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 The idea of forming the differential equations of motion for a constrained system of points that 
makes use of expressions for velocity as linear functions of the independent parameters can be 
found in Kirchhoff’s Mechanik.  There, that principle was used to deduce the final equations of § 
4 of Lesson 3.a from Hamilton’s theorem, which were then applied, in § 2 of Lesson 4,  to the 
formation of the more general differential equations of motion of a free solid body or one that has 
a fixed point. 
 Volterra has applied the same principle in his article “Sopra una classe di equazioni 
dinamiche,” which was published in volume XXXIII (1898) of the Atti della R. Accademia delle 
Scienze di Torino in order to deduce a form of the equations of motion of a system of points for 
which the constraints are independent of time from the equations of d’Alembert and Lagrange, 
when reduced to an expression by Beltrami (1), and expressions for the total differential equations 
between the coordinates that are just as valid whether or not they form an integrable system; that 
is to say, whether the moving system is holonomic or anholonomic.  The differential equations (C) 
that are established between time, the coordinates, and the characteristics of motion are equal in 
number to the latter: There are thus as many parameters as there are degrees of freedom in the 
system, by means of which, by virtue of the constraints, one expresses the components of the 
velocity of any point as homogeneous linear functions.  Moreover, Volterra proposed, in particular, 
to indicate the case in which those equations are sufficient to determine the characteristics as 
functions of time. 
 Finally, Appell used the same principle of the characteristics to deduce an elegant form for the 
differential equations of motion from the d’Alembert and Lagrange equations that was, like the 
preceding ones, applicable to holonomic or non-holonomic systems, as well as the case of 
constraints that depend upon time in his article “Sur les mouvements de roulement – Équations 
analogues à celles de Lagrange” that was included in volume CXXIX of the Comptes Rendus des 
Séances de l’Académie des Sciences in Paris (1899), as well as in “Sur une forme Générale des 
équations de la dynamique,” which published in volume CXXI of Crelle’s Journal (1900) (2). 

 
 (1) Beltrami, “Sulle equazioni dinamiche di Lagrange,” Rend. R. Ist. Lombardo 28 (1895). 
 (2) See also, Appell, “Les mouvements de roulement en Dynamique,” § 24 (Scientia 4o), Paris, 1899. 
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 In this brief note, permit me to show how Appell’s equations and Volterra’s can be deduced 
from a form of the equations of dynamics that is found in § 493 of my Meccanica (1), which is, in 
turn, deduced quite directly from Hamilton’s theorem.  It would seem that it has remained 
unnoticed, although in the following §, it will be applied to the construction of the equations of 
motion for a solid by a method that seems to present the advantage of greater expediency when 
compared to that of Kirchhoff. 
 We begin by recalling the very simple deduction of the equations in question.  If we start from 
Hamilton’s theorem: 
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in which if q1, q2, …, qn denote any type of coordinates – free or not – for the moving system then 
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Let the constraints be represented by: 
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by means of which the q1, q2, …, qn are defined by: 
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These last equations can always be supposed to be solved for n – m of the q1, q2, …, qn , which 
are, if needed, opportunely chosen to make: 
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in which the 1 , 2 ,  …, nm are other arbitrary parameters. 
 Now (1), conforming with (2), can be written in the form: 
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which immediately yields: 

 
 (1) Principii della teoria matematica del movimento dei corpi, Milan, 1896.  
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One substitutes (5) in that relation, selects one of the r , equates its coefficient to 0, and sets: 
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and one will get: 
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 Those are the desired equations, and along with (3), they define a system of n differential 
equations, where t serves as the independent variable and the q1, q2, …, qn are unknowns.  They 
are valid for both holonomic and non-holonomic systems, and for constraints that are or are not 
independent of time. 
 In order to put those equations into Appell form, it is enough to observe that (3), conforming 
to (5), will imply that: 
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in which e1 , e2 ,  …, enm represent the characteristics of the motion of the system considered, in 
such a way that: 
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Meanwhile, on the other hand, with Appell, set: 
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in which m and x, y, z represent the mass and coordinates of the generic point of the system, and 
the sum extends over all points, so one will have: 
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However, one has: 
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and analogous expressions. Hence: 
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and what will remain is: 
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 Having done that, from (8) and (9), (7) will become: 
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which are Appell’s equations, when they are free of any special hypothesis about the choice of the 
characteristics. 
 One will get Volterra’s equations when one puts (7) into the form: 
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or finally: 
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 Those equations properly apply to any type of coordinates q1, q2, …, qn and to constraints that 
also depend upon time.  Suppose that the q1, q2, …, qn , with n = 3, represent the orthogonal 
Cartesian coordinates x, y, z of a system of  points, and that the constraints are independent of 
time.  Conforming to (10), one will have: 
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Therefore, under those hypotheses, the preceding equations will become: 
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The simple form to which Volterra’s equations (C) reduce (except for different symbols) makes 
use of the assumed relations and follows from the indicated operations. 
 We conclude with some brief observations on the possibility and legitimacy of using 
Hamilton’s theorem. 
 It seems to me that as far as the possibility is concerned, the equation that translates that 
theorem can always be considered to be a reduction of a more concise form of d’Alembert’s and 
Lagrange’s equations that is almost spontaneous from the way that the equations of motion in 
general coordinates are deduced. 
 As for their legitimacy, with the exception of Appell, who addressed that topic in his article 
“Sur les équations de Lagrange et le principe d’Hamilton” in volume XXVI of the Bulletin de la 
Société mathématique de France (1898), one can object that the proof of the incompatibility of: 
 
(11)    d x = dx,  d qi = dqi 
 
in the anholonomic case is based upon the deduction of: 
 

 [dx – (A1 dq1 + A2 dq2)] = 0 



Maggi – Equations of dynamics that are applicable to anholonomic systems   6 
 

from the equations that translate the constraint: 
 

dx – (A1 dq1 + A2 dq2) = 0 . 
 
Now, that signifies that the virtual motion is forced to satisfy the same constraint as the effective 
motion.  Conforming to the usual canon, it is the variation that relates to the passage from a virtual 
motion that is defined by (11) to: 

 x – (A1 q1 + A2 q2) = 0 
 
in the case at hand.  In that case, Appell’s argument shows how holonomity is the necessary and 
sufficient condition for the virtual motion to coincide with the motion that satisfies the same 
constraints as the effective motion (1). 
 

__________ 
 

 
 (1) Cf., Hölder, “Ueber die Principien von Hamilton und Maupertuis,” § 6, Nachrichten der Gesellschaft der 
Wissenschaften in Göttingen (1896). 


