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FOREWORD 

 

 The publication of this book was delayed by unfortunate circumstances; it was made 
possible by its acceptance by the publisher Friedr. Wieweg and Son.  Nevertheless, 
nothing needs to be added at the moment.  A recently-appearing paper by O. 
HECKMANN, P. JORDAN, and W. FRICKE (1) represents only the first part of a 
discussion (which is still in a state of flux) of the solutions of the general field equations 
that are presented in this pamphlet. 
 In this presentation, a brief overview will be given of the recent results in the 
projective theory of relativity that have come about since the appearance of the beautiful 
summary of O. VEBLEN (2) in the year 1933.  The essential step in this further 
development was taken by P. JORDAN in the year 1944. 
 The general affine (i.e., EINSTEINIAN) theory of relativity will be assumed to be 
known.  The projective theory will then be developed from the ground up, but with the 
inclusion of JORDAN’s extension.  The reader will find a thorough overview in the 
initial introductory section of the matter that is contained in the results of some papers by 
P. JORDAN, Cl. MÜLLER, and the author, as well as some unpublished results. 
 I would like to thank Herrn P. JORDAN most warmly for providing the impetus for 
this investigation, for the great interest with which he followed the progress of the work, 
and for stimulating the posing of interesting problems by worthwhile discussions and 
inspiration. 
 It is the author’s hope, as well as his wish, that he might introduce this book into 
discussion in such a way that its sphere of interest might be enlarged by some relevant 
cosmological problems.  Its implications extend to recent results, and perhaps even into 
the structure of elementary particles, whose properties seem to be, in part, a mirror image 
of the ambient matter. 
 
 Berlin, in May 1951. 
  Günther Ludwig. 
 

                                                
 (1) O. Heckmann, P. Jordan, and W. Fricke, Zeit. Astrophysik 28 (1951), 113. 
 (2) O. Veblen, Projektive Relativitätstheorie, Berlin, 1933. 
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CHAPTER I   
 

UNIFIED FIELD THEORIES AND COSMOLOGY  
 

 The projective theory of relativity arose from EINSTEIN’s general theory of 
relativity as an attempt to solve the problem of finding a unified theory that subsumes 
gravitation and electromagnetism.  Among other things, the great achievement of 
EINSTEIN’s theory consisted of interpreting the gravitational field as the geometric 
structure of the universal continuum – i.e., the four-dimensional space-time manifold.  
However, it raised the question of whether it might not be possible to describe gravitation 
and electromagnetism together as a geometric structure of the universe. 
 H. WEYL was the first to discover a theory along those lines in the year 1918 with 
the mathematically beautiful theory that he presented in his book Raum, Zeit, Materie 
(Space, Time and Matter).  Since that theory was perceived to be not entirely satisfying 
from a physical standpoint, further attempts at presenting a unified field theory had to be 
undertaken.  One path, which we will not describe in our little book, was pursued by A. 
S. EDDINGTON in the year 1923, then by EINSTEIN, and now, in more recent times, by 
E. SCHRÖDINGER.  It consists of an extension of WEYL’s geometry, in which one 
starts with only affine geometry in order to find field quantities and field laws, and only 
later identifies certain field quantities with the metric.  We will go into the connection 
between SCHRÖDINGER’s theory and the one that is proposed here at the conclusion of 
our report. 
 In connection with our theory, we will be especially interested in an attempt to unify 
gravitation and electromagnetism that T. KALUZA made in the year 1921.  KALUZA 
introduced a five-dimensional continuum and obtained the field equations for gravitation 
and electromagnetism from the five-dimensional metric.  After O. KLEIN simplified that 
theory, it was soon examined many times, although the question of just what one meant 
by the fifth dimension was initially left open. 
 The explanation for it was then given by the work of O. VEBLEN, who could 
interpret the five-dimensional theory as four-dimensional projective relativity.  In the 
year 1933, O. VEBLEN summarized the state of the theory thoroughly in his book 
Projektive Relativitätstheorie.  One will also find a thorough bibliography in this book of 
the work that has appeared up to now, such that we will list only the recent works at the 
end of the present report, especially since direct reference to only those recent works will 
be made in the following presentation. 
 In the same year 1933, the thus-completed theory appeared in an especially 
symmetric and elegant representation in a paper by W. PAULI, in which the DIRAC 
equation was also presented in terms of the projective theory.  The theory, thus-presented, 
was then applied many times, and in particular, by A. PAIS.  He showed in that way that 
the theory of meson fields could likewise be represented elegantly in projective form, 
which was especially close to the “mixed” field theories (vector + scalar fields). 
 The theory experienced an entirely new extension by the ideas of P. JORDAN, by 
which one proposes an invariant J = gµν X

µ Xν as a field function [cf., no. 5 (1) in the 
present report], which had been somewhat artificially set to 1 in the past.  Those ideas 
                                                
 (1) Boldfaced numbers will refer to the sections of Chapters II and III. 
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arose in connection with an inductive argument that was concerned with dimensional 
analysis and cosmology.  Since that inductive theory appeared in a beautiful summary 
form in P. JORDAN’s book Die Herkunft der Sterne (The Birth of Stars), we would like 
to go into it only briefly here. 
 If one introduces atomic units (or so-called “natural” units), instead of C.G.S. units, 
such that the speed of light c = 1, PLANCK’s constant ℏ  (= h / 2π) = 1, and the 
elementary length l (≈ 2 × 10−13 cm) = 1, then one will get the gravitational constant κ (= 
8π f / c2, f = constant in Newton’s law of gravitation), the radius of the universe R, the age 
of the universe A, and the total mass of the universe M, in orders of magnitude: 
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 with γ = 1040.    (I.1) 

 
Due to these order of magnitude relations, one might regard γ as the age of the universe, 
which would also imply that κ and M are not constant, but time-varying.  Empirically, the 
mass of a star proves to be: 

Mst ≃ γ 3/2 ,      (I.2) 
 
which leads up to the assumption that the mass increase that is established by (I.1) will be 
compensated by the creation of new stars of mass (I.2). 
 In order to look for a theory in which κ, as a result of (I.1), was not constant, but a 
field function, P. JORDAN chose the quantity above J = gµν Xµ Xν in the projective 
theory, since it proved to be essentially equal to just κ. 
 The working-out of the new extended theory was inaugurated by some papers of P. 
JORDAN, and then, together with Cl. MÜLLER, it was propelled onward to the 
presentation of possible field equations in vacuum and a discussion of them.  A 
continuation of it in the direction of the representation of matter fields and the ultimate 
formulation of the field equations, in particular, was given by the author in some papers 
in which he arrived at a basis for the relations (I.1) and (I.2) deductively. 
 The theory that will be presented in what follows is very formal, as any such 
geometric theory would be, so it is precisely our intention that we shall go beyond the 
formal mathematics, as much as possible, and to call upon physical experiments only to 
test the results or to decide between several equally-justified possibilities.  Therefore, the 
first half of our presentation is dedicated entirely to establishing the mathematical 
foundations of the theory, without the previously-established physical concepts playing a 
role.  It is then in the second half that the physical results and consequences will come to 
the foreground. 
 
 Let us now give a brief overview of the contents of the following sections: 
 
 Chapter II of this report contains the mathematical form of the theory.  In it, we have 
trod a somewhat different path from the one that was chosen in W. PAULI’s presentation 
and transferred to P. JORDAN’s new theory, as well as a somewhat different path from 
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the presentation that was given by P. JORDAN in a recent paper, which is also essentially 
more concise than the first presentation.  We have done that in order to subsume spinors 
in the most natural way.  No. 2 contains the basis for and deeper analysis of the 
isomorphism theorem (2.19) that P. JORDAN found, in which special attention will be 
given to the connection between gauge transformations and the homogeneity properties 
of the field functions.  Nos. 4, 5, 6 give the path that the author pursued in order to 
represent the theory.  No. 7 gives a brief introduction to spinors and recalls many of the 
ideas in the paper by W. PAULI that was cited above.  In no. 8, the symbol for 
infinitesimal transformations that will be used later will be given, and the representation 
of the rotation groups will be sketched out in no. 9.  The theory of parallel translation and 
differentiation of measurement that will be given in no. 10 will differ from the 
presentation that was given in the PAULI paper by the addition of an extra term for 
tensors that are not normal (as it will be defined in no. 2) and by the calculation of the 
affine splitting using the methods that are presented in nos. 4 to 6.  The affine 
decomposition of the curvature tensor will be calculated by the same method in no. 11, in 
which the relations (11.15) and (11.16), and (11.19) were already presented by P. 
JORDAN in the first paper.  Nos. 12 and 13 contain the essential general theorems upon 
which the entire theory that follows will rest, and the derivation of equations (13.44) and 
(13.55) in those numbers goes back to the investigations of A. PAIS, as modified by the 
introduction of the normal domain as in no. 4.  No. 13 gives a deeper meaning to the 
isomorphism theorem that was explained in no. 2. 
 Chapter III then gives the actual physical applications.  In nos. 14 to 18, the field 
equations for gravitation and electromagnetism are presented explicitly and solved for 
some cosmological models, which yields a basis for (I.1) and (I.2).  Ansätze for G, 

according to (14.1), were considered by P. JORDAN and Cl. MÜLLER with V (J) = 0, W 
(J) = 0, and U (J) = J α, and were discussed for the case α = 0 in the absence of matter 
fields, in particular.  As will be shown in no. 17, we believe that one must set α = 1/2 and 
W (J) = − λ J−2.  In no. 19, the meaning of the energy-impulse tensor, the charge-current 
vector, and the matter invariants will be examined in the simplest case of scalar matter 
fields, as well as the influence of a variable gravitational constant.  The last section shows 
the beauty (but, at the same time, the limits) of the projective theory, in which electrons, 
nucleons, and meson fields can be represented elegantly.  Those representations will be 
given for the theories with constant J of W. PAULI and A. PAIS. 
 
 

__________ 
 



CHAPTER II 
 

MATHEMATICAL THEORY  
 

 1. Projective description of the world continuum. – The most important basic 
assumptions of the projective theory of relativity shall be summarized, without placing 
any value on axiomatic completeness. 
 Let the space-time manifold, in which physical events play out, and which will be 
briefly called “the world,” be four-dimensional topological space.  Its points can also be 
related to unique coordinate quadruples (x1, x2, x3, x4) then, and they will be called affine 
coordinates.  Its points (viz., world points) can likewise be mapped to the rays λXµ (− ∞ 
< l < + ∞) of the five-dimensional manifold of quintuples (X 0, X 1, X 2, X 3, X 4).  The Xµ 
then represent the projective coordinates of the world points. 
 We briefly denote the space of affine coordinates by W, and the space of projective 
coordinates by V.  W will then be four-dimensional, while V is five-dimensional.  In what 
follows, Latin indices will run from 1 to 4, while Greek ones will run from 0 to 4. 
 Any world point P is represented by xk, as well as by Xµ.  The xk must then be 
functions of the Xµ, and indeed, in such a way that xk must be unchanging along a ray λXµ 
(− ∞ < l < + ∞): 

xk = f k (X 0, X 1, … , X 4) = f k (λX 0, λX 1, … , λX 4).  (1.1) 
 
The xk are homogeneous functions of degree zero then.  One will then have (1): 
 

x|ν X
ν = 0.      (1.2) 

 
In what follows, the continuity of all of the functions that appear and their derivatives 

(to the extent that they are used) will be assumed. 
 
 
2. Transformations groups. – The choice of coordinates xk, as well as Xµ, is 

arbitrary, to a certain extent.  One can then use other coordinates x′k in place of the xk, 
which will be functions of the xk, and conversely: 

 
x′k = x′k (x1, x2, x3, x4),  xk = x k (x′1, x′2, x′3, x′4).  (2.1) 

 
 All of these coordinate transformations define a group, which we would like to denote 
by G4 .  Whether or not a physical system is described in the xk coordinate system or that 

of the x′k changes nothing in its intrinsic structure.  We therefore demand that the 
description of physical objects should be invariant under the group G4 . 

                                                
 (1) In what follows, for any function f (X0, …, X4), one will have f| µ = ∂f / ∂Xµ, and for any function g 
(x1, …, x4), one will have g| k = ∂g / ∂xk. 
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 We impose the requirement that the degree of homogeneous functions of Xµ should 
remain unchanged under another choice of coordinates for V.  We shall thus consider 
only those transformations: 

X′ µ = X′ µ (X0, …, X4),     (2.2) 
 

that are homogeneous of degree one the X µ.  The group of those transformations shall be 
denoted briefly by H5 .  The new requirement of the projective theory of relativity, when 

compared to the affine theory of relativity, is then the invariance of the description of 
physical objects under the group H5 . 

 One can apply the transformations of H5 and G4 independently of each other, but the 

functional connection (1.1) between affine and projective coordinates will generally 
change under that.  However, one can also couple the transformations of H5 and G4 with 

each other in such a way that a certain functional connection (1.1) will remain preserved; 
one will have: 

xk = f k (X0, …, X4)  and also  x′k = f′ k (X′ 0, …, X′ 4), (2.3) 
 

with the same functions f k.  Any transformation of H5 will then generate precisely one 

transformation in G4 such that H5 will be mapped homomorphically onto G4 in that way, 

as one easily establishes.  As a result, H5 must be isomorphic to the factor group of G4 by 

the normal subgroup N that consists of all transformations of H5 that generate the identity 

transformation in G4 .  Since the f k are homogeneous of degree zero, they are the 

transformations: 
X′ µ = λ (X0, …, X4) X µ,    (2.4) 

 
in which λ is a homogeneous function of degree zero.  One then has: 
 

G4 ≅ H5 / N.     (2.5) 

 
 If a function of five variables is given: 
 

F (X0, …, X4) 
 
then we would like to define a transformation Tρ in such a way that we set: 

 
Tρ F (X0, …, X4) = F (ρ X0, …, ρ X4),  (2.6) 

 
in which ρ (X0, …, X4) is a homogeneous function of degree zero in the X ν.  The Tρ 

define an Abelian group that is briefly called P.  For a homogeneous function of degree 

n, one will have: 
Tρ F = ρ n F.     (2.7) 
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From EULER’s theorem, one will then also have (1): 
 

F| µ X µ = n F.     (2.8) 
 
In particular, one will then have: 

|

|

, 0,

, .

k k kx x x

X X X X X
ρ ν

µ µ µ ν µ
ρ νρ

= = 
′ ′ ′ ′= = 

T

T
   (2.9) 

 
 The important concepts of “scalars” and “invariants” are defined by saying that ϕ is 
called a scalar when ϕ is invariant under the transformations of H5, and ψ is an invariant 

when ψ is a scalar that is also invariant under P. 

 Let K be the field of real numbers.  Furthermore, one might be given a K-module M 

(2) with elements α, β, γ, ...  We refer to a system of quantities α v in M that transform 
under the transformation (2.3) of H5 by way of: 

 
α′ ν = αµ X′ ν 

| µ ,    (2.10) 
 
as a contravariant vector at a point Q in V.  Correspondingly, we refer to a covariant 
vector by way of βv with: 
 

β′v = βµ X µ 
| ν′ ,  [βv = β′µ X′ µ 

| ν′, resp.].  (2.11) 
 
Later on, we shall be concerned with the following special examples of M, among others: 

M = K or M = K (i), which is the field of complex numbers. 

 The contravariant, as well as the covariant, vectors each define a five-dimensional 
vector space that depends upon the point Q, which we would like to call concomitant 
vector spaces. 
 A t-fold contravariant and r-fold contravariant tensor of rank (r + t) is given by 
quantities 1

1

t

r

ν ν
µ µα ⋯

⋯
 that transform like the formal products of t contravariant and r covariant 

vectors.  A scalar will also be called a tensor of rank zero.  One can reduce the rank of a 
tensor by 2 by contraction.  One understands a contracted tensor to mean a tensor whose 
components arise by summing over an identical pair of contravariant and covariant 
indices: 

                                                
 (1) In what follows, identical indices will always be summed over.  
 (2) The elements of M define an additive Abelian group; i.e., α + β = β + α is again an element of M, 

one has (α + β) + γ = β + (α + γ), there is a null element 0 with α + 0 = α, and any α has an inverse (− α), 
such that α + (− α) = 0.  Above and beyond that, if a, b, c, … are real numbers then αa will be an element 
of M and (α + β) a = α a + β a, α (a + b) = α a + α b, and α (ab) = (α a) b.  For the first part of this report, 

it will suffice to define M under the fields of complex or real numbers.  The general formulation was 
chosen although we will use it in only Chapter II. 
 For the concept of a module, cf., e.g., van der WAERDEN, Moderne Algebra, 2nd ed., (v. 2), Berlin, 
1940, pp. 98, et seq. 
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1 1 1

1 1 1

t

r

σ σ
ρ ρ

ν ν ν ν
µ µ µ µβ − +

− +

⋯ ⋯

⋯ ⋯ = 1 1 1

1 1 1

t

r

σ σ
ρ ρ

ν ν ην ν
µ µ η µ µα − +

− +

⋯ ⋯

⋯ ⋯ .   (2.12) 

 
 The contraction of a second-rank tensor is therefore a scalar.  Addition of tensors of 
the same type will again give a tensor of the same type.  The multiplication of two tensors 

1

1

t

r

ν ν
µ µα ⋯

⋯
 and 1

1

s

p

ρ ρ
σ σβ ⋯

⋯  will yield an (t + s)-fold contravariant and (r + p)-fold covariant 

tensor: 
1

1

t

r

ν ν
µ µα ⋯

⋯
1

1

s

p

ρ ρ
σ σβ ⋯

⋯  = 1 1

1 1

t s

r p

ν ν ρ ρ
µ µ σ σγ ⋯ ⋯

⋯ ⋯ . 

 
[In this, it is generally assumed that the product of the two quantities α and β is defined.  
For example, α and β can be real or complex numbers, or α can come from a module M, 

while β is a real number, or α and β are both from a module M, and α β can be a real 

number, such as the inner product of two vectors, or α β can be a formal product, which 
will then belong to the product module M × M (1).] 

 If a tensor field α⋯
⋯

 is defined on V then the application of the operator Tρ to the 

tensor α⋯
⋯

 will also be defined.  We write it in the form: 

 
1

1

t

r

ν ν
ρ µ µα ⋯

⋯
T = 1

1

t

r

t r H ν ν
σ µ µρ α− ⋯

⋯
,    (2.13) 

 
in which Hσ is an operator that is defined by that.  Hσ is then invariant under the 
operation of contraction, as one easily confirms.  Furthermore, the operators Hσ define a 
representation of the group P, since 

1 2
H ρ ρ = 

1 2
H Hρ ρ .  We define the infinitesimal 

transformation H by way of the equation: 
 

H1+ελ = 1 + ε P λ,     (2.14) 

 
which is true up to terms of order one in ε, which means that (2.14) is linear in λ.  Since 
P is Abelian, one can write: 

Hρ = e Π ln ρ.      (2.15) 
 
 Two important examples of this are: 
 
 1. Hρ = 1.  In this case, we call the tensors normal tensors.  A normal tensor of rank 
one is also called a normal vector, and a normal tensor of rank zero is identical with the 
concept of an invariant. 
 
 2. M = K (i) and Hρ = e i l ln ρ, with l real.  In this case, one then has Π = i l . 

 

                                                
 (1) See remark (2) on page 6.  
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 Any tensor that is not normal can be normalized.  One chooses an arbitrary function η 
(X0, …, X4) that is homogeneous of degree one.  One then defines the tensor: 

α⋯
⋯

 = 1Hη α− ⋯

⋯
  [α⋯

⋯
 = Hη α⋯

⋯
, resp.]   (2.16) 

with Hη−1 = 1Hη
−  = e− Π ln η. 

 ρ α⋯
⋯

T  = 1( )( )Hρ ρη
α−
⋯

⋯
T T  = 1 1 ( )H ρρ η

α− −
⋯

⋯
T  

 = 1 1
t r H Hρρ η

ρ α− −
− ⋯

⋯
 = 1

t r H
η

ρ α−
− ⋯

⋯
 = t rρ α− ⋯

⋯
, 

 
such that α⋯

⋯
 will then be a normal tensor.  However, the normalization α  of α is not 

defined uniquely, since η is arbitrary; it is undetermined up to a factor that is 
homogeneous of degree zero.  If we then go from η to η′ by way of: 
 

η′ = σ η      (2.17) 
then α  will go to α ′ : 

α ′  = 1Hη α−  = 1 1H Hσ η α− −  = 1Hσ α− .    (2.18) 

 
 We call the transformations (2.17), (2.18) the gauge group E.  The coupling of (2.17), 

(2.18) yields an isomorphic map of P onto E.  E itself is an affine group, since σ (which 

is homogeneous of degree zero in the Xρ) depends upon only the affine coordinates.  The 
two groups G4 and E together generate a group of affine transformations (G4, E), which 

we can also regard as the transformation group of variables xk, η.  One has: 
 

(G4, E) ≅ H5 .     (2.19) 

 
 In order to exhibit the isomorphic map of H5 onto (G4, E), we start with the 

homomorphic map of H5 onto G4 that was defined already in the beginning by (2.3).  To 

the demand of the preservation of the functional connection (2.3), we add the 
preservation of the functional connection for the function η: 
 

η = f (X0, …, X4) and η′ = f (X′ 0, …, X′ 4),  (2.20) 
 
by which the transformations of H5 also transform η.  Since the equations (2.3), (2.20) 

can be solved for the Xν uniquely, H5 will then be mapped isomorphically to a certain 

transformation group of the variables xk, η that is precisely the group (G4, E), as we shall 

soon show.  If we consider the transformations of H5 that remain invariant under that 

isomorphic map η then they will define a subgroup of H5 that we would like to call H4 , 

and which is therefore mapped isomorphically to G4 .  The transformations of the normal 



§ 2. – Transformation groups 9 

subgroup N ⊂ H5 will be mapped isomorphically to E.  Hence (H4, N) will be mapped 

isomorphically to (G4, E).  However, one has (H4, N) = H5 , so each element of H5 will 

belong to a coset t N, in which t can be chosen from H4 , because every coset contains 

one (and only one) element of H4 , since all of the elements of t N will be mapped to the 

same transformation of G4, and since H4 ≅ G4 , every element of G4 will correspond to 

one and only element of H4 . 

 With that, the structure of the group (G4, E) is revealed, and linked with the 

projective groups H5 and P. 

 To conclude this section, let us cite two examples.  It follows from (2.11) and (2.9) 
that the X µ define a contravariant normal vector.  (The affine coordinates xk do not define 
an affine vector!)  The differentials dXν transform under H5 according to: 

 
dX′ ν = X′ µ 

| ν dX ν,    (2.21) 
 
and thus define a vector.  However, it is not normal, since one will have: 
 

Tρ dX µ = d (ρ Xµ) = dρ X µ + ρ dX µ = ρ (dX µ + X µ (ln ρ)|ν dX ν ), 

 
under P, such that one will have for dXµ that: 

 
Ηρ dX µ = [ µ

νδ  + X µ (ln ρ)| ν] dX ν.   (2.22) 

From (2.14), one has: 
Π (λ dX µ ) = X µ λ | ν dX ν. 

 
 
 3. Transition from the projective description to the affine one. – Covariant and 
contravariant vectors were defined in the previous section.  Likewise, one can also define 
covariant and contravariant affine vectors αk (β k, resp.) by demanding that they should 
transformation under G4 like: 

αi = |
k

k ixα ′ ′ , β′ k = β i x′k 
| i .    (3.1) 

 
An affine vector can also be represented by projective components: 
 

αν = αk x
k 

| ν .     (3.2) 
 

We would like to regard αν and αk as different components of the same vector.  To 
abbreviate, we set: 

xk
 |ν  = kgν .     (3.3) 
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 The set of all vectors of the form (3.2) defines a four-dimensional subspace of the 
five-dimensional vector space of covariant projective vectors.  In order to find a 
corresponding coupling of contravariant vectors, we set: 
 

β µ = β k kgµ       (3.4) 

 
for a contravariant affine vector β k and unknown coefficients and demand that: 
 

αk β k = αµ β µ = αk
kgµ β l lgµ . 

 
It will then follow from this that: 

k
lg gµ

µ  = k
lδ .      (3.5) 

 
The kgν  can be determined from this, up to a multiple of the solutions to the 

homogeneous equations: 

kgν  = 
o

kg ν  + λk X
ν.     (3.6) 

 
The factor can be established with no arbitrariness only later by an additional demand. 
 With the given definitions, the four-dimensional affine concomitant vector space 
defines a subspace of the five-dimensional projective concomitant spaces.  Any vector in 
that four-dimensional subspace can be represented by affine components, as well as 
projective ones, if equations (3.2) and (3.4) can be solved for αν (β µ, resp.) on the basis 
of the relation (3.5): 

αk = αν kgν ,  β k = β µ kgµ .    (3.7) 

 
For an arbitrary projective normal vectors αν (β µ, resp.), one can likewise define the 
vectors αk (β k, resp.) from (3.7).  However, they are not identical with the vectors αν 
(β µ, resp.) that were given originally, but rather one has that αν − αk

kgµ  (β µ − β k kgν , 

resp.) is equal to zero only when αν (β µ, resp.) lies in the four-dimensional affine 
subspace.  For arbitrary vectors, one calls the vectors that are defined by (3.7) affine 
reductions.  The projective components of the affine reductions of αν (β µ, resp.) are then: 
 

να  = k
kg gµ

µ να   and µβ  = k
kg gν µ

νβ .  (3.8) 

To abbreviate, we set: 
dµ

ν  = k
kg gµ

ν .       (3.9) 

 
The tensor dµ

ν  then represents the projection of the five-dimensional vector space onto its 

four-dimensional affine subspace by way of (3.8). 
 One has kX gν

ν = 0 for the vector X ν, such that X ν has no component in the affine 

subspace.  One also has X µ = X dν µ
ν  = 0 then. 

 One can define the reduction of normal tensors as one does for normal vectors; e.g.: 
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k
iα = k

ig gµ ν
ν µα  

 
is the reduction of µ

να .  However, if a non-normal tensor is given – e.g., ν
µβ  − then the 

expression i
kg gν µ

µ νβ  will not be homogeneous of degree zero in the X ν, and it will 

therefore not be a function of only the affine xk .  Nevertheless, one can also get an affine 
tensor from ν

µβ  as its reduction when one first normalizes ν
µβ  and then reduces it as 

above.  One will then obtain affine, gauge-invariant tensors from projective normal 
tensors, but one will get affine tensors that are not gauge-invariant from projective 
tensors that are not normal. 
 As an example, we consider the reduction of dXν.  From (2.22), dXν is not a normal 
vector.  The normalization of dXν is: 
 

dXµ  = dXµ  − Xµ (ln η)| ν dXν.   (3.10) 
 
One then obtains the reduction as: 
 

( )kdX  = kdX gµ
µ  = dXµ kgµ = dXµ |

kx µ = dxk.   (3.11) 

 
The projective components of dxk are then: 
 

dX
µ
 = d dXνµ

ν  = k
kdx gν .    (3.12) 

 

We must then distinguish between the following three vectors: dXµ, kdX , and dX
µ
.  The 

first of them is not normal, while the second and third ones are normal.  The third one is 
the projection of the second one onto the four-dimensional affine subspace.  The third 

one can then be represented by its projective components dX
µ
, as well as by its affine 

ones dxk. 
 
 
 4. Five-dimensional and four-dimensional integrals. – A point set in W that 
possesses a three-dimensional hypersurface with a well-defined normal direction as its 
boundary will be referred to as a world-domain, or briefly a domain.  One can likewise 
define domains in V.  However, we would like to consider only entirely special domains 
in V that we will call normal domains.  A normal domain contains either no points at all 
of each ray λXµ (− ∞ < λ < + ∞) or exactly those points of an interval λ1 ≤ λ ≤ λ2 with 
ln(λ1 / λ2) = 1 (i.e., λ2 = e λ1), and only those points.  Any normal domain determines a 
unique world-domain.    The points of a ray in V always correspond to a world-point then.  
An additive measure of a point set that is invariant under H5 and P is defined along a ray 

of V by m (λ1 / λ2) = ln (λ1 / λ2) as a measure of the interval from λ1 X
µ to λ2 X

µ.  When 
one establishes a normal domain, the measure of the points in the normal domain that 
corresponds to a single point of W will be equal to unity. 
 The volume element in V is defined by: 
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dτ = dX 0 dX 1 dX 2 dX 3 dX 4.    (4.1) 
For H5, one has: 

dτ′ = || X′ µ | v || dτ.     (4.2) 
For P, one has: 

Tρ dτ = || µ
νρ δ  + ρ | v Xµ || dτ. 

 
The determinant can be calculated on the boundary: 
 

|| µ
νρ δ  + ρ | v Xµ || = ρ5 || µ

νδ  + ρ−1ρ | v X
µ || = ρ5 

1
|( )

0 1

X Xµ µ µ
ν νδ ρ ρ−+

 

= ρ5 1
| 1

Xµ µ
ν

ν

δ
ρ ρ−−

 = ρ5 1 1
| |1

X

X

µ µ
ν

ν
ν ν

δ
ρ ρ ρ ρ− −− +

 = ρ5 (1 + ρ−1ρ | v Xν). 

 
Since ρ is homogeneous of degree zero, it follows that: 
 

Tρ dτ = ρ5 dτ,      (4.3) 

 
such that dτ transforms like a normal tensor of rank five that is contravariant and 
antisymmetric in all indices. 
 One refers to ⋯

⋯
t  as a tensor density when ⋯

⋯
t dτ is a tensor.  L dτ is then an invariant 

for an invariant density L.  One then has that when 

 

W = dτ∫L       (4.4) 

 
is taken over a normal domain in V, it will be an absolute invariant. 
 If one introduces the affine coordinates xk into (4.4) as the new integration variables 
and the homogeneous function of the Xν of degree one η that was employed in no. 2 then 
(4.4) will go to: 

W = 
41

d dτ η
∆∫L ,     (4.5) 

 

in which 
4

dτ = dx1 dx2 dx3 dx4 is the volume element in the world-domain that 
corresponds to the normal domain, and ∆ is equal to the functional determinant: 
 

∆ = 
1 4

0 4

( , , , )

( , , )

x x

X X

η∂
∂

…

…
 = |( )

( )kg
µ

µ

η
.    (4.6) 

 
If one adds suitable multiples of the last four rows to the first one then one will get: 
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∆ = 
0

|0 |1 |4
0

0 1 4

1

( )k k k

X

g X g g

η η η
∆

⋯

⋯
 = | |1 |4

0
1 4

1

( )k k k

X

X g X g g

ν
ν

ν
ν

η η η⋯
⋯

 = 1 40
k kg g

X

η
⋯ .  (4.7) 

 
One will then have kg Xν

ν = |
kx Xν
ν = 0 and η| v X

v = η.  If one denotes the minors of η,v in 

(4.6) by ∆v then since the zeroth row is not distinguished from the other ones, one will 
have: 

∆ = η 0
0X

∆
= η 1

1X

∆
=… = η 4

4X

∆
= η σ,   (4.8) 

 
in which σ transforms under G4 like an antisymmetric, contravariant tensor of rank four – 

i.e., like 
4

dτ
ɶ

 – and like an antisymmetric, contravariant, normal tensor of rank five under 
H5 and P.  σ is therefore homogeneous of degree – 5.  Substituting (4.8) in (4.5) will 

yield: 

W = 
4

dτ
σ∫

ɶL
d ln η.     (4.9) 

 
L / σ is then homogeneous of degree zero, and therefore a function of only the xk, but not 

η, such that integration over η in (4.9) can be performed.  However, since the integral 

lnd η∫  for any normal domain is equal to exactly the measure of the points along a ray 

that belong to that normal domain, and that will be equal to unity, it will follow that: 
 

5 4

0 1 1 4

,

; ( 1)

B B

k k k k

W d d

X g g g gν ν
ν ν ν ν

τ τ
σ

σ − +

= = 

∆ = ∆ = − 

∫ ∫
⋯ ⋯

L
L

  (4.10) 

 
In this, B4 is the four-dimensional world-domain that corresponds to the normal domain 
B5 .  It follows from (4.7) that: 

σ = 
1

η
∆ = |( )1

( )kg
ν

ν

η
η

,     (4.11) 

 
and that the right-hand side of (4.11) is independent of the choice of the homogeneous 
function of degree one η; σ is gauge-invariant. 
 If F is any function of the Xµ that is homogeneous of degree – 4 then F,µ will be 
homogeneous of degree – 5, and F| µ dτ will be homogeneous degree zero.  When the 
integral ∫ F| µ dτ is taken over a normal domain, it can be converted into a boundary 
integral.  The boundary of a normal domain B can be decomposed into three parts in the 
following sense: The intersection of a ray λ Xµ with the boundary of B (when it is not 
empty) consists of either just two points with the coordinates X µ  and X µ = eX µ  or an 

entire interval Λ of measure unity.  All points of the boundary of B are either points like 
X µ  or X µ  or points of Λ.  The corresponding parts of the boundary might be denoted by 
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R , R , and RΛ .  The boundary components R  and R  are mapped to each other in a one-

to-one correspondence by way of the rays of V.  The normal directions to R  and R  at 
two corresponding points are the same, up to sign, and the magnitudes of surface 
elements of R  are greater by a factor of e4 than the corresponding ones on R , although F 

is e4-times smaller on R  than it is on R .  The boundary integrals over R  and R  that 

come about by the conversion of ∫ F| µ dτ using Gauss’s theorem will then cancel each 
other, such that ∫ F| µ dτ will be equivalent to a boundary integral over just RΛ . 
 Under the map of B5 onto the affine domain B4 , the points of RΛ correspond to just 
the points of the boundary R4 of B4 such that a boundary integral over RΛ will go to a 
boundary integral over R4 . 
 
 
 5. Projective and affine metric. – The metric in V is defined by a symmetric, 
normal tensor field gµν with g = || gµν || ≠ 0, in which we agree that the covariant 
components αµ that are constructed from the contravariant components αν by: 
 

αµ = gµν αν     (5.1a) 
 
should be regarded as different components of the same vectors.  The solution of 
equations (5.1a) reads: 

αν = gµν αµ .      (5.1.b) 
 
It follows from this that gµν is a contravariant normal tensor, and that: 
 

gµν gνρ = µ
ρδ .     (5.2) 

 
Just as one does for vectors, one can also use (5.1) to lower and raise the indices of 
tensors with the help of gµν and gµν, resp.; e.g.: 
 

αµν = gµ σν
σα ,  αρσ = αµν gµρ  gνσ , etc.  (5.3) 

 
(5.2) then also means that the metric tensor is identical to the identity tensor µρδ ; i.e., that, 

e.g., the gµν are the doubly-contravariant components of the identity tensor, and the gµν 
are the doubly-covariant ones. 
 The operator Hσ , as it was defined in no. 2, is invariant under the raising and 
lowering of indices. 
 We refer to the invariant αν αν briefly as the length-squared of the vector αν.  The 
length-squared of Xν is: 

J = Xν Xν = Xν gνµ X
µ.     (5.4) 

 
 The arbitrariness in the definition of the quantities kgν  in (3.6) can be eliminated by 

the requirement that the reduced vector should be independent of whether one starts with 
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covariant or contravariant components.  The reduction of Xν will be equal to zero, so one 
must also demand that: 

Xν kgν = 0 

 
then.  It will then follow, with (3.6) and (5.4), that: 
 

o

kg ν Xν + λk J = 0, 

 
from which the λk , and therefore the kgν , will be determined. 

 Since the reduction of Xν is zero, and since the relation Xν
να = 0 follows, with να = 

k
k gνα , the operation of reduction is nothing but orthogonal projection in the direction of 

the vector Xν onto the subspace that perpendicular to Xν.  We would like to refer to the 
projective five-dimensional concomitant vector space briefly as R here, and to the four-

dimensional affine subspace as 
4

R .  
4

R  is then the subspace of R that is perpendicular to 

Xν.  It then follows from this that for the tensor dµ
ν  that is defined in (3.9) that 

implements the projection onto 
4

R : 
 

µ
νδ  = dµ

ν  + J−1 Xν X
µ.     (5.5) 

For the vectors of 
4

R , one has: 
 

αk = kgν
να = kg gµ ν

µνα = l
l kg g gµ ν

µνα ,  β k = l k
l g g gµν

ν µβ .  (5.6) 

 
Due to that relation: 

gik = i kg g gµ ν
µν       (5.7) 

 
is the affine metric tensor.  One can also read (5.5) as: 
 

gµν = i j
ijg g gµ ν  + J−1 Xµ Xν

 .    (5.8) 

 
The metric tensor then splits affinely into the affine metric tensor and the invariant J. 
 Any tensor can be split into its affine parts with the help of the decomposition of the 
metric tensor as in (5.5) or (5.8); e.g., it will follow for a tensor of rank two that: 
 

ανµ = k l
klg g gν µ  + J−1 ( kgν Xµ X

σ αkσ + lgµ Xν X
σ αρl) + J−1 Xν Xµ  X

ρ Xσ αρσ  . 

 
It then splits affinely into a tensor (viz., its reduction): 
 

αkl = k lg gν µ
µνα , 

two affine vectors: 
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αkµ Xµ = kgν  Xµ ανµ , αν l X
ν = lgµ Xνανµ , 

and an affine scalar: 
αµν X

µ Xν. 
 

A projective tensor equation then subsumes several affine tensor equations.  The special 
elegance and harmony of the projective theory of relativity rests upon that fact. 
 One can introduce a basis of five normal vectors ( )vgρ  [in which (ν) enumerates the 

vectors] in the vector space R such that those vectors are orthogonal and orthonormal; 

i.e.: 
( ) ( )vg g µ ρ
ρ = ( ) ( )vg g gρσ µ

ρ σ = g(ν)(µ),   (5.9) 

 
in which g(ν)(µ) = 0 when (v) ≠ (µ) and is equal to ± 1 when (v) = (µ).  The number of 
negative g(ν)(µ) (which is called the index defect) is independent of the choice of the ( )vgρ .  

We assume that the index defect is equal to unity and set: 
 

g(ν)(µ) = 

0 for ( ) ( )

1 for ( ) = ( ) = 0,1,2,3

1 for ( ) = ( ) = (4).

ν µ
ν µ
ν µ

≠ 
 
 
 − 

= g(ν)(µ) .  (5.10) 

 
One can refer vectors and tensors to this new basis: 
 

αν = α(σ) 
( )gν
σ ,  αν = α(σ)

( )g σ
ν ,  α(σ) = ( )g σ

ν αν, etc. (5.11) 

 
Thus, gνµ , g

νµ, ν
µδ , ( )g ν

ρ , ( )g ρ
ν , g(ν)(µ), g(ν)(µ) , 

( )
( )
ν
µδ  are also components of the same metric 

tensor. 
 The vector and tensor components with indices in parentheses are invariant under H5 .  

They will transform under the group P by way of the operator Hρ in no. 2.  Nevertheless, 

those components are not scalars, since the choice of the basis ( )g σ
ν  is not unique. One 

obtains all possible other bases from the basis ( )g σ
ν  by five-dimensional rotations: 

 
( )g σ

ν′ = Θ(σ)
(ρ)

( )g ρ
ν .     (5.12) 

 
Since (5.9) must remain true under this, one will have: 
 

Θ(σ)
(ρ)

( )g ρ
ν gνµ Θ(τ)

(η)
( )g η
µ  = g(σ)(τ), 

or 
Θ(σ)

(ρ) Θ (τ)
(ρ) = ( )

( )
σ
τδ   and Θ (τ)

(ρ) Θ(τ)
(σ) =

( )
( )

ρ
σδ .   (5.13) 
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The Θ (ρ)
(σ) in this are homogeneous functions of degree zero in the X ν.  We denote the 

group of these rotations by D5 .The vector and tensor components with indices in 

parentheses transform under D5 like: 

 
α′ (v) = Θ(ν)

(µ) α(µ), α′(v) = Θ(ν)
(µ)

 α(µ) ,   (5.14) 
 
and correspondingly for tensors. 
 One also refers to the ( )g σ

ν  as “fünfbeins” and the representation of tensors by their 

components with indices in parentheses as the “fünfbein representation.” 
 One can choose the fünfbeins, in particular, such that one them falls in the direction 
of Xν : 

(0)gµ  = J−1/2 Xµ .    (5.15) 

 
Let the remaining four of them be ( )kgµ , with (k) = 1, 2, 3, 4.  If a tensor is characterized 

by the indices (ρ) in what follows then it must be based upon a general fünfbein, but if it 
is described by splitting the indices into (0), (v) then the it must be based upon the special 
choice (5.15). 

 Since the ( )kgµ  are perpendicular to (0)gµ , those four vectors will lie in 
4

R  then, and 

will therefore be identical with their affine reductions; i.e., e.g.: 
 

( )kgµ  = ( )kg dν µ
ν  = ( )

l
k lg g gν µ

ν . 

 
The affine components of these vectors are then: 
 

( )
l
kg = ( )

l
kg gµ

µ .     (5.16) 

 
They therefore also define a vierbein relative to the affine metric gij , such that, e.g.: 
 

( ) ( )
l m
k lm rg g g  = g(k)(r) , 

 

so the affine metric will be identical with the projective metric in the subspace 
4

R . 
 If the vector (0)gµ  is established by (5.15) then the group D5 will be restricted to the 

group D4 of all rotations leave (0)gµ  invariant.  D4 is the Lorentz group. 

 The theorem follows from all of this: 
 
 If a projective tensor is given in the fünfbein representation then one will find its 
affine splitting in such a way that one will denote the indices by (0), (r), instead of (ρ), 
  
or, in a formulation that will be extended to arbitrary spinors later: 
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 The transition from the projective to the affine description is equivalent to the 
reduction of the five-dimensional rotation group D5 (or its representations) to D4 ⊂ D5 

when one fixes the vector (0)gµ  = J−1/2 Xµ. 

 
 For example, if α(ρ) is a projective vector then α(ρ) will decompose into the affine 
vector α(k) and the affine scalar α(0) .  In the language of groups: α(ρ) transforms like a 
vector under D5 , but α(0) will remain invariant under D4 (it then feels the identity 

representation, and is therefore an affine scalar), and α(k) will transform like an affine 
vector under D4 .  A tensor β(ρ)(σ) splits in a corresponding way into an affine tensor β(r)(s), 

two affine vectors β(r)(0) and β(0)(s), and an affine scalar β(0)(0) . 
 One will then have, e.g.: 

αk = ( )
( )
k r
rg α , etc. 

with the previous notations. 
 The rotations of D5 then act upon only indices in parentheses, since they correspond 

to a change of the basis ( )g ρ
µ .  Along with the group D5 , we also introduce the group 5D  

of length-preserving automorphisms of R.  If αν is a vector in R, and F is an element of 

5D (for fixed basis vectors!) then we will have: 

 
α′ ν = Φν

µ αµ     (5.17) 
 
for the vector α′ ν that F maps αν to, or in a different component representation: 
 

( ) ( ) ( ) ( )
( ) ,

,etc.

v v v

v v

F

F

µ
µ

µ
ν µ

α α α
α α α

′ = = Φ 
′ = = Φ 

   (5.18) 

The relation then follows: 
Φρ

ν Φρ
µ = µ

νδ  = Φµ
ρ Φν

ρ ,    (5.19) 

 
which is equivalent to (5.13).  Φµν is a tensor.  The rotations in 5D that leave the vector 

Xν invariant define a subgroup that we will denote by 4D .  We introduce: 

 

( )

,

with v

d md

m gµ

τΣ = 
= 

    (5.20) 

 
as the volume of the volume element dτ.  dΣ is an invariant, due to the previously-
presented transformation properties of dτ.  In D5, one multiplies m by the determinant 

( )
( )v

σΘ .  By squaring the determinant, it will follow from (5.13) that the square has the 

value unity, so it will have the value 1 or – 1.  Now, D5 is the direct product 5
+D × B of 
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the group 5
+D  of proper rotations with positive determinants and the reflection group B 

that consists of the two elements: 
 

( )g σ
µ′  = ( )g σ

µ , ( )g σ
µ′′  = − ( )g σ

µ . 

 
m is then invariant under 5

+D , while under the rotations of D5 that do not belong to 5
+D , 

m will be multiplied by – 1. 
  When one introduces the relation gµν = ( ) ( )

( )( )g g gσ ρ
µ ν σ ρ , the determinant g = || gµν || will 

be: 
g = m2 || g(σ)(ρ) || = − m2,    (5.21) 

such one will also have: 

dΣ = g± − dτ.    (5.22) 

 
If L is an invariant then L = L is an invariant density.  (4.4) will then assume the form: 

 

W = L dΣ∫  = L mdτ∫ .    (5.23) 

(4.10) will then go over to: 

W = 
4m

L dτ
σ∫ .     (5.24) 

However, one has: 
( )igµ  = ( )i k

kg gµ ,  (0)gµ = J−1/2 Xµ , 

such that: 

 m = 1/ 2
( )

( )

( )i k
k

X
J

g g
µ

µ

−  = 1/ 2
( )

1 0 0

( )0

( )( )

0

ki
k

X
J

gg
µ

µ

− ⋅

⋯

⋮
, 

 

 m = 
4

1/ 2J m Xµ µ
− ∆  with 

4

m= ( )i
kg . 

 
It follows from ∆µ = σ Xµ upon multiplying by Xµ that: 
 

Xµ ∆µ = σ J, 
and therefore: 

m = 
4

1/ 2J mσ . 
(5.24) ultimately goes to: 

W = 
4 4

1/ 2L J mdτ∫  = 
4

1/ 2L J dΣ∫ ,   (5.25) 

 

in which 
4

d Σ  = 
4 4

mdτ  = 
4 4

g dτ± −  is the four-dimensional volume. 
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 6. Metric field components. – Although the metric tensor gµν splits affinely into 
only a tensor gik and an invariant J, the derivatives gµν|σ of gµν cannot be represented in 
terms of only gik|l and J|k .  In what follows, we shall employ mostly the ( )g µ

ν  and not the 

gµν .  The quantities g(µ)
ρν that are defined by: 

 
g(µ)

ρν = − g(µ)
ρν = g(µ)

ν|ρ  − g(µ)
ρ|ν  ,    (6.1) 

 
indeed behave like normal tensor components under H5 and P, but not under D5 .  For 

that reason, one must observe that the g(µ)
ρν are not tensor components.  While we would 

like to regard the components ( )g µ
ν  of the metric tensor as potentials of the metric field, 

we will speak of the g(µ)
ρν as the field strengths of the metric field.  That terminology will 

later prove to be useful in the physical interpretation of the theory. 
 The affine quantities: 

( )
A

k
mlg = ( ) ( )

| |
k k

l m m lg g− ,     (6.2) 

 
are defined in analogy with (6.1).  Since g(µ)(ν) and g(i)(k) are constant, one will have: 
 

( )
( ) ( )( ) ( ) | ( ) |

4 4
( )

( )( ) ( ) | ( ) |( )

,

.j
k j ml k l m k m lk ml

g g g g g

g g g g g

σ
µ ρν µ σ ρν µ ν ρ µ ρ ν = = − 


= = − 

   (6.3) 

Since: 
( )lgν  = ( )k l

kg gν ,      (6.4) 

it will follow that: 
( )
|
lgν ρ  = ( ) ( )

| |
k l k l

k kg g g gν ρ ν ρ+  = ( ) ( )
| | |

k l k l
k kx g g gν ρ ν ρ+ . 

 
Subtracting the equation that arises by switching v and ρ will yield: 
 

g(l)
ρν = ( ) ( )

| |
k l k l

k kg g g gν ρ ρ ν− = ( ) ( )
| |

k l m k l m
k m kg g g g g gν ρ ρ ν ν− , 

or 

 g(l)ρν = 
4

( )
m k

l mkg g gρ ν . 

 
For g(l)(ρ)(ν) = g(l)σν ( ) ( )g gσ µ

ρ ν  , one gets from this that: 
4

( )( )( ) ( )( )( )

4

( )(0)( ) ( )( )(0)

,

0.

l m n l m n

l n l m

g g

g g

= 

= = 

    (6.5) 

We introduce the vector: 
Yν = J−1 Xν.      (6.6) 

The antisymmetric tensor: 
Fνµ = Yµ | v – Yν | µ       (6.7) 
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can be derived from it.  It will then follow that: 
 

Fνµ Xµ = Yµ | v X
µ – Yν | µ Xµ = Yµ | v X

µ + Y v . 
 

Since Yµ Xµ = 1, one will have: 
Yµ | v X

µ + Y µ
µ νδ = 0, 

such that: 
Fνµ Xµ = 0.     (6.8) 

 
The tensor Fνµ is the identical with its affine reduction, such that: 
 

Fνµ = k l
klg g Fν µ ,  Fkl = k lg g Fµ ν

µν .  (6.9) 

 
With the help of the function η (Xν), which is homogeneous of degree one and has been 
employed several times already, we define: 
 

ϕν = Yν – (ln η)|ν .    (6.10) 
 

The ϕν are then the components of a normal vector in 
4

R , so (ln η)|ν are normal vector 
components that are invariant H5 and P, and one will have jν X

ν = 0.  Therefore, one will 

have: ϕν =
k

kgν ϕ , ϕk = kgν
νϕ .  It will then follow from (6.10) by differentiation that: 

 
ϕν | µ = | |

k k l
k k lg g gν µ ν µϕ ϕ+ = Yν | µ + (ln η)|ν | µ  . 

 
If one infers the equation that results from this by switching the indices v and µ then that 
will yield: 

(ϕk | l − ϕl | k) 
k lg gν µ = Yν | µ − Yµ | ν = Fµν . 

 
With (6.9), that will yield: 

Flk = ϕk | l − ϕl | k .    (6.11) 
 
 Since η was an arbitrary function that was homogeneous degree one, the vector ϕν 
will not be gauge-invariant then.  Under the gauge transformation (2.17): 
 

η′ = σ η, ln η′ = ln η + ln σ ,   (6.12) 
ϕν will change by a gradient: 
 

νϕ′  = ϕν − (ln σ)|ν ,  kϕ′  = ϕk − (ln σ)| k .  (6.13) 

 
 Under an infinitesimal gauge transformation σ = 1 + ε λ, one then has: 
 

 δϕν = − ε λ|ν ,  δϕk = − ε λ|k .   (6.13a) 
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 With g(0)ν = J−1/2 Xν = J1/2 Yν , one then has: 
 

g(0)ν | ρ = J1/2 Yν | ρ  + 1
2  J −1/2 J| ρ Yν . 

 
If one infers the equation that arises from this by switching v and ρ then it will follow 
that: 

g(0)νρ = J1/2 Fρν  + 1
2 J −1/2 (J| ρ Xν − J| ν Xρ) .   (6.14) 

 
That will yield, in particular: 

g(0)(m)(n) = J1/2 F(m)(n)     (6.15) 
and 

g(0)(0) ν = 1
2 (Yν − J−1 J| ν) . 

 
With J| (l) = | ( )

k
k lJ g , it follows that: 

  
g(0)(0)(l) = − g(0)(l)(0) = − J−1 J| (l) .    (6.16) 

 
Due to the antisymmetry of g(µ)νρ in the last two indices, all components with equal 
indices – such as  g(l)(m)(m) , g(0)(m)(m), g(l)(0)(0), g(0)(0)(0) − will be equal to zero. 
 
 
 7. Spinors. – We start with the four DIRAC matrices αi (i is not a tensor index!) 
with the relations: 

1
2 (αi αk + αk αi) = δik .     (7.1) 

 
All matrix representations of (7.1) can be reduced to four-rowed ones that are all 
equivalent to each other.  If one irreducible solution of (7.1) is given then one will get all 
other irreducible solutions in the form: 

S−1αk S.      (7.2) 
 
Since the αk are an irreducible system, one will have that any matrix C that commutes 
with all αk will be a multiple of the identity matrix.  One constructs: 
 

α0 = α1 α2 α3 α4      (7.3) 
 

from α1, α2, α3, α4 , so it follows that: 
 

α0
2 = 1, α0 αk + αk α0 = 0,    (7.4) 

 
such that αµ (µ = 0, 1, 2, 3, 4 is not a tensor index!) are five anti-commuting roots of 
unity: 

1
2 (αµ αν + αν αµ) = δµν .    (7.5) 

 If we now set: 
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γ(µ) = ( )( )g µ µ  αµ  [no summation over (µ)!]  (7.6) 

then we will get: 
1
2 [γ(µ) γ(ν) + γ(ν) γ(µ)] = γµν .    (7.7) 

 
(µ) is again a tensor index in this.  The product γ(0) γ(1) γ(2) γ(3) γ(4) is the single linearly-
independent component of a fifth-rank tensor that is antisymmetric in all indices (i.e., a 
pseudo-scalar).  One calculates from (7.7) that: 
 

[γ(0) γ(1) γ(2) γ(3) γ(4)]
2 = || g(µ)(ν) || = − 1.    (7.8) 

 
Furthermore, γ(0) γ(1) γ(2) γ(3) γ(4) commutes with all γ(ν), so it will be a multiple of the 
identity matrix: 

γ(0) γ(1) γ(2) γ(3) γ(4) = ( )( )|| ||g µ νε   with ε = ± 1.  (7.9) 

 
While (7.9) follows from just (7.7), one will get ε = + 1 by the special choice of (7.6) and 
(7.3).  If another solution γ′(ν) of (7.7) is given then one will set: 
 

α′µ = 
( )( )g µ ν

ε γ′(µ)   [no summation over (µ)!]. 

One will then have: 
1
2 (α′µ α′ν + α′ν α′µ) = δµν  

and 
γ′ (0) γ′ (1) γ′ (2) γ′ (3) γ′ (4) = ε || g(k)(l) ||

1/2 g(0)(0)
−1/2 γ′ (0) = || g(k)(l) ||

1/2 α′0 . 
 
Hence, one will also have: 
 α′1 α′2 α′3 α′4 = α′0 . 
 
There will then exist a matrix S such that α′µ = S−1αµ S, i.e.: 
 

γ′(µ) = ε S−1γ(µ) S.     (7.10) 
 
If (7.10) were also fulfilled for a matrix T then one would need to have: 
 
 S−1γ(µ) S = T−1γ(µ) T, 
from which: 
 T S−1γ(µ) = γ(µ) T S−1, 
 
and therefore the commutability of T S−1 with all γ(µ) would follow, such that: 
 

T S−1 = c 1, T = c S. 
 
However c S likewise fulfills (7.10). 
 Since the Hermitian conjugates ( )µγ ∗  of γ(µ) satisfy the equations: 
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1
( ) ( ) ( ) ( ) ( )( )2

(0) (1) (2) (3) (4) ( )( )

[ ] ,

|| ,

g

g

µ ν ν µ µ ν

µ ν

γ γ γ γ

γ γ γ γ γ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

+ = 
= − 

  (7.11) 

there will be a matrix β such that: 

( )µγ ∗  = − β γ(µ) β−1.    (7.12) 
That implies: 

γ(µ) = − β ∗−1
( )µγ ∗ β ∗ = β ∗−1β ( )µγ ∗  β−1β ∗. 

 
β−1β ∗ will then commute with all γ(µ) , so it will be a multiple of the identity matrix: 
 

β−1β ∗ = c1, β ∗ = c β, β = c β  = cc β ,  (7.13) 
and therefore: 

cc  = 1.     (7.14) 
 
Now, c can be chosen freely, to some degree, since along with β, β′ = ρ eiϕ /2β also 
satisfies equation (7.12). 
 

β′ ∗ = ρ e−iϕ /2β ∗ = ρ e−iϕ /2cβ = e−iϕ /2cβ′ = c′ β′, with c′ = e−iϕ c. 
 
We choose c = − 1.  It will then follow from (7.12) and (7.13) that: 
 

(β γ(µ))
∗ = β γ(µ) , β ∗ = − β, (i β)∗ = iβ.  (7.15) 

 
We associate the concomitant vector space R with a four-dimensional spin space Rs .  By 

its very definition, spin space is a four-dimensional module of linear forms: 
 

Rs (U1, U2, U3, U4).    (7.16) 

 
 In what follows, spinor indices will always be characterized by upper-case Latin 
letters.  The choice of basis is arbitrary, and we will refer to the transition from one basis 
to another as an S-transformation and the associated group as S.  A spinor ψ in Rs can 

be represented as: 
ψ = UK ψ K,     (7.17) 

 
in which ψ K are complex numbers [or, more generally, elements of a module K (i) M, as 

in no. 2, in which K (i) is the field of complex numbers]. 
 We now regard the γ(µ) as automorphisms of Rs , in which ψ → ψ′ = γ(µ) γ, with 

 
U′K = UL γ(µ)

L
K .    (7.18) 

 
Under the transition to another basis VK by way of: 
 

V = (U1, U2, U3, U4) Σ, i.e., VK = UL ΣL
K ,  (7.19) 
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the matrix γ(µ) = (γ(µ)
L
K) will go to: 

γ′(µ) = Σ−1γ(µ) Σ.    (7.20) 
 
One will then obtain another representation of the γ(µ) , and by changing the basis as in 
(7.20), all other representations, up to the factor ε = ± 1 in: 
 

γ(0) γ(1) γ(2) γ(3) γ(4) = ε i.    (7.21) 
 From (7.17), ψ can be written: 
 

ψ = VK ψ′ K = UL ΣL
K ψ′ K = UL ψ L 

 
in the new basis (7.19); i.e.: 

ΣL
K ψ′ K = ψ L,  ψ′ K = (Σ−1)L

K ψ L.  (7.22) 
 
 With (7.20), it will then follow from (7.15) that: 
 

(β Σ γ′(µ) Σ−1)* = β Σ γ′(µ) Σ−1 
or 

(Σ β γ′(µ) Σ−1)* = Σ β γ′(µ) Σ−1,    (7.23) 
and 

(Σ β Σ−1)* = Σ β * Σ = − Σ* β Σ,   (7.24) 
β′ = Σ* β Σ     (7.25) 

 
will fulfill the same conditions for γ′(µ) that β does for γ(µ) .  From (7.25) and (7.22), the 
quantities: 

Lψ +  = K
KL

iψ βɺ ɺ  with β =( )
KL

β ɺ ,  (7.26) 

 

in which Kψ ɺ

is the complex conjugate of ψ K, transform contragrediently to the ψ L.  A 

Hermitian form is then defined upon the spin space Rs by i β (which is invariant under 

S), for which one will have: 

( ) ( )

( , ) ( , ), ( , ) ,

( , ) , ( , ) ,

1
( , ) real number.

K L KL

K L K L
KL KL

K L M
MKL

U U i

i i

l µ µ

ψ ϕ ψ ϕ β
ϕ ψ ϕ β ψ ψ ψ ψ β ψ

ψ γ ψ ψ β γ ψ


= = 


= = 


= =


ɺ

ɺ ɺ

ɺ ɺ

ɺ

ɺ

  (7.27) 

 
 If one goes to another basis in the vector space R by way of a rotation in D5 using 

(5.12) then the relations (7.7) will remain unchanged, from which, the existence of a 
matrix S with || S || = 1 and: 

γ′(µ) = Θ(µ)
(σ) γ(σ) = ε S γ(µ) S

−1    (7.28) 
 
will follow from (7.10).  Since: 
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γ′ (0) γ′ (1) γ′ (2) γ′ (3) γ′ (4) = || Θ(µ)
(σ) || γ(0) γ(1) γ(2) γ(3) γ(4) , 

 
one will have ε = + 1 for the elements of 5

+D  and ε = − 1 for the other ones.  The 

transformations S then define a representation of the five-dimensional rotation group, 
which we would like to denote by 5(1/2,1/2)D .  If one performs a change of basis in Rs at the 

same time as a change of basis in R using (7.19) and (7.20), with Σ = S, then the matrices  

γ(µ)
K

L will remain invariant under the rotations in 5
+D , and will be multiplied by – 1 for 

the rotations with negative determinants.  By contrast, the elements of the matrices γµ = 
( )

( )g ν
µ νγ  are not invariant under 5

+D , since the ( )g ν
µ will be changed.  Those couplings of 

the transformations in R and Rs shall always be assumed from now on. 

 Since the expressions (7.27) are invariant under arbitrary basis changes in Rs , (ϕ, ψ) 

will be invariant under D5 with the coupling that was established, while (ϕ, γ(µ) ψ) are the 

components of a vector, (ϕ, γ(µ) γ(ν)ψ) are the components of a tensor, etc. 
 If we perform a rotation F of the γ(µ) like the components of a vector using (5.18), 
then it will follow, precisely as it did above, that there is a matrix T with || T || = 1, such 
that: 

Φ(ρ)
(σ) γ(µ) = ε T−1γ(µ) T  with ε = 51 for ,

1 otherwise.

T + + ∈


−

D
 (7.29) 

 
If we now ultimately define the application of the operator F on the γ(µ) by: 
 

F γ(ρ) = Φ(ρ)
(σ) T γ(σ) T

−1     (7.30) 
then it will follow that: 

F γ(σ) = ε γ(σ) .      (7.31) 
 
The matrices γ(σ) then remain invariant under the rotations of 5

+D .  By contrast, from 

(7.29), under the application of the operator F to the spinor ψ, it will be subjected to the 
transformation: 

F ψ K = T K
L ψ L.     (7.32) 

 
The quantities (ϕ, γµ ψ), as a vector, will go to another vector (ϕ, Φν 

µ γµ ψ) under F, the 
tensor (ϕ, γµ γν ψ) will transform similarly, etc. 
 The transformations (7.32) define a representation 5

(1/2,1/2)D  of 5D . 

 Like any vector, γ(µ) can also be decomposed into an affine vector γ(k) and a 
component in the direction of Xµ that has the form γ(0) .  For the transformations of D4, 

from (7.28), one will then have: 
 

γ′(0) = γ(0) = ε S γ(0) S
−1,  γ(0) S = ε S γ (0). 
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The representation of the proper Lorentz group 4
+D  (determinant equal to + 1) that is 

given by 5
(1/2,1/2)D  is reducible then, since γ(0) commutes with all of the S that are 

represented.  That will be explained once more in no. 9. 
 We assume that the γ(µ) that are invariant under D5 are absolute constants; i.e., 

independent of Xν, such that γ(µ) |ν = 0.  With that, we then establish that the same γ(µ) 
must be chosen at all points of V, and imagine the basis in spin space as being established 
accordingly.  The spinor components ψ K will be functions of Xν, in general.  We 
correspondingly set: 

Tρ ψ K = Hρ ψ K.      (7.33) 

 
If Hρ = 1 then we will call ψ a normal spinor.  Normalization is performed precisely as it 
was for tensors in no. 2, and therefore needs no further clarification. 
 
 
 8. Infinitesimal transformations. – The most important tool for the investigation of 
the groups H5, G4, etc., is their infinitesimal transformations.  The infinitesimal 

transformations of the group H5 are given by: 

 
X′ µ = X µ + ε ξ µ,     (8.1) 

 
in which ξ µ are the contravariant components of a vector, and ε is a small quantity whose 
powers higher than one can be neglected.  Since ξ µ is a normal vector, one will then 
have: 

ξ µ | ν X
 ν = ξ µ.      (8.2) 

 
A vector α µ will then have the new components: 
 

α′ µ = α µ + ε ξ µ 
| ρ α ρ,  δα µ = α′ µ − α µ = ε ξ µ 

| ρ α ρ.   (8.3) 
 
We define the operator Oµ

ν by: 

 
Oµ

ν α ρ = α ν ρ
µδ , Oµ

ν αρ = − αµ ν
ρδ .    (8.4) 

 
(8.3) can then be written as: 

δα ρ = ε ξ µ 
| ν Oµ

ν α ρ.     (8.5) 

 
For a product of vector components, one has: 
 

δ (α ρ βσ …) = (δα ρ)βσ …+ α ρ (δβσ)… + …, 
 

and we correspondingly define: 
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Oµ
ν (α ρ βσ …) = (Oµ

ν α ρ)βσ …+ α ρ (Oµ
ν βσ) + …,  (8.6) 

 
such that the operator Oµ

ν will also be defined for arbitrary tensor components by (8.6).  

One will then have: 

( )1

1
t µ
νδ ⋯

⋯
= 1

1| t µµ ν
ν µ νε ξ ⋯

⋯
O      (8.7) 

 
under the transformation (8.1).  Furthermore, the change in the volume element dτ under 
the infinitesimal transformation (8.1) is: 
 

δ dτ = ε dτ |
ν

νξ .     (8.8) 

 
If L is an invariant density then L dτ will be invariant under H5 , so δ (L dτ) = 0, such 

that: 
δ L = − ε L |

ν
νξ .     (8.9) 

 
Since m is an invariant density, from (5.20), one will have: 
 

δm = − ε m |
ν

νξ .     (8.10) 

 
The operation δ in this always means the change in quantities at the same point Q under 
changes in the coordinates, or, when written out explicitly for any quantity F (X′ µ are the 
new coordinates of the point Q, which has the coordinates X µ in the old coordinate 
system): 

δF = F′ (X′ µ) – F (X µ).    (8.11) 
 
However, one can also write the change under the transformation (8.1) in such a way that 
one considers the change in F, not at the same point Q, but for fixed coordinate values, 
and thus defines: 

δ ∗F = F′ (X µ) – F (X µ).    (8.12) 
It will then follow directly that: 

δF = δ ∗F + ε F| µ ξ µ .     (8.13) 
 
 An infinitesimal transformation of G4 is given by: 

 
x′k = xk + ε ξ k.      (8.14) 

The following formulas: 
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( ) ( )

4 4

4

|

4 4

|

4 4

|

|

, ,

,

,

,

.

k m k m k k
l l l m l m

k m n k
l n m l

k
k

k
k

k
k

t t

d d

m m

F F F

α α δ α α δ

δ ε ξ

δ τ ε τ ξ

δ ε ξ
δ δ ε ξ∗

= = − 


= 

= 
= − 
= + 

⋯ ⋯

⋯ ⋯

O O

O

   (8.15) 

 
are then understandable with no further explanation. 
 From (5.17), an infinitesimal transformation of 5D  is given by a tensor: 

 
Φµ

ν = µ
νδ + ε ϕ µν .    (8.16) 

It will then follow from (5.19) that: 
 

( )( )ρ ρ µ µ
ν ν ρ ρδ ε ϕ δ ε ϕ+ + = ( )µ µ µ

ν ν νδ ε ϕ ϕ+ +  = µ
νδ , 

 
such that ϕµν will be a skew-symmetric tensor.  If we set F = 1 + ε f in (5.17) or (5.18) 
then it will follow for a vector αν that: 

δαν = ε f αν,     (8.17) 
in which: 

f αν = ϕν
µ α µ .     (8.18) 

f can be decomposed into: 
f = 1

2 ϕµ
ν Pµ

ν,     (8.19) 

 
in which the Pµ

ν are the special infinitesimal transformations: 
 

Pµ
ν α ρ = ρ ν

µδ α − αµ gνρ.   (8.20) 

They satisfy the commutation relations: 
 

[Pαβ, Pσρ] = Pαβ Pσρ − Pσρ Pαβ = gβσ Pαρ + gβσ Pαρ − gασ Pβρ − gβρ Pασ. (8.21) 
 
 If one imposes the condition upon the transformations of 5D  that they must leave the 

vector Xν invariant then 5D  will reduce to the subgroup 4D .  One will then get all 

infinitesimal transformations of 4D  when one sets all ϕ (µ)
(ν) that have one index (0) 

equal to zero, and considers only the P(α)
(β)  for which both the (α) and (β) are non-zero. 

 From (5.12), the infinitesimal transformations of D5 are given by: 

 
Θ(ν)

(σ) = ( )
( )

µ
νδ + ε ϑ(ν)

(σ).    (8.22) 

 
(5.13) implies that ϑ(ν)(σ) = − ϑ(σ)(ν) , and is thus skew-symmetric.  One will then have: 
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δα(µ) = ε ϑ(σ)
(µ) α(σ) , δα(µ) = ε ϑ (σ)

(µ) α(σ)
 .   (8.23) 

 
We define the operator P(ν)

(σ), which acts upon only indices in parentheses (1): 
 

P(ν)
(σ) α(µ) = ( ) ( )

( )
σ µ

να δ − α(σ) g
(σ)(µ).   (8.24) 

 
Hence, (8.22) can also be written: 
 

δα(µ) = 1
2 ε ϑ (ν)

(σ) P(ν)
(σ)

 α(µ).    (8.25) 

It can be verified from this that: 
P(ν)

(σ)
 α(µ) = 0 = Pνσ α µ , 

 
since α µ has no indices in parentheses.  One has P(ν)

(σ)
 α (µ) = P(ν)

(σ)
 α (µ), but Pν

σ
 α µ ≠ 

Pν
σ

 α µ ! 
 
 
  9. Representations of the rotation groups. – Representations were as good as 
completely examined already by CARTAN (2) and WEYL (3), and were applied to 
physical problems by LUBANSKI (4).  Due to the restricted scope of this report, we shall 
therefore refer only briefly to the results. 
 Instead of the infinitesimal transformations P(µ)(ν), we introduce: 
 

( )( ) ( )( )

(4)( ) (4)( )

P for ( ) (4), ( ) (4),

P .

R

R i

µ ν µ ν

ν ν

µ ν = ≠ ≠


= 
   (9.1) 

 
From (8.21), one then has the commutation relations: 
 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

[ , ]

.

R R R R

R R

α β σ ρ β σ α ρ ρ α β σ

α σ β ρ β ρ α σ

δ δ
δ δ

= +


− − 
  (9.2) 

Furthermore, one replaces R(µ)(ν) with: 

                                                
 (1) One must observe the difference between the P that is defined here and the P that was defined 
above!  
 (2) E. CARTAN, Bull. Soc. Math. de France, 11 (1913), 53.  
 (3) H. WEYL, Math. Zeit. 23 (1925), 271; ibid., 24 (1925), 328.  
 (4) J. K. LUBANSKI, Physica 9 (1942), 310-324, 325-338.  
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



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


= + 



= − 

= − 
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    (9.3) 

 
 The Am and Bn are then the infinitesimal transformations of the subgroup 4D  for 

which the vector Xν remains fixed.  They are identical with the corresponding quantities 
in van der WAERDEN, Die Gruppentheoretische Methode in der Quantenmechanik, in 
which their commutation relations are also given. 
 Since Az commutes with Bz, the two can both be simultaneously brought into diagonal 
form.  An irreducible representation of 5D  is determined uniquely by the greatest 

eigenvalue r of (Az + Bz), and the greatest possible eigenvalue s of (Az − Bz) when the 
eigenvalue r of (Az + Bz) is fixed.  We would like to denote this representation by 5

( , )r sD (r, 

s).  r and s are greater than or equal to zero in this, and both of them are either integer or 
half-integer, and r ≥ s.  The degree of this representation is: 
 

N(r, s) = 1
6 (2r + 3)(2s + 1)(r + s + 2)(r – s +1).   (9.4) 

 
 The representation 5

(0,0)D  is the identity representation of degree one.  Except for that 

trivial representation, the representation with the smallest degree is 5
(1/2,1/2)D with N(1/2, 1/2) 

= 4.  It must then be identical with the representation that was given already in no. 7 by 
the spin space Rs .  We would like to give the infinitesimal transformations P(α)(β) for this 

representation explicitly.  We assert that: 
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P(α)(β) (ψ K) = 1
2 γ(α)(β) K

Lψ L = 1
4 [ γ(α) γ(β)  − γ(α) γ (β)]K

Lψ L .   (9.5) 

 
In order to show that, we start with (7.29) and set T = 1 + ε t, corresponding to (8.16) and 
(8.19): 

γ(ρ) + ε ϕ(ρ)
(σ) γ(σ) = (1 – ε t) γ(ρ) (1 + ε t) ; 

i.e.: 
ϕ(ρ)

(σ) γ(σ) = γ(ρ) t – t γ(ρ) ,    (9.6) 
or, with (9.5): 

ϕ(ρ)(σ) γ (σ) = 1
4 ϕ(µ)(ν) [γ(σ) ,γ (µ)(ν)].   (9.7) 

 
We must then prove (9.7).  Since one must assume that (µ) ≠ (ν), one will have: 
 

γ (µ)(ν) = γ (µ) γ (ν) for (µ) ≠ (ν), 
such that 
 [γ(σ) ,γ (µ)(ν)]  = γ(σ) γ (µ) γ (ν) − γ(σ) γ (µ) γ (ν), 
 = ( ) ( )

( )2 µ ν
ρδ γ − γ (µ) [γ(σ) γ (ν) + γ (ν) γ(σ)] = ( ) ( ) ( ) ( )

( ) ( )2[ ]µ ν µ ν
ρ ρδ γ γ δ− . 

(9.7) is then proved. 
 
 When we restrict the transformations of 5D  to the subgroup 4D  by demanding that 

the vector Xν should be unvarying, the representation 5( , )r sD  will decompose into 

irreducible representations of the Lorentz group: 
 

5
( , )r sD = 4

( , )

r s

p q
p s q s

D
= =−
∑∑ .     (9.8) 

 
4
( , )p qD  are irreducible representations of the group 4

+D  (which one gets from, e.g., the 

symmetric spinors
1 1k l

cµ µ ν νɺ ɺ⋯ ⋯
, as in van der WAERDEN).  4

( , )p qD  and 4
( , )p qD −  together 

define an irreducible representation of the complete Lorentz group. 
 From no. 5, one will obtain the reduction of any spinor field, which might be 
represented by quantities ψ that transform under, e.g., 5( , )r sD , by complete normalization 

through the reduction of 5
( , )r sD  as in (9.8).  For the simple spinors in the spin space Rs , 

one has: 
5
(1/2,1/2)D = 4 4

(1/2, 1/2) (1/2,1/2)( )D D− + .   (9.9) 

 
 5

(1/ 2, 1/2)D −  is then irreducible under the complete Lorentz group.  5
(1,0)D  is then identical 

with the group 5D itself.  One has the vector space R itself as the space of representation.  

From (9.8), one has: 
5
(1,0)D  = 4

(1,0)D + 4
(1,0)D .     (9.10) 
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However, this decomposition is identical to the decomposition of the vectors in R by 

means of the affine splitting in no. 5, page 15. 
 One can obtain all the representations 5

( , )r sD  as the tensor images of the spinor space 

Rs , since the representation that is induced in the product space (Rs)
n is 5

(1/2, 1/2)( )nD − , and 

when it is reduced, it will read: 

5
(1/2, 1/2)( )nD −  =

/ 2
5
( , )

0 or 1/ 2 0 or 1/ 2

n r
n
r s r s

r s

c D
= =
∑ ∑ ,   (9.11) 

 
with positive integers nr sc .  In particular, for r > s > 0, one will have: 

 
5
( , )r sD × 5

(1/2,1/2)D = 5 5 5 5
( 1/2, 1/2) ( 1/2, 1/ 2) ( 1/2, 1/2) ( 1/ 2, 1/2)r s r s r s r sD D D D+ + + − − + − −+ + + , 

 
and for r = s > 0: 
 

5
( , )r rD × 5

(1/2,1/2)D = 5 5 5
( 1/2, 1/2) ( 1/2, 1/2) ( 1/ 2, 1/2)r r r r r rD D D+ + + − − −+ + , 

and for r > 0: 
5
( ,0)rD × 5

(1/2,1/2)D = 5 5
( 1/2,1/ 2) ( 1/2,1/ 2)r rD D+ −+ , 

and 
5
(0,0)D × 5

(1/2,1/2)D = 5
(1/2,1/ 2)D . 

 
 The group D5, with its subgroup D4 , as a group that is isomorphic to 5D  ( 4D , resp.), 

possesses the same representations as 5D  and 4D , but with the different meanings that 

were given in no. 5.  We denote those representations by D5
(r, s) .  From no. 8, the 

infinitesimal rotations S(α)
(β) act upon only indices in parentheses and spinor indices, but 

not upon the indices µ, k.  For a simple spinor – e.g., ψ K – one also has (9.5) for P(α)(β), 
instead of P(α)(β). 

 
 

 10. Parallel displacement and differentiation of measure. – Let Q′ be a point in V 

that is close to Q.  Let the vector QQ′  be given by the components ε ξ µ (ε is a small 

number).  We call an infinitesimal homomorphism of R (and the associated Rs) at the 

point Q to R (Rs, resp.) at the point Q′ a parallel displacement of a vector α(ρ) when one 

has, from no. 2: 
Π λ α(ρ) = λ Πα(ρ) . 

 
 Under the group P, the square of its length α(ρ) α(ρ) will not change when ξ µ Xµ = 0, 

and it will change by ε λ Π (α(ρ) α(ρ)) when ξ µ Xµ = λ Xµ.  While the square of the length 
does not change for a normal vector then, for a non-normal vector, it will change under 
parallel displacement in the direction of the vector X µ precisely as it must, based upon its 
homogeneity properties.  The parallel displacement thus-defined will then be an 
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extension of the usual concept of the equality of two vectors at different points.  If 
follows from the requirement that was imposed that one will have: 
 

δ|| α(ρ) = − ε ξ µ ( 1
2 ωµ 

(λ)
(ν) P(λ)

(ν) – Yµ Π) α(ρ)    (10.1) 

 
for the change of the components α(ρ) , with still-undetermined coefficients ωµ 

(λ)
(ν) . 

 Under the transition from the bracketed indices in (10.1) to the unbracketed ones, one 
should note that it will follow from α(ρ) (Q) → α′ (ρ) (Q′ ) = α(ρ) (Q) + δ|| α(ρ) that: 
 

αν (Q) = ( ) ( )g Qρ
ν α(ρ) (Q) → ( ) ( )g Qρ

ν ( ) ( )Qρα ′ . 

Now, one has: 
( ) ( )g Qρ
ν  = ( ) ( )g Qρ

ν ′  − ε ξ µ ( )
| ( )g Qρ

ν µ ′ , 

such that one will get: 
 

δ|| αν  = − 1
2 ε ξ µ ωµλη Pλη αν  − ε ξ µ ( )

| ( )g gρ σ
ν µ ρ  ασ  + ε ξ µ Yµ Π αν .  (10.2) 

 
Since the ωµλν are antisymmetric in λ and η, one will have: 
 

1
2 ωµλν P

λη αν  = ωµλν Q
λη αν  , 

and thus, from (10.2): 
 

δ|| αν  = − ε ξ µ [(ωµ
λ

ν + ( )
| ( )g gρ λ

η µ ρ ) Qλ
η  − Yµ Π] αν ,  (10.3) 

 
which can also be written: 

δ|| αν  = −ε ξ µ [ λ
µηΓ Qλ

η − Yµ Π] αν ,   (10.4) 

with: 
λ
µηΓ  = ωµ

λ
ν + ( )

| ( )g gρ λ
ν µ ρ .    (10.5) 

 
With g λ

νλ µηΓ = Γν, µη , the last equation will imply that: 

 
Γν, µη = ωνµη + ( )

| ( )g gρ
η µ ν ρ . 

 
Due to the antisymmetry of ωνµη in ν and η, it will then follow from this that: 
 

Γν, µη + Γη, µν =
( ) ( )

| ( ) | ( )g g g gρ ρ
η µ ν ρ ν µ η ρ+ = gην | µ .  (10.6) 

 
 For an arbitrary tensor or spinor α⋯

⋯
, from (10.1) and (10.2), one will have, in full 

generality: 

||δ α⋯
⋯

 = ( )Yµ
µ µε ξ αΓ − Π ⋯

⋯
,    (10.7) 

with: 
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Γµ = ( ) ( )1
( ) ( )2 Pλ η λ η

µη λ µ η λωΓ +O .    (10.8) 

 
 We make the following further assumption about parallel displacement: If one has yet 

another neighboring point Q″ (let the infinitesimal vector QQ′′  be given by ε′ ηµ), along 

with Q′, then when ε′ ηµ is parallel-displaced from Q to Q′, it shall determine the same 

point Q″′ (QQ′′′  is the parallel displacement of ε′ ηµ) that ε ξ µ determines when it is 

parallel-displaced from Q to Q″.  That means that: 
 

ε ε′ ξ µ λ
µνΓ ην = ε ε′ η µ λ

µνΓ ξ ν, 
and therefore: 

λ
µνΓ  = λ

νµΓ       (10.9) 

is symmetric in µ and ν. 
 The λ

µνΓ  and ωµλν do not define tensor components, since they represent the 

relationship between two vectors at two different points.  It then follows from (10.9) and 
(10.6) that: 

Γν, σρ = 1
2 (gνσ | ρ + gνρ | σ − gσρ | ν).   (10.10) 

 
It will follow from (10.5) when one subtracts the equation with µ and η switched that: 
 
 ωµλν − ωηλµ + ( ) ( )

| |( )g gρ ρ
η µ µ η+ gλ(ρ) = 0; 

or, with (6.1): 
ωµλν − ωηλµ + ( )g ρ

ηµ gλ(ρ) = gληµ .   (10.11) 

 
One ultimately obtains from this that: 
 

ωνλµ = 1
2 (gλµν + gµνλ − gνλµ).    (10.12) 

 
Parallel displacement is linked uniquely with the metric by that. 
 Parallel displacement in the four-dimensional world W will be defined in a manner 
that is precisely analogous to the way that it is defined in V, except that the terms with the 
operator Π will not appear.  All of the formulas above will remain true with a 

corresponding reinterpretation, except that the quantities in W will be denoted by 
4

kµΓ , 
4

klmω , etc., to distinguish them.  (One does not have 
4

kΓ  = kgµ
µΓ , etc., then, but Γk = 

kgµ
µΓ  must be distinguished from 

4

kΓ .) 

 If a vector field or tensor field α (Q) (from which, we suppress the indices) is given 
then one can define the difference between α (Q′ ) at the point Q′ and its parallel-translate 
α′ (Q′ ) from Q to the point Q′, which must be a vector or tensor again.  We define the 
operator ∇µ by: 

α (Q′ ) − α′ (Q′ ) = ε ξ µ ∇µ α . 
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One refers to it as differentiation of measure, to distinguish it from ordinary 
differentiation ∂ / ∂X µ.  While ∂ / ∂X µ is not a tensor operation, since it compares tensor 
components from R at the point Q and the R at the distinct point Q′, nevertheless, ∇µ is a 

tensor operation; i.e., ∇µ α is a tensor with rank that is higher than that of α by one, 
which will also be called the gradient of α.  Just as we abbreviate ∂α / ∂X µ by α | µ , we 
will shorten differentiation of measure ∇µ α to α || µ  .  With (10.7), it will then follow 
that: 

α || µ = α | µ + (Γµ – Yµ Π) α ;    (10.13) 
e.g.: 
 
α λ || µ = α λ | µ + λ ν

µναΓ − Yµ Πα λ ; α (λ) || µ = α (λ) | µ + ( )
( )

λ
µ νω α ν − Yµ Πα (λ). (10.14) 

 

The operator 
4

k∇  of affine differentiation of measure is defined correspondingly: 
 

α k || l = α k | l + 
4

k
lmΓ α m, α (k) || l = α (k) | l + 

4
( )

( )
k

l mω α m.  (10.15) 

 
This is identical with equation (10.6), since gην || µ = 0.  Due to the tensor character of the 
differentiation of measure, one will then have, in general, that: 
 

|| || || ( )( )||
( )

|| || || ||

0, 0, 0, 0,

0, 0, 0, 0.

g g g gλµ λ
ν λµ ν µ ν λ µ ν

σ σ
ν ν σ σ νγ γ γ β

= = = = 
= = = = 

  (10.16) 

 

 In order to find the connection between 
4

k∇  and ∇µ , we define Γ(ν) = ( )gµ
ν µΓ .  It will 

then follow from (10.8) for tensors and spinors in the fünfbein representation that: 
 

Γ(ν) = 1
2 ω(ν)(λ)(µ) P

(λ)(µ).    (10.17) 

 
With the use of (10.12) and (6.5), (6.15), (6.16), it will then follow that: 
 

4

( )( )( ) ( )( )( )
1/21

(0)( )( ) ( )( )2
1/21

( )(0)( ) ( )( )2
11

(0)(0)( ) | ( )2

,

,

,

.

l m n l m n

m n m n

l n l n

n n

J F

J F

J J

ω ω
ω
ω
ω −

= 
= −


= − 
= 

    (10.18) 

 
With that, it will follow from (10.17) that: 
 

Γ(0) = − 1
4 J 1/2 F(l)(m) P

(l)(m) + 1
2  J−1 J| (m) P

(0)(m)   (10.19) 

and 

Γ(n) = 
4

( )nΓ + 1
2 J 1/2 F(m)(n) P

(0)(m).    (10.20) 
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 Despite several later examples, the reduction of the differentiation in measure of a 
vector shall be carried out explicitly.  We introduce the normalized vector with the 
components να = Hη−1 αν.  It will then follow step-wise with Hη = eln η Π that: 
 
 α (λ)

|| µ  = (eln η Π α (λ))| µ + ωµ
(λ)

(ν) e
ln η Π α (λ) − Yµ e

ln η Π Π να  

  = (ln η)| µ Π Hη να + Hη ( )
|

λ
µα + ωµ

(λ)
(ν) Hη

να − Yµ Hη Π να , 

or 
α (λ)

|| (µ) = Hη [(ln η)| (µ) − Yµ Π να + ωµ
(λ)

(ν) 
να ].  (10.21) 

 
It will follow from this, with (6.10), that: 
 

α (λ)
|| (µ) = Hη [ϕ (µ) Π να + ( )

|( )
λ

µα + ω(µ)
(λ)

(ν) 
να ].  (10.22) 

 
Now, ( )

|(0)
λα  = ( )

| (0)gλ ν
να  = J−1/2 ( )

|
λ

να  Xν = 0, since ( )λα  is homogeneous of degree zero.  

One has ϕ(0) = 0, moreover. 
 It will then follow from this, with (10.18), that: 
 

4

(0) 11
|| (0) |2

(0) (0) (0) 1/21
|| | 2

1/2 1/ 2 (0)1 1
|| (0) 2 2

1/ 2 (0)1
|| | 2

,

[ ],

[ ],

[ ].

n
n

n
m m m nm

l l n l
n

l l l l
m m m m

H J J

H J F

H J F J J

H J F

η

η

η

η

α α
α ϕ α α α
α α α
α ϕ α α α

− =
= − Π + + 
′= − − 
= − Π + + 

  (10.23) 

 
One cares to refer to the operation: 
 

||( ) kβ
−

⋯

⋯
= 

4||
( ) ( )k kβ ϕ β− Π⋯ ⋯

⋯ ⋯
    (10.24) 

 
as gauge differentiation in measure, since Π represents the infinitesimal gauge 
transformation of β⋯

⋯
.  The last equation in (10.23) can then be written: 

 

||
l

mα = Hη 1/2 (0)1
|| 2[ ]l l

m mJ Fα α
−

+ .   (10.25) 

 
Likewise, the second equation in (10.23) can be written: 
 

(0)
||mα = Hη (0) 1/ 2 (0)1

|| 2[ ]m nmJ Fα α
−

+ .   (10.26) 

 
 If one forms the expression (m α µ)|| µ (α µ is a vector) from (5.20) with m then one 
should note that m contains only factors whose measure derivatives vanish, such that m|| µ 
= 0.  It will then follow that: 

(m α µ)|| µ = m α µ|| µ + m|| µ α µ = m α µ|| µ .  (10.27) 
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If we set α µ = m−1 wµ (in which wµ is a tensor density) then that will imply: 

 
wµ || µ = wµ | µ + ( λ

λµΓ − m−1 m| µ) w
µ – Yµ Π wµ. 

 
Since m λ

λµΓ = m| µ , as one checks, it will then follow that: 

 
 wµ || µ = wµ | µ − Yµ Π wµ.    (10.28) 

 
In order to define the measure derivative of an arbitrary tensor density, we first calculate 
w|| µ ; i.e., the derivative of a scalar density.  It follows from (α µ is a normal vector in 

this): 
(w α µ)|| µ = (wα µ)| µ − Yµ α µ Π w 

that one has the relation: 
 

w| µ α µ + w α µ| µ − Yµ α µ Π w = w|| µ α µ + w α µ| µ + w λ
λµΓ α µ , 

 
or, since α µ is arbitrary: 
 

w|| µ  = w| µ − λ
λµΓ w − Yµ Π w = w| µ − m−1 m| µ w − Yµ Π w . (10.29) 

 
It will then follow from this that for an arbitrary tensor density: 
 

||µ
⋯

⋯
t  = | Yλ

µ λµ µ µ− Γ + Γ − Π⋯ ⋯ ⋯

⋯ ⋯ ⋯
t t t w ,   (10.30) 

 
in which Γµ is an operator that acts upon the indices of ⋯

⋯
t  as if  ⋯

⋯
t  were a tensor. 

 

 11.  Curvature. – Parallel displacement of a vector along a closed path will not lead 
back to its initial position, in general.  For that reason, a circuit around an infinitesimal 
surface element shall be examined.  Along with the point Q, let two neighboring points 

Q′ and Q″ be given by way of the infinitesimal vectors QQ′
����	

= (ξ µ) and QQ′′
����	

= (η µ).  A 

fourth point Q″′ , together with Q, Q′, Q″ will define an infinitesimal rectangle.  One 

introduce the notation Q Q′ ′′′
�����	

= (η µ + δη µ) and Q Q′′ ′′′
�����	

= (ξ µ + δξ µ).  One will then have 

QQ′′′
����	

 = QQ Q Q′′ ′′ ′′′+
����	 �����	

= QQ Q Q′ ′ ′′′+
����	 �����	

 = (η µ + ξ µ + δξ µ) = (ξ µ + η µ + δη µ) relative Q, 

such that one will have δη µ = δξ µ. 
 For a vector or tensor α (the indices might be suppressed once more), parallel 
displacement of Q to Q′ means the application of the operator 1 – ξ µ (Γµ − Yµ Π): 
 

α → α′ = [1 – ξ µ Γµ (Q) − ξ µ Yµ (Q) Π(Q)] α . 
 
Parallel displacement of Q′ to Q″ will yield: 
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α′ → 
1

α ′′′  = [1 – (ηµ + δηµ)(Γµ (Q′ ) − Yµ (Q′ ) Π(Q′ ))] α′ , 
 
such that ultimately, after parallel displacement around the path Q → Q′ → Q″ : 
 

 
1

α ′′′= [1 – (ην + δην)(Γν (Q′ ) − Yν (Q′ ) Π(Q′ ))] 
× [1 – ξ µ (Γµ (Q) − Yµ (Q) Π(Q))] α.        (11.1) 

 
Likewise, the path Q → Q″ → Q″′  will give: 
 

 
2

α ′′′= [1 – (ξ µ + δξ µ)(Γµ (Q″) − Yµ (Q″) Π(Q″))] 
× [1 – ην (Γν (Q) − Yν (Q) Π(Q))] α.         (11.2) 

 
Since the difference between (11.1) and (11.2) is the difference of two tensors at the same 
point Q″′, it will be a tensor: 
 

ην ξ µ [Γµ |ν – Γν | µ + (Yν Π)| µ − (Yµ Π)| ν + Γν Γµ − Γµ Γν] α . (11.3) 
 
Since the length of a normal vector is invariant under parallel displacement, the operator 
that appears in (11.3), namely: 
 

ην ξ µ (Γµ |ν – Γν | µ + [Γν , Γµ]) = 1
2 (ξ µ ην − ξ µ ην)(Γµ |ν – Γν | µ + [Γν , Γµ]), 

 
must be an infinitesimal rotation.  If one denotes the surface element ξ µ ην − ξ µ ην by 
dσνµ then the parallel displacement around dσνµ will be equivalent to the infinitesimal 
transformation: 

1
4  dσνµ Rνµλρ P

λρ − 1
2 Fνµ Π + 1

2 (Yν Π| µ − Yµ Π| ν); 

Rνµλρ P
λρ = 2 (Γµ | ν – Γν | µ + [Γν , Γµ]).   (11.4) 

 
 One refers to Rνµλρ as the curvature tensor.  From its very definition, it is 
antisymmetric in ν, µ and λ, ρ : 

Rµνλρ = − Rνµλρ = − Rνµρλ .    (11.5) 
 
One then has the further symmetry properties: 
 

Rµνλρ + Rνλµρ + Rλµνρ  = 0    (11.6) 
and 

Rµνλρ = Rλρµν .     (11.7) 
 
(11.7) is a result of (11.6) and (11.5).  In order to show that, we consider the equations 
that are obtained from (11.6) by cyclic permutation of µ, ν, λ, ρ : 
 

Rνλρµ + Rλρνµ + Rρνλµ = 0,    (11.6a) 
Rλρµν + Rρµλν + Rµλρν = 0,    (11.6b) 
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Rρµνλ + Rµνρλ + Rνρµλ = 0.    (11.6c) 
 
If one adds (11.6) and (11.6a) and then subtracts (11.6b) and (11.6c) then it follow, with 
(11.5), that: 

2 Rµνλρ – 2 Rλρµν = 0. 
 
 In order to prove (11.6), we consider the following parallelepiped: Let ξ µ, ηµ, ζ µ be 
three infinitesimal vectors that determine the neighboring points Q100, Q010, Q001 from the 
point Q000 .  From the demands that were imposed upon parallel displacement, when ξ µ 
is parallel-displaced along ηµ, and ηµ is parallel-displaced along ξ µ, that will determine 
the same point Q110 ; the points Q101 and Q011 are defined analogously.  If one now 

imagines that ξ µ is parallel-displaced along ηµ then one will get the vector 010 110Q Q
��������	

.  If 

one now further parallel-displaces 010 110Q Q
��������	

 along the segment 010 011Q Q
��������	

 then one will 

obtain a vector that is determined from a point Q″ to Q011 .  However, one will also obtain 
the same point Q″ when one parallel-displaces the vector ζ µ along ηµ and then along 

010 110Q Q
��������	

.  One will find two more points Q′ and Q″′ correspondingly when one performs 

the same process with the other vectors.  The three points Q′ , Q″, Q″′ define a triangle.  
However, the three sides of the triangle are the vectors Rµνλ

ρ ξ µ ην ζ λ, Rµνλ
ρ ηµ ζ ν ξ λ, 

Rµνλ
ρ ζ µ ξ ν ηλ.  Their vector sum is zero then, and (11.6) will follow from that directly. 

 From (10.13), the operator ∇µ of measure differentiation reads: 
 

∇µ =
X µ
∂

∂
+ Γµ − Yµ Π. 

 
That will then imply the commutation relations: 
 

[∇µ ,∇ν] = 1
2 Rµνλρ P

λρ − Fµν Π + Yµ Π| ν – Yν Π| µ .   (11.8) 

 
The commutability of measure differentiation and the path-independence of parallel-
displacement are then equivalent to each other.  Since equation (11.8) is a tensor 
equation, one also have: 
 

[∇(µ) ,∇(ν)] = 1
2 R(µ)(ν)(λ)(ρ) P

(λ)(ρ) − F(µ)(ν) Π + Y(µ) Π| (ν) – Y(ν) Π| (µ) .  (11.9) 

 
 One can pose relations in the affine world W that are entirely analogous to the ones in 
V, which do not need to be referred to as “extra,” since one needs only to replace the 

Greek indices with Latin ones, ∇µ , with 
4

k∇ , Rµνλρ , with 
4

mnlrR , etc., while terms with the 

operator Π will not appear. 
 The parts of the curvature tensor into which it splits affinely can be read off easily 
from (11.9).  Similar to (10.23), one obtains for a normal vector α(λ) : 
 

α(l)
|| (n) || (m) = 

4

( )
||( ) || ( )( )l

m nα  + ω(m)
(l)

(0) α(0)
|| (n) + ω(m)(n)(0) α(l)

|| (0) . 
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Since, from (11.9), one has: 
 

α(l)
|| (n) || (m) − α(l)

|| (m) || (n) = R(m)(n)
(l)

(r) α(l) + R(m)(n)
(l)

(0) α(0) , 
 

one can read off the following two equations, along with (10.18) and (10.23): 
 

Rmnlr = 
4

mnlrR + 1
4 J (Fml Frn + Fnl Fmr + 2 Fmn Flr),  (11.10) 

R(0)nlr = 
4

1/21
||2 lr nJ F + 1

4 J (J| l Fnr + J| r Fln + 2 J| n Flr).  (11.11) 

 
On the other hand, for a normal vector α(ρ) whose affine part is α(r) = 0, it will follow 
that: 
 α(l)

||(0) || m   = 
4

( )
||(0) ||( )l

mα + ω(m)(0)
(s) a(l)

|| (s) , 

 α(l)
||(m) || (0) = ω(0)

(l)
(s) a

(s)
|| (m) + ω(0)

(l)
(0) a

(l)
|| (m) + ω(0)(m)

(s) a(l)
|| (s) + ω(0)(m)(0) a

(l)
|| (0), 

and 
α(l)

||(0) || (m) − α(l)
||(m) || (0) = R(m)(0)

(l)
(0) α(0) , 

 
and with the same equations are above, one will get the result that: 
 

R(0)n(l)r = −
4

1/21
| ||2 r nJ J + 1

4 J Fpn F pr + 1
4 J−2 J| n J| r .  (11.12) 

 
No further components can be calculated, due to the symmetry properties of the curvature 
tensor.  (11.10) to (11.12) then determine the tensor Rµνλρ completely. 
 Now, one sets: 

Rµρ = Rµ
ν

νρ = Rµνλρ g
νλ = Rρµ .    (11.13) 

 
 One will then have the relation: 
 

R(µ)(ρ) = R(µ)
(n)

(n)(ρ) + R(µ)(0)(0)(ρ) .    (11.14) 
That implies that: 

Rmr = 
4

mrR + 1
2 J Fmn Fr

n + 
4

1/ 21
| ||2 r mJ J − 1

4 J−2 J| m J| r   (11.15) 

and 
R(0) r =

4

1/21
| ||2

n
r nJ F + 1

4 J−1/2 J| n F nr .    (11.16) 

and (1): 
R(0)(0) =

4

1 |1
||2

r
rJ J− − 1

2 J Fpr F pr − 1
4 J−2 J| r J | r .   (11.17) 

 
The contraction of Rµρ is the curvature scalar: 
 

R = Rµ
µ = Rm

m + R(0)(0) .     (11.18) 
 
Hence, from (11.15) and (11.17): 

                                                
 (1) We always mean: F || µ = F|| ν g

νµ, F || µ = F || ν gνµ
 , F || k = F|| i g

ik, etc. 
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R = 
4

R  + 1
4 J Fmn F mn +

4

1 |
||

m
mJ J− − 1

2 J−2 J| m J | m .  (11.19) 

 
 
 12. Variational principles and field equations. – The metric in the space V is given 
by the metric field ( )g ν

µ .  Later, we will also have to deal with matter fields ψ(M) , where 

the ψ(M) can be tensors and spinors.  [(M) symbolically represents the various matter 
fields and their various associated indices.  If (M) appears twice then one must sum over 
them, as with any other indices.]  We seek to arrive at the field equations for all fields 
from a variational principle: 

( )
B

δ +∫ G L dτ = 0,    (12.1)  

 
in which B is a normal domain in V, G, L are invariant densities that are yet to be 

described in detail, and the variations δψ(M) and ( )g ν
µδ  are set to zero on the boundary RΛ .  

For G, we would like to focus on only those functions that depend upon only ( )g ν
µ , ( )

|g ν
µ ρ , 

Xν, and ( )
| |g ν

µ ρ σ .  The ( )
| |g ν

µ ρ σ  might appear only linearly in it with coefficients that are free 

of the ( )
|g ν

µ ρ .  For L, we allow only functions of ψ(M) , ψ(M) | ν , X
ν, ( )g ν

µ , and ( )
|g ν

µ ρ . 

 Since G depends upon the ( )
| |g ν

µ ρ σ  linearly with coefficients that are free of the ( )
|g ν

µ ρ  , 

one can use GAUSS’s law and partial integration to convert: 
 

B
dτ∫ G = 

B R
dτ

Λ

+∫ ∫ ⋯K ,   (12.2) 

 
in which K depends upon only ( )g ν

µ , ( )
|g ν

µ ρ , and Xν.  When one sets: 

 

( )g σ
µ

δ
δ
K

= 
( ) ( )

| |
g gσ σ

µ µν ν

 ∂ ∂−   ∂ ∂ 

K K
, 

( )M

δ
δψ
L

= 
( ) ( )| |M M µ µ

ψ ψ
 ∂ ∂−   ∂ ∂ 

L L
, etc.,  (12.3) 

 
the variation in (12.1) will yield: 
 

( )
B

δ +∫ G L dτ = ( )
( )( ) ( )

( )
M R

M

g d
g g

σ
µσ σ

µ µ

δ δ δδ δψ τ
δ δ δψ Λ

  
+ + +      

∫ ∫ ⋯
K L L

 (12.4) 

 
That variation must be equal to zero when the changes δ in the field quantities vanish on 
the boundary.  [That requirement can be fulfilled for the boundary RΛ, due to its peculiar 
nature, and despite the homogeneity of the ( )g σ

µδ  (!), but it would not be fulfilled, e.g., 

for R  and R  when the changes δ do not vanish identically.]  Since the ( )g σ
µδ  can be 

chosen arbitrarily (but homogenously of degree – 1), one will then obtain the field 
equations: 
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( ) ( )g gσ σ
µ µ

δ δ
δ δ

+K L
 = 0     (12.5) 

 
for the metric field.  The variational derivatives ( )/ g σ

µδ δK , etc., are components of a 

tensor density; that will follow directly from (12.4).  If one subjects (12.4) to a 
transformation from H5 or D5 then the boundary integral will remain zero if it was zero 

before, and the integrand of the volume integral must then be a scalar density.  Since the 
( )g σ
µδ  and δψ(M) are components of tensors, the same thing will be true of their 

variational derivatives.  We set: 
 

( )g σ
µ

δ
δ
K

= K(σ)
µ,  

( )g σ
µ

δ
δ
L

= S(σ)
µ,    (12.6) 

and 

( )M

δ
δψ
L

= L(M).     (12.7) 

 
The last equation can be interpreted as saying that L(M) = (1/m) L(M) transforms 

contravariantly to ψ(M) .  Let the tensors that correspond to the tensor densities (12.6) be: 
 

K(σ)
µ = m−1 K(σ)

µ, S(σ)
µ = m−1 S(σ)

µ .   (12.8) 

 
With the notations in (12.7), the field equations for the matter field will read: 
 

L(M) = 0.     (12.9) 

 
 If we set m−1 L = L and m−1 G = G then, from (5.25), we will have: 

 

( )+∫ G L dτ = ( )G L+∫ m dτ = 
4 4

1/2( )G L J mdτ+∫  .   (12.10) 

 
If we now denote: 

4 4 4
1/ 2 1/ 2 1

4 4 4
1/ 2 1/ 2 1

,G J m J m m

L J m J m m

−

−

= = 

= = 

G G

L L

   (12.11) 

 
then the field equations can also be derived from the affine variational principle: 
 

4 4 4

( )dδ τ+∫ G L = 0.     (12.12) 
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One must then employ the affine variables ( )i
kg , ϕk in place of the field variables ( )g σ

µ  and 

J, resp., and the 
4( )Mψ  that one gets from an affine splitting in place of the ψ(M) .  For 

example, if ψ(M) is a vector ψµ then 
4( )Mψ  will consist of an affine vector ψk and an affine 

scalar ψ(0) . 
 As before, further arguments will carry over directly to the affine case, when one 
correspondingly defines the tensors: 
 

4

( )i
kg

δ
δ
K

=
4

( )
k

iK ,  
( )i
kg

δ
δ

4

L
= 

4

( )
k

iS ,    (12.13) 

and 

4( )M

δ
δψ

4

L
= 4

4
( )ML .     (12.14) 

 
 Under the transition from five-dimensional to four-dimensional integrals, one must 
observe that the boundary RΛ will go to the boundary R of the four-dimensional world-

domain, such that the integral 
RΛ
∫ ⋯  will go to the boundary integral 

R∫ ⋯ .  That fact 

allows one to rewrite equation (12.4) as an affine one directly: 
 

   ( )+∫ G L dτ = 
4 4 4

( )dδ τ+∫ G L   

= 

4
41/2( ) ( )

( ) ( ) ( )[( ) ]M
M R

m
g J d

m
µ µ σ

σ σ µδ δψ τ+ + +∫ ∫ ⋯K S L  (12.15) 

 
It follows from the equations: 

(0)gµ = J −1/2 Yµ , ( )igµ  = ( )i k
kg gµ    (12.16) 

that: 
(0)gµδ = J −1/2 Yµ δJ + J1/2 δYµ = 1

2 J −1 (0)gµ δJ + J1/2 δϕµ   (12.17) 

 
[the last one is true from (6.10)], and: 

( )igµδ = ( )i k
kg gµδ ⋅ .    (12.18) 

(12.15) will then go to: 
 

4 4 4

( )dδ τ+∫ G L   

 = 

4
41/2( ) ( ) (0) ( ) ( )

( ) ( ) ( ) ( ) ( )[( ) ( ) ]i M
i i M R

m
g g J d

m
µ µ µ µ

σ σ µ µδ δ δψ τ+ + + + +∫ ∫ ⋯K S K S L  

 (12.19) 

 = 1 ( ) 1/ 21
(0)(0) (0)(0) (0) (0)2[ ( ) ( )i k k

k kJ g Jδ δϕ− + + +∫ K S K S  



§ 12. - Variational principles and field equations. 45 

+

4
4

( ) ( ) 1/ 2
( ) ( ) ( )( ) ]k k i M
i i k M R

m
g J d

m
δ δψ τ+ + + ∫ ⋯K S L  

 
On the other hand, one has: 
 

4 4 4

( )dδ τ+∫ G L  

= 
4 4

( )
( ) ( )[( ) ( )k k i r r
i i k rgδ δϕ+ + +∫ K S k t + (a + b) δJ + 

4

4 4
( )

( ) ]
M

M R
dδψ τ + ∫ ⋯L ,    (12.20) 

 
in which, along (12.13), one has: 
 

4 4

4 4

, ,

, .

r r

r r

J J

δ δ
δϕ δϕ

δ δ
δ δ


= =



= =


K L
k t

K L
a b

    (12.21) 

 
A comparison of (12.19) with (12.20) will yield the relations: 
 

4
1/2

( ) ( )

4
1/2

( ) ( )

(0)

(0)
1/21

(0)(0)2
1/21

(0)(0)2

,

,

,

,

,

.

k k
i i

k k
i i

r r

r r

K J K

S J S

k J K

t J S

a J K

b J S

−

−

= 


= 
= 
=


= 
= 

    (12.22) 

 

 We refer to Sµν as the matter tensor, 
4

ikS  as the four-matter tensor, t k as the four-
matter vector, and b as the matter invariant.  With an affine splitting, equations (12.5) 
will then read: 

4 4

( ) ( )
k k

i iK S+  = 0,    (12.23a) 

k r + t r = 0,            (12.23b) 
a + b = 0.          (12.23c) 
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 13.  Matter tensor and conservation laws. – Before we examine the field equation 
in detail, we shall first derive the general theorems and consequences that the form of the 
action principle implies. 
 Since G was assumed to be invariant under D5, under an infinitesimal rotation in D5 , 

one will have: 

0 = dδ τ∫G = 
R

dδ τ
Λ

+∫ ∫ ⋯K  = ( )
( ) R

g d
g

σ
µσ

µ

δ δ τ
δ Λ

+∫ ∫ ⋯
K

  (13.1) 

 
In this, one has, from (8.22) 

( )g σ
µδ  = ( ) ( )

( ) gσ ρ
ρ µε ϑ = ε ϑ(σ)

µ .   (13.2) 

 
 When one lets the ϑ(σ)

µ be zero on RΛ, so the integral over RΛ will vanish, it will then 
follow from (13.1) that: 

K(σ)
µ ϑ(σ)

µ = 0, 

or 
Kµν ϑµν = 0.     (13.3) 

Since ϑνµ is antisymmetric, but otherwise arbitrary, if will follow from (13.3) that: 
 

Kνµ = Kµν,     (13.4) 

is a symmetric tensor. 
 If we now consider infinitesimal transformations of H5 then, since ∫ G dτ is invariant 

under H5 , we will have: 

0 = dδ τ∫G = 
R

dδ τ
Λ

+∫ ∫ ⋯K  

 
With (8.8), it will then follow that: 
 

0 = |( )
R

dν
νδ ε ξ τ

Λ

+ +∫ ∫ ⋯K K  

 
If one employs (8.13) then one will get: 
 

0 = 
R

dδ τ
Λ

∗ +∫ ∫ ⋯K      (13.5) 

 
from partial integration.  Since the possible explicit dependency of the quantity K upon 

the Xν plays no role in the definition of δ *, it will follow from (13.5) that: 
 

0 = ( )
( ) R

g dµ σ
σ µδ τ

Λ

∗ +∫ ∫ ⋯K     (13.6) 

Since: 
( )g σ
µδ ∗  = ε ξ a 

| β Oa
β ( )g σ

µ – ε ( )
|g σ

µ ν ξ ν,    (13.7) 

(13.6) will imply that: 
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0 = ε ( ) ( )
( ) | ( ) |[ ( ) ]a a R

g g dµ β σ µ σ µ
σ µ β σ µ ξ τ

Λ

− − +∫ ∫ ⋯K O K   (13.8) 

 

If we now choose ξ a to behave on the boundary in such a way that 
RΛ
∫ ⋯  vanishes then: 

 
( ) ( )

( ) | ( ) |( )a ag gµ β σ µ σ
σ µ β σ µ+K O K  = 0.   (13.9) 

We have the relation: 
Ka

β = − ( )
( ) a gµ β σ
σ µK O ,    (13.10) 

so 
 ( )

a gβ σ
µO  = − ( )g σ β

µ µδ . 

It will then follow from (13.9) that: 
 Ka

β
| β − ( )

( ) | agµ σ
σ µK  = 0. 

 
Since Kµν is symmetric, it will follow that: 

 
( )

( ) | agµ σ
σ µK  = Kµν g(σ)ν 

( )
| ag σ

µ  = 1
2K

µν gνµ | a , 

such that finally: 
Ka

β
| β − 1

2K
µν gνµ | a = Ka

β
|| β = 0,   (13.11) 

and therefore, we will have: 
Kaβ

|| β = 0     (13.12) 
for the tensor Kaβ. 
 Now, let us apply the same process to the integral ∫ L dτ !  Before we do that, note 

that the relation (13.10) for L has the equation: 

 
Sa

β = − S(σ)
µ Oa

β ( )g σ
µ     (13.13) 

 
as a consequence.  Under an infinitesimal transformation of H5, one will then have: 

 
0 = δ ∫ L dτ = ∫ [δ *L + ε (L ξν)|ν] dτ .   (13.14) 

 
It will then follow step-wise that: 
 

δ *L = S(σ)
µ ( )g σ

µδ + ( )
|( )

| |

g
g

σ
µνσ

µν ν

δ ∗ ∂
  ∂ 

L
+ L(M) δ *ψ(M) + ( )

( )| |

M
M ν ν

δ ψ
ψ

∗
 ∂
  ∂ 

L
. (13.15) 

 
Once more, the possible dependency of the function L on Xµ plays no role here in the 

definition of δ *L.  Now, one has: 

 
δ *ψ(M) = ε ξ µ 

|ν Oµ
ν ψ(M) – ε ψ(M) | ν ξ ν.   (13.16) 



48 Chapter II – Mathematical theory. 

With (13.7) and (13.13), one will get: 
 
 S(σ)

µ ( )g σ
µδ ∗  =ε S(σ)

µ ξ ρ 
|µ Oρ

ν ( )g σ
µ − ε S(σ)

µ ( )g σ
µ ξ ν 

  = ε [− Sρ 
µ ξ ρ 

|ν − S(σ)
µ ( )

|g σ
µ ν ξ ν] 

  = ε [Sρ 
µ | µ − S(σ)

µ ( )
|g σ

µ ν ]ξ ν – ε (Sρ 
ν ξ ρ)|ν . 

It likewise follows that: 
 

L(M) δ *ψ(M) = ε L(M) ξ µ 
|ν Oρ

ν ψ(M) − ε ψ(M) | ν ξ ν L(M), 

= ε [L(M) Oν 
µ ψ(M) | µ − ε ψ(M) | ν  L(M)] ξ ν + ε (L(M) ξ µ Oµ 

ν ψ(M)) | ν . 

 
With that, (13.14) will go to: 
 

∫ [Xν ξ ν + (Yν
µ ξ µ  + νλ

µZ ξ µ | λ)| ν] dτ = 0,    (13.17) 

with 

( ) ( ) ( )
| ( ) | ( ) | ( )|

( )
( )| ( )

( )|

( )
( )( )

| ( )|

( ) ,

,

.

M M
M M

M
M M

M

M

M

g

g
g

µ µ σ µ
ν ν µ σ ν µ ν µ ν

ν ν ν ν
µ µ µ µ µ

ν

νλ λ σ λ
µ µ ρ µσ

ρ ν ν

ψ ψ

δ ψ ψ
ψ

ψ
ψ




= − − − 
∂ = − − + ∂ 
∂ ∂
= +

∂ ∂ 

X S S L O L

L
Y L S L O

L L
Z O O

  (13.18) 

 
The second part of the integral (13.17) can be converted into an integral over the 
boundary RΛ .  If we initially choose ξ ν in such a way that this boundary integral 
vanishes then it will follow that: 

Xν = 0.      (13.19) 

 
However, it will then follow from (13.17) that: 
 

∫ (Yν
µ ξ µ  + νλ

µZ ξ µ | λ)| ν dτ = 0.   (13.20) 

We now choose: 
 ξ µ = aµ

λ X
λ,     (13.21) 

 
with constant aµ

λ in particular.  (The ξ µ themselves cannot be chosen to be constant, 
since they must be homogeneous of degree one in the X λ.)  It will then follow that: 
 

(Yν
µ X

λ + νλ
µZ )| ν = 0;     (13.22) 

i.e.: 
Yν

µ | ν X
λ + Yλ

µ + |
νλ
µ νZ  = 0.    (13.23) 

 
With (13.23), (13.20) will go to: 
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∫ (Yν
µ ξ µ | λ Xλ + νλ

µZ ξ µ | λ)| ν dτ = ∫ (Yν
µ Xλ + νλ

µZ ) ξ µ | λ | ν dτ = 0.  (13.24) 

 
Since ξ µ | ν is homogeneous of degree zero, one will have: 
 

ξ µ | λ | ν X
λ = ξ µ | ν | λ X

λ  = 0,    (13.25) 
 
such that it will follow from (13.24) that: 
 

νλ
µZ ξ µ | λ | ν = 0.    (13.26) 

 
Due to the condition (13.25), it will follow from this that: 
 

νλ
µZ + λν

µZ = Aµ
ν Xλ + Aµ

ν Xλ .    (13.27) 

 
 Due to the homogeneity of the field variables, the Aµ

ν remain largely undetermined.  

If one adds an expression to L that is, e.g., zero identically: 

 
L′ = L + ( ) ( )

|( )g X gσ ν σ
ρ ν ρ+  F(σ)

ρ, 

 
in which F(σ)

ρ can be arbitrary functions of ( )g σ
ρ , ( )

|g σ
ρ ν , ψ(M) , ψ(M) | ν , and Xµ, then one will 

get: 

( )
|g σ

ρ ν

′∂
∂
L

= 
( )
|g σ

ρ ν

∂
∂
L

+ Xν F(σ)
ρ. 

 
Despite the fact that L′ = L, the derivatives will no longer agree.  It will then follow that: 

 
νλ
µ′Z + λν

µ′Z = νλ
µZ + λν

µZ + Xν ( )
ρ
σF Oµ

λ ( )g σ
ρ + Xλ

( )
ρ
σF Oµ

ν ( )g σ
ρ . 

  
 Aµ

λ can be calculated from (13.27), when one considers that from (13.18), νλ
µZ  cannot 

contain a factor Xλ, but at most, a factor Xν, since Oµ
λ ( )g σ

ρ  and Oµ
λ ψ(M) do not contain 

the factor Xλ.  Therefore: 
Aµ

λ = ( )
ρ
σ′A Oµ

λ ( )g σ
ρ + A″(Μ) Oµ

λ ψ(M) , 

with 

( )
ρ
σ′A = 

( )
|X gν σ

ρ ν

∂ ∂
∂ ∂

L
, A″(Μ) = 

( )|MXν
νψ

∂ ∂
∂ ∂

L
, 

 
in which v is not summed over, and ∂ / ∂Xν is the derivative with respect to the Xν that 
appears explicitly.  One can now put L into another form, such that: 
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( )
ρ
σ′A = 0, A″(Μ) = 0 

 
without changing the value of L.  We will always use that form as a basis in what 

follows.  However, νλ
µZ  will be antisymmetric in v and λ then. 

 Equation (13.23) can be simplified further.  It follows from (13.18) that: 
 

Yν
µ |ν = Y| µ − ( )

| ( )|( )
| ( )| ||

M
M

g
g

σ
ρ µ µσ

ρ ν ν νν

ψ
ψ

   ∂ ∂−     ∂ ∂  

L L − Sµ
ν

 |ν + (L(M) Oµ
ν ψ(M)) |ν . 

 
If one again denotes the partial derivative of L with respect to Xµ when the field variables 

are held constant by ∂L / ∂Xµ  (one then has ∂L / ∂Xµ ≠ L|µ) then it will follow for L|µ 

that: 

 L|µ  = ( ) ( )
| | | ( )| ( )| |( ) ( )

| ( ) ( )|
M M

M M

g g
g g X

σ σ
ρ µ ρ ν µ µ ν µσ σ µ

ρ ρν ν

ψ ψ
ψ ψ

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂
L L L L L

 

 

 = ( ) ( ) ( )
( ) | | ( )| ( )|( )

| ( )|| |

M
M M

M

g g
g X

ρ σ σ
σ ρ µ ρ µ µ µσ µ

ρν νν ν

ψ ψ
ψ

   ∂ ∂ ∂+ + + +      ∂ ∂ ∂   

L L L
S L . 

 
Thus, one finally has: 
 

Yν
µ |ν = ( ) ( ) ( )

( ) | ( ) | ( )| ( ) |( )M M
M Mg

X
ρ σ ρ ν

σ ρ µ σ ν µ µ µ µψ ψ ∂− + + +
∂
L

S S L L O . 

 
Together with (13.19), it follows that: 

Yν
µ |ν = 

X µ
∂

∂
L

.     (13.28) 

 
 In affine geometry, all arguments will proceed in parallel with the help of the groups 
G4, D4, except that one will immediately obtain the simpler equations: 

 
4

nl
mZ +

4
ln
mZ  = 0,     (13.27a) 

4

|
n
m nY  = 0,     (13.28a) 

 
in place of (13.27) and (13.28).  When (13.28) is substituted in (13.23), that will give: 
 

Yν
µ + |X

X
λ νλ

µ νµ
∂ +

∂
L

Z = 0 .    (13.29) 

 
 From the invariance under D4 , it will follow that for an infinitesimal transformation: 
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δL = ( ) ( ) ( )
( ) ( ) ( )( )

| ( )|| |

M
M M

M

g g
g

ρ σ σ
σ µ µσ

µν νν ν

δ δ δψ δψ
ψ

   ∂ ∂+ + +      ∂ ∂   

L L
S L ,  (13.30) 

 
in which ( )g σ

µδ  is given by (13.2), and: 

 
δψ(M) = ε ϑ(a)(β) P

(a)(β) ψ(M).    (13.31) 
It follows from this that: 
 

( )( ) ( ) ( )( )1
( )( ) ( )( ) ( )2

( )( ) ( ) ( )( )1
( )( ) ( )( ) ( )2( )

| ( )| |

0 ( )

.

a M a
a a M

a a
a a M

M

d P

g g P d
g

β β
β β

β β β
µ β βσ

µν ν ν

δ τ ε ϑ ϑ ψ

ϑ ϑ ψ τ
ψ

= = + 
  ∂ ∂ + +   ∂ ∂     

∫ ∫L S L

L L   (13.32) 

 
Since ϑ(a)(β) can be chosen arbitrarily, except for its antisymmetry, we initially choose it 
so that the second part of the integral (13.32) (which can be converted into an integral 
over the boundary) vanishes, and obtain: 
 

( )( ) ( )( ) ( ) ( )( )
( ) 0.a a M a
MPβ β β ψ− + =S S L    (13.33) 

 
It will then follow from (13.32) that: 
 

( )( ) ( ) ( )( )1
( )( ) ( )( ) ( )2( )

| ( )| |

a a
a a M

M

g g P
g

β β β
µ β βσ

µν ν ν

ϑ ϑ ψ
ψ

 ∂ ∂+  ∂ ∂ 

L L
= 0.  (13.34) 

 
If we assume that ϑ(a)(β) are constants then: 
 

( )( ) ( ) ( )( ) ( ) ( )( )1
( )2( ) ( )

| | ( )| |

a a a
M

M

g g g g P
g g

β β β σ β
µ µσ σ

µν µν ν ν

ψ
ψ

 ∂ ∂ ∂− +  ∂ ∂ ∂ 

L L L
= 0. (13.35) 

 
It will follow from that and (13.34), moreover, that: 
 

( )( ) ( ) ( )( ) ( ) ( )( )1
( ) ( )( )|2( ) ( )

| | ( )| |

a a a
M a

M

g g g g P
g g

β β β σ β
µ µ β νσ σ

µν µν ν ν

ψ ϑ
ψ

 ∂ ∂ ∂− +  ∂ ∂ ∂ 

L L L
= 0. (13.36) 

 
 Since ϑ(a)(β) is an arbitrary (antisymmetric) homogeneous function of degree zero, one 
will have ϑ(a)(β) | ν X

ν = 0.  It will then follow from (13.36) that the term in parentheses is 
equal to C(a)(β) Xν.  If we then employ the condition on L that was established on page 50 
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then it will follow that the term in parentheses cannot have the form C(a)(β) Xν, since one 

must have ( )
ρ
σ′A = 0, A″(Μ) = 0, from page 49.  One therefore ultimately has: 

 

( )( )( ) ( ) ( )( ) ( ) ( )( )
( )( )

| ( )|

a a a
M

M

g g g g P
g

σ β σ σ β
µ µσ

µν ν

ψ
ψ

∂ ∂− +
∂ ∂
L L

= 0.  (13.37) 

 
 We will now evaluate equations (13.19), (13.29), and (13.33) in detail.  For a normal 
tensor density Sν

µ, one will have: 

 
Sν 

µ 
|| µ = Sν 

µ 
| µ − Sν 

µ 
| µ − ( )1

| ( ) |2 ( )g g gσ
λν σ µ λν µ+ (Sλµ − Sµλ), 

in general, or: 
Sν

µ 
|| µ = Sν

µ 
| µ − S(σ)

µ ( )
|g σ

λν  − ωνλµ Sλµ.   (13.38) 

 
The same thing will also be true for the normal tensor density L(M) Oν 

µ ψ(M) : 

 
(L(M) Oν 

µ ψ(M))|| µ = (L(M) Oν 
µ ψ(M))| µ − L(M) λ

νµΓ Oλ 
µ ψ(M) .  (13.39) 

 
On the other hand, one generally has: 
 

ψ(M) || µ = ψ(M) | µ + λ
νµΓ Oλ 

µ ψ(M) + 1
2 ων

(λ)
(µ) P(λ)

(µ)ψ(M) – Yν Πψ(M) .  (13.40) 

 
It will then follow, with (13.33), that: 
 
L(M)ψ(M) || µ = L(M)ψ(M) | µ + L(M) λ

νµΓ Oλ 
µ ψ(M) − ωνλµ Sλµ – Yν L

(M) Πψ(M) .  (13.41) 

 
Addition of (13.39) and (13.41) yields: 
 
 (L(M) Oν 

µ ψ(M))|| µ + L(M)ψ(M) || ν  

= (L(M) Oν 
µ ψ(M))| µ + L(M)ψ(M) | ν  − ωνλµ Sλµ – Yν L

(M) Πψ(M) . (13.42) 

 
If one subtracts (13.42) from (13.38) then it will follow, with (13.18), that: 
 

Xν = Sν
µ || µ − (L(M) Oν 

µ ψ(M))|| µ − L(M) ψ(M) || ν  − Yν L
(M) Πψ(M) .  (13.43) 

 
(13.19) will then imply the identity: 
 

( ) ( ) ( )
|| ( ) || ( ) ( )|( ) .M M M

M M MYµ µ
ν µ ν µ ν νψ ψ ψ= + Π + ΠS L O L L   (13.44) 

 
It follows from (13.29), with (13.18), that: 
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Sν
µ = L µ

νδ + L(M) Oν 
µ ψ(M) − ( )

|( )
|

g
g

σ
ρ νσ

ρ µ

∂
∂
L − ( )|

( )|
M

M
ν

µ

ψ
ψ
∂

∂
L

+ |X
X

µ λµ
ν λν

∂ +
∂
L

Z .      (13.45) 

 
With (13.40) and (13.37), one will get: 
 

( )
( )|| ( )| ( )| ( )

( )| ( )| ( )| |

( )|
( )|

.

M M M
M M M

M
M

g

Y

λ ρ σ
ν ν νρ λ ν ν ρ σ

µ µ µ ρ µ

ν ν
µ

ψ ψ ψ ω
ψ ψ ψ

ψ
ψ

∂ ∂ ∂ ∂ = + Γ − ∂ ∂ ∂ ∂ 
∂ − Π
∂ 

L L L L
O

L
 (13.46) 

 
When this is substituted in (13.45), with (10.6), one will get: 
 

( )
( ) ( )|| ( )|

( )| ( )|

( )
( ) |( )

( )| |

.

M
M M M

M M

M
M

Y X
X

g
g

µ µ µ µ
ν ν ν ν ν ν

µ µ

λ ρ λ σ λµ
νρ λ νρ λ ν λσ

µ ρ µ

δ ψ ψ ψ
ψ ψ

ψ
ψ

∂ ∂ ∂ = + − − Π + ∂ ∂ ∂ 
∂ ∂ + Γ − Γ +
∂ ∂ 

L L L
S L L O

L L
O Z

 (13.47) 

 
From (13.18), one has: 

µρ
λZ  = ( )

( ) ( )
( )| |

M
M

g
g

ρ σ
λ λσ

µ ρ µ

ψ
ψ
∂ ∂−

∂ ∂
L L

O ,    (13.48) 

such that: 
 

( )
( ) ( )|| ( )|

( )| ( )|

| .

M
M M M

M M

X Y
X

µ µ µ µ
ν ν ν ν νν

µ µ
λµ λ µρ
ν λ νρ λ

δ ψ ψ ψ
ψ ψ

∂ ∂ ∂ = + + − − Π ∂ ∂ ∂ 
+ + Γ 

L L L
S L L O

Z Z

 (13.39) 

 
It follows from (13.48) that: 
 

 Zµρλ = gµρ σλ
σZ  = ( )

( ) ( )
( ) | |

M
M

g
g

λρ σ λ ρ
ησ

µ η µ

ψ δ
ψ
∂ ∂−

∂ ∂
L L

O , 

 Zµλρ =  ( )
( ) ( )

( ) | |
M

M

g
g

ρλ σ ρ λ
ησ

µ η µ

ψ δ
ψ
∂ ∂−

∂ ∂
L L

O . 

 
Subtracting these will yield: 
 

( ) ( )
( ) ( )

( ) | |

) ( ).M
M

g g
g

µρλ µρλ µλρ

λρ ρλ σ λ ρ σ ρ λ
η ησ

µ η µ

ψ δ δ
ψ

= −
∂ ∂ = − − − ∂ ∂ 

W Z Z

L L
(O O

  (13.50) 

 



54 Chapter II – Mathematical theory. 

From (13.37), if one takes (13.50) into account then (since Pλρ = Oλρ – Oρλ + Pλρ): 

 

Wµρλ = 
( ) |M µψ

∂
∂
L

Pλρ ψ(M) .    (13.51) 

 
Since Wµρλ is antisymmetric in µ and ρ, one can, inversely, calculate the Zµρλ from the 

Wµρλ by way of: 

Zµρλ = 1
2 (Wµρλ + Wρλµ − Wλµρ),    (13.52) 

 
such that the expression for Zµρλ will then contain only operations on the matter field 

quantities explicitly.  Since ψ(M) || µ differs from ψ(M) | µ only by summands, ∂L / ∂ψ(M) | µ  

will be a tensor density: 

L(M) µ = 
( )|M µψ

∂
∂
L

.    (13.53) 

 
Zµρλ is therefore likewise a tensor density, such that: 

 

||
λµ
ν λZ  = |

λµ σ λµ µ λσ
ν λ λν σ λσ ν− Γ + ΓZ Z Z . 

 
Since λµ

νZ  is antisymmetric in λµ, the last term will vanish, such that: 

 

||
λµ
ν λZ  = |

λµ σ µλ
ν λ λν σ+ ΓZ Z .     (13.54) 

 
Along with (13.53) and (13.54), (13.49) will go to: 
 

( ) ( )
( ) ( )|| ( ) ||( ) .M M
M M MX Y

X
µ µ µ µ µ λµ

ν ν ν ν ν ν λνδ ψ ψ ψ∂= + + − + Π +
∂
L

S L L O L Z  (13.55) 

 
 Now, if the matter field equations (12.9) are fulfilled by ψ(M) then equations (13.33), 
(13.44), and (13.55) can be simplified essentially even further.  It follows from (13.33) 
that: 

;νµ µν=S S      (13.56) 

 
i.e., the matter tensor is symmetric, on the basis of the field equations.  It follows from 
(13.44) that: 

|| 0.µ
ν µ =S      (13.57) 

(13.55) implies: 
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( )
( )|| ( ) ||( ) .M
M MX Y

X
µ µ µ µ λµ

ν ν ν ν ν λνδ ψ ψ∂= + + Π +
∂
L

S L -L Z   (13.58) 

 
Since Sνµ is symmetric, one can replace Zλµν with 1

2 (Zλµν + Zλνµ) in (13.58), such that, 

with (13.51), one will have: 
 

( ) ||1 1
( ) ( )2 2

( ) ||1 1
( ) ( ) ||2 2

( ) ( )

( ) ( )

M
M M

M
M M

g g X g X Y
X

Y

νµ νµ σν µ σν µ µ ν ν
σ

ν µ µ µνλ νµλ
λ

ψ ψ

ψ ψ

∂ = + + − + Π ∂ 
− + Π + + 

L
S L L

L W W

 (13.59) 

 
 On the basis of the coupling (12.22), certain affine relations must be a consequence of 

the relations for the matter tensor Sν 
µ.  The symmetry of 

4

ikG  is an immediate 
consequence of the symmetry of Sνµ .  A brief calculation will succeed in shortening the 

tensor equation (13.57).  One next has: 
 

S(ν)(µ)
|| (µ) = S(ν)(µ)

| (µ) + ω(µ)
(ν)

(α) S
(α)(µ) + ω(µ)

(µ)
(β) S

(ν)(β).  (13.60) 
 
The affine splitting will yield two equations.  First of all, it will follow, with (10.20), that: 
 

S(0)(µ)
|| (µ) = 

4

(0)
||

m
mS + J−1 J| m S(0)m.   (13.61) 

Secondly: 
 

S(n)(µ)
|| (µ) = 

4

( )
||

n m
mS + J−1 J| m S(0)m + 1

2 J−1 J| (r) S
(n)(r) − 1

2 J−1 J (n) S(0)(0).  (13.62) 

 
It will then follow from (13.12) that: 
 

4

(0)
||

m
mK + J−1 J| m K(0)m = 0    (13.63) 

and 

4||
nm

mK + J1/2 Fm
n K(0)m + 1

2 J−1 J| m Knm − 1
2 J−1 J 

m K(0)(0) = 0 .  (13.64) 

 
With the notation (12.22), these equations will then read: 
 

4||
0m

mk =     (13.65) 

and 

4

4

|| | 0.m m
n m mn nK F k J a+ − =     (13.66) 

 
It will likewise follow that: 

4||
0,m

mt =     (13.67) 
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4

4

|| | 0.m m
n m mn nS F t J b+ − =     (13.68) 

 
From (13.67), the matter vector t m has zero divergence.  From (13.68), the divergence of 
the four-matter tensor is not equal to zero, on the basis of the field Fmn and the field J.  
(The physical meaning of that will become clearer later on.) Equations (13.67) and 
(13.68) will be true only when the matter field equations are fulfilled.  By contrast, 
equations (13.65) and (13.66) are identities. 
 If one now applies the process of infinitesimal transformations that led to the 
mathematical identities for the tensors Kµν and Sµν to the affine case and the integral 

(12.12) then one must imagine that 
4

G  depends upon not only the ( )i
kg , but also on the ϕk 

and J, which has just the consequence that, in general, one has 
4

4

||
nm

mK  ≠ 0.  However, 

everything can be carried over analogously for 
4

L (when one imagines that 
4

L  depends 
upon ϕk and J, in addition to 

4( )Mψ ), such that one will get the following identity from 

(13.33), when it is rewritten in affine form: 
 

4

4

4 4 4
( )( )( ) ( )( ) ( )( )

( )
M

MPα β β α α β ψ− +G G L  = 0,   (13.69) 

 
and from (13.44), one will get the corresponding affine equation: 
 

4

4

||
m

n mG = 4 4

4 4 4 4

4 4 4 4
( ) ( )

( ) ( )|| || |( )M Mm k m k
n M n k M n k n nt t b Jψ ϕ ψ ϕ+ + + +L O O L . (13.70) 

 
If the matter field equations are fulfilled then, since: 
 

4
m

n kϕO  = − ϕm m
kδ , 

 
that will imply the symmetry relation: 
 

4
nmS = 

4
mnS      (13.71) 

and the divergence equation: 

4

4

||
m

n mS  = −
4 4|| ||( )m m

n m m nt tϕ ϕ+ + b J| n ,  (13.72) 

or 

4

4

||
m

n mS +
4 4 4|| || ||( )m m
m n n m m nt tϕ ϕ ϕ+ − − b J| n = 0; 

i.e.: 

4

4

||
m

n mS +
4||

m m
m n mnt t Fϕ + − b J| n = 0,   (13.73) 
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which will coincide with (13.68) when one uses (13.67).  However, (13.67) is also a 

consequence of the gauge invariance of 
4

L .  (
4

L  is gauge-invariant, since L is an invariant 

density.)  If we perform the transformation (6.13a) and a corresponding infinitesimal 
gauge transformation on the 

4( )Mψ  then we will have: 

 

0 = 
4 4

dδ τ∫L  = 
4 4

4 4

4 4
4

| ( ) | ( )
( ) | ( )| |

k M k M
k M k n M n n

d
δ δ δ δε λ λ ψ λ λ ψ τ
δϕ δψ δϕ δψ

  
 − − Π + − Π     
∫

L L L L
 

or 

0 = 4

4 4

4

4 4
4 4

( )
| ( ) ( )

| ( )|
|

Mk n
k M k M

k n M n
n

dε ψ λ λ λ λ ψ τ
ϕ ψ

  ∂ ∂   − Π − + + Π   ∂ ∂ 
   

∫
L L

t L t .     (13.74) 

 
If one chooses λ such that the second term (which can be converted in to a boundary 
integral) vanishes then it will follow that: 
 

4

4

4
( )

| ( ) 0.Mk
k Mψ− Π =t L     (13.75) 

 
It will then follow from (13.74), moreover, that: 
 

4

4

4 4

( )
| ( )|

|

n
k M

k n M n
n

λ λ λ ψ
ϕ ψ

 ∂ ∂ + + Π
 ∂ ∂
 

L L
t = 0.   (13.76) 

 
If one sets λ constant, in particular, then that will yield: 
 

tn | n = −
4

4

4

( )
( )|

|

M
M n

n

ψ
ψ

 ∂ Π
 ∂
 

L
.    (13.77) 

 

The vector density 
4 4

4

( )| ( )( / )M n Mψ ψ−∂ ∂ ΠL  will then have the same divergence as the 

vector density tn .  If the matter field equations 4

4
( )ML = 0 are fulfilled then the following 

two divergences will be equal to zero: 

| 0,n
n =t      (13.78) 

 

4

4

4

( )
( )|

|

M
M n

n

ψ
ψ

 ∂ Π
 ∂
 

L
= 0.   (13.79) 
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With (13.77), (13.76) will imply the two identities: 
 

tk = −
4

4

4 4

( )
( ) | |

|

M
M k k n

n

ψ
ψ ϕ

 ∂ ∂ Π −
 ∂ ∂
 

L L
,   (13.80) 

4 4

| |k n n kϕ ϕ
∂ ∂+
∂ ∂
L L

= 0.    (13.81) 

 

The vector density tk then differs from the vector density 
4 4

4

( )| ( )( / )M n Mψ ψ−∂ ∂ ΠL  by the 

divergence-free term − 
4

| |( / )k n nϕ∂ ∂L .  It follows from the definition of tk in (12.22) and 

equation (13.80) that: 
4

kϕ
∂
∂
L

= −
4

4

4

( )
( ) |

M
M k

ψ
ψ
∂ Π

∂
L

.   (13.82) 

 
The derivation of the affine equation that corresponds to (13.58) will be carried out in no. 
21 with (21.13) as its result. 
 

 Let us now go on to the integral over 
4

G !  Since 
4

G  still contains second derivatives, 
they can be eliminated by partial integration: 
 

4 4

dτ∫G  = 
4 4

R
dτ +∫ ∫ ⋯K      (13.83) 

 

On the basis of that, the integral 
4 4

dτ∫K  is not an invariant now under arbitrary 

transformations of G4 , but just the ones that vanish on the boundary such that variation 

of the boundary integral will give zero.  If one goes over the arguments in pages 46 
through 52 then one will see that equations (13.33) and (13.44), which we would now 
like to present in affine form, are already a consequence of that invariance in their own 

right.  They will therefore also be true for 
4

K , such that (since P(a)(b) ϕk = P(a)(b) J = 0): 
 

 
4

nmK  = 
4

mnK      (13.84) 
is a symmetric tensor, and: 
 

 
4

4

||
m

n mK  = 
4 4

4

|| || |( )r m m
n r m m n nk k a Jϕ ϕ+ +O  

  = −
4 4|| || |( )m m

n m m n nk k a Jϕ ϕ+ +  

or 
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4 4

4

|| || |
m m m

n m m n mn nK k k F a Jϕ+ + −   = 0,    (13.85) 

 
which agrees with (13.66), with the condition (13.65).  However, (13.65) is once more a 

consequence of gauge invariance.  Since 
4

K  does not depend upon the matter field 
quantities, the equation that corresponds to (13.75) will imply (13.65) directly. 
 The groups H5, D5 then lead to the same identities for the projective integrals that the 

groups G4, D4 lead to for the corresponding affine integrals.  In general, the group (G4, 

G) ≅ H5 will first take on its deeper meaning in the projective theory, and the projective 

integrals and field equations have greater mathematical simplicity and symmetry than the 
affine ones. 
 

____________ 



  

CHAPTER III 
 

PHYSICAL APPLICATIONS  
 

 14. Field equations for the metric field. – Whereas in nos. 12 and 13, the field 
equations were examined in regard to their mathematical structure, here, a special Ansatz 
shall be attempted for the action quantity G.  The requirements on G that were posed in 

no. 12 are satisfied by, e.g.: 
 

G = U (J) [R + W (J) J|µ J|µ + V (J)] g− ,   (14.1) 

 
in which R is the curvature scalar that was defined in (11.18), while U (J), W(J), and V(J) 
are functions of J. 
 For the calculation of the variational derivatives Kνµ , from (12.6) and (12.4), one 
must note that G, in the form (14.1), is a function of gµν , gµν|σ , gµν|σ|ρ , Xν , such that the 

fact that: 
δgµν = ( ) ( )

( ) ( )g g g gσ σ
µ ν σ µ σ νδ δ+  

will imply the relation: 

Kνµ = 
g gµν νµ

δ δ
δ δ

+K K
. 

 From (14.1), one gets: 
 

 δG = [U′ R + (U W)′ J|µ J|µ + (U V)′] g−  X ν X µ δgνµ 

 + 1
2 gνµ U [R + W J|ρ J

|ρ + V] g− δgνµ + U W J|ν J|µ  δgνµ,  

 + U (J) δR g− + 2 U W J|ρ δJ|ρ g− . 

 
When the last term is integrated, that will yield: 
 

∫ 2 U W J|ρ δJ|ρ g− dτ = − ∫ 2 (U W J|ρ)|ρ g− X ν X µ δgνµ dτ + 
RΛ
∫ ⋯  

 
It remains for us to evaluate the penultimate term further.  It follows from R = Rνµ gνµ 
that: 

δR = Rνµ δgνµ + δRνµ gνµ = − Rνµ δgνµ + gνµ δRνµ , 
 
in which the relation δgνµ = − gνρ gνσ δgρσ was employed.  For the calculation of δRνµ , we 
remark that since ρ

σηδ Γ is a projective tensor, the difference at the point Q′ will be a 

vector αν that is parallel-translated from Q to Q′ (QQ′  = ξ σ), first with the help of ρ
σηΓ  

and then with the help of ρ ρ
ση σηδΓ + Γ : 

ρ
σηδ Γ α η ζ σ, 
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and must be the difference of two vectors at the same point.  It follows from (11.8) that 
for a normal vector α ρ, one will have: 
 

α ρ||ν ||µ −α ρ
||µ ||ν = Rµν 

ρ
τ ατ, 

 
or when contracted with (11.13): 

α ν||ν ||µ −α ν||µ ||ν = Rµτ ατ. 
 
It follows from this that when one varies gµν by δgµν , one will have: 
 

δRµν αν = δ (α ν||ν ||µ ) − δ (α ν||µ ||ν ). 
 
Since α ν||ρ = α ν|ρ + ν σ

ρσαΓ , it follows that δα ν||ρ = ν σ
ρσδ αΓ , and thus, one will 

ultimately have: 
 δ (α ν||ρ ||η ) = δ (α ν||ρ ||η ) + || ||

ν τ α ν
ητ ρ ηρ αδ α δ αΓ − Γ  

  = || || || ||( )ν σ ν σ ν σ α ν
ησ η ρσ η ησ ρ ηρ αδ α δ α δ α δ αΓ + Γ + Γ − Γ . 

That implies directly that: 
δRµν = || ||( ) ( )ρ ρ

ρν η νµ ρδ δΓ − Γ . 

 
It follows from that by partial integration that: 
 

U g R g dνµ
νµδ τ−∫ = | |( )

R
U g U g g dνµ ρ νµ ρ

ρ νµ µ ρνδ δ τ
Λ

Γ − Γ − +∫ ∫ ⋯ 

 
One can derive from (10.10) that: 
 

ρ
νµδ Γ  = 1

2 gρλ [(δgλν)|| µ + (δgλµ)|| ν  − (δgνµ)|| λ], 

so one will get: 
 

U g R g dνµ
νµδ τ−∫ = | ||

||( )
R

U g g U g g dλ νµ µ ν νµ
λ µνδ δ τ

Λ

− − +∫ ∫ ⋯  

 
by a further partial integration.  If one substitutes everything into the initial formula for 
δ G then one can read off: 

 
 1

2 Kνµ  = [U′ R – (U W)′ J| ρ J |ρ – 2 U W J | ρ || ρ + (U V)′] Xν Xµ 

 + 1
2 gνµ U [R + W J| ρ J |ρ + V] – U W J | ν | µ − U Rνµ + U | λ || λ gνµ − U|| µ || ν . 

 
One can rearrange this into: 
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| |1
| ||2

| |1
| ||2

| | | ||

[ ( ) 2 ( ) ]

[ (2 ) 2 ]

( ) .

K U R U W J J U W J U V X X

g U R U U W J J U J U V

U R U U W J J U J

ρ ρ
νµ ρ ρ ν µ

ρ ρ
νµ ρ ρ

νµ ν µ µ ν

′ ′ ′ = − − +
′′ ′+ + + + + 
′′ ′− − + − 

  (14.3) 

 
One can derive the affine splitting of Kνµ either directly from (14.13) with the help of nos. 
10 and 11, or get it from the affine variational principle with (12.22).  Using the first way, 
it will follow, with the use of (10.23) for J| µ || ν , and with J| (0) = 0, that: 
 
 1

2 Knm  = 1
2 gnm [U R + (2U″ + U V) J| r J | r + 2U′ J | r || r + U′ J−1 J| r J | r + U V] 

  − U Rnm – (U″ + U W) J| n J| m − U′ J| m ,
4|| nJ . 

 
One substitutes the expressions for R and Rnm that were given in (11.15) to (11.19) into 
this, and it will follow that: 
 

( )
4 4

4 4
1 1
2 4

2 2 1 |1 1 1
| | |4 4 2

1 |1 1
| || ||2 2

1
( ) ( )

2 2

.

r pr
nmnm nm nr m pr nm

r
n m r nm

r
m n r nm nm

J
K R g R F F F F g

U
U U U

W J J J W J J J J g
U U U

U
J J J g g V

U

− − −

−


= − − − − 


′′ ′′ ′   − + − + + − +    

    
′ − + − +  

  

 (14.4) 

 
It is simpler to calculate Kn (0) with (10.23): 
 

1
2 Kn (0) = − U Rn (0) − 1

2 U′ J 1/2 Frn J | r. 

 
If one substitutes (11.16) here then that will yield: 
 

U −1 Kn (0) = − J 1/2
4||

r
n rF  − ( 3

2 J −1/2 + U′ J 1/2) Frn J | r.  (14.5) 

 
It will then remain for one to calculate K(0)(0) : 
 

1
2 K(0)(0) = (J U′ + 1

2 U) R – U R(0)(0) + [U″ − 1
2 U W – J (U W)′] J| r J | r 

+ (U′ – 2 J U W)
4||

r
rJ + (U V)′ J + 1

2 U V. 

 
With (11.17) and (11.19), that will yield: 
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1 31 1 1
(0)(0)2 2 4 2

| 1
|| 2

1 |1 1
|2 2

2

.

mn
mn

n
n

r
r

U U
U K J R J J F F

U U

U U
J W J J V J V

U U

U U U
J W J W J W J J

U U U

−

−

′ ′    = + + +    
    

′ ′    ′+ − + + +    
    

′′ ′ ′ ′+ − − − −  
  

 (14.6) 

 
If one substitutes the expressions for Knm , Kn(0) , K(0)(0) that were found in (12.23) then the 
field equations for the metric field will be exhibited in that way.  In particular, if no 
matter is present then they will read simply: 
 

Knm = 0, Kn(0) = 0, K(0)(0) = 0. 
 
 The same field equations will also follow as in no. 12 from the affine variational 
principle applied to: 

4

G  = J 1/2 U [R + W (J) J|m J |m + V (J)] 
4

g− , 

or, with (11.19): 
 

4

G  =
4

4 4
1/ 2 1 | 2 |1 1

|| |4 2( )[ ( ( ) ) ( )]mn m m
mn m mJ U J R J F F J J W J J J J V J g− −+ + + − + − . (14.7) 

 

The quantities 
4

ikK , kl, a can be calculated very easily from (12.13) and (12.21) when 
one applies the derivatives that lead to (14.3) mutatis mutandis; viz., when one sets J1/2 U 
in place of U and replaces the Greek indices with Latin ones.  In that way, one is spared 
the direct calculation of the affine splitting of (14.3), and one will obtain the quantities 
(14.4), (14.5), and (14.6) immediately on the basis of the identities (12.22). 
 
 
 15. Identification. – Up to now, we have made no assumptions about the physical 
meaning of the quantities that were introduced.  We must do that now in order to be able 
to infer physical consequences of the theory.  For this, it is best to appeal to known 
things.  We then write down the total action quantity in affine form according to no. 12 
and (14.7): 

4

4 4 4 4
1/2 1 |1

||4

2 |1
|2

( )

2
( ( ) ) ( ) .

2

mn m
mn m

m
m

g J U J R J F F J J

J
W J J J J V J L

J U

−

−

+ = − + +  


 + − + +   

G L

  (15.1) 

 
If J is constant then (15.1) will take on the form of a variational principle: 
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4
1
2

2
( )

2 2
mn

mn

J J
R F F V J L

J U
+ + + .   (15.2) 

 
However, a comparison with the general theory of relativity will immediately give the 
following interpretation: 
 
 gmn EINSTEIN’s gravitational potentials 
 Fmn Electromagnetic field strengths 
 1

2 J = κ Gravitational constant 

 
This interpretation will also be confirmed for Kmn from (14.4), since Kmn will take on the 
form of EINSTEIN’s gravitational field equations when it is set to zero.  The energy-
impulse tensor also has the usual form: 
 

e

ikT  = Fir Fk
r – 1

2 Fmn F mn gik . 

 
We will be in agreement with that when we define the energy-impulse tensor of matter 
by: 

T(i)
(k) = − 

4
1 1

( )4

2
1

2
i

k

J U g

g
g

δ

δ

− − 
− 

 

−
,    (15.3) 

 
according to (15.2).  In this, δ (…) / ( )i

kgδ is EULER’s variational derivative that was 

defined in no. 12.  When one refers to (12.13) and (12.22), it will follow from (15.3) that: 
 

4
1/2 ( ) ,

( ) .

ik ik

ik ik

S J U J T

S J U J T

= −


= − 

    (15.4) 

 
The field equations (12.23) then read: 
 

− U−1 Knm = − 1
2 U−1 Knm = 1

2 J−1/2 U−1 
4

nmS = −
2

J
Tnm ,   (15.5) 

 

which says that, from (14.4), Tnm enter in the same way for matter as 
4

nmT  does for the 
electromagnetic field. 
 Once energy and impulse are identified, it only remains for us to account for the 
charge-current vector.  It follows from (14.5), with (12.22), that: 
 

4||
n

r nF = − U−1 J−3/2 tr + 13
|2

n
n r

U
J J F

U
−′ + 

 
.   (15.6) 
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We then refer to: 
sr = − U−1 J−3/2 tr      (15.7) 

 
as the charge-current of matter and: 
 

vr = 13
|2

n
n r

U
J J F

U
−′ + 

 
    (15.8) 

 
as the polarization current of the vacuum. 
 
 
 16. Solutions of the field equations. – The field equations that were formulated in 
no. 14 and interpreted in no. 15 admit solutions when V (J) = 0.  The electromagnetic 
field and matter field are equal to zero, J = const., and the gravitational field is a solution 
of the EINSTEIN equations: 

4

ikR = 0.     (16.1) 
 
 If V (J) ≠ 0 then a solution J = const. will not be possible, since the gravitational 

equations 
4

R+ 2V = 0 that follow from (14.4) by contraction would contradict the ones 

that would follow from (14.6), namely 
4

R+ V = 0. 
 Up to now, there has been no deeper discussion of the interpretation of the term V (J) 
in the field equations.  For the sake of simplicity, we would like to always set V (J) equal 
to zero in what follows.  For that reason, we would like to make the quantity W (J), which 
is coupled to J−2 as a summand in (14.4), proportional to J−2: 
 

W (J) = − λ J−2,    (16.2) 
 
into which we have introduced a dimensionless constant λ.  In order to introduce no 
further constants, (14.4) suggest the Ansatz for U (J): 
 

U (J) = Jα,     (16.3) 
 
so U″ / U will be likewise proportional to J−2.  We shall first fix the exponent α later on.  
The field equations will then read: 

4 4

4

4 4
21 1 1

| |2 4 4

2 | 1 |1 1 1 1
| | || ||2 2 2 2

4
1/ 21

2

3/ 2 13
|| |2

4
131 1

2 4 2

( ) [ (1 )]
2

[ ( )] ( ) ( )

,

( ) ,

( ) ( ) 2( )

r pr
ik ik ir k pr ik i k

r r
r ik i r r ik

ik

n n
r n r n r

mn
mn

J
R g R F F F F g J J J

J J J g J J J g

J S

F J t J J F

R F F J

α

α

λ α α

λ α α α

α

α α α λ

−

− −

− −

− − −

−

− + − − + + −

+ + + − + + −

=

= − + +

+ + + + +
4

| 2 | 1/ 23
|| |2( )( ) 0.n r

n rJ J J J J bαα α λ − −














− − + + = 

     (16.4) 
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 The fact that these equations possess the solutions J = const. when Fik = 0 and 
4

ikS  = 
0, b = 0, as mentioned above, implies the demand that one must still have J = const. 
approximately for weak gravitational fields, such that for the absolutely largest domain, 
equations (16.4) will go to MAXWELL’s equations for electrodynamics and 
EINSTEIN’s equations for gravitation.  Solutions of the latter equations will also be 
approximate solutions to the equations (16.4) above then, as long as the fields are weak. 
 The variability of J can first manifest itself for cosmological dimensions or for 
extreme energy densities.  Two problem statements then suggest themselves naturally: 
The cosmos as a complete entity and the creation of stars, as was inferred inductively by 
P. JORDAN (Section I).  Solutions to (16.4) can be given for both problems, with certain 
idealizations. 
 
 
 17. A model for the cosmos and the creation of stars. – In order to be able to 
describe an expanding world in a purely kinematical way, we choose x1, x2, x3 to be 
spatial coordinate and t = x4 to be a time coordinate.  Let the spatial part of the world (x1, 
x2, x3) be a hypersphere of radius ρ(t), and let x1, x2, x3 be coordinates of the unit sphere.  
We can then write the line-element of the world as: 
 

ds2 = ρ2 ds2 – dt2,     (17.1) 
 
in which ds2 is the line element of the unit sphere.  If we introduce the notation g = || gik || 

(i, k = 1, 2, 3) then 
3

g = −
4

g = 
4

2( )m = ρ 6 (x1, x2, x3), in which ξ does not depend upon time 
t. 
 It follows from (13.68) that: 
 

4

4

4 ||
n

nS  = 
4 4

1
4 | |42
n rs

n rsg−S S  = J| 4 – Fm4 t
m . 

If we now set: 
  T44 = ε = energy density, 
 Tik = p gik ,  (i, k = 1, 2, 3, p = pressure of matter) 
 
in (15.4), under the assumption of an isotropic homogeneous distribution of matter, then 
we will get: 

(J 3/2 U ρ 3 ε) ⋅⋅⋅⋅ = 3 3/ 2 3( )J b J U Pρ ρ− iɺ  − Fm4 t 
m ρ 3.  (17.2) 

 
The total material energy is then given by: 
 

E = gε∫ dx1 dx2 dx3 = ε ρ 3 ξ∫ dx1 dx2 dx3 = 2π 2 ε ρ 3.  (17.3) 

 
 As a first application of (17.2), we consider the special case p = b = 0, and the 
electromagnetic field Fik = 0.  While the physical meaning of the assumptions p = 0, Fik = 
0 is immediately obvious, the meaning of b = 0 is not entirely clear.  We will explain the 
meaning of b in no. 19.  With the assumptions that we have made, we will then get: 
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3/2 1 3 3/2 3

2 3/2 2 3/ 2

,

2 2 ,

J U J

E J J

α

α

ε ρ γ ρ γ
π γ π γ

− − − − − −

− − −

= =


= = 
   (17.4) 

 
in which γ is an undetermined constant, and the second formula follows from (16.3). 
 For the electromagnetic tensor: 
 

4
( )e
irS = − J 3/2 U 

e

ikT = − J 3/2 U (Fin F
kn – Fmn F

mn gik),  (17.5) 

 
which, as we showed above, enters into the field equations in the same place for the 

electromagnetic field as the tensor 
4

ikS  does for the matter field, one gets from (15.6) that: 
 

4

4
( )

||
e k

i kS  = − J 3/2 U Fin || k F kn – Fin t 
n + 

4 4

3/2 3/21 1
|| ||4 4 ( )mn mn

mn i mn iJ U F F F J U F+  

 

= − 
4 4 4

3/2 3/2 3/ 231 1 1
|| || || |2 2 4 2( ) kn n kn mn

in k ki n in kn i mn i

U
J U F F F F t J U F F J J U F F J

U

′ + − + + + 
 

, 

 
or, since: 

4 4 4|| || ||in k nk i ki nF F F+ +  = 0, 

 
which is a consequence of (6.11), it will ultimately follow that: 
 

4

4
( )

||
e k

i kS  = Fni t 
n + J| i b

(e),    (17.6) 

with 

b(e) = 3/231
4 2

mn
mn

U
J J U F F

U

′ + 
 

.   (17.7) 

 
However, b(e) corresponds completely in the field equation (16.4) to the b of matter.  If 

one adds the relations for 
4

ikS  and 
4

( )e
ikS  then it will follow that: 

 

4

4 4
( )

||( )e k k
i i kS S+ = J|i (b

(e) + b).    (17.8) 

 
When applied to the expanding universe above, it will follow exactly that: 
 

(J 3/2 U ρ 3 e) ⋅⋅⋅⋅ = Jɺ (b(e) + b) ρ 3 – J 3/2 U p (ρ 3) ⋅⋅⋅⋅,  (17.9) 
 

in which ε and p are, however, the energy density (pressure, resp.) of matter + 
electromagnetic radiation field.  If the temperature is high enough that we can set the 
pressure p in (17.9) equal to the highest-possible value p = 1

3 ε, and if b + b(e) = 0, 

moreover, then we will get from (17.9) that: 
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3/2 1 4 3/ 2 4

2 3/2 1 1 2 3/ 2 1

3 ,

2 2 ,

p J U J

E J U J

α

α

ε ρ σ ρ σ
π ρ σ π ρ σ

− − − − − −

− − − − − −

= = =


= = 
  (17.10) 

 
in which σ is an undetermined constant.  The assumptions p = 1

3 ε and b + b(e) = 0 are 

fulfilled for arbitrary temperatures because in the event that only electromagnetic 
radiation without matter is present, from (17.2), b(e) will be proportional to E2 – H2 (E = 

electric field strength, H = magnetic field strength), which will vanish in the mean. 

 We can also write down the four-matter tensor directly from (15.4) for the two cases 
that were just cited: 
 

4
( )

4 4
3

44

1. 0, 0 (i.e., 0);

, 0 for or 4.

e
ik ik

ik

p b F S

S S i kρ γ−

= = = = 

= − = ≠ 

  (17.11) 

 

( )1
3

4 4 4 4
( ) 4 ( ) 41

44 44 3

4 4
( )

4 4

2. , 0,

, ,

and 0 for , 1,2,3.

e

e e
ik ik ik

e
i i

p b b

S S S S g

S S i k

ε

ρ σ ρ σ− −


= + =

   + = − + = −    

    
 + = =  

  

  (17.12) 

 
 When the field equations (16.4) are applied to the cosmological model in question, 
they will take on the form: 
 

4 4

4

4 4
2 2 |1 1 1 1 1

| | |2 4 2 2 2

4 4
1 | 1/ 2 ( ) 41 1 1

|| ||2 2 3

1 | 2 | 1/2 ( )31
|| |2 2

[ (1 )] [ ( )]

( ) ( ) ( )

( ) 2( ) ( )( ) ( ) 0,

r
ik ik i k r ik

r e
ikk r ik ik ik

n r r
n r

R g R J J J J J J g

J J J g J S S g

R J J J J J J b b

α

α

λ α α λ α α

α ρ σ

α α λ α α λ

− −

− − − −

− − −

− − + + − + + + − 
+ + − = + = − 



+ + + − − + + + = 

 (17.13) 

 

in which the values (17.11) [(17.12), resp.] have been substituted for 
4 4

( )e
ik ikS S+  and b + 

b(e), resp.  In order to evaluate these equations explicitly, we must still calculate Rik , R, 
etc. 
 In order to do that, we start from (17.1) and choose x1, x2, x3 especially such that the 
unit sphere is given by: 

(x0)2 + 
3

2

1

( )i

i

x
=
∑ = 1,    (17.14) 

such that: 
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ds2 = (dx0)2 + 
3

2

1

( )i

i

dx
=
∑ .    (17.15) 

 
 Due to the homogeneity of space, it suffices to calculate all quantities at just one point 
– e.g., for x1 = x2 = x3 = 0 – and indeed to calculate the metric tensor up to second-order 
quantities in the x1, x2, x3 and the i

klΓ  up to first-order quantities in the x1, x2, x3.  We 

agree that the sign ≐  means that equality is valid only at the point x1 = x2 = x3 = 0. 
 It follows from (17.1), (17.14), and (17.15) that: 
 

ds2 ≐  ρ 2 
3 3

2

1 1

( )i k l k l

i i

dx x x dx dx
= =

 + 
 
∑ ∑ – dt2, 

so 
2

4

44

( ) , 1,2,3,

0, 4,

1,

i k
ik ik

i

g x x i k

g i

g

ρ δ + =
= ≠ 
= − 

≐

   (17.16a) 

 
from which, it will follow immediately that: 
 

2

4

44

( ) , 1,2,3,

0, 4,

1.

ik i k
ik

i

g x x i k

g i

g

ρ δ− − =
= ≠ 
= − 

≐

  (17.16b) 

 
The three-index symbols then follow from this: 
 

4 4
4 44 44

4
4

, 0,

, , ( , , 1,2,3),

i i s
rs rs s

i
rs rs s is

x

i r s

δ
ρρ ρ δ δ
ρ

Γ Γ = Γ = Γ =

Γ Γ = 


≐

ɺ
ɺ≐ ≐

  (17.17) 

 

in which 
4x

∂
∂

=
t

∂
∂

 has been replaced with a dot.  It follows from: 

4 4 4 4|| || || ||
i i

i k k iα α− = 
4

i
kiR α  

 
that for a vector α i with α i | k ≐  0,  α i | k | l ≐  0, with (17.17): 
 

(i, k ≠ 4) 4 4

4 4

4
|| ||

4
|| 4 || 4

, ,

, 0,

i i k i k
k ik k

i i

x
ρα α δ α α ρ ρ α
ρ

α α α

 +




ɺ
ɺ≐ ≐

≐ ≐

 

and therefore: 
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4||
i

iα  = 
4 4

3 3
4 4

|| || 4
1 1

3k k k
k

k k

x
ρα α α α
ρ= =

+ +∑ ∑
ɺ

≐ . 

One will then have: 

 
4 4|| ||

i
i kα = ( )

4|| |

i
i k

α ≐  αk for k ≠ 4,  

 

 
4 4|| || 4

i
iα = ( )

4

2
4

|| 2|
3i

i k

ρ ρα α
ρ ρ

 
→ 

 

ɺɺ ɺ
≐ , 

moreover, and: 
 

 k ≠ 4: 
4 4|| ||

i
k iα  = 

4 4 4 4

3
4 2

|| || || || 4
1

3 2l k k
k l k

l

α α α ρ α
=

+ +∑ ɺ≐ , 

 

    
4 4|| 4 ||

i
iα  = 

4 4 4 4

23
4 4

|| || || 4|| 4 2
1

3l
k l

l

ρα α α
ρ=

+∑
ɺ

≐ , 

such that: 
4

2

4 4

, 4 : (2 2 ),

0, 3 .

ki ik

ki ki

i k R

R R

δ ρ ρρ
ρ
ρ

≠ − + + 




ɺ ɺɺ≐

ɺɺ
≐ ≐

   (17.18) 

 
Due to the homogeneity of space, it will then generally follow with (17.16a) that: 
 

4
2 2

4 4 4
2

4 44 2

, 4 : (2 2 ),

6
0, 3 , (1 2 ),

ik ik

k

i k R g

R R R

ρ ρ ρρ
ρ ρ ρρ
ρ ρ

− ≠ = − + + 


= = = − + + 


ɺ ɺɺ

ɺɺ
ɺ ɺɺ

 (17.19) 

and finally (i, k ≠ 4): 
 

4 4
1
2ik ikR g R−  = ρ−2 gik

2(1 2 )ρ ρρ+ +ɺ ɺɺ ,  
4 4

1
44 442R g R−  = − 3ρ−2 2(1 )ρ+ ɺ . (17.20) 

 
Due to the homogeneity of space, the scalar J can depend upon only t, such that with 
(17.17), it will follow that: 

4 4

4 4

4

|4
| || || 4

| |4
|| 4 ||

|
||

, , 4, ,

0, 4,

3 .

i k ik

l
l

l
l

J g J i k J J

J J l

J J J

ρ
ρ

ρ
ρ


= − ≠ = − 


= = ≠ 


  = − +    

ɺɺ
ɺɺ

ɺ
ɺɺ ɺ

  (17.21) 

 
If one substitutes (17.20) and (17.21) into (17.18) then it will follow that: 
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22

2

4 4
1/ 2 ( )

22
4 4

2 1/ 2
442

1 1 1 1 1
2 (1 ) 2

2 2 2 2

1
( ),

2

3 3 1 1 1
3 3 (

2 4 2 2 2
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e
ik ik

J J J
g

J J J

J S S

J J
J S S

J J

α

α

ρ ρ ρλ α α α α
ρ ρ ρ ρ

ρ λ ρα α α
ρ ρ ρ

− −

− −

         + + − + + − − + + +                   

= +

      − − − + − − + = +            

ɺ ɺ ɺɺɺ ɺ ɺ

ɺ ɺɺ ɺ
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( )
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2

2

2

1/ 2 ( )
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1 1 1 1
6 6 6 2( ) 3

2 2 2

3
( ) ( ) 0.

2

e

e

J J

J J

J
J b b

J
α

ρ ρ ρα α α α λ α λ
ρ ρ ρ ρ

α α λ −















      − + − + − + − + − +       

       


   + − + + + =       

ɺ ɺɺ ɺɺ ɺ

ɺ

(17.22) 

 
 Let us first consider the case of (17.11)!  Finding a solution for arbitrary values of α 
seems pretty hopeless.  However, if the inductive cosmological arguments of P. 
JORDAN that were sketched out in Chapter I are valid then one should expect that it is 
just the model (17.11) that must give a solution of the form ρ = ρ0 t, because stellar 
velocities that are close to the velocity of light will justify the Ansatz of setting p ≪  ε – 
i.e., p ~ 0 – in all cases.  (The velocities of the stars are reckoned relative to the 
coordinate system of the x1, x2, x3, such that the expansion velocity of the universe does 
not enter into it.)  Another Ansatz ρ = ρ0 t

µ, with µ ≠ 1 would not be able to lead to a 
simpler solution either, since 1 / ρ2 and 2( / )ρ ρɺ  would not contain the same powers of t 

then.  If we make the Ansatz J = J0 t
β for J then it will follow from the second equation 

(17.22) that the terms in (17.20) will contain the power t−2 when β = − 1 / (α + 1/2).  
Now, it is remarkable that there exist solutions of the simple form: 
 

ρ = ρ0 t, J = J0 
1
2

1

t α
−

+     (17.23) 
 
for only two values of α.  Substituting (17.23) into (17.22), with (17.11), will yield: 
 

1
2

1
2

2 21
2

3
32

02 21
2

2 21
2

1 ( 3 )1
1 0,

2( )

( 3 )1 1
1 ,

6( ) 2

1
1 0.

2( )

J

α

α
α

α

α

λ α α
ρ α

λ α α ρ γ
ρ α

λ α
ρ α

− − −

+ + −+ − = + 
+ −

+ − = + 
++ − = 

+ 

  (17.24) 
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In order for this simple solution to be possible, the first and last equation must coincide, 
which implies the quadratic equation for α : 
 

α2 + 
1

6
α − 1

3
 = 0 

 
with the two roots α = 1/2 and α = − 2/3.  From (17.23), the value α = − 2/3 gives J 
= 6

0J t ; i.e., an increase by t 6, which cannot agree with experiment in any case, according 

to Chapter I.  The best prospect for agreement with experiments is given by the value α = 
1/2 .  For that reason, we decide to fix the still-mathematically-arbitrary function U (J) 
with (16.3) as: 

U (J) = J1/2.     (17.25) 
 
(17.24) will then imply the two equations: 
 

2

1 3
02

1 1
1 0,

4 2

1 1 1
.

12 6 2
J

α

α
α

λ
ρ

λ ρ γ
ρ

− −

+ − − = 


+ − =


   (17.26) 

The value for ρα : 

ρα = 
2

2 3λ −
 

 
follows from the first equation.  The second equation then yields: 
 

γ = 2 J0 ρα (4 + ρα
2). 

 
With the introduction of a new constant β0 in place of γ, with (17.4), one will have: 
 

1
2

0

2 20
0

2 1 8( 1) 1
, ,

2 32 3

, 2 .

t J

E

λρ κ
ρ λ ρλ

βε π ρ β
ρ

− = = = −− 

= =


  (17.27) 

 
 We think of all quantities in (17.27) as being measured in natural units, as in Chapter 
I.  We recognize immediately that the relations (17.27) will agree with the inductively-
inferred order-of-magnitude relations (I.1) when λ is a number with order of magnitude 
unity, and β0 is likewise roughly unity in natural units.  The pure number λ that was 
introduced in (16.2) can be derived only from experiment. 
 For the other extreme case (17.12), in order to solve (17.22) for α = 1/2, we make the 
Ansatz: 

ρ = ρb t, J = J1 t
−2, 
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and find that: 

 
2

1

bρ
+ 3 – (1 + 2λ) = −

4
1

1

6 bJ

σ
ρ

, 

 −
2

3

bρ
+ 3 – (1 + 2λ) = −

4
1

1

2 bJ

σ
ρ

, 

 −
2

6

bρ
− 6 + (1 + 2λ) = 0. 

 
It follows from the third of these equations that: 
 

1 + 2λ = 3 +
2

3

bρ
. 

 
If one substitutes this into the other two equations then they will become identities and 
yield the relation: 

σ = 12 2 2
1 bJ ρ . 

 
With the values (17.10) for the energy density ε and the total energy E, when one 
introduces the constant 2 4

1 bJ ρ σ−  in place of σ, one will ultimately get the result that: 

 

1
2 2

1

2 3
1 1

3 1 1 6
, ,

2 1

, 2 .

t J

E

ρ κ
ρ βλ

ε β π ρ β


= = = 

− 
= = 

   (17.28) 

 
 Just as the value of β0 was not fixed in the first model, the value of β1 is not fixed 
here, either.  In natural units, we would have to expect a value for β1 that would have 
order of magnitude unity in natural units (i.e., ε = β1 atomic nuclear density).  Generally, 
we must still specify what sort of experiment we can compare the latter model with.  
From an idea of P. JORDAN, this model seems to be suitable for giving a deductive 
foundation for the creation of stars. 
 In order to do that, we consider the following solutions of our field equations, which 
certainly exist (but are not calculated exactly): Along with the cosmos as a whole, a 
smaller stellar cosmos is created spontaneously that is completely separate from the 
cosmos as a whole, as might be suggested in Fig. 1 in exaggerated ratios of quantities, 
and in which the three spatial dimensions have been replaced with a single one.  From 
(17.28), κ will decrease with the age of the star like t−2 in the small stellar cosmos.  After 
a certain time, κ will have attained a value in the star that is the same as the value of κ in 
the cosmos as a whole, so it will be possible to continue the solution in such a way that 
the small stellar cosmos fuses with the cosmos as a whole.  It is at that moment that the 
“new star” will first become visible, and indeed, the expansion velocity of the fusion will 
be around the speed of light initially.  From (17.27) and (17.28), one will have: 
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ρstar = (ρuniverse)
1/2 

1/2

0

1

3 2 3

2 1

β λ
β λ

  −
  − 

, 

 
at the time point of the fusion, so the order of magnitude in natural units will be: 
 

ρstar ~ (ρuniverse)
1/2, tstar ~ (tuniverse)

1/2. 
 

 

 
Figure 1. 

 
 The current age of the universe is around 1040 in natural units, such that for a star that 
is presently being created, the time of its existence up to its emergence in the cosmos will 
amount to around 1020 (~ 10−3 sec).  The mass of the newly-created star will coincide 
with its mass at the time point that it emerges in the cosmos, up to order of magnitude, 
i.e.: 

Estar ~ (ρstar)
3 ~ (ρuniverse)

3/2 ~ (tuniverse)
3/2   (17.29) 

 
so for a star that is being presently created, Estar ~ (~ 50 solar masses).  The radius at the 
moment when it emerges in the cosmos would be ρstar ~ 1020 (~ 200 km).  At that 
moment, one must regard the star as a degenerate one that consists of matter that is 
almost all neutrons.  The explosion that would result from the emergence of the star must 
probably be identified with the phenomenon of a supernova.  For the consequences of 
this picture of stellar creation and its relationship with the problems of cosmic radiation 
and the creation of the elements, whose detailed discussion has still not been concluded, 
one would do best to read the two works of P. JORDAN Die Herkunft der Sterne and 
“Zur Theorie der Sternentstehung” (References [9] and [10], since these considerations 
go beyond the scope of the projective theory of relativity, and therefore, the scope of this 
booklet). 
 
 
 18. Current and charge. – One has the following divergence relation for the matter 
vector tm that was defined in (12.21): 
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tm| m = 0.     (18.1) 

 
If we introduce the current vector sr as in (13.7) then we will have: 
 

3/2
|

1
| |

( ) 0,

3
or  .

2

m
m

m m
m m

J U

U
J J

U
−

=


′  = − +  
  

s

s s
    (18.2) 

 
It follows from (15.8) by differentiation that: 
 

4||
r

rv = 
4

1
| ||

3

2
mr

m r

U
J J F

U
−′ + 

 
, 

and with (15.6): 

4||
r

rv = 1
|

3

2
m

m

U
J J s

U
−′ + 

 
, 

such that one will then have: 
 

(sm + vm)|m = 0, 
4||

( )m m
ms v+ = 0.   (18.3) 

 
The divergence of the charge-current of matter alone does not vanish, but only that of the 
combined matter and polarization current.  The question then arises of how the total 
charge if matter will behave in an expanding universe.  In the coordinates x1, x2, x3, t of 
page 43, (18.2) will read: 

3
3/2 3 3/ 2 3 4

| |4
1

( ) ( )l
l

l

J U s J U sρ ρ
=

+∑ = 0. 

If: 

Q = 4 3s ρ ζ∫ dx1 dx2 dx3    (18.4) 

 
is the total charge of matter then integrating the previous equation over all of space x1, x2, 
x3 will give the relation: 

(J 3/2 U Q) ⋅⋅⋅⋅ = 0, 
or, with U = J 1/2  : 

J 2 Q = const.     (18.5) 
 
 If the constant in (18.5) is not zero then the total charge of matter will not, in fact, 
remain constant, but will increase like J−2.  However, from experiments, the total charge 
Q of matter is probably equal to zero, and the constant in (18.5) must also be set equal to 
zero.  From (18.5), the condition Q = 0 will then be compatible with the expansion of the 
universe and variable J. 
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 19. Scalar matter field. – Whereas, up to now, we have introduced the matter field 
only indirectly by way of the matter tensor Sµν with the use of the associated conservation 
law, in this section we would like to explicitly examine the simplest-possible matter field.  
We introduce a real invariant ψ as the field quantity; ψ is then homogeneous of degree 
zero.  The physical meaning of ψ is given by the energy-impulse tensor and the charge-
current vector.  The simplest Ansatz for L is then L = L m, with: 

 
L = 1

2 [α (J) ψ |ν ψ|ν + β (J) ψ 2].   (19.1) 

 
The matter field equations (12.9) then read: 
 

(α ψ |ν)|| ν – β ψ = 0.    (19.2) 
 
Since ψ | ν ψ| ν = ψ |k ψ| k , from (12.11), one will have: 
 

4

L  = 1
2 J 1/2 (α ψ |ν ψ|ν + β ψ 2),   (19.3) 

 
from which, the field equations in affine form will imply that: 
 

4

1/2 |
||( )k

kJ αψ − J1/2 β ψ = 0,    (19.4) 

 
which one can also obtain naturally from (19.2) by direct calculation with the help of 
(10.23). 
 Since ψ is a scalar, from (13.51), one will have Wµρλ = 0 and therefore also λµ

νZ = 0.  

The matter tensor density is then calculated from (13.58): 
 

Sν 
µ = |

|

X
X

µ µ
ν νν

µ

δ ψ
ψ

∂ ∂+ −
∂ ∂
L L

L . 

The matter tensor then reads: 
 

Sν 
µ = 1

2 (α ψ |ν ψ|ν + β ψ 2) µ
νδ − α ψ |µ ψ|ν + (α′ ψ |λ ψ|λ + β′ψ 2) X ν X µ, (19.5) 

 
in which α′  and β′  are the derivatives of α and β.  That will imply the affine splitting: 
 

| 2 |1
| |2

(0)

(0)(0) | 2 | 21
| |2

( ) ,

0,

( ) ( ).

m k m m
n k n n

m

k k
k k

S

S

S J

αψ ψ βψ δ αψ ψ

α ψ ψ β ψ αψ ψ βψ

= + −
= 
′ ′= + + + 

 (19.6) 

 
It follows from (12.22) that the four-matter tensor is: 
 

4
m

nS = 1
2 J1/2 (α ψ |k ψ|k + β ψ 2) m

nδ  − J1/2 α ψ | m ψ| n .  (19.7) 
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The matter tensor is equal to zero: 
t m = 0,      (19.8) 

and the matter invariant is equal to: 
 

b = 1
2 J1/2 (α′ ψ |k ψ|k + β′ ψ 2) + 1

4 J−1/2 (α ψ | k ψ| k + β ψ 2).  (19.9) 

 
 Since t m = 0, the ψ-field will represent uncharged matter.  The energy-impulse 
follows from four-matter tensor: 
 

Ti 
k = − J−1 U−1 | 2 |1

| |2 ( )l k k
l i iα ψ ψ βψ δ αψ ψ + −  .  (19.10) 

 
The field variable ψ can be just as well replaced with any multiple of ψ without changing 
anything in the physical meaning of energy and impulse.  For the sake of simplicity, we 
set: 

2

( ) ,

( ) ( ).

J J U

J J U J

α
β µ

= 
= 

   (19.11) 

(19.10) will then assume the form: 
 

Ti 
k = − 1

2 J−1 U−1 | 2 2 |
| |( )l k k
l i iψ ψ µ ψ δ αψ ψ+ + ,  (19.12) 

 
in which µ is, as is known, the mass (in natural units) of the corresponding particle under 
field quantization. 
 In order to explain the meaning of the matter invariant b, we would like to investigate 
the field equations in the coordinates system x1, x2, x3, t that was used as a basis in no. 17.  

If 
4

g−  = 
3

g  = ρ 3 ζ 1/2, with the notations that were used there, then the field 
equations (19.4) will read: 
 

(ρ 3 ζ 1/2 J α ψ| k)| k − ρ 3 ζ 1/2 J1/2 β ψ = 0.   (19.13) 
 
If we set J1/2 α = σ and denote differentiation with respect to t by a dot, to abbreviate, 
then it will follow that: 
 

3
2 2 1/ 2

| |
, 1

3 ( )kl
k l

l k

σ ρψ µ ψ ψ ρ ζ ζ ψ γ
σ ρ

− −

=

 + + + − 
 

∑
ɺɺ

ɺɺ ɺ = 0, 

 
in which we have set gkl = ρ−2 γ kl.  We solve these equations by way of the Ansatz: 
 

ψ = Y(t) Z (x1, x2, x3). 
It will then follow that: 
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2
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3
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| |
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3 0,

( ) 0.kl
k l

k l
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Z l Z
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σ ρ ρ

ζ γ ζ
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∑

ɺɺɺɺ ɺ

   (19.14) 

 
 The solutions to the second of these two equations are spherical functions, which we 
would not like to give explicitly, however.  l is capable of taking on only discrete values.  
However, if ρ is very large then l / ρ will be practically continuous in the first equation 
(19.14).  Since we would like to investigate the macroscopic behavior of the solutions of 
(19.14) in the mean, the second equation will have no essential significance for that 
purpose.  We make the Ansatz: 

Y = σ −1/2 ρ −3/2 ϕ 
 
for Y.  We will then get the following equation for ϕ, which is free of ϕɺ : 
 

2 22
21 1 1 3 3

4 2 2 2 2

lσ σ σ ρ ρ ρψ µ ϕ
σ σ σ ρ ρ ρ ρ

     + − − + − + +      
       

ɺ ɺ ɺɺɺ ɺɺ ɺ
ɺɺ = 0. 

 

 We now consider the state of the universe, moreover, where ρ, /ρ ρɺ , /ρ ρɺɺ , like 

/σ σɺ , /σ σɺɺ , and also /µ µɺ , /µ µɺɺ  are large in comparison to the elementary length.  

Since 1 / µ has the order of magnitude of the elementary length (because µ is the natural 
unit of mass for elementary particles), we can simplify the equation for ϕ above to: 
 

2

2 lψ µ ϕ
ρ

  + +  
   

ɺɺ  = 0. 

 
With the conditions above, we can easily solve this equation (the real part of it, resp.) 
approximately by way of the Ansatz: 

ϕ = u eiv . 
 
The two equations follow for u and v: 

2

2 2 l
u u v uµ

ρ
  − + +  

   

ɺɺ ɺ  = 0, 

2u v u v+ɺ ɺ ɺɺ  = 0. 
 
From the assumptions above, we can neglect uɺɺ  in the first of these two equations, such 
that: 
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vɺ  = 

1/22

2 lµ
ρ
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One will then get: 
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ɺ
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ρ

−
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from the second equation.  One will then have, to a sufficient approximation (1): 
 

ψ = ψ0 Zl J −1/4 α−1/2 ρ−3/2 

1/42

2 lµ
ρ

−
  +  

   
cos 

1/ 22

2t l
dtµ

ρ

    +   
     

∫ . (19.15) 

 
We would like to use this solution to calculate the spatial and temporal means of the 

tensor 
4

k
iS  and the matter invariant b over several periods of ψ.  If follows from (19.7), 

with (19.11), that: 
 

4
k
iS  = 

3
1/ 2 2 2 2 |1

|2
1

n k
n i

n

J α µ ψ ψ ψ ψ δ
=

 − + 
 

∑ɺ  − J1/2 α ψ | k ψ | i ,  (19.16) 

and from (19.9): 

b = 
3

1/2 2 2 2 | 21
|2

1

1 2 4n
n

n

J J J
αα µ ψ ψ ψ ψ µ µ ψ
α

−

=

 ′    ′+ − + +   
   

∑ɺ . (19.17) 

 
 We would next like to show that the mean value of: 
 

3
2 2 2 |

|
1

n
n

n

µ ψ ψ ψ ψ
=

− +∑ɺ  

 
is equal to zero.  When ρ is large, only those values of l that are likewise large will play a 
role.  However, if we normalize Zl in such a way that the mean of 2lZ  is equal to unity 

then in the mean over all spherical functions that belong to the eigenvalue l 2 in (19.14) 
we will have: 
 

                                                
 (1) The asymptotic integration of (19.14) that is presented here leads, e.g., to the asymptotic 

representation of the BESSEL functions by way of the equation 
1

y
t

y + ɺɺɺ + a y = 0.  Cf., e.g., COURANT-

HILBERT, Methoden der mathemschen Physik, v. 1, Berlin 1931, page 285 et seq. 
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|
|

m
nψ ψ  = 

1/ 22 2

2 1/ 2 1 3 2
0

1

6
m
n

l l
Jψ α ρ µ δ

ρ ρ

−

− − −
    
 +         

 for m, n ≠ 4. 

 
The temporal mean of cos2 (…) has been set to 1/2 in this.  We will then have: 
 

3
2 2 2 |

|
1

k
k

k

µ ψ ψ ψ ψ
=

− +∑ɺ  = 

1/22 2 2

2 1/ 2 1 3 2 2 2
0

1

2

l l l
Jψ α ρ µ µ µ

ρ ρ ρ

−

− − −
         
  +  −  + +                  

 

  = 0 
 
On the other hand: 

|4
|4ψ ψ  = − 

1/22

2 1/ 2 1 3 2
0

1

2

l
Jψ α ρ µ

ρ

−

− − −
  
 +     

. 

Thus, one ultimately has: 
 

1/ 22 24 4
2 3 2

0 4

1/224
4 2 3 21
4 02

1
, 4 : , 0,

6

,

k k n
i i

l l
m n S S

l
S

ψ ρ µ δ
ρ ρ

ψ ρ µ
ρ

−

−

     ≠ = −  +  =          


   =  +        

  (19.18) 

and 

b  = 

1/ 22

2 3 21
02

lµ ψ ρ µ µ
ρ

−

−
  ′  +     

.    (19.19) 

 
One gets the energy density ε and pressure p from (19.18): 
 

1/22

3/ 2 1 3 2 21
02

1/ 22 2

3/2 1 3 2 21
06

,

.

l
J U

l l
p J U

ε ρ ψ µ
ρ

ρ ψ µ
ρ ρ

− − −

−

− − −

   =  +       


     =  +            

  (19.20) 

 
One easily verifies that, in fact, equation (17.2) is fulfilled with (19.19) and (19.20) and 
tm = 0.  One obtains the two extreme cases that were discussed in no. 17 for (l / ρ) ≪  µ 
[(l / ρ) ≫  µ, resp.].  In the former case: 
 

3/ 2 1 3 2 21
02 ,

0,

J U

p

ε ρ ψ µ− − − 



≃

≃
    (19.21) 
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and in the second case: 

3/2 1 3 21
02

3/2 1 3 21
02

,

.

l
J U

l
p J U

ε ρ ψ
ρ

ρ ψ
ρ

− − −

− − −







≃

≃

    (19.22) 

 
 Formulas (19.20) also admit the corpuscular interpretation of n particles per unit 
volume of rest mass µ and impulse l / ρ, with which, one will then have: 
 

n = 3/2 1 3 21
02 J U ρ ψ− − − . 

 
 With this example, we have explicitly established the formula for the matter tensor 
that was employed in no. 17.  However, the assertion that we made in the section above 
that we must set b = 0, which still has yet to be justified, also receives some degree of 
explanation.  b  is equal to zero when the mass µ of the elementary particle that 
corresponds to the ψ field does not depend upon J.  One can learn nothing about whether 
µ does or does not depend upon J purely on the basis of the theory that was presented 
here.  However, since µ−1 proves to have an order of magnitude of the elementary length 
experimentally, that would give much support to the assumption that µ is a constant, and 
therefore independent of J.  However, b  = 0 then. 

 A basis for having b  = 0 can given under more general assumptions.  If 
4

L  has the 
form: 

4

L = J3/2 U (J) M ( )
4 4( ) ( )|,M M kψ ψ , 

 
in which M might no longer depend upon J and J|k , so from (12.21): 
 

b = (J 3/2 U)′ M = 
4 d
L

dJ
log (J 3/2 U), 

 

then it will be proportional to 
4

L .  Now, if 
4

L  (and therefore M) is a homogeneous 
function of degree n in 

4( )Mψ , 
4( )|M kψ , moreover; i.e., if: 

 

( )
4 4

4

( ) ( )|,M M kL λψ λψ = ( )
4 4

4

( ) ( )|,n
M M kLλ ψ ψ , 

then one will have: 
 

4

nL  = 
4 4

4 4

4 4

( ) ( )|
( ) ( )|

M M k
M M k

ψ ψ
ψ ψ
∂ ∂+

∂ ∂
L L

= 
4 4

4 4

4 4

( ) ( )
( ) ( )|

|

M M
M M k

k

δ ψ ψ
δψ ψ

 ∂ +
 ∂
 

L L
. 

 
Now, if the matter field equations are fulfilled then: 
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4

nL  = 
4

4

4

( )
( )|

|

M
M k

k

ψ
ψ

 ∂ 
 ∂
 

L
. 

 
If we integrate this equation over the space x1, x2, x3 of the expanding cosmos then it will 
follow that: 

4

n∫L  d x1 dx2 dx3 = 
4

4

4

( )
( )|

M
M k

ψ
ψ

 ∂ 
 ∂
 

i

L
. 

 
 Now, if the solution of the field equations is temporally approximated by periodic 
functions with frequencies that are large in comparison to the variability of J then the 
temporal mean over several periods of the latter expression will be equal to zero, and 
therefore when one takes means over space and time, one will ultimately have: 
 

4

L  = 0 and b  = 0. 
 
 As far as the physical meaning of the individual assumptions is concerned, it should 

be noted that the first assumption about the dependency of the action quantity 
4

L  on J 
represents just an extension of the assumption that µ′ = 0.  From (15.3), the expression M 
that was introduced above will then represent just the quantity from which the energy-
impulse tensor can be calculated directly with no further assumptions from factors that 
depend upon J.  The first assumption is then equivalent to saying that energy and impulse 
do not depend upon J explicitly.  In the next section, we will learn of cases in which that 
is not the case exactly, but only approximately, since the extra terms diminish along with 
J, and therefore play no role for t ≫  1 (i.e., the age of the universe is large compared to 
an elementary time unit).  The experimental fact that all elementary particle masses and 
atomic masses have the order of magnitude unity in natural units and have no abnormally 
large values is suggests precisely that LAGRANGE functions that do not fulfill the first 
assumption (at least approximately) seem to play no role in nature. 
 The second assumption of homogeneity is fulfilled by all of the LAGRANGE 
functions with degree 2 that have be examined up to now and are important in practice 
when one ignores the interaction of the fields with each other.  One can also formulate 
this in such a way that the second assumption is, to some extent, equivalent with the 
assumption of an ideal gas; that assumption cannot be justified in general then.  However, 
we can justify that assumption (approximately) in the two cases that were considered in 
no. 17: 
 In the case of the universe as a whole, we can regard the individual matter 
components (even when they are themselves composite) as components with constant 
mass and practically negligible interaction (ideal gas as the matter content of the 
universe). 
 In the case of stellar creation, the temperature of degenerate neutron matter must be 
regarded as being so high that the interactions will likewise play no role in comparison to 
the kinetic energies. 
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 It then seems to me that the assumptions about p and b that were made in no. 17 are 
the most natural ones for the macroscopic treatment of the two problems that were posed 
there. 
 The field of an invariant ψ that was considered up to now proves to be uncharged.  A 
charged matter field can already be described by a (single) scalar field Ψ if we let Ψ be 
complex, and introduce the demand for the group P that: 

 
Tr Ψ = eil ln ρ Ψ.    (19.23) 

 
With a complex Ψ, we have basically introduced two field functions Ψ and Ψ* (complex 
conjugate of Ψ) or also the real and imaginary parts of Ψ.  The simplest invariant for a 
LAGRANGE function is: 

L = 1
2 [α (J) Ψ*|| ν Ψ|| ν + β (J) Ψ* Ψ].   (19.24) 

 
 In the case of (19.23), the infinitesimal transformation Π of the group P is given by: 

 
Π Ψ = i l Ψ,     (19.25) 

such that, from (10.24): 
Ψ|| ν = Ψ| ν – i l Y ν Ψ.    (19.26) 

(19.24) then reads: 
 

L = 1
2 [α Ψ*| ν Ψ| ν + i l α Y ν (Ψ| ν Ψ* − Ψ*

| ν Ψ) + (l 2 J−1 α + β) Ψ* Ψ]. 

 
The middle term in that expression does not have the normal form for L that was required 
in no. 13 in order to be able to calculate the matter tensor Sνµ .  It follows from (19.23) 
that: 

Ψ| ν X
ν = i l Ψ,  i.e., Ψ| ν Y

ν = i l J−1 Ψ, 
 
such that one can also write L in the form: 
 

L = 1
2 [α Ψ*| ν Ψ| ν + (β – l 2 J−1α) Ψ* Ψ].  (19.27) 

 
The field equations follow most simply from (19.24): 
 

(α Ψ | ν)| ν – β Ψ = 0.    (19.28) 
 

For the calculation of the matter tensor from (19.27) according to (13.58), one should 
note that here, as above, λµ

νZ = 0.  It will then follow that: 

 
Sν 

µ = 1
2L µ

νδ α− (Ψ*| ν Ψ| ν + Ψ| ν Ψ*
| ν) – [α Ψ*| ρ Ψ| ρ + (β – l 2 J−1α) Ψ* Ψ] Xν X

 µ, 

 
or: 
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|| ||1
|| ||2

1 || ||1
|| ||2

||
||

( )

( )

[ ] .

S L

il J X X X X

X X

µ µ µ µ
ν ν ν ν

µ µ µ µ
ν ν ν ν

ρ µ
ρ ν

δ α

α β

∗ ∗

− ∗ ∗ ∗ ∗

∗ ∗

= − Ψ Ψ + Ψ Ψ
− Ψ Ψ − Ψ Ψ − Ψ Ψ + Ψ Ψ 
′ ′+ Ψ Ψ + Ψ Ψ 

  (19.29) 

 
 For the calculation of the affine quantities, the scalar Ψ must be normalized in the 
way that was described on page 8.  Since Hρ = eil ln ρ, the normalized invariant that is 
associated with Ψ will be: 
 

ψ = e−il ln ρ Ψ,  Ψ = eil ln ρ ψ.   (19.30) 
 
With (10.24), one calculates from this that: 
 

Ψ|| (0) = 0, Ψ|| (0) = eil ln ρ ψ|_ k ,   (19.31) 
in which: 

ψ|_ k = ψ| k – i l ϕk ψ. 
 
The field equation (19.28) can be rewritten in affine form immediately with the help of 
(19.31) and formulas (10.23) and (10.25): 
 

(J 1/2 α ψ |_ k)|_ k − β J 1/2 ψ = 0.   (19.32) 
 
These field equations are naturally also a consequence of the affine variational principle 
for: 

L = 1
2  J 1/2 (α ψ |_ k ψ|_ k + β ψ* ψ).   (19.33) 

 
The affine splitting of the matter tensor can be calculated from (19.29) and (19.31): 
 

|_ |_ |_1 1
|_ |_ |_2 2

(0) 1/ 2 |_ |_1
2

(0)(0) |_ |_1
|_ |_2

( ) ( ),

( ),

( ) ( ).

m k m m m
n k n n n

m m m

k m m
k n n

S

S i l J

S J

αψ ψ βψ ψ δ α ψ ψ ψ ψ
α ψ ψ ψ ψ

αψ ψ βψ ψ δ α ψ ψ β ψ ψ

∗ ∗ ∗ ∗

− ∗ ∗

∗ ∗ ∗ ∗

= + − +
= − − 
′ ′= + + + 

  (19.34) 

 
One gets the energy-impulse tensor, charge-current vector, and matter invariant from this 
using (12.22), (15.4), and (15.7), resp.: 
 

1 1 |_ |_ |_1 1
|_ |_ |_2 2

1 11
|_ |_2

1/ 2 |_ 2 1/ 2 |_1 1
|_ |_4 2

( ) ( ) ,

( ),

( ) ( ).

k l k k k
i l i i i

r r r

k k
k k

T J U

s i l J U

b J J

α ψ ψ βψ ψ δ ψ ψ ψ ψ

α ψ ψ ψ ψ
α ψ ψ µ ψ ψ α ψ ψ β ψ ψ

− − ∗ ∗ ∗ ∗

− − ∗ ∗

− ∗ ∗ ∗ ∗

 = − + − +  = − + 
′ ′= + + +


 (19.35) 

 
 Since sr ≠ 0, the Ψ field represents charged matter.  If we employ (19.11) then we will 
get the usual form for Ti 

k and sr , such that under quantization, µ, as well as l, will yield 
the charge of the particle.  This interpretation of µ and l is likewise implied by the 
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discussion of the motion of the Ψ-wave field for the case in which the “wave length” is 
small in comparison to the change in the metric field.  In full mathematical exactitude, 
this means that in the Ansatz: 

Ψ = A ( )i Xe
νϕ      (19.36) 

 
for the eikonal or phase function, one has | ϕ||ν | ≫  | α′ J|ν |, | ϕ ||ν ||ν | .  (19.36) implies 
that: 

Ψ||ν = A i ϕ||ν e
iϕ,    (19.37) 

with: 
ϕ||ν = ϕ|ν − l Yν .    (19.38) 

 
ϕ is not an invariant, but only a scalar, since it follows from (19.23) that: 
 

Tρ ϕ = ϕ + l ln ρ, 

 
such that for the infinitesimal transformation of the group P: 

 
Π ϕ = l,     (19.39) 

 
with which, (19.38) will follow from (10.24).  It will then follow further from (19.37) 
that: 

(α Ψ||ν )||ν = A [− α ϕ ||ν ϕ ||ν + i (α ϕ ||ν)||ν ] e
iϕ, 

 
and with the assumptions that were made: 
 

(α Ψ ||ν)||ν ≃ − A α ϕ ||ν ϕ ||ν eiϕ. 
 

The first-order partial differential equation for ϕ then follows from field equation (19.28): 
 

α ϕ ||ν ϕ ||ν + β = 0,    (19.40) 
 
which corresponds to the eikonal equation of geometric optics.  The “rays” of the Ψ-field 
are given by the characteristics of (19.40): 
 

2 1

2 1 2 2
|

|

( , ) , 2 ,

2 , ( )

.

dX
F X p p p l J p

ds
dpd

p p p p l J l J J
ds ds

p g p

ν
ν ν ν

ν ν

ν νν
ν ν ν

σµ
σ ν µ

α α β α

ϕ α α β α α

α

−

− −


= − + = 


′ ′ ′= = − + − + 


− 



  (19.41) 

 
As is known, F (X ν, pν) will then be an integral of the characteristic equation.  If pν = ϕ|ν 
and F (X ν, pν) = 0 for the initial manifold then it will be true for the entire solution of 
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(10.40); i.e., for the entire manifold that is spanned by the characteristics that go through 
the initial manifold.  Since, from (19.39), one will have: 
 

ϕ|ν X ν = l = pν X ν,    (19.42) 
 
for the initial values of (19.41), that condition will always be fulfilled; i.e., dl / ds = 0, 
which one can also calculate explicitly.  We can put the last equation in (19.41) into an 
invariant form.  Next, pν is a normal vector, since it follows from ϕ|µ Xµ = l by 
differentiation that ϕ|µ ||ν X

ν + ϕ|ν = 0, and therefore pν | µ Xµ + pν = 0.  It will then follow 
from (19.41) that: 
 

||d p

ds
ν = pν || µ 

dX

ds

µ

= − (α′ pµ p
µ + β′ + α l2 J−2 – α′ l2 J−1) J| ν .      (19.41a) 

 
 The rays (19.41) characterize the classical paths of the particles that correspond to the 
field.  The path is given projectively by (19.41a), in which one considers (19.42) to be the 
initial value.  If we set β = α µ2, in turn, then we can also write (19.41a) as: 
 

2 α 2 pν || µ pµ = − α′ (α pµ p µ + β – α l2 J−1) J| ν – 2 α2 µ µ′ J| ν – α2 l2 J−2 J| ν . 
 
Due to (19.40), F (X ν, pν) = 0 in (19.41), such that: 
 

pν || µ p
µ = 1

2 J| ν (l 
2 J−2 + 2 µµ′ ).   (19.43) 

 
 In order to find the affine representation of the path, we next remark that, with (19.41) 
and (19.42), we will have: 

p(0) = J−1/2 l,  pn = 
1

2

ndx

dsα
.   (19.44) 

 
The two equations follow from (19.43), with (10.23): 
 
 0 = p(0) || (m) p

(m) + p(0) || (0) p
(0) 

  = (J−1/2 l)| m 1 1/ 2
|

1 1

2 2

m m

m

dx dx
J J J l

ds dsα
− −+  = J−1/2 

1

2

dl

dsα
, 

 
 − 1

2 J|ν (l 
2 J−2 + 2 µ µ′ ) 

  = 
4

1/ 2 1/ 2 1/2 1/2 1 1 21 1 1
|| |2 2 2

1 1 1

2 2 2

m m m

n m mn mn n

dx dx dx
p J F J l J F l J J J J l

ds ds dsα α α
− − − −+ − − . 

 
The first equation gives the aforementioned fact dl / ds = 0 once more.  The second 
equation can also be written: 

4||

m

n m

dx
p

ds
= l Fmn

mdx

ds
− 2α µ µ′ J| n .   (19.45) 
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 In order to introduce the proper time dτ = k
kdx dx−  in place of ds, we substitute the 

value into: 
dτ 2 = − 4 α 2 pk pk ds2 

 
that (19.41) yields when F (X ν, pν) = 0: 
 

pk pk = − β
α

 = − µ2, 

which will give: 
dτ = 2 α µ ds. 

If we denote the four-velocity by: 

uk = 
kdx

dτ
, 

then it will follow from (19.45): 
 

4||
( )nd u

d

µ
τ

=
4||

( ) m
n mu uµ = l Fnm um – µ J|n = l Fnm u m – µ| n .  (19.46) 

 
 However, in the event that µ′ (J) = 0 – i.e., in the event that µ is independent of J – 
this is precisely the known equation of motion for a mass point of mass µ and charge l.  If 
the mass µ is not independent of J then a new, supplementary term µ′ J| n will appear in 
the equation of motion.  However, from the argument above, it would be plausible to 
assume that µ = const.  For uncharged particles (l = 0, µ = const.), one will get projective 
geodetic lines pν || µ pµ = 0 from (19.43), which will yield geodetic lines 

4||
m

n mu u = 0 in the 

affine case.  If l ≠ 0 then, from (19.43), the projective geodetic lines pν || µ pµ = 0 will give 

the paths of particles whose mass would be µ = 2 1 const.l J − + .  This very large, but 

never observed, mass seems to have no meaning in nature. 
 
 
 20. Spinor field.  Electron wave field. – In these next, final sections, we would like 
to show that the known field laws for electron, neutron, and meson fields can also be 
represented in the projective theory of relativity in an elegant way. 
 We can describe the electron wave field, as in no. 7, by a spinor ΨK with complex 
components, for which one will have, under P: 

 
Tρ ΨK = ei l ln ρ ΨK.     (20.1) 

 
A simple invariant that can be employed as a LAGRANGE function is: 
 

L = Re ||

1
( ) ( ) ( )K M K M

KM KM
J J

i
µ

µρ β γ σ β Ψ Ψ + Ψ Ψ 
ɺ ɺ

ɺ ɺ ,  (20.2) 
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in which Re is the symbol for the real part, and ρ (J), σ (J) are real functions of J.  Since, 

from no. 7, β γ µ and (1 / i) β are Hermitian matrices, one can also write (20.2) as: 
 

L = ||( ) ( )
2

K M K M K M
KM KM KMi i

µ µ
µ

ρ σβ γ β γ β Ψ Ψ − Ψ Ψ + Ψ Ψ 
ɺ ɺ ɺ

ɺ ɺ ɺ . (20.3) 

 
When one sets σ = ρ µ, that will imply the following matter field equations: 
 

γ µ L
M || |

1

2
M MJµ µ

ρ
ρ

′ Ψ + Ψ 
 

+ µ ΨL = 0.   (20.4) 

 
(20.3) has the normal form that was prescribed in no. 13, since no terms like X µ Ψ| µ enter 
into it, so we can calculate the matter tensor from (20.3), using (13.58).  One constructs 
the tensor: 

W µρλ = 
| |

P PM M
M M

λρ λρ

µ µ

∂ ∂Ψ + Ψ
∂Ψ ∂Ψ ɺ

L L
 

 
from (13.51).  From (9.5), one has: 
 

Pλρ ΨM = 1
2 γ λρM

L ΨM,  P Mλρ Ψ ɺ

= 1
2

L M
L

λργΨ ɺ ɺ

ɺ , 

 

in which M
L

λργ ɺ

ɺ  is the matrix that is the Hermitian conjugate of γ λρM
L .  Thus, one has: 

 

W µρλ = ( ) ( )
4

K N K K
KN NKi

µ λρ λρ µρ β γ γ γ β γ Ψ Ψ − Ψ Ψ 
ɺ ɺ

ɺ ɺ , 

i.e.: 

W µρλ = Re ( )
2

K M
KMi

µ λρρ β γ γ Ψ Ψ  

ɺ

ɺ , 

 
because β γ µ is a Hermitian matrix.  It follows from this that: 
 

W µνλ + W νµλ = Re ( )
2

K L M
MKLi

µ λν ν λµρ β γ γ γ γ Ψ + Ψ  

ɺ

ɺ .  (20.5) 

 
With γ λν = 1

2 (γ λγ ν − γ νγ λ) and the relations 1
2 (γ λγ ν + γ νγ λ) = gνλ 1, it will follow that: 

 
γ λγ ν + γ νγ λ = gµλ γ ν + gνλ γ µ − 2 gµν γ λ . 

 
However, since β γ ν are Hermitian, the expression in brackets in (20.5) will be pure 
imaginary, and thus: 

W µνλ + W νµλ = 0 .     (20.6) 
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With Π ΨL = i l ΨL, from (13.64), one will have: 
 

Sνµ = L gνµ + Re || 1/ 2 1( ) ( )
2 2

K M K M
KM KM

J l J X
i

µ ν µ νρ σβ γ ρ β γ− −  − Ψ Ψ + − Ψ Ψ  
  

ɺ ɺ

ɺ ɺ  

+ 2 3/ 2 1
|| (0)( ) ( )

2
K M K M

KM KM
l J J X X

i
ρ ν µ

ρ
ρ σβ γ σ ρ β γ− − ′  ′Ψ Ψ + + − Ψ Ψ   

   

ɺ ɺ

ɺ ɺ . 

 
If we employ the field equation (20.4) and then the fact that: 
 

Re | ( )K M
KM

J
i

λ
λ

ρ β γ
′ Ψ Ψ 

 

ɺ

ɺ = 0, 

 
then it will follow from (20.2) that L = 0, and therefore: 
 

|| 11
2 ( ) 2 ( )

2
 .

K M M
KM

K L
KL

S l J X
i

X X
J

νµ µ ν ν

ν µ

ρβ γ ρ ν µ

ρµ β

−   = − Ψ Ψ + Ψ + ↔    


′  + Ψ Ψ   

ɺ

ɺ

ɺ

ɺ

Re

 (20.7) 

  
 In order to calculate the affine splitting, it is necessary to first calculate the affine 
splitting of ΨL

|| µ .  Since ΨL is not a normal spinor, we introduce the normalization ψ L of 
ΨL by way of: 

ΨL = ei l ln η ψ L.     (20.8) 
 
Since the representation 5(1/ 4,1/ 2)D  is also irreducible as a representation of D4, ψ L is 

already the affine splitting of ΨL.  One will then have: 
 

Ψ L|| µ = ei ln η{ }1
| |2 P [(ln ) ]L L Li l Yρλ
µ µρλ µ µψ ω ψ η ψ+ + − , 

or, with (6.10): 

Ψ L|| µ = ei ln η ( )1
| 2 PL L Li lρλ
µ µρλ µψ ω ψ ϕ ψ+ + . 

The splitting is then: 
Ψ L|| (0) = ei ln η ω(0)(ρ)(λ) γ (ρ)(λ) L

M ψ M , 
 

Ψ L|| (m) = ei ln η (ψ M||_ (m) + 1
2 ω(m)(0)(l) γ (0)(l) L

M ψ M), 

in which: 
ψ L||_ (m) = 

4||
L

mψ − i l ϕm ψ L. 
With (10.18), it follows that: 
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( )
( )

ln 1/ 2 1 (0)(0)1 1
||(0) |( )4 2

ln 1/2 (0)( )1 1
|| ||_ ( )4 4

,

.

L i l rlL L M
rl M l M

L i l L l L M
m m l m M

e J F J J

e J F

η

η

γ γ ψ

γ γ ψ

− Ψ = − + 


Ψ = + 

  (20.9) 

 
With that, one calculates the affine form of the field equations (20.4): 
 

γ mL
M 11 1

||_ |2 2
M M

m mJ J
ρψ ψ
ρ

− ′ + +  
  

 + γ (0) L
M 1/2 1 (0)1 1

|8 4
rlM N lM M

rl N l NJ F J Jγ ψ γ ψ− − +   

+ µ ψ L = 0. 
If one considers that: 

γ m γ (0) l = γ (0) γ lm, γ (0) γ (0) l = γ l 
then one will get: 
 

1 1/2 (0)1 1
||_ |2 8

1
( )

2
mL mL M rl L M L

M m m rl MJ J J F
ργ γ ψ γ γ ψ µψ
ρ

− ′ + + + +  
  

= 0. (20.10) 

 
 That agrees with the DIRAC equation of an electron with charge l and mass µ, up to 
the supplementary terms … J| m … and … Frl …  Once we have presented the energy-
impulse tensor, the charge-current vector, and the matter invariant, we will go into the 
meaning of the supplementary terms.  It will follow from (20.7) that: 
 

S nm = Re ||_ 1/2 (0)( ) ( )
2 8

K m M n n K ml M
lKM KM

J F
i i

ρ ρψ β γ ψ ψ γ γ γ ψ − −  

ɺ ɺ

ɺ ɺ + (m ↔ n)    (20.11) 

and 
 

S (0) m = Re 1/ 2 1 (0) 1/21
|2 ( ) ( ) 2

8 4
K m rlM N l M N M

rl N l NKM
J F J J l J

i i

ρ ρψ β γ γ ψ γ γ ψ ρ ψ− −  − −   

ɺ

ɺ  

− (0) ||_( )
2

K M m
KMi

ρ ψ β γ ψ 



ɺ

ɺ . 

 

If one multiplies (20.10) on the left by (0)( )K s
KLi

ρ ψ β γ γ ɺ  and takes the real part then it 

will follow (since (0) sβ γ γ  is a Hermitian matrix) that: 
 

 − Re (0)
||_( )

2
K s m M

mKMi

ρ ψ β γ γ γ ψ 
  

ɺ

ɺ  

= Re 1 (0) 1/ 2
|

1
( ) ( )

2 2 8
K s m M K s rl M

m rlKM KM
J J J F

i i

ρ ρρ ψ β γ γ γ ψ ψ β γ γ ψ−  ′ + −  
  

ɺ ɺ

ɺ ɺ  

Now: 
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 Re (0)
||_( )K s m M

mKMi

ρ ψ β γ γ γ ψ 
  

ɺ

ɺ  

= (0) (0)
||_ ||_( ) ( )

2
K s m M M s m K

m mKM MKi

ρ ψ β γ γ γ ψ ψ β γ γ γ ψ∗ − 
ɺ ɺ

ɺ ɺ . 

 
Since (7.15) implies that: 
 

(0)( )s mβ γ γ γ ∗  = γ m*γ s*β γ (0) = β γ m β *−1β γ sβ *−1β γ (0) = β γ mγ s γ (0) = β γ (0)γ mγ s, 
 
it will follow that: 
 

 Re (0)
||_( )K s m M

mKMi

ρ ψ β γ γ γ ψ 
  

ɺ

ɺ  

= (0) (0)
||_ ||_( ) ( )

2
K s m M K s m M

m mKM KMi

ρ ψ β γ γ γ ψ ψ β γ γ γ ψ − 
ɺ ɺ

ɺ ɺ . 

 

= (0) (0) ||_

||
( ) ( )

2
K sm K M s

KM KMmi i

ρ ρψ β γ γ ψ ψ β γ ψ   −     

ɺ ɺ

ɺ ɺRe , 

 
such that ultimately: 
 

 − Re (0) ||_( )K M m
KMi

ρ ψ β γ ψ 
  

ɺ

ɺ = 
4

(0)

||

( )
4

K ml M
KM

li

ρ ψ β γ γ ψ 
  

ɺ

ɺ  

+ Re 1 (0) 1/2
| ( ) ( )

8 16
K m l M K m rl M

l rlKM KM
J J J F

i i

ρ ρψ β γ γ γ ψ ψ β γ γ ψ− −  

ɺ ɺ

ɺ ɺ . 

 
If one substitutes this into the expression for S (0) m then it will follow that: 
 

S (0) m = J−1

4

(0) 1/2

||

( ) ( )
4

K mr M K m M
KM KM

r

J
l J

i

ρ ψ β γ γ ψ ρ ψ β γ ψ−  − 
 

ɺ ɺ

ɺ ɺ .  (20.12) 

 
Next, it still remains to calculate S (0)(0) from (20.7): 
 

S (0)(0) = Re (0) 1/ 2 1 (0) 1/2
|( ) ( ) 2

8 4
K rlM N l M N M

rt N l NKM
J F J J l J

i i

ρ ρψ β γ γ ψ γ γ ψ ρ ψ− −  − −   

ɺ

ɺ  

+ 
2 K L

KL
J

i
ρ µ ψ β ψ ′ 



ɺ

ɺ , 

 
or, since β γ (0)γ (0) γ  l = β γ  l is Hermitian: 
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(0)(0) 1/2 (0) 1/2 (0)1
( ) 2 ( )

8

2
.

K rl M K M
rl KM KM

K M
KM

S J F l J
i

J
i

ρ ψ β γ γ ψ ψ β γ ψ

µ ψ β ψ

− = −  

′+  

ɺ ɺ

ɺ ɺ

ɺ

ɺ

 (20.13) 

 
The energy-impulse tensor, charge-current vector, and matter invariant can now be 
written down immediately: 
 

1 1 ||_ 1/ 2 (0)1 1
( ) ( ) ( )

2 8
ik K i M k i K kl M

lKM KM
T J U J F i k

i i
ρ ψ β γ ψ ψ β γ γ ψ− −    = + + ↔    

ɺ ɺ

ɺ ɺRe .  (20.14) 

 
If we now fix ρ [as we did with α (J) in no. 19] by: 
 

ρ = J U      (20.15) 
 
then ikT  will take the usual form, up to the additional term in Fl 

i …  For the charge-
current vector, it will then follow that: 
 

sm = − U−1 J−1/2 J 
4

1/ 2 1 (0)

||

1
( ) ( )

4
K m M K mr M

KM KM
r

l J J J
i

ρ ψ β γ ψ ρ ψ β γ γ ψ− −
  − +  

   

ɺ ɺ

ɺ ɺ , 

so 

sm = 
4

1 3/2 2 (0)

||

1
( ) ( )

4
K m M K mr M

KM KM r
l U J U J

i
ψ β γ ψ ψ β γ γ ψ− −  −  
ɺ ɺ

ɺ ɺ .  (20.16) 

 
Up to the second supplementary term, this is the known form again.  Furthermore, one 
has: 

(0) 1 (0)1
2

1/2

1
( ) 2 ( )

8

1
.

2

K rl M K M
rl KM KM

K M
KM

b U J F l J
i

J
i

ψ β γ γ ψ ψ β γ ψ

µ ψ β ψ

− = −  


 ′+   

ɺ ɺ

ɺ ɺ

ɺ

ɺ

  (20.17) 

 
 One next recognizes that the supplementary terms in the equations of motion, the 
energy-impulse tensor, and charge-current vector cannot produce any noticeable effect in 
any normal experiment, since they contain either the factor J| m or J−1/2, and are thus either 
based upon the variability of J or they will contain the factor 10−20 for our current age of 
the universe, as in no. 17.  Due to that factor, the influence of the extra terms seems to be 
lost to any observer.  Speculations that the extra terms are coupled to the magnetism of 
rotating stellar bodies (which P. JORDAN has discussed) have not been confirmed up to 
now, although the extra terms that contain the field strengths yield an extra magnetic 

moment of the particle that is (in the first approximation) / 2κ  times the mechanical 

angular impulse (in natural units), which is a ratio that is precisely what seems to have 
been observed for the Earth and the Sun. 
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 21. Vector field.  Meson field. – As a further example, we consider a vector field U.  
Since we wish to combine charged and uncharged mesons into a symmetric theory, we 
assume that the Ur are not real numbers, but elements of a three-dimensional K-module 
(cf., no. 2), namely, the so-called “isotopic spin space.” Each Uν (for a fixed ν !) then 
consists of three real components.  Furthermore, a positive-definite metric is given in 
“isotopic spin space,” which might be briefly denoted by Ri, such that we can imagine 

choosing the basis in Ri in such a way that the metric (i.e., “inner”) product of two 

quantities V and W in Ri will be given by: 

 
V ⋅⋅⋅⋅ W = VI WI + VII WII + VIII  WIII  , 

 
in which VI , VII , … are components in Ri .  The group of rotations in Ri is defined by the 

metric.  One axis (e.g., the III-axis) is distinguished as the “charge axis,” in such a way 
that one has: 

Tρ Uv = IIIlnile Uρτ
ν     (21.1) 

 
for Uv under the transformations of P, in which i τIII  is an infinitesimal rotation around 

the III-axis, so IIIieϕτ  is a rotation around the charge axis through an angle of ϕ.  As in the 
previous section, l is a real number, and as we will find once more later on, identical with 
the charge of the meson.  In that case, the infinitesimal transformation for Uv is then Π = i 
lτIII  . 
 We define the antisymmetric tensor: 
 

Φµν = Uν || µ – Uµ || ν ,    (21.2) 
such that: 

Φµν = Uν | µ – Uµ | ν + i lτIII  (Yν Uµ − Yµ Uν).  (21.3) 
 
We assume that our LAGRANGE function is: 
 

L = 
1 1

( ) ( )
2 2

J J U Uµν µ
µν µα β Φ ⋅Φ + ⋅  

,  (21.4) 

 
in which the dot ⋅⋅⋅⋅ means the inner product in Ri .  L is then invariant under arbitrary 

rotations in Ri , and above all, under P, and is therefore an invariant, as one would 

demand.  The field equations read: 
(α Φµν)|| µ + β U ν = 0.    (21.5) 

 
 In order to calculate the affine form of the equations, in this section, we would like to 
deviate from the path that we took for the affine variational principle.  The vector field 
Uµ splits affinely (after normalization) into an affine vector field uk and a scalar field u(0) .  
We then get a field theory that is intrinsically “mixed” here.  From (10.23) to (10.26), one 
has: 
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III

III

ln 1/ 2
(0)

ln 1/ 2 1/2
(0) (0) |_

[ ],

( ) ,

il
mn mn mn

il
n n

e J F u

e J J u

η τ

η τ

ϕ
−

Φ = + 
Φ = 

   (21.6) 

with: 
ϕmn = un ||_m – um ||_n ,    (21.7) 

and 
un ||_m = 

4||n mu − i l ϕm τIII  un . 

 
Therefore, L will assume the form: 
 

4
1/2 1/2 1/ 21

(0) (0)2

1 1/ 2 1/2 |_
(0) |_ (0) (0) (0)

( ) ( )
2

( ) ( ) .

mn mn
mn mn

n n
n n

L J J F u J F u

u u J J u J u u u

α ϕ ϕ

β α β−

= + ⋅ +  
+ ⋅ + + ⋅  

  (21.8) 

 
The affine splitting of (21.5) follows from this with β = µ2 α : 
 

1 1/ 2 1/2 1/2 2
(0) ||_

1 1/2 1/ 2 ||_ 1/ 2 21
(0) ||_ (0) (0)2

[ ( )] 0,

[ ( ) ] ( ) 0.

mn mn m
n

n mn mn
n mn

J J J F u u

J J u J F u F u

α α ϕ µ
α α ϕ µ

− −

−

+ + = 
− + − = 

  (21.9) 

 
Here again, we then get the known form of the meson equations, up to supplementary 
terms, with µ as the rest mass of the meson. 
 For the calculation of the four-matter tensor, we start from formula (13.55), which we 

carry over to the affine case, in which we must consider 
4

L  to depend upon 
4( )Mψ , ϕr, and 

J, such that if the matter field equations 4

4
( )ML = 0 are fulfilled then we will have: 

 

4
m

nS = 
4 4 4

4

4 4
4 4

|| ( )| ||
| ( )|

m lm
n n r n M n n l

m r m M m

δδ ϕ ϕ ψ
δϕ ϕ ψ

 ∂ ∂ − − + +
 ∂ ∂
 

L L L
L Z ,  (21.10) 

with 
4

lmnZ = 
4 4 4

1
2 ( )lmn mnl nlm+ −W W W     (21.11) 

and 

4
lmnW = 

4

4

4 4

( )
| ( )|

P Pnm nm
r M

r l M l

ϕ ψ
ϕ ψ
∂ ∂+
∂ ∂
L L

.   (21.12) 

 
From (13.82), one can set: 
 

4
m

nS  = 
4 4 4

4

4 4 4
4 4

|| ( )||_ ||
| ( )| |

|

m lm
n r n M n n n l

r m M m r m
r

δ ϕ ψ ϕ
ϕ ψ ϕ

  ∂ ∂ ∂  − + − +  ∂ ∂ ∂   

L L L
L Z . 
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With (13.81), one has: 
 

4

4 4

||
| |

|

r n n
r m r m

r

ϕ ϕ
ϕ ϕ

 ∂ ∂ −
 ∂ ∂
 

L L
 = 

4

4 4

| |
||

nr n
r m r m

r

F ϕ
ϕ ϕ

 ∂ ∂ −
 ∂ ∂
 

L L
. 

 
It likewise follows from (21.11) and (21.12) that: 
 

4
lm

nZ = 

4
4

|

lm
n n

r m

ϕ
ϕ
∂ +

∂
L

Z   with 
4

lmnZ = 
4 4 4

1
2 ( )lmn mnl nlm+ −W W W  

and 

4
lmnW  = 

4

4

4

( )
( )|

Pnm
M

M l

ψ
ψ
∂

∂
L

. 

 
It will then ultimately follow from (21.10) that: 
 

4 4

4

4 4
4 4 4

( )||_ ||
( )| |

.m m lm
n n M n nr n l

M m r m

Fδ ψ
ϕ ϕ
∂ ∂= − − +

∂ ∂
L L

S L Z   (21.13) 

 
If ϕr | m enters into only in the form Fmr then: 
 

4

|r mϕ
∂

∂
L

= 

4

2
mrF

∂
∂
L

. 

 

Since 
4

nmS  is symmetric in n, m, one can also write: 
 

4

4

4

4
4 4

||_
( )

( )|

4
4

||

1
( )

2

1 1
( ) ( ) .

2 2

nm nm n
M

M m

n mnl
r

lmr

L
S L g m n

L
F m n W m n

F

ψ
ψ

 ∂  = − + ↔
 ∂

  


  ∂   − + ↔ + + ↔  
 ∂     

 (21.14) 

 
If we apply this to (21.8) then we will get: 
 

 

4

|r m

L

u

∂
∂

= α J 1/2 (ϕ mr + J 1/2 F mr u(0)), 
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4

|r m

L

u

∂
∂

= α (J 1/2 u(0))
|_m, 

 

4

mr

L

F

∂
∂

= 
2

α
 J u(0) ⋅⋅⋅⋅ (ϕ mr + J 1/2 F mr u(0)), 

and therefore: 
 

 
4

mnlW = α J 1/2 [(ϕ ml + J 1/2 F ml u(0)) ⋅⋅⋅⋅ un − (ϕ mn + J 1/2 F mn u(0)) ⋅⋅⋅⋅ ul ], 
 
from which it will follow further that: 
 

 
4 4

mnl nmlW W+  = α J 1/2 [(ϕ ml + J 1/2 F ml u(0)) ⋅⋅⋅⋅ un + (m ↔ n ). 
 
With (21.9), one will get: 
 

4

4

||

( )mnl

l

W m n + ↔ 
 

= − 2µ 2 α J 1/2 um ⋅⋅⋅⋅ un + [α J 1/2 (ϕ ml + J 1/2 F ml u(0)) ⋅⋅⋅⋅ un
|_l + (m ↔)]. 

 
(21.14) can therefore be written: 
 

4 4
2 1/ 2 1/ 2 1/ 2

(0)

1/2 1/ 2 |_
(0) (0)

( )

( ) [( ) ( )].
2

nm nm m n mr mr

n n n
r r

S L g J u u J J F u

J F u J u m n

µ α α ϕ
αϕ

= − ⋅ − + 


⋅ + − + ↔ 


  (21.15) 

 
Substituting this into (15.4), while setting α = J U (as above), will give the energy-
impulse tensor: 
 
 Tik = [(ϕi 

r + J 1/2 Fi 
r u(0)) ⋅⋅⋅⋅ (ϕkr + J 1/2 Fkr u(0)) 

 − 1
4 (ϕi 

r + J 1/2 Fi 
r u(0)) ⋅⋅⋅⋅ (ϕkr + J 1/2 Fkr u(0)) 

 + µ 2 1

2
m n r

r iku u u u g
 ⋅ − ⋅ 
 

 − 1
2 µ 2 u(0) ⋅⋅⋅⋅ u(0) gik 

 − 1
2 J 1/2 (J 1/2  u(0))|_r ⋅⋅⋅⋅ (J 1/2  u(0))|_r gik + 1

2 J −1/2 [(J 1/2  u(0))|_r ⋅⋅⋅⋅ u(0) 
|_k + (i ↔ k)]. 

 
We can calculate the four-matter tensor from (13.80).  With the use of the result above 

for 
4

4

( )|/ M kL ψ∂ ∂ , etc., we will then get: 

 
 t m = i l α J1/2 (ϕ mr + J 1/2 F mr u(0)) τIII  ur – i l α (J 1/2 u(0))

|_m ⋅⋅⋅⋅ τIII  ur 

 − 
4

1/2
(0) (0) ||

( )mr mr

r
J u J F uα ϕ ⋅ +  , 
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and therefore, from (15.7), one will have the charge-current vector (with α = J U): 
 

4

1/ 2 1/2 1/2 |_
(0) III (0) III (0)

1 1/ 2 2 1/ 2
(0) (0) ||

( ) ( )

[ ( )] .

m mr mr m
r

mr mr
r

s i l J F u u i l J J u u

U J J U u J F u

ϕ τ τ
ϕ

−

− −

= + ⋅ + ⋅ 
+ ⋅ + 

  (21.16) 

 
If one drops the small supplementary terms then one will get the following expressions 
for the energy-impulse tensor and charge-current vector: 
 

( )21 1
4 2

|_ 21 1
(0)|_ (0)|_ (0)|_ (0) (0) (0)2 2

|_
III (0) III (0)

~

,

~ .

r lr r
ik i kr lr ik i k r ik

r
i k r ik ik

m mr m
r

T g u u u u g

u u u u g u u g

s i l u i l u u

ϕ ϕ ϕ ϕ µ

µ

ϕ τ τ

 ⋅ − ⋅ + ⋅ − ⋅ 
+ ⋅ − ⋅ − ⋅  

⋅ + ⋅ 

  (21.17) 

 
 As for the meaning of the supplementary terms, one can make the same statements as 
the ones that were made at the conclusion of the previous section.  The charge of the 
particle that corresponds to the field is given by the eigenvalues + l, 0, − l of the operator 
l τIII  . 
 
 
 22. Coupling thr matter fields with each other. – In this final section, we would 
like to show, in connection with the arguments of A. PAIS, which are valid for constant 
J, how projective geometry will suggest a somewhat large symmetry for the coupling of 
the matter fields with each other than the considerations of affine geometry alone. 
 For the coupling of mesons and nucleons, we must represent the nucleon field 
(proton-neutron field) by a spinor field, just like the electron wave field that was 
described in no. 20.  We achieve that by regarding the components ΨK of the nucleon 
spinors, not as complex numbers, but as elements of a two-dimensional K(i)-module Rl .  

An element of this module is given by two (complex) components.  Furthermore, let Rl 

be an (irreducible) representation module for the group of rotations in isotopic spin space.  
The representation is known to be the unitary group u2 in two dimensions.  In particular, 

the infinitesimal rotations i τ I , i τII , i τ III around the axes I, II, III, resp., in spin space are 
associated with three Hermitian operators then, which we will also denote by τ I , τII , τ III  
that act upon the elements of Rl and can be formally represented by exactly the same 

matrices as the PAULI spin matrices (in which those matrices naturally act upon only 
Rl). 

 The transformations of the group P are true for the elements ΨK : 

 

Tρ ΨK = 
1

III 2ln ( )i le ρ τ − ΨK. 
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The charge of the elementary particle that corresponds to the ΨK field (under 
quantization) is equal to an eigenvalue of the operator: 
 

1

i
Π = ( )1

III 2l τ − , 

 
and is thus equal to ( )1 1

2 2l −  = 0 (neutrons) or ( )1 1
2 2l − − = − l (protons), resp.  [We have 

denoted the charge of the proton by (− l), since we called the charge of the electron l in 
no. 20.] 
 If τ is the (operator)-vector in isotropic spin space Rl , with the components τ I , τII , 

τ III , then the real quantities: 

1

1
2 2

( )( , ( ) ,

( )( , ( )

K L
KL

K L
KL

M g J

N g J

µ µ

µν µ

τ β γ ψ
µ τ β γ ψ−

= Ψ 


= Ψ 

ɺ

ɺ

ɺ

ɺ

  (22.1) 

 
will be elements of Rl , in which the symbol (…, …) will suggest the Hermitian (inner, 

invariant under u2) product of two elements in Rl . 

 The ΨK experience a representative transformation D⊃ under a rotation D in isotopic 
spin space.  If one consider the elements of the matrices to be invariant elements and 
subjects the ΨK in (22.1) to the transformation D⊃ then, as is known, one will have: 
 

D Mµ = g1( ), ( )K L
KL

D Dµτ β γ⊃∗ ⊃Ψ Ψɺ

ɺ , etc. 

 
In particular, when one sets D equal to a rotation around the III-axis through an angle l ln 
ρ, one will have: 
 

Tρ Mµ = g1( )1 1
III III2 2ln ( ) ln ( ), ( )i l i lK L

KL
e eρ τ ρ τ

µτ β γ− − −Ψ Ψɺ

ɺ  = IIIlni le ρτ  Mµ , 

 
for a transformation Tρ in P, in which τ III  once more acts as an operator on Ri itself in 

the last expression. 
 The expressions (22.1) are suitable for introducing a coupling of mesons and 
nucleons for the purpose of explaining the nuclear forces, when one sets, with: 
 

Hµν = Φµν + Nµν , 
the LAGRANGE function equal to: 
 

( ) ( )||

4 2
1

,( ) , .K L K L
KL KL

L H H U U U M

i

µν µ µ
µν µ µ

µ µ

α β α

ρ β γ σ β

= ⋅ + ⋅ − ⋅ 

 Ψ Ψ + Ψ Ψ

  

ɺ ɺ

ɺ ɺRe

  (22.2) 

L can then be written: 
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L = Lm + Ln + α ( )1 1
2 4N N N U Mµν µν µ

µν µν µΦ ⋅ + ⋅ − ⋅ ,  (22.3) 

 
in which Lm and Ln are the LAGRANGE functions for free mesons (free nucleons, resp.) 
that were discussed in nos. 21 and 20.  However, the expression (20.16) for sm in no. 20 

(and at a corresponding place), namely, ( )K m M
KM

lψ β γ ψɺ

ɺ , must be replaced with 

( )( )( )1
III 2,K M

KM
l µψ τ β γ ψ−ɺ

ɺ
, and the product of two spinors must always be regarded as 

a Hermitian product (…, …).  From the remarks above, L invariant under P (as it must 

be) and also under the group of rotation in Ri . 

 The field equations (21.5) go to: 
 

(α Hνµ)|| µ + β Uν = α Mν.    (22.4) 
 
When we consider α = ρ (= J U), it will follow that the field equations (20.4) will be: 
 

2
|| | 1

1

2 2
L M M L L M L M
M M M

gi
J ig U Hµ µ µ

µ µ µ µν
ργ µ τ γ γ
ρ µ

′ Ψ + Ψ + Ψ − ⋅ Ψ + ⋅ Ψ 
 

= 0. (22.5) 

 
No difficulties will arise in the calculation of the affine splitting of these two equations, 

so it will follow directly from (22.1), with the normalized spinor ΨK = ( )1
III 2

lni l Ke
η τ ψ−

, that: 
 

( ) ( )
( ) ( )

1 (0) 1 (0)

2 (0) 2 (0)

, ( ) , , ( ) ,

1 1
, ( ) , , ( ) .

K L K L
m m KL KL

K L K L
nm nm n nKL KL

M g M g

N g N g

ψ τ β γ ψ ψ τ β γ ψ

ψ τ β γ ψ ψ τ β γ γ ψ
µ µ

= =



= = 


ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

  (22.6) 

  
With the help of (21.9), one will then get from (22.4) that: 
 

( )

( )

( )

1 1/2 1/ 2 1/2 22
(0)

||_

1

|_1 1/2 1/2 1/ 2 1/21
(0) (0)2
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[
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mn mn K mn L m
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n
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KL

n

mn mn
n
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J J J F u u

g

J J u J J F u
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F u g

α α ϕ ψ τ β γ ψ µ
µ

ψ τ β γ ψ

α α ϕ

ψ τ β γ ψ µ ψ τ β γ ψ
µ

− −

− −

  + + +  
  

=

  − +  

+ − = −


ɺ

ɺ

ɺ

ɺ

ɺ ɺ

ɺ ɺ














 (22.7) 

 
while (22.5), with (20.10), will go to: 
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1 1/2 (0)1
||_ | 8
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2 2 (0)

1/22 2
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







  ⋅ =  
  

 (22.8) 

 
 The advantage of the projective theory of relativity emerges here (when one neglects 
the “small supplementary terms” for most applications): We have obtained two affine 
fields: one vector and one scalar.  Nevertheless, we have only two coupling numbers g1 
and g2 as parameters, although, from a purely affine standpoint, we have been able to 
replace the number g1 that appears in the bottom equation of (22.7) with a third one g3 .  
However, in another respects, the same difficulty will exist in the theory that is presented 
here that exists in the affine theory, namely, the fact that the Ansatz (22.1), (22.2) is not 
the only one possible. 

 The affine LAGRANGE function 
4

L , the energy-impulse tensor Tik , and the charge-
current vector sm can be easily written down with the help of the derivatives of the 
previous section: 

4

L = 
4 4

n mL L ⊃+ , 

 

in which 
4

nL  is the LAGRANGE function for the free nucleons: 

 

Ln = J1/2 Re 1/ 2 (0)
||_

1
( , ( ) ) ( , ( ) )

8
K m M K rl M

m rlKM KM
J F

i

ρρ ψ β γ ψ ψ β γ γ ψ +

ɺ ɺ

ɺ ɺ  

+ 1
| ( , ( ) ) ( , )

4
K l M K M

l KM KM
J J

ρ ψ β γ ψ σ ψ β ψ−  + 
ɺ ɺ

ɺ ɺ , 

 

and 
4

mL ⊃  arises from 
4

L  quite simply using (21.8) when one replaces: 

 
ϕmn + J1/2 Fmn u(0) with ϕmn + J1/2 Fmn u(0) + Nmn ,   (22.9) 

and 
 (J1/2 u(0))|_n  with (J1/2 u(0))|_n + J1/2 Nn (0)   (22.10) 

 
everywhere, and adds a term: 
 

− J 1/2 α (un ⋅⋅⋅⋅ Mn + u(0) ⋅⋅⋅⋅ M(0)) 
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to it.  Likewise, the energy-impulse tensor will arise from the sum of the energy-impulse 
tensors for the nucleons according to (20.14) and that of the mesons according to (21.17) 
when one performs the replacements (22.9) and (22.10) everywhere. 
 What is interesting now is the dependency of the coupling numbers g1 and g2 on J.  
However, it is precisely at this point that one can make no purely deductive statements 
from the theory.  The theory that is presented here is in adequate agreement with the 
experiments in nuclear forces and nuclear structure when one suitably chooses the 
coupling numbers to have order of magnitude unity in natural units.  On that basis, one 
would have the right to regard g1 and g2 as independent of J. 
 Almost exactly the same coupling problem occurs with the interaction of the meson 
field with the electron-neutrino field.  However, experiments concerned with the β-
instability of mesons have shown here that the values of the coupling numbers are small 
(~ 10−20 in natural units), so they are probably proportional to J 1/2.  A purely deductive 
basis for this fact in the projective theory, which P. JORDAN arrived at inductively, is 
not possible at present.  Generally it allows one to represent such behavior with no further 
assumptions.  If one sets g2 ~ J 1/2 then it will be at least noteworthy that, e.g., ϕmn will 
enter into the field equation (22.8) in a manner that is similar to the way that Fmn enters 
into it, so a term 18 J 1/2 Fmn (γ (0) γ mn)L

M ψM will appear in the equation in a purely 

deductive way that will then correspond to a term 2
i g2(J) µ−1 ϕmn τ γ mnL

M ψM .  This 

analogy at least raises the suspicion that a deductive basis might be possible in the 
manner that will be suggested in the next chapter. 
 
 

____________ 
 



 

CHAPTER IV 
 

GLIMPSE OF POSSIBLE EXTENSIONS OF THE THEORY  
 

 Whereas the combination of gravitation and electromagnetism into a unified 
geometric theory of the laws for those fields and their coupling to other matter fields can 
admit a deductive basis, to a certain extent, as well as yielding an extension of 
EINSTEIN’s general (affine) theory of relativity that implies a foundation for JORDAN’s 
cosmology, the last three sections have shown the precise limits of the theory, since 
despite an agreement with the affine theory, some unforeseeable possibilities will also 
exist for matter fields, and especially for their mutual couplings, as a result of the demand 
of greatest simplicity.  If one would like to go further along the lines of geometrization 
then the question will arise of whether it is not possible to also incorporate the meson 
field into a unified geometric field theory.  The spinor field seems to show no point of 
application for the development of such ideas, so one might possibly already consider it 
from the standpoint of quantization (perhaps as singularities of the geometric continuum).  
In contrast to the geometrization of the meson field, one has some ideas that 
SCHRÖDINGER sought to develop in some recent papers on the basis of the affine 
theory.  His theory goes back to the ideas of EDDINGTON-EINSTEIN in the year 1923.  
The EDDINGTON-EINSTEIN attempt to introduce the electromagnetic field started with 
the introduction of displacement quantities λ

µνΓ  (which are initially still assumed to be 

symmetric in µ, ν, which SCHRÖDINGER also dropped) that are more general than 
CHRISTOFFEL’s three-index symbols, with the result that the field equations, which had 
precisely the form of a vector meson theory, practically coincided with MAXWELL’s 
equations for a very small “rest mass” (which one could not, however, set equal to zero).  
There is a very strong temptation then to carry over the ideas of EDDINGTON, 
EINSTEIN, and SCHRÖDINGER to the present theory, which is a problem that P. 
JORDAN already came to grips with.  An extension of this theory in that respect has the 
advantage that one can obtain not only the field laws for mesons in a deductive form, but 
also the coupling of other matter fields with mesons. 
 The starting point for the extension is to abandon the metric gµν such that the basis 
quantities then appear to be the displacement quantities ρ

µνΓ (which are symmetric in µ, ν) 

and a covariant vector Yµ with Xν Yν = 1.  For the parallel displacement by ξ ν, one will 
then have: 

δ|| α ρ = − ξ ν ρ
νµΓ α µ + ξ ν Yν Πα ρ . 

 
As before, the curvature tensor Rµν

λ
ρ and the field Fµν = Yν | µ – Yµ | ν can be defined by the 

ρ
νµΓ .  One can derive Rµρ = Rµν

ν
ρ  and Rµν

λ
λ from the curvature tensor by contraction, the 

latter of which does not vanish, as it would it if were based upon a metric, but defines 
precisely an antisymmetric tensor field that essentially agrees with Rµρ − Rρµ , by which 
the meson field can be represented.  Generally, one gets only uncharged mesons in that 
way, since Rµν

λ
λ is a normal tensor. 
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 To what extent more far-reaching generalizations (e.g., complex ρ
νµΓ , ones that are 

asymmetric in ν, µ, or similar things) can product new physical viewpoints, and likewise, 
whether a geometric theory of mesons would in itself yield the β-decay probabilities of 
atomic nuclei in a purely deductive way, which P. JORDAN inferred from an order-of-
magnitude analysis, and which was suggested at the end of no. 22, all of this will first be 
shown only by a more precise elaboration of the theory. 
 

____________ 
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