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 Abstract. – In the example of the (elastically-supported) compressed rod, it will be shown that the difference 

between stability problems and the problems of the “linearized” theory of elasticity are based on the fact that for 

stability problems, the Ansatz is that the deformation energy must include terms of order higher than two in the 

displacements. That conception of things allows one exhibit the connection between the energy method in the special 

form that is used most often for stability investigations and the principle of virtual displacements in its general 

elasticity-theoretic version. Moreover, that clarifies the behavior of the rod when one exceeds the critical compression. 

_______ 

 

 

 1. Introduction. – Kirchhoff’s uniqueness theorem says: An elastic body can assume one and 

only one equilibrium configuration under one and the same external loading. In the formulation of 

the energetic approach to that: The potential  of the internal and external forces has one and only 

one extremal location: 

  = 0 ,           (1.1) 

and the extremal value is a minimum (1). 

 The uniqueness theorem is true without restriction in the realm of the linearized theory of 

elasticity, i.e., as long as the stresses ,  can be expressed linearly in terms of the distortions ik, 

and the distortions can, in turn, be expressed linearly in terms of the displacements u, v, w. The 

function  will then, in fact, be of degree at most two in the displacements, and the geometric 

picture will then immediately confirm that a “parabola” of degree two (i.e., a positive-definite 

quadratic form) can possess one and only one minimal location (mechanically speaking: an 

equilibrium configuration). Things will be different when one proceeds to examine structures 

whose behavior can no longer be grasped in terms of the linearized distortion-displacement 

 
 (*) The investigations in this article are a continuation of the ones that the author was urged to do by Prof. Trefftz 

(during his employment by the Deutschen Versuchsanstalt für Luftfahrt). The author is very thankful for his close 

collaboration with his colleague R. Kappus for a large part of the work (in particular, Sections 5, 6, 9). 

 (1) The derivation of the principle of virtual displacements (1.1) for elastic equilibrium is in, e.g., in Handbuch der 

Physik VI, pp. 70, et seq. (Berlin 1928). – A careful founding of the general theory of the behavior at the limits of 

stability is in E. Trefftz: “Zur Theorie der Stabilität…” this journal 13 (1933), pp. 160. (For further literature, see 

ibidem in Handbuch VI, pp. 277, et seq.). The investigations in Section 5 make use of the Trefftz approach, in 

particular. 
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equations with sufficient accuracy. They are mainly bodies for which one of the dimensions is 

small compared to the other ones, so shells, plates, or rodlike structures. A rod, e.g., can suffer 

deflections that surpass the thickness by a multiple without the stresses needing to exceed a 

proportionality limit in the process, and under those circumstances, the square of the (lateral) 

displacements is definitely no longer small compared to the linear component. However, in that 

way, the deformation energy (the potential , resp.) will have degree higher than two in the 

displacements, and a higher-order “parabola” can naturally possess several extrema (mechanically: 

equilibrium configurations). 

 The problem of the (conventional) theory of stability is to determine the system of external 

loading under which several neighboring equilibrium configurations are possible (“branch” points 

of the elastic equilibrium). The basis for restricting the investigation to those “critical” points is 

found in the fact that the differential equations that characterize the elastic behavior in the super-

critical domain are generally no longer linear, and an analytical treatment would be only hard to 

approach, while the problem can still be “linearized” at the branch points (2). 

 However, this purely-practical viewpoint has also led to a certain (as we would like to show, 

unfounded) systematic splitting-off of the stability problem from the remaining problems of the 

theory of elasticity whose mathematical expression is mostly found in a formulation of the 

principle of virtual displacements that deviates somewhat from the usual, and also occasionally 

led to the formulation of a special principle (3). 

 The principle of virtual displacements (in its usual formulation in the theory of elasticity) says 

that the potential of the internal and external forces: 

 

 = Ai + V 

 

remains unchanged under a virtual (i.e., geometrically-possible) displacement from the 

equilibrium configuration: 

  =  (Ai + V) = 0 .        (1.2) 

 

The potential of the internal forces Ai is given by the deformation energy (internal work), the 

potential of the external forces is given by the (negative) product of the external forces and the 

displacements of the points of application (4). In the domain of validity of the law of 

proportionality, one has V = − 2Aa , when Aa denotes the work done by external forces between 

the null state and the final state when one runs through only equilibrium states. One also 

occasionally writes (1.2) in the form (5): 

 

 
 (2) Moreover, up to now, knowing the super-critical domain was of lesser significance in practice, since “bulging” 

construction parts would be regarded as inadmissible. It was only in recent years in the shell constructions of aircraft 

construction that anyone has moved beyond assuming that large overshoots of the critical loads would be 

constructively inconceivable. 

 (3) E. g., Th. Pöschl, “Über die Minimalprincipe der Elastizitätstheorie,” Bau-Ing. 17 (1936), pp. 160. 

 (4) Eq. (1.2) is true independently of whether the field of the external forces does or does not possess a “potential” 

in the sense of physics. If Xi are the external forces and ui are their displacements then that can always be written 

formally as V = −  Xi ui , i.e., V = - −  Xi ui . (The forces are not varied.) 

 (5) See, e.g., Th. Pöschl, loc. cit. 
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 (Ai – 2 Aa) = 0 .                (1.3) 

 

As opposed to that, in stability theory, one often employs (5): 

 

 (Ai – Aa) = 0               (1.4) 

 

as the “principle of virtual displacements.” 

 The present article would like to show (in the classical example of the compressed rod) that 

stability investigations are also most conveniently carried out in connection with the one main 

equation (1.2), in which one consequently must preserve the higher-order terms in the 

displacements in the expression for the deformation energy. That procedure will become necessary 

from the practical standpoint when one wishes to investigate the relationships in the super-critical 

domain, and will become desirable from the systematic standpoint, because in that way, it will 

become clear that one can get along without any additional principle. In particular, the argument 

will also clarify the apparent contradiction between eqs. (1.3) and (1.4) in a simple fashion. 

 We shall perform the calculation itself in Sections 2 to 7 in the following way: We first derive 

the nonlinear distortion-displacement equations of a beam while the keeping the basic assumptions 

of the elementary theory of beams (cross-sections remain planar, etc.). We then exhibit the 

expression for the deformation energy Ai and use the demand that: 

 

  = 0          (1.5) 

 

to arrive at the differential equations for the two components of the displacement, and use the 

sharper demand that: 

 = min.          (1.6) 

 

to answer the question of the stability of the equilibrium configuration. In conclusion, we will treat 

the same problem with the help of a Ritz Ansatz for the displacements. In that way, the result of 

the stability analysis can be made especially beautiful to the imagination. 

 

 

 2. Connection between the distortions ik and the displacements u, w of the rod centerline 

(6). – If E1, E2, E3 are the unit vectors in the directions of the axes then, with the notations of sec. 

1, the position vector of a point on the centerline of the beam before deformation will be: 

 

r0 = x E1 , 

and 

r = (x + u) E1 + w E3        (2.1) 

 
 (6) Cf., the corresponding calculation for the plates in Marguerre-Trefftz, “Über die Tragfähigkeit eines 

Plattenstreifens…,” ZAMM 17 (1937), pp. 85.  
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after the deformation. If N is the unit vector of the normal to the deformed centerline then an 

arbitrary point: 

R0 = r0 + z E3 = x E1 + z E3 

will go to: 

R = r + z N = (x + u) E1 + w E3 + z N ,        (2.2) 

 

from the basic assumption of the theory of beam bending. 

 
 

We get the unit vector N and its derivative Nx from: 

 

N = 2

| |

x

x

r E

r
              (2.3) 

and 

Nx = a rx . 

 

The proportionality factor a is implied by the fact that: 

 

N rx = 0 ,            (2.4) 

i.e.: 

− N rxx = Nx rx = 2

xa r , 

so: 

a = − 
2

xx

x

Nr

r
 = − 2

3

( )

| |

x xx

x

r E r

r
 = 2

3

( )

| |

x xx

x

r r E

r
. 

One will then have: 

Nx = 
2 2 3/2

(1 )

[(1 ) ]

x xx x xx
x

x x

u w w u

u w

+ −

+ +
r ,            (2.5) 

and therefore: 

Rx = rx + z Nx = 
2 2 3/2

(1 )
1

[(1 ) ]

x xx x xx
x

x x

u w w u
z

u w

 + −
+ 

+ + 
r  ,         (2.6) 

[rx = (1 + ux) E1 + w E3]. 

(E3) 

z     N 

l 

− u (l) =  l 

N x 

u 
(E1) 

Figure 1. Compressed beam. 
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 We obtain the component 11 of the distortion tensor from a consideration of the line element. 

The square of the distance between two points with the coordinate differences dx, dz is: 

 
2

0ds  = 2 2dx dz+  

before the deformation and: 

 
2ds  = d R2 = (Rx dx + N dz)2 = 2 2 2

x dx dz+R     (2.7) 

 

after it. The change in the coefficient of 2dx : 

 

xx = 2 1x −R  

 

implies the (nonlinear) component of the elastic distortion (viz., the “elongation”) by means of (7): 

 
1

112
  = 1 1xx+ −  = 21 1

2 8xx xx −  ,   (2.8) 

so from (2.6), we have: 

xx = 

2

2 2 2

2 2 1/2 2 2

(1 ) (1 )
(2 ) 2

[(1 ) ] (1 )

x xx x xx x xx x xx
x x x

x x x x

u w w u u w w u
u u w z z

u w u w

 + − + −
+ + + +  

+ + + + 
,  (2.9) 

 

and 11 can be calculated from (2.8) and (2.9) up to the desired degree of precision. 

 

 

 3. Deformation energy. Potential of the internal and external forces. – As in the “ordinary” 

theory of beams, we start from the assumption that the part of the deformation energy that 

originates in the lateral forces is small compared to the part that goes back to the longitudinal 

forces, and with: 

x = 1
112

E  ,      (3.0) 

we set: 

Ai = 

2

111
2

2
E dx dy dz

 
 
 

  = 

2 2

1
2

2 2

xx xxE dx dy dz
     

− +    
     

  . (3.1) 

 

The internal work in the elastic domain is then given completely with (3.1), together with (2.9). 

We will obtain a form that is useful in calculation when we develop it in powers of the differential 

quotients of u and w. In order to be able to perform the order of magnitude consideration that is 

necessary for us to do that comfortably, we write xx in the form: 

 
1
2 xx  = 2

0 1 2z z  + +  

 
 (7) Handbuch der Physik, VI, pp. 57.  
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and perform the integrations over y and z in (3.1). If F then means the cross-sectional area, i is its 

radius of inertia, l is the length of the beam, and 4, 6, … are certain numbers that depend upon 

the form of the cross-section and have order of magnitude unity (8) then the yz-integrals can be 

written in the following forms: 

 

dy dz  = F ,      2z dy dz  = 2i F ,      4z dy dz  = 4

4 i F ,      6z dy dz  = 6

6 i F , 

 

and for Ai, one has: 

 

2 2 2 4 21
0 1 0 2 4 22

0

2 2 2 2 4 2 2 6 3

0 0 1 0 2 4 0 2 1 2 6 2

{[ ( 2 ) ]

[ 3 ( ) 3 ( ) ] } .

l

iA EF i i

i i i dx

     

           


= + + + 




− + + + + + + 

  (3.2) 

 

Now, one knows that the compression ux has order of magnitude 
2

2

i

l

 
 
 

 at critical points. If we 

assume that the greatest deflection (the “sag” = Biegepfeil) f has the same order of magnitude as i 

then 2

xw  
2

2
~

f

l

  
  

  
 will have order 

2

2

i

l

 
 
 

. The increase that ux experiences as a result of the 

bending is (since it must be independent of the sign of f) proportional to 2f , so it must have the 

same order 
2

2

f

l

 
 
 

 = 
2

2

i

l

 
 
 

 as the critical value of ux . The total compression per unit length will 

then have the same order of magnitude as 2

xw , while 2

xu  is small compared to that magnitude. 

 If we assume that viewpoint and break off after the terms of order 

3
2

2

i

l

  
  
   

 then that will give: 

 

( ) ( ) ( )

( ) ( ) 

( ) ( )( )

2 3
2 2 2 21 1 1 1

2 2 2 2

0

2
2 2 2 2 21 1

2 2

2 2
2 2 2 21 1 1 1

2 2 2 2

0

2 2 2

1 2 3

(1 )

[ (1 2 2 ) 2 ]} .

l

i x x x x x x x

xx x x x xx xx xx x x

l

x x x x x x

xx x x x xx xx

A E F u w u u w u w

i w u w w w u w u w dx

E F u w w u w w

i w u w w w u dx

 = + + + − +   

 + + − − − +    


  = + − + +
   


+ − − − 





 (3.3) 

 

That expression for Ai is associated with a mean value for the stress: 

 
 (8) E.g., for a rectangular cross-section 4 = 3 / 20, 6 = 9 / 28, … 
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x  = 
1

x dF
F

  = ( )( )2 2 41 1 1
2 2 8

1x x x xE u w w w + − +
   .        (3.4) 

 

One remarks that the higher powers of 4i , 6i ,  etc., drop out in (3.3), so the cross-section functions 

4, 6, … that were introduced do not enter into the calculations to that degree of approximation. 

The expression (3.3) is then true for arbitrary cross-section forms. 

 The study of the elastic behavior on the basis of the Ansatz (3.3) shall be carried out in Section 

9. It will be shown there that keeping the sixth-order terms, along with the fourth-order ones, means 

a refinement that is generally irrelevant in practice. We shall then initially restrict ourselves to the 

fourth-order terms (the second for x ) and set: 

 

Ai = ( )
2

2 2 21 1
2 2

0 0

l l

x x xxE F u w dx i w dx
 

+ + 
 
   ,    (3.5) 

x  = ( )21
2x xE u w+  .       (3.6) 

 

If  means the compression per unit length, and P = p F = − x F is the compressive force then 

( )( )p F l−  will be the potential of the external forces, when referred to the unstressed initial state, 

and the total potential will be  (when we likewise write it for the somewhat-more-general case 

of aa rod with an elastic support K w): 

 

 = ( )
2

2 2 21 1 1 1
2 2 2 2

0 0 0

l l l

x x xxE F u w dx E I w dx K F w dx p F l+ + + −   .  (3.7) 

 

The mean potential energy per unit length (divided by E F) can then be represented (with K / E = 

k) in the form: 

̂  = 
E F l


 = ( )

2
2

2 2 21
2

0 0 0

1

2 2 2

l l l

x x xx

i k p
u w dx w dx w dx

l l l E
+ + + −    .  (3.8) 

 

From (3.8), together with the demand that: 

 

̂  = min.,      (3.9) 

 

we will then arrive at all statements about the behavior of the rod at and beyond the stability limit. 

 

 

 4. Differential equations for the displacements u, w. – We imagine a beam that is rigidly 

articulated on the left (x = 0) and free to move horizontally on the left under the influence of a 

central compressive force P (see Fig. 1). We consider the givens (i.e., the independent variables in 

our problem) to be: 
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either the horizontal displacement of 

the right-hand endpoint 

 

or the compressive stress 

u (l) = −  l 
P = 

P

F
. 

 

 From the demands of the principle of virtual displacements, the displacements at constant load 

shall be varied in such a way that the varied position is compatible with the geometric conditions. 

If one boundary point of the displacement (so, e.g.,  in our problem) is prescribed then one fixes 

the point under the variation in order that the work done by the (unknown!) external forces should 

remain in the calculation. By contrast, if the force is given then the (geometrically unconstrained) 

endpoint will vary with it. The work done by the external load (P u in our problem) will then 

enter into the calculation. 

 If we vary the displacement u in (3.8) [i.e., we perform a virtual displacement in the direction 

of the rod-axis on the beam elements, while fixing the boundary point (the load, resp.)] then from 

the rules of the calculus of variations, we will get: 

 

( )21
2

21
2

0,

with the boundary conditions :

(0) 0; ( ) ; (0) 0, 0.

x x

x x

x l

u w
x

p
u u l l u u w

E


=


+ = 

 



  = = − = + + =    

  (4.1) 

 

Varying w will give (independently of whether  or p is thought to have been given): 

 

( ) ( )2 2 21 1
2 2

0,

with the boundary conditions :

(0) ( ) (0) ( ) 0.

x x x x x xx xxxx

xx xx

w u w u w w i w k w
x

w w l w w l

 
− + − + + + = 



= = = =



     (4.2) 

 The exact integration of the system (4.1), (4.2) of simultaneous nonlinear differential equations 

poses no difficulty here. It follows from (4.1) that: 

 
21

2x xu w+  = const. = − 0 ,            (4.3) 

 

u = u (0) – 0 x − 21
2

0

xw dx , 

 

and with the use of the relation (4.3), (4.2) will assume the form: 
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0

2 2xxxx xx

k
w w w

i i


+ +  = 0 .     (4.4) 

 

The solution to that linear equation with constant coefficients reads: 

 

w = f sin 0 x + g cos 0 x + f1 sin 1 x + g1 cos 1 x , 

 

in which 0, 1 are the positive roots of the biquadratic equation: 

 

4 20

2 2

k

i i


 − +  = 0 ,          (4.5) 

which are: 

2

0,1  = 
2

0 0

2 4 2

1 1

2 4

k

i i i

 
 −  . 

 

In order to determine the six integration constants f, g, f1, g1, u (0), 0, we have the six boundary 

conditions: 
2 2

1 0 1 1

2 2

0 1 1 1 0 0 1 1 1 1

0, 0,

sin sin 0, sin sin 0,

g g g g

f l f l f l f l

 

     

+ = + =

+ = + =
 

 

u (0) = 0 , 

and 

21
0 02

0

(0) , 0.

l

x

p
l u l w dx

E
  − = − − − + =          (4.6) 

That yields (9): 

f1 = g1 = g = u (0) = 0 , 

and either: 

f = 0 ,  w = 0 , 

 

0 0, ,

,

p

E

p
u x u x

E

  




= = 


= − = −


    (4.7) 

or (9): 

 
 (9) We exclude the possibility that f = g = g1 = 0, f1  0, since the solution w = f1 sin 1 x, with: 

 

2

1
  = 

2
0 0
0 4 2

1 1

2 4

k

i i i

 
 − − , 

 

will become meaningless in the special case where k → 0. 
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f  0 ,  w = f sin 0 x ,  0 = 
l


, 

0 = 
2 2 2

2 2

i l
k

l




+   4 ,           (4.8) 

 

u = − 
2 2

sin
8

f x
x

l l

 
  + .           (4.9) 

 

As one sees, that will then give two types of equilibrium configurations: The straight one (f = 0) 

and the curved one (f  0). The straight configuration will be characterized uniquely by p or e, 

while the curved one will probably be characterized uniquely by  [because the amplitude f of the 

deflection can be determined by the first eq. (4.6)]: 

 
2 2

24

f

l


 = 4 − ,     (4.9) 

 

but not by p. Rather, it follows from the second of eqs. (4.6) that p itself cannot exceed a certain 

“critical” value: 

p = E  
  p

               (4.9) 

 

when f  0 (10). p will then be unsuitable as an independent parameter [as opposed to the situation 

in the corresponding plate problem (11)]. One sees from (4.9) that f will assume non-zero real 

values only when  >  
. 

 
 The dependency of the quantities f and p on  is illustrated in Figs. 2 and 3. The solid lines are 

true for the solution (4.9), while the dashed lines are true for (4.7). (The dotted and dashed line 

suggests the result of the refined calculation in Section 9 in a grossly-magnified unit of 

measurement.) 

 

 
 (10) In Section 9, we will see that this statement will be applicable only as long as the Ansatz (3.5) exists. On the 

basis of the refined Ansatz (3.3), that would imply a (generally very slight) raising of the load beyond (4.9). 

 (11) K. Marguerre, Luft.-Forsch. (1937), pp. 124, above. 

0 1 2 3 

1 

 

0 1 2 

 

1 

 

Figure 3. Load P above . Figure 2. Sag f above . 
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 5. Stable and labile equilibrium. – In the “ordinary” theory of elasticity, when one determines 

the equilibrium states, one can restrict oneself to the demand that: 

 

  = 0 , i.e.,  = extrem.,     (5.1) 

 

since the supplementary condition that 2   > 0 (mechanically: the stability of the equilibrium 

problem) is assured once and for all in that case as a result of linearization (12). In the present 

problem, however, we must expressly impose the minimum requirement, since it is only when: 

 

  = 0 , 2   > 0 , i.e.,  = min.   (5.2) 

 

that the stable equilibrium configurations will be distinguished from the other possible (viz., 

labile). We specify the concept of stability by the following conventions (13): 

 

1. We call an equilibrium state stable when the potential energy assumes a greater value 

for all neighboring states. 

 

2. We an equilibrium state labile (unstable) when there exists at least one neighboring 

state that belongs to a smaller value of potential energy. 

 

3. We speak of the limits of stability (i.e., an indifferent equilibrium state) when there is 

at least one neighboring state, in addition to the given equilibrium state, whose 

potential energy is just as large, but none for which it is smaller. 

 

 We recall (3.8) [(3.9), resp.]: 

 

̂  = ( )
2

2
2 2 21

2

0 0 0

1

2 2 2

l l l

x x xx

i k p
u w dx w dx w dx

l l l E
+ + + −    = min. 

 

and “vary” that, i.e., we replace u with u + u and w with w + w. When we order the result in 

powers of u, w and truncate after the second-order terms, that will then give: 

 

ˆ  = ˆ ˆ( , ) ( , )u u w w u w  + + −  = 21
2

ˆ ˆ  +  +  = − 
1

x l

p
u

l E


=

 

+ ( ) ( )
2

2 2 21 1
2 2

0 0

1 1
l l

x x x x x x x xx xxu w u dx u w w w i w w k w w dx
l l

    + + + + +
    

+ ( )2 2 2 2 2 2 21
2

0 0

1 1
( ) ( ) ( ) ( )

2 2

l l

x x x x x xxu dx u w w w i w k w dx
l l

    + + + + + +
    

 
 (12) Handbuch der Physik, VI, pp. 71 and 72.  

 (13) The following definition was given (in spirit) by E. Trefftz occasionally in his lectures at DVL. 
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The demand that the first-order terms should vanish leads to eqs. (4.1) and (4.2). The question of 

stability will be answered by the second-order terms (14). When we replace u, w with the ones that 

result from   = 0, that, along with (4.7) (viz., the straight configuration), will yield: 

 

2

1
ˆ( )    2

1
ˆ( )iA  = 2 2 2 2 2

0 0

1 1
[ ( ) ( ) ( ) ] ( )

l l

x xx xw i w k w dx u dx
l l

    − + + +   , (5.3) 

 

and with (4.9) (bent configuration): 

 

2

2
ˆ( )    2

2
ˆ( )iA  = 

2
2 2 2 2 2 2 2

2

0 0

1 1
cos ( ) ( ) ( ) ( )

l l

x xx x

x
f w i w k w dx u dx

l l l l

 
    

  
− + + + +  

  
  .   (5.4) 

 

 We next determine the stability limits. From the definition that was stated above, there shall be 

one state at the stability limit for which the second variation vanishes, but no state for which it is 

negative: The value zero is then the smallest value that 
2   can assume at all at the limit points. 

Therefore, if 
2   has certain continuity properties (whose existence is explained on mechanical 

grounds) then the “distinguished” value 2   = 0 is, at the same time, analytically a minimum 

compared to the neighboring values, and the associated (“distinguished”) system of displacements 

u, w will be determined from the condition that: 

 
2( )    = 0 .      (5.5) 

 

In our case, that demand leads to the two differential equations: 

 

(u)xx = 0 ,      (5.6) 

 

2 2
( ) ( ) ( )xxxx xx

k
w w w

i i


  + +  = 0 ,         (5.7) 

with the boundary conditions: 

 

(0) ( ) (0) ( ) (0) 0,

and ( ) , ( ) 0.

xx xxw w l w w l u

u l l u l

    

 

= = = = = 


= = 
   (5.8) 

 

The system of solutions that satisfies the boundary conditions reads: 

 

 
 (14) In the case before us (as is often the case in applications), the fact that the displacement of the point of 

application of the force is an independent variable does not enter into the second variation of the external force 

potential: 

V =  (P u) = P u = P u , so 
2
V   0 . 
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 u = 0 ,  w = sin
x

f
l


 .    (5.9) 

 

The amplitude  f  0 remains undetermined (viz., an eigenvalue problem!), and (5.7) will imply 

that the critical value of  is: 

k = 
2 2 2

2 2

i l
k

l






+  , 

 

i.e., precisely the expression k =    that is characterized by the branch point for equilibrium: The 

stability limit and the branch point coincide. 

 The questions of stability of the equilibrium configuration below and above the limit can now 

be answered immediately: 

 

1. Since the stretched configuration [see (5.3)] is stable for sufficiently-small , it is also 

stable for      on the grounds of continuity. 

 

2. For  >   , the stretched configuration is unstable, since we can give one  w, namely: 

 

 w = sin
x

f
l


 , 

for which 2   < 0. 

 

3. For  >  
, the curved configuration is stable, because one has: 

 

2 2 2 2

0

1
[ ( ) ( ) ( ) ]

l

x xxw i w k w dx
l

   − + +   0 

 

for the one component in (5.4), as one might also assume of w, and that is added to a 

positive term: 
2

2 2 2

3

0

cos ( )

l
x

f w dx
l l

 
 . 

 

 

 6. Deriving the usual Ansätze by the procedure that was given here. – The investigation of 

the behavior at the stability limit that was carried out in Section 5 allows one to exhibit the 

connection between the usual stability considerations and the argument that was presented here 

systematically. 

 Ordinarily, in stability analysis, one restricts oneself to examining the behavior at the stability 

limit. One assumes that an equilibrium figure (the line, in our case) is known and examines only 

the “transition” to the curved ones. In that way, one imagines that either the ends of the rod are 
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absolutely fixed, so one interprets the transition as a purely-internal rearrangement of the energy, 

or that one imparts an infinitesimal displacement to the rod-end, i.e., one imagines that external 

work has been performed on it that the system will absorb as internal energy. In formulas: 

 

Ai = 0   | Ai – Aa = 0 .              (6.1) 

 

In that way, one understands Aa and Ai in both cases to mean the total work minus the amount of 

work that was expended (stored up, resp.) before attaining the stability limit. If one denotes the 

(desired!) critical compression – ux by 0 and the critical stress by p0 then: 

 

2 2 21
2

0 02 2 2 21
02

0 0 0 21
0 02

0

,

,

.

l l

i xxl l l

i xx x
l

x

A EF i w dx k w dx

A EF i w dx k w dx w dx

A F p w dx



 
= +  

   
= + −  

  
= 



 
  



     (6.2) 

 

One obtains the first formula in a way that is similar to the way that one obtained (3.7) above when 

one drops the terms in 4

xw  (restriction to “small” deflections) and the second one from the demand 

that no new extension energy should be performed during the transition from the straight to the 

curved configuration, i.e., that the bent beam should have the same length as the stretched one. It 

will then follow that the ends must be closer to each other as a result of the bending by a 

displacement: 

u1 = − 
21

2

0

l

xw dx , 

such that the external force will do an amount of work – p0 F u1 = 
21

02

0

l

xp F w dx . 

 If one now defines the stability limit to be the place at which the condition (6.1) is fulfilled for 

one well-defined displacement w (x), while the following inequality is true for the other one: 

 

Ai > 0  | Ai – Aa > 0 , 

 

then Ai (Ai – Aa, resp.) will assume its smallest value for that w (x), and one must then have: 

 

Ai = 0  | Ai – Aa = 0 .     (6.3) 

The double statement: 

2 2 21
0 22 2 2 21

0 002

0 0 0

20

0

min. 0min. 0,

l l

l l l
i xx

i xx x

l

x

A A EF i w dx k w dx
A EF i w dx k w dx w dx

p
w dx

E




− = +   

= + −   
 

 
− = == =  

 

 
  



   (6.4) 
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is free of contradictions, since the expressions (6.4) are homogeneous quadratic functions of w, 

from Euler’s theorem on homogeneous functions (15). 

 The connection between the first of eqs. (6.4) and our previous argument [eq. (5.3)] is obvious. 

Eq. (6.4) says nothing but the fact that the second variation should have a minimum of value 0, 

except that simply w is written in place of w in (6.4). That notation also has a factual basis, in 

addition to its convenience: The distinguished displacement w (which will make 2   = 0) is not 

only geometrically possible (i.e., virtual) at the stability limit, but also mechanically possible, i.e., 

the displacement that actually occurs without varying the external load. Nonetheless, the notation 

w unconditionally offers some advantages: 

 

 1. Because the -symbol expresses the connection with the second variation (as we could 

show above, it is not f itself that remains “undetermined” when one prescribes , but only f). 

 

 2. Because the more convenient notation (formally) complicates the transition to the super-

critical region, since the infinitely-small displacements at the limit and the finite displacements 

beyond the limit must be expressed by the same symbol. 

 

 The connection between the second of eqs. (6.4) and our previous arguments can be exhibited 

in the following way: We inferred from the demand that the second-order terms in u, w should 

produce a minimum value of zero that u = 0 [eq. (5.9)]. However, the condition 2   = 2( )    

= 0 will also be satisfied when u is small of higher order than w, so e.g., ~ (w)2. The non-zero 

term (u)2 no longer belongs to the second-order terms at all and remains unaffected by the 

calculation that was performed above. On the other hand, the boundary term: 

 

( )21
2x x

x l
x l

p
u w u u

E
 

=
=

+ +  

 

must be counted among the second-order terms [cf., (4.1)] such that with the special (basically 

arbitrary) Ansatz: 

ux = − 21
2
( )xw , i.e., u |x=l = − 

21
2

0

( )

l

xw dx ,  (6.5) 

one will get: 

 

2

1( )   = ( )2 2 2 2 2 2 21
2

0 0 0

1 1
[ ( ) ( ) ( ) ] ( ) ( )

l l l

x xx x x x x

p
w i w k w dx u w w dx w dx

l l E l
     − + + − + −    , 

 

in place of (5.3). At the stability limit, one has –  = 21
2x xu w+  = −  

, since the first and fourth 

summands cancel. What then remains (with p = p0) is: 

 
 (15) In approximate calculations for the determination of the critical load (viz., the Ritz Ansatz), one often follows 

the Timoshenko procedure and appeals to only the condition that Ai – Aa = 0 explicitly. 
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2

1
ˆ( )   = 

2
2 2 20

0 0 0

( ) ( ) ( )

l l l

xx x

pi k
w dx w dx w dx

l l E l
  + −    ,   (6.6) 

 

i.e., precisely the expression (6.4), except that it is written in terms of w, instead of w.  

 With that (undoubtedly somewhat artificial) interpretation, the second Ansatz in (6.4): 

 

Ai – Aa =  (Ai – Aa) = 0             (6.7) 

 

can be justified by the “extended” principle of virtual displacements. Nonetheless, and despite the 

“intuitiveness” of the usual derivation, the notation (6.7) is not advisable, on the following 

grounds: 

 

 1. The expression Aa = − p F u |x=l is only a function of the displacement w directly, and the 

use of the -symbol for a ‘variation,” by which u must be first expressed in terms of w by means 

of: 

u = − 21
2

0

xw dx , 

 

contradicts the notation of the calculus of variations, in which u and w must be treated as being 

mutually independent. 

 

 2. In complicated problems, it is often very difficult to write down the expression for the 

external work with the help of “intuition” directly, and since the splitting of the extension work 

into an external and an internal part is still arbitrary by an Ansatz of the type of (6.5), one will 

often prefer the equations: 

 

Ai = 0 ,  Ai = 0  [i.e., properly-speaking, 2

iA  = 0, 2( )iA  = 0] 

 

in the spirit of the first Ansatz, even on practical grounds. 

 

 A third objection concerns the question of whether one should apply the variation symbol  to 

an “external work” Aa at all. That is because, in general, the external work can be expressed in 

terms of the forces and displacements in several ways: On those grounds, the notation (1.3), in 

particular, for the principle of virtual displacements is definitely unsuitable (16). However, from 

that viewpoint, there are no objections to the notation (6.7), because since the load p0 changes by 

only higher-order quantities in the lateral displacement w being varied under the transition from 

the straight to the curved line, p0 will not be affected by the variation symbol. That is, we can 

replace Aa in with a potential difference V directly in (6.7), and if one would like to overlook the 

 
 (16) Thus, e.g., for the compressed rod below the critical point, twice the external work can be written in three 

forms: 
2

E , p , 
2

/p E , which are to be varied (relative to !). One really means the second form in that, but that is 

no longer clearly recognizable, as a result of using the notation 2Aa instead of – V [see footnote (4)]. 
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objection that was formulated in 1. then the -symbol in Aa = − V will definitely be 

unambiguous: That demands the variation of the lateral displacement while fixing the external 

load. 

 With the use of the symbol V, (6.7) will read: 

 

Ai + V =  (Ai + V) = 0 .           (6.8) 

 

That notation has the advantage that it makes it clear to what extent the first part of that expression 

expresses something different from the usual law of energy Ai – Aa = 0. It has the disadvantage 

that the formal similarity between the second part of the state and the principle (1.2) makes it 

tempting to refer to formula (6.8) (as often happens in the applications) as a special form of the 

principle of virtual displacements. It emerges from our derivation that this is not the case: The 

principle (1.2) answers the question of the equilibrium configuration that results under given loads 

(or boundary conditions). By contrast, formula (6.8) produces the second equilibrium form that is 

possible at the branch point, and the desired value of the load at which the equilibrium begins to 

be multi-valued. 

 When one appeals to the Ansatz (6.7) [(6.8), resp.] for investigating the branch points of the 

elastic equilibrium (which is not inconvenient for practical calculations in many cases), one should 

avoid the terminology “principle of virtual displacements” [which will also eliminate the 

“contradiction” between formulas (1.3) and (1.4) that was mentioned to begin with] in all cases. 

 

 

 7. Interpreting the results up to now with the help of a Ritz Ansatz. – The results of 

Sections 4 and 5 can be illustrated very beautifully when we convert the variational problem into 

an ordinary minimum problem by employing the Ritz method. We choose the solutions of the 

differential equations (4.2) and (4.1): 

 

w = sin
x

f
l


,  21

2x xu w+  = − 
2 2

24

f

l


 +    (7.1) 

 

to be a “Ritz Ansatz” that satisfies all boundary conditions. The minimal requirement: 

 

( )
2

2
2 2 21

2

0 0 0

2
2 2 2 4 2 2 4 4 2 2 !

2 4 4 2

1ˆ ,
2 2 2

1
( ) min.

2 4 4 4 32 4

l l l

x x xx

i k p
u w dx w dx w dx

l l E

f i f f k p f f p

l l E l l E



   
    


 = + + + − 




  
= − + + − = − − − =  

  

  
 (7.2) 

 

implies two equations for determining the “free value” f and the dependency of the load p on the 

compression  [which must coincide exactly with the previous results (see pp. 9)]: 
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ˆ






 = 

2 2

24

f p

l E


 − −  = 0 , 

ˆ

f




 = 

2 2 2

2 22 4

f f

l l

 
 

  
− −  

  
 = 0 ,          (7.3) 

so either: 

f = 0 , p = E                (7.4) 

or: 

f  0 ,  
p

E
 = 

2 2

24

f

l


 −  =    = 

2 2
2

2 2

l
i k

l




+ .   (7.5) 

 

The stability question is again answered by the second variation, which is the second derivative 

here: 
2

2

ˆ



 


 = 1 , 

2

2

ˆ

f

 


 = 

2 2 2

2 2
3

2 4

f

l l

 
  

− + 
 

 .   (7.6) 

One sees that: 

  for  <  
, one has 2 ˆ   > 0 , 

 for  >    and  
2 2

24

f

l


 =  −  , one has 

2

2

ˆ

f

 


 = 

2

2
( )

l


  −  > 0 , 

  for  >    and  f = , one has 
2

2

ˆ

f

 


 = 

2

2
( )

2l


  −  < 0 , 

 

i.e., the straight configuration is stable for  <  
 and unstable for  >  

, while the curved 

configuration is always stable if it is mechanically-possible to begin with (so for  >  
). 

 

Figure 4. Dependency of the deformation energy on the sag f = 
2

l 


    

with the compression  = a

 as the parameter. 
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Fig. 4 illustrates the result of eqs. (7.3)…(7.6). The dependency of f , resp.
2

f

l




 

 
 =
 
 

 with  

, resp.a


 

 
= 

 
 as a parameter is applied to ˆ

iA : 

2

ˆ
iA

 
 = 4 2 21 1

2 2
( 1)a a − − + ,  resp.   (7.7) 

 

The potential of the external forces is not added to that because that would bring with it another 

parameter (viz., the load) that would be harder to ignore, but would not be affected by the minimal 

demand relative to f. (The principle requires that the external loads must be kept constant!) 

 The figure makes the change in “type” of the curves under the transition from the sub-critical 

domain to the super-critical ones especially beautiful, namely, the coincidence of the maximum 

and minimum for a = 1. It becomes quite clear here that the opinion that is occasionally expressed 

that the essence of the stability problem is not the appearance of large displacements is incorrect: 

Although the displacements are small at the moment of the transition (fmin → 0), the behavior of 

the body will still be determined by the “possibility” of large deflections; mathematically speaking, 

by the fact that there is just no ordinary minimum at the critical point. [One has   = 2   = 

2( )    = 0 there.] 

 It must be remarked, moreover, that the fact that 
2 2/ f    > 0 does not prove that the curved 

configuration is actually stable, because from our previous definition, we must have 2   > 0 for 

any (17) conceivable variation w, and not just under the special assumption that (w + w) = (f + 

f)  sin  x / l (18). However, the approximate calculation with the help of the Ritz Ansatz makes 

the stability intuitively plausible. 

 
 

 8. The infinitely-long elastically-supported compressed rod. – The determination of the 

buckling load of an infinitely-long elastically-supported beam (and similarly, the infinitely-long 

plate of shell) is not possible with the use of the differential equations (4.1) and (4.2) alone. The 

demand of (pure) periodicity of the lateral displacement w that enters in place of the “boundary” 

conditions in this problem does not suffice to determine all constants: The length of the period l 

remains undetermined. 

 We obtain the equation for determining l when we rewrite the requirement (3.9) for l: 

 

̂  = min.      (8.1) 

separately as: 

 
 (17) See above, pp. 13.  

 (18)  (f + f) –  (f) = 

2

2

2

1
(

2
)f f

f f

 
 

 

 
+ + , so = 

2
   = 

2

2

2
( )f

f







. 
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ˆ

l

 


 = 0 .          (8.2) 

 

We get the desired relation from (8.2) when we apply the demand on ̂  in the form (3.8), while 

observing the fact that l enter into the integrals as an upper limit and as a parameter in w, or when 

we employ the integrated form (7.2) directly: 

 

ˆ

l

 


 = 

2 2 2 2 2 4 2

2 2 5

2

4 4

f f i f

l l l

  


 
−  − 

 
 = − 

2 2 2 2 2 2

3 2 2
2

2 4

f f i

l l l

  


  
− − +  

  
,  (8.3) 

 

which is much more convenient. It then follows from (8.3) and (7.5) that: 

 
2 2

2

i

l


 = 

2

2

l
k


 , 

or 

4l  = 
2 4i

k


 = 2 4E

i
K

 .        (8.4) 

 

The wavelength l is independent of  (f, resp.). Beyond the critical compression, it still keeps the 

value that it assumed at the critical point itself then. 

 Ordinarily, one gets the result (8.4) from the demand that at the critical point (f = 0), the  in 

eq. (7.5), so: 

k = 
2 2

2

2 2

l
i k

l




+ , 

 

should have a smallest value relative to l : 

 

k

l




 = − 

2 2

2 2

2
2

i l
k

l




+  = 0 .           (8.5) 

 

 For the most part, the condition (8.5) cannot be justified as a demand that is otherwise 

intuitively obvious. From our previous argument, it is equivalent to the demand that the second 

variation of ̂  must have a minimum relative to l (at the critical point). In fact, it follows from 

(7.2) [(5.3), resp.]: 

2 ˆ   = − 
2 2 2 4 2 2

2 4

( ) ( ) ( )

2 2 2
k

f i f k f

l l

    
 + +  = 0 .        (8.6) 

Now, we have: 



Marguerre – On the treatment of stability problems with the help of energetic methods. 21 

 

k

l




 = − 

2

2

ˆ( )

ˆ( )
k

l














 , 

 

and therefore (8.5) says, in fact, nothing but the fact that: 

 

2 ˆ( )
l







 = 0 .     (8.7) 

 

However, one observes that only the critical value of l can be determined from (8.7) [(8.5), resp.], 

while one will get its value for arbitrarily-given  from (8.3). 

 

 

 9. Behavior of the rod under very large deflections [Ansatz (3.3)]. – The investigations up 

to now have led to the result, inter alia, that the load remains exactly constant beyond the buckling 

limit: 

p = E  
 = 

2 2 2

2 2

i l
E k

l





 
+ 

 
 . 

 

Naturally, that is correct only as long as the elastic behavior of the beam is characterized 

sufficiently precisely by the Ansatz (3.5) for the deformation energy. That is no longer the case for 

large deflections, since the term (f / l)6 will no longer be negligible compared to the term (f / l)4. 

One includes the variability of the compressive force (in the second approximation) when one 

appeals to the Ansätze (3.3) and (3.4). 

 The differential equations that arise from (3.3) on the basis of the requirement 2 ˆ   = 0 can 

be given with no difficulty. One finds that the first one is (up to higher-order terms): 

 

( )2 41 1
2 8x x xu w w

x


+ +


 = 0 ,         (9.1) 

and when one introduces: 
2 41 1

2 8x x xu w w+ +  = const. = − ̂  

 

into the second one, that will give (we restrict ourselves to the case of k = 0): 

 

2

ˆ
(1 ) ( )xxxx xxw x w

i


  

+ − + 
 

 = 0 , with  (x) = 
2

2 2

2

3
2

2
x xxx xx xw w w w

l


 + −  (9.2) 

 

(and again, up to higher-order terms). An exact integration of eq. (9.2) is probably not possible. 

However, since the newly-added terms are small in comparison to the previous ones [eq. (4.4)] 

with a ratio of (f / l)2 (i.e., they represent only correction terms), it is entirely sufficient in practice 
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to regard their influence approximately. The fastest way to reach that goal here is the Ritz 

procedure. 

 As a starting point, we choose the solution of the previous, “next lowest,” differential 

equations: 

21
02

sin ,

.x x

x
w f

l

u w






= 


+ = − 

     (9.3)  

If we set: 
2 2

24

f

l


 =  ,          (9.4) 

to abbreviate, then the connection (4.9) (19): 

0 =  –           (9.5) 

 

will once more exist between the (unknown) integration constants and the displacement of the 

right-hand side of the rod u (l) = −  l, which is thought to be given. 

 If we substitute (9.3) in (3.3) then that will give: 

 

 =  2 4 2 2 2 2 21 1
0 0 02 4

0

(1 ) { (1 2 ) 2 } ( )

l

x x xx x x xxE F w w i w w w w dx Pu l   − − + + − + +
  , 

or 

̂  = 
E F l


 = 2 2 231

0 0 0 02 4
{1 2 }

p

E
         − − + + + − . 

 

Upon observing (9.5), the minimal requirement: 

 

ˆ






 = 0 , 

ˆ






 = 0 

 

will imply the following two equations for the connection between p,  
, and  : 

 

23
0 4
(1 2 ) 2

p

E
    − − + −  = 0 , 

− 23
0 0 04

3
(1 2 ) (1 2 2 2 )

2
          − + + − + − + −  = 0 . 

 

It follows from the second one that (20): 

 

 (19) In the notations of Fig. 2: 
2

  = a − 
0

/ 

 . 

 (20) Thus [from (9.6)], in Fig. 2, one has: a = 21 3
1

2 4
1    

   
+ + 

 
+ + .  
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0 = 231
2 4

(1 )    + + +  , 

 

and therefore, the first one will give: 

 

p

E
 = ( )1

2
1   + +  + higher-order terms. 

One then has (21): 

p = 
2 2

2
1

8

f
E

l


   

+ + 
 

 , P = 
2 2 2 2 2

2 2 2
1

8

E I i f

l l l

   
+ + 

 
. 

 
Figure 5. 

 

 We will arrive at the same result by the detour to the differential equations (9.1) and (9.2). The 

first equation says that (see Fig. 5) the horizontal force: 

 

( )2 21 1
2 821

2

([seeeq.(3.4)]
1

ˆmust be : const.,

x
x x x

x

p E u w w
w

constant p E






= − = + + 

− 
= = 

  (9.7) 

 

and according to Galerkin (22), when we multiply the second equations by w and integrate, while 

employing the Ansatz (9.3), we will get: 

 

̂  = (1 / 2)   + +  , 

i.e., the relation (9.6) again. 

 One sees from (9.7) that the critical stress: 

 

pk = (1 )E   +      (9.8) 

 

is somewhat higher than in the elementary theory. The very slight increase goes back to the 

enlargement of the part due to the bend by (1 2 ) + , which counteracts the enlargement of the 

extension part by (1 ) + . The excess in the raising of the elastic compression that enters in at the 

critical point: 

 

 (21) In Fig. 2, 
p

p  = ( )211
2

1 


++  = ( )11 ( 1)
2

1 a


+ −+ . 

 (22)  See, e.g., ZAMM 16 (1936), pp. 353/354. 

p p 

p 

?x 
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p = 
2 2

2
1

8
k

f
p

l

 
+ 

 
      (9.9) 

is likewise very small. 

 If we denote the percentage increase by  : 

 

 = 100 k

k

p p

p

−
 

then: 

f

l
 = 

1
8

10



, 

 

and the bending stress that belongs to that deflection will be: 

 

   = 
2

h
E w   

2

2

h f
E

l l


   = 0.444

h
E

l
  (h = height of the beam) 

 

so only a few percent of overshoot in the elastic domain will remain only for a very small ratio h / 

l . 

 

 

Appendix 

 

 Behavior of the rod in the super-critical domain according to Trefftz. – Eq. (9.9) agrees 

with the approximate result of the so-called “exact theory” of the Euler rod (1). That theory starts 

from the “exact” differential equation of the buckled rod: 

 

E I
P w


+ = 0       (1) 

2 3

1
with 

( 1 )

xx

x

w

w

 
 =
 + 

, which can be integrated with the help of elliptic functions (2). 

 Another (very simple) way of deriving eq. (9.9) was given by E. Trefftz. Starting from the 

assumption that the arclength of the beam did not change under the deformation, Trefftz used the 

principle of virtual displacements in the form: 

 

 (Ai + V) =  Ai – P u = 0 ,      (2) 

 

 
 (1) Handbuch der Physik VI, pp. 202, eq. (10).  

 (2) Handbuch der Physik VI, pp. 201. 
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in which Ai is the work done by bending, u is the displacement of the endpoint as a result of the 

deflection w, and P is the force of compression (which remains constant under the variation). 

Trefftz introduced s as the longitudinal coordinate in place of x. One will then have: 

 

Ai = 

2

1
2

0

1
l

E I ds


 
 
 

 ,  P u = 
0

1

l
dx

P ds
ds

 
− 

 
 ,        (3) 

and since: 

2 2 2 2 2 41 1
2 8

2 1/2

2

, so 1 1 ,

arcsin1
and (1 ) ,

1

s s s

s ss
ss s

s

dx
ds dx dw w w w

ds

d w w
w w

ds w


= + = −  − − 


 
= =  + 
−  

  (4) 

 

that can be written: 

Ai = 
2 21

2

0

(1 )

l

ss sE I w w ds+ , P u = ( )2 41
4

0
2

l

s s

P
w w ds− .        (5) 

 

If one now makes the Ritz Ansatz for w : 

w = sin
x

f
l


      (6) 

then the two integrals (5) can be performed: 

 

Ai = 
4 2 6 6

3 52 2 8

E I f f

l l

  
+ 

 
, P u = 

2 2 4 4

3

3

4 64

f f
P

l l

  
+ 

 
,   (7) 

and the demand that: 

 (Ai + V) =  (Ai + P u)  = ( )i

d
Pu f

df
−A  = 0 

will imply that: 
2 2 2 2

2 2

1
1

2 2

E I f f

l l l

   
 + 

 
= 

2 2 2

2

3
1

2 8

f f
P

l l

  
+ 

 
,   (8) 

so either: 

f = 0 

or: 

P = 

2 2

2 2

2 22

2

1
1

2

3
1

8

f

E I l

fl

l






+



+

 = 
2 2

2
1

8

f
E F

l


   

+ 
 

.   (9) 
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Eq. (9) agrees with the result (9.9) that we obtained with out systematic method, up to the factor 

(1 ) +  (which is missing here). 

 

____________ 


