given by:

X H=XH+¢g & (8.1)
in which & are the contravariant components of a vector,cdad small quantity whose
powers higher than one can be neglected. Sfficiss a normal vector, one will then
have:

EH XY = & (8.2)
A vector a” will then have the new components:

at=a"+eé,a” ot =a*-a"=€eé" ,a” (8.3)
We define the operatad,” by:

O,/ a’=a"0;, O, a=-a,0,. (8.4)

(8.3) can then be written as:

For a product of vector components, one has:

3@’ By..) =By ..+ AP (3Bo)... + ...,

and we correspondingly define:
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0@ By )= O a)Bs ..+ a?(O,0 o) * ..., (8.6)

such that the operatap,” will also be defined for arbitrary tensor components b§)(8.
One will then have:
s(t)=e&v, Ot (8.7)

under the transformation (8.1). Furthermore, the changee volume elemerdr under
the infinitesimal transformation (8.1) is:

odr=¢dr ¢’ . (8.8)

If £ is an invariant density the@ d7 will be invariant undess , so o (£ d7) = 0, such
that:
0L=-€£¢",. (8.9)

Sincemis an invariant density, from (5.20), one will have:
am=-egmd’, . (8.10)

The operatiord in this always means the change in quantities at the pameQ under
changes in the coordinates, or, when written out eiglor any quantity- (X’# are the
new coordinates of the poi@®, which has the coordinate§” in the old coordinate
system):

F =F’' (X" —F (X¥). (8.11)

However, one can also write the change under theftnanation (8.1) in such a way that
one considers the changeFRnnot at the same poiQ, but for fixed coordinate values,
and thus defines:

OF =F/(XH) —=F (XH. (8.12)
It will then follow directly that:

F=0F+cF,&". (8.13)

An infinitesimal transformation ab, is given by:

XK =3+ g &k (8.14)
The following formulas:
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4 4
D|k0'm:0'kdm, leam:_cyl 5mk’
4
5(t|k) = £5m|n O mh(t&:.),
4 4
5dT:£dT§(k|k, (815)

4 4
dm=-gmé*,,
OF =3F +eF, & .

are then understandable with no further explanation.
From (5.17), an infinitesimal transformation®f is given by a tensor:

O, =9+ gt . (8.16)
It will then follow from (5.19) that:

(O +eg )0, +e¢",)= o) +e(¢', +8,") = ),

such thatg,, will be a skew-symmetric tensor. If we $et= 1 +¢£fin (5.17) or (5.18)
then it will follow for a vectore” that:

a’=¢efa (8.17)
in which:

fa'=¢", a". (8.18)
f can be decomposed into:

f=3¢ P (8.19)

in which the R” are the special infinitesimal transformations:

P, a”=da"- a,g”. (8.20)
They satisfy the commutation relations:

[P, PPP| = PP PP — PP P = off PP 4 of 0 PP AT PR ofP AT (8 21)
If one imposes the condition upon the transformati:fn@5 that they must leave the
vector X” invariant then®, will reduce to the subgrou®,. One will then get all

infinitesimal transformations o, when one sets ap (“)(V) that have one index (0)
equal to zero, and considers only thg'® for which both thed) and (3 are non-zero.

From (5.12), the infinitesimal transformations®f are given by:

@(V)(O) = J((Vl;) + & 19(.,)(0). (8.22)

(5.13) implies that ) = — Fo(y) » and is thus skew-symmetric. One will then have:



30 Chapter 1l — Mathematical theory.

¥ = £, a9, dayy=e99aw. (8.23)
We define the operatdt,,?, which acts upon only indices in parenthedgs (
P a¥ = a8 - a V. (8.24)
Hence, (8.22) can also be written:

o =19 5P d¥. (8.25)
It can be verified from this that:
P(V)(O) O('u) =0=P" O"u,

since a* has no indices in parentheses. One hg¥er“ = P, 2 a®, but R7a* #
P2a*!

9. Representations of the rotation groups— Representations were as good as
completely examined already by CARTAN) (and WEYL ¢), and were applied to
physical problems by LUBANSKI*. Due to the restricted scope of this report, we shall
therefore refer only briefly to the results.

Instead of the infinitesimal transformatiod¥®, we introduce:

RUW = pl)  for (u)# (4),¢ )2 (4), 9.1
RAW) = p4v) (®-1)
From (8.21), one then has the commutation relations:
[RONA) BoXR| = A0 Be) 4 (o)) o)
— H D@ RBNR) _ 5(B)XP) RO(@) (9-2)

Furthermore, one replacB¥’" with:

() One must observe the difference betweenRtkat is defined here and the P that was defined
above!

(® E.CARTAN, Bull. Soc. Math. de Franck] (1913), 53.

() H. WEYL, Math. Zeit.23 (1925), 271jbid., 24 (1925), 328.

() J. K. LUBANSKI, Physicéd (1942), 310-324, 325-338.
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A = _%(Ru)(z) + RI@),
|
__1 poe_ gae

B, =~ (RVV - R,

A, :%[R@)(z) + ROW 4 [ RO RO
i

B, :%[R@)(z) — R2W_ [ RAW_ Ry,

A, :%[R@)(z) + ROW - { RI0_ g9y,
i

Bq :%[ R3@) — g20 _j (R(3)(1) + R(4)(2))],

Cp :%(R(O)(Z) +j R(O)(l)),
Dp :%(RM)(O) +i R(3)(0)),
Cq :%(R(O)(Z) —j R(O)(l)), (93)
Dq :%(RM)(O) —ij R(3)(0))_

The A, and B, are then the infinitesimal transformations of thégoup ’;54 for
which the vectoiX” remains fixed. They are identical with the corresfmpdjuantities

31
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which their commutation relations are also given.

SinceA; commutes witlB,, the two can both be simultaneously brought into diabon
form. An irreducible representation d. is determined uniquely by the greatest

eigenvaluer of (A; + B,), and the greatest possible eigenvaud (A, — B;) when the
eigenvalue of (A, + B,) is fixed. We would like to denote this representatiorﬁﬁ%) (r,

S). r ands are greater than or equal to zero in this, and bothemh tare either integer or

half-integer, and > s. The degree of this representation is:
Ny g =2(2r + 3)(B+ 1) +s+ 2)f —s+1). (9.4)

The representatioﬁ_)fovo) Is the identity representation of degree one. Exaepthht

trivial representation, the representation with thalst degree if)fl,zll,z)with N2, 1/2)

= 4. It must then be identical with the representatit was given already in n@.by
the spin spac®s. We would like to give the infinitesimal transformasoP®® for this

representation explicitly. We assert that:
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POD () = 3p70% gt = 4120 -y 1 gt (9.5)

In order to show that, we start with (7.29) andTsetl +<t, corresponding to (8.16) and
(8.19):

_ Wo + €007 Hoy= (L—£1) Yo (L +£1);
l.e..

907 Yo = Mot -t Mo . (9.6)

b0 V' =1 b [Ua M. (9.7)

or, with (9.5):

We must then prove (9.7). Since one must assumeit(¢), one will have:

Y0 = ) W) for W) %= (v),
such that

Koy VP = oy y* V(V) - Yo y*¥ ¥,
= 25 VO [hoy Y + Y™ Yol = 2[3 p = o]

(0) (0) o]
(9.7) is then proved.

When we restrict the transformations @f to the subgrou@, by demanding that
the vector X’ should be unvarying, the representatiﬁ_)j;ys) will decompose into
irreducible representations of the Lorentz group:

(fS) Zz (p.a) * (98)
p=s o=~

E_)(“pyq) are irreducible representations of the gradp (which one gets from, e.g., the
symmetric spinorsﬂl_‘_ﬂm_‘_v‘ , as in van der WAERDEN). D(pq) and D(p - together

define an irreducible representation of the completertargroup.
From no.5, one will obtain the reduction of any spinor field, @fhimight be

represented by quantitiggthat transform under, e.glj(‘r’rys), by complete normalization

through the reduction oID(r s asin (9.8). For the simple spinors in the spin spagce
one has:

N5 N4
D(1/21/2) (D(1/2 1/2)+D(1/2 1/2 (9.9)

D(‘r’l,2 12 IS then irreducible under the complete Lorentz grolﬁi:o) is then identical

with the group®,itself. One has the vector spaistself as the space of representation.
From (9.8), one has:

DS, = Dao)+ Dao) (9.10)

o) —
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However, this decomposition is identical to the decontjpmsibf the vectors ifR by
means of the affine splitting in nB, page 15.
One can obtain all the representatid]ﬁ%s) as the tensor images of the spinor space

Rs, since the representation that is induced in the progacesRy)" is (5(:1/2,-1/2))n, and

when it is reduced, it will read:
n/2 r

([_)(51/2,—1/2))n = 2 z Crs DE()r,s)’ (9.11)

r=0orl/2 s=0o0rl/2

with positive integers, . In particular, for >s> 0, one will have:

N5 N5 — M5 N5 5 N5
D(r,s) X D(1/2,1/2)‘ D(r+l/2,s+l/2)+ D(r+l/2$— 1/2)+ D (- 1/ %5+ 1/2)+ D C 1/3 1/2

and forr =s> 0:

5 5 — N5 N5 N5
D(r,r) X D(1/2,1/2)_ D(r+1/2,r+l/2)+ D(+1/2: - 1/2)+ Dr(— 1/2,- 1/2?

and forr > 0:
[_)(E:‘,O)x I:_)(51/2,1/2): [_)3+1/2,1/2)+[_)?—1/2,1/22’
and
I:_)(SO,O)X I:_)(51/2,1/2): I:_)(51/2,1/2)-

The groupDs, with its subgroug®4, as a group that is isomorphic®, (D,, resp.),
possesses the same representation®aand ®,, but with the different meanings that

were given in no5. We denote those representationsfy, s . From no.8, the
infinitesimal rotationsS»? act upon only indices in parentheses and spinor indigs
not upon the indices, k. For a simple spinor — e.g4" — one also has (9.5) &9,
instead of 4,

10. Parallel displacement and differentiation of measure- LetQ’be a point inv
that is close td). Let the vectorQQ be given by the componentf# (g is a small
number). We call an infinitesimal homomorphism9f(and the associatels) at the
point Q to R (R, resp.) at the poir®’a parallel displacemendf a vectoray, when one

has, from no2:
nA O'(p) =A I'Ia(p) .

Under the groug3, the square of its lengtdn, o*? will not change whe* X, = 0,
and it will change by A M (ayy d?) whené* X, = A X*. While the square of the length
does not change for a normal vector then, for a nomalovector, it will change under

parallel displacement in the direction of the vedtlprecisely as it must, based upon its
homogeneity properties. The parallel displacement defised will then be an
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extension of the usual concept of the equality of twaorecat different points. If
follows from the requirement that was imposed thatwiliehave:

Aap=—E4(3 a'll(/‘)(v) I:)(/1)(V) =Y, M) ap (10.2)

for the change of the componeuts, , with still-undetermined coefficients, .
Under the transition from the bracketed indices inl(jLltx the unbracketed ones, one
should note that it will follow frona, (Q) — a’») (Q”) = aiy (Q) + g ay that:

a,(Q) = 9¥(Q ap (Q) - 9¥(Q a;,,(Q).
Now, one has:
9(Q =g¥(Q) —£é# g2(Q),

such that one will get:
Ja,=-1e& g, P a, -E4 g of, as +eEX Y, May. (10.2)
Since thew,,, are antisymmetric id ands, one will have:

%a»}Mv PA” ay = a»l//lvg/m ay ,
and thus, from (10.2):

Jav=-e&(wiv+ 9%, i) Q7 -Y.N] ay, (10.3)
which can also be written:
qay =-e &4, Q"-Y, N ay, (10.4)
with:
M, = @i+ o) gi,)- (10.5)

With g,, 7, =Ty, 4, the last equation will imply that:

Cv.n = @yun + 930 9y ()
Due to the antisymmetry @, in v andz, it will then follow from this that:
Coun+Tnw =950 9y o+ S Gy )= Inviu- (10.6)

For an arbitrary tensor or spiner’, from (10.1) and (10.2), one will have, in full
generality:
gal =&, -YmMa, (10.7)
with:
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Fy=r) 07+t P, (10.8)

We make the following further assumption about pardligdlacement: If one has yet
another neighboring poi@” (let the infinitesimal vectoQQ' be given bye’ 77), along
with Q’, then where’ 77* is parallel-displaced fror to Q’, it shall determine the same
point Q" (@ is the parallel displacement of ) that £ £# determines when it is
parallel-displaced fror® to Q". That means that:

e & T n'=¢een’T) &
and therefore:
r,=r, (10.9)
IS symmetric inuz andv.
The Fjv and @,y do not define tensor components, since they represent t

relationship between two vectors at two different poiritghen follows from (10.9) and
(10.6) that:

[y, 0p :%(gv0|p+gvp|a_gap|v)- (10.10)
It will follow from (10.5) when one subtracts the equatwith 1 and/ switched that:

v~ (9,(7[3, + 9;%7) 9ip = 0;
or, with (6.1):
Wav = G+ 9%, 940 = Gagu - (10.11)

One ultimately obtains from this that:
CU]//],u = %(gA,uv + g,uw] - gvA,u)- (1012)

Parallel displacement is linked uniquely with the metgi¢hat.

Parallel displacement in the four-dimensional wolldwill be defined in a manner
that is precisely analogous to the way that it is @efimV, except that the terms with the
operator M will not appear. All of the formulas above will ram true with a

4
corresponding reinterpretation, except that the quamtiti&V will be denoted by, ,
4 4
W, €tc., to distinguish them. (One daest havel, = g'T,, etc., then, bufk =

4
g, ', must be distinguished from , .)

If a vector field or tensor fieldr (Q) (from which, we suppress the indices) is given
then one can define the difference betwed®’) at the poinfQ’and its parallel-translate
a’(Q’) from Q to the pointQ’, which must be a vector or tensor again. We define the
operatort], by:

a@Q)-a'(Q)=eé"0ua.
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One refers to it addifferentiation of measureto distinguish it from ordinary
differentiationd / X #. While d / 9X # is not a tensor operation, since it compares tensor
components frortR at the poinQ and theR at the distinct poin®Q’, neverthelesd,l, is a

tensor operation; i.eL],a is a tensor with rank that is higher than thataoby one,
which will also be called thgradientof a. Just as we abbreviader / 09X “ by a |, , we
will shorten differentiation of measufe, a to a |, . With (10.7), it will then follow
that:

Auu=au+ Cu=Y,MN)a; (10.13)
e.g.:

atyu=atu+ e =Y, nat; a®y=a? 00 a-Y,Na®. (10.14)

4
The operatoix of affine differentiation of measure is defined coroegpngly:
4 4
0'k|||:0'k||+ ram, a® |||:0'(k)||+ ca,"‘()m)am. (10.15)

This is identical with equation (10.6), singg . = 0. Due to the tensor character of the
differentiation of measure, one will then have, ingral, that:

g/ullp :0, g/‘l/”’ = 0, g:N, = O’ g@ YU = O’ } (1016)

V=0 V=0 y,, =0, By = 0.

4
In order to find the connection betwegh andll, , we definel(, = g, I ,. It will
then follow from (10.8) for tensors and spinorshe fiinfbein representation that:

W = 4 Qoo PO, (10.17)

With the use of (10.12) and (6.5), (6.15), (6.1t6)ill then follow that:

4
“iymym = X 1xmn?
Woymyn) = -3 Jl/zF(m)( 0 (10.18)
Wiy = 33" Foym:
Qoyoxm = 39 oy

With that, it will follow from (10.17) that:

Mo =-3%J 12 Foym pOm +3 J* Jim pom (10.19)
and

4
F = T +43 " Fmm PO (10.20)



§ 10.- Parallel displacement and differentiation of measure. 37

Despite several later examples, the reduction of ifferentiation in measure of a
vector shall be carried out explicitly. We introdude thormalized vector with the

components?’ = H, a@”. It will then follow step-wise with,, = €" 7" that:

a,(A) (In/7I'I (A))ly_l_al[(/l)()eln/]rl a,(/])_Yyénql'l I'Ic_r”
=(nmNH,; a"+H, C_’M?;ﬁ P Hya' =Y, HyMa"
or
a Py =Hy [N My - YuNa'+ gy a’l. (10.21)

It will follow from this, with (6.10), that:
A v
aPyw=Hylpwna +a" 1(;,)‘* P a‘l. (10.22)
Now, a®),, = @™, 9, =J% a¥), X" =0, sincea"” is homogeneous of degree zero.

One hasp) = 0, moreover.
It will then follow from this, with (10.18), that:

(0) — -1 n
ao=H,z3 7 3,a’,
a®  =H [-¢.Na@+a® +1I"F a",

o _ ,7[ ?mllz_l n 1|m1/22 1 (onm_] (10'23)
a\o =H,[-33"°F a" 33" a ],
a|”m - HI7 [_¢m|—|g| +a|l4m+%\]l/2l:”|] Q(O)]

One cares to refer to the operation:
(B = By~ (BY) (10.24)

as gauge differentiation in measuyresince N represents the infinitesimal gauge
transformation ofg . The last equation in (10.23) can then be written

a'\n=Hy @), +33"Fa]. (10.25)
Likewise, the second equation in (10.23) can bé&evri
a©

=H,[a®) ., +33"°F.a“]. (10.26)

If one forms the expressiom(a*),, (a” is a vector) from (5.20) witim then one
should note thain contains only factors whose measure derivativessiiasuch thatn ,
= 0. It will then follow that:

ma*)u=ma*y+mya’=ma*,. (10.27)



38 Chapter 1l — Mathematical theory.

If we seta” =m* w” (in whichw* is a tensor density) then that will imply:
NEPES PR, (rjy_ m* m,) =Y, M w,
Since mrjﬂz m », as one checks, it will then follow that:
! = =Y, N (10.28)

In order to define the measure derivative of an arbitt@mgor density, we first calculate
) 4; i.e., the derivative of a scalar density. It fallofrom (@* is a normal vector in
this):

(0 a)ju=(wa*).— Yy a" N
that one has the relation:

g af+wat,-Y,a" M=, a’+wak,+wol),a”,
or, sincea “ is arbitrary:
Wy =t = M), =Y, Mo =1, -m myw=Y,MNw. (10.29)
It will then follow from this that for an arbitrarghsor density:

¢

e A g
e t-‘-l,u _r/wtm + rﬂt _Yﬂ Mo, (1030)

in whichT , is an operator that acts upon the indices ofis if t.. were a tensor.

11. Curvature. — Parallel displacement of a vector along a closed wdt not lead
back to its initial position, in general. For thahsen, a circuit around an infinitesimal
surface element shall be examined. Along with the pQjriet two neighboring points
Q’andQ" be given by way of the infinitesimal vecto®Q = (§#) and QQ' = (7#). A
fourth pointQ”, together withQ, Q7 Q" will define an infinitesimal rectangle. One
introduce the notatio®@' Q" = (7# + on*) and Q"Q" = (£# + a&*). One will then have
QY = QU +QT=QQ+Qq = (n"+¢&"+ 3! = (" + 1"+ ") relativeQ
such that one will havén ¥ = o~

For a vector or tensoo (the indices might be suppressed once more), parallel
displacement of to Q" means the application of the operator &I, - Y, M):

a-a'=[1-§"T,(Q-<¢" Y (QNQ)I a.

Parallel displacement € "to Q” will yield:
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@ - d" =[L-F + I (Q) - Y, (Q) NQ)] o,

such that ultimately, after parallel displacement adaine pattQ - Q" - Q”:

a"=[1- @+ 3w (Q) - Yo (Q) N(Q))]
X [1—& (T4 (Q - Y, (Q Q)] & (11.1)

Likewise, the patlQ - Q” —» Q" will give:
2

a"=[1- "+ ", (Q") - Yu(Q) MNQ]
x[1-17"(v(Q - Yv(Q NQ)] @ (11.2)

Since the difference between (11.1) and (11.2) is therdifte of two tensors at the same
point Q”, it will be a tensor:

N EX Iy =T+ Yo Myu= Yu M)+ Ty =Tul] a. (11.3)

Since the length of a normal vector is invariant undealfghrdisplacement, the operator
that appears in (11.3), namely:

/7V 5/1 (r,ulv—rvl,u‘l' [rv, r,u]) = %(Qﬂl /7V_ Q('u /7V)(r,u|v—rv|,u+ [F.,, r,u]),

must be an infinitesimal rotation. If one denotesdtidace elemend " — &# " by
do” then the parallel displacement arouwhdt” will be equivalent to the infinitesimal
transformation:
% da* Ry P/‘p_%FV/I r +%(YV Mju=Yu Ok
Rvy/lpp/‘pzz(r/llv—rvly‘l'[rv, r,u])- (11.4)
One refers toR,., as thecurvature tensor. From its very definition, it is

antisymmetric inv, g andA, p:
Rup=—Rynp=—Rym. (11.5)

One then has the further symmetry properties:

R,uvAp + RV/\/Ip + R/]yvp =0 (116)
and
Ruvip = Riguv - (11.7)

(11.7) is a result of (11.6) and (11.5). In order to show thatconsider the equations
that are obtained from (11.6) by cyclic permutatiop,of, A, o

RvAp,u + R/]pv,u + vaA,u =0, (11.6a)
R/]p,uv + Rp,u/lv + R,u/lpv =0, (11.6b)
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Rp,uwl + R,uva + Rvp/M =0. (116C)

If one adds (11.6) and (11.6a) and then subtracts (11.6b) and)(ttfe6at follow, with
(11.5), that:

2 Ruvip— 2R/]p,uv =0.

In order to prove (11.6), we consider the following patefiiped: Leté#, ##, ¥ be
three infinitesimal vectors that determine the neighlgopmintsQi00, Qoo Qoo from the
point Qooo . From the demands that were imposed upon parallebd&mpient, whed#
is parallel-displaced along”, and7* is parallel-displaced along”, that will determine
the same poinQi1o ; the pointsQio1 and Qo11 are defined analogously. If one now

imagines tha€* is parallel-displaced along” then one will get the vectd®,,, Q,,,- If
one now further parallel-displaces,,, Q,,, along the segmer®,,,Q,,, then one will

obtain a vector that is determined from a p&@hto Qo11. However, one will also obtain
the same poinQ” when one parallel-displaces the vectdt along 7/ and then along

Qv10 Qi10- One will find two more point® "andQ™ correspondingly when one performs

the same process with the other vectors. The pweesQ’, Q", Q" define a triangle.

However, the three sides of the triangle are theove®,,,” &* " ¢, Rul nt ¢V &7,

Ruwi” {* &Y ). Their vector sum is zero then, and (11.6) willded from that directly.
From (10.13), the operatal, of measure differentiation reads:

9
Ou=——+ =Y, M.
Froxw 1K

That will then imply the commutation relations:
[04,00] = 1Ruap PP = Fuu M+ Y, My =Y, M (11.8)

The commutability of measure differentiation and théhpadependence of parallel-
displacement are then equivalent to each other. Sagcmtion (11.8) is a tensor
equation, one also have:

— A
[0, 0wl = $Rawan PP = Fuam M+ Yo Mg = Yo Mg - (11.9)
One can pose relations in the affine wokldhat are entirely analogous to the ones in

V, which do not need to be referred to as “extra,” sinoe meeds only to replace the

4 4
Greek indices with Latin one8l,, with O, , R, , With Rmnr, etc., while terms with the

operatof1 will not appear.
The parts of the curvature tensor into which it s@itghely can be read off easily
from (11.9). Similar to (10.23), one obtains for a norvestor o’ :

| _ | | 0 |
e = (@ o) ot wm o) %) @) + @mmo) @) o) -
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Since, from (11.9), one has:

| [ — | | | 0
d()ll e — d()ll ™6 — R(m)(n)( )(f) o + R(m)(n)( )(0) o )’

one can read off the following two equations, along with18) and (10.23):

4
Rmn|r = Rmnlr +%J (le Frn + Fnl Fmr + 2 an F|r), (1110)
Ropir = £ 3Y2F,, +33 (1 For + 3y Fin + 230 Fy). (11.11)

On the other hand, for a normal vecwf whose affine part i&” = 0, it will follow
that:

| — | |
oy m = (@' o) ymt wmo” &g ,

| _ | | | | |
d Al i10= o9 % m + @0 @ m + wom® &g + wome a o
an

| | — [ 0
d()II(O) ey — d()ll(m) 1= I:\‘)(m)(o)( )(0) o )’

and with the same equations are above, one will getthsdt that:
Roniy = =232 0 2 Fon FP + 2372010 ;. (11.12)

No further components can be calculated, due to the sypproperties of the curvature
tensor. (11.10) to (11.12) then determine the teRsQp completely.
Now, one sets:

Ryp = R;/va: Ruwip QW‘ =Ry . (11.13)

One will then have the relation:

o R = R o + Ruoom - (11.14)
That implies that:
4

Ror = Ru+3Jd Fon B + 2323, 1 = 2372 Jm Jys (11.15)
and

R(O)f :%Jl/ZFn|r|kn+%J_l/2 Jln F nr . (11.16)
and {):

Royo =2373",, ~3J Ry FP =227, 31", (11.17)

The contraction oR, is the curvature scalar:
R= Ru/, = anm + R(o)(o). (1118)

Hence, from (11.15) and (11.17):

(*) We always mearE " =F, g% F,=F " g,, F'*=F, d* etc.
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4
R=R +iJ Fp F™+J3710m —17323, 3™, (11.19)

[lsm

12. Variational principles and field equations.— The metric in the spadgis given
by the metric fieldgL”). Later, we will also have to deal with matterd®ljn , where
the ¢ can be tensors and spinors.MJ(symbolically represents the various matter
fields and their various associated indices.MJ appears twice then one must sum over

them, as with any other indices.] We seek to arriviha field equations for all fields
from a variational principle:

5jB(q5+£)dr: 0, (12.1)

in which B is a normal domain iV, &, £ are invariant densities that are yet to be
described in detail, and the variatiodigw) anngf,”) are set to zero on the bound&y.

For &, we would like to focus on only those functionattdepend upon onlgf,”), 9%2
X', and g}, . Theg!’  might appear only linearly in it with coefficientisat are free
of the g'). Forg, we allow only functions oy, %) v, X, g5, andg{.
Since® depends upon thg!)  linearly with coefficients that are free of thg!’ |
one can use GAUSS’s law and partial integratiocotavert:
jBédr: jBﬁdeRA.--, (12.2)
in which & depends upon onlg?’, g%, andX". When one sets:
;i) _ aasi) (aaij | 552 _ aas _La o j otc. 123)
Yy 9 Y ), Yooy %y %y )y,
the variation in (12.1) will yield:
OR oL o oL
5j (B+L2)dr= IH‘S - 59(0) Jag;) S0 5¢/(M)} dr+j (12.4)

That variation must be equal to zero when the cbaagn the field quantities vanish on
the boundary. [That requirement can be fulfilled the boundarfr,, due to its peculiar
nature, and despite the homogeneity of fitg” (!), but it would not be fulfilled, e.g.,

for R and R when the changed do not vanish identically.] Since th&g'” can be

chosen arbitrarily (but homogenously of degree ~dbje will then obtain the field
equations:
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OR oL
——+——=0 12.5
o9y’ agy (12.5)

for the metric field. The variational derivative®t/Jdg(”, etc., are components of a
tensor density; that will follow directly from (12.4).1f one subjects (12.4) to a

transformation fronfs or ©s then the boundary integral will remain zero if it waso
before, and the integrand of the volume integral muwest tie a scalar density. Since the

6g9Y’ and dyw are components of tensors, the same thing will be ¢fuéheir

variational derivatives. We set:

OR oL
= Rl = S, 12.6
597 ) 3g" @ (12.6)
and
OF _ am (12.7)
5¢I(M)

The last equation can be interpreted as saying th4t = (1m) £™ transforms
contravariantly tagw . Let the tensors that correspond to the tensortien§12.6) be:

K(o)'u = m‘l ﬁ(oj'u, S(o)'u = m‘l 6(0)/1 . (12.8)
With the notations in (12.7), the field equations for niegter field will read:
M =0, (12.9)

If we setm * € =L andm* & = G then, from (5.25), we will have:

4 4
j(c5+£)dr:j(G+L)mdr:j(G+L)J“2mdr. (12.10)
If we now denote:
4 4 4
&=GJ"?m= J'® m
m mom (12.11)
e=LJ"m= 3" m'm

then the field equations can also be derived fioaraffine variational principle:

5j(é+f:)d r=0. (12.12)
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One must then employ the affine variablg8, ¢« in place of the field variableg!” and
J, resp., and they,, , that one gets from an affine splitting in place of thw) . For
example, if¢qv) is a vectory, theny,,, , will consist of an affine vectagk and an affine

scalargo) -
As before, further arguments will carry over diredid the affine case, when one
correspondingly defines the tensors:

4
0R

_ 4 oL 4
og® ‘ﬁmk’ oa® S (i)k’ (12.13)
Ok O«
and
4
4
552 = g™, (12.14)
(M)

Under the transition from five-dimensional to four-dms®nal integrals, one must
observe that the boundaRy will go to the boundary of the four-dimensional world-

domain, such that the integrgl --- will go to the boundary integral ---. That fact
R R

allows one to rewrite equation (12.4) as an affine orextly:.

[®+g)dr= o[ (@+L)dr

4

- y 1) 504(0) 4 (M) vzm 2
= ([R5 +60) 39 + £ ,)] I Eo|r+jR... (12.15)
It follows from the equations:
W=37Y,, ) =90d, (12.16)
that:
JQLO)ZJ -1/2 Y, & + Ji2 o, = 1] —1gl(10) A+ 2 By, (12.17)

[the last one is true from (6.10)], and:
og= o9 Ly - (12.18)
(12.15) will then go to:

4 4 4
5j(q5+s)dr
4
(18 ®+& D) 5a@ +(8 “+6&. M 5q" + Mgy 1372 gre ...
[(Ro) @ )09, +(& 0y )09, W] ol
(12.19)
= j 337 (R0 * S o0) 09 + 3"(8 0y + 6 () P,
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4

K Ky A 4 (M) M 4
+(R) +6)) g + £y, 13 m d”.[R"'
On the other hand, one has:

4 4 4
5j (G+£)dr
4 4 ) 4 4
= [I(R (+6 () 9G0 +(' +1') O, + (@ +b) D + £ “ay, 1dr+[ -, (12.20)

in which, along (12.13), one has:

4 4
poOR 08
5¢; 5¢; (12.21)
_OR 58
SR

lz (i)k:JllzK(,)k,

é(u)k: VI

K =Ky, (12.22)
vt =38y,

a =33 Ky,

b =378y

4
We refer toS” as thematter tensar S* as thefour-matter tensqrt kK as thefour-
matter vector andb as thematter invariant. With an affine splitting, equations (12.5)
will then read:

4 4
Ki+Sg) =0, (12.23a)
k'+t"=0, (12.23b)

a+b=0, (12.23c)
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13. Matter tensor and conservation laws-— Before we examine the field equation
in detail, we shall first derive the general theorents @nsequences that the form of the
action principle implies.

Since® was assumed to be invariant un@&t under an infinitesimal rotation s,
one will have:

_ _ _ 5.@ (o)
0=0ofedr= Jjﬁdr+jRA--- = Icfgff” 39" dr+J'RA~- (13.1)
In this, one has, from (8.22)
59 =9 9P =e8,. (13.2)

When one lets thé?,, be zero orR,, so the integral oveR, will vanish, it will then
follow from (13.1) that:

Rt #9u=0,
or
8 9,=0. (13.3)
Sinced,, is antisymmetric, but otherwise arbitrary, if will fmlv from (13.3) that:

K= gH (13.4)
IS @ symmetric tensor.
If we now consider infinitesimal transformationssef then, sincd & dris invariant

under$)s, we will have:
0= 5jq5dr: Jjﬁdr+jRA.--

With (8.8), it will then follow that:

o:j(5ﬁ+gﬁfvv)dr+jR

If one employs (8.13) then one will get:

o:jaﬂﬁdeR (13.5)

from partial integration. Since the possible expligpendency of the quantity upon
the X" plays no role in the definition & , it will follow from (13.5) that:

0=[8 g dr+[ - (13.6)

Since:
5o = e 00 o - e 9 € (137

[

(13.6) will imply that:
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0=¢ [[~(R N OL 97) s~ R gl 4 dr+] - (13.8)
If we now choosé ? to behave on the boundary in such a way jQAat- vanishes then:

(@) =0, (13.9)

Hla

(Bo) OL 9+ R 9
We have the relation:
AL =-R L OF 9, (13.10)
SO
B ~(0) — _ @) 5B
09 . =—0, Jﬂ .
It will then follow from (13.9) that:
Ahp-R 99 =0,

ula ~

SinceRf*”" is symmetric, it will follow that:

ﬁ(g';l g(g) = ﬁ/“/ Ao gg'l’; = Eﬁllv Ouila,

Hla
such that finally:
ﬁaﬁlﬁ_ %ﬁw Owula= ﬁaﬂuﬁ: 0, (13.11)
and therefore, we will have:
K¥j5=0 (13.12)
for the tensokK®.
Now, let us apply the same process to the intdggallz! Before we do that, note

that the relation (13.10) fat has the equation:
G ==& O g (13.13)
as a consequence. Under an infinitesimal transformafi§s, one will then have:
0=0/£dr=[[0"C +&(C &) dr. (13.14)

It will then follow step-wise that:

. o[ 08 ” . 0L
3L =&y 39" ){W%iw)} + 2™ 5" g + { W(M)J . (13.15)
v %

Once more, the possible dependency of the functiam X“ plays no role here in the
definition of 3°¢. Now, one has:

5*¢/(M):£E”|.,Dy" Wy — € Yoy v €. (13.16)
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With (13.7) and (13.13), one will get:

G0 00y =£60' £ 1D, 9 - €60 g &
=e[- 6,1 &P -6 9 &Y
=[S 14— 6w g 1E —€(Sp" A -
It likewise follows that:

M 5 gy = LM EX L D iy — € Yy 10 €7 M,

= e[ O Yy 1= € Yony v L] EV+ (€™ EX DL ) (v

With that, (13.14) will go to:

[[xy Y+ @Y% + 374 )1 dr=0,
with

X, = Gv#m _G(Ul)[ g = (S(M)Duﬂl/’(m ))Lu _S(M)l/l(M NA

v lu

|/ 62 v (M) Vv
@p‘fgévﬂ_aw Yoayu =S, + V00 ),
(M)Jv
0g

0L
3V/l - . D/lg(a') +
Yoagy T 0y

D:w(M)'

(13.17)

(13.18)

The second part of the integral (13.17) can be convertexd an integral over the

boundaryR, .
vanishes then it will follow that:

X,=0.
However, it will then follow from (13.17) that:

j@jv/zfy +3V25/I|A)|VdT: 0.
We now choose:
FH=ay X,

If we initially chooseé" in such a way that this boundary integral

(13.19)

(13.20)

(13.21)

with constanta”, in particular. (Thef* themselves cannot be chosen to be constant,
since they must be homogeneous of degree one Xthelt will then follow that:

%X+ 3= 0
D X+ + 3%, =0.

With (13.23), (13.20) will go to:

(13.22)

(13.23)
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[@% & X+ 3284 ) dr=] @ X+ 37) %14y, dr=0. (13.24)
Sinceé* |, is homogeneous of degree zero, one will have:
X=X =0, (13.25)
such that it will follow from (13.24) that:
3 EH =0, (13.26)
Due to the condition (13.25), it will follow from thisah
3743 =20 X+ X (13.27)

Due to the homogeneity of the field variables, € remain largely undetermined.
If one adds an expressionfahat is, e.g., zero identically:

=L+ (g X"+ ") o

in which§ 4 can be arbitrary functions @', g, ¢w), ¢w v, andX*, then one will
get:
oL _ 0¢
ag(ff) ag(ff) P

o o

Despite the fact that' = £, the derivatives will no longer agree. It will thietlow that:
Srvﬂ +3MV SM 3/“/ + XY S(U) D/I g(U)+ Xﬂ S(U D/j g(U).

Ql/ can be calculated from (13.27), when one considersﬁrdmt(13.18),3”j cannot

contain a factoX”, but at most, a factox”, sinceO,/ gy and9," ¢ do not contain
the factorX’. Therefore:
— 9 A (o " A
Q[ 2l([:r)D,u g;)+2[(M)Dy Yoy,
with

Ao = v 2 af})’ = 0 0% :
ox” agC, X" Oy

o

in which v is not summed over, arl/ X" is the derivative with respect to th& that
appears explicitly. One can now glinto another form, such that:
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AL,=0, w™M=0

without changing the value af. We will always use that form as a basis in what
follows. However,3”: will be antisymmetric irv and A then.
Equation (13.23) can be simplified further. It followsnfr (13.18) that:

0L 0L v M) v
D% =92 O | Tl =&, 1w+ €™ O, ) -
H s ag‘ ) & plu , Wy M)l H H

plv %

If one again denotes the partial derivativeCokith respect to* when the field variables

are held constant b€ / 0X“ (one then hasg / o0X* # £,) then it will follow for £,
that:
e, = 0L

ag (o)

0 o, 0L oL 00
agpl) 427 aw(M) (M)JU aw(M)p (M)HI axp

(@) 4
g plﬂ

o, 9L 0L oL
= G(U) g(pv), {ag(g) g(pv),jlv +£(M)¢/(M W +{—¢/(M )pjlv +6X_'” .

oV

Thus, one finally has:

14 o 62
D= G(Ufg(pv),—G(g’)’w +g ¢'(M) +(LMO, uWo)ut X
Together with (13.19), it follows that:
0L
Y= —— . 13.28
D X~ ( )

In affine geometry, all arguments will proceed in patadlith the help of the groups
B4, D4, except that one will immmediately obtain the sim@quations:

4 4

3n+30 =0, (13.27a)
4

5. =0, (13.28a)

in place of (13.27) and (13.28). When (13.28) is substitutetBi28), that will give:

v , 08 W
ij+(a>(—ﬂx " =0. (13.29)

uv

From the invariance und&),, it will follow that for an infinitesimal transforation:
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ag(g) w(M)w

Hv

o8 = 6(5559(0”{ 0L 59(0)} +£(M)5¢I(M) { o< ¢/(M)J, (13.30)
v v

in which g7 is given by (13.2), and:

My = € Fayp PP . (13.31)
It follows from this that:

_ — (a)B) ) (a)(B)
O—stdr—gj 6 ﬁ(a)(ﬂ)’LlQ ™ 79(a)(ﬂ)P ‘/’(M))
(13.32)

0L (a)(B) ~(B) 0L a)(p)
— g0 gy, —— 8 PP
Lag(ﬂlv) ( )(ﬂ) 5¢’(M)|V ( )(B) (M)

v

Since J5)p can be chosen arbitrarily, except for its antisymynete initially choose it
so that the second part of the integral (13.32) (whichbeanonverted into an integral
over the boundary) vanishes, and obtain:

S —gh@ 1 gp@E)y =, (13.33)

It will then follow from (13.32) that:

£ 0L .
Lag“’) g’ )(ﬂ)giﬂ)’zaxm*%ﬁ <a>w>P”(ﬂ)¢’<M>J =0. (13.34)

H (M) w

If we assume thaf )z are constants then:

0L (a)B) (B (B) o) A& 1 0L a)(B)
— -——g +1——— P¥y | =0. (13.35)
Lag‘ ) Y ogp) “0Wy

Hv v

It will follow from that and (13.34), moreover, that:

0L (@B §(B) _ 0L (B)0) ) 1 a(p)
5979 5 9 +4 PY Wy | Dy =0-  (13.36)
Lag(ﬂw) “ o oadly a‘/’(Mw

v

Sinced ) is an arbitrary (antisymmetric) homogeneous functiotegree zero, one
will have 95 v X = 0. It will then follow from (13.36) that the term inrpatheses is
equal toc®@® X, If we then employ the condition ahthat was established on page 50
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then it will follow that the term in parentheses canmave the forne®® X", since one
must have2(2, = 0,2"™ = 0, from page 49. One therefore ultimately has:

62 a)o o)(o a 62 a)
(g‘ ) )gl(lﬂ) - g9@ ))+ =3 )(ﬂ)w(M): 0. (13.37)

ag,(zjv) aw(M)w

We will now evaluate equations (13.19), (13.29), and (13.33) ailddtor a normal
tensor density /, one will have:

SV =6 1= 6, —%(gﬂf,) o t Do) (™ - &M,
in general, or:
S/ 1w =6/ 14— S g5y — anu &™. (13.38)

The same thing will also be true for the normal temmsity£™ O, # ¢
€™ O )i = €™ O )i = £ T, 04" dhowy (13.39)
On the other hand, one generally has:
Yoy 1= Yoy 1+ T, O iy +32 Dy Py gty = Yo T iy (13.40)
It will then follow, with (13.33), that:
£ 10 = " gy 1+ £ r.i, O oy — @i ™ =Y, £ Ny (13.41)
Addition of (13.39) and (13.41) yields:

€™ 00 mia+ £y v
= (€™ O g+ £y v — W &Y =Y, LM Mgy . (13.42)

If one subtracts (13.42) from (13.38) then it will followith (13.18), that:
%0= 6 1= (€™ O )i = € gy 1w = Yo £ Ny (13.43)

(13.19) will then imply the identity:

Sh, = (€D Ay ), +Y, LMy, + 2N, - (13.44)

vy

It follows from (13.29), with (13.18), that:
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0L 62

S =20+ MO g - 9% ———— Wy *
g%y, 7 a‘/’(M)w o axv
With (13.40) and (13.37), one will get:
ae ae e o 08
— W T3Py T O uy — @ -

Oy, Oy Wy 7 o9,

0L
- Yv M ¢’(M)|u-
Oy,

When this is substituted in (13.45), with (10.6), one will get

0L 0L 0L
S/ =L+ LMD Yy ~——— Wy — YWyt X
™) W (M)]] 5¢’(M)|ﬂ O 5%
0L 0L
+ V pr(M) o V g(ag) 3|/|/1

OWyiu ” ag(pv)z g

From (13.18), one has:
0L 0L
3/1/7 e pw — g(g)’
TR - 69( )
such that:
0L 0L 0L
&) =L + = X+ LMD Yy ———— Wy 5 Y Wy
oX” OWyiu Wy

3|/|/1 rjpBl;p

It follows from (13.48) that:
3Pt = 39”7 = o O Yy = 6?) 9" oy
o n’
W ) 1 09, 1
0L 0L
3/1/1/’ — 2 l//(M) _ ~ g(ﬂ)p .
W ) 1 09, !

Subtracting these will yield:

wﬂpﬂ - 3#/” _3#/1/’

0L 0L

——— (D" -9y ~— (9" &7 = g7 J)).
a‘)"(vvl)m 09,7 ! !

3|/|/1'

53

(13.45)

(13.46)

(13.47)

(13.48)

(13.39)

(13.50)
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From (13.37), if one takes (13.50) into account then (sifte P*? — 0" + P*A):

0L

Qn/lp/‘ —
aw(M) |

P g (13.51)

Since 2 is antisymmetric inz and p, one can, inversely, calculate the*! from the
25" by way of:
3401 = 107 + 07 - ), (13.52)

such that the expression f§f” will then contain only operations on the matter field
quantities explicitly. Sincejw | differs from gy |, only by summandsi€ / 0wy | »
will be a tensor density:

L (13.53)
O
347 is therefore likewise a tensor density, such that:
3 = 3 T30 +T5,3Y
Since 3% is antisymmetric iy, the last term will vanish, such that:
ST i I, (13.54)

Along with (13.53) and (13.54), (13.49) will go to:

S/ =g +£<—£V XY+ MOy = L Wy Y W) + 300 (13.55)

Now, if the matter field equations (12.9) are fulfilled ¢y then equations (13.33),
(13.44), and (13.55) can be simplified essentially even furthefollows from (13.33)
that:

S* =6 (13.56)

i.e., the matter tensor is symmetric, on the bakthe field equations. It follows from
(13.44) that:

G4 =0. (13.57)

vy

(13.55) implies:
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&=L +aa><_£” X — &M iy +Y )+ 3 (13.58)

Since&" is symmetric, one can replagé”” with £ (3*" + 3 in (13.58), such that,
with (13.51), one will have:

o 0e :
&% = Lg%+ (97 X!+ g X) =3 + Y g

—%Q(M)V ([/,(Mll)ﬂ +Y4“ [/,(M) ) +%(wm +wvﬂ/1 )IM

(13.59)

On the basis of the coupling (12.22), certain affine icelatmust be a consequence of

4
the relations for the matter tens®*. The symmetry of®x is an immediate
consequence of the symmetry®f, . A brief calculation will succeed in shortening the
tensor equation (13.57). One next has:

S = S 4y + g ST + gt SY9. (13.60)
The affine splitting will yield two equations. Firstalf, it will follow, with (10.20), that:

SO, ) = s

Lt I Jm SO (13.61)

Secondly:

SO,y = SO

Lt T I SO 107 g SV -1 3 O SO0, (13.62)

It will then follow from (13.12) that:

K(O)m

N e T (13.63)

and
K m ot JH2 = KOm +%J_l Jim Kgnm _%J—l JMKOO = o (13.64)

With the notation (12.22), these equations will then read:

kmIle =0 (13.65)
and
4
K nm||4m+ Fmr}<m—J|na=O. (13.66)
It will likewise follow that:
tmIle =0, (13.67)
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4

Snm||4m

+ F,t"- J,b=0. (13.68)

From (13.67), the matter vectb? has zero divergence. From (13.68), the divergence of
the four-matter tensor is not equal to zero, on théslashe fieldFy, and the fieldd.
(The physical meaning of that will become clearer laier) Equations (13.67) and
(13.68) will be true only when the matter field equations fulfilled. By contrast,
equations (13.65) and (13.66) are identities.

If one now applies the process of infinitesimal transftions that led to the
mathematical identities for the tensd¢€” and S*” to the affine case and the integral

4 .

(12.12) then one must imagine ti&tdepends upon not only theg, but also on the
4

andJ, which has just the consequence that, in general, on&tigs # 0. However,

4 4
everything can be carried over analogously fbfwhen one imagines thaf depends
upon ¢« andJ, in addition tog,,, ,), such that one will get the following identity from

(13.33), when it is rewritten in affine form:

4 4 4
& (@B)_ g (B)@) 4 @ (M) p(@)(B) Yo, =0, (13.69)

and from (13.44), one will get the corresponding affine aguat

4

4 4 4 4
6" n= (L (Ma) Y7/ +HO P )+L (M“)l//( won Tt k¢k“4 +bJ (13.70)

If the matter field equations are fulfilled then, since

4

O0,"b == ¢m 3,

that will imply the symmetry relation:

4 4
&™M=6" (13.71)
and the divergence equation:
4
Snm|l4m = _(tm¢n)||4m+tm¢m|h n+ b ‘]n ’ (1372)
or
4
Snm||4m-+_tm|l4m ¢n +tm(¢n A m_¢m|j1 )_ b ‘]n = 0’
le.:
4
Snm||4m+tm||4m¢n +t"F, —bJn=0, (13.73)
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which will coincide with (13.68) when one uses (13.67). Hamre(13.67) is also a

4 4
consequence of the gauge invariancelof (£ is gauge-invariant, sincé is an invariant

density.) If we perform the transformation (6.13a) andoaresponding infinitesimal
gauge transformation on tig,, , then we will have:

4 4
4 4 4
0=ofgdr =¢f _o%, - oL AN, + oL j 9% AN, | |d7
%k 5¢/(M4) %km 5¢/(M4)|n In
or
90 90
4 S S 4
O=¢ (tk MMy j)l— t"A+ A+ ANy dr. (13.74)
.[ k (My) a¢k|n k aw(M4)|n (My) |

If one choosesl such that the second term (which can be converted inbmuadary
integral) vanishes then it will follow that:

4
e -L™ Ny, =0. (13.75)

It will then follow from (13.74), moreover, that:

4 4
0L 0L
t"A+ A+ ANy =0. (13.76)
{ a¢k|n “ a4[/(M4)|n (M4)}

In

If one sets1 constant, in particular, then that will yield:

4
0L
"= {640 M w(M4)} . (13.77)
(My)In
[n

4
The vector densit(—-0 £/0¢y,,) M ¢, Will then have the same divergence as the

4
vector density" . If the matter field equationg ™+ = 0 are fulfilled then the following
two divergences will be equal to zero:

tn|n = O, (1378)
4
9 ny. | =0 (13.79)
5., (My) - '
a4[/("/|4)|n n
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With (13.77), (13.76) will imply the two identities:

4 4
ag ag
== Ny, —| — | , (13.80)
aw(Mmk o [a¢k|n }
4 4
0% 98 _,, (13.81)
a¢k|n a¢n|k

4
The vector density* then differs from the vector densify 0 £/0¢ y y0) MY,y by the
4
divergence-free term (0£/0¢,,),,- It follows from the definition of“ in (12.22) and
equation (13.80) that:
4 4
0L __ 08
a¢k aw(M4)|k

&, - (13.82)

The derivation of the affine equation that correspond438) will be carried out in no.
21 with (21.13) as its result.

4 4
Let us now go on to the integral o Since & still contains second derivatives,
they can be eliminated by partial integration:

[&dr = [Rdr+[ - (13.83)

4 4
On the basis of that, the integrélﬁdr IS not an invariant now under arbitrary

transformations o0&, , but just the ones that vanish on the boundary su¢tvéin@tion

of the boundary integral will give zero. If one goe®rothe arguments in pages 46
through 52 then one will see that equations (13.33) and (13.4bh we would now
like to present in affine form, are already a consequ@fidhat invariance in their own

4
right. They will therefore also be true f@, such that (sincB®® g, = P@® j=0):

4 4

KAM=g™ (13.84)
IS a symmetric tensor, and:

4 4
K nm||4m = (kr D nm ¢r)||4m + km¢m|hn+ a‘J|n
= _(km¢n)||4m + km¢m|h n+ a‘J|n

or
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4

Kot Ky @t K"Fp—ad), =0, (13.85)

which agrees with (13.66), with the condition (13.65). Howe{d3.65) is once more a

consequence of gauge invariance. Sin%edoes not depend upon the matter field
guantities, the equation that corresponds to (13.75) wallyirf13.65) directly.

The groupss, ®s then lead to the same identities for the projectitegrals that the
groups®., 4 lead to for the corresponding affine integrals. Inegal, the group&a,
®) O $Hs will first take on its deeper meaning in the projectiveatry, and the projective

integrals and field equations have greater mathematicglisity and symmetry than the
affine ones.




CHAPTER IlI

PHYSICAL APPLICATIONS

14. Field equations for the metric field.— Whereas in nosl2 and 13, the field
equations were examined in regard to their mathematicatsteubere, a special Ansatz
shall be attempted for the action quantity The requirements o& that were posed in

no.12 are satisfied by, e.g.:

=UQR+WQ I F+VQ] -9, (14.1)

in whichR is the curvature scalar that was defined in (11.18), whil®, W(J), andV(J)
are functions od.

For the calculation of the variational derivatiyés,, from (12.6) and (12.4), one
must note tha®, in the form (14.1), is a function ofv, 9uo, Yuude, Xv, Such that the
fact that:

B = 09" 8,0 + Guy0 4"
will imply the relation:
_ OR + OR
99,, 99,

VU

From (14.1), one gets:

36 =[U'R+UW J, 3+ UWI/-g X"X* &
+1g"UR+W L+ V][0 &y +UW I 3y &%,
+U Q) RS-g+20W L, a" [-g.

When the last term is integrated, that will yield:
Jouw g a® [mgdr=-]2 UW P, J=g X" X* &, dr+ J

It remains for us to evaluate the penultimate term éurthit follows fromR = R, g
that:

d? = RV/I @V/I + d?V/I ngu =- RV/I @V/I + gl//l d?ulu,

in which the relationy” = - g 9" &r-was employed. For the calculationd,, , we
remark that sincedT} is a projective tensor, the difference at the p@riwill be a

vector @’ that is parallel-translated fro@ to Q’(@ = &9, first with the help off,,
and then with the help df” +JT?” -
ors a’



§ 14. — Field equations for the metric field. 61

and must be the difference of two vectors at the qaom@. It follows from (11.8) that
for a normal vectorr, one will have:

i =0 A = R’

or when contracted with (11. 13)
a i =0 gy = Rur @

It follows from this that when one varigg, by 3., one will have:
Ruy @ =0(a i) = (@ ).

Since a’p = ap + I',a’, it follows that oo ", = or%,a°, and thus, one will
ultimately have:

o(a’ o) =o(aipy) + or;.aj,-or, a',

=(ar,,),a’ +or’ a%, +or, a5, -or; a’,.
That implies directly that:
Ruw=(0T%), =0T ),

It follows from that by partial integration that:
ju g#“OR,J-gd= j(ulp g¥ore,—uU, g#ore,)| - dr+j
One can derive from (10.10) that:

rp — 1g/7/‘ [(@/]V)llll + (d‘J/]y)”v - (d‘JV/I)“/‘]

so one will get:
'[U QWO_R/;,\/__Q o = .[(Ufw gV,uagﬂV _UlllII/ ngfll)\/__g d—+'[RA...

by a further partial integration. If one substitutesrgthing into the initial formula for
0® then one can read off:

=[U'R-UW J,3¥-2UW I+ U V)] XX,
+ 210 UR+W J,3P+VI-UW Jjy = U Ry +U Mgy = Uy

One can rearrange this into:
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1K, =[U'R-(UW)’' J, ¥-2UW & +(UY] X X
+1g,[UR+QU"+UW) J, ¥+2U X + U\J (14.3)

“UR,—(UT+UW) 4 4, = Uy

One can derive the affine splitting 6§, either directly from (14.13) with the help of nos.
10and11, or get it from the affine variational principle with2.22). Using the first way,
it will follow, with the use of (10.23) fod;, v, and withJ, o) = 0, that:

1Kom = 2gm[UR+ (U7+U W) J, 3"+ 203", +U’ T g, 3"+ U V]
~URm—U"+UW JnJm=U"Jm, -

One substitutes the expressions Boand R,m that were given in (11.15) to (11.19) into
this, and it will follow that:

1 _ 4 1 4 J ; 1 Fpl‘
U K __(an_i Gm R_ 2( I:nr I:m 2 I:pr gnn)
_ Un - Un ~ 5 ) 1
GHWSRI L W P 0 b g (14.4)

U’ _ "
_(U-*-%J lj(‘]|m||4n_ J||hr gﬂm)+% gnmv

It is simpler to calculat&, () with (10.23):
1Kn@=—URy-2U" I Fq "
If one substitutes (11.16) here then that will giel

It will then remain for one to calculakgoy() :

1Koy = (@ U +1U) R—U Ry + [U"- 2UW-J (UW] J;, I
+(U'-2JUWJ' | +UVJI+iUV

With (11.17) and (11.19), that will yield:
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+2(UU—JWJ I +(%+ J—j V+ JV (14.6)

+(U——%J’l———§W—JW— JU—V\a \N()
U

If one substitutes the expressionsKak, Knoy, Ko)o) that were found in (12.23) then the
field equations for the metric field will be exhibited in tth@ay. In particular, if no
matter is present then they will read simply:

Kom =0, Kn©)= 0, Ky = 0.

The same field equations will also follow as in d@. from the affine variational
principle applied to:

4 4
G =JUR+W@Q) Indm+V Q)]+ -9g,
or, with (11.19):

& :J”ZU(J)[?:%% JE,FM+ JH 30 +(W J-1 ) | T+ v)yF. (14.7)

4
The quantitiesKi , k;, a can be calculated very easily from (12.13) andQ1Rwhen
one applies the derivatives that lead to (1t8)atis mutandisviz., when one set#? U
in place ofU and replaces the Greek indices with Latin on@sth&t way, one is spared
the direct calculation of the affine splitting df4(.3), and one will obtain the quantities
(14.4), (14.5), and (14.6) immediately on the ba$the identities (12.22).

15. Identification. — Up to now, we have made no assumptions abouphisical
meaning of the quantities that were introduced. st do that now in order to be able
to infer physical consequences of the theory. tha, it is best to appeal to known
things. We then write down the total action qugnn affine form according to nd.2
and (14.7):

4 4 4 4
B+L=4-0 J”ZU(J)[RF% JE, F"+ ' 3
(15.1)

VI 3
+W(3)-% %) . J +\'(J+2JU %

If Jis constant then (15.1) will take on the form ofaiational principle:
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4 ] J 2
R+=1F F™+V(J)+—— L. 15.2
22 Fin (J) 23U (15.2)

However, a comparison with the general theory oftikettg will immediately give the
following interpretation:

Omn EINSTEIN’s gravitational potentials
Frmn Electromagnetic field strengths
1J=k  Gravitational constant

This interpretation will also be confirmed f&r,, from (14.4), sincé&n, will take on the
form of EINSTEIN’s gravitational field equations whenistset to zero. The energy-
impulse tensor also has the usual form:

e

Tk =Fi Fkr - %an Fm Ok -

We will be in agreement with that when we define thergyrimpulse tensor of matter
by:
d| 237U :
1 g
4 ()
2 _ g 5gk

according to (15.2). In thisy (...) /0g{”is EULER’s variational derivative that was
defined in no12 When one refers to (12.13) and (12.22), it feillow from (15.3) that:

To® = - , (15.3)

Se=-3UT, } (15.4)
Sc=-JU(I T

The field equations (12.23) then read:

4
U Ky = =2 U Ko =2 372U = —%Tnm , (15.5)

4
which says that, from (14.4T,m enter in the same way for matter Bs, does for the
electromagnetic field.
Once energy and impulse are identified, it onlgnaes for us to account for the
charge-current vector. It follows from (14.5), witl2.22), that:

== UTt T+ (UU +%J’lj J.F". (15.6)
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We then refer to:
s =-U"tJ%y, (15.7)

as thecharge-currenof matterand:

v = (UU +§J’lj 3.F" (15.8)

as thepolarization current of the vacuum

16. Solutions of the field equations— The field equations that were formulated in
no. 14 and interpreted in ndl5 admit solutions wheW (J) = 0. The electromagnetic
field and matter field are equal to zedos const., and the gravitational field is a solution
of the EINSTEIN equations:

Ri = 0. (16.1)

If V (J) # 0 then a solutiod = const. will not be possible, since the gravitational
4
equationsR+ 2V = 0 that follow from (14.4) by contraction would contdihe ones

4
that would follow from (14.6), nameliR+ V = 0.

Up to now, there has been no deeper discussion aftdmpiietation of the teri (J)
in the field equations. For the sake of simplicity, wauld like to always se¥ (J) equal
to zero in what follows. For that reason, we woulie io make the quantity (J), which
is coupled ta) as a summand in (14.4), proportionalta

W) =-1J% (16.2)

into which we have introduced a dimensionless constanin order to introduce no
further constants, (14.4) suggest the Ansat2Jf@j):

U @) =J7 (16.3)
soU”/ U will be likewise proportional td™. We shall first fix the exponemt later on.
The field equations will then read:

R-3 g RO(E E -3 F P @)-U+3+a-a) 7§ §
+3A+3+a(3-a)]373 I g +H(a+) T (- Ty @)
=172 ‘ék, (16.4)

Fn

r|n = _‘]_H_BIZL + (a +%)‘]_1‘:\n Fnr’

4
(+a)Re1G+a)F, F™+2(@+1) 370"

|l,n _(%_0')(0'+/])J'23|r I+ V¥ p=0.
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4
The fact that these equations possess the solutisrnst. wherFx = 0 andSik =
0, b = 0, as mentioned above, implies the demand that one stilidhaveJ = const.
approximately for weak gravitational fields, such thattfe absolutely largest domain,
equations (16.4) will go to MAXWELL's equations for electrodynes and
EINSTEIN’s equations for gravitation. Solutions of tladtér equations will also be
approximate solutions to the equations (16.4) above thém@ss the fields are weak.
The variability ofJ can first manifest itself for cosmological dimensoaor for
extreme energy densities. Two problem statements thggest themselves naturally:
The cosmos as a complete entity and the creatistads, as was inferred inductively by
P. JORDAN (Section I). Solutions to (16.4) can be gifegrboth problems, with certain
idealizations.

17. A model for the cosmos and the creation of stars: In order to be able to
describe an expanding world in a purely kinematical wes,choosex!, X, x° to be
spatial coordinate artc= x* to be a time coordinate. Let the spatial part ofrtbeld (X',

X%, X°) be a hypersphere of radipg), and let<, %, X° be coordinates of the unit sphere.
We can then write the line-element of the world as:

ds’ = /£ d —dt, (17.1)

in whichdg is the line element of the unit sphere. If we idtroe the notatiog = ||gi ||

3 4 4
(i,k=1, 2, 3)theng=-g= (M)?= p° (x', %, X°), in which £ does not depend upon time
t.
It follows from (13.68) that:

4 4 4
S 4n|hn =6 4n|n_% grs|46 ® = Jja—Fmu .
If we now set:
Tas = £ = energy density,
Tk =P Gk, (i, k=1, 2, 3p = pressure of matter)

in (15.4), under the assumption of an isotropic homogeneouidi®n of matter, then
we will get:

3%2U p2 9 P=Jbp*- F2U Ap?) -Fut™p3 (17.2)
The total material energy is then given by:

E:ja\/ﬁdxldxzdxazs,fjﬁd)&d)?d)?zZﬂz eps. (17.3)

As a first application of (17.2), we consider the specadep = b = 0, and the
electromagnetic fieldr = 0. While the physical meaning of the assumptpr0, Fi =
0 is immediately obvious, the meaningbof O is not entirely clear. We will explain the
meaning ob in no.19. With the assumptions that we have made, we vat tipet:
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— 13/ -1 A4-3,, — 1-3/2a A-
=3 p Ty =0Ty, } (17.4)

E - 2n2J—3/2y: 277-2\]_3/2_”1/,

in which yis an undetermined constant, and the second formutaviofrom (16.3).
For the electromagnetic tensor:

4 e
S©O=-3%U Ti=-3%U (Fi, F"— Fnn F™ gu), (17.5)

which, as we showed above, enters into the field eqsiio the same place for the

4
electromagnetic field as the tensar does for the matter field, one gets from (15.6) that:

4
S-(e)k :_J3/2U Fin”kan_Fintn-I'%JS/ZUF

i lkk mn|, i

an +_i an(\]3/2U an)|l4|
=~ %JS/ZU( I:in||4k + I:ki|L‘n)|:kn - I:intn-*-% JS/ZU Fkn||4iFkn+%,(§2+UU ‘]j ‘JS/ZU an an ‘]ia

or, since:

Fin||4k + Fnk|Li +Fy n — 0,

which is a consequence of (6.11), it will ultimgtéllow that:

4
SOk

@ =Fmi t"+J; 09, (17.6)

with
U’ mn
b® = %(%+UJJ FPUFE _F™. (17.7)

However,b® corresponds completely in the field equation (L6o4theb of matter. If

4 4
one adds the relations f&, and S then it will follow that:

(SO 5, = J (b9 +h). (17.8)
When applied to the expanding universe above liitfeliow exactly that:
(U p°e "= J (b9 +b) p°~3*Up (o))" (17.9)
in which £ and p are, however, the energy density (pressure, resp.jnatter +
electromagnetic radiation field. If the temperatus high enough that we can set the

pressurep in (17.9) equal to the highest-possible vajue 1¢ and ifb + b® = 0,
moreover, then we will get from (17.9) that:
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— — 13/2) -1 74+ — 71-3/2a -4
3p=e=3UYio=3¥p 7, } (17.10)

E=270%U 0= 21 ¥ p b,

in which gis an undetermined constant. The assumptioasi £ andb + b® = 0 are
fulfilled for arbitrary temperatures because in the évémat only electromagnetic
radiation without matter is present, from (17 &, will be proportional to&? — §2 (¢ =
electric field strength$) = magnetic field strength), which will vanish in theamn.

We can also write down the four-matter tensor diyefictim (15.4) for the two cases
that were just cited:

4
1. p=b=0, F =0 (.e,SP= 0);

) \ (17.11)
Su=-p%, S =0 for iorkz 4.
2. p=ie, b+H? =0,
4 4 4 4
(844+ sggj =-p“o, ( S+ $f)j =-1ip™o g, (17.12)
4 4
and(S4i+ Sg‘?jz 0 for ik=12,3.

When the field equations (16.4) are applied to the cosnmalbgiodel in question,
they will take on the form:

ﬁk—% Ok R[4 +i+a(l-a)] J* § J+dA+i+a(i-a)] F J I g

4 4
@+ Q= I 8) =3 TS+ ) =-3p"0 g (17.13)

— In
1+a)R+2(@+A) I

—G-a)@+N)JI* ] I+ (b B)=0,
4 4
in which the values (17.11) [(17.12), resp.] have been sutastifor Si+ S andb +

b®, resp. In order to evaluate these equations explicigymust still calculat®y , R,
etc.

In order to do that, we start from (17.1) and chods#, x° especially such that the
unit sphere is given by:

0+ Y00 =1, (17.19

such that:
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ds® = (dxX0)? + i(dx')z . (17.15)

Due to the homogeneity of space, it suffices foutate all quantities at just one point
—e.g., fordt =x* =x* = 0 — and indeed to calculate the metric tensoougecond-order

quantities in thed, 2, x> and thel}, up to first-order quantities in the, X%, X’. We

agree that the siga means that equality is valid only at the poiht x* =x = 0.
It follows from (17.1), (17.14), and (17.15) that:

0g = p? (j(dx')uj ¥k dkj—dtz,

SO
Oy = pz(a_ik +X )&() k=123,
0,=0, i#4, (17.16a)
040 =1,

from which, it will follow immediately that:

g“=p?(, - XX) k=123,
g*=0, i#4, (17.16b)
g44 :_1.

The three-index symbols then follow from this:

rirs iXiars’

Mes=T%=T%=0,

: ’ 17.17
M= ppo,, r;sﬁﬁds, (rs=123), (17.17)

in which %:% has been replaced with a dot. It follows from:
X

. . 4 .
| 1 —_— ]
Qi ~ @ = Raa

that for a vecton' with a' |« = 0, a' k1 = 0, with (17.17):

(i, k# 4) Ty =X +§5‘ka4’ Tu = PP,

i -~ 4 -~
0'”44—0', a”‘4_01
and therefore:
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3 3 >
a =Nak +at =S xa +32a%.
o A R 0
= =1

One will then have:
ayiw = (a'mi )Ik = gfork# 4,

S SRR N R
Qi 4= (alw )|k - 3[; - _2}74’

moreover, and:
i 2 | 4 k 2 .k
. I - - -
k# 4. Ak = IE_lalhklhl+aIlku4_3a + 200",

3 .2
q - Za,l +q - 3,0 a’
[ly 4 ki — A Iy 4l 4 ,02 !

such that:
4
i,k#z4: Ri=-0,(2+20°+ pp),

4 4 ) (17.18)
Ri =0, Ri=3-.
P
Due to the homogeneity of space, it will then gatiefollow with (17.16a) that:
4
i,k#z4: Ru=-p7g, (2+ 20+ pp),
4 4 o e 6 (17.19)
Ra =0, Ru=3~, R=—— (I+ 207+ pp),
P P
and finally §, k # 4):
4 4 5 4 4 5
Rk—3 g R=07gk(1+ 20" + pp), Ru—3 g, R=-30"(1+0"). (17.20)

Due to the homogeneity of space, the scalaan depend upon onty such that with
(17.17), it will follow that:

‘]Iilkk :_g G J; i, k# 4, J||T'44:_j,
Jja= I =0, 1# 4, (17.21)
J||I|4| :_(J+3—p Jj

P

If one substitutes (17.20) and (17.21) into (17th&n it will follow that:
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. \2 , .\2 . .
O i2+ £ +2£-1‘[/]+_1+a(1_a)j| i —2(0"*—])'0—‘]"'(0'4‘—1)2
Yo, Yo p 2 2 J 2)pd 2)J
4 4
=_J—a—1/2(sk+ S|(|f))'

\2 -\ 2 .
—%“{BJ P . “1"2}[&} ‘3(“+‘1Jp—J:—1J‘”‘”Z<éM+‘éz?), (17.22)

o o 2 4 2 J 2)pl 2
1) 1 1\ p) D 03
-6|la+=|=-6la+=| — a+ 20+ A a+A
( 2)[)2 ( 2j[pj 6( 2jp @ )_ 1 )pJ

{oforaf2] o

Let us first consider the case of (17.11)! Finding a swiuor arbitrary values odr
seems pretty hopeless. However, if the inductive casgeadl arguments of P.
JORDAN that were sketched out in Chapter | are valid trenshould expect that it is
just the model (17.11) that must give a solution of thenfor= o t, because stellar
velocities that are close to the velocity of lightl justify the Ansatz of settingg < &—

i.e., p ~ 0 — in all cases. (The velocities of the stars @ckoned relative to the
coordinate system of thé, x4, x, such that the expansion velocity of the universe does
not enter into it.) Another Ansajz= o t“, with # 1 would not be able to lead to a
simpler solution either, since 1of and (o/ p)?> would not contain the same powerst of

then. If we make the Ansafiz= J, t for J then it will follow from the second equation
(17.22) that the terms in (17.20) will contain the powémwhenB = -1/ (@ + 1/2).
Now, it is remarkable that there exist solutions ofdimeple form:

1

0=t J=Jt (17.23)

for only two values ofr. Substituting (17.23) into (17.22), with (17.11), will yield:

1 A+l+a(G-3) _
2 - 1)2 _0’
P 2(a+3)
3
% 1_% _ZJ a—pa Y, (1724)
1, dra
pZ " 2(@+i)?
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In order for this simple solution to be possible, thstfand last equation must coincide,
which implies the quadratic equation far.

f+—a— =0

1
3
with the two rootsa = 1/2 anda = — 2/3. From (17.23), the valug = — 2/3 givesJ
=J,1°%; i.e., an increase ty?, which cannot agree with experiment in any case, azprd
to Chapter I. The best prospect for agreement withrarpats is given by the value=
1/2 . For that reason, we decide to fix the still-madsecally-arbitrary functiorlJ (J)

with (16.3) as:
U Q) =J*2 (17.25)

(17.24) will then imply the two equations:

Lt

ks 4 2

JE S S B Py
6

02 12 6 20

(17.26)

The value forp, :

follows from the first equation. The second equati@mtyields:

y=2J pa (4 +,0a2)-

With the introduction of a new constafifin place ofy; with (17.4), one will have:

Pt s M
p Po (17.27)
£=’8°, E=2m 0,

We think of all quantities in (17.27) as being measured in nataitgl, as in Chapter
l. We recognize immediately that the relations (17.2T) agree with the inductively-
inferred order-of-magnitude relations (1.1) whérns a number with order of magnitude
unity, and/ is likewise roughly unity in natural units. The pure numbdhat was
introduced in (16.2) can be derived only from experiment.

For the other extreme case (17.12), in order to solve (1ia22)= 1/2, we make the
Ansatz:

L=t J:Jlt_Z,
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and find that:

Lz qepy=-1 2
b 6J.0,

“3i3_@ey=-1 9
b 2J.p

-5 s+ +a=0

Lo
It follows from the third of these equations that:

PP

oy

If one substitutes this into the other two equatitimen they will become identities and
yield the relation:
0=12J37%p/}.

With the values (17.10) for the energy densstyand the total energfg, when one
introduces the constad?p,"c in place ofg; one will ultimately get the result that:

p:t\/§—1 1] :/(:_1_6
2 Ja-1" ° o B’ (17.28)
£=4, E=27p°4.

Just as the value ¢gb was not fixed in the first model, the value @fis not fixed
here, either. In natural units, we would have xpeet a value fog3 that would have
order of magnitude unity in natural units (i.e5 S atomic nuclear density). Generally,
we must still specify what sort of experiment wen @mpare the latter model with.
From an idea of P. JORDAN, this model seems toumalde for giving a deductive
foundation for the creation of stars.

In order to do that, we consider the followingusmins of our field equations, which
certainly exist (but are not calculated exactlyJoy with the cosmos as a whole, a
smaller stellar cosmos is created spontaneously ishaompletely separate from the
cosmos as a whole, as might be suggested in Hig.etaggerated ratios of quantities,
and in which the three spatial dimensions have beplaced with a single one. From
(17.28),k will decrease with the age of the star fkein the small stellar cosmos. After
a certain timex will have attained a value in the star that isghme as the value &fin
the cosmos as a whole, so it will be possible tatinge the solution in such a way that
the small stellar cosmos fuses with the cosmoswbade. It is at that moment that the
“new star” will first become visible, and indeetietexpansion velocity of the fusion will
be around the speed of light initially. From (1I7).2nd (17.28), one will have:
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_ e b ME /w
,Ostar— (,a.mlversa (ﬁlj 2 A _1 ’

at the time point of the fusion, so the order ogmeude in natural units will be:

/ /
Pstar ~ (,Qmiverst)l 2, tstar ~ (tuniverst)l 2-

——

e N
— Y

Figure 1.

The current age of the universe is arountf kDnatural units, such that for a star that
is presently being created, the time of its existewp to its emergence in the cosmos will
amount to around 8 (~ 10° sec). The mass of the newly-created star wilhcide
with its mass at the time point that it emergeshim cosmos, up to order of magnitude,
le.:

Estar"‘ (,Ostar)3 =~ (,auniverst)3/2 - (tuniverst)3/2 (17-29)

so for a star that is being presently creaked; ~ (~ 50 solar masses). The radius at the
moment when it emerges in the cosmos wouldohe ~ 10° (~ 200 km). At that
moment, one must regard the star as a degenerat¢han consists of matter that is
almost all neutrons. The explosion that would ltefsom the emergence of the star must
probably be identified with the phenomenon of aesnopva. For the consequences of
this picture of stellar creation and its relatiopswith the problems of cosmic radiation
and the creation of the elements, whose detaileclidsion has still not been concluded,
one would do best to read the two works of P. JORAe Herkunft der Sternand
“Zur Theorie der Sternentstehung” (Referenc@lsand [LQ], since these considerations
go beyond the scope of the projective theory ddthaty, and therefore, the scope of this
booklet).

18. Current and charge.— One has the following divergence relation fae thatter
vectort™ that was defined in (12.21):
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tm|m =0. (181)
If we introduce the current vectaras in (13.7) then we will have:

(32U s™),, =0,

' 18.2
or 5m|m:_(UU+gJ_lj Jms™ (18.2)

It follows from (15.8) by differentiation that:

. _ (YU, 3. o
Vi = (UJ’EJ lj Im Flir

and with (15.6):
v, = (U_+§J-lj 3.8,
u 2
such that one will then have:

(s"+0Mm=0, (s"+ V"), = 0. (18.3)

The divergence of the charge-current of matterealbmes not vanish, but only that of the
combined matter and polarization current. The gmeshen arises of how the total
charge if matter will behave in an expanding urseer In the coordinates, %, x°, t of
page 43, (18.2) will read:

3
Z(J3/2up3§)" +(J3/2U,0354)|4: O

1=1

Q= j s*p* [ dxt dx® X (18.4)

is the total charge of matter then integratingptevious equation over all of spacex?,
x2 will give the relation:
(,J 3/2U Q)EI: 0’
or, withu =J 2
J2Q = const. (18.5)

If the constant in (18.5) is not zero then thaltaharge of matter will not, in fact,
remain constant, but will increase lid&. However, from experiments, the total charge
Q of matter is probably equal to zero, and the amtsh (18.5) must also be set equal to
zero. From (18.5), the conditidgp = O will then be compatible with the expansiortiod
universe and variablé
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19. Scalar matter field.— Whereas, up to now, we have introduced the matter fiel
only indirectly by way of the matter tens8y, with the use of the associated conservation
law, in this section we would like to explicitly examithe simplest-possible matter field.
We introduce a real invariant as the field quantityy is then homogeneous of degree
zero. The physical meaning gfis given by the energy-impulse tensor and the charge-
current vector. The simplest Ansatz #rs theng =L m with:

L=3[a Q) ¢" @+ BO) ¢ (19.1)
The matter field equations (12.9) then read:
(@) -By=0. (19.2)

Sincey! ¢, = ¥ y, from (12.11), one will have:

4

L =33 (a¢" y+ By, (19.3)
from which, the field equations in affine form will inypihat:

(3"ay),— I By=0, (19.4)

which one can also obtain naturally from (19.2) by dimadtulation with the help of
(10.23).

Sincey is a scalar, from (13.51), one will ha®¥*' = 0 and therefore alsg™ = 0.
The matter tensor density is then calculated from (13.58)

0L yu_ 0L

Gvy:£5vﬂ+ e
x' " oy,

&y -

The matter tensor then reads:
SU=3(ay” y+ By -a gV g+ (@ @l gn+ BYHXIXE, (19.5)
in which a” andf’ are the derivatives af andf. That will imply the affine splitting:

S’ =3@ytyc+ By o7 -ayy,
S(O)m - O, (196)
S0 = Na' g+ By +3 @y BYY).

It follows from (12.22) that the four-matter tenssir

S,"= 13 (a gk g+ YD) &7 - I a ™ o (19.7)
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The matter tensor is equal to zero:
t"=0, (19.8)
and the matter invariant is equal to:

b: %Jllz (a/wlk ¢4k+ﬁ,¢lz)+ %J—llz (a[/llk ¢4k+ﬁ¢/2)- (199)

Sincet ™ = 0, the field will represent uncharged matter. The energy-isgul
follows from four-matter tensor:

T*=-J'U" [%(a l/’" A +:3¢’2)a|_k _awlkwl } (19.10)

The field variabley can be just as well replaced with any multiplefo&ithout changing
anything in the physical meaning of energy and ilsgu For the sake of simplicity, we
set:

a(3)=JU, } (19.11)
B(3)=3U *(J).
(19.10) will then assume the form:
T =330 @y ) rayty, (19.12)

in which i is, as is known, the mass (in natural units) ef¢brresponding particle under
field quantization.

In order to explain the meaning of the matter iirara b, we would like to investigate
the field equations in the coordinates sysiem?, x°, t that was used as a basis in ha.

4 3
If \-g = \/g = p® 72 with the notations that were used there, thenfikle
equations (19.4) will read:

(p3 Zl/ZJ awk)lk_p3 lelelzﬁlﬂ: 0. (1913)

If we setd”? a = o and denote differentiation with respectttby a dot, to abbreviate,
then it will follow that:

. o : IO
g+ 1y +(—+3£j¢’ —p Y Q) =0,
g Yo, I k=1
in which we have sef! = o2 ). We solve these equations by way of the Ansatz:

w=Y{) Z (x4, %, X).
It will then follow that:
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v+[g+3ng+[ﬂz+(LpﬂY: 0

3

Z(szykl)u +{1°2 =0.

k,1=1

(19.14)

The solutions to the second of these two equationspdrerical functions, which we
would not like to give explicitly, howevelrl. is capable of taking on only discrete values.
However, ifp is very large theh/ p will be practically continuous in the first equation
(19.14). Since we would like to investigate the macrosdogli@avior of the solutions of
(19.14) in the mean, the second equation will have no ésiseignificance for that
purpose. We make the Ansatz:

Y = 0.—1/2p—3/2 ¢

for Y. We will then get the following equation f@r which is free ofg :

. \2 .. .. . \2 . 2
S EORTTR AR
o g 20p 2Ap p p

We now consider the state of the universe, moreavieere o, o/ p, / pl p, like

olo, \old,andalsoul i1, \/ 1l j1 are large in comparison to the elementary length.

Since 1 /u has the order of magnitude of the elementary kefigecausg: is the natural
unit of mass for elementary particles), we can $fynfhe equation forp above to:

w{uﬂ(';ﬂ $ =0,

With the conditions above, we can easily solve #gsation (the real part of it, resp.)
approximately by way of the Ansatz:

p=ud.
The two equations follow fan andv:
2
U—uv + ,L12+[I—j u=0,
Yo,
20v+uv=0.

From the assumptions above, we can negleat the first of these two equations, such
that:
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2 1/2 2 1/2
v = ,uz+[l—j : V= J't ,uz+[l—j dt, resp.
P P
One will then get:

E:—Eg, u:(\'/)_l/Z: {luz-{-(l_j }
u 2v Yo

from the second equation. One will then have, toficEnt approximation {):

cos j{yz{l—j} dtl.  (19.15)
0

We would like to use this solution to calculate the spatm@ temporal means of the

-1/4

-1/4

W=z Jva a,—llzp—3/2 {,uz +[I—j2}
P

4
tensorS“ and the matter invariamt over several periods af. If follows from (19.7),
with (19.11), that:

éik _ %Jllza[ﬂ2$2_¢’2+i¢’h¢’|njdk — Mgy, (19.16)
and from (19.9): )
b=33"a KH 23 %)(ﬂ2$2—¢2+iw“wmj+ A py 2} . (19.17)

We would next like to show that the mean value of:
2,7,2 2 3
W=+ Wy,
n=1

is equal to zero. Wheais large, only those values lothat are likewise large will play a
role. However, if we normalizg in such a way that the mean 8f is equal to unity

then in the mean over all spherical functions thebig to the eigenvalue® in (19.14)
we will have:

() The asymptotic integration of (19.14) that is presertiede leads, e.g., to the asymptotic
representation of the BESSEL functions by way of tingagon ‘y+%y+ ay=0. Cf, e.g., COURANT-
HILBERT, Methoden der mathemschen Physikl, Berlin 1931, page 2&% seq.
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o\ "L2 5
wlmwln :wOZJ—1/20—lp—3 ,U2+ |_ E |_ 5:1 for m, n# 4.
P 6\ 0

The temporal mean of co§..) has been set to 1/2 in this. We will thenénav

o\1/2 2 2

g o | 1 | |

2,0,2 _ 2+ k = OZJ 1/2 1.-3 2+ - - 2_ 2+ _ +| —
KU =47+ 2 = 73 p [u (p” 2{# [u (p” (p”

=0

On the other hand:
-1/2
w|4¢/ :_wZJ—1/20—lp—3 /,12+ I_ : E
|4 0 0 2"

Thus, one ultimately has:

2 21/2
. 4.k_ 1 2 -3 I 2 l k 4n_
mnzd: S =-=¢g, 7 — || U+ — 3", S, =0,
6 P P

_ e Ua (19.18)
S44 :Ewozp_a{,uz'*'(;j } )
and
2 -1/2
h ' 2 -3 2 I
b =3u¢sp u{u {Ej } : (19.19)
One gets the energy densétgnd pressurp from (19.18):
2 1/2
EZ%J_BIZU_l,O_Sl/IO{,UZ'*{I—j } ,
P
(19.20)

ot fefy])

One easily verifies that, in fact, equation (1742julfilled with (19.19) and (19.20) and
t™ = 0. One obtains the two extreme cases that disogissed in ndl7 for (I / p) < u
[(1/p) > w resp.]. Inthe former case:

£= 1J—3/2U ,031/’02 2, }

19.21
o (19.21)
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and in the second case:

&= % .J —3/2U —lp—%OZI_’
0

| (19.22)
p=3J3""U"p %w<

Formulas (19.20) also admit the corpuscular imeggtion ofn particles per unit
volume of rest masg and impulse / p, with which, one will then have:

n=1J3%U"p Y,

With this example, we have explicitly establisited formula for the matter tensor
that was employed in nd.7. However, the assertion that we made in the meebove
that we must sdb = 0, which still has yet to be justified, also eees some degree of
explanation. b is equal to zero when the magsof the elementary particle that
corresponds to the field does not depend updn One can learn nothing about whether
L does or does not depend upbpurely on the basis of the theory that was preskent
here. However, sincg* proves to have an order of magnitude of the eléanghength
experimentally, that would give much support to éissumption that is a constant, and
therefore independent 8f However,b = 0 then.

_ 4
A basis for havingp = 0 can given under more general assumptions. Has the
form:

4
L=3"U QM (@ Porox )
in whichM might no longer depend updrandJy , so from (12.21):

4
b:OmUYM:L%thmUL

4 4
then it will be proportional toL. Now, if L (and thereforeM) is a homogeneous
function of degre@in ¢\, Y, ), Moreover; i.e., if:

4 N 4
L(Aw(Mw/W(MM): A L(w(Mww(mnk)’
then one will have:

4 62 62 52 62
NE=——Gu,*=—Ywox= 5, Yo ¥ 5%y | -
W, W ik W,y Wi |

Now, if the matter field equations are fulfilleceti
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4
4 0L
ng = Dim,)
Wik )

If we integrate this equation over the spated, X2 of the expanding cosmos then it will
follow that:
4

n[€didlad=| 25y,

(My)lk

Now, if the solution of the field equations is templyrapproximated by periodic
functions with frequencies that are large in comparigothé variability ofd then the
temporal mean over several periods of the latter egjeswill be equal to zero, and
therefore when one takes means over space and timeyilbaltimately have:

4

£=0and b =0.

As far as the physical meaning of the individual assumgti® concerned, it should

4
be noted that the first assumption about the dependenithye Gfction quantity onJ
represents just an extension of the assumptionta0. From (15.3), the expressitvh
that was introduced above will then represent justgthentity from which the energy-
impulse tensor can be calculated directly with no &ridssumptions from factors that
depend upod. The first assumption is then equivalent to sayiag ¢éimergy and impulse
do not depend upahexplicitly. In the next section, we will learn céses in which that
is not the case exactly, but only approximately, stheeextra terms diminish along with
J, and therefore play no role fors> 1 (i.e., the age of the universe is large compared to
an elementary time unit). The experimental fact #lbelementary particle masses and
atomic masses have the order of magnitude unity in natoitaland have no abnormally
large values is suggests precisely that LAGRANGE functibasdo not fulfill the first
assumption (at least approximately) seem to play no ralature.

The second assumption of homogeneity is fulfilled by odlthe LAGRANGE
functions with degree 2 that have be examined up to novandnportant in practice
when one ignores the interaction of the fields vetdth other. One can also formulate
this in such a way that the second assumption is, nee sextent, equivalent with the
assumption of an ideal gas; that assumption cannot tieeisn general then. However,
we can justify that assumption (approximately) in the tases that were considered in
no.17:

In the case of the universe as a whole, we can retigdindividual matter
components (even when they are themselves composit@)nasonents with constant
mass and practically negligible interaction (ideal gastl®e matter content of the
universe).

In the case of stellar creation, the temperaturéegknerate neutron matter must be
regarded as being so high that the interactions will ligeylay no role in comparison to
the kinetic energies.
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It then seems to me that the assumptions gbantb that were made in nd.7 are
the most natural ones for the macroscopic treatmethteafivo problems that were posed
there.

The field of an invarianty that was considered up to now proves to be uncharged. A
charged matter field can already be described by a €3isgalar fieldV if we letW be
complex, and introduce the demand for the griduihat:

T Y=dnry, (19.23)

With a complex¥, we have basically introduced two field functiddsand¥” (complex
conjugate oM) or also the real and imaginary partsdbaf The simplest invariant for a
LAGRANGE function is:

L=1[a@WI"W,+BQ) W W (19.24)
In the case of (19.23), the infinitesimal transformafibof the groug is given by:

NWY=ily, (19.25)
such that, from (10.24):

l-P”V:LPW—”YVLP. (19-26)
(19.24) then reads:

L=1[aW!'W, +ilaY W, ¥ -W |, W)+(2T a+p W V]
The middle term in that expression does not have thmaldorm forL that was required
in no. 13 in order to be able to calculate the matter te@pr It follows from (19.23)
that:
W, X=il W, e, W, Y=ilJtwy,
such that one can also wrltan the form:
L=1[aW! W, + (B-12"0) W W] (19.27)

The field equations follow most simply from (19.24):

(a¥!),,—-pw=0. (19.28)

For the calculation of the matter tensor from (19.2%oading to (13.58), one should
note that here, as abovg}” = 0. It will then follow that:

SH= Lo —1a WV, +W"W ) —[aWP W, + (B-123"a) W W] X, XX,

or:
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f= Lo —da(Whw, Wiyl
=23 WX, W -, XA -l Wl XHY) (19.29)
+Ha' WP+ B WX, XA

For the calculation of the affine quantities, thelaac# must be normalized in the
way that was described on page 8. SiHge= € " #, the normalized invariant that is
associated witl’ will be:

w=e""Py, w=¢"y, (19.30)
With (10.24), one calculates from this that:

Yo=0, Wo=€" "¢, (19.31)
in which:
U= Ye—il b

The field equation (19.28) can be rewritten in affine fonmmediately with the help of
(19.31) and formulas (10.23) and (10.25):

@2 ayg N -pI"%y=o0. (19.32)

These field equations are naturally also a consequdrtbe affine variational principle
for:

L=1 3" (@ ¢ y+BY O (19.33)

The affine splitting of the matter tensor can be wakted from (19.29) and (19.31):

S =iayty  + BYW)ST-LaW - - ),
SoOm — _% il J—1/20,(¢,DI_m¢, -y L"l/,D)’ (19.34)
SO =S (ay My + BY YIS+ Na'y "y + BYY).

One gets the energy-impulse tensor, charge-currentryectd matter invariant from this
using (12.22), (15.4), and (15.7), resp.:

T =-3"Ua[ 1@ o, + BY ) I -y, ey,
s =3l aWw | w-y, ), (19.35)
b =33 a@ ™ Y YY) 3 3@ Y W+ BY W)

Sinces # 0, theW field represents charged matter. If we employ (19.11) weswill
get the usual form fof; ¥ ands , such that under quantizatigm, as well ad, will yield
the charge of the particle. This interpretationgofind| is likewise implied by the
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discussion of the motion of the-wave field for the case in which the “wave length” is
small in comparison to the change in the metric fidid.full mathematical exactitude,
this means that in the Ansatz:

Y=A /) (19.36)
for the eikonal or phase function, one ha,|| > |a’Jy |, |6" v | . (19.36) implies
that:

W =Aigye”, (19.37)
with:

Pv=dv-1Yy. (19.38)
@ is not an invariant, but only a scalar, since itda# from (19.23) that:

T,p=¢+lInp,
such that for the infinitesimal transformation of treups:

ne-=l, (19.39)

with which, (19.38) will follow from (10.24). It will thefollow further from (19.37)
that:

(@¥M=Al-agVpp+i(ap™] €’
and with the assumptions that were made:
(@¥My=-AagVg,é’.
The first-order partial differential equation f@rthen follows from field equation (19.28):
agV e +p=0, (19.40)

which corresponds to the eikonal equation of geometricopiitie “rays” of théP-field
are given by the characteristics of (19.40):

dXx”

F(X",p)=app-afJ'+p, S =20 f,
d¢_ V dn/ —_ I ’ ] — —
E_Zapvp1 E——(agp“+,8—aI2Jl+alsz)\]v (19.41)
-ap,9%, B,

As is known,F (X ¥, p,) will then be an integral of the characteristic eqat If p, = ¢},
andF (X ", p,) = 0 for the initial manifold then it will be true fdhe entire solution of
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(10.40); i.e., for the entire manifold that is spanned bycttaacteristics that go through
the initial manifold. Since, from (19.39), one will have:

gv X" =1=p, X", (19.42)

for the initial values of (19.41), that condition willxeays be fulfilled; i.e.dl / ds = 0,
which one can also calculate explicitly. We can putlaisé equation in (19.41) into an
invariant form. Next,p, is a normal vector, since it follows from, X* = | by
differentiation thatg ., X" + ¢, = 0, and thereforp, |, X + p, = 0. It will then follow
from (19.41) that:

dnp, dx#
= = Pviiu

i i (@pup'+B+alPI?—a’PINy,. (19.41a)

The rays (19.41) characterize the classical pathsegfdtticles that correspond to the
field. The path is given projectively by (19.41a), in whicte considers (19.42) to be the
initial value. If we sef3= a 47, in turn, then we can also write (19.41a) as:

2a%pyupt=-a’(appu+B-alPIN Jv-20" pp'y-a? 1232,
Due to (19.40)F (X", p) = 0in (19.41), such that:
Pone =33, 1232+ 21"). (19.43)

In order to find the affine representation of the patnext remark that, with (19.41)
and (19.42), we will have:

il o = 93X (19.44)

Po) = 2a ds

The two equations follow from (19.43), with (10.23)

— (0)
0 =poyim P™ + Poyi o P

= (J_llz I) m 1 de 1J—1J dxm J 1/2| = J—l/2 iﬂ’
20 ds 2 ds 2a ds
-2 (12 T2+ 2uu’)
= Pam> L & ——+1J"?F J_l/2|—1ﬁ—%Jl’2F L ax J -1 I
2a ds 20 ds 2 ds

The first equation gives the aforementioned f@icf ds = 0 once more. The second
equation can also be written:
dx™ dx™
Popm—— = Fmn—— = 2a 1 1" Jn . (19.45)
ds ds
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In order to introduce the proper tide= / —dx‘dx _in place ofds we substitute the

value into:
dr’=-4a%p‘pds

that (19.41) yields wheh (X *, p,) = O:

P pe=-

:—’uz,

SHAN

which will give:
dr=2auds
If we denote the four-velocity by:
e dxf
u - T
dr
then it will follow from (19.45):

W:(yun)mmur":l FamU" =2 3n =1 Fomu ™= 14 . (19.46)
However, in the event that’ (J) = 0 — i.e., in the event thatis independent of —
this is precisely the known equation of motiondmass point of magsand chargé. If
the masg/ is not independent afthen a new, supplementary tegmJ;» will appear in
the equation of motion. However, from the argumambve, it would be plausible to
assume that = const. For uncharged particlés (0, i = const.), one will get projective
geodetic linep, |, p* = 0 from (19.43), which will yield geodetic lines, , u™=0 in the

affine case. If # 0 then, from (19.43), the projective geodeticdipg, p* = 0 will give

the paths of particles whose mass wouldube /123" +const. This very large, but
never observed, mass seems to have no meanintuire.na

20. Spinor field. Electron wave field— In these next, final sections, we would like
to show that the known field laws for electron, tnen, and meson fields can also be
represented in the projective theory of relatiwityan elegant way.

We can describe the electron wave field, as in7nday a spino¥™ with complex
components, for which one will have, unéér

LW =gk, (20.1)

A simple invariant that can be employed as a LAGRFANfunction is:

L =Re %[p(J)LTJK BV ) Pl +o()P* B, W™ ] , (20.2)
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in whichfRe is the symbol for the real part, apdJ), o (J) are real functions af. Since,
from no.7, B y* and (1 i) Bare Hermitian matrices, one can also write (20.2) as

L= B[O (B ) W = P (B W [+ TP B, 9" (209

When one sete = p 1, that will imply the following matter field equations:
1 U
y ' u {w“ﬁ# +§%wa“”}+yqﬂ: : (20.4)

(20.3) has the normal form that was prescribed irlBpsince no terms lik&X “ W, , enter
into it, so we can calculate the matter tensor f{@h3), using (13.58). One constructs
the tensor:

weer = 9% piogu, 9% g g
M M
v, oW,

from (13.51). From (9.5), one has:

in which 17”’1”' is the matrix that is the Hermitian conjugate/&f. . Thus, one has:

WHA = g[q—'l{(ﬁyﬂym)mwh‘ _QK(VM,BV#)NK[PK] ,
|

W = Re ELTJK‘(W‘W)KM W }
because? y* is a Hermitian matrix. It follows from this that:
W W =gte | BB (e | (205)
with y* =1 ()" - y*y") and the relationg (y'y" + y"y*) =g 1, it will follow that:

Vv +yty =gty eg” -2yt

However, sinceB y” are Hermitian, the expression in brackets in (R be pure
imaginary, and thus:
W+ W = 0 (20.6)
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With MW" =i ¥", from (13.64), one will have:
VI AV _ P gk u My [ 9 -u2_ -1 @K YR
ST=Lg" +%Re EW BV im ¥ +EJ PlLI W (BY )P X
P 5k M s2_0 -1 |gkK M | v i
+2 i—\P BY ) ®P o+ T +pold EJ WE(BYVo)m P | XX 0
If we employ the field equation (20.4) and then fdnet that:
Re (EJ'“TJK(,BV) wMj:o
i ATKM !
then it will follow from (20.2) that = 0, and therefore:

s* =%{—%¢’K(ﬁy“)m [.BWM'” +2p J‘lx”WM}(v o H)
L (20.7)
+—2[J’” xvxﬂ\TJKﬁKLwL}.

In order to calculate the affine splitting, it necessary to first calculate the affine
splitting of WY, . SinceW" is not a normal spinor, we introduce the norméiray - of
W by way of;

W=7yt (20.8)

Since the representatioB?,,, , ,, is also irreducible as a representation@of whis

already the affine splitting 8P-. One will then have:

wh, ="yl +1aw,, PPyt +il [(ng), =Y, 10"},
or, with (6.10):
W, =d" (g, +10,, PPyt +il g, ut).
The splitting is then:
Yo =€"" @opm ¥ M,

Whim =" (@M 3 dmon YO W ™),
in which:
Y= Wi dmyt
With (10.18), it follows that:
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LIJI|_|(O) :%eillmy (__% J1/2 Frl V”R/I + J—l 40) y(O)(OLM )[//M ,

LPL 14lInn L +1J1/2F ) L M (209)
[Im =3¢ (y||_m g (I)my M‘/I )

I

With that, one calculates the affine form of thédfiequations (20.4):

ymLM {w'\ﬂ”_m+%(%+%\]‘j Imw } (O)L [ 1J1/2F yn l/’ +1J ‘1' (o)l\il\l M}
+uy'=0.
If one considers that:

ym y(O)I - y(O) y y(O) y(O)I — yl
then one will get:

4 {V in* (fﬁ;fj WM}%Jl’an(y“”y")LMwM +ugt=0.  (20.10)

That agrees with the DIRAC equation of an electraim whargd and masgy, up to
the supplementary terms J.m ... and ...Fq ... Once we have presented the energy-
impulse tensor, the charge-current vector, and the mattariant, we will go into the
meaning of the supplementary terms. It will follow fr¢20.7) that:

S™ =0 L (B ) |- LI Ty Y e ) (201)

and
sOm= {w (ﬁy’“)m[ IR, y”MNw”—fJ‘lq.(y<°>V)MNw“—2pIJ‘“W}
A (W”)KMwM“—m} .
|

If one multiplies (20.10) on the left blélzgziK(,[z’W)f)KL and takes the real part then it

will follow (since B /?y* is a Hermitian matrix) that:
—Re [ﬁlpK (,BV(O)VS Vm)KMél/ Nh_m}

:m{ (,0 +£ 5 jJM BYOyM " - J1’24Z7 BYY"iu r|¢’M}

Now:
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Re [prK‘ BYV V" eut M”_m}
= L BYOVY )t = BV Y Vot .
Since (7.15) implies that:
BYOry" =yTyEBYO =By BBy B BV =By Y VO = B0y Ty
it will follow that:
Re [iﬁw BYOVY M”_m}

= L[ BV T BV Y 0]

= 27 By ] —me[.ﬁw “BY) e M"—S} ,
| [Im I
such that ultimately:

- Re [Tplﬁ‘{ (BY?)im w“”—m} = [%427‘{ BYOY )it }

Ils!

+ Re [8 IV T BV e - 6 £ g wK(ﬁymy”)KMwM}

If one substitutes this into the expression3&P ™ then it will follow that:

s<°>"‘:J_{%fw(ﬁwwmf)mw“ﬂj 1P Byt (2012)

Il

Next, it still remains to calcula®®© from (20.7):
sOO = me{w (W“)KM[ IR - p IO e -2p! J‘“ia“”}
] K L

or, sinceB YO0 ' = ' is Hermitian:

91
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S5O0 -p[s. IR BY Y " ~213 g By O 4"
(20.13)

+2039" B 0"

The energy-impulse tensor, charge-current vector, andemevariant can now be
written down immediately:

1

T = J-lU'lp{m{%wK(ﬂV)mwM”k}g IR G By Y )" + (i k)}- (20.14)

If we now fix p [as we did witha (J) in no.19] by:
p=JU (20.15)

then T* will take the usual form, up to the additional termFinl ... For the charge-
current vector, it will then follow that:

=-ut?y {4 PI PP (BY ) W™ + yl&p ka(ﬁy%mf)mwj }
Ly
SO

= 1@ (BY) 0™ - 1J‘3’2[UJ 7 BY Y™ ] (20.16)

Up to the second supplementary term, this is tl@mvinform again. Furthermore, one
has:

1 K 0 M 1K 0 M

b %U‘][gﬁllp (ﬁl/ )V”)KMl/’ _2|‘] 427 (ﬁy( ))KMw
1

+ =
2

(20.17)
,U'JUZI,UK,B KMwM }

One next recognizes that the supplementary temntbda equations of motion, the
energy-impulse tensor, and charge-current vectamataproduce any noticeable effect in
any normal experiment, since they contain eitherféetordm orJ ™2, and are thus either
based upon the variability dfor they will contain the factor I# for our current age of
the universe, as in n@7. Due to that factor, the influence of the exearts seems to be
lost to any observer. Speculations that the extmas are coupled to the magnetism of
rotating stellar bodies (which P. JORDAN has dised3 have not been confirmed up to
now, although the extra terms that contain thed fekengths yield an extra magnetic

moment of the particle that is (in the first appnoeation) / /2 times the mechanical

angular impulse (in natural units), which is aaatat is precisely what seems to have
been observed for the Earth and the Sun.



93 § 21. — Vector field. Meson field.

21. Vector field. Meson field— As a further example, we consider a vector fi¢ld
Since we wish to combine charged and uncharged mesona syimmetric theory, we
assume that th®, are not real numbers, but elements of a three-diowaiK-module
(cf., no.2), namely, the so-called “isotopic spin space.” Ed¢h(for a fixed v!) then
consists of three real components. Furthermore, aiygedefinite metric is given in
“isotopic spin space,” which might be briefly denoted9y such that we can imagine

choosing the basis ifR; in such a way that the metric (i.e., “inner”) producttwb
guantitiesv andW in R; will be given by:

VIW=VW +V; Wy +Viy Wiy,

in whichV,, Vi, ... are components fR;. The group of rotations #; is defined by the
metric. One axis (e.g., the lll-axis) is distinguishedlge “charge axis,” in such a way
that one has:

T,U, =My, (21.1)

for Uy under the transformations @, in whichi 7 is an infinitesimal rotation around

the lll-axis, so€?™ is a rotation around the charge axis through an angge @ in the
previous sectiorl, is a real number, and as we will find once more lateridentical with
the charge of the meson. In that case, the infimi@dransformation fotJ, is thenll =i
Iz .

We define the antisymmetric tensor:

Dy =Uy i —Upv, (21.2)
such that:
q)/jV:UV|/1_U/1|V+|IT||| (YVU/[_Y/I UV) (213)

We assume that our LAGRANGE function is:

L= %[—;a(J)CDW @ +B(I)U, WJ“] (21.4)

in which the dotOmeans the inner product f&; . L is then invariant under arbitrary

rotations infR; , and above all, unde€p, and is therefore an invariant, as one would

demand. The field equations read:
(O'CD'W)”/,+,3U V=0. (21.5)

In order to calculate the affine form of the edurad, in this section, we would like to
deviate from the path that we took for the affiriational principle. The vector field
U, splits affinely (after normalization) into an &k vector fieldu, and a scalar field) .
We then get a field theory that is intrinsicallyik&d” here. From (10.23) to (10.26), one
has:
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q)mn — ilnrp [¢mn+ Jl/2 anqo)]’ (21 6)
o)) — alllnngzy, J—l/2( Jl/ZL! ) '
n(0) 0)/|_n?
with:
@mn= Un ILm —Um||n > (21.7)
and
Un|im = Un||4m_i | @m Tin Un .
Therefore L will assume the form:
4 1/2 1/2 mn 1/2 =mn
L :% [ (¢mn ‘] an L{O))EQ¢ + ‘J F L{O)) (21 8)
+Bu, W+ I3V, (372 4e) "+ B oy Oty |-
The affine splitting of (21.5) follows from this witi= 17 a :
a—lJ—1/2[Jl/20(¢mn+ Jl/Zanqo))]”_n +/j 2Um:O, 21 9
a'_l[Jllza'(JlIZU( )||_n] _i(¢mn+ JlIZF L% ) an—/j 2'..{ :O ( . )
0) Il 2 mn (0 0)

Here again, we then get the known form of the mesontiegsa up to supplementary

terms, withu as the rest mass of the meson.
For the calculation of the four-matter tensor, t&tdrom formula (13.55), which we

4
carry over to the affine case, in which we must consiti¢o depend upog, ,, ¢, and

4
J, such that if the matter field equatiofis™+ = 0 are fulfilled then we will have:

4 4
4 4 oL 0oL 0L 2 I
6nm: 25”m__¢n_ ¢r n+ w n +3;” ! (2110)
P, Oy OW i e N
with
4 4 4 4
3 Imn _ %(QU Imnygy3 ml_ g3 nll‘f) (21.11)
and
T 98
DA} Imn _ Z~ pm ¢r P”m[// . (2112)
09, 0P, "

From (13.82), one can set:

4 4
! : 0L 62 oL 4
S nm = £5nm ¢r n l// no ¢n + Inm .
a¢r|m . a4[/(M )Im Mol a¢r|m .

Ir
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With (13.81), one has:

0 ; 0 ; 6£4} 6£4}

£ £

= [ =— F —-| — .
a¢r|m ¢r”4n {a¢r|m } ¢n a¢r|m " {a¢r|m ¢n}|4

It likewise follows from (21.11) and (21.12) that:

4
4Im_ 62 4Im H 4Imn_ 1 " Imn 4 mnl : nl
3 n— W¢n+3 n with é - E(Q_U +Q_U _Q_U ")
rim
and
: 28
Q_U Imn = anl//(M )
a['[I('\/h;)ll

It will then ultimately follow from (21.10) that:

4 4
4
énm_ ¢ n _6—2 (M4)||_n_a—£|:nr+§|nm|hl' (2113)
a¢(M4)lm a¢r|m

If @ |menters into only in the fory,, then:

4 4
0 _,0¢

0,  OF,

4
Since& "™ is symmetric im, m, one can also write:

4
2 nm 4 nm 1 a L n
S"™=1Lg ——{—zﬂ(w)' +(mo r)}

) (21.14)
_E{@_L F* +(m o n)}+£(\z\/mnl+( Mo I)j .
2 Il

If we apply this to (21.8) then we will get:

= :aJl/2(¢mr+Jl/2Fmr U(O)),
rm
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4
oL 12 \Lm
—=a("“u ,
o, ( )
a 4

L a mr 1/2 mr
2= =% Ju +IVZE™ G,
ok 2 o O (0)

and therefore:

4
V_me: aJlIZ[(¢mI+Jl/2FmI U(O)) wn_(¢mn+Jl/2anu(O)) I:UI ]’

from which it will follow further that:

4 4
Wmn|+wnm|:aJl/Z[(¢m|+Jl/2Fm|U(O)) I:Un+(m<—> n)

With (21.9), one will get:
4
(V_anl+(m<—> r)j - _ 2#2 aJl/ZUm I:Un + [aJ1/2(¢mI +J1/2le U(O)) I:UnLI + (m <—>)]
Ils!

(21.14) can therefore be written:

4

4
Snm: Lgnm_luza, J1/2 UmDUn—O' J/2(¢ mry J/Z Fmr H))

(21.15)
g +JV2F" um))—%[( 324+ (me

Substituting this into (15.4), while setting = J U (as above), will give the energy-
impulse tensor:

Tic=[(¢" + I F" ug) O +I % Fie U))
- 1(#" +IF" uo) Qe + I Fir U))

m n 1 r
+u? (u (W _Eur (U g(j -1 1% ue) Qo) G
_%J 1/2 (J 1/2 U(O))Lr I:(J 1/2 U(O))Lr gik + %J -1/2 [(J 1/2 U(O))Lr I:U(O) |k + (i - k)]

We can calculate the four-matter tensor from (1)3.80/ith the use of the result above

4
for oL/ 0y« €tc., we will then get:

t"=ila? (@™ +I2F™ up) mn U —il a (32 uey)" Oy ur

— [aJ u(o) m¢ml’ + Jl/2 Fmr U(O))]lhr ,
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and therefore, from (15.7), one will have the chargeeciivector (witha = J U):

s" = i|(¢mr+Jl/2F mru(o))lj.”I y +il \]_l/Z(JlIZLeo)) |.m |]-|” ld)) } (2116)

U I U Gy 8™ + IV F My -

If one drops the small supplementary terms thenwatigget the following expressions
for the energy-impulse tensor and charge-currectove

T ~[8 B, ~34" B, g+ (v -2 d Dy g)
Uy Wiy =3 Uy UG G —3 47 U0 ], (21.17)

m __ mr H |_m
S II ¢ B-III ur +|Iu(0) 1] U(O) '

As for the meaning of the supplementary terms,camemake the same statements as
the ones that were made at the conclusion of teeiqus section. The charge of the
particle that corresponds to the field is giverthey eigenvalues k O, — | of the operator
I 7y .

22. Coupling thr matter fields with each other.— In this final section, we would
like to show, in connection with the arguments ofPAIS, which are valid for constant
J, how projective geometry will suggest a somewhegd symmetry for the coupling of
the matter fields with each other than the consitiens of affine geometry alone.

For the coupling of mesons and nucleons, we megtesent the nucleon field
(proton-neutron field) by a spinor field, just likkhe electron wave field that was
described in no20. We achieve that by regarding the componé#itsof the nucleon
spinors, not as complex numbers, but as elemerdaswbd-dimensionaK(i)-modulefR; .

An element of this module is given by two (complegmponents. Furthermore, 8
be an (irreducible) representation module for g of rotations in isotopic spin space.
The representation is known to be the unitary gnouip two dimensions. In particular,

the infinitesimal rotations 7, ,i 7,1 7y around the axes |, Il, Ill, resp., in spin space ar
associated with three Hermitian operators thenclwvhie will also denote by, , 7y, T
that act upon the elements 8f and can be formally represented by exactly theesam

matrices as the PAULI spin matrices (in which thos&rices naturally act upon only
Ri).

The transformations of the grofipare true for the elemerig:

zp LIJK = il Inp(ry, _%) LIJK.
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The charge of the elementary particle that correspondshe W field (under
guantization) is equal to an eigenvalue of the operator:

and is thus equal tb(1 1) = 0 (neutrons) of (-4 -2)= -1 (protons), resp. [We have

denoted the charge of the proton byl), since we called the charge of the electram
no.20]
If 7is the (operator)-vector in isotropic spin sp&e with the components, , 7 ,

T, then the real quantities:

M, =0 ()@ 7By, " } (22.1
— -1 K L
va _:uz gz(\])(qJ ’T(ﬁyy)m_l/’
will be elements ofR;, in which the symbol (..., ...) will suggest the Hermitian (inne

invariant undem,) product of two elements R, .

The WX experience a representative transformaBGrunder a rotatio in isotopic
spin space. If one consider the elements of theigratto be invariant elements and
subjects th&PX in (22.1) to the transformatidd” then, as is known, one will have:

D My =g (D™ ®* 7(By,), D"W"), etc.

In particular, when one sesequal to a rotation around the lll-axis through an ahfyle
£, one will have:

Z,,M/,:gl(e”'””(T”"%)‘T—'K,T(,Byﬂ)m éllnp(ﬂu'%)q_)L) = g'nom My,

for a transformatior, in 3, in which 7, once more acts as an operatofRntself in

the last expression.
The expressions (22.1) are suitable for introducing a coupdf mesons and
nucleons for the purpose of explaining the nuclear fombken one sets, with:

H,uv = cD,uv + N,uv,
the LAGRANGE function equal to:

L=2H, 1 +By, e -au, m*
4 2

9%%[,0(@'( BV ) qJLnu) +U(¢K "BKLqJL)]

L can then be written:

(22.2)
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L=Ln+Lo+a (10, INY+IN, N -U,M"), (22.3)

in whichL,, andL,, are the LAGRANGE functions for free mesons (freelemas, resp.)
that were discussed in ndsl and20. However, the expression (20.16) &'rin no.20

(and at a corresponding place), namelxﬁK (,By'“)KMz//M, must be replaced with
I(z,ZiK (7 —%)(,Byﬂ)KM M ) and the product of two spinors must always be regarded as

a Hermitian product (..., ...). From the remarks abdvevariant undefp (as it must

be) and also under the group of rotatiofRin
The field equations (21.5) go to:

(aH*)u+ U =aM”, (22.4)

When we considesr = p (= J U), it will follow that the field equations (20.4) will be:
Ile

I [‘PM +%%JWM jw‘PL —igQU, 7y, W +'—2% H, O*,W"=0. (22.5)

No difficulties will arise in the calculation of thedfine splitting of these two equations,
so it will follow directly from (22.1), with the norrfiaed spinor¥¥ =¢'"™ (3 % that:

Mo =0 (T 1BV "), Mo =6 (T 1By ¥"),

. K L 1 ) } (22.6)
No =% (lp T(BY ¥ ) N(O)n:; gz(w TVl ¥ )
With the help of (21.9), one will then get from (22.4) that:
a,—lJ—1/2|:\]l/20,[¢mn+ J1/2anq0) +%(¢7 K,T(’Bymr)KL[/, L)H + 20"
ll_n
= gl(l)Z;K ' T(:Bym)KL[/IL)’
(22.7)

a-l[J—l/za(Jllz%))|‘nll n -1 Y14, + IR, 4,

+%(¢7K’T('Bymn)m¢/ L)} F mn_luzu(o) =-q@ KJ(,BV(O))KLI/’ H,

while (22.5), with (20.10), will go to:
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Y™ {w i +%[%+—;J’lj It }uw 3 IRV "
—ig,u, Y™ —ig,ue, @ "

L& 1/2 & K ot nL ,;, M
+2ﬂ{¢m+J ooy *= @7 (BY ¥ )}wn W

(22.8)

+ %{J RCRORSAC r(ﬁy(O))KLwL)} T/ /)M =0,

The advantage of the projective theory of relatieityerges here (when one neglects
the “small supplementary terms” for most application¥e have obtained two affine
fields: one vector and one scalar. Neverthelesshave only two coupling numbegs
and g, as parameters, although, from a purely affine standpemthave been able to
replace the numbaeg; that appears in the bottom equation of (22.7) with a thmelgs .
However, in another respects, the same difficultly exist in the theory that is presented
here that exists in the affine theory, namely, the tiaat the Ansatz (22.1), (22.2) is not
the only one possible.

4

The affine LAGRANGE functionL , the energy-impulse tens®k , and the charge-
current vectors” can be easily written down with the help of the deies of the
previous section:

4 4 4
L=L +L,
4
in which L , is the LAGRANGE function for the free nucleons:

L, = JY Rei—l[p(wK‘ , (ﬁy"“)KMwM”_m)+§J“2Fn @, By Yy e ™)

+ 2073, (@ BY) ")+ 0@ But™)).

4 4
and L ; arises fromL quite simply using (21.8) when one replaces:

¢mn + Jllz an U(O) Wlth ¢mn + Jllz an U(O) + Nmn y (229)
and
Pue)n  with (32 ug)n +I¥*Ni( (22.10)
everywhere, and adds a term:

=32 @ (Un DM + Ugg) M)
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to it. Likewise, the energy-impulse tensor will arfsem the sum of the energy-impulse
tensors for the nucleons according to (20.14) and thidteofnesons according to (21.17)
when one performs the replacements (22.9) and (22.10) dvergw

What is interesting now is the dependency of the cagiplimbersy; andg, on J.
However, it is precisely at this point that one can ena& purely deductive statements
from the theory. The theory that is presented helia mdequate agreement with the
experiments in nuclear forces and nuclear structure vamen suitably chooses the
coupling numbers to have order of magnitude unity in naturg.ur®n that basis, one
would have the right to regagd andg, as independent Jf

Almost exactly the same coupling problem occurs withitkeraction of the meson
field with the electron-neutrino field. However, expsnts concerned with thg&
instability of mesons have shown here that the vadfiglse coupling numbers are small
(~ 10%° in natural units), so they are probably proportional 6. A purely deductive
basis for this fact in the projective theory, whichJBRDAN arrived at inductively, is
not possible at present. Generally it allows onepoasent such behavior with no further
assumptions. If one segs ~ J Y2 then it will be at least noteworthy that, e.gmn will
enter into the field equation (22.8) in a manner that islagirto the way thafn, enters
into it, so a termJ Y2 Fon (V@ ™ ¢ will appear in the equation in a purely

deductive way that will then correspond to a te§imp(Jd) 4/ dmn 7 Y™™ w ¢ . This

analogy at least raises the suspicion that a dedubtiges might be possible in the
manner that will be suggested in the next chapter.




CHAPTER IV

GLIMPSE OF POSSIBLE EXTENSIONS OF THE THEORY

Whereas the combination of gravitation and electromiggn into a unified
geometric theory of the laws for those fields argirtboupling to other matter fields can
admit a deductive basis, to a certain extent, as wellyialding an extension of
EINSTEIN’s general (affine) theory of relativity thanplies a foundation for JORDAN's
cosmology, the last three sections have shown taeiga limits of the theory, since
despite an agreement with the affine theory, some wdeable possibilities will also
exist for matter fields, and especially for their mutt@lplings, as a result of the demand
of greatest simplicity. If one would like to go furthedlong the lines of geometrization
then the question will arise of whether it is not flaesto also incorporate the meson
field into a unified geometric field theory. The spiri@id seems to show no point of
application for the development of such ideas, so oigétrpossibly already consider it
from the standpoint of quantization (perhaps as singelsiaf the geometric continuum).
In contrast to the geometrization of the meson fiedthe has some ideas that
SCHRODINGER sought to develop in some recent papers eahkis of the affine
theory. His theory goes back to the ideas of EDDINGITEINSTEIN in the year 1923.
The EDDINGTON-EINSTEIN attempt to introduce the elentegnetic field started with

the introduction of displacement quantitiE%V (which are initially still assumed to be

symmetric ing, v, which SCHRODINGER also dropped) that are more genbeal t
CHRISTOFFEL'’s three-index symbols, with the resudtttthe field equations, which had
precisely the form of a vector meson theory, praltyicaincided with MAXWELL'’s
equations for a very small “rest mass” (which one couok] imowever, set equal to zero).
There is a very strong temptation then to carry over ideas of EDDINGTON,
EINSTEIN, and SCHRODINGER to the present theory, whgha problem that P.
JORDAN already came to grips with. An extensiorihid theory in that respect has the
advantage that one can obtain not only the field lawsnesons in a deductive form, but
also the coupling of other matter fields with mesons.

The starting point for the extension is to abandonnteéric g, such that the basis

quantities then appear to be the displacement quarftifigsvhich are symmetric ig, v)
and a covariant vectof, with X" Y, = 1. For the parallel displacement &y, one will
then have:

qar==-¢&"15at+&"Y,Na”.

As before, the curvature tens®y,', and the fieldF,, = Y, |, — Y, can be defined by the
r,,. One can deriv®y, = R.’» and R., from the curvature tensor by contraction, the
latter of which does not vanish, as it would it if weased upon a metric, but defines
precisely an antisymmetric tensor field that esseptadrees wittR,, — R,,, by which
the meson field can be represented. Generally, oneogBtaincharged mesons in that
way, sinceR,,', is a normal tensor.
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To what extent more far-reaching generalizations (e.gopleex '), ones that are

asymmetric inv, 4, or similar things) can product new physical viewpointsl Ekewise,
whether a geometric theory of mesons would in itsefdythe f-decay probabilities of
atomic nuclei in a purely deductive way, which P. JORDANnm@&d from an order-of-
magnitude analysis, and which was suggested at the end 2, rall. of this will first be
shown only by a more precise elaboration of the theory
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