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The rays that emanate from a luminous point in aiumeadf uniform density may be
regarded as a system of straight lines passing throughpthnt. When these rays
encounter the surface of a body that reflects or cedfratheir mutual disposition
experiences various modifications that give rise tofalhe phenomena of optics.

Before passing to the analysis of these phenomengaregent some properties that
are common to all of the sheaves of reflected oacefd rays, and in general to all of the
systems of continuous straight lines that are not géhrall

[1]. Let:
m(z-Z) =o(x - X), n(z-z)=o(y-y) (A)

be equations of a straight line that belong to a systerays that are arranged in space
according to an arbitrary analytical lam, n, o being arbitrary functions of, y', Z. At
each point of space — i.e., for each particular valug,of, Z — there correspond new
lines that belong to the same system.

First consider the lines that belong to the points dh& contiguous to the ones whose
coordinates arg', y, Z; among all of the lines there is only a certain sequeht¢bem
that meets the lined). In order to determine the locus of points that thelpng to, one
must express the idea that the liA@ &nd a contiguous line have a common pgjiy z,
and then differentiate equatio®)(with respect tox, y, Z, by regardingx, y, z as
constants, which gives:

dm(z—Z) —m dz =do(x —x') —o dX, dn(z-Z)-ndz=doly-y)-ody. (B)
If one eliminatesX—X), (y—Y), (z—2Z) then one has the result:

mdo dy—-mdndz+ndmdz-ndodx+odndx—-odmdy=0
or:
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(d_m dx + Enj dy+(i”] dz}( ndz ody

|Ldx dy dz
(dn dn dn) .| -
+_(d_>( dx + d_yj dy+(?2j dz_( od% mdy:=0. ©

+_(g dx + yjdy( j _(mdy— ndx

This equation expresses the idea that the two IilhggR), and a third one:
dX(z-2) =dZ(x—X), dy(z-2) =dZ(y-Y) D)

are found in the same plane. The lim®,(which is the tangent to a curve of double
curvature, indicates the direction, along which one mass from the point, y, Z to
the contiguous points in order for the two consecutiys ta meet. The two tangents of
inclinationdx /dZ, dy / dZ are coupled to each other by equatiGh {n such a way that
there is only one of them that is indeterminate, antdtheae is only one certain family of
curves with double curvature that must satisfy equa@n These curves are coupled to
each other by the common property that if one considieesof them in particular then
the sequence of ray8)that belong to its different points meet it congeely.

If one eliminategiX / dZ, dy / dZ from equations), (D) then one will obtain the
locus of all the tangent®] that pass through the, y', Z. The result of that elimination
is:

d | " ,
( j(—X) (dyj( y){a(z—a_[mzx oy ¥

dn |
+[dxj(x %)+ (dyj(y )+ (dzj(z— J

do N X
dej(x X) + ( yj(y )+ (dzj(z—i)}[n(y“ y- i x ¥

This equation belongs to a conical surface of second ddwakhas its center at the point
X, Y, Z, and whose nappes indicate the direction along which ars¢ pass from that
point to the contiguous points in order for the liAg o meet the consecutive figure; the
ray (A) itself is one of the edges of that surface.

One may already remark that any plane that passasgtinthe center of that conical
surface will be cut along two straight lines, in suchay that there are, in general, two
directions at each point of a plane along which ong tnaavel in order for the rayg\j to
meet, no matter what the functiomsn, o are.

¢ x ¥z =0 €)

—

[2]. Now, let a curved surface be:

F(x,y,2 =0, pdxX+qdy +pdz=0. F)
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One of the raysA) belongs to each point of that surface, but if one detesdx / dzZ,
dy / dZ by means of equation€), (F) then one will have, since equatio@) (is of
second degree, two results of the form:

M dZ = O dx, Ndz=0ady, ... ©

M dZ =0O' dX, N dZ=0'dy, ... ©)
upon setting:

n=o % —n(%’jﬁ =m g—yj—o[j—;njyz n(i—?j—m{%‘j
[

R RCAC
A2 (2
SORCRERE!

L=[(aF + &g+ p)* + 4pa(yd — &) + dpr(fz — &) + dqr(al — %)
— PByp’ - dayf — dapr’]

M={pg+dqr—eq—28pr+qlL, N =epq+ dpr—p° —2aqr—plL,
M’ =¢pg+dqr—ef —28pr—qL, N' = epq+ dpr - ¢p° - 2aqr +pL,

O:O’:—TpM —FqN :—?pM'—FqN'=2(aq2+,[>’p2—5pq).

Substituting these values fdx / dZ, dy / dZ in equation D), one will have:

M(z-Z) = O(x —X), N(z-2Z)=0(y-Y), ... (D)
M'(z-2) =0'(x—=X), N'(z-2z)=0(y-Y), ... (D)}

equations that refer to two tangent lines to the suil@zeand whose direction indicates
in which sense one must pass from the pginy, Z to the consecutive points on that
surface in order for the ray8)to meet. One will have likewise obtained equatids (
(D) by combining the equation for the tangent plane to tinlace €) with that of the
conical surfaceK).

Since the equations)( (S) are valid for each of the points of the surfaEg (heir
integrals express two systems of curves traced orstinéce, and each of them enjoys
the special property that all of the rayg (hat belong to it meet consecutively; indeed,
since the curves| or (S) satisfies equatior) at each of these points, it is always found
in the direction that the points of the consecutassrthat meet belong to.

The sequence of lines) that pass through the cung &nd meet consecutively form
a developable surfac&)(whose edge of regressiod) (s the locus of points that meea
second time. Since the cuna (s cut at each of its points by one of the curn#gs ¢ne
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has, in turn, that the developable surfagi§ cut along each of its generatrices by a
developable surface&| that is composed of the rays that belong to oneeottinves g).

The sequence of edges of regressmnof the first sequence of developable surfaces
(S form a curved surface&] to which each of the ray#\) is tangent. The sequence of
edges of regressiong) of the second sequence of developable surfaé8g¢dofm a
second surfacex() to which all of the raysA) are again tangent. Therefosy time
one considers a system of straight lines that emanate from all giothts of a curved
surface according to an arbitrary analytical lawhis system of lines may be regarded as
the locus of intersection of two systems of developabiéaces, and since the sequence
of edges of regression of these two systems of surfam@aprise the intersection of all
the generatrices, one concludes thatlocus of points at which the proposed lines meet
is comprised of two curved surfaces.

[3]. Imagine the plane that passes through the Wjeafd the tangentD); its
equation will be:

(nO-oN) x—=x) + oM -mO) (y-Y) + (InN—-nM) (z—-Z) = 0. AD)

Likewise, the plane that passes through the IReahd the tangentX) will have the
equation:

(nO —oN) (x—X) + OM' =mQO) (y-Y) + (NN —nM') (z—Z) = 0. (AD")

These two planes obviously contain the consecutive tmése line A) by which, it
IS met.

In order to determine the coordinatey, z of the point of encounter of the lines that
are found in the plané\D), one must substitute in the equatioB¥ for dX / dz dy / dz,
their valuedM / O, N / O, which are found from equations),(and after that substitution,
combine the equations), (B), which gives, by means of equatid®),(and upon setting:

LEEEEEE ERErEY

the equations:

X=X=m\, y-y =nA\, z-Z=0A. G)

The distance from the point, Yy, Z to the pointx, y, z, which we callR, is, as a
consequence:

R=(x—X)%+ -y +@Z-2°= M +n’+0°) A%

One will obtain a similar result for the line that fisund in the plane AD’) upon
substitutingM’, N', O' for M, N, O in A, and one will have, upon calling the resulting
valueR':
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X=X=mA\', y—-y=n\, z-z=o0N. G)
The distanc&®' from the pointX', y, Z to the second point of encounter will be:
RZ=(X—X)°+( -y’ +@Z—-2°= (P +n’+0°) N2

One could collectively obtain the double valu€s, (G') of x — X,y — Yy, z — Z upon
eliminatingdx / dZ, dy / dZ from equationsE), (F), which will produce an equation of
second degree, which, when combined with equa#gn Will determine the proposed
values.

Let:

V=0, W=0, ...69 V' =0, W =0 c9)

be the integrals of equations),((s) that must be completed by the condition that these
curves must pass through a particular point of the suffgce

The equation of a developable surfa&e will be the result of eliminating', y', Z
from the four equationsy], (s9.

The equations of its edge of regressiah \ill be the result of the elimination of
these quantities from the five equatio®,((s9. Finally, the equation of the surfac®(
which is the locus of all the edges of regressignaf the sequence of surfacey, (will
be the result of eliminating, y', Z from the three equation&) and the equatioR(X, Yy,
Z)=0.

Everything that refers to the sequence of developable su(fgcessobtained by way
of considerations that are similar to the precedimgsaipon substituting the curves|
for the curvesyy.

[4]. The two developable surfacg)((S), which meet along the liné\), are cut by
each of these lines at a particular angle whose sspiewe shall determine. In order to
do this, we observe that the plaeD] that passes through the ra4) @nd the tangent
(D) contains two consecutive generatrices of the developsintace §, so it is
consequently tangent to surface, and by the same reasti@ngane A'D’) is tangent to
the surface ), in such a way that the angle between these twaeglés the angle at
which the proposed surfaces meet. Now, if one refethdoangle between the two
planes AD), (AD') by rthen one will have:

T=
(M + "+ ) (MM + NN+ OO -( mM+ nN opH( mM nN 90 miM  hN 90
(M + P+ ) M*+ N°+ O)—( mM+ nNe 0D Yf( i+ AF  M* N+ 'P—( miM AN DF Y

an expression that will always be a functioxXof/, Z, at least when one has:

(m? + n? + 0)(MM’ + NN +00) - (mM + nN +00)(mM +nN +00) =0,
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independently of the values ¥t y', Z. In this particular case, one has e¢os0, and the
developable surface§)( (S) all cut at a right angle. Upon replacimtiNO, M'N'O’ in
that equation with their values, it becomes:

(g s i oon-| - 450+ £5)- 03]

] [(m*+ 1) pa* of mgr np— mrfi ]

ey s o on-| 450 Aol )l |70 ¢
[(n? + &) pr+_ nd mr+ op—- mog )

5ol @ v | b o) il b

[(n®+0%) ar+ md nr+ 0 - np’]

in such a way that whenevttte functions m, n, o satisfy that equation of condition one
may regard the raygA) as the locus of the intersection of two systems of developable
surfaces that intersect at a right angle.

For the moment, consider the line&) to be the system of normals of a curved
surfaceF(X,y,Z) =0,p dX +q dy +rdz =0, so one will haven=p,n=qg,0=r.
Substituting these values in the numerator of the express cosr, or in the left-hand
side of equationH), it reduces to:

(A oS (5D A v

a quantity that is always null, sinpedx + g dy +r dZ is the differential of the function
F(X, ¥y, Z), in such a way that the normals to a curved suréseealways the locus of
intersection of two systems of developable surfacesitbatsect at a right angle. One
thus concludes, conversely, that whenever the furetigm, o satisfy the equation of
condition {) in a system of rays, there exists a series of sesféhat are normal to these
rays.

Since the quantities, n, o are given functions that do not generally satisfy eqnatio
(H), one may propose to determine the surfatelx +q dy +r dZ = 0 by the condition
that the rays A) must be the locus of intersection of two systerhsremtangular
developable surfaces. Equatidt) (s then the partial differential equation for theickzs
surface.

[5]. The phenomena of optics depend principally upon the lotpsints at which
consecutive rays meet — i.e., on the form and theipo%t the surfaces], (') — and
we remark that everything that relates to these surfadedependent of the solution and
integration of the equations, and is obtained by sinptarations.

These surfaces might have different nappes thatitaggexd on the same side of the
surface F) or situated with one on one side of that surface amdatiher, on the opposite



Malus — Optics. 7

one. Indeed, the angle between the raystifat belong to the same curv&y( after
having been positive, may become negative, and conveesalyit is obvious that before
the change of sign, that angle will have to be z&nd,the point of intersection of the two
consecutive rays will go to infinity.

The point of intersection of the two consecutivesr@y is, as we have seen, the same
as the point of intersection of the two lingg,((B), in such a way that when the two
consecutive rays are parallel, the two likeB are, as well. Now, the angle that they
form between them has the cosine:

mdnm+ ndn+t odo
(P + 1P+ )M dnf+ dri+ dg 7

and when they are parallel, that expression musigoal to unity, which givesr( do—o0
dm)? + (n do—o dn?+ (m dn—n dm? = 0, or:

m do—o dm=0, n do—-o dn=0. 0

If one replacesiX / dZ, dy / dZ in these equations with their values, as deduomah f
equation §), then they become:

n (%) M{di;j <[99 o o‘(%;j M{_g;j N{_ggo}o,

- - )
(@j M +[£)j N+(g)j O —
dx dy dz

| RERELEES

and are the loci of the particular points of theveu@ss for which the two consecutive
rays cease to meet; consequently, they definewe ¢hat cuts all of the seriess(

Moreover, if one replace$x / dZ, dy / dZ in equation (1) with their values that are
deduced from equations ) then one will have:

>
(@]

(5o e e 3

- i S)

(e @A Ee (vl

>

which are the equations of a particular curve thaets all of the curves §) along the
points where the ray#\J cease to intersect in the same sense.
The equationsS), (S) are particular solutions of the differential egoa (C).

If one eliminated, N, O or M', N', O’ from the equationsy or (S) and the equation
pM +gN +rO=0 orpM +gN +rO’" = 0 [2] then one obtains the equation of condition:
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() () (o 4 - ) o )
RUACIR SRR IR (R R R e

=0,

which expresses the condition timtn, o must satisfy in order for two consecutive rays
to exist at each of the surfapedX + q dy +r dZ = 0; i.e., in order for one of the two
systems of developable surfac&g (S) to be a system of cylindrical or planar surfaces.
If m, n, 0 are given ang, g, r are unknown then the preceding condition may be regarded
as the partial differential equation for the surfpad + q dy +r dZ = 0 that satisfies the
proposed condition.

Each of the linesA) that belong to the curve)(is asymptotic to two branches of one
edge of regressiorg] that situated on opposite sides, and consequenthethes ®f lines
(A) that belong to the curve)(form a surfaceX) that is asymptotic to two nappes of the
surface k) that are situated on opposite sides. Similarly, dtees of linesA) that
belongs to the curves] form a surface X') that is asymptotic to two nappes of the
surface £').

The line of intersection of two surfacey,((Z') — i.e., the rayA) that corresponds to
the point of intersection of the two curves, (S) is asymptotic to two branches of one
edge of regressiorgf, and to two branches of one edge of regress®n (

Other than the two curves)((s), equation C) again has another particular solution
that corresponds to the point where the curggs (Ss) agree — i.e., the case in which
one hasv = M’, N=N', L = 0, and consequently:

(& + &g + p)* + 4po(y3— ) + 4pr(ef + &) + 4qr(ad — de) — 4By P — 4ayf — 4afr* = 0.

The combination of that equation with the equati¢x, y, Z) = O determines the
curve on that surface along whickg( (SS) coincide. One may make the same
observations about that equation of condition that \@darabout the one that we treated
previously.



CATOPTRICS

[6]. We shall pass on to the application of that theryptical phenomena by
commencing with those products of reflected light thanfthe object of catoptrics.

One calls the angle between the incident ray and thmaldo the surface that is
reflecting or refracting thengle of incidenceand the angle between the reflected or
refracted ray and that same normalahgle of reflection or refractigrrespectively.

The angle of incidence is always equal to the aniglefection, and the reflected ray
is always found in the plane that passes through theeinicray and the normal at the
point of incidence. It is upon these principles, whiah given by experiments, that we
establish the analytical theory of catoptrics.

If we let X, Y, Z be the coordinates of a luminous point then the equatid the
projections of a light ray will be:

az-2)=c(x-X), bz-2)=cly-Y) ........ @
If that ray strikes a surface:

F(X,y,Z) =0, pdX+qdy+rdZ=0 )
at a pointx', y', Z then it will be reflected along a line that we repn¢d®y the equations:

M(z—2) =o(x—X), n(z-2)=o(y-Y). A

Since the two linesa), (A) form two equal angles with the normal to the surface will
express that condition by the equation:

ap+ bg+ cr _ _mp+ ngt or
(a2+b2+ CZ)l/Z (m2+ n2+ 02)1/2 )

©)

In the second place, the incident ray, the reftbctgy, and the normal are found in the
same plane, so one will have:

m(cq—br) +n(ar —cp) + o(bp—aqg) = 0. ©

The two equationgdf, (c) define the conditions that must determmé o, n / o, and
one infers from them that:

m _ pr(a®+b’+c’)+(cq- by(bp- ay+( ar ci ap be ¢|
0 r’@®+b*+c?-(cq- bn*-(ar-cp?

qr(a +b?+ )+ (ar-cp(bp- ayx( b c} ap be ¢|
r’@®+b*+c?-(cq- bn*-(ar-cp?

oI:
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With the upper sign, one infers thgq = E, n- E which refers to the incident ray,
o} c

and with the lower sign, one infers that:

m _2(ap+bgt cr)p- g p+ g+ F)
o 2@p+bgtenr-o g+ g+ P’

2(@p+batcho- K g+ 4+ f)
2@p+batcir-q g+ g+ r)’

n
0]

which refers to a line that forms an equal anglédhwhe normal, and which is situated in
the same plane on the opposite side — i.e., oreflexted ray — and one concludes:

m=A[2 (ap + bq + cn p—a (p° + o +r?)],
n=A[2 (ap +bq + cn g—b (p° + o +r?)],
0=A[2(ap +bg+chr—c®+q +rd)],

in which A is an undetermined coefficient that disappearseumalculation. Finally,
since the poink', y', Z is common to the surfac€)(and to the incident ray, one has:

a(z-2)=c(x —-X), b(Z-2)=c(y-Y),
and consequently:
a=A (X -X), b= -Y), c=A(Z -2,

in which A" is a new undetermined coefficient that vanishesduhe calculation. 1f we
substitute the values af b, c in the expressions fan, n, o then one will have these latter
guantities as functions of the coordinatésY, Z of the luminous point, and the
coordinates<, y', Z of the point of the surface that is encounterethbyincident ray.

[7]. From the results of paragrapB],[ the system of reflected ray#&)( may be
considered as the locus of intersection of thesygtems of developable surfac&g (S)
that cut the surfacd-} of the mirror along two sequences of cunas, (ss) [3], and the
intersection points of all these rays are foundvem curved surface<, (') that we call
caustic surfaces.

In the second place, if one substitutes the vadi@s n, o in the expression for cas
[4] then one finds that they satisfy the equatiomaridition {), in such a way that the
developable surface$)( (S) all intersect at right angles.

One may simplify the calculations of that subsitta by observing that the values of
m, n, o are independent of the position of the coordinatesone may suppose that the



Malus — Optics. 11

reflected ray that one considers is one of the coomliag¢s — for example, tlzeaxis.
One then ham = 0,n = 0, and equatiorH) reduces to:

ERCREEOR

oo 2o B 2 o - 45 58 2
FEN AT R A e

oo
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Finally, sincem = 0,n =0 gives:

O
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=
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ar’—cpr=p(ap + bq + cp, br® —cqr=q (ap + bq + ¢, bp=ag,

all of the terms of the preceding equation are muldpligap + bqg + cr, and it reduces

to:
dq dqj dq dq ( dj ( dj B
rr—|-q|— |+p|l— |-r|—'|+q|— |- p|— ] =0,
(dxj q(d)( p( day)  Uay) W Pl
an equation that is always true, sinedx + d dy + r dz= 0 is the differential of the
equationF(x', y, z) = 0.
If one now imagines a conical surfa€® pn one of the curvesg and the luminous

point is such that all of the rays are found in thatamarfthen after being reflected it
consecutively encounters and forms one of the develogabieces$). Likewise, all of

the rays that are found in the conical surfacg that passes through one of the curves

(sS) and through the luminous point will, after being re#et; form one of the
developable surface$)( Therefore, we henceforth consider the incident{aato be the
locus of the intersection of two conical surfac€y (C'), and the reflected ray to be

the locus of intersection of two developable surfa8:q$).

The two conical surface€), (C') intersect in the same angle as the corresponding

two surfaces9), (S), respectively. Indeed, the two tangent planes tcstintaces C),
(C) along the line §) form, along with the tangent plane to the mirrortriangular
pyramid @, D, D') whose three edges are the lings (D), (D'), since the linesy), (D')
are P] tangents to the curvesq, (Ss). Likewise, the two tangent planes to the
developable surface§)( (S) along the line4) form, along with the tangent plane to the
mirror (F), a triangular pyramid4, D, D') whose three line&), (D), (D') are the edges.
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Now, the angle that is formed between the incident(aa and the line ), whose
cosine is:
aM +bN+ cO

(aZ + b2+ C2)1/2( M 2+ N2+ 02) 1/2?

and the angle that is formed between the reflecégd(A) and the same line, whose
cosine is:
mM + nN+ oO

(m2+ n2+ 02)1/2( M2+ N2+ OZ) 1/2

are equal, and of opposite sign, due to the equatio
(aM + bN + cO)(n? + r? + 0% + [(mr —op)M+ (nr —oq) N] (& + b* + »)*? =0,

which is true independently of the valuesvbandN.

The angle formed between the lina¥ (O'), (A) (D) are also equal to each other, in
such a way that the two pyramidaDD’), (ADD') are perfectly similar. One thus
concludes that the conical surfac€s, (C') all cut at a right angle.

[8]. Consider a light sheaf that is formed betweedr finfinitely close conical
surfaces €), (C), (C'), (C'). This sheaf will have the form of a rectangujaadrangular
pyramid whose edges form two small anglés and the rays that it contains after being
reflected will be found inside of a rectangular duaagular surface whose edges form
two new angleg, k'.

Let A be the distanceX(— X')? + (y = Y)? + (Z — Z)3*? from the luminous point to
the pointx, y, Z of the surfaceR), and letD be the distance from the poiit y, Z to
the eye that is situated in the prolongation ofriféected ray. The light that enters the
eye after being reflected has traversed a distamoe it left the luminous point that is
expressed b + A, and at that distance, the ray sheaf that stiemts fhe luminous point
will have a perpendicular section to its axis tisathe rectangular quadrilater® ¢ R) k
(D £ R) k. Now, since the intensity of the light is invetsethe area of the surface on
which the same quantity of rays is dispersed, fbid at the place where the eye is
situated after reflection, relative to what it vashe distanc® + A, by starting directly
at the luminous point in the ratio dd(*+ A)?ii' to (D + R) (D + R) kk. One may thus
express the brightness of the image at the poinK, y =Y, z=2, as seen from the point
X, Y, Z of the mirror, by:

(D +A)%i’
(D+R)(Dx R) kK’

£being a constant coefficient that expresses thebrghtness of the luminous point.

One must observe that thesigns thalR andR' are affected with is independent of the
positive or negative value that may resultRomndR due to their positions relative to the
plane of the coordinates. These values must allvayaken to be positive when they are
situated in front, sincB is always taken to be positive in front of the nair
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All that remains is to determine the expression for ko W Now, two

consecutive raysaj of the conical surfaceC) form the small angle between them,
which, being equal to its sine, has the expression:

2 _ (a®+b*+ c?)(daf+ dF+ dé)—-( ada bdb cé
(a2+b2+c2)2 !

and these two rays, after being reflected, formasgle k between them, whose
expression is:

2= (m? + i’ + o)(dnf+ di+ dd-( mdm ndn o)f
- (m2+n2+02)2 '

However, due tol]:
ndx— mdy _ odx— mdz: ody- ndz
mdn- ndm  mdo- odr ndo-odn’

one will have:

(m? +n® +0d)(dnf +drf +do®) — (m dx + ndy + o dg

_ (mdn- ndny’

=[(m* + P+ &) (dX+ dy+ d)—( mdx ndy oxk
(mdx—= ndy

k2

_ (M+nf+0)® (nde mdy’ [( &+ B+ §( d& db de-( ada bdb §dc
(@ +b?+c)? (mdn- ndy?[( i+ A+ & e dy Jz=( mex ndy pf’

and due to the equation:
(mf +n? +0?)(a dx +b dy +c d2)?= (@ + b® + A)(m dx + n dy + o d2)?,

and finally:
- R

i (D+A)?’RR
K A (D+R)(Dx R)A*’

>

1
k
when the distanc& to the luminous point is infinite, one has:

. RR
(D+R)(Dx R)’
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(D +A)’RR
2

One may already observe that when one abstractstfrernerms , the

intensity T of the reflected light will increase witltD(x A), while O = R) will be
smaller, in such a way that theaximumintensity will be obtained for the points whée
+R=0,D+£R =0. Now,D + R =0 is the equation of the caustic surfategndD + R

= 0 is that of the caustic surfacg)( It is therefore the intersection of these twdfaces
on which one finds themaximumof the reflected light. When the locus of that
intersection reduces to several particular pomt®, gives them the name of ttoeus of
the reflected light.

[9]. We shall apply the preceding analysis to thdases of revolution. We suppose
that the luminous point is on theaxis, and we choose that axis to be the axis ®f th
surface. One will then hawe=0,Z=0,a=x - X, b=Y, ¢c=Z and the equatiors(x,
y,Z)=0,pdxX +qgdy +rdZ =0 that represent the surface of the mirror bell

y2+22=0(X), 2y dy + 27 dZ = d'(X) dX.

Since®(x') is an arbitrary function of, one deduces from this that= ®'(x), q = — 2y,
r =—27. Substituting this in the general expressionsriom, o [6] and setting:

A= 1
46 (<)~ 9" (X) = 4(X = X)¢ (%)

one will have:

m = [4¢EGX')—?5'2 Eﬂ’>§)](><— X)+4¢Eﬂ’>'<)’¢'fﬂ X) _ W(X), n=y, 0=7
4g(X) =@ (X) = 4(X = X)¢' (X)

and upon introducing these expressions into equea@, (s) [2], one has:
a=0, =0, y=0, 6=Z[1-W(X)], e=-y[1-¥(X)], {=0,
L=2(%+2% [1-W(X)], M= 0,N == 42°¢' (x)[1-W'(x)], O = 4y Z ¢ (X)[1-¥' ()],
M’ = 8y' ¢ (X)[1-W' (X)], N = 4y ¢ (X)[1-W'(X)], O' = 4y Z ¢ (x)[1-¥'(x)],
or simply:
M=0,N=-2%¢(x),0=y Z #(X),M =y g (x),N =y? #(x),0 =y Z ¢ (x),

and finally:
dx =0, ydy +ZdZ=0, S)

2 d(X) dZ - Z P'(X) dX = 0, y dy -7 dz = 0. €)
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The integrals in these equations are, upon calling theagpitonstants that complete
themA andB:

X = A, yZ+Z2=0(A), s
Z% (1 +B% = d(x), y =B Z. Ss)

The first series of curvesq belongs to the sequence of circles that lie inaael
perpendicular to the axis of revolution, and the secengs €s), to the sequence of
meridians of the surface.

If one eliminatex’, y', Z from the equations of the incident ray:

X =X)z=2 (z-X), yz=2y, X =X)y=y(x-X), @)

and those of the curvesy then the result will be the equation of the sequ&fic®nic
surfacesQ):

(A=X? (Y +2) = x—X)’ P OA). (CC)

These surfaces are a sequence of cones with circudas lvahose axis is the axis of
revolution, and whose centers are all placed at th& pei X,y = 0,z=0.

If one eliminates(, y', Z from these same equatior® &nd those of the curveg)
then the result will be the equation of the seriesomiic surfacesd):

y=Bz CC)

in such a way that these surfaces reduce to a seneanefs that pass through the axis of
revolution.

If one eliminates, y', Z from the equations of the reflected ray:

Y(X)(z-2) =y (x—X), yz=2y, WX)y-Yy)=yX-X), A)
and those of the curveq then one will have the series of developable surfg®es
WAA)(Y + Z) = DA)[x—A + WA S9

These surfaces are a sequence of cones with circat® thhat have the axis of
revolution for their axis, and whose centers vary Bwheparticular value of the arbitrary
constantA.

If one eliminates, y, Z from the same equatioAY and those of the curveg) then
one will have the series of developable surfa&gs (

y=Bz SS)

these surfaces of revolution reduce to a series of pldnagspass through the axis of
revolution.

In order to determine the edges of regression of thesdafable surfaces and the
caustic surfacesx], ('), which are the loci of the points of intersectidrtlze all rays,
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one must commence by substituting the valuesioN, O, M', N', O" in the equations
(G), (G) [3], which gives:

W(x)e(X) - 2¢(X)

A=-1, N =- :
WX)8'(X) =2 (W' (X)

X=X =-WY(X), y-y =-Yy, z-7=-17, G)

R= (0 +n° + 09" A == [W(X) + ()], ®

W(x)e(X) - 2¢(X)
W(X)¢'(X) — 24 (X)¥'(X)

W(x)e(X) - 2¢(X)
W(X)¢'(X) — 24 (X)¥'(X)

X=X =—=Y(X)

y-y =-y

—_y ‘4,J(>f')¢(>() —2¢(><’) | G)
W(x)P'(X) =20 (X)W (X)

Y(x)e(X) - 2¢(X)

_ 2 L A2 A rw(y 142
R = (nf +1° + 0" A\ = - [WA(X) + D(X)] W) B (X) - 20 )P (%)

R)

If one eliminates<, y', Z from equationsg9 and G) then one will obtain those of the
edges of regression)(of developable surfaceS)(

x=A—-YA), y=0, z=0, ©0)

from which, one sees that each of these edgesgoés&ion reduce to a point that is
situated on the-axis.

If one eliminates the same quantities from the esaouations@) and that of the
surfacey'? + % = d(x) then one will have the equation of the caustitase §) which is
the locus of all these edges of regressign &énd which reduces, in this case, to the axis
of revolution:

y=0, z=0. &)

If one eliminatex’, y', Z from equationsgys) and G') then one will obtain the equations
of the edges of regressiod’) of the developable surface&9,(which, when one considers
them in the present context, nevertheless each draezige of regression formed by the
series of consecutive rays that contain them. dddene may eliminaté, y', Z directly
from the last of the equationsg), and the last two of equatiorS)( which givesy = Bz

As for the other projection, if one eliminatésfrom the first of equationss§) and the
last of equationsd’) then one will have:

22(1+BZ):4CD3(X’){ 1Y) }
W(X)9'(X) - 20 (X)W (X)
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However, by means of the first of equatio@®s)( one may determineas a function of’
in such a way that one will have a result of the form

Z (1 +B% =y Ox), y=Bz (@)

In order to determine the caustic surfakg (vhich is the locus of all these edges of
regression, one must eliminatey, Z from equations®) and that of the surfagé” + Z*
= d(x'), or eliminate the arbitrary constadtfrom the two equationsA{¢), which gives:

V2 + 7 = yOX), )

an equation that also belongs to a surface of revolutidme points where that surface
(') cuts the axisX), and which are given by the equatigix) = O, are the ones where
the maximum of the light is foun®], and are called thi®ci of the reflected rays.

If one would like to determine the curvesy, ((s) [5] on the surface’? + Z? = d(x),
which are the loci of the particular points of the curg®, (SS) for which the
consecutive rays cease to meet in the same senseyribemust substitute the values of
M, N, O, M', N', O in the equationd], (s), so one will have:

y 7 =0, y?+7%=0, or y =0, Z=0. 5)

These equations refer to the point of the surfaceighmaet by the axis of revolution. One
must meanwhile observe that since the preceding equgtiesn / m= 0,0/ m= 0, one
may again satisfy it when one makes- + o, where:

4 P(X) —P'?(X) — 4K —X) D(X) =0, yZ+27%2=d(X), (S

equations that pertain to a circle whose reflected ragsalh parallel to the axis of
revolution and form a cylindrical surfacE)(that is asymptotic to the axig)(
Upon substituting the values B, N, O, the curve ) becomes:

W(x) ®'(X) — 2b(x) W'(X) =0, y2+272=d(x), S)

which is the equation of a circle whose reflected edlyform a conical surface] that is
asymptotic to two nappes of the surfazg.(
(D+A)°RR
(D £ R)(D+ R)A?
image of the luminous point, one has:

As for the numbetf = ¢

[8], which expresses the brightness of the

T=
(D+A)W'(X) + PO X (X —2P( R] .
[D+[‘4J(X7+¢(>()]”ﬂ{ DR ¥ 20 W R U K+ k70K )x2 ® B A°

If one proposes to determine a surface of revatusuch that all of the reflected rays
are parallel to its axis then one will have tosfgtthe conditiom /m= 0,0/ m=0, or:
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4 D(X) — P'X(X) - 4(X —X) D'(X) = 0.

Now, upon replacingd(x) and ®'(x) with their valuesy? + 22%%2“2 t

hat

equation becomes:
(y2+Z)dx?— (' dy + Z d2)* = 2K —X) (y dy +Z dZ) dx =0,

and its integral:
Ax+mX+ )=y +2°

represents the paraboloid of revolution that has tedat the poink= 0,y = 0,z= 0,
wheren is the arbitrary constant that specifies each fdlseirfaces.

One concludes, conversely, that if a paraboloid of el is struck by rays parallel
to its axis then all of the reflected rays will converge¢he focus.

Now, determine a surface of revolution such that alihefrays that start from the
pointx = X, y = 0,z = 0 converge to a second ponit X',y =0,z = 0. Since the
equations for the reflected ray are:

m(z—2) =o(x—X), n(z-2) =ofy-VY) A)
the condition that expresses the idea that all etinays pass through the point X', y
=0,z=0is:

-mz =o(X' —X), nz =oy.

Replacingm, n, o with their values, the second equation becomes amitideand the first
one gives:

[44(x) = ()] (X =X) + 46(X) ¢(x) = (X =X) [44(x) —¢"*(X) =4 & =X) ¢’ (X)].

Now, if, as in the preceding case, one replaed) andd’'(x) with their values then one
has:

(Y2+Z) (X=X =X dxX? + 2(/2 +Z2 = X? + xX+Xx X =XX) dX (y dy +Z dZ)
+ (X =X =X)(y dy +Z d2) =0,

an equation whose integral is:
[(X=X)*+ 407 (y* +2° - 6) +*(2X -X - %" =0,

which represents the ellipsoids of revolution that hive& foci at the pointg =X,y =0,
z x =X,y =0,z 6° being the arbitrary constant that specifies each otthasfaces.
One sees that the minor axis of that ellipsoid is esqga@ by 8 and the major axis, by
[(x _ X)2 + 492]1/2.
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[10] Before pressing on to the application of the precedmajyais, we present
several axioms of optics that are necessary fodélelopment of that theory.

1. The judgments that we make in the phenomena ofsopti the distance and
magnitude of objects are determined from the comparisotiheofsensations that we
experience in the course of simple vision.

2. We judge the distance to an object when we knowrtigesize, from its apparent
distance, its apparent size, and its apparent brightness.

3. We relate the distance to a luminous point fronplaee where the rays diverge.
Thus, when we perceive the image of a luminous poird oarved mirror, we relate its
distance to the points of the reflected ray that aet by the consecutive rays, and
consequently, to the points where that ray is tangettia two surfacesy, (). If the
eye is placed between two caustics then it relatedigih@nce from the luminous point to
the only caustic that is in the direction of theugisray; however, if the caustics are found
in the direction of the visual ray then the apparent nitgtas a combination of the two
distances from the eye to the points where the reflie@ty touches it.

4. The apparent size of an object is a function ofatigde between the two visual
rays that subtend its extremities.

5. Finally, since the brightness of a bright object idishes by reason of its
distance, if, by a new disposition of its rays, thaghitness is changed then this change
will influence our judgment relating to the dimensionsher distance to the object.

[11]. We begin by considering a plane mirror, and we supp@sehd surface is the
yzplane, in such a way that equatiofsf? + Z% = ®(x) and 3/ dy + 2 Z dZ = ®'(X)
dxX become< = 0,dx = 0. One concludes from this tisatis an arbitrary variable ard’
= 00,

m=Y(x) =X, n=y, 0=12,

dx =0, ydy + ZdZ=0, 6
dx =0, y dy + ZdZ=0, 6)
X =0, y2+z2=d’, 69
X =0, y =BZ, ¢s)
X2 (y?+2%) = x=X)* (o)
y=Bz cC)
X2 (y* +B2) = (x + X)* 69
y =Bz €3)

A=AN=-1, R=R =-(C+y?+z9)"=-,
xX==X y=0, z=0, o) (00) (2) ()

(D+A)?RR

(D -R)(D- R)A?

One sees from these results that the developalfieces £ that are formed by the
reflected rays are a sequence of cones that arrstmthe cones@C), and which have
their centers at the poirt=—-X,y=0,z=0.

It is to this unique point, which is the constéotus of the image, that the edges of
regression o), (¢ @), and the caustic surfaces)((Z') reduce.
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That point is situated behind the mirror at a distahe¢ s equal to the distance at
which one finds the luminous point in front of it.

The value ofT indicates that the brightness of the image is theesasnthat of the
object.

[12]. Now, suppose that the proposed surface of revoluipis p sphere of radiys
that has its center at the origin of the coordinateshe equation of the mirror will be:

X'2 +y;2 +Z'2 :,d2,
from which, one infers:
D(X) = £ - X2, d'(X) = - 2X,

and upon substituting im, n, o:

(P> —2XX)X + p* X

m=4Y(x) = n=y, 0=2Z,
( ) pz_zxyx y’
the two sequences of curves of reflection will be:
X' :A, y12 + 212 :ﬂ2_A2, (SS
7% (1 +B% = g? —x?, y =BZ. Ss)

Equations ¢9 pertain to a series of circles that are parafelthe plane ofyz and
equations £s), to a series of great circles whose planes gasaigh thex-axis, and
which project onto th&z andxy planes along a series of ellipses that all hagestime
major axisp.

The two sequences of concentric conic surfaces are

(A=X? (Y +2) = x=X)* (& —A), CO
y=Bz cac)H

Equation CC) expresses a sequence of cones with circular baseequation@C'), a
sequence of planes that pass throughx{éuees.

The developable surfaces formed by the series efieated rays that meet
consecutively are:

[(F =22 A+ X (' +2) = (F = A) [(F = 22X x+ X7, (S9
y=Bz £3)

The surfacesSg are a sequence of cones whose centers are ftorglthex-axis.
The values o\ and/\' are:

2 _ Ay 2 _
Neo1 neo ES200ETXX)
P (p°+2X=3XX)
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in such a way that one has:

2
X
X:_ﬁ’ y=0, z=0, G)
R= (M’ +n’+0)P2 N =- O2(p?=2X' X + X?)1? _ A
(pZ_ZX’X) (pz_lex)’
IOZ_XIZ

X==-X

0°(p°+2X2=3XX)’
» P H2X3X 307X X

=2y X , G
2 _ 2
z2=272X— 2'0 X2 ,
P (o7 +2X°=3XX)
R = (P +r+ 02)1/2/\, __ (07 =2X'X + X?)?(p?~ %X X) __ A(p* =X X)
07 +2X?=-3XX O°+2X%=3XX "
If one eliminatex’, y', Z from equationsgs and G) then one will have:
X=- pz—x y = 0 7= 0 (0.0)
07 =2AX '

for the equations of the edges of regression ofdénelopable surface$S§. These
curves reduce to a sequence of points situatedeoaaxis.

The equation of the surfac&)( which is the locus of all these edges of regoess
will be:

y=0, z=0. 5)

If one eliminatesx, y', Z from equations s) and G') then one will have the
equations of the edge of regressi@hd), and if one eliminateg, y, Z from the same
equation G') and the equatior? + y'? + Z? = ¢ then one will have the equation of the
surface £'), which is, as we have seen, a surface of rewlutHowever, without having
recourse to that elimination, we may consider symjile generating circles of that
surface, which are obviously composed of the cartsexs intersections of the surfaces
(SS. One will thus obtain the equation of theselesapon eliminating, y', Z from the
equationsg9 and G), which gives:

_y PLH2AX - 307 AX spo AP -

X = , = .
0°(p*+2X?*=3AX) 0 (p*+2X?-3AX)?

(>'s9
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If one eliminates the arbitrary constaafrom these two equations then the result will be
the caustic surface).
The equationss] of the circle on which the rays reflect parallethie x-axis become:

2 2
x=Lo Y=g s S
and the equation:
2
V+ 7= (8% = ) 4‘)’(2 ©)

is that of the cylindrical surface that is formegdtbe reflected rays onto that curve.
The equationss() of the circle whose reflected rays all form aicahsurface that is
asymptotic to the two nappes of the surface dre:

X,:,02+2X2 y,2*_2,2:5X2,02—,0“—4X4
3X 9X?

: )

and the proposed conical surface is:
(0" + 7% = &) (v +2) = (BX - o — &) [(F - 4X) x + 3 X ()
One will have likewise obtained equatiosy (jpon making = o in equations@').

As for the numbefl that expresses the brightness of the image ofmanbus point,
one has:

(D+A’RR (D+A)? p*(p* - XX)
(D+R)(D+ R)A> ~ [D(p?-2XX) -0 D p2+2 X*=3XX)-A(p>— % X)]

We letR andR have the positive sign, because in the case thatres considering
these quantities will always be positive when tlaeg behind the tangent plane, and
always negative when they are in front of it.

[13]. We shall expose the various phenomena thatpegsented by convex or
concave spherical mirrors by means of the preceelijtions.

In order to fix ideas, we take the positiveaxis to be in front of thgzplane and
negativex, on the opposite side.

(Fig. 1) If one first considers the case of paldlminous rays then one will haXe=
o, and the equation of the conical surfaceS vill become, upon replacing the arbitrary
constantA with the arbitrary constant that it represents:

(& = 2 (Y +2) = (0 = X*)(F - 2x%)°, S9

where the positive values &f pertain to a convex mirror and the negative valtes
concave one.
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The center of the surfaceSg will have the equation:

X=-— y=0, z=0, ©o)

so, sincex will always have the same signésall of the centers will have their centers
in front of theyzplane for the convex mirror and behind that plémethe concave
mirror.

The consecutive surfaceSg intersect along the circles:

2 g2 2 12\3
x=x P2 22X , y2+22:—('0 X ) 's9.
2p p

The sequence of circleE'é9 forms the caustic surfacg'f, and since all of the values of
x are found betweep and —p, one sees thatwill always have the same signxsand
that the part of the surface that pertains to trevex mirror will always be in front of the
yz-plane, and the part that relates to the concam®nwill be behind it.

If one eliminates the arbitrary constahfrom the two equation=(sg then one will
have the equation of the caustic surface: (

2= DI A @)

That surface cuts the) axis at the pointg = 0,z= 0 orx =+ p/ 2, which are the
ones where thenaximumlight is found, in such a way that the focus of tieflected
parallel rays i = g2 for the convex mirror arxl= — o/2 for the concave mirror.

Among the surfacesSQ, there are two that reduce to planes perpenditaléhex-
axis. Now, the equation of these two surfacesiisi\independently of the valuesyf +
Z2. Introducing that condition in the equati®® one hag? — 2¢?= 0, &/ — 2¢x = 0, or:

x:x':i%. SP

These two planes touch the surfazé @long two circles whose equation comes about
upon substituting that value gfinto the equationsX(s9, which gives:

P o
x=+ 2 +2=F
V2 4 8
The equations of the circle on which the rays aeflected parallel to the-axis are:
X =0, V+ 27 = ©

and the cylindrical surface that is formed by theses is:
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y+zZ =7 ®)

I.e., it envelops the sphere along the great circle #gstrates the concave mirror and the
convex mirror.

As for the circle whose reflected rays form a conscaiface that is asymptotic to the
two nappes of the surfacg)( one will have:

X =X, y2+22:—gX2, ©)

an imaginary result, from which one concludes that tinfase &') does not have infinite
nappes.

In order to obtain the values BfandR', one will observe thah = X = «, and one
will have:

—p_ ':i'
R= 2 R=2 R(R)

soR andR' are always of the same sign and situated on tine sade of a tangent plane.
In the second place, since the caustic surfateig found between the plangs= £+ p

/<2, (SP), and the cylindrical surfagg + Z = ¢, (£) will always refer to the interior of
the sphere, in such a way that:

1. Inside the convex mirrprall of the rays meet behind the tangent pland,the
image is situated behind the mirror.

2. Inside the concave mirrogll of the rays meet in front of the tangent plased
the image is situated in front of the mirror.

One may already conclude from this, by inductitat when the parallel rays strike
an arbitrary convex mirror, they diverge after lpeneflected, and when they strike an
arbitrary concave mirror they converge after bewftected.

As for the term that expresses the intensity efligiht, one has:

(D+A)RR 0°X

(D + R)(D+ R)A? © (2XD+ p*)(2D+X) "

One will have thenaximumintensity of the light at the points for whick'R + &# = 0,

2D + X = 0, equations from which one deduges + p, values which, when substituted
in (£'s9, givex=% p/2,R=R =% p/ 2, which are results that conform to the already
known position of the focus of the parallel reflttrays on the convex and concave
spherical mirrors.

[14]. Now, suppose tha& has a value that is finite, but larger thann such a way
that one haX =fp, f > 1.

First of all, we determine the limits of the corvmirror and the concave mirror. |f,
at the luminous point = X, y = 0,z = 0, one envelopes the sphere by a conical surface
then the circle of contact will be the limit of th@o mirrors. Now, the tangent plane to
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the sphere at a poirt, y', Z isX(x =X) +y(y —=y) + Z(z - Z) = 0, and if one expresses
the idea that it passes through the point X, y = 0, z = 0 then one will have the
conditionXX - x%-y2-2%=0,0rx = * I X=p/f.
The convex mirror will thus be found between the limits
X =p and X =pl/f,
and the concave mirror, between the limits:
X =plf and X =-p.
Having said this, the surfaceSg will be:
[(o—xf)x + Ff]* (Y’ + Z) = (& = xD)(p— x)x + Ff]2 (S9

The position of the center of these cones will be:

X = , y=0, z=0. (o)

This value is positive from® = pup to X'f —p =0, orx = p/2f. Now, since this
latter limit refers to the concave mirrorwill always be positive for the convex mirror.
It is negative for the concave mirror frotn= p/2ftoX = - p.

The consecutive surfaceSq intersect along the circles:

Xf2p? - fp°-2f2X*?
X= Zp 2p2_ ] ! y2+
p +2fp°=3XKfp

B 4f4(p2_X12)3
(p*+2f°p°-3Xfp)’

(2's9

and the locus of all of these circles, which on&awmis by eliminating< from these two
equations, is the surfack').
The surfacesS9 that reduce to planes are:

1+ (1+ 8f 2 )2

4f =P

The surfaces are situated with one of them intfodriheyzplane and the other one,
behind it. Moreover, one may observe that for fathe two values ox will always be
found between the limits =+ p.

The equations of the circle on which the raysreflected parallel to the-axis are:

4f%-1
XI:%’ y'2+2'2:,02 TR ©

and the cylindrical surface that is composed ase¢hays is:
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_ L 4f2-1
Y+

No matter what the values bére the radius of that surface is always less tinanof
the sphere.

As for the circle ), whose reflected rays form a conical surface ihasymptotic to
the two nappes of the surfacg)( one will have:

!

1+2f2 2 2 5f2_1_4f4
, +22=pf
3f y 4 9f?

©)

Now, sincef > 1, these expressions are imaginary and inditetethe caustic surface
(£") is composed of just one nappe:

__Dbp R = A(XT - p)
2Xf-p’ po+2f2p-3Xf"’
3 (D+A)P°RR (D+A)? p(Xf - p)

=e :
(D +R)(D+ R)A? [D2XTf - p)+Ap][ D p+2 F2p-3XTf)+A(Xf - p)]
1. First, consider these results at the limitthetconvexmirror: X' = p, X = p/f.

Between these limit)} andR' are always positive and situated on the samedide
the tangent plane. In the second place, sinceatstic surfaceX) is found between the
plane 6P and the cylindrical planelj, it will be found to fill up the entire intericof the
sphere, in such a way thie image of the luminous point will always beatita behind
the tangent plane to the mirror.

Moreover,R is found between the limilR = A

andR = A, andR, between the

limits R = A%l’ R = 0, and one always h& < A, R < A, A always being the
distance from the luminous poixt= X, y = 0,z = to the poini', ¥, Z where one finds its
reflection. Now, the distanc&' from the luminous point to the point, y, Z of the

mirror, namely,R+TR, is found between the limit§ =A , A’ =A/2, and one always has

A' <A, in such a way that the poirt= X, y = 0,z = Owill always be seen at a distance
from the surfaces that is less than the real distan

One has, from paragrap8][the two ratios'E: E '?:% and consequently,< Kk,
I' <k, so two consecutive rays that start from the lwmspoint and subtend an angle
will, after being reflected, subtend an angle i; i.e., they will diverge even more.
Conversely, if two converging rays subtend an akghen after being reflected they will
subtend an angle< k. If, in the medium considered, a sequence ofronns rays starts
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from the pointx = X, y = 0,z = 0, one considers a sequence of visual rays thatfrstart
this point, then since one will always havek, i’ <k', one will also have that the sum of

i =1 <the sum ok = K, and the sum af =1' < the sum ok’ = K'. Therefore, if two
extremities of a lin® subtend an angk’ then its image will be seen at an anglé’ &f

K', from which, one concludes th#iie apparent size of objects see on the convex mirror
is less than their actual size.

Since the causticg], (X') are situated behind the convex mirror, as they are tivé
plane mirror, these objects will be seen in the saamse as in that mirror; i.¢hey keep
the same position as they would be perceived to have under simple viewing.

Finally, since one always hds< g, the brightness of the different points of the image
is always less than their real brightness.

2. Consider the same quantities in the concave miarmd, to begin with, in the
spherical zone that is found between the lidits o/ f, X =p/ &.
Ris found between the limifR = D andR = «, andR, between the limit&® = 0,R =

1

-A Yl and one always hd&8 > A, - R <A, soR is situated behind the tangent

plane andR' is in front of that plane. However, since oneaw haskR > - R, the
. + . .
distanceA' = RTR will always be measured in the senseRpfand consequently,

behind the tangent plane, in such a way tihatmage will be situated behind the mirror.

In the second place, since the distafics found between the limis = A/2, A’ = oo,
the distance to the image, after having been lbas the distance to the object, will
increase to infinity.

From the preceding, one will have> k, — i’ <K, in such a way thahe object will
appear to be increased in the sense of the anglkesaind diminished in the sense of the
angles i, k', for the eye that is situated at the point X, y = 0,z = 0, if the distanc® is

2AR'
> —

A-R

Since the lineR, and consequently, the caustk) (are situated behind the tangent
plane,the image will be erect as in the plane mirror hretsense of the angles i, k;
however, since the caustik') is situated in front of the tangent platige image will be
reversed in the sense of the anglek i

Thus, X = p/ 2f up tox = 0,R =R are of the same sign and situated in front of the

tangent plane. They are found between the liRits— o0, R=-A, R =-A 21‘%1 R
=-A 2; 1 and one hasR>A, - R <A, -i >k —i' <K, in such a way thahe

image is increased in the sense of the angleddinkinished in the sense of the angles i
k', and reversed in the two senses ¥ R

3. Now, examine the part of the concave mirrot tkdormed by the hemisphere
that is found between the limits = 0, X = - p, while R andR' have the same sign and
are situated in front of the tangent plane; theyfaund between the ImiR=-A, R=
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—AL, R :—A%, . One always hasR<A, -R <A, -i <k - <k, in
2f +1 2f -1
such a way that the image is both diminished and regtarsthe sense of the angleg,
i kit D> -2LR ang >8R
A-R A-R

One may remark that in general the image is deforamedlthat it is all the more so
that the ratiog/k, i'/k' or the quantitieR andR' differ from each other.

In order to determine the points where thaximumof the reflected light is found,
one sets, in the expression Tar

D(2Xf—p) +Ap=0, D(o+ X% p—3Xp) +AXf—p0) =0,

which givesx =+ p, a value which, when substituted K g9, givesx = p for

+2f -1
the position of the focus.
The upper sign belongs to the convex mirror and ther®mgn to the concave mirror.

[15]. (Fig. lll) Place the luminous point on the surfatself of the sphere; i.e.,
suppose thaX = p, f = 1. The light strikes only the concave surface, aactiuations of
the preceding paragraph become:

[(p—2¢)x + 12 (Y +2) = (& —=X?) [(p— 2)x + ]° S9
x=-—P y=0, z=0, ©9)
2X —p
= X2+ 2kp=p® paz = MENOEX)
30 9p
_ 1+£3 _ __P
X_'OT’ or X =P, X = > SP
=2 y2+z2:p2§, ©
v +22=g 2, ®
X =p, y?+2%=0, €)
rR=_2°_ rR=-2 T= (D+a) .
2X - p 3 [D(2X - p) +Ap](3D-A)

One sees that since the caustic surfatei¢ found between the planeSH and the
cylindrical surface ), it is further contained in its entirety in thaerior of the sphere,
except that they touch at the poxt p.

Fromx = ptox =p/ 2,Ris situated behind the mirror aRtis in front,R>A, - R
<A i>k-i <k, n =R _A2P=X)

, > A. Thus, the image will always be
2 3(2X' - p)
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situated behind the mirror if the eye is placed at thatpo¥ X, y = 0,z= 0. It will be
augmented in the sense of the angldésdue to the fact tha%: '? :—13; they will be

diminished by a third in the sense of the anglds.

WhenD = oo, it will be erect in the sense of the angldsand reversed in the sense of
the angles’, k'.

Beyond the limitx = p/ 2, since the lineRk and R have the same sign and are
situated in front of the mirrothe image will be reversed in the two sen§d3 > R. It
will continue to be augmented in the sense of the angle up tox = 0, and then
diminished up to< =— pif D > 20R

, and it will always be diminished by a third in the

sense of the angl&s k whenD = oo.
By makingD(2xX — p) + Ap =0, D —A = 0, one obtaing’ = — p for the position of
the focus, and’ =— p/ 3 upon substituting indg) or (Z's9.

[16]. (Fig. IV and V) We shall now suppose that the luragpoint is in the interior
of the sphere, in such a way that the following olmt@us relate only to the concave
spherical mirror. We thus mabkepositive, but less that

The position of the center of the surfaces 5, as we saw inlp:

P*X
X= ————, =0, z=0. (o
2XX - p? Y o)
This value is positive for the concave mirror tigain front of theyzplane, as long as
2XX — /. The limit of that value is thus obtained by gwuation X — ¢ = 0 orx =

2
éo_x; however, sinc& may not be larger than the largest value of that limit will he=

2
éo_x’ and consequently the smallest valueXpX = p/ 2. Thus, as long as is found
betweeno andp/ 2, the centers of the conesg that pertain to the anterior mirror will

be positive fronx' = ptox = %; however, ifX is less thaw/ 2 then these centers will

be negative.

1. First, supposE >p/ 2 —i.e. X =f p, f being a number that is greater than 1/2 and
less than  and consider what the equations of the paragraphblecome under that
hypothesis.

The surfacesSS intersect along the circles:

B 4f4(p2_X12)3
(p* +2f%p*-3fp)*

1£2 2 3_ 23
X:3xf,0 fp*-2f<X P+

, 'S
p2+2f2p2_3xrfp a S



Malus — Optics. 30

. . . . . f
Now, for the mirror that is anterior to tlyzplane,x is positive and equal tp 7.1

whenx' = p, while it becomes infinite when:

1+ 2f?2
3f

OC+XF—XNfp=0 or X =p

After this limit, the denominator becomes positigedx suddenly passes from positive
infinity to negative infinity. This indicates th#te caustic surface() is composed of
two infinite nappes.

The denominator continues to increase, the cin@éss approach thgzplane, and
exceeds it again when the numerator becomes pamsitiy then approaches it until it

terminates behind that plane with the negative valF — p %ﬂ which happens

whenx =-p.
One obtains thenaximaandminimaof the values ok by differentiating the equation
(Z's9 with respect to(, and upon settingx/ dx = 0, which gives:

2Ax3-x2p1+ X% +f2 0 =0,
an equation whose three roots are:

L . 1+(@+s8f?)y? . 1-@a+f?)
X =fp, X =p Y : X =p T .

The substitution of the first one in the equaiiaisg determines a circle that contains
the points of the edge of regression of all theesd@ ¢’), and which is an edge of
regression of the caustic surfaéé)(

The second value of is obviously impossible, since it giv&gs> p. The third root,
when substituted in the equatiob'gy, determines the circle of the rear nappe of the
surface £'), which is the furthest away from theplane. Since the equation:

1+ (1+ 8f 2 )2

4f =P

X =p

which gives the equations of the surfac8§ that reduce to a plane, is identical with the
last two roots of the equation of third degree thatjust considered, it is susceptible to
the same observations. Thus, since the first vislimpossible, there is only one of the
surfaces $9 in this case that reduce to a plane perpenditaldrex-axis. The equations
of the circle on which the rays reflect parallethex-axis are:

4f%-1

2 2
X = —, +Z°=
y T

©
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and the cylindrical surface that is formed by these isays

_af2-1
YZ"'ZZ—,O?- )

As for the circle §), whose reflected rays form the conical surfac th asymptotic to
the two nappes of the surfac®,(one will have:

1+ 2f2 5f%-1-4f*
X =p=——, i+t =g, ©)

and the conical surface proposed will have the goul3].
L+ 72-&H (y?+2%) = (F°-1-49)[(1 -4 x+ F ", )

The value ofy? + 72 in equation €) is real only when it is positive, in such a wgtt
+

one will obtain its limits from the equatiorf 5— 1 — 4% =0, orf ? = %3 which

reduces td = 1,f = 1/2 in the case considered; however, amongyahees off that are

found between these limits, there is one of theah will give amaximumfor y? + 7%,
2 2
and one obtains it from the conditiéjnwm;z) = 0, which gived = 1 2. In this

case, the value of/€ + z%)"? becomeso/ 3, in such a way that all of the values,ofy'2

+ 7% may not be larger tham/ 3.
Now, examine the quantities:

__Dbp R = A(XT =)
2Xf-p’ p0-2f2p-3Xf"’

under the hypothesfs> 1/2 and < 1.
R andR are positive and situated behind the tangent dtamex = pto p+ %% p—

2

3x’f:00rx’:,01+2

, In such a way thahe image of the luminous point is always

situated behind the mirror.

(Fig. IV and V). In the second place, within g@me limitsR>A, R > A", i >K,i' >
K', two contiguous rays that subtend and amgiell, after being reflected, subtend an
angleK < i; i.e., they will diverge less after reflection.oi@ersely, if two converging
rays subtend an anglkethen after being reflected they will subtend aglan > k; i.e.,
they converge even more, and by the reasoning maigpaph 17], one concludes that
when the object is situated at a distance fromsindace that is less tham/ 2, its
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apparent size surpasses its real sizeéhe part of the mirror that is found between the
1+ 2f2
3f

(Fig. VI and VII) This consequence is obviouginfr the preceding, when the rays
that start at the extremities of the objeatonverge to the mirror and are then reflected
towards the eyey however, one imagines that there is a positionttie eye at which
these rays are parallel, and that ultimately, & 8ye moves away from the mirror then
these rays, if they are to reflect towards it, niigérge, since, for example, the ones that
start at the extremities of the obj@ttand which reflect towards the ey In that case,
one concludes fortiori, that the imag®' of the object will be larger than the objett
itself. Since the lineR andR, as well as the caustics, are situated behindaihgent
plane, as in the case of the plane mirror, the @wvai) not be reversed. Finally:

limits that are analogous #6=p, X =p

o (D +A)° p(Xf - p)
[D(2Xf — p) +Ap][ D p+2 f20-3Xf)+A(Xf-p)]’

which constantly give3 > e within the same limits, sthe brightnes®f the image will
always be greater than that of the object, whichtrdautes to diminishing the apparent
distance or augmenting the apparent size.

2
(Fig. IV and V). At the limitx = p —-2

, R passes from positive infinity to

negative infinity; however, one again hag > k', up to the limitxX' =f p, which givesR
=A, —1' =K. Therefore, between these limits, for the ey¢ ithaituated at the point=
X,y =0,z =0, the image of the object is augmented, but reversdtle sense of the
anglesi, K if D >R.

As for R, it does not change sign between these limits,caedalways haR > D, i >
k, in such a way thahe image continues to be augmented and erecteisense of the
angles i, ki.e., in the sense that is perpendicular to thegthat passes through the
axis.

(Fig. IV) Iff>1/Z—-ie.,iff>1 /2, as one has between the limts=f o, X =p
| 2f — R is positive and situated behind the tangent pRred, i > K, R negative and

situated in front of the tangent plareR < A, — i' <K, the object will appear to be
augmented and erect in the sense of the anglesanddiminished and reversed in the
2AR'

sense of the anglesk’, if D > :

J

At the limitx' = p/ 2, K will suddenly pass from positive infinity to nega infinity,
but one again hasR > A, —i >k up tox = 0, which giveR = — A. Therefore, within
these limits,the object will appear to be augmented and reveigethe sense of the
angles i, k, and diminished in the sense of thdesrigk’. On the contrary, if<1/ 4 or
f<1/A/2, asitis between the limité =r / 2, X = 1 /fr, Ris negative R> D, - 1" >k,
R is negative;- R > A, —i' > K, and the image will augmented and reversed in tle tw
senses if D> R.
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Beyond the limitxX' =f p, Ris negative;- R> A, —i >k, up tox = 0, which giveR =

—-A, -1 =Kk R is negative- R <D, -i <kK. Within these limitsthe object will appear
to be augmented and reversed in the sense of the angles i,>kRfedd diminished and
2AR'

reversed in the sense of the anglek if D > A :

J

As for the second concave mirror, which is found leetvthe limits< = 0, X = - p,
since one constantly h&sandR' are negative and situated in front of the tangent plane,
and moreover; R<A, -i <K,-R <A, —-i' <K', the image will always be reversed and

2AR 2AR'
and >———.
A-R A-R

If, as in the preceding case, one substitutes thes/xluet p into equations do) or
(Z's9, one has for the position of the focus:

diminished, as long as B

f
X = :
'OJ_er—l

The upper sign always givés> p and the lower sign; x < p.

[17]. (Fig. VII) If the luminous point is at a datce ofX = p/ 2 then one will have,
upon replacing with the value 1/2 in the equations of paragrdgiht

[2(0-X) X +F1 (f +2) = (& =) [2(0~X) x+ (] (S
_ P _ _
_2(X'—,0)’ y=0, z=0, o)
« = 3X’pz—203—’2><3, P4 = (pZ—X’Z)(Zp+ ><)2, ='s9
60(0—X) 90
X =p, y2+2% =0, 6. ()
R = Ap | R = A(x’—2,0)’
X=p 3(p—X)

o (D+A)*o(X =2p) |
[D(X = 0) +Dp)[3D(p—X) +A( X -2 )]

One may remark, in particular, that the valueg of the equationsdo), (X') are all
negative and found between= — o andx = — p/ 4, and one will make observations
about the other equations that analogous to thioe @receding paragraph.

(Fig. IX) Once again, leX=p/4,f = 1/4 , and one will have:

[(4p—22) X + FI* (Y’ + Z) = (F =X?) [(4p - X) X + A, (S9
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2

Yo,

= , =0 z=0, (o]
2% 5 y ©0)
1 12 _ 3_ 3 2 _2\3
x:3X’0 20 ’2>(’ R (;0 X),z’ ='s9
6030 - 2X) 90" (Bp - 2X)
31/2
x:p{li(—j } ©Sh
2
X = 2p, y?+2z% =-37, ©
3 2 2 5
X =—p, +Z° = - — 1, S
5 P y 4p2 ©)
R= 20p | R’:ZA(X_4"0),
X =20 90— 6x

o (D+A)*4p(X - 4p)
[D(X —2p) +20p][D(9p~6X)+ 2A (X = 4p)]

Finally, if X=0,f = 0:

X2 (¥ +2) = (¢ -x?) X, S9
x=0, y=0, z=0, ©0)(S)
ST
X=p =" SP
X =oo, y’2 +Z'2 = — 00, (S)(S')
R=-A, R =-A, T=e

[19] The eye that is placed at a poxit X', y =Y, z=2Z might perceive several
images of the luminous point on the mirf&x, y', Z) = 0. Indeed, since the equation of
the reflected ray is:

m(z-2) =o(x = X), n(z-z)=oy -y),
one expresses the idea that this ray passes thtbegye by the condition:

m(Z - Z) = o(X' - X), nZ -2)=o(Y -v).
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Now, if, by means of these two equations and that efrtirror F(X', Yy, Z), one
determines the coordinates y', Z of the point on the surface that corresponds to the
image of the luminous point then one will obtain aswyneesults as one has real values
for X, ¥y, Z, in such a way that if these equations give four rakles forx, y, Z then the
luminous point will be perceived by the eye at four differeoints, and so on, if this
result has a number of real roots that is greatesst |

[20] If one would like to determine the figure on the mirFgx', ¥, Z) = 0 that will
be seen by the eye that is situated at the poinX,y=Y,z=Zdueto acurva=fz y =
fzthen one will eliminate, y, zfrom the equations:

mz-z)=o(x—-X), n(z-2Z)=o(y-Yy), x=fzy y=fz

The resultR = 0 atx, y', Z will be the equation of a surface that intersectaireor
F(X,Yy, Z) = 0 along the desired curve in such a way that upomatedy eliminatingx,
Yy, Z from these two equations, one will have the projectminthat curve on the three
coordinate planes.

If it is a curved surfac€&€l = 0,dlN = 7dx + 7t dy + 7# dz = 0, where one may
eliminate the apparent contour on the miffgx, y', Z) = 0O, then one eliminates y, z
between the four equations:

m(z-Z)=o(x—-X), n(z-Z)=o(y-y), MN=0, dIM=mdx+7dy+ 7 dz=0,

and the resulR = 0 atX, y, Z will be the equation of a surface that intersectsireor
F(X,Yy, Z) = 0 along the desired curve.

These results serve to determine the form of thgemmodified by the curvature of
the mirror. They might also serve to determine thenfthat the mirror must have in
order for the image of a given body to present itse#f given form after reflection.

Indeed, if we suppose that the eye is placed at the yeint, y =Y, z=Z, the image
with which the object is to be seen being given, thenvatieenvelop its contour with a
conical surface that has its center at the pomi, y =Y, z=Z, and whose equation will

consequently be:
ol Z7Z 27214
X=X y=-Y
@ being a given function.
Now, if one combines this equation with= 0 then one will obtain the value pf
and that ofy/r atx, y', Z when one substitutes themprdX + q dy +r dZ = 0, and the

integral of the latter will be the desired equation efttiirrorF(x', y', Z) = 0.
Up to now, we have supposed tRadndR are on the same side of the mirror, so the

distanced’ [14] from the image of a luminous point to the poihty', Z is R*R . We

+
observe here that one hals= R+R

only whenR - R’ is very small with respect  +

R, a condition that is, moreover, necessary in ofalethe image to be distinct. Indeed,
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we confirm, by addressing the dioptrics, that the terrmekpresses the sharpness of the

v [ 2
image is of the fornl.ﬂ(D+R)+ (ZR R]
(R-R)

gets, the more this term approaches infinity, and thee rife vision is almost perfectly
distinct, which is, in general, the most importanteces consider. Meanwhile, we then
determine the exact value Af, however, since this calculation demands considerations
that depend upon the structure of the eye and the thdorgfractions, we have
postponed it until the second part of this memoir.

After having presented the theory of dioptrics, we apmdyresults of our analysis to
the construction of optical instruments.

, in such a way that the smaller tikat R
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