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 Abstract. – A variational principle is formulated that yields the field equations and constitutive equations of a 

non-conducting charge-free perfect fluid that interacts with electromagnetism and is endowed with spins of magnetic 

origin. The interactions between neighboring spins are accounted for and give rise to Heisenberg exchange forces in 

the form of contact actions. The forms of the asymmetric energy-momentum and total spin tensors are thus 

constructed, as well as the expression for the spin precession velocity as a function of the different interactions. The 

consequences of Lorentz invariance and isotropy of the fluid are studied, and exact and approximate forms for the 

constitutive equations are deduced. The physical model thus-constructed is complete and may be referred to as that of 

a perfect relativistic ferrofluid. It is shown that the perfect magnetohydrodynamics model corresponds to that of a 

paramagnetic ferrofluid. The geometrization of the model is discussed briefly. 

 

_________ 

 

 

1. – Introduction. 

 

 By appealing to a recent phenomenological formulation of the theory of ferromagnetism (cf., 

[8], [12], [31]) and our theory of magneto-elastic interactions (cf., [3], [8], [24]) in special 

relativity, we shall establish a model for a relativistic spinning fluid in which one takes into account 

not only the gyromagnetic effect, but also the interaction between the spins. According to one 

interpretation of the physics of continua that was given by Brown [20], the fluid medium is 

endowed with a continuous distribution of spins, and the interaction between neighboring magnetic 

spins (the exchange forces in Heisenberg’s ferromagnetism) manifests itself by the presence of a 

spatial spin gradient in the thermodynamic potential that is used in the variational formulation. The 

latter follows the method that was introduced by Taub [21] and was used recently by the author 

[1] (1). The electromagnetic effect considered is obviously non-dissipative. The variational 

 
 (1) Another variational formulation of the same type as the one that was given in [2] for MHD is given, moreover. 

[“Un principe variationnel pour le schéma fluide relativiste à spin” (preprint, 1973)]. 
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principle utilized permits us to obtain (upon taking into account the constraints imposed upon 

entropy, the 4-velocity, and the spin density) all of the “mechanical” conservation equations (viz., 

conservation of energy-momentum, conservation of the moment of energy-momentum, which is 

equivalent to the equation of spin evolution along a streamline), but also the detailed expressions 

for the total energy-momentum tensor, the total spin density, and the velocity of spin precession 

as a function of the different interactions: viz., matter-matter, matter-electromagnetic field, spin-

spin. The latter interaction gives rise (in a “continuous” manner) to contact actions (viz., surface 

couples) that, in part, responsible for the asymmetry in the energy-momentum tensor. One likewise 

shows (§ 4.5) that this asymmetry results from the fact that, locally, matter and spin have different 

rotation rates, which agrees with the interpretations that are given in the theories of continuous 

media with microstructure (cf., [25]). The exact form of the laws of behavior in our model (i.e., of 

the thermodynamic pressure and the spin interaction tensor) results from the Lorentz invariance 

condition when it is applied to the thermodynamic potential considered, as well as the necessary 

isotropy in the fluid. Some approximate laws of behavior that are called “quasi-linear” are likewise 

obtained. If one neglects the interaction between spins then the present formulation will revert to 

the simplified theory that was presented by Halbwachs [6]. As in that theory, the 4-velocity and 

the 4-momentum are not collinear. We show that the “perfect magnetohydrodynamical” model 

corresponds to the case in which our fluid is paramagnetic (§ 5). Finally, we note that in some 

situations that are encountered in astrophysics and cosmology, the geometrization of a model for 

a spinning fluid is called for (§ 6), and we briefly examine two possible geometric models. The 

first one (§ 6.1) preserves the Riemannian geometric structure of classical general relativity on the 

condition that we must introduce a curvature term into the “conservation equation” for energy-

momentum and redefine the source term in the Einstein equations, which agrees with a model that 

was proposed recently by Israel [19]. The second one (§ 6.2) appeals to the structure of an Einstein-

Cartan space U 4 with non-zero torsion that is based upon an asymmetric affine connection. In that 

case, the space-time torsion results, in part, by the action of Heisenberg exchange forces. 

 

 

2. – Preliminaries. 

 

 The notations are those of the preceding articles [1], [2]. Let x,  = 1, 2, 3, 4 be a local 

curvilinear chart (x4 is time-like) on M 4, which is flat Minkowski space-time. The curvature R
  

of M 4 that is associated with the normal hyperbolic metric g (of signature +, +, +, −) is zero. The 

symbol  will indicate a covariant derivative. A fluid “particle” whose Lagrange coordinates are 

X K, K = 1, 2, 3 describes a world-line C in M 4 that is time-oriented and whose equations (in local 

coordinates) are: 

 

(2.1)     x =  (X K, s) , 

 

in which s is the proper time of the “particle.” (1.1) is considered to be Cm, with m greater than 

two. The 4-velocity u is defined by (c = speed of light in vacuo): 
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(2.2)    2, 0.
KX

u g u u c
s


  




= + =


 

The operator 
KX

D

Ds s


=


is the invariant derivative in the direction u, which is defined at each 

event-point of  by: 

(2.3)    ,
D

u
Ds



=  =
A

A A    A . 

 

It constitutes the relativistic generalization of the particule derivative. Let 3 ( )M x⊥
 be the local 3-

hypersurface that is orthogonal to u at x along . The projection operator P is defined by: 

 

(2.4)   2

1
( ) ( ) ( ) ,

( ) ( ) 0, , 3.

P g x u x u x
c

P x u x P P P P

   

   

   

 


= +


 = = =

 

 

P is useful in effecting the decomposition of a tensor into its purely-spatial, mixed, and temporal 

components (see, [3], [4]). In particular, one says that a tensor of arbitrary order A is 

completely P. U. (†) in M 4 at the event-point x on  if and only if u is a null vector of A, so: 

 

(2.5)    A u = A u = … = A u = 0 . 

 

Hence: 

 

(2.6)    (A)⊥  P P P A    

    
  A,  

 

in which the symbolic notation (…)⊥ indicates the projection operation. A P. U. tensor has values 

that are essentially spatial or tri-dimensional. In a rest frame, it will reduce to the equivalent tri-

dimensional concept in classical physics. 

 One defines the relativistic velocity gradient tensor e and its symmetric and antisymmetric 

parts, which are called the relativistic rate of deformation and relativistic vorticity (or rate of 

rotation) tensor, by: 

 

(2.7)     e  ( u)⊥ , 

 

(2.8)      e()  1
2

(e + e) = 1
2

u
P ,  

 

 
 (†) Translator: It is not clear to me what the abbreviation “P.U.” stands for, but it seems to represent “purely 

spatial,” based upon (2.5) and its general usage. 
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(2.9)      e  1
2

(e − e) , 

 

in which 
u

 denotes the Lie derivative with respect to the field u.  is an objective tensor, in the 

author’s sense of the word (cf., [5]);  is not. 

  denotes the invariant relativistic density of matter. It is a proper invariant, i.e., when 

measured by an observer that is comoving with the fluid “particle.” In a continuous region  of

4M ,  will satisfy the equation that one calls the “continuity” equation” in one of the three forms: 

 

(2.10)   
D

Ds


+  = 0,  

lnD

Ds


+ = 0,  ( u) = 0, 

 

in which   e

  is the dilatation. 

 

 

3. – Gyromagnetic phenomena. 

 

 (a) The theory that we shall present here is conceived in such a manner that it takes into 

account the spin (kinetic spin) that is associated with the magnetic moment. That spin is of 

electronic origin. According to Uhlenbeck and Goudsmit, the electron spin is purely magnetic in 

the rest frame that is attached to the electron (cf., [6]). That is, the polarization 3-vector P is such 

that (2): 

 

(3.1)      P = 0 

 

in such a frame. The gyromagnetic relation (for a gyromagnetic effect that is isotropic, which we 

shall suppose) is then written: 

(3.2)     S  = ,   − 0

0

e

m c
 

(e0 : electron charge, m0 : rest mass of the electron,  : gyromagnetic ratio). S  is the 

antisymmetric tensor of intrinsic spin per unit proper volume. 
 is the antisymmetric tensor of 

magnetization-polarization (per unit proper volume), which admits the decomposition (cf., [2]): 

 

 
 (2) Note that the hypothesis (3.1) does not imply that the polarization is zero for a body in motion. Indeed, in an 

instantaneous inertial frame,  admits the well-known decomposition: 

2 2

/ /
,

(1 ) (1 )

c i c

 

 −  
=  

 − − 

P v M v P ,  = 
c

v
, 

in which M is the 3-magnetization and v is the velocity. In such a frame (which is not at rest), the covariant condition 

(3.5)1 leads to a polarization that is induced by the magnetization of motion and is such that P  v  M / c. 
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(3.3)   

1 1
( ) ,

1 1
, ,

2

0,

u u M u
c ic

u M u
c ic

u M u

     

 

   

  

 

 

 

  


= − +




 


= =



 

in which  and M are P.U. 4-vectors of polarization and volumetric magnetization, resp. (3). 

Outside of matter: 

 

(3.4)     = 0    = 0, M = 0 . 

 

The covariant transcription of the hypothesis (3.1) is the Frenkel condition [7]: 

 

(3.5)      0,  u

  = S u

 = 0, 

 

which is a condition that is weaker than (3.4). Instead of the volumetric quantities 
 , M , and 

S , one prefers to employ the same quantities when they are defined per unit proper mass: , 

, and S. One will then have: 

 

(3.6)   S =  −1 = 
1

u
i c



 




−

,    M /  . 

 

It then follows that when one defines the axial P. U. spin 4-vector s , (3.6) can be written in the 

4-vectorial form: 

(3.7)    s =  −1 , with s  
1

.
2

S u
i c

 

  

 

 (b) Imagine that the magnetic moment at a point X of the usual physical space 3 can only 

turn. Its norm is then fixed in 3. The covariant transcription of that hypothesis in 3 ( )M x⊥
 is 

written: 

(3.8)    ( ) ( ) ( ) const. along .P x x x 

 =  

It then follows that: 

 
 (3) One recalls that: 

 = | |g ,   = 

| |g

 , g = det (g) , 

in which  is the completely-antisymmetric permutation symbol. 
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(3.8)    
D

Ds




⊥

 
 
 

= 0 along  . 

 

 A solution to that equation is given in [8]. The temporal evolution of  (or of the spin s) 

along  is described by the following kinematical equations: 

 

(3.9)   

2

1
,

, , 0,

DuD
u

Ds c Ds

D
u

Ds


  




  

   





⊥

 
=  + 

 

 
=   = −  = 

 

 

 

in which the antisymmetric P.U. tensor  represents the angular velocity of the spin that one 

agrees to determine. As (3.9)2 shows, that P. U. tensor measures the velocity of spin precession in 

the inertial frame, while the term 
2

1 Du
u

c Ds


 in (3.9)1 represents Fermi-Walker transport along . 

Since  is P.U, one associates it with its dual  such that: 

 

(3.10)     = 
1

u
i c

 

  ,   u = 0 . 

 

 Consider the real work W done by the spin during a finite rotation in an inertial frame. The 

couple that is associated with the spin is − 
Ds

Ds



⊥

 
 
 

, so one will have: 

 

(3.11)    W = − 
Ds

Ds



  = − 
1

2

DS

Ds



 . 

 

With the aid of (3.9)1, one shows that (cf., [8]): 

 

(3.12)     0.W =  

 

The couple that is produced by the spin is then of d’Alembert type. Spin obviously represents an 

effect of a gyroscopic nature. It is not possible to construct a kinetic energy of rotation in integrated 

form for spin. One can consider only an “already-varied” form (4). 

 

 
 (4) See the commentaries on this subject in the classical theory of micro-magnetism [9], [10], [11].  
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 (c) Spatial variation of spin. – If  keeps a constant norm [cf., (3.8)] along a world-line  

that is described by (2.1) then its norm can vary when one passes to a neighboring world-line to  

(5); i.e., if one considers a spatial variation: 

 

 : x =  (X K, s) : ( , )K K Kx X X X s  = = + . 

 

That can be written locally in 3 ( )M x⊥
 in the obvious form (cf., [5]): 

 

(3.13)    ( , ) ( , )K KX s x X s −  = (x)⊥ + O (|  x |2) . 

Hence: 

 

(3.14)    ( ) x  −  (x)  M (x) (x)⊥ + O (|  x |2) , 

 

in which the projection operator takes it value at x, and one defines the relativistic magnetization 

gradient tensor M  by: 

 

(3.15)   ( ) ( ) , 0, 0.u u 

    ⊥=  = =xM M M  

 

Since that tensor is asymmetric and essentially spatial, that P. U. tensor will have nine independent 

components, in general. 

 

 

4. – “Perfect ferrofluid” model. 

 

4.1 – Introduction. 

 

 In this paragraph, we propose to start from a variational principle and establish the field 

equations and laws of behavior that correspond to the relativistic perfect ferrofluid model. We 

intend that to mean a model that corresponds to an electromagnetic fluid that presents a continuous 

distribution of spins of magnetic origin and is non-dissipative. In particular, the fluid considered 

will have an infinite electrical conductivity . That is, when the conduction 4-current j, which 

one can show to have the form: 

 

(4.1)      j =  , 

 

 

 (5) Three-dimensionally, that signifies that the norm of the magnetization varies from point to point in 3. 
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under acceptable simplifying hypotheses (linear, isotropic law, uncoupled with any other transport 

phenomena), in which  is the P.U. electric current 4-vector, is added to the convection current 

q u (q : volumetric electric charge), that can produce a finite total current only if (6): 

 

(4.2)     0. =  

 

 It then follows that the action associated with an electromagnetic field in an open subset 
o

 of 
4M (viz., a tube generated by a material body B) is generally written in the form (dv4 : Riemannian 

volume element on 4M ): 

 

(4.3)    (em) = ( )o
1 1

44 2
F F F dv 

 − . 

 

When one takes (3.5), (4.2), (3.6)2 , and the following decomposition of the magnetic flux tensor 

F (cf., [12], [3]) into account: 

 

(4.4)  

1 1
( )

1 1
, , 0, 0,

2

F u u u
c ic

F u F u u u
c ic

 

     

     

    






= − +


   = =


 

 

( : P.U. magnetic induction4-vector), the two contributions to the integrand, which represent the 

energy of the free electromagnetic field and the energy of the magnetic doublet, respectively, (4.3) 

will reduce to: 

(4.5)    o( ) 4

1
.

2
em dv 

 


 
= − − 

 
  

 

For the sake of simplicity, we set q  0. The fact that the model considered is non-dissipative 

implies that we have conservation of specific entropy  along a streamline, namely: 

 

(4.6)     0 along .
D

Ds


=  

 

 

 

 

 

 
 (6) See the remark concerning that equation in the note (9) on pp. 160 of reference [2].  
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4.2 – Conditions on the variations. 

 

 4.2.1. – Definition: Here, we shall link up with the determination of the conservation equations 

(viz., the laws of motion). We then agree to vary the world-line of the fluid “particles.” That 

variation can be defined by: 

 

(4.7)     : x () ˆ( )x = x +  ,  x =  , 

 

in which  is infinitely small and  is a 4-vector field that is not necessarily P.U. The resultant 

variation of a tensor A is written: 

 

(4.8)     A = 


 A , 

in which 


 denotes the Lie derivative with respect to the field . In particular, for  (cf., [13], 

pp. 86): 

 

(4.9)    = ( )  x −   ( x) +   ( x) . 

Hence: 

 

(4.10)  ( )1
2



  = (  g − )  ( x) + ( )1
2

x 

   , 

 

(4.11)   () =   +  ( )  x − ( −   g )  ( x) . 

 

The variation  has a special character because  must satisfy the constraint (3.8) along a 

world-line . That variation is given in the following paragraph. 

 Taking (4.8) into account, one easily calculates the following expressions: 

 

(4.12)     u = u  ( x) , 

 

(4.13)      = −  P ( ( x)) , 

 

(4.14)  (dv4) = g ( ( x)) dv4 , 

 

(4.15)  ( dv4) = − ( ) 42
( )

u u
x dv

c

 

   , 

 

(4.16) P = ( )2

2
( )u x P u

c

 

    , 
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and one notes that for any  : 

 

(4.17)  ( ) =  () – ( )  ( x) . 

 

 

 4.2.2. – Variation of the magnetization: Imagine that k (or the 4-vector s) is rigidly linked 

(because its normal is constant along ; cf., 3.8) with an orthonormal triad of spacelike vectors 

{a(K) , K = 1, 2, 3}that is defined at the point x of . The vectors a(K) and their reciprocals a(K)
 are 

contained in 𝑀⊥
3(𝐱), so they are P.U., and their quadri-dimensional components satisfy the 

relations (cf., [14]): 

 

(4.18)    

 

 In the course of the variation (4.7), the a(K) remain orthonormal and P.U., in the sense of (4.18). 

The resultant variation of a(K) that is defined at x along  admits a decomposition into an essentially 

spatial (P.U.) part that is denoted by (a(K))⊥ and a time-like part that is denoted by (a(K))|| and 

parallel to u (x) . One then has: 

 

(4.19)   

 

 

When one varies (4.18)3, multiplies the result by 𝑎(𝐿)
  ⋅  𝛽 

, sums over L, and uses (4.18)2, one will get: 

 

(4.20)    

 

 

One shows that the tensor  is antisymmetric by varying (4.18)2 . Finally, if one multiplies 

(4.19)1 by u and takes into account (4.19)3 then one will get: 

 

(4.21)   

 

 

The latter equality comes from (4.18)1 . If one takes (4.19), (4.20)1, (4.21), and (4.12) into account 

then (4.19)1 can be written: 

 

(4.22)   

 

 

The two contributions in brackets provide an infinitesimal rotation of a(K) in 𝑀⊥
3(𝐱) (or of an 

inertial frame) and the varied form of the Fermi-Walker transport of constant norm a(K) along , 

( ) ( )

( ) ( ) ( )0, , .K L L

K K K Ka u a a P a a   

      

  = = =

( ) ( ) ( ) ||

( ) ( ) ||

( ) ( ) ,

( ) 0, ( ) .

K K K

K K K

a a a

a u a A u

  

  



  

 

  

⊥

 

⊥

 = +


= 

( ) ( )

( )

( )

( ) ,

( ), 0, 0.

K K

L

L

a a

a a u u

  



    

    

 

   

 

⊥ 



   

 =


 − = =

( ) ( )2 2

1 1
.K K KA u a a u

c c

 

   = − =

( ) ( )2

1
( ) .K K

D
a u x a

c Ds

   

    



 
= + 
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respectively. Let K (K = 1, 2, 3) be the constant non-holonomic components of  in {a(K)}. 

One then has: 

 
Hence, with (4.22): 

 

(4.23)   

 

 

Those varied expressions correspond to the finite expressions (3.9). When one takes (4.23)2 into 

account, (4.11) can be written: 

 

(4.24)   () =   +  ( ) x − ( −   g)  (x) . 

 

 

 4.2.3. Kinetic energy of the spin rotation. – We saw above that one can consider only a form 

of the kinetic energy of spin rotation that Hertz called “already varied.” If we take the forms of the 

expressions (3.11) and (3.12) for W into account then we can set: 

 

 

(4.25)    

 

in which  is arbitrary (i.e., virtual), in order to account for the spin in the open subset 
o

 of 

𝑀4. If we take into account the fact that  and S are P.U., along with their symmetries, then 

(4.25) can also be written: 

 

 
That is: 

 

(4.26)  

 

 

 4.2.4. Variation of the energy of the electromagnetic field. – If one takes into account (4.13)-

(4.15) and (4.10) and (4.24) then when one starts from (4.5) and rearranges the terms, one will get: 

 

(4.27)   

 

in which one has set: 

( )

( ) , , 0 .K K K K

Ka a  

 

= = =

o
1

42 2

1
( ) .

DuDS
W S u x dv

Ds c Ds


  

       

⊥

  
= +   

   


2

1
( ) , ( ) .K D

u x
c Ds

     

       ⊥ 

 
= + = 

 

o 42

1
( ) ,

DS D
W u x dv

Ds c Ds


 

   

 
= + 

 


o o
1

4 42 2 2

1 1
.

DS
W S u u x dv S u u x dv

Ds c c


    

            

⊥

      
= − +       

      
 

o o
[ ]

( ) ( ) 4 ( ) 4[( ) ] ( ) ,em em emT x dv T x dv   

        = −  − +  
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(4.28) 

  

 

 Remark (i). – In the present formulation, we have not considered a proper variation of an 

electromagnetic parameter (viz., the electromagnetic 4-potential A), because we have not sought 

to deduce the Maxwell equations in the variational formulation (compare with [15], [16], [1]). We 

shall indicate only what must be done if we were to look for that. Classically, we have: 

 

(4.29)     F = 2 [ A] . 

 

If we introduce the P.U. magnetic 4-potential a and the scalar electric potential  then thanks to 

the decomposition of A on  𝑀⊥
3(𝐱) and along u , we will have: 

 

(4.30)   A = 
𝜑

𝑐
 u + a ,   − 

1

𝑐
 A u,  a u = 0 . 

 

If we substitute (4.30) in (4.29) and then substitutes the result of that in (4.4.)2 and (4.4)3 then we 

will get: 

 

(4.31)    

 

 

(4.32)   

 

 

which are representations that are valid inside of deformable matter in motion, and which reduce 

to the following classical tri-dimensional relations in a rest frame: 

 

E = −  − 
1

𝑐

𝜕𝐚

𝜕𝑡
, B = rot a . 

 

In the present study,  = 0 ; one only needs to consider the P.U. magnetic potential a then. If one 

then introduces Weiss’s “gauge-invariant” variation (cf., [1], [15]) then one will exhibit a proper 

variation of a and a variation that is due to the variation of the world-line . The variation of  

and the proper variation of a will then permit one to obtain one of the groups of Maxwell 

equations (with  =  = 0, q = 0) in 4-vectorial form, while the other group is satisfied identically 

by (4.32). We shall not do those calculations here. 

 

 Remark (ii). – The energy-momentum tensor of the electromagnetic field in matter that is 

defined by (4.28) is nothing but the tensor that was introduced by Grot and Eringen [17], namely: 

( ) ( )1 1
( ) 2 22

.em

u u
T P

c

 
         

     = − − + + −

( ) 2

1 1
( ) ,

u

Du
a

c c Ds


   ⊥

⊥

= −  − −

2

1 1
,u a u

i c i c

 

       =  +
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(4.33)   

 

when one takes (4.4)1, (3.3)1, and the hypotheses (3.5) and (4.2) into account. Recall that the 

asymmetric tensor (4.33) that was used before in [1], [3], and [16] is different from the ones that 

were introduced by Abraham and Minkowski, but it is close to the one that Suttorp and Groot [18] 

constructed, as well as the tensor that was considered by Israel [19]. 

  

 

4.3. – Variation of the internal energy. 

 

 4.3.1. Introduction. – In continuum physics, the internal specific energy e serves to represent 

the thermodynamic state of the system and the internal interactions (or “internal efforts”). For an 

electromagnetic fluid, the thermodynamic state variables are the density , the entropy , and the 

magnetic moment density . The dependency of e upon  for a fluid represents the matter-matter 

interaction, since it leads to the definition of thermodynamic pressure, which is a notion that is 

equivalent to that of normal constraint. In the classical theory of micro-magnetism ([20], [9]), it is 

shown that the functional dependency of specific internal energy on the magnetization gradient 

permits the phenomenological representation of the Heisenberg exchange forces – i.e., the 

interactions between neighboring spins. In our study, we then take: 

 

(4.34)   

 

in which M is the P.U. tensor that was defined in (3.15). Since it results from an infinitesimal 

approximation in the neighborhood of a world-line  [cf., (3.14)], the definition (3.15) shows that 

the interaction that was represented in (4.34) by the intermediary of the dependency on M is a 

short-range one, or, in the language of continuum mechanics, it is a “contact action” (7). One says 

that one has a theory of the first gradient because one takes into account only the first gradient of 

the magnetization in the expression (4.34). It will be shown later on that the dependency of e with 

respect to  serves to represent the matter-spin interactions. 

 

 

 4.3.2. Consequence of Lorentz invariance. – The specific internal energy e is a Lorentz 

invariant. Consequently, if one considers an infinitesimal transformation in the form (in 

rectangular coordinates): 

 

(4.35)   

 

 
 (7) One knows from the work of Dirac, Heisenberg, and Bloch that the intensity of the interactions between spins 

decreases very rapidly with distance.  

1
( ) 4

, ,emT F G F F g G F       

  = − +  −

( , , , ) ,e e 

 = M

( ) , ,x Q x Q Q   

    


= + = −
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in which  is an infinitesimal, then one will obtain the following transformation laws for the 

quantities  and M : 

 
(4.36) 

 
 

for any Q (up to With  and (4.36), one will verify that the condition  

order 2) leads to the equation: 

 

(4.37)    

 

 

which is an equation that one can project onto  𝑀⊥
3(𝐱) and in the direction of u at any point x on 

 and get: 

 

(4.38)  ([])⊥ = 0 ,  u [] = 0 . 

 

The second of those equations, which is valid for all  and any M [considered as independent 

variables, from (4.34)], is satisfied if: 

 

(4.39)   

 

 

One can then define the P.U. fields l and   by: 

 

(4.40)   

 

 

Equation (4.38)1 then implies the condition: 

 

(4.41)   

 

 The P.U. 4-vector field l is homogeneous to a magnetic induction; one calls it the local 

magnetic induction, or magnetic anisotropy field, by analogy with the theory of micro-magnetism 

(cf., [9]). From what was said above, one can call the P.U. tensor  , which generally has nine 

independent components, the spin interaction tensor. One can now calculate e . 
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 4.3.3. Variation. – One immediately has: 

 

(4.42)  e = 
𝑝

𝜌
  +    − l ()⊥ +   (M)⊥ , 

 

in which one defines the thermodynamic pressure p and the proper temperature  in the usual 

manner by: 

 

(4.43)   

 

 

By using (4.8), the constraint (4.6), and (2.10), one can show that: 

 

(4.44)    

 

 A lengthy calculation that requires the use of (3.15), (4.16), (4.17), (3.9), and (4.23), and which 

we shall not perform explicitly, leads to the expression for the last term in (4.42). We get: 

 

(4.45)    M =  (M  ) – (  )    

 

 

 

in which we define the P.U. tensor M  by: 

 

(4.46)  

 

If we then substitute the results (4.14), (4.44), (4.23)2, and 4.45) in (4.42) then that will give: 

 

(4.47) 

  

  − [ l [ ] + (  [ |  |) ]]  +  (M) . 

 

 Finally, in the course of variation, one must take into account the constraint (2.2)2 that is 

imposed upon the 4-velocity. In order to do that, one introduces a Lagrange multiplier M. One 

then writes the action that represents the matter that is associated with 
o

  𝑀4 in the form: 

 

(4.48)   

 

The variation of M will yield the constraint (2.2)2 . When one takes (4.15), (4.47), and (4.12) into 

account, one will then have: 

2
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(4.49)  

 

 

 

in which one sets: 

 

(4.50)  

 

in which  is the specific free energy that is defined by the Legendre transformation: 

 

(4.51)  (, , , M) = e (, , , M) –    

 

with: 

 

(4.52)  

 

from now on. 

 

 

4.4. – Variational principle for the “perfect ferrofluid” model. 

 

 4.4.1. Statement. – The conservation laws and the laws of behavior of the “relativistic perfect 

ferrofluid” model follow from the variational principle: 

 

(4.53)  

 

for any variation x of the streamlines  and any arbitrary rotation  of the spin in an inertial 

frame, where the expressions (m), , and W are given by (4.48), (4.5), and (4.25), 

respectively. 

 

 4.4.2. Proof. – Combining the results (4.49), (4.27), and (4.26), the variational principle (4.53) 

will lead to: 

 

(4.54)   

 

in which O () means “modulo a surface term,” and one defines: 
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(4.57)  

 

The last expression is, in fact, a surface integral over the hypersurface , which is the boundary 

of the domain  in 𝑀4, and 
o

  is an open subset of the latter. One supposes that either the 

variations x and  are annulled on  or that  is pushed out to infinity. Meanwhile, note 

that M enters on  in a term of the form M N [N : unit (spacelike) normal oriented external 

to ] as a factor of the term  . That shows that the interaction between neighboring magnetic 

spins manifests itself in the form of a contact action, which is a surface couple here. Since the 

expression (4.54) is valid for any continuous region of 
o

 in 𝑀4 and any variations x and  , 

it leads to local conservation equations in 
o

: 

 

(4.58) 

 

(4.59)  

 

The first of these equations obviously expresses the conservation of energy-momentum. The 

second one provides the evolution of the magnetic spin S in an inertial frame (in covariant form). 

It remains to establish the expressions for  and M that enter into �̃�𝛼𝛽 and to show that (4.59) 

is nothing but the equation of conservation of the moment of energy-momentum. 

 

 

 4.4.3. Velocity of spin precession. – Express the left-hand side of (4.59) with the aid of (3.6)1 

and multiply the result by (1 / i c)  . Upon rearranging the indices, one will get: 

 

 
 

When one identifies that with (3.9)2, one will see that since  is P.U., the only possibility is: 

 

(4.60)  

 

 

From (4.56), the velocity of spin precession in an inertial frame is provided by the conjugate action 

of the Maxwell magnetic induction , the magnetic anisotropy field l, and the interaction 

between neighboring magnetic spins by the intermediary of  . If one introduces the P.U. 4-

eff. .
D

u
Ds ic

   






⊥

   
= −   

  

o (tot) 4( ) ( ) .O B T x M dv 

      −

(tot)

[ ]

eff.

( 0,

2 .

T

DS

Ds






 

⊥

 =

 
= 

 

eff. .u
ic

 

 


  −



Maugin – On relativistic spinning fluids. 18 

 

vector  that was defined in (3.10) and takes (3.6) into account then one can write (4.59) in the 

form (8): 

 

(4.61)   

 

 

 

 4.4.4. Conservation of the moment of energy-momentum. – Upon developing equation 

(4.59), it will give: 

 

(4.62)   

 

 

However, from (4.55), (4.50), and (4.28): 

 

(4.63)   

 

 

If one eliminates  [ ] from these two equations and takes into account the invariance 

condition (4.41), which is likewise valid when  is the thermodynamic potential, and regroups the 

terms then one will arrive at the equation: 

 

(4.64)   

 

 

As one easily verifies, the terms in […] are nothing but the terms DS / Ds and  M , but not 

projected onto 𝑀⊥
3. When one takes (2.10)1 and (2.3) into account, (4.63) will then be written in 

the canonical form of a conservation law for the moment of energy-momentum: 

 

(4.65)   

 

in which one defines the total spin tensor  by: 

 

(4.66)   

 

Note that if equations (4.59) and (4.65) are equivalent, and if (4.65) lends itself to geometrization 

better then the form of equation (4.59) or (4.61)1 is more interesting because it contains the 

expression for the velocity of spin precession. The kinematical equation (3.9)1 is likewise 

equivalent to equations (4.59) and (4.65), up to , although its form is not a kinematical 

 
 (8) Recall that for an isolated electron of magnetic moment m, one has m / t = B  m , classically, where B = 

−  B is the Larmor precession.  
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consequence of the constraint (3.8). The interest in the present variational formulation is in the fact 

that it provides the form of the precession tensor as a function of the various interactions, as well 

as the coupling that is present in the energy-momentum tensor. 

 

 

 4.4.5. Determining the multiplier M. – That calculation is very tedious, and we shall give 

only the main steps to it. One must first consider the following intermediate results: 

 

 (a) Taking (3.12) into account and multiplying (4.64) by  will give: 

 

 
namely, along with (4.63): 

 

(4.67)   

 

 (b) By virtue of the condition (4.41), one has: 

 

(4.68)     

 

 (c) One calculates D / Ds by starting from (4.51) and using (2.10)1, (4.6), (4.52), and (3.9)1 . 

The calculation, which is simple, but somewhat lengthy, and is similar to what one did for the 

variations that led to (4.47), leads to the result: 

 

(4.69)  

 

in which  is the (P.U.) kinematical quantity that was introduced in [8]: 

 

 

(4.70)   

 

 

which relativistically generalizes the notion of the gradient of the velocity of precession. In order 

to determine the value of M, we then employ the same method as in [1] (which was introduced by 

Taub [21]): We project (4.58) along the direction of u in such a manner as to obtain the equation 

of “conservation of energy.” When we take (4.55), (4.50), (4.28), and (2.10)1 into account, it will 

become: 
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The calculation of A is done by successively using the results (4.67)-(4.69). The term D / Ds is 

eliminated, and the differential equation that determines M, which is valid along the streamline , 

is finally written: 

 

(4.71)   
𝐷

𝐷𝑠
 (c2 M –  ) = 0 . 

 

When one integrates that along  and introduces the constant of integration c2 (viz., the rest energy 

per unit of proper mass of the fluid), one will then have: 

 

(4.72)    

 

 

 

 4.4.6. Summary of the results. – The conservation laws and the laws of behavior that 

correspond to the “relativistic perfect ferrofluid” model in an open subset  
o

 of 𝑀4 are equations 

(4.58), (4.59) or (4.65), (2.10)1, (4.6), and (4.52), to which one agrees to add the constraint (3.8) 

and Maxwell’s equations, corresponding to the simplification hypotheses (3.5) and (4.2) (9). When 

one takes the results (4.50), (4.28), (4.55), and (4.72) into account, one can write the total energy-

momentum tensor 𝑇(tot)
𝛼𝛽

 in the decomposed canonical form: 
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  (tot) u u + p u + �̅�𝛼𝑢𝛽 − t − 𝑡(̅𝑒𝑚)
𝛽𝛼
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with 

 

 

 

 

(4.74)   

 

 

 

 

 

in which  and M are given by (4.60) and (4.46)1, respectively, and p, , l, and  are 

determined from equations (4.52) when one starts from  . 

 
 (9) Those Maxwell equations are given in 4-vectorial form in reference [3].  
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4.5. – Equation of conservation of energy. 

 

 One can give a remarkable form to the equation of “conservation of energy.” When one 

transforms the third term on the right-hand side of (4.69) with the aid of (4.68), one will have: 

 

(4.75)   

 

 However, according to (4.74)4 and the definition   P  , one has: 

 

(4.76)   

 

With (4.51) and (4.76), one sees that (4.75) is nothing but (10): 

 

(4.77)   

 

 

in which the P.U. antisymmetric tensor  represents the relative velocity of spin precession with 

respect to the rotation of the fluid: 

 

(4.78)  

 

The relation (4.77) is valid only for reversible thermodynamic processes (10). Consistent with its 

interpretation in the thermodynamics of continuous media (cf., Germain [22] and de Groot and 

Mazur [25]), and the notion of duality that is inherent to that kind of thermodynamics, the 

expression (4.77) signifies that t (), t [] (the symmetric and antisymmetric parts of the relativistic 

constraint tensor), and M are “forces” that are derivable from the potential e, the kinematical 

quantities  ,  , and  are the corresponding “generalized velocities.” It then follows that 

we have an interpretation for the coupling of the spin field to the velocity field of the fluid that is 

analogous to the one that is described in the phenomenological or statistical theories of continuous 

media with micro-structure (11). 

 

 

 
 (10) The complete equation for the general thermodynamic process in relativistic media with spin was obtained by 

another method in the reference [24] [equation (2.4)]:  

 
in which t and M present conservative parts that are derived from a potential, but also dissipative parts, and q 

and h are the P.U. heat flux 4-vector and the massive heat source, respectively. 

 (11) “The spin field is a kinematical macroscopic representation of the internal angular momentum of spinning 

molecules and is dynamically coupled to the fluid velocity by means of the collisional interactions of the translating 

and rotating molecules. This coupling was described somewhat earlier by Born [26] and later by Grad [27], who 

regarded the difference between the fluid vorticity 
1

2
   U and the molecular spin precession W as the kinematical 

strain field that is responsible for giving rise to an antisymmetric state of stress.” ([25], pp. 914). 
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4.6. – Consequences of the isotropy of the fluid and linearization. 

 

 The model that was established in paragraph 4.4 includes laws of behavior – for l and  

(or M) – that one can qualify as nonlinear ones, because the potentials  or e are functions that 

are not specified by their tensorial arguments. Moreover, we have not taken into account an 

essential property that is coupled with the specific character of fluids: Whether relativistic or not, 

fluids are necessarily isotropic (12). The potential e [eq. (4.34)] must then be necessarily an 

isotropic function of its arguments. Since the tensorial arguments  and M are P.U., so they 

are essentially equivalent to tri-dimensional arguments (13), one can employ the recent theorems 

of Wang [29] on the representations of isotropic functions. Since  is P.U. and must satisfy the 

constraint (3.8),  and M will have only two and nine independent scalar components, 

respectively, so N = 11. According to Wang [29], since the dimensionality of space is n (n = 3 

here, because the representation space of  and M is 𝑀⊥
3), in order for the scalar e to be an 

isotropic function, it is necessary and sufficient that e must be a function of N – n (n – 1) / 2 = 11 

– 3 = 8 mutually functionally-independent invariants that are constructed by starting from  and 

M . One will then have: 

 

(4.79)   e = e (, , I() ;  = i, …, 8) . 

 

The invariants can be chosen from the lists that were produced by Spencer [30] when one notes 

that  and M behave like axial vectors. One can take: 

 

 

 

(4.80)   

 

 

 

 

which satisfies the criterion of functional independence. According to (4.40), one will have: 

 

(4.81)   

 

 
 (12) One can show that this is a consequence of the fact that fluids have no “memory” of an earlier configuration. 

The proof in the classical mechanics of continuous media is given in [28].  

 (13) The notion of isotropy (and the crystallographic group) is linked with the usual tri-dimensional Euclidian 

concept of physical space. Isotropy must then be studied in an orthonormal frame at x on  of the type that was 

introduced in (4.18). Meanwhile, the invariants obtained in (4.80) are identical to the ones that one constructs by 

starting with the non-holonomic components of  and M in such a frame. 
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in which the scalar coefficients () ,  = 1, …, 8 are again functions of , , and I() . Some finite 

expressions for l and  are implied immediately from equations (4.81) and (4.80). They are 

the exact laws of behavior for the “perfect ferrofluid” model. We shall not give those expressions 

but will consider some quasi-linear laws of behavior. Let O () be the order of magnitude of the 

components of . Suppose that O (M) = O () . The invariants I() ,  = 1, …, 4 are O (2), 

and all of the other invariants that one can construct with the aid of  and M are of higher 

order. In order to obtain isotropic linear laws of behavior, it will then suffice to consider only 

invariants of order O (2). With that hypothesis, when one starts from (4.81) and (4.80), one will 

get: 

 

(4.82)   

 

 

(4.83)  M   [  ]  = r [(2) 𝔐 ⋅ 𝜇
𝜇 [ P]  + (3) [ M]  + (4) [ M] ] , 

 

or now: 

 

(4.84)   () = () (, , 2), b = 1, …, 8, 2  P   . 

 

 Equations (4.82) and (4.83) are quasi-linear laws of behavior for a perfect ferromagnetic fluid 

(14). One remarks that: 

 

 (a) l is collinear with . From (4.59), the magnetic anisotropy field plays no role in that 

fluid. Nonetheless, it will play a role if one preserves the complete expression (4.79). 

 

 (b) There are obviously no magnetostriction or piezomagnetism effects in the fluid [cf., 

(4.74)4]. 

 

 (c) The terms that represent the interaction between neighboring magnetic spins in the 

expressions (4.74)2-4 are always O (2). The same thing is true for the exchange force term that 

contributes to the right-hand side of equation (4.59). 

 

 Using a method that is already classical (cf., [31]), one can show that the approximation that 

was made above is equivalent to the one that one will obtain by considering a limited development 

of e in the form: 

 

(4.85)  e (, , , M) = �̃� (, ) + 
1

2
 () P   

 

 (14)   is linear in M , but M  is O (2). Equation (4.59) is intrinsically nonlinear. 
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  + 
1

2
 (() P P + () P P + () P P) M M + O (3) , 

 

in which e is positive definite up to O (3) if and only if: 

 

()  0 , 3() + () + ()  0,  () + ()  0  () − () . 

 

Meanwhile, from (3.8), the second term in the development (4.85) is constant along  (if () = 

const.); it is therefore unnecessary to consider it. 

 

 

4.7. – Comments. 

 

 (a) To our knowledge, the model constructed in this paragraph is the only complete model of 

a relativistic spinning fluid in which one tries to take into account the “phenomenological” nature 

of the interaction between spins. One notes that there is generally something interesting about the 

variational formulation that permits one to obtain expressions of the type (4.76), which would have 

been difficult to postulate. 

 

 (b) In the approximation that is called “semi-classical,” in which one neglects the Heisenberg 

exchange forces, so 2 =  S u, and the equations (4.59), (4.74)2-4, (4.60), and (4.63), they 

reduce to: 

 

 

 

(4.86)    

 

 

 

 

 

One then recovers the simplified theory of relativistic spinning fluids that was presented by 

Halbwachs [6]. 

 

 (c) The reversible thermodynamic model that is obtained here can be completed by the study 

of irreversible phenomena (e.g., viscosity, magnetic spin relaxation, electric and heat conduction) 

using an analysis that is analogous to what was done in [24]. 
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5. – The “perfect magnetohydrodynamical” model as a limiting case. 

 

 Consider the case in which the fluid that was previously examined is paramagnetic. In that 

case, the notions of magnetic spin and exchange forces (or interactions between neighboring spins) 

have no meaning. As a consequence, S will be zero, and e cannot depend upon M ; hence,   

and M will be zero. Meanwhile,  is non-zero, because the gyromagnetic relation (3.7) is not 

valid. The total energy-momentum tensor becomes symmetric. The hypothesis (3.8) no longer 

means anything, and one cannot construct a kinematical relationship such as (3.9)1 . One is reduced 

to considering  to be an independent variation in the variational formulation of paragraph 4.4. 

That independent variation leads to the equilibrium equation between the Maxwellian induction 

and the local magnetic induction: 

 

(5.1)    + l = 0 . 

 

Hence, with the law of behavior (4.40)1 : 

 

(5.2)    

 

 

In the context of the linear approximation to the isotropic fluid that was discussed in the preceding 

paragraph, that will become: 

 

(5.3)   = (1) (, , ) , (1)  0. 

 

The magnetic induction and the magnetization are collinear. One sets: 

 

(5.4) (1)   
𝜇

𝜇−1
 ,  =  (, , ) > 1 

 

 (if  ↦1 then one must have |  | ↦ 0). With the relation    −  , one will get: 

 

(5.5)    M    = ( – 1) ,  =  . 

 

The coefficient  is the magnetic permeability of the fluid then. If one replaces  and  with 

their values (5.5) in (4.73), in which one sets: 

 

S = M = M =   = 0 

 

and uses the approximation (4.85), namely: 
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e (, , ) = �̃� (, ) + 
1

2
 ()  = �̃� + 

1

2

𝜇 (𝜇−1)

𝜌
   , 

 

then one will get the expression for the energy-momentum tensor for the “perfect 

magnetohydrodynamical” model from the present model: 

 

(5.6)

  

 

in which one defines the index f of the fluid by: 

 

 
 

 In our analysis, we started from an energy-momentum tensor for the electromagnetic field that 

is different from the one that was considered by Lichnerowicz ([12], pp. 87-96). Meanwhile, under 

the astrophysical conditions where  is slightly different from unity, we can write 3 –   2 and 1 

–  / 2  1 / 2, and (5.6) will reduce to: 

 

 
 

which is, in fact, Lichnerowicz’s perfect magnetohydrodynamical tensor ([12], pp. 150), up to the 

signature of the metric g . 

 

 

6. – Geometrization. 

 

 One knows that the nuclear or electronic spin has a non-negligible influence on the 

gravitational field of a macroscopic body only when the latter was compressed in such a way that 

its dimensions are of the same order as the Compton wavelength of the electron. Meanwhile, if the 

“particles” considered are rotating proto-galaxies with turbulent currents or “primitive black holes” 

then the influence of spins can be significant during the first state of the evolution of the universe 

or during the phenomenon of “gravitational collapse” {in particular, it is possible that any 

singularity of the metric can be avoided if one takes spin into account {cf., Kopczynski [32], Hehl 

and von der Heyde [40])}. Under those conditions, the idealization of the medium as a gaseous 

cloud of “particles” endowed with spin and the physical models that were proposed above will 

require geometrization in the context of general relativity. Meanwhile the construction of a 

geometric structure that would be associated with not-necessarily-symmetric systems of energy-

momentum tensors remains an open problem. In conclusion, we shall briefly examine several 

possibilities. 
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6.1. – Riemannian space-time V 4. 

 

 This is the simplest-possible generalization: The geometric structure remains that of quadri-

dimensional Riemannian space-time V4 with the symmetric normal hyperbolic metric g . 

Following Belinfante and Rosenfeld [34], the conservation equation (4.58) is modified by writing 

(15): 

 

(6.1)    

 

in which 𝑅 ⋅ 𝛽𝛾𝛿
𝛼  is the curvature tensor of V 4 is a “Mathisson 4-force.” Equation (4.65) is not 

modified. If one now introduces the tensor J : 

 

 

(6.2)   

 

− and from (6.1) and (4.65), it is symmetric and conserved – then one can postulate the Einstein 

equations in the form: 

 

(6.3)   

 

in such a way that the Bianchi identities are satisfied, and (6.3) is the only geometry-source relation 

of the theory (16). 

 

 

6.2. – Einstein-Cartan space-time U 4. 

 

 Costa de Beauregard [39], Weyl [35], Sciama [36], Kibble [37], and Hehl [38], as far as they 

are concerned, followed the work of E. Cartan and assumed that there must exist a profound 

relationship between the spin density tensor and the torsion tensor of the connection of a non-

Riemannian space-time 𝑈4: The local existence of a spin density can induce torsion in the 

corresponding region of the universe in the same way that the presence of matter induced a local 

curvature in the universe in classical general relativity. Thus, those authors coupled the spin tensor 

(17) to the antisymmetric part of the affine connection (which preserves the metric) (18): 

 
 (15) In V 4, one defines  𝑅 ⋅ 𝛽𝛾𝛿

𝛼  , the Ricci tensor R , and the Einstein tensor G by: 

2 [ [ A = Aa 𝑅 ⋅ 𝛽𝛾𝛿
𝛼  ,  R  𝑅 ⋅ 𝛽𝛾𝛼

𝛼  , G  R − 
1

2
 g 𝑅 ⋅ 𝛾

𝛾
 , 

respectively. 

 (16) Compare with Israel [19], who utilized an elementary model from kinetic theory.  

 (17) The general expression for  has the form: 

 = a u u – b u u + 𝑏1
𝛼𝛽

𝑢𝛾 − 𝑏2
𝛽𝛾

𝑢𝛼 − 𝑏3
𝛼𝛾

𝑢𝛽 − M . 

The expression (4.66) corresponds to the particular case of a = b = 𝑏2
𝛼𝛽

 = 0. 

 (18) Hehl and von der Heyde [40] utilized the modified torsion tensor: 

(tot) ,T R  

  = −

def

(tot) ( )J T    

= + + −
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8
,

k
G J

c
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(6.4)   

 

The corresponding field equations are given by Hehl and von der Heyde [40]. Their structure is 

close to that of (6.1), (6.3), and 4.65). If one accepts such a description then one will get a possible 

interpretation of the torsion 𝐾𝛼𝛽
 ⋅ ⋅ 𝛾

. Indeed, according to the interpretation that is given to the 

dependency of the thermodynamic potential with respect to M in paragraph 4.3.1, the tensor 

M of (4.66)1 is supposed to represent the action of Heisenberg exchange forces in the form of 

contact actions (cf., § 4.4.2). It then follows that even if one does not take into account 

gyromagnetic phenomena in , the term M will be coupled with the torsion on 𝑈4 by the 

relation (6.4): Torsion can geometrically represent the spin-spin “contact” action. Our heuristic 

model thus comes back to Hehl’s conjecture ([38], [40]). 

 Finally, note that a geometric structure that is substantially equivalent can be obtained by 

starting from a geometric Lagrangian on a pseudo-Riemannian manifold 𝑉4 with an asymmetric 

connection, where 𝑉4 is the diagonal submanifold of a certain eight-dimensional manifold 𝑉8 (see 

the prolongation process of A. Crumeyrolle in Clerc [41]). 
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