“Principi variazionali e trasformazioni adiabatich&yin. Mat. pura ed appl0 (1932), 283-328.

Variational principles and adiabatic transformations
By GIANDOMENICO MATTIOLI (in Padua)

Translated by D. H. Delphenich

Abstract. — The author establishes a variational principle tlmminects two arbitrary segments of
adiabatically transformed trajectories, and he arr@eghat conclusion by considering the adiabatic
parameters to be supplementary Lagrangian coordinaté® sdbstitutability of temporal means with
spatial means is then proved by statistical considesin the general quasi-ergodic case and in the case
of STACKEL systems, from which the classical adiabmtvariants follow.

Consider a conservative dynamical syst8mwith time-independent constraints, so
from a geometric standpoint any of its trajectoriesoliethe surfacéd = constant that
passes through the initial position. Suppose that thadeaistic function i$1 (p | q | @);
l.e., it contains certain parameters that are indetdya and are normally constants.
One will then have a motion that has the aforerneetd geometric character, but it can
also be made to vary by means of suitable, but arbitextgrnal interventions. That is
equivalent to supposing that taen H are equal to certain functions of time, so for the
motions of this second typel will no longer be constant, and the syst®mill transfer
from one of the abovementioned surfakles const. to another in the time interval-to
during which thea vary. When the variation of treis very slow, so they realize only
infinitesimal incrementsda in a finite time intervalt; — to , the motion ofS will
experience an alteration with respect to the oneitipaissesses for the constaig, and
according to EHRENFESTY)( one calls that aadiabatic transformation. The main
problem of that theory is the search fadiabatic invariants— viz., quantities that
preserve the values that they had before the adigbatgformation.

The adiabatic invariants that are known up to now dratt@ched to two particular
base motions (among the ones for whichalage constants): periodic ones and ones that
satisfy the condition of quasi-ergodicity, and the awhfy that have studied them
immediately adopted conditions that related to ondé@other state of motion.

It would then be worthwhile to adopt a more generalp@nt, in the sense of
studying the effect of an adiabatic transformation @em@eric motion that is considered

() “Adiabatic invariants and the theory of quanta,” Phiiag. 33 (1917), pp. 500.
() BURGERS, Ann. Phys. (Leipzi@R (1917), pp. 195.
LEVI-CIVITA, “Drei Vorlesungen Uber adiabatische Arianten,” Abh. Math. Seminar, Hambugg
(1928), pp. 323; “Sugli invarianti adiabatici,” Atti del @pesso int. dei Fisica (Como, 1927).
Also cf. the treatises:
BORN, Vorlesungen tibeAtommechanik
JUVET, Mécanique analytique et théorie des quanta.
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in an arbitrary interval; — to and not just one of the types above. The crites@ems
advantageous to me, because on the one hand, it leaxdstdas of general validity and
on the other, it allows one to confirm the necessdiitgeotain limitations that are imposed
upon adiabatic transformations in order to verify fdets of ordinary statistics that are
the only ones that lead to the actual constructiond@tbatic invariants in the special
cases that were first pointed out.

| found the method in an application of the variagigorinciples of mechanics that is
original in some of its details — for instance, in théiahdefinitions, where the adiabatic
parameters (viz., thea quantities) are introduced as supplementary Lagrangian
coordinates. From the formal standpoint, that allons  treat both the base motions
(a = const.), as well as those of adiabatic transébions @ variable), by a consistent
procedure.

The variational method (which | believe to be newithwhich | propose to treat the
general problem of adiabatic transformations is develap@os.1-4, and | will arrive at
an identity — viz., (9) — that summarizes the effecthefglow and linear variation of the
adiabatic parameter in a concise formal expressioAn immediate and known
application to the case of periodic systems is givemoi.5. The formal modification of
the identity in no.7 will allow me to point out in no9 a feature that is assumed in the
classical theory in regard to the HAMILTON-JACOBI methof integration in the case
where an adiabatic parameter is present. Among dilmgyst one will find a formula for
the increment of energy that | believe to be wodhynention, although | do not adopt it.
In no. 8, the ROUTH systems pass in review, and mainly for theqaa of concretely
pointing out the importance that the duration of thelaatic transformations has in the
correct construction of adiabatic invariants. In b@.the identity between the means of
an arbitrary function along a dynamical trajectory thatense on the surfaée= const.
is proved for arbitraryn, and on that surface one will consequently get the GIBB
invariant. In the succeeding numbers, the STAECKEL systare examined and the
adiabatic invariance of the SOMMERFELD integral is @@wnce more, which also
makes the substitution of spatial and temporal means tigoro

1. Observation about the asynchronous variations of theis viva of a dynamical
system.— Suppose that one has a dynamical sySevith time-independent constraints.
The correspondingis vivais then a homogeneous quadratic function of the dereati

g -
T=1>349¢q,

i,j=1

in which theg; are functions of onlg. A particular motion is determined by the initial
values of theg and . Consider two motions @& that correspond to initial values that
are infinitely-close to those af, . The two representative points in the space of
coordinategy will remain infinitely close during the finite time envals [o, t1] and o +

do, t1 + &1]. Make the time along the first trajectory correspond to an arbitranet +

A& along the second one, with the only restriction beirag the previously-fixed initial
and final instants must correspond. If one consequesslycaates the positiomnp andg;
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+ &g that are assumed by the system under the motiongleoed then one will realize
an asynchronousvariation (in general, whedt is not identically zero) of the base
trajectory to the second one considered, in which theegponding variation of theis
vivais given by:
5'T=or-2r 9%
dt

One agrees to leIdenote the increments that relate to the synchroremegions. In
our case, we will have such a variation as long apdtiséionsq , g + A9 are the ones
that correspond to the instant However, the differential symbal™ relates to the
asynchronous variation that was just defined. If oreeMgtandM; denote two motions
and adopt the same indices for quantities that relaea¢b of them then one will also
have:

OT=Ty(t+t)=To ().

2. Interpretation of the parameters as Lagrangian coordinates. Consequent
Lagrangian identity. — Therefore, one has a holonomic mechanical systemhich
some other parametessthat can be kept constant intervene along with the tra are
intrinsic to the system, which one calls as usual, and slowly varies them by means of
suitable external influences (e.g., mass variationsstcaints, forces, etc.). Assume that
after any one of those variations, once it has retutoets constant value, the type of
system has not changed, since it is always charaated® its own Lagrangian
parameters. What will vary with the will be the expressions for thas vivaand the
forces that act upon the system, insofar as d@here contained in the analytical
expressions for those quantities in a well-defined way.

The motion of the system is plainly determined by jhst tAGRANGE equations
that relate to the chosen coordinates, even wheasthee varying, since one supposes
that theas are specified as functions of time. However, nothirey@nts one from also
writing the corresponding Lagrangian equations for the rpatersas in the form of
identities and in precisely the following way: The left-hand sides deduced from the
visvivaT (q| q |a| a) in the usual way, while the right-hand sides areeqatl to what

the first ones will become when tleg, & in them are replaced with their known
expressions in terms of as (t), &, (t). In addition, if one supposes that one has first

integrated the LAGRANGE equations, properly-speaking, theg thill represent the
actual determination of thg , ¢, ¢ as functions ot and the constants that were

introduced by the integration. In conclusion, one theesfssociates the equations of
motion of the system with a number of identity relas that are equal to the ones for the
parametersas and whose left-hand sides present themselves symnigtrica the
analogous ones in the Lagrangian equations, while onthicdthat the right-hand sides
are being well-defined functions of time, once one bpscified the values of the
arbitrary constants (i.e., one has chosen a partiowdéion). If one would wish that the
actual knowledge of those functions should not be nacg$isen it would be enough to
recognize that any individual motion that the system canb@éxéxists in a uniquely-
determined way.
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Let us now develop the calculations. Let the mechhsigsiemS depend upom
Lagrangian coordinateg i = 1, 2, ...,n, and letg;, j = 1, 2, ...,s be the adiabatic
parameters, in addition. With no loss of generaliyt solely for the sake of formal
simplicity, assume that just one adiabatic parameterpresent; it is obvious how one
would have to proceed otherwise. In addition, whénkept constant, the constraints on
the system will be fixed, in such a way thatill not enter into thevis viva Texplicitly.
One completes the assumed hypotheses, which correspdhd tmncrete cases (e.g.,
variable constraints) in whicil also depends upon the derivatiie, one has a

homogeneous quadratic function in the a with coefficients that are functions qf, a.
In addition, the forces are provided by a force functiotihat also depends upon oy
a.

Consistent with what was said above, write the cempf relations:

1) E—a_T _9T_ oY i=1,2,..n,
dtogq o0q dqg
doT 0T

1 ——-Z_=Q ().

) dtoa oda QW

The first n of them are the equations of motion, while the last @nehe
abovementioned identity that relates to the paransetand in whichQ (t) denotes what
the left-hand side will become for the particular mottbat is considered; i.e., after
replacing any quantity with its expression in time.

We repeat that (1) will suffice in any case to detearthe motion [even whea
varies, as long as(t) is given]. As one will see in what follows, thensideration of ()
will lead to a rapid evaluation of the contribution he £nergy that is due to the variation
of a, along with permitting a symmetric formulation of tpeoblem, in the sense of
treating the motions witla constant and the ones in whiehvaries (viz.,adiabatic
transformationof the system) in the same way.

From the formal standpoint, one can consider (1) t¢lbe the Lagrangian system of
a dynamical problem witim + 1 degrees of freedom for the coordinatgsa. The
definition of Q (t) for any individual motion is basically equivalent toasisg that the
parameter in the integral of (1), (1 must prove to be the (t) that was fixed to begin
with.

3. Variational formulation of the problem. — The complete equivalence of a system
of LAGRANGE equations with HAMILTON'’s variational pringie is shown by a
classical proof. To that end, one agrees to adopexpesssion that relates to varied
endpoints. One can then summarize the relations (9)(Which present themselves
formally as a Lagrangian systemn+ 1 variables) in the variational formula:

4 n n k!
) j[ﬂ+zg—35q+Q5aj dt= Za—-_réqi+a—;5a
t i=1 ]

iz 0 d

to
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which will persist for an arbitrargynchronousvariation of the natural motion between
varied extremes.

Now, introduce amsynchronismnto the comparison of the varied (generally-virtual)
motion that is based upon the natural motion (which lmareither a motion witla =
const. or one witha varying in some assigned way). Tfis a homogeneous quadratic
function of the ¢, a, and one let®” denote the corresponding variations then one will

have (cf., nol):

a‘r:5*T+2T@,
dt

and when one substitutes this in (2), one will get #ré@tion principle:

1] o]

dot ou
(3) j[éﬂT+ZTF+ a5q+Q5aj dt =

t i=1

> 9T 5+ sa
iz 00 Jda

to

upon which our further consideration will be bassttd which is true for arbitrary
variations of the natural trajectory, however asynoous, and in which the variatian
of thevis vivamust, of course, be calculated by treafings a function of tha, a in a
manner that is symmetric to the treatment ofcghec .

4. Applying (3) to the calculation of adiabatic transformations.— Assign a
constant valueay to a, and letMy denote a corresponding motion. In other words,
determine certain initial conditions that will bpegified, for ease of further reference,
thus: Fort =to, theq; and ¢ will becomeq’, ¢°, respectively. LeP’ comprehensively
denote the initial state of motion thus-specifiadd sometimes just the position of the
system at that instant, as well.

Since thevis vivaintegral is valid, one will have:

(4) To=Ug +Eg

duringMy . It is clear from the chosen notation that tidex O is intended to denote any
guantity that relates twlo .

If one starts from the state of motion at thatanst, and performs thadiabatic
transformationthatvery slowlyvaries the parameterin a specified way in time with an
infinitesimal velocity, which is treated as a figtder quantity; i.e., one of the same order
as thedq , da that appear in (3). L&l denote the motion of the system that takes place
(themotion of the adiabatic transformatiar intermediate motion Lett; be a value of

time that followst, , and letP;, P' be the states of motions of the system according t
whether it has traversed the trajectdy or M, resp. In addition, leta be the total
variation of the parameter over the time intetyalt, . The new constant valae = a; +

da of that parameter, together with the state of am&", will uniquely determine a
trajectoryM; that can be traversed by the syst&mvhich corresponds to a value of the
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parameten that is infinitely close to the orag that relates tdo, and which will deviate
from the trajectoryy by a quantity of first order for any of its finite length

Choose a poinB® onM; that is infinitely close tdP, but otherwise arbitrary. Since
time t does not enter intd or U explicitly, one can suppose th&ttraversesV; by
starting from the state of motioR® at the instanty + &y (with &o arbitrary, but
infinitesimal, which one considers solely for the sakéaking into account all possible
generalizations). Lei + &; be the instant at whic8 reaches the positioR'= P! that

was considered just now (final state of motion at tis¢aintt; of the intermediate motion
M). Thevis vivaintegral is also valid alonlyl, . LetE; = Ey + & be the value that the
constant assumes here. One will have:

(4) Ti=Ui+Ei=Ui+Ey+ &
onM;.

Apply equations (1), () to the intermediate motiokl. Multiply them by g, a,
respectively, and sum them, while taking into accountdaha bfT, one will get:

d_T: na_Uq +Qa
dt  ‘=aq ’

as everyone knows. As long as the potettigbntainsa, adding and subtractin%ga
a

will also give:

dT _du (6U j
- . __Q a-a
dt dt fda

and integrating along the trajectdviybetweert, andt; will give:

Y

Y _ o1 ouU .
t0_|U|to—j[5£--—QjMadt.

to

(5) T

The indexM indicates that the values of the integrand functiom @assumed to be
functions of time at the points bf.
Let:

n

(6) T=1>a,qq+

n
ij=1 i=1

bpatcé

be the general expression for the vivg a;, b, ¢ are functions of onlg;, a. We have
assumed that the initial states of motion (i.e.tfoty) of the motionsvip, M correspond
to the same values gf, ¢, while & = 0 forMo, & = first-order quantity foM. If we let

TS, T, denote the initiavis vivasof M andMy then if we recall (6), we will have:
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T°:T0°+[aibqj +(cd)’,

in which the notation (..%is intended to mean that one must put the initial \walyfe

q°, @ , 4, for M in place ofg , ¢, a, a between the parentheses. Now comfafe-
I.e., thevis vivaof M at the end of that intermediate motion (which wdldssumed at the
instantt;) — with T,'= vis vivaof M; for the state of motion #' (and relative to the
instantt; + dt1). The states of motion coincide in regardjto ¢, while one will havea

= & #0, in general, foM anda = 0 forM; . It will always follow from (6) that:
n 1
leTé{aZb qj +(cd),
i=1

in which the notation (..}))has a meaning that is analogous to the one that was just
explained.

The last terms in the preceding two relations are tdrdeted like second-order
guantities, becausé enters into them as a square. In addition, one cie: w

o~y . L 0T

while omitting the quantities of higher orderan By subtraction, one can then get:

oT |

t1
a .
fJa

TL=T'-T°=T'-T0+

+[2],

to

in which [2] indicates a quantity of order at least timoa, and the notatiod---

t1
to
indicates that one must take the difference betwhenvalues that the corresponding
quantity assumes at the end and the beginning of themidt{ae., atP* = R* andP° =
P’, resp.).
Obviously:
U

b p11_10
.=l -Ug,

in which U}, U? are the values of the force potentialsPat= P* and P° = P?,
respectively. Hence, by definition, (5) can be written:

T |

5 T -To+| a—
(5) L

1
LU
=Ur-Ul- (——Qj adt+ [2].
1 0 {[ aa

to M
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If one applies (4) and (¥to the configurations’, P!, respectively, then one will
have:
T2 =U+Eo,
T =U;+Eo+ JE.

If one substitutes this in (Bthen, by definition, one will get the increment in the viva
constant when it passes from the moftibto M, (with a constant in both cases) and one
performs the adiabatic transformatigin

6) E = —‘ 22|

oa

j (‘Z—U Qj adt+ [2].

Now apply the variational formula (3) and assume prectbatM is the base motion
in both cases and thit, andM;, respectively, are the varied motions. ketd, be the
corresponding variational symbols; one has:

j di=

fla
Subtract the first identity from the second of&et:

t

d5t

00T oT
o 5+
23 %

—0,a
i aa 0

to

and an analogous one wifhin place ofg, .

0=d- o,
in which Jis the variation symbol that relates to the (galygrasynchronous) passage

from the trajectoryVlp to M1 . One will have:

7) | (5BT + 2T dd‘yt

to

Za—Tch, +6—Tc5a
iz 00 oa

a—U+Q5q+ Q&a} di=
0q "

i=1 to

in which the integral and the difference in thehtipand side is calculated fiot.
Now recall the observation in nd. If Py, P; are points that correspond to the
instantg, t + t, respectively, oMy andM; then one will have:

OT=Tu(t+ & —To ).
However, from (4), (3, one will have:

To (1) = Uo (Po) +Eo,
Ty (t+ &) =Up (Po) +Ep + &E,
from which:
O T=U; (P)-Ug(Py) + E=JU + E.
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Now:
A= zg—u q +6—U5a
i=1 i

and therefore:

>V s =0T-d- Y sa,
i=1 i 6
so (7) will become:

7]

Za—Tchi + 9 5a

, dot ouU _
(7) '[{551'+2T o -0E- ( QchaL di= >3 o

. oa

to
If one setsdE equal to its value in (Pand one takes into account the fact tdats

kept constant during the integration, in additio ¥, then one will have the identity)(

5Dj2Tdt = j(zaﬁnﬂﬂj dt
! d

®)
_ < Hou e ou |
‘5a£[7a QJM dt-(t t))tjo(aa QjM adt-( 1 g)‘a(%

oT oT
—0 —5
Zaq w +

whose right-hand side provides the increment inaitteon that relates to the passage of
the portionP? P of the trajector, to the corresponding orfe’ B of the trajectoryv;

(both of which traverse the syste&with constanta and differentda), which are
connected to each other by the adiabatic transtooma/ that is realized in the
corresponding time intervél —

The validity of (8) is completely general. In peular, in order to deduce it, one does
not have to make any hypothesis in regard to thethat adiabatic parameter is varied,
as long as one drops the oft-repeated demandhbatdrivativea is supposed to be a
regular function of time betweem — t, and it must be treated as something that is as
small as possible in the variational identitieke lan infinitesimal quantity of the same
order (viz., one) as théy;, etc. However, if (also within the scope of thedtriction) the
form thata (t) assumes in the course of the transformation idurther specified then
(8), which also expresses an identity that follofinmm that transformation, will not
permit any conclusion that is expressive, addition to being independent of the
intermediate motions M Indeed, the essential interventionMbfin the two integrals on
the right-hand side is obvious.

The only way of makin(@) independent of M is to séi= ¢ = infinitesimal constant
(at least, in general)n that way, one will specify the linear time evmo of the

() For the times when it is legitimate to transpoetdh sign out of the integral, see LEVI-CIVITA and
AMALDI, Lezioni di Meccanica Razionaleol. Il , pp. 507.
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adiabatic parameter a. That is precisely what necessitates the definitioat was
mentioned in the introduction.
The verification is immediate, since in that case:

(tl—to) a= (t]_—to) E= @,

so one elides the two integrals in the right-hand, dué not the other two terms, and

what will remain is:

b

0T

2:_5 .
36 G

i=1 i

9) 5Dtj12T dt=

to

as the fundamental identity, which expresses tfeetedf an adiabatic transformati@a
that is realizedinearly and in the time interval —to .

5. Case of periodic systems- As a simple and immediate application of (9}He
construction ofdiabatic invariants(i.e., quantities whose values at the beginningrof
adiabatic transformation remain unaltered), comsitlee case in which the two
trajectoriesMy and M; are closed (and their motions are therefore p&jodIf the
variational formula (9) is applied asynchronouslysuch a way that the two complete
orbits correspond then the right-hand side will éseulled (more rigorously, it will
become infinitesimal of degree at least two), anel will have:

F}ZT dt=0.
)

One will recover a known result: viz., the adiabativariance of theaction when it
extends over one period (for periodic motions).

6. Observation about the mode of variation of adiabatic parameters— It is
apparent from the calculations that carried outard that for the transformed trajectory
Mi, assigning the incremerdl of the adiabatic parameter and the time intervaing
which the transformation is performed is the sahiegtas determining the variatiak
of the total energy of the system. In order teddie the results of the intermediate
motion M, one must, in addition, appeal to the hypothes$ibnearity in time for the

parametea throughoutM.
Now suppose, more generally, that other paramegesislesa enter into the givens of
the problem thevis viva and force functions, namelg;, ..., Cq ..., Cm , Which are

constant in the base motion and the transformed whereas for the motion of the
transformation, they varyn a well-defined way that is given by the basgettry and

the law of variation of a Thec, will then prove to beot necessarily lineaduring the
intervalt; —toin which they are defined, (t). They are then supposed to be bounded and
differentiable.
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Even when the total variations of tlwg are infinitesimal, it is undoubtedly not
therefore possible to treat them as further adialpstrameters along witi, and if one
wishes to do that then they must also be linear fumstiof t during the motion of
transformation, except that it is possible to do thatrie important case, and here is how:

Assign the variatiorda of the parametea and the intervat; — to during which the
motion of transformation occurs, but not the base onadind an origin on it. As we have
seen, the transformed trajectory is determined uniquetl, @n particular, it will
correspond to certain incremenls, &, of thevis vivaconstant and the further constants
C, that are determined completely by that transformatiGonversely, suppose that the
dynamical problem is such th#te values of the constants E, specify the trajectory
uniquely(the temporal law is not important), so if a condittbat one can recognize on a
case-by-case basis is satisfied then it will be ptessd consider the, to be adiabatic
parameters whose time-dependency is — | repeat — noadgrieear.

Indeed, let us try to treat tlog as adiabatic parameters, likeand as a result, replace
the actuat, (t) with the expressions:

ca(t) = ¢ +%<q—to),

which are valid during the transformation.

It is clear that the increment that then resudtscf, at the instant; is equal to that of
the actual transformation. Hendé,the increment in the constant E for this virtual
adiabatic transformation is equal to the actual dménich might or might not be true)
then the hypothesis that was expressed above wilvddid, and the transformed
trajectory will coincide with the one that is reachby the actual transformation.

Since the end points of the two trajectories ine omode of realizing the
transformation or the other can be made to correspone concludes by affirming the
possibility of treating the, as further (linearly-varying) adiabatic parametg@tsthe end
of calculating the transformation).

In substance, when one proceeds in that way, elaaes the actual trajectory of the
transformation with another one will be close t@lite expressions far, — namely, true
and virtual — will differ in the concrete casedmffnitesimal quantities), but still have the
same end points, and therefore one can make twasddse trajectories correspond.
Now, it is precisely that correspondence alone Weare interested in knowing about in
order to evaluate the variations in the arbitragchanical quantities that are determined
by the true adiabatic parameter. As long asdbisserved, no matter how one alters the
intermediate motion, one can calculate those vanstby referring to that virtual
transformation.

An observation that is, in a sense, inverse toptleeeding can be made in regard to
the way that one realizes the variatdnof the parameter. In the preceding calculations,
it was supposed to be linear. Now, if one assuim&sa no longer linear, but otherwise
well-defined, so the sam&, &C, will follow from a givenda and that will once more
determine the transformed trajectory uniquely, tihevill be possible, if only for the sake
of analytical convenience, to adopt that law ofatéwn fora (t). That observation can be
useful when one agrees to replace time with a patiemthat is not proportional to it.
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7. Equivalent forms of the variational identity (9). — Introduce the Lagrangian
function:
L=T+U.
Thevis vivaintegral:
T-U=E

persists along the base trajectdfy and its variantM; with the valueskqy, Ep + JE,
respectively, for the constants. Therefore, one haille:

2T=L+E.

Let T be a homogeneous quadratic function of only ghen My andM; (recall that

a, which enters into the general expression fovtberivg is zero on the aforementioned
two trajectories). When one assumes that the caracocadinatesp; , g; relate to the
reduced form (witha = 0) of T, one will also have:

2T=>'pq,
i=1
SO one can given one or the other of the following tquavalent forms to (9):

7]

@) Y pgd=|>npdq|,
t i=1 i=1 t
(@) & (L+Uydt= |3 pog|
to = to

In certain cases, it can be convenient to fornsuthe dynamical problem from the
Hamiltonian viewpoint. Therefore, consider the imoe$ with constanta and then
constant (possibly reducedy viva T

SetL + T + U, so one will have, as is known:

n oL noT s
H=> _—g¢-L=2_—q¢-L=2 pq-L
iz 0 iz 0 Z:;‘

The second group of canonical equations will yield:

. _OH
(10) ==
op

One hadd = E for the motions considered, as well. If one knofesfunctiorH then one
can then expreds+ E in the following way:
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n . n H
(11) L+E=Zp.q=2pig—,
i1 i1 9]

which can be transformed, if desired, by replacingptheith the ¢, after solving (10)
for thep; . It is possible to do that by supposing that the Hessiahe initialL with
respect to thej, is zero, and then, as one easily sees, thdtwith respect to the; .

The observation to be gleaned from this is that wherd$tmamical problem is posed
in Hamiltonian form, it is possible to get the correspogdunctionL + E by algebraic

calculations, and that is the function that is otiast in the fundamental variational
principle of the adiabatic transformation$)(9

8. Routh systems— Consider the elementary case in which some variabl@shw
one callsqi, 02, ..., gm, are ignorable; i.e., they do not enter ihio(as always, for
constani). One will then have the corresponding first ingdgyr

P=q, i=1,2,..m

It is also classical that the determination of th&tiom reduces to the integration of
the canonical system that relates to the new fumctio

H =H (Qm+, -+, On s Pty -, P | C | ), j=1,2,...m
and the quadrature:

oH .
j = | —dt, =1,2,...m
A Iacj j

Two cases present themselves in regard to adiabatgfdrarations: Eithera enters
into the complete expression for thie vivaor it does not. In regard to the constamnis
one sees that, in general (i.e., whendhe.., dn are not ignorable, even in the termd’in
that containa), at the end of the adiabatic transformation, efirst case, the; will be
incremented by certaig; , while in the second case, they will remain constants

Indeed, when the equations:

__9H _dlL@lalad)

- aq; aq;

j=1,2,...m

i

are applied to the motion of the transformationyiit become apparent that if thg, ...,
Om are ignorable in theompleteexpression foil (and therefore in the coefficients af
as well) then the right-hand side will be equakéoo for all of them, and therefopg=
constant =; throughout the entire transformation. Howevenif..., gm are ignorable
only in thereducedform for T (viz., a = 0) then the right-hand sides will no longer be
zero, and a variation of the constagtill enter in.

In any event, (11) will become:
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L+E—Zprq+29q

r=m+l

and therefore, (9 will become:

jz prth+29j'q dt| =

to ! =m+1 =1 to

n L
> pdq
i=1 t

If one calculates the second integral and developsathation then one will have:

FJZ p ¢ dt= Zc 5q1+z péq

to ' =m+1 i=m+1

S olod;-Yosl .

and with some obvious simplifications:

t

5Dj Y p g di=

t, r=m+l

> b dg - quq

r=m+1

to

The importance of the duration of the adiabatic foansation in the correct
construction of the adiabatic invariants was emphasizdte introduction. One can then
give an example of that situation by specializing the ¢that was treated in that number
and supposing that there are preciselyl ignorable coordinates. Suppose that they are
the firstn — 1 of them, so the preceding relation will reduce to:

t

y n-1
(12) 5[ p, ¢, dt= ‘ p,99,~ Y. q;d¢
to j=1

to

Suppose thaé does not enter intd, and then suppose thét; = 0. In order to do
that, setqg,dt = A, and replace the temporal integration in the integrah vhe

corresponding integration in the plamg g, in phase space between the positBynsP;
that correspond to the instamgst;, resp., and one will get:

R
o[ p,da,=| p, 3, |
PO

The motion will now be periodic with respect to trenjigate paip,, g, for any
value of the parametex If one extends the integration over the opltihat relates to that
plane then the right-hand side will be zero, and whiatemain will be:

JDI p, dg,= 0,
y
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with an obvious significance for the index on the integign, and one defines that
integral to be amdiabatic invariant. It will then be apparent that this integral is
invariant, as long as the adiabatic transformatarhat is assigned to the systatso
lasts for just one period relative tq jx,.

Keep the hypothesis of periodicity in the plgneq,, SO one can pass on to the other
case: viz.,T actually containsa. Assume that our dynamical system possesses the so-
called Poisson stability which says that when the trajectory is not periothie, system
will certainly pass as close as one wants to anysahitial positions. Assume, as usual,
thattp is the origin of the base motidv, , and in the identity (12), ldi be a value of
time that corresponds to a position in the systemishalbse to the initial one, in such a
way that the deviatiom&p; , Ag; of the canonical variablgs, g can be treated as first-
order quantities. The projection of the trajectory ahtt plane will be a closed curye
of finite length. If one possibly restricts the agregon limit to the deviation that was
just mentioned then one can certainly do that in suclay that at the instarti , the
variablespn, g, are at a point ogrthat is close to the one that they determinig, &o if 7
is the period that related M, g, thent; —to will differ by just a certain multiplenz of .
From the regularity of the motion at the instant:

t, =to + mr,

which is close ta; , the system can be further evaluated at a deviated go&iyi a
quantity of first-order ity . Now remove the prime that is affixedtipand assume that
t; is actually equal tdp + mr . The right-hand side of (12) will then be equal taozer
because,, A, are equal af andt; , and the first-order difference:

g (t) —q (to) =Aq;,

which must be multiplied byc; , will give rise to a second-order quantity, which camth
be neglected in the variational formulas. Therefone will have:

JDI p,dg, =0.
y

However, currently, in order for the indicated cyclitegral to be aadiabatic invariang
it will be necessary that the transformati@must be realized at a time that can also be
equal to a sufficiently large multiple of the perind

Further considerations can be carried out wheloes not contaira, since one can
treat the integration constargsas further parameters in that case. Indeed, as at@sl st
above, the proposed dynamical problem will give risenodther one that relates to the
Hamiltonian function:

(13) H (9m+1, -+ Oy Pty --sPnlC]@) =H (Qme1, -+, Oy C1y vy Cry Pty -+, Pn | C | @),

and in addition, the; will remain constant under the transformation thédtes to the
parametera, so they will be independent of it. Therefore, nothingthe dynamical
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problem that is defined by (13) directly forbids one from @®ering a new adiabatic
transformationin which not onlya is made to vary (linearly, by hypothesis), but also the
quantitiesc; . One will further have:

7]

5Dj Y p g di=

t, r=m+l

Z p, 0q

r=m+1

0

between the base trajectory and the one that come aba result of the transformation
[cf., (9) and (11), which are to be evaluated with (13)], and irctse oh — 1 ignorable
coordinates and a periodic motion in the remaining pag, , one will have:

ij.pndq1 =0
y

when thec; are varied slowly (and linearly), as wellasand a duration of one (or more)
periods.

9. Relationship with the Hamilton-Jacobi method of integration— The @ + 1)"
Lagrangian equation (or more precisely, Lagrangian idgmill give (a = £ = constant
from now on):

% —£j—dt

£th dt= ¢
)

to
However, one has [cf.,

t t

1 ou T |*
E=¢ dt-&|—| ,

t{( aaj oal,

from which, when one sets=T + U, as usual, one will get:
(14) 0=cE +gj—dt

It will result from the sequence of calculations ttegt derivative ot with respect to
a must be calculated by supposing thas expressed in terms gf, ¢, a. In addition,

while oL / 0da must rigorously be taken alomd, from the presence of the infinitesimal
factor & one can calculate the preceding integral along the tiagectoryM, with a
negligible error. Add the preceding identity, multipliagt; —to, to (9), (9') and get:

t

(15) 5Dj2T dt= ‘Zp, Jq

+(t - to)aE+5aj— dt,

0
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t t

(4 -0+

to to

&L gt

5Dtjo(L+E)dt: ;pi Jq =

Now:

b4
5DjEdt:(t1—to) JE + |Edt

fo

t1
to

with which, the preceding identity will become (whene notes that = E):

7]

(15) 5Ddet: Zn:pi J0q - Hot
t i=1

’]
+0 aj % dt.
; 0a

to

The integrals on the right-hand sides of (15) @iil) are theaction andHamilton’s
principal function respectively. As usual, take:

a<forar, =i

to to

so for the variations that correspond to the pasdagm the base trajectory to the
transformed one that is mediated by the adiabeditsformationda, when it is applied
over a time intervath —to (which is equal to then one over whiglandS are calculated),

one will have:
t

1 1
. n L oL
16 O'A= 5q| +(t-t)0E+oa — dt,
(16) Zp “| (t-1t) at{aa
n b 4gL
(16) 3's=|> p dq-Hot +5aj — dt.
= . ; 0a

Now takea to be constant and note that under certain qtisétaonditions that are
satisfied in dynamical problems, the action camtgressed as a function of the extreme
coordinates of the trajectory and the enefgfpr conservative motions. That is, if one
takes into account the fact that a parameteill also enter into the present problem then
one can write:

(17) A=A(q |4 | E|a),
while the principal function can be expressed imteof the variableg®, g*, t1, to . Note

that fora = constantH will not contain time explicitly, an® will depend uport only by
way of the differencé; —to . One will then have:

(18) S=S(qd'| ¢ El 3.
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In addition, it is known that whek, Sare expressed in that way, one will have:

O0A _0S _ ot

og' o' .

OA _0S __ 0

aQiO aqio .
(19)

0A

PPt 1y,

6E 1 0

0S 0S

22 =H, -

A °

If one substitutes these in accordance with the righttisades of (16), (Ipthen one will
get:

0, A 0A dA
5A= ZW P q+_5E+5aj—dt

i=1 I

= og’ aq° o,

n b

J'S= 2—5 ! 685q +—5t1+a—85t1+5aj%|'dt.
I tO

However,d'A, &'S must be total differentials of the functions the¢ axpressed as in

(17), (18). One will then have:

Y

0A 0S oL
20 - = = _dt
(20) j o

in whichdL / da is calculated fronk. (q | § | @), and the integral extends along the base

trajectoryMg .
As is known, the action satisfies the HAMILTON-JA8I equation:

[aA qj _E
oq
and one proves that from tme+ 1 constant parameters’, E that enter intcA, it is
always possible to chooseof them such thah (q| ¢° | E | a) is a complete integral of the
preceding equation.

In regard to that classical procedure for integratingcdonical equations, for the

present problem in which one paramet@rccurs, one will immmediately get the increment
of the energ¥ as a consequence of the adiabatic transformdidhat is applied during
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the time intervalt; — to, where the system passed through and g' at the initial

moment.
As a result of (14) and the first of (20), it followst:

a—As =- &,
oa

so multiplying this byt; —to and keeping the third of (19) in mind will give:

0A 0A

—o0a =- —O0E,
Jda O0E
and therefore:
0A
-_0a
E = % oa.
0E

Once one has solved the dynamical problem by the HAMNT@COBI method,
the calculation oE will be immediate, and the quadrature that appears inwil4jot
be necessary, either.

10. Gibbs adiabatic invariant. — The variational formula (9), or the equivalent one
that was mentioned previously, contains everything tbancerns the adiabatic
transformation of a portion of an arbitrary trajegtoexcept that the more expressive
results are realized in that theory for the closeel,(periodic) trajectories that were
considered before in nd, and the other ones that fill up the surfakte E in phase space
pi, g densely or almost-densely. Now consider that secasd. One can make two
hypotheses: The surfate= Ey, which one call&, upon which the base trajectory lies is
closed, so therdimensional volumé/ that is enclosed by the conjugate varialples;
will prove to be finite. In addition, thguasi-ergodichypothesis is true; that is to say, as
long as one considel, in a sufficiently-large time interval, it will pass alose to any
point ofZ, such that it will fill upZ densely.

It is clear that one get a precise evaluation efdénsityd by which the points a1y
fill up = can be obtained only in the asymptotic daset, — «. However, one does not
have to worry about the precise form that density asfume even when—t, is finite,
as long as it is sufficiently large; i.e., such theg torresponding trace bfy will realize
a covering ot that is dense, in practice.

The determination of the densigywas made by LEVI-CIVITA {) with precise
justifications in regard to uniqueness. Briefly, here & ¢hlculation of that eminent
author, which is based upon the theorem of LIOUVILLEt tegpresses the idea the
volume in phase space that is transported by the dgahtrajectory is conserved.

() “Drei Vorlesungen iiber Adiabatische Invariantdog. cit.
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LetH (p | q) = E be the equation df, and then consider the analogaiishat relates
to the valueE + & of the constant (suppose thi#t > 0, for convenience). Associate any
point P of  with the corresponding’ of Z' that is situated on the normalZcatP. Call
the length of the relevant segment of the normedind letdp , dg be the corresponding
increments in the variables. Set:

o 522

From the hypotheses that were made> 0, so one will have:

dH ”6Hdp+6H dq_dE>

- = - 4 =" 0,
dn 4Fop dn 0q dn dn
so one will have, in value and in sign:
dp = ia_H dn, dq = ia_H dn,
Gop G oq

for the components of the segment of the normaigadim, and as a consequence:
dE=G dn

If dois the surface element @haroundP then the corresponding volume that is
found betweerx andX' will be:

dvV=don,
and from the preceding:
dv=9%4e.
G

Imagine thadV is transported along the dynamical trajectoriethabdV is constant.
The constancy of:

do
G

on Z will then follow from the transport that operaiaghe trajectories that are situated
on that.

That says that the desired densdiyoy which those trajectories fill up will be
proportional to 1 /G. That density is also true for the points M§ (always in the
asymptotic casg —tp — o) by virtue of the quasi-ergodic hypothesis thas wade In
order forMp to cover all of, so it alone can substitute for all of the trageiets that were
considered just now.
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Prof. LEVI-CIVITA also proved thad = 1 /G will be the unique admissible density
when one supposes that the canonical system does notaagminiform integral other
thanH = E. One should refer to the cited paper for that proof.

Some further considerations lead us to see rigorouslydéntity of two particular
means, which will constitute the keystone for the prbaf tve have in mind.

Cut out an elementary segment of (Euclidian) ledgton an arbitrary trajectory of
>. At the onset of an arbitrary time intervalAos will be transported to another element
of that trajectory of lengtl;s (in the sense that the two motions that simultaneously
originate at the extremes Agswill be represented by the extremes\ag fort = 7). One
easily recognizes that:

As
G

is invariant in relation to that transport, and in fact

2 2
o (o) (oH n
G= E + = E 02+
\/1[612)} (an ‘ i=lp| |

is the absolute value of the velocity with which the péirthat represents the system
moves in Euclidian phase space, so one can measuaectlength of the trajectory in the
direction of motion by:

As =G At,
up to second-order quantities.

Since time does not enter explicitly into the equetiof motion, it will be obvious
that the aforementioned elemenss, A;ss are traversed in the same infinitesimal interval
At, and it will then follow from the preceding that:

Bes _ A

G G
(Go, Gy are the values db at the points of\¢s, AsS, respectively), which express the
invariance ofAs/ G that was claimed.

Now consider a numbe¥ of trajectory elements that are sufficiently largefil an

elementary regioAgo of = densely; in addition, they all have equal lenfyis
After time 7, that length will become:

AS= & JAYS)
G,

and it will occupy a surface element of area:
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Alafzfiﬂﬁml
0

by virtue of the invariance of the ratfoo/ G that was seen before. If one considers the
fraction Gy / G1 on any trajectory element in the final position there avill get N
elements that all have equal lengffys and occupy that fractioB, / G; of A0, i.e., an
area that is equal oo and then equal to the one that covered by an equal mwhbe
segments of equal lengths in the initial position. Gaethen state that:

If one divides the trajectory that fills Bpdensely into elementary segments of equal
lengthsAs, andthose elements can be thought of as the objects of a distributibthen
that density will be invariant along any trajectory.

Make the hypothesis that the quantByis never zero, or what amounts to the same

thing, not all of the derivative%i, Z—Hare annulled at the same time. The preceding
P oG

conclusion will then be true with no restrictions tbe length of the arc of the trajectory

along which the transport of the density takes pldtéhat trajectory is then thily that

occupies all ok and one les denote the arc length, measured in the direction eibmo

then one can conclude that:

If Mg is divided into elemeni&s of constant length then those linear elements will fill
up Z with a constant surface density.

Clearly, that result can also be expressed in anotlagr If an aggregaté of
equidistantpointsP is distributed oM, and ifh is that distance theim the limit h - O,

s —S — oo that distribution, which is homogeneous on,Mill also be (asymptotically)
homogeneous an (%).

That amounts to saying that if one considers the aggrégatd relates to a certaln
ands; — S, and ifN is the total number of points A&y andr is the number of points that
are contained in a portion of arAathen, if~ once more denotes the area of the surface
>, one will have?):

N[Ao _

lim 1
N 5
§=H-®
for anyAo.
Now, letF (p | q) be a function that is defined @nand is finite and continuous on it.

It will also be determined at the point M, . We wonder how to calculate the mean
of F along the arc itMy of lengths; — 5. Obviously, from the definition of that definite
integral, it will be:

() E. Borel,Méthodes et problémes de la Théorie des fongti922, pp. 30.
() Ibidem pp. 31.
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o
S-%

F= F(p|g)ds=

lim 2 F (| o) As .

& =0

Assume that all of the elements of arc-lenfyshare equal td, and as with the points
P;, one must calculate (p; | g;) at the equidistant points of the (homogeneoug)eate
A at distances dif. If N is the number of points @fthen one will have:

N
2 F(pla)
25 F (o |q) Ay = H—— N :

which is, in fact, equal to the mean of the valoéshe functionF at the points oA.
Hence, sincéN - « for h - 0, under the hypotheses of the existence of tleelitwits,
one will have:

~ Y. F(plq)
(a) F:HTOMT.

Now, calculate the surface mearFofp | ) over the closed surfage(H = E), which
is equal to:

1 1.
EiF(pm)da =< 1im 2 F (| 6) Agy.

Since the points oA end up being dense hiwhenh - 0,s — S — o, suppose that
some of them lie in ang g . Specify thatAg must containj = 1 and denot®, = P*,

]
P?, .., P". Set:
F(p 19 =F (@ lq) +&°, $=2,3, .0,

and assume that tipg g; in the sum on the right-hand side of the penuli@malation are

the coordinates dP; = le. If one sums the preceding and aédg; | g;) to both sides

then one will have (set;'= 0):

ZF(ij | qjs) =nF (pJ |ql) +Z£js ,
s=1 s=1
for which, one can also write:

SEF@EIa)AG =2 Y Y IF(p!199-4 40
j

j s=l
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or also, if one multiplies and divides blin the right-hand side:

12 1 d NAC.
Z2.F(|la) Adc == F(p3lad-¢ — 1,
5 < P o) Ag NE,. {3221[ (p’149 sfl} )
Set:

N Ao

—_— =1+ -

2 r n

from which, one will know, in the meantime, tht (

lim#n =0 when N - 0,5 -5 — o,
and observe that:

ZZle(Pjsqu) => F(plq)

j s=1 i=1

is nothing but the sum of the valuesFobver all points oA. One transforms the other
sum of the same type analogously. One will thereha

2AFMRIG) | 24

1 1Y = 1
> F(m la)Ag =S F(b = 2N
05) s < (1 a) Ag N zi:l, (plg)+ N N< & N

in which one must suppose that th@oints ofA are ordered in the right-hand side in the
same manner that they follow each otheiMyn

MakeN - o, 5 —5 — o: The second and fourth terms on the right-hand wil
obviously go to zero in relation to the asymptdthavior ofr7; . Hence, since the left-
hand side is well-defined, under the hypothesistti@limit:

: 1&
Jim <> F(plq)
~o N e
S§=H-®
exists, another limit that one caflswill exist, namely:
: 1&
im =) ¢ =¢.
N - NZ:]; :
S§=H-®

One then make&g - O, in order to realize the surface integraFofp | g) in the
left-hand side of §). If one supposes thé&tis continuous orx then theg will tend to

() From now on, the limiN - o will always be linked with — 0.
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zero with theA g, so€ can be made less than any number in modulus while onemessu
that theAg; are sufficiently small. What will then remain is:

1 : 13
—|F do= Im — ) F(p :
Zi (pla) g:;mNizzl (r19)
and from @), in which one passes to the asymptotic evaluagsn—s, — :

1 . 1 %
» EiF(p|q)da—sly;qw§£F(p|q) ds,

which verifies the identity of the two means — yigurface and asymptotic — along the
trajectory under the single hypothesis of the exisé of the limit in the right-hand side
of (a) fors; —s - o, as well.

We now recall the variational identity'Y%nd show, first of all, how its mode of
application allows a noteworthy extension. Theatam J that was considered in it up
to now corresponds to the passage of the basettraj®l, (which is situated i) to the
transformed on&; (which isZ'). M; is a trajectory witta constant. Apply therinciple
of varied actionto it (). Under the passage b to any infinitely-close curvgthat is,
like My, situated ort’, we will have:

4

) b op n
& [2Tdt =5[> padi=|> paq
t t i=1 i=1

to

in which, if one assumes that thein the right-hand side relate to the extremed/gf
then one will commit only a second-order error.

Take the sum of the preceding equation with &d once more led” denote the
variation 5*+JOD, while recalling that (9 (and therefore also the other equivalent

identities)continues to be valid under the passage from thjectory M to an arbitrary
infinitely-close curvey that is situated on the surfacé (H = Ep + JE) that is the
adiabatic transform oE.

(9), which was applied in the specified way just nawan take on the purely
geometric aspect:

S n R

5[> pdg =

S i=1

n

> pJq

i=1

R

in which the curvilinear integral is calculated raddVlp, whose extremes ai, P;, and
the symbol of the asynchronous variatidnis replaced withj, which denotes precisely
the arbitrary variation, in the purely-geometrictext, ofMy to the arbitrary varied curve
of &'

() LEVI-CIVITA and AMALDI, Lezioni di Meccanica Razionale. Il, pp. 545.
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If one develops the operati@then one will get:

S (Opdg-p &g =

i=1

& =0

since the invertibility relation:
g =ddg

is obviously valid, and with one integration by fgathat is applied to the second
integrand:

3 (Jp dq -4 dp)= O,

i=1

& —

which can also be written:

L en sy e [ElGyon s fo =0

S i=1 S i=1

by virtue of the canonical equations, and when asgimes that the arc-lengtlof the
trajectory is the integration variable. The variegiectoryy (to whichMy is carried by
i, ) will now be the projection d¥l, ontoZ that made along the normals3o

Fix positive directions along those normals (tadgathe interior or the exterior of the
volume that is enclosed [3) in such a way that when the value and sigdnois given,
which is the segmeP that is found betweeh and%’, one will have:

1 oH 1 oH
i = ———0n, i = ———on.
P Goop A G dq

With that, the preceding identity will become:
S
j onds=0,

which expresses a geometric situation that relatesy trajectory arc. That will lead to
a conclusion that will be even more expressive wh&nhapplied to aMy that satisfies
the quasi-ergodic hypothesis.

Meanwhile, since the preceding identity is valat &ny arcs; — 5 of Mo (i.e., it
expresses a constant situation — viz., the varmgshinthat integral — that relates to an
adiabatic transformatioda that is realized along the asc— s of the trajectory), one can
obviously assume that it will also be valid in theit ass; —s —» «. That is, the integral
in the left-hand side will also be zero for thee@d) adiabatic transformation that is the
limit of the transformations of infinitely-large cation. Obviously, one will also have:
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1 S
im ——|dnds=0,
SRR R
from which, it will follow that:

S
jén ds=0,
S

from the relation ).

The integral provides the variation of the voluvhéhat is enclosed by the surfaEe
One can then see the invariance of that volume uadiabatic transformations that are
infinitely-slow and linear and have durations such thatespondingMy, with its points,
will cover the surfac& with a density that is sufficiently close to a constal he volume
V is the adiabatic invariant of GIBBS, who was essdlgtithe first to recognize its
invariant nature.

11. Dynamical systems that admit first integrals— In order to adapt the method
that was presented in ndk4 to the treatment of the problems of adiabatic invaganc
that are of interest to theoretical physics, we sfiat consider some aspects of the
presence of first integrals for the equations &ittonstant.

We specialize the problem that we have treated indefierality up to now by
supposing that does not enter into the expression for W viva, for the sake of
realizing a formal treatment that is more conciseherl since the truly interesting
guestions in which one considers (or one can considiapatic transformability, the
parameters that determine it cannot be presented withddrévatives, as well.

Now adopt the Hamiltonian formulation of the probleithe equations:

d_p:_aH dg _oH

(21) ~ ’
dt oq dt dp
will obviously be valid for either the base motiom £ constant) or for the ones that
realize the adiabatic transformatiand ap + € (t — ©)].
Suppose that whem= constant, but arbitrary, equations (21) admit a iint&gral:

(22) F(plala)=c,

along with thevis vivaintegralH = E. Assign the intervat; — t, during which the
adiabatic transformation is performed that is charaet@ by the incremenfa of the
parameter, and that integral will have a value thaetiteof it that gives a new value of
the constant.

Let us evaluate the principal value of the increndent

As before, letMy denote a base motion that relates to a constant zaloé the
parametem, and letM denote the motion of the system during the associatietha
transformation that is also performed over the tintervalt; —to . DuringM, one will
have:

(23) a=ap+ € (t1—to),
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with

£must then be treated like a first-order constant dgyaaiong withda.
Follow the variation oF alongM. One will have:

dF ~o0F .  OF .,  OF
= + +—

at  Zop " op 1 o

and upon taking the canonical equations (21) into account:

dF oF
CoFHu+|E e,
ar - EHw (aajM

in which the indexM indicates that the corresponding quantity is caledlat the points
of M.

Now, (F, H) is identically zerowith respect to all of the variables that it depends
upon, namelyp; , g, &, sinceF is a first integral for any value @ In particular, that
bracket, which depends upbiby way ofa, will be annulled at the points ™, so what

will remain is:
dF _ (aFj
- = g —_ ,
dt 0a )y

and up to second-order quantities, one can replace thesvalfdF / da that are
calculated oM with the ones that are calculated at the pointdpof so, within the limits

of that approximation:
dF _ (aFj
— == .
dt 0a )y,

If one drops the indeM,, for simplicity, and integrates frorg to t; along the base
trajectoryMo then one will get:

[
(24) d::&:gjwdt,
. da

which will provide the requisite increment of timdgration constarat

12. Systems that admit separation of variables. Stackel case\We now move on
to consider systems of STACKEL type, which areisdenown, characterized by the fact
that they admin quadratic first integrals (including that of engrgand for which one
adopts the following expressions:
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(25) Fazzn:db”ﬂ(%p;—uﬂ) =Cq, a=1,2,..n,
B=1

in which the®? are the reciprocal in the determinard{f || # 0 of the element® 3,
and are, at the same time, functions of only the coaelmathat corresponds to the
second index.

Agree, in addition, thatr = n corresponds to the integral of this vivg so:

H=F, and E=c,.
As a consequence of the corresponding equation (25), idrreave:

oH
Y = — = chh ,
G, ., Pn

and when one expresses thie terms of the(q, it will result that:
n q2
H=F,=> | =2 -0"U, |,
- § o

and it will appear that thes vivapossesses the expression:

SinceT must be a positive-definite form in thig in dynamical problems, it will be

clear that the condition:
(26) o> 0

must be imposed upon the functio®®” in the entire domain of existence of any
solution.
If one solves (25) with respect to thethen one will get:

(25) Ph :\/ Z[Uh +Zn:q’ah ng ,

a=1

such that, in particular, th® will be functions of the corresponding .
Assuming that the equations:

Un +Zn:CDah c,=0
a=1
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have two simple rootg, = a, , g, = bn , between which, the initial valug’ is contained.
One then notes that any varialdg will perform successive librations between the
corresponding extremes , by in the course of the motion of the system, and in mahdlit
since the sign of the root in (23nust change for any semi-oscillation, the represeatat
curve of the two variables in the plane @mf, g, (which is then the projection of the
system trajectory onto that plane) will be a closedetimat is symmetric with respect to
the axisg, . Denote it briefly by . Its equation can also be written in a form tisat |
equivalent to (29:

n
(25") % phZ_Uh_chan ¢ =0,

a=1

and one will see tha, is clearly specified by the values that are attributiedthe
constants g (and to the adiabatic paramegethat enters int@,z andUp).
One will now assume a base motibly that corresponds to the value$ of the

constants,, ap of the parametea and the values,’ of the variables, at timet, , and
follows it in the intervalt; — to . From the preceding, the corresponding trajectory
projects onto the planes of the conjugate variatlesy, along the closed curveg® that
relate to the values of the constaofs ay, and each of which can also be traversed many

times whert is contained intg, t;). Next, introduce the adiabatic parameteto which
the incrementda is attributed and realized in the usual way in the viateft,, t1); i.e.,
according to the linear law:

oa

1~ b

a=q+ (tl—to):ao+£(t1—to).

The relevant transformed motid, which begins with the corresponding valugy c?,
ap, will take the system to a configuration that is sidadn a well-defined trajectoi
(with a andc, constants), along which the constaats, assume the values + da, ¢’
+ Xy .

The &c, will soon be determined. For the moment, note Mhahlso projects onto the
planespn, g, along certain curves that apecified uniquelpy the new valueay + Ja,
c? + &, . Inthat regard, it is not essential to know theeiseepoint oiM; to which the
motion M transports the system at the end of the transfoomatit is only the increment
in thec, that is of interest.

Now, evaluatelx,, for which it is enough to apply (24), while taking into @act the
expressions (25) for thgy , and get:

4 op aq)aﬂ N aU
(27) &y = gtjﬂz{ K(% pi-U,)-o ﬂa—aﬂ dt,

and from (25):
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oda a

n n aB
&a: ij{ZGCD q);ﬁcy_q)aﬂa(;J—ﬂ}dt.

Zn:cD”ﬂCD =% = 1 for a=y,
= vy 0 for a#y
that
n ap n 0P
R D e
=L = oa
and one will have, by definitive:
n 0P ou,
27 Ca (t1) —C Xa=—¢| Y o¥| —£c + dt,
( ) a(l) a(to) a ;[ﬂ; ( oa 9a j

in which the integral must be calculated by taking tHaesforq, andc, that they take
along the trajectoryl. If one desires the incrementdp at the generic instamtthat is
found between andt; then it will be enough to replace the upper limivith variablet,
and then differentiate:

(28) Zn‘,cb”ﬂ(acb c, auj

) oa da

in which thec, are defined by means of the left-hand sides of (25), lenthtter equation
is satisfied identically along the transformed motibn

Observe that, in regard to (27), (Rf one treats like a first-order constant then the
integrals in the right-hand sides can also be calallateng the base trajectoh, .
Hence, by definition, in the first-order limit, the bamotionMy, along with the variation
aa that is imposed upon the paramedewill determine the increments in the constants
Cs, independently of whether one knows the intermediadéon, and therefore, from

what was just said, the curyg into which the initial curvey;’ is transformed, as well.

13. Adiabatic transformation of the Sommerfeld integrals.— As is known, the

integrals j p, dg, that extends along the curvgsthat were considered just now play an
W
important role in the criteria for the quantizationrdghamical systems, which is, in part,
justified by their adiabatic invariance.
Fix any variableay, and then the correspondipgand consider the dynamical problem
with one degree of freedom whose characteristic funasion
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(29) H=4pZ-U,~> D¢, .
=1

For reasons that will become clear shortly, #tedlenote the temporal variable that
relates to that auxiliary dynamical problem. Treatdhanda as constants whose values,
along with the initial values dafy, pn at the timeto, are thosec?, a,, p°, g°) of the base
motion of the STACKEL system that was considereateef One will then have [cf.,
(25"

(30) H=0

initially, and sinceH does not include time, (30) will represent the deternonadif the
vis viva
H=E

for the motion that was defined just now, and that @lis oy, . (In other words, theis
viva constant is zero for it.)

Since the problem has one degree of freedom, (30) &fith@l the trajectory oy
which will then be the curvey’ that was considered above, due to”Y2%hich is

identified with (30). That trajectory will then be ¥esed by an orbital law that is
different in the two cases.
Indeed, from the last of (25), one will get:

d_%:a_H :thph

30
(30) dt  dp,

for the STACKEL system, while (29) will imply that:

dg, _ 0K
37 Th TR
(31) at - op, Ph
With the substitution:
(32) o™ dt=dr,

by virtue of (26), as well as noting that the motiblg gives rise to a one-to-one
relationship between the two variabteend -

(33) r="f(t),

and the system (31) transforms into'§31
Now, from (30), (31 can be written:
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(34) dq, \/Z[Uwi%%j,
dr a=1

and if one supposes that the radical admits twdsrap, b, , between whichg,’ is

located, the motiomy of the auxiliary system will be periodic in theriadble 7.

Now, vary thea andc,, which are considered to be precisely those functions of t that
will result by replacing t withr by means of33) in their respective expressions in terms
of t (that are valid during the transformed motMi. In general, it is obvious that(7)
will not be linear in7. Let m denote the motion that results framg by starting from
those initial data (for = ). The system of trajectories will be transportedanother

one that igletermined completely by the increments that thend the energy constafit
of the present problem experiendeet my denote the motion along’.
Now, one will have:
H=0
alongmy, while one will have:

alongmy .
Now, evaluate the incremed€ = &; of thevis vivaconstant. One ha$){

When that is integrated alomgor my, as usual, given that’and c, are once more
infinitesimal, one will get:

€= j[a—Ha'+ a—Hc;jdr.

da o 0C,
From (33):

d_ 1 d.

dr o™t

hence, if one calls the expression (28and recalls that = & one will have:

n 0P n o, o0d
dH:_ 6Uh+z a/JCH €h+ gh Z q)ahq)aﬂ /J’+ mcy .
dt da ‘o oOa o o™, da Oda

However, sinced,; , % are reciprocal, when the sum overin last term is
expanded, it will reduce to:

() The derivative with respect tis denoted by grime.
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£ (0U, & 0P,
+ C ,
CD”“[ oa Z da ”

y=1
which will vanish, from the preceding. What will remailongm is then:

dH _ dE _

dt dt

One concludes from this that the energy will remain t@omdor the intermediate motion
m, due to the assumed law of variation of &hendc, , and if it is initially zero then that
will also be true for the finah; viz., for the transformed motiam .

Under the passage from the trajectpgy/to y;', one will then have:
&=0,

and therefore, the presept will be just the same as the curve that relatebeanotion

M; of the STACKEL system.

At this point, we apply the variational principle)(Avhich does not depend upon the
way that the adiabatic parameters are varied our auxiliary system. Presently, the
base motiomm, and the transformed ome; are both periodic: The interval — to will
then be precisely equal to the periodnef, and in addition, the asynchronism in the
correspondence between the two motions will chosen in augay that the respective
periods will correspondence. The adiabatic parametera,ax, .

When (7) is completed with terms that relate to the and all of the analogous
things that are written fa, and when one notes that presently:

Q:—a—T and & =0,
oa
(7") will become:
1 toL d toL
o'|2Tdr-da|l—dr->» d¢ |— o =0.
TJO T[aa Z{ Q'T[aca

One will have invariance of the action, when exeghdver the period; — o — viz., the
integralj p, dg, —if and only if:
W

(35) 5ajlg—§dr—zn:5cgf§—fdr =0.
7, a=1 0 ok

T

It would be useful to make the left-hand side 85)( which we will callA, more
explicit. From (29) and (3}, we have:
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12 n
L= phq:’]_H:q?+Uh+zq) C

ah ~a !
a=1

from which, if we express the integral on the riphnhd side of (27) that provides, in
terms ofr:

tHoU, & 0P n 4 o(0U, & 0P dr %
Azdaj[ 6ah+z a;hcﬂj_gzjqjﬂ[ aaﬂ+z a;ﬂcyjqu{njq’ahdr-

p=1 a,B=1g, y=1

The question of recognizing wheth&rnis or is not zero is reduced completely to the
correct evaluation of the three preceding integral&e see that this calculation (which is
asymptotically rigorous) is possible only by suppgshat the base trajectol, along
which we calculate the values of the functions he tintegrands will fill up am-
dimensional region in the space gpfdensely [Therefore, in the finite time intervaly(
t1), it will be dense enough for us to be able tostber the density that we will discuss to
have been realized in practice.] That is, with theminology that was introduced in
guantum theory, under the hypothesis that the bag@n M, presents nalegeneracy.

In particular, the substitutability of the spatrakan for the temporal one will still be
proved, although the proof of that in the casa Bfl will still be missing.

14. Determination of the density of the points oMy . — It is known that for the
motion of a STACKEL system, any varialdg will perform its excursions (in a finite
time) between certain extremas, b, . Hence, in the space of the, which is assumed
to be endowed with the Euclidian metric, the trgec is contained in then{
dimensional) parallelepipeds:

(36) an< Oh < by, h=1,2,..n

CHARLIER (%) has shown that when some relations with integefficients between
certain moduli of periodicity are not verified, ttrajectory will fill up the volume that is
represented by (36), and which we dalldensely. One then asks: What is the density
with which the points of the trajectoiMo will fill up the volumeV as time increases
indefinitely? We shall be guided by a hydrodynahjicture. LetP be any point oV.

The velocity with which a point of the trajectorggses through it will be:

a=1

in which, we have set:

Z[Ul +Zn:d>m c,,j = (i),

() Mechanik des Himmel8d. 1, pp. 97et seq.
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to abbreviate the writing, and that will prove to b&uaction of onlyqg . The sign of
J/ (i) will invert in the course of the motion any time tigateaches the extremas by .

Hence, a finite numbewr of trajectories will pass through one of its poiRfswhich will
correspond to all of the possible choices for the sfghe radical.

Consider out base trajectop and associate all of its segments along whicmthe
rootsm have the same sign. One will then getystems of trajectory elements, any
one of which can be assumed to cover the volrdensely.

Indeed, STACKEL has shown that the motion of a dyoahsystem in which any
variable g performs librations will bequasi-periodic(*), and more precisely, that the
system will pass as close as one desires to one afital positions aftean integer
numberof librations for any coordinate. Now, since the smgnjm inverts whenever
g touches the corresponding extreape b; of the libration, it will just so happen that
after an integer number of complete librations, thatical will recover its original sign.
Hence, as long as the time intertsalto in which Mg is defined is sufficiently large, the
portions of the trajectories that belong to any of afementioned’ systems will be
sufficiently close to each other. That statemeat ttas just made that any of thevill
realize a dense covering éfis then valid.

We shall now determine the density with which the pahtd, coverV.

Letg , r =1, 2, ...,n be the density that relates to tffeof the aforementioned
systems of segments, and &V be any volume inside of. The points ofAyV that
belong to the segments B in question will be transported to a voluikg/ after a time
T that is small enough for the signs of the radicalse@reserved. The conservation of
the number of points demands that one must write:

Iprdvz I p.dVv,

WY AV

so the functionsa (P) behaves like the mass density in hydrodynamics. Sinee
transport ofAgV to A1V comes about according to the velocity law (37) (in wiodke
assumes the" system of signs for the radical above), it will hapgthatg satisfies the
corresponding continuity equation in a form that wouldrbe for permanent motions, in
which time does not enter explicitly in (37). One \hién have the equation for:

(38) ii(pr d—qj: i%(ppmm) =0 r=1,2 ...\

iz 00 dt i-1 0G;

In relation to thev values ofr, one can write down just as many equations (8B
of them admits the same uniform integral insid¥;okpresent it by:

() See CHARLIERJoc. cit.
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ol
140

in whichD is the non-zero determinant:

(39) p=

D = [|®nk|l,

and the denominator is the absolute value of tlwelymt ofn radicals /(i) . The

function p is then positive and finite inside &, except that on its boundary, will
become infinite of order 1/2, since the quantiywill have simple roots there. It is
therefore suitable to represent a density.

Let us verify the preceding assertion. One has:

0 [ &, do, ..
Z nJ\/_ap _ z zcbe' e _ 1. d(]):lcbej (),

=1 dg  2(j) dq

: _ & mdor ot d(j)
S e @)= o8 e 40|

qu

If one sums then the last two terms will vanishg &mone letsB denote the left-hand side
of (38) then what will remain is:

dCDe.
dg |

Now, since thep™ are the reciprocal elements ®fy in the determinanbd, one will
have:

BPZF{

GJOND)

nj

and then, if one recalls the fact thbg; is a function of only thej; , so ;TD will be
nj

independent odj; :

aq 6(Dnj pery dq.

)

nj d
0P 0D q) __ dD”JZdDe'

If one substitutes this in the expressionBahen one will see that the result will be:

B=0;
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i.e., the functionp that was defined by (39) is an integral of equation ({@8n written
for any of thev determinations of the right-hand sideq87).

One then concludes that, in particular, when one assuhato = p, the density of
ther™ system of elements of the trajectddy will be transported invariantly inside of
along with any other of the remaining- 1 systems. Hence, the total density with which
Mo coversV, which is the sum of the partial ones, will also be proportional m
Obviously, one can set the proportionality factor equalioy.

15. Uniqueness of the density= o is obviously a uniform integral of (38). Is it
suitable then to represent the desired density of poifsinYes, because we easily see
that two (or more) uniform integrals of (38) can existdeed, go that satisfies (38) will
be amultiplier of the differential system (37), and it is known tHabne knows two
(uniform) multipliers then their ratio, which will obwisly be uniform, will be an integral
of the system (37). Now, we have made the hypothesaisthe trajectoryvly covers the
volumeV densely (viz., thejuasi-ergodichypothesis), and that is why we exclude the
possibility that the system (37) will admit a unifornbeigral for the constants, . o will
therefore be determined uniquely, and its expression wi# kize form that was given in
(39).

16. Rigorous calculation of the temporal means- One is given a functioR (q,
..., On), and theg, are such that:
a =qi (1),

which are the equations of the trajectbty. One would like to calculate the me&nof

F over an interval of timet{, t;):
t

- jF[q(t)] dt.

17 ‘ot

(40) F=_1

Recall the convention (32) with which we definedaaiabler that always increases
with t, and then substitute it fdrin any regard. In particular, 1, 71 correspond to the
extremedy, t; of t then we will have:

Todr
(41) ti—to= | =

,{CD "la(7)]
with which:

f dr
- _ j FLAD)]
- T dr ’
'[ chh

To



Mattioli — Variational principles and adiabatic tréorsnations 39

in which all of theg (t) must be expressed in terms of the new variable
The calculation of any will then lead to the calculation of a definite intaigof the
type:

_ 1 &
f=——[tlaDldr,
Z-l - Z-O Ty
in which the:
g =q (7

are once more the equations of the trajechdyy

We now move one to calculate those integrals wienng upon the fact that the
points of the trajectoriylo occupy the volum& with a density that will get closer as
the time intervat; —to (or the corresponding ore — o) in which the motion is defined
gets larger. Consequently, the procedure thatadagted will appear to be rigorously
exact when one passes to the asymptotic evaluldiom — 7o —» . In practice, the
values are realized for the mean in question apeoapnate, but they will approach the
asymptotic ones ag — o gets larger, and under the hypothesis that 1y is like that,
they can be replaced with the aforementioned asytiopheans.

Consider a value aj, that is well-defined, but arbitrary, and foundvbeén the limits
of the respective libration:

(42) an < gh < by,

and the corresponding hyperplame
gn = const.

The quantity ) [cf., (37)] will be non-zero omg since it vanishes for onlgh = an, gn =
bn, and therefore the trajectop will never be tangent tey, .

Fix rn — 1o, and let A be the number of times that crossgs Sinceq, varies in just
one sense between andby, , andvice versa2N will be equal (up to unity) to the number
of semi-librations ofg, that are contained im — 7o, and therefore the varying of
between the limits (42) will also be constant (alevap to unity). (34) will then give the
durationT of such a semi-libration in the reduced timas:

% d
T= (=,
i(m

SO:

(43) “To _ (9%

That equivalence is valid asymptotically as— 1o — o ; i.e., it is enough that we
remember it further. For finite — 1, it is sufficiently exact wheN is very large.
Consider a hyperplang, , along with an analogous o that is infinitely close;

i.e., it relates to the valug + Jg, of the coordinateg, . 77 and 7z, cut out precisely 19
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infinitesimal segments along, , and on the basis of (34)¢, will be constant for any of
them, so dwill also be constanthat is to say, independently of the values of thermn
— 1 variables) . The contribution of all such elementd\ to the integral:

0

jf[q]dr

To

is therefore:

(49) dry fla] =Y flal-m,

J(h

also from (34), in which the," forr =1, 2, ..., N are the values of the coordinates of
the pointsP, whereM, crossess, .

On

"

e i R

(o)

17. Density of the pointsP; on 77 . — Let g and g, be two values ofj, . A tubeX
of trajectories (which belong to one of theystems that were mentioned many times) of
infinitesimal section intersects the plarggs= ¢, gn = ¢ in the elementsiz’, d7,

respectively. In addition, dlap , doi are the corresponding normal sectiong pfvhile

Uo, U1 are the velocities, angy, o1 are the mass densities of the points in the two
positions considered)( Since the transport of points that operateshentrajectory is
permanent, it will give rise to the equivalence:

(45) Uopodop = v prdo .

The normal tado is the direction of the relative velocityof g = ®"./ (i), whose
direction cosine witlgy, is:

() In the figure, the indices are replaced with.
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6, _o"J(h)
\/qu v

One will then have:

0 1

U U,
a7’ =—%  doy, dii=—"_ dai,
TN W TN o

from which, (45) will imply that:
d7z’ _ p (@™ (h),
drz; o (@™ (h)),

If dis the density of the poing of intersections of the hyperplage= constant with
the trajectory in question then one will have:

& dm) = o,dn,
so, from the preceding relation:

3 _ A" (),
X CRNIT )

which leads one to take the desired density to be:

(46) 3= po™[(h).

A constant factor is obviously inessential.

One will arrive at that result for any of tlresystems of trajectories, so, if one agrees
to assume that the root is positive, which willoateakeo essentially positive, then (46)
will represent the density of the poires at which the trajectoriyl, crosses the generic
hyperplaney, = const.

18. Return to the problem in no. 16— We now move on to the evaluation of the
sum that enters into formula (44). We are supjpoby the statistical criterion that as
long asN is sufficiently large, the pointB; (as long as they are finite in number) can be
replaced with a continuous distribution pnthat has a density equal 0 One can then
assume that an approximate value of that summatibs asymptotic value:

N [otldldd"

1
T L R S
ZN; [a'] BT

in which the convention:
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[do]" = dop dop ... dop1 dOhes ..., dopy,

has been adopted for brevity of notation, and the integrekend over the section of the
volumeV with planeg, = const; i.e., the — 1-dimensional region:

as<g<b for i=1,2,..h—-1,h+1, ...n

By definition, upon referring to (44) and what was said leefone will have:

. . [ofldrdg"
(47) f[q] dr = 2N ”h
rjo a{J (h) [ldg"
We show that the integral: h
h _— | D| nh h
adq” = | ——==%"[dd
Jaea = o7

is independent oy, . [The notationn.",/ (i) is intended to mean the product of the roots

J (i), excluding,/(h) ]
Indeed, one has:
pom=2
achh
and since the right-hand side does not contaih'trelumn, it will be independent .
The sign of the fraction in (47) can also be moueder the first integral then. If one
recalls (40), (49 then one can write:

Flalldd dg

<e—,
:_
-
<e—,
:_
=

D vt ID| o
, L o"d " d
N GIMSRE NG A

and therefore, by definition, one will have thenfala for the asymptotic calculation of
the temporal mean:

LA

(48) F =




Mattioli — Variational principles and adiabatic tréorsnations 43

The preceding shows, with full rigor, that the temponaan asymptotic so it will
then exist) can be replaced with the spatial meanotmatcalculates by assuming that the

D
density isp = |—
nJO|
BURGERS already assumed that formula, but justifievith the presumption that
certain variables were developed into series. v in the text, effectively knowing
the motion is not really necessary when its rasglstatistical situation is based upon the
only motions that are possible under the supposeditons.

19. Proof of the adiabatic invariance of the Sommerfeld intgals. — Finally, we
return to the evaluation of the quanti®y in no. 13, which is rewritten with the
abbreviated notation [cf., (37)]:

2A = 5aja( ) dr - 52 jd)”ﬂa(’g) cgnrh['ﬁdJah dr .
aﬂlr

By virtue of (47), (48), we will haved[h) / da and®, are functions of onlyy]:

Ta(h)d _ 2Nja(h) dqg,

; 0a a Jh’
D
| | cba’ﬂ a(ﬁ) [dq]
1 5 q)aﬂa(ﬁ) dT _ v (|) aa
t=to; da o™ ’

J(T

‘[Cﬂ

jcbahdr-ZNj — g, = 2N Qe .
o 5 ()
Let Q. denote the generic element of the determinant:

which is undoubtedly non-zero, because since itthe volume inside of the
parallelepiped:

=1Qan || =

as<g<b
one will have:
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(49) j

\%

dq do ... dgh,
nm

and in order to hav® # 0 inV, it must have the same sign everywhere. Note that

o|D]
oo

|D | %=
ap
is independent ajg, SO one can write:

IIDI aﬂa(ﬁ)[q] Ia(ﬁ) dqﬂja|D| 1
ol 0a () 3,0%, [N/

Now the integral that extends oveg (i.e., the regiom; < g <b fori =1, 2, ...,5—-
1,4+1, ...,n)is equal to:

‘[dQIﬂ-

OQ

in which the usual notation for reciprocal elemdrds been adopted. Consequently, also
from (49), one will have:
1 J por 9(B8) AT _ aﬂj ¢ 9(5) dqﬂ
t—t, da O

Recalling that:
_ oa
&= ’
L -t

and then substituting that in the expression®oone will have:

b, n bs
o= v [0 90 5 TAB) 9% oo

ﬁaam ah | *

If one develops the sum overthen one will see that cannot take on the valie such
that:
A=0,

which expresses the adiabatic invariance of the BBRFELD integrals, when one
refers to nol3for the significance oA.




