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 Introduction. – The following investigation has the goal of developing a theory of the so-

called Bourdon tubes. Those thin-walled metal tubes are used as aneroid barometers when the air 

is pumped out of them and as thermometers when they are filled with ether. They have the 

remarkable property that very slight pressures that act upon their external or internal surfaces can 

produce measurable deformations. An aneroid barometer allows fluctuations of air pressure to be 

measured that amount to only a fraction of a millimeter of mercury in pressure. A millimeter of 

mercury in pressure is a pressure of 13.6 milligrams per square millimeter. The elastic modulus of 

most metals corresponds to a pressure of 8000 to 20000 kilograms per square millimeter. The 

quotient of both pressures then lies between, say, 1 / 6  10−5 and 1 / 15  10−5, so it is exceptionally 

small. A cylindrical tube will no longer react to such a slight pressure measurably; a measurable 

deformation will occur for only bent tubes. 

 In order to lay the foundations for the theory that I speak of, it is necessary to dig somewhat 

deeper. I shall then begin by transforming the basic equations of the theory of elasticity into general 

curvilinear coordinates. In the second part, those equations will then be applied to the case in which 

the body considered is a thin, bent plate. The third part addresses tubes that have the form of 

surfaces of revolution. 

 

 

Part I: Transforming the equations of elasticity into general coordinates. 

 

 1. The basic equations of elasticity theory in Cartesian coordinates. – The transformation 

of the equations of elasticity into general orthogonal coordinates was first carried out by Lamé. 

Simpler methods were given later by Carl Neumann, Borchardt, and Beltrami. For the 

following, it is desirable to employ, not orthogonal, but entirely arbitrary coordinates. The theory 

of invariants serves as means of achieving that transformation with very few calculations. 

 T means the kinetic energy of the body considered, U means the potential of the elastic forces, 

dM is the work that is done by internally-acting external forces under a virtual displacement, and 

d (M) is the work done by tractions that act upon the outer surface. As is known, one will get the 

equations of elasticity on the basis of Hamilton’s principle from the equation (1): 

 

(1)      
1

0

[ ( )]

t

t

t T U M M    + + +  = 0 . 

Here, t means time. The virtual displacements are chosen such that they will all vanish for the time 

points t = t0 and t = t1 . 

 We next employ a system of Cartesian coordinates x, y, z. We denote the volume of the body 

by V, its surface area by S, and its density by k. The components of the displacement of a point of 

the body are denoted by u, v, w, and their variations by u, v, w. The components of the external 

forces that act on a point in the interior are denoted by A, B, C, and the components of the pressure 

on an element of the surface by (A), (B), (C). 

 
 (1) Cf., Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe,” Crelle’s Journal, Bd. 

40, Gesammelte Abhandlungen, pp. 237. 
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 When expressed in terms of those quantities, the quantities that enter into (1) will have the 

values: 

 

(2)    M = 
( )

[ ]
V

A u B v C w V  + +  , 

 

(3)   (M) = 
( )

[( ) ( ) ( ) ]
S

A u B v C w S  + +  , 

 

(4)  T = 

2 2 2

1
2

( )V

u v w
k V

t t t

        
+ +       

         
 . 

 

 Finally, under the assumption that the body is isotropic, one has: 

 

(5)  U = − 2 2 2 2

1 2 3 1 2 3

( )

[ ( ) ]
V

K V      + + + + +  , 

 

in which 1, 2, 3 denote the principal dilatations. 

 The mechanical meaning of Kirchhoff’s elasticity constants K and  is inferred from the 

following remark: If one end of a cylindrical rod of length l is fixed, while a tension of magnitude 

P acts upon the other one, then the rod will experience a lengthening of 
1 2

2 1 3

P
l

K





+


+
. A line-

element that is perpendicular to the axis of the rod experiences a shortening that is equal to 
1 2



+
 

when expressed as a fraction of the length. The elastic modulus is therefore E = 
1 2

2
1 3

K




+

+
, and 

the quotient of the length dilatation and the lateral contraction is  = 
1 2



+
. 

 

 

 2. Introduction of general coordinates. – Instead of the Cartesian coordinates x, y, z, we shall 

now introduce general coordinates p1, p2, p3 . We assume that every point is determined uniquely 

by those coordinates. That demands that the functional determinant 
1 2 3

( , , )

( , , )

x y z

p p p




  must not vanish 

for any point in the body. We assume that the notation is chosen such that this determinant is 

positive. 

 The square of the line element: 
2ds  = 

2 2 2dx dy dz+ +  

 

is expressed in the new coordinates in the form: 
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  2ds  = a dp dp     (,  = 1, 2, 3) . 

 

We denote that differential form by F, its determinant by A, and the subdeterminant that is adjoint 

to the element a by A . The form F has the character of a positive-definite form everywhere 

inside of the region in question. None of the quantities a, A, A can vanish at any point in the 

region. Since: 

a = 
x x y y z z

p p p p p p     

     
+ +

     
 ,  

 

the functional determinant 
1 2 3

( , , )

( , , )

x y z

p p p




 = A ,  where the symbol A  means the positive square 

root, as in all of what follows. 

 The cosine of the angle that the direction of increasing p makes with the direction of increasing 

p is /a a a    . We distinguish an inner side and an outer side for the coordinate surface p 

= const. We refer to the outer side as the one that lies on the side of increasing p . The cosine of 

the angle that the outward-pointing normals to the surfaces p = const., p = const. make with each 

other is /A A A   . 

 Since the functional determinant 
1 2 3

( , , )

( , , )

x y z

p p p




 does not vanish, by assumption, one can pose 

the equations: 

 
2x

p p 



 
 = 

3

1

x

p 

 

=

  
 

 
 , 

2 y

p p 



 
 = 

3

1

y

p 

 

=

  
 

 
 , 

2z

p p 



 
 = 

3

1

z

p 

 

=

  
 

 
 , 

 

(,  = 1, 2, 3). 

 

Obviously, one has 
 



 
 
 

 = 
 



 
 
 

. The quantities 
 



 
 
 

 can be expressed in terms of the 

quantities a and their first derivatives. Namely, if one multiplies the first of the foregoing 

equations by x / p , the second by y / p ,  and the third by x / p , and adds them then that 

will give: 

 

(1)  
2 2 2x x y y z z

p p p p p p p p p        

     
+ +

        
 = 

3

1

a


 

=

 
 
 

  = 1
2

a aa

p p p

 

  

  
− + + 

    

 

 

(, ,  = 1, 2, 3). 

 

In place of the displacement components u, v, w, we introduce the quantities: 
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(2)       = 
x y z

u v w
p p p  

  
+ +

  
  ( = 1, 2, 3) 

 

and simultaneously replace the force components A, B, C and the traction components (A), (B), 

(C) with the components P and (P), which are defined by the equations: 

 

(3)     M = 
3

1

P 



=

 ,  (M) = 
3

1

( )P 



=

 . 

 

Equation (2) shows that / a   is the projection of the displacement of a point in the direction 

of increasing p . 

 We set 2 = 0, 3 = 0, and take 1 to be positive. Thus, the direction of the virtual 

displacement whose components are the quantities u, v, w will coincide with the direction of 

the outward-pointing normal to the surface p1 = const., and the absolute value of the displacement 

is 1 11/ a . Since the work done by that displacement is equal to P1 1, 1 11/P a  will be the 

projection of the force whose components are the quantities A, B, C onto the outward-pointing 

normal to the surface p1 = const. The mechanical meaning of the remaining quantities P and (P) 

is explained analogously. 

 It follows from (2) that: 

 

1 dp1 + 2 dp2 + 3 dp3 = u dx + v dy + w dz . 

 

That equation shows that the quantities 1, 2, 3 and dp1, dp2, dp3 are considered to be 

contragredient variables. 

 

 

 3. The form du dx + dv dy + dw dz. – Along with the differential form that represents the 

square of the line element, yet another quadratic form is also meaningful for the theory of elasticity 

that determines the dilatation of the line element. 

 It is the form: 

 

 du dx + dv dy + dw dz  

 

= 2 2 2u v w
dx dy dz

x y y

  
+ +

  
+ 1 1 1

2 2 2
2 2 2

w v u w v u
dy dz dz dx dx dy

y z z x x y

         
 + +  + +  +    

         
. 

 

Let the expression for that form in the new coordinates be: 

 

   = dp dp     (,  = 1, 2, 3) 
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Here, one has: 

(1)    = 1
2

u x v y w z u x v y w z

p p p p p p p p p p p p           

               
+ + + + +                       

 . 

 

From equations [§ 2, (2)], one has: 

 

p




 = 

2 2 2u x v y w z x y z
u v w

p p p p p p p p p p p p           

        
+ + + + +

           
 (,  = 1, 2, 3), 

 

and on considering [§ 2, (2)], it will follow that: 

 

(2)      = 
3

1
2

1p p




 

  


=

   
+ −        

   (,  = 1, 2, 3). 

 

We now summarize those forms of the system that is determined by the quadratic forms F and  

that will be used in what follows. We let  () = 3 – 2  + 2 4

1 0  −  denote the determinant 

of the quadratic form  –  F. Here, we obviously have 0 = A. We let G denote the contravariant 

of the form F and let  denote the simultaneous contravariant of the forms F and , which is 

linear in the coefficients of those two forms. We then have: 

 

  G = A       (,  = 1, 2, 3). 

We set: 

 =      . 

Here, we have: 

 

(3)       =  = 
3 3

1 1

A

a




  


= =




   (,  = 1, 2, 3). 

 

 The contravariant  can also be defined as the coefficient of  in the development of the 

determinant: 

11 11 12 12 13 13 1

12 12 22 22 23 23 2

13 13 23 23 33 33 3

1 2 3

a a a

a a a

a a a

      

      

      

  

− − −

− − −

− − −
 

in powers of  . 

 The following easily-proved relations exist between the forms 1, 2, G, and : 
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(4)   

1

1 1 2 2

( , 1,2,3),

, 2 , , 2 ( ).

A

A A

 

   

   

  

   
   

  = =


   
= = = = 

    


 

 

The values that the forms F, ,  (), etc., assume when the Cartesian coordinates enter in place 

of the general coordinates p1, p2, p3 might be denoted by F, , (), etc. One then has, e.g.: 

 

F = 2 2 2dx dy dz+ + ,   = du dx + dv dy + dw dz . 

 

 

 4. Expressing the potential of the elastic forces and the kinetic energy in the new 

coordinates. – The principal dilatations 1, 2, 3 are given by the values of  for which the 

determinant of the quadratic form  –  F vanishes, so the roots of the equation () = 0. () 

= A (), one then has: 

1 + 2 + 3 = 1

A


, 1 2 + 2 3 + 3 1 = 2

A


. 

As a result: 

2 2 2

1 2 3  + +  = 
2

1 2

2
2

A A

 
−  . 

One further has: 

G (1, 2, 3) = A G (u, v, w) , 

so one will also have: 

 

31 2, ,G
t t t

    
 

   
 = , ,

u v w
AG

t t t

   
 

   
 = 

2 2 2
u v w

A
t t t

        
+ +      

         

. 

 

Finally, one has: 

V = 
1 2 3A p p p   . 

 

That then gives the following expression for the potential for the elastic forces [§ 1, (5)]: 

 

U = − 
2

1 2
1 2 32

( )

(1 ) 2
V

K A p p p
A A


  

+ −    
 

 , 

 

and the kinetic energy is [§ 1, (4)]: 

 

T = 1
1 2 32

,( )V

A k A p p p
t t




 

  
   

  
  . 
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 5. The basic equations of elasticity theory in general coordinates. – From the foregoing [§ 

3, (4)], one has: 

U = − 
3 3

1
1 2 3

1 1( )

1
2 (1 )

V

K p p p
A A

 
 

  
= =

   
+ −     

  
  . 

Here, one has [§ 3, (2)]: 

 = 
3

1
2

1p p




 

  
  

=

   
+ −        

  . 

We set: 

(1)    12 (1 )K A
A

  
 

+ − 
 

 = − N , N = N  (,  = 1, 2, 3), 

to abbreviate, and get: 

 

(2)   U = 
3 3 3 3 3

1 2 3

1 1 1 1 1( )V

p p p
N N

p A


  

    

 
 

= = = = =

     
−  

   
  . 

 

We convert the integral on the right by partial integration in the known way. 

 The angle that the outward-pointing normals to the surface p = const. make with those of the 

outer surface S to the body will be denoted by  . That angle is obtuse at a location where the 

direction of increasing p1 enters the body, and one will accordingly have: 

 

11 2 3A p p   = − cos 1 S . 

 

The angle 1 is acute at an exit location, and one will accordingly have: 

 

11 2 3A p p   = + cos 1 S 

there. One then has: 

1 2 3
1

1( )V

p p p
N

p A







   

  = 

1

1 1
1 2 3

1( ) ( )11

cos

S V

N

AN
S p p p

pA A




 


 



 −   
   . 

 

Two analogous formulas are obtained by cyclically permuting the indices 1, 2, 3. We then get from 

(2) that: 

 

(3)  U = 
3

1 2 3
1 2 3

1 11 22 33

cos cos cos
N N N S

A A A A

  




   
=

  
+ +  

  
  
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− 

1 2 3

3 3 3

2 2 3

1 1 11 2 3( )

1

V

N N N

A A A
N p p p

p p p A

  

 
  

 


= = =

 
   

 
 + + +    

    
 
 

   . 

 

Furthermore, one has (cf., § 4): 

 
1

0

t

t

T t   = 
1

0

3 3

1 2 3

1 1( )

t

t V

k
t A p p p

t t A

 


 

 


= =

  
    

  
   . 

 

Since the variations  vanish for t = t0 and t = t1 , it will then follow from this by partial 

integration that: 

(4)    
1

0

t

t

T t   = 
1

0

23 3

1 2 32
1 1( )

t

t V

k
t A p p p

t A



 
 




= =

 
    

  
    . 

 

With the use of equations (3) and (4) of this article and equations (3) of article 2, we will now get 

from the basic equation of the theory of elasticity [§ 1, (1)], the differential equations for the 

interior of the body: 

(5)  
22 2

31 2
1 2 32 2 2

k
A A A

t t tA
  

   
+ + 

   
 = 

1 2 3

,1 2 3

1

N N N

A A A
P N

p p p A

  

 
 

 



  
 

− − − −  
    

  

( = 1, 2, 3), 

and the condition on the outer surface: 

 

(6)  1 2 3
1 2 3

11 22 33

1
cos cos cos

N N N

A A A A

    
 

+ + 
  

 = − (P)  ( = 1, 2, 3) . 

 

Here, 11a (P1), 22a (P2), 33a (P3) mean the projections of the pressure that acts upon the outer 

surface onto the outward-pointing normals to the surfaces p1 = const., p2 = const., p3 = const., resp. 

(cf., the remark in regard to § 2, (3)] 

 

 

 6. Mechanical meaning of the quantities N . – The equations that were derived in the 

foregoing are also valid for an arbitrary subset V0 of the total volume V of the body. Instead of the 

components (P1), (P2), (P3) of the pressure on the outer surface, the components of the pressure 

that V0 experiences from the remaining part of the body will enter in this case. We assume that a 

part of the outer surface of the volume V0 coincides with one of the surfaces p = const. in such a 

way that the outer side of the former surface covers the inner side of the latter, and we let 1 , 
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2, 3 denote the values that the quantities (P1), (P2), (P3), resp., assume in this case.  a   

then means the projection of the pressure that the inner side of the surface p = const. experiences 

onto the outward-pointing normal to the surface p = const. The cosines cos 1, cos 2, cos 3 

take on the values: 

− 
1

11

A

A A





, − 
2

22

A

A A





 , − 
3

33

A

A A





 ,  

 

resp., in which case (cf., the previous article and article 2), and from equation (6) of the previous 

article, that will give: 

 

1 2 3

1 2 3

11 22 33

1 A A A
N N N

A A AA A

  

  



 
+ + 

 
 =   (,  = 1, 2, 3). 

 

 

Part II: Application to the case of curved, thin plates. 

 

 

 7. Geometric definition of the body. – We assume that the body in question is a thin plate 

that has the form of a curved, but not developable surface. 

 In order to define the form of the body geometrically, we start from a “middle surface” S0, 

which can be closed or have a boundary curve L. 

 As for all surfaces under consideration here, we will also distinguish an outer side and an inner 

side for S0 . 

 We then assume that there are two parallel surfaces S+ and S− to the surface S0, the former of 

which runs across the outer side of S0 and the latter of which runs over the inner one, and both of 

them possess a distance from S0 of . As long as the middle surface is closed, the two surfaces S+ 

and S− define the complete boundary of the body. If that is not the case then we imagine that the 

normals to the surface S0 are erected along the boundary curve. The surface strip R that defines the 

normal segments that lie between S+ and S− complete the boundary of the body. 

 We assume that the middle surface is continuously curved, so in particular, it is free from edges 

and vertices. 

 

 

 8. Specializing the coordinate system. – In order to fix a point on the middle surface, we 

employ parameters p1, p2 in the usual way. It will be assumed that every point of the middle surface 

is determined uniquely by the associated parameter values. In order to determine an arbitrary point 

of the body, we introduce the distance p3 of the point from the middle surface. It will be considered 

to be positive or negative according to whether the point lies on the outer or inner side of the 

middle surface. 
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 We denote the Cartesian coordinates of an arbitrary point of the body by x, y, z, the coordinates 

of the base-point of the normal that goes through the middle surface by x0, y0, z0, and the direction 

cosines of the outward-pointing normal to the middle surface by X, Y, Z. 

 For the square of the line element, since: 

 

X dx0 + Y dy0 + Z z0 = 0 and X dX + Y dY + Z dZ = 0 , 

 

there will be an expression of the form: 

 

(1)   (0) 2 (0) (0) 2 2 2

11 1 12 1 2 22 2 11 1 12 1 2 22 2 3[ 2 ] 2[ 2 ]a dp a dp dp a dp c dp c dp dp c dp p+ + + + +  

+ 2 2 2 2

11 1 12 1 2 22 2 3 3[ 2 ]b dp b dp dp b dp p dp+ + +  . 

 

The first quadratic form on the left represents the square of the line element of the middle surface, 

and the form that is multiplied by 2

3p  represents the square of the line element of the GAUSSIAN 

sphere. The quantities c are the so-called “second-order fundamental quantities” of the middle 

surface (1). 

 In the general formulas of arts. 1-4, one must then set a13 = 0, a23 = 0, a33 = 1 in the present 

case. It then follows that: 

 

(2)  A11 = a22 ,    A22 = a11 ,    A12 = − a12 ,    A13 = 0 ,    A23 = 0 ,    A33 = A = a11 a22 − 2

12a  . 

 

 In regard to the quantities 
 



 
 
 

 that were introduced in art. 2, for the present purposes, it 

would suffice to remark that since (see art. 8): 

 

3

x

p




 = X , 

3

y

p




 = Y , 

3

z

p




 = Z , 2 2 2X Y Z+ +  = 1 , 

one has: 
2 2 2

3 3 3

x y z
X Y Z

p p p p p p  

  
+ +

     
 = 0 , 

and as a result: 

3

3

 
 
 

 = 0  for  = 1, 2, 3. 

 

 
 (1) Cf., Knoblauch, Einleitung in die Theorie der krummen Flächen, pp. 24. 
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The quantities 
12



 
 
 

, 
23



 
 
 

 ( = 1, 2) will not come under consideration in what follows. Finally, 

as far as the quantities 
1

  
 
 

, 
2

  
 
 

, 
3

  
 
 

 (,  = 1, 2) are concerned, only the values that 

exist on the middle surface will appear in the following, so only the ones that correspond to the 

value p3 = 0. Those values are defined by the equations: 

 

  
2

0x

p p 



 
 = 0 0

1 2
1 2 3

x x
X

p p

           
+ +     

      
, 

 

(3)  
2

0y

p p 



 
 = 0 0

1 2
1 2 3

y y
Y

p p

           
+ +     

      
 (,  = 1, 2) , 

 

  
2

0z

p p 



 
 = 0 0

1 2
1 2 3

z z
Z

p p

           
+ +     

      
. 

 

Those equations show that for p3 = 0, the quantities 
3

  
 
 

 are the negatively-taken second-order 

fundamental quantities of the middle surface, so 
3

  
 
 

 = − c for p3 = 0 . The values of the 

quantities 
3

  
 
 

, (,  = 1, 2), that correspond to p3 = 0 are the known Christoffel constraints (1). 

 The angles 1, 2, 3 that the outward-pointing normals to the outer surface of the body define 

with the outward-pointing normals to the surfaces p1 = const., p2 = const., p3 = const., take the 

following values in the present case: 

 

  along the outer surface S+ : 
2


, 

2


, 0, 

 

    inner  S− : 
2


, 

2


, , 

   boundary surface R  : 1 ,  2 , 
2


. 

 

 The conditions for the outer surface (arts. 5, 6) then read as follows in the present case: 

 

 
 (1) Cf., e.g., Knoblauch, loc. cit., pp. 172.  
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  along  S+ : N3 = − ( )A P

+ , 

(4)   S− : N3 = + ( )A P

+ , 

   R  : 1 2
1 2

22 11

cos cos
N N

a a

  +  = − ( )( )RA P  ( = 1, 2, 3) . 

 

Here, 
1( )a P+ , 

2( )a P+ , 
3( )P+  mean the projections of the external pressure that acts upon the 

surface S+ onto the outward-directed normals to the surface p1 = const., p2 = const., and p3 = const. 

or S0 . The meanings of the quantities ( )P

−  and ( )( )RP
 are then clear with no further discussion. 

 If tractions, in the narrow sense (i.e., not tensions) act upon the surface S+ and S− then ( )P

−  

will be negative and ( )( )RP  will be positive. 

 

 

 9. Introducing restricted assumptions. – We now make use of the assumption that the 

thickness 2 of the plate considered is very small. In that way, we consistently maintain the 

assumption that the components of the displacement 1, 2, 3 and their derivatives of first and 

second order (and correspondingly, the stress components and their derivatives) must also be 

considered to be continuous functions when we consider  to be a quantity that is infinitely-small 

to first order. In other words: We exclude the case in which the displacement components or their 

derivatives of first and second order go up to an order of magnitude of 1 / . 

 In regard to that, it should be remarked: The assumption that the components of the stresses 

that originate inside the body are very small and vary continuously everywhere generally demands 

that the components of the displacements and their first derivatives with respect to the coordinates 

must be very small, but it does not exclude the possibility that in some parts of the body, the 

quotient of the directional derivatives of a stress component with the component itself (i.e., the 

logarithmic derivative of the stress component) will attain the order of magnitude 1 / . 

 Rather, it is not at all established a priori whether the assumption that this does not occur is 

even admissible. 

 In the following, it will be shown that this assumption is admissible for certain forms of plates, 

but not for others. 

 With our assumptions, the quantities  (and naturally the corresponding principal dilatations 

1, 2, 3) are at least infinitely-small quantities of first order. However, the case can occur in 

which those quantities  are all infinitely-small of second order, while the derivatives in the 

direction of the normals to the middle surface go up to the first order of magnitude. If one imagines 

developing the quantities  in a series of increasing powers of p3 : 

 

 = (0) 21
3 32

p p     + + +  

 

then if (0)

  is a first-order quantity, one can neglect the terms 
3p , 21

32
p , and likewise all 

of the ones that follow them, as infinitely-small quantities of higher order. By contrast, when (0)

  
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is infinitely-small of second order, the second term 
3p  must be preserved. It is then clear that 

the two cases require an entirely-different treatment. 

 In what follows, I shall restrict myself to the case in which the quantities  are small 

quantities of first order and reserve the second case as something that I will return to on a later 

occasion. 

 We make two further simplifying assumptions that are admissible in the cases that occur in 

practice: We overlook external forces that act upon the interior of the body, so we neglect gravity, 

and we assume, secondly, that only a constant normal pressure acts upon each of the two outer 

surfaces of the plate S+ and S− . Along the boundary to the body, which belongs to a boundary 

surface R, we assume that the pressure that acts upon an element of R is perpendicular to the normal 

to the middle surface S0 that goes through the surface element. 

 

 

 10. Consequences of the assumptions that were introduced. – By assumption, the 

fluctuations that the values of the functions  ,  , N experience when one advances along a 

normal to the middle surface S0 are considered to be infinitely-small quantities of higher order. It 

then follows that: One can replace the value of one of those functions at an arbitrary point on the 

normal with the value that exists at the corresponding point on the middle surface. It should be 

remarked in regard to the functions N13, N23, N33 that since, by assumption, a normal constant 

pressure acts upon the surfaces S+ and S− , one must set 
1( )P+ , 

2( )P+ , 
1( )P− , 

2( )P−  equal to zero in 

the formulas [§ 8, (4)]. The quantities – 
3( )P+  and 

3( )P−  can differ by only a negligible quantity. 

To simplify the notation, we set: 

– 
3( )P+  = 

3( )P−  = (P) . 

 

(P) will be positive or negative according to whether a pressure or a tension acts upon the surfaces 

S+ and S− . 

 Even though the quantity 
3( )P+ + 

3( )P−  can generally be neglected, nonetheless, (due to the 

smallness of ) the quotient – [
3( )P+ + 

3( )P− ] / 2 can possess a value that cannot be neglected. 

That value might be denoted by Q. The constant Q will be positive or negative according to 

whether a greater pressure acts upon the outer or inner surface, resp. (cf., the remark at the 

conclusion of art. 8). 

 On the grounds of the assumed continuity of the quantities N and their derivatives, the 

following equations [see § 8, (4) and (1)] will be true for every point of the body approximately: 

 

(1)    N13 = 0 , N23 = 0 , N33 = ( )(0) (0) (0)2

11 22 12 ( )a a a P−  . 

 

To the same degree of approximation, one can replace the differential quotients N3 / p3 with the 

quotients: 

3 3

2

N N 



+ −−
 = 

( ) ( )

2

A P A P 



+ + − −− −
 = 

( ) ( )
( )

2 2

P PA A
P A  

 

+ −+ −
− + +−

−  . 
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Therefore, N13 / p3 = 0, N23 / p3 = 0. To the approximation that is valid for N33 / p3 , the 

quotient ( ) / 2A A + −−  can be replaced with the value of the differential quotient A / p that is 

calculated for the middle surface, and that value is equal to [§ 8, (1)]: 

 
(0) (0) (0)

11 22 22 11 12 122a c a c a c+ −  . 

 

We then get the approximate value: 

 

33

3

N

p




 = (0) (0) (0) (0) (0) (0)2

11 22 22 11 12 12 11 22 12( 2 )( ) ( )a c a c a c P a a a Q+ − + −  , 

 

and that will give the approximate value: 

 

33

3

N

A

p




 = 

(0) (0) (0) (0) (0) (0)21
11 22 22 11 12 12 11 22 122(0) (0) (0)2

11 22 12

1
[ ( 2 )( ) ( ) ]a c a c a c P a a a Q

a a a
+ − + −

−
 . 

 

The simplifications that proved to be admissible in the foregoing are not introduced into equations 

(5) and (6) of art. 5. 

 It is convenient to simultaneously introduce a simplification into the notations. In what follows, 

the values that the aforementioned functions assume for p3 = 0 shall be denoted by x, y, z, u, v, w, 

a ,  , N ,  . Those quantities will then be considered to be functions of position on the 

middle surface from now on. We denote the determinants of the quadratic binary forms: 

 
2 2

11 1 12 1 2 22 22a dp a dp dp a dp+ +  and 2 2

11 1 12 1 2 22 22c dp c dp dp c dp+ +  

 

by a and c, resp., and their simultaneous invariant by (a, c). Analogously, we let (a, ) denote the 

simultaneous invariant of the binary forms 2

11 1a dp +  and 2

11 1dp +  In place of the quantities 

N11 N12 N22 that were originally defined as the coefficients of a simultaneous contravariant of two 

ternary forms (arts. 3 and 5), we introduce the quantities 11 = N22, 22 = N11, 12 = − N12, which are 

considered to be the coefficients of a simultaneous covariant of the two binary forms 2

11 1a dp +  

and 2

11 1dp +  

 It now follows from equation [§ 5, (1)]: 

 

12 (1 )K A
A

  
 

+ − 
 

 = − N , 

that since: 

 

A13 = 0, A23 = 0, A = A33 = a, N13 = 0, N23 = 0, N33 = a (P) 
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[cf., § 8, (2) and equation (1) of this article]: 

 

13 = 0 , 23 = 0 , 

 

2 K [(1 + ) 1 – 33] = − a (P) . 

Now: 

1 = 
,

A 
 

  = (a, ) + a 33 . 

As a result: 

 

(3)     33 = + 
( )

2

P

K
 (1 + ) [(a, ) + a 33] . 

 

On the other hand, from their definitions [§ 3, (3)], the quantities  have the expressions: 

 

  11 = a22 33 + 22 ,  22 = a11 33 + 11 , 12 = − a12 33 − 12 , 

  13 = a12 23 − a22 13 ,  23 = a12 13 − a11 23 , 33 = (a  ) . 

Since: 

13 = 0 , 23 = 0 , one also has 13 = 0 , 23 = 0 . 

 

 If one substitutes the value of 33 that was just found in equation (3) then it will follow that: 

 

33 = − 
1 ( ) ( , )

1 2 1

P a

K a

 

 
−

+ +
, 

and from that: 

1

A


 = 

( , )a

a


+ 33 = − 

1 ( ) 1 ( , )

1 2 1

P a

K a



 
−

+ +
. 

 

It now follows from equations [§ 5, (1)] by a simple calculation that: 

 

(4)      = 
( ) 1 2 ( , )

2
1 2 1

P a
K a

K a
 

  


 

 +  
+ −  + +  

 (,  = 1, 2) . 

 

Art. 6 will imply the equations for the stresses that prevail along the middle surface: 
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(5)     

11 11 11 22 12 12

11 22

22 2 22 11 12 12

11 22

11 12 11 12 12 11

11 22

22 21 22 12 12 22

11 22

1
[ ],

1
[ ],

1
[ ],

1
[ ] .

a a a
a a a

a a a
a a a

a a a
a a a

a a a
a a a

 

 

 

 


 = +




 = +


  = +




 = +



 

 

The mechanical meaning of the quantities  can now be expressed in the following way: 

 a   means the projection of the pressure that the surface that lies on the inner side of 

the curve p = const. experiences from the outside onto the outward-directed normal to the curve 

p = const. that contacts the middle surface. The outer side of the curve p = const. is considered 

to be the side along which the coordinate p increases. 

 

 

 11. The basic equations of the problem. – We must now carry out the following substitution 

in the equations of the theory of elasticity [§ 5, (5) and (6)]: 

 

A11 = a22 , A12 = − a12 , A22 = a11 , A13 = 0 , A23 = 0 , A33 = A = a , 

 

11

3

 
 
 

 = − c11 ,    
12

3

 
 
 

 = − c12 ,    
2 2

3

 
 
 

 = − c22 ,    
3 3

1

 
 
 

 =  ,    
3 3

2

 
 
 

 =  ,    
3 3

3

 
 
 

 =  , 

 

P1 = 0 , P2 = 0 , P3 = 0 , 

 

N11 = 22 ,    N12 = − 12 ,    N22 = 11 ,    N13 = 0 ,    N23 =  ,    13

3

N

p




 = 0 ,    23

3

N

p




= 0 , 

N33 = a (P) ,  

33

3

N

a

p




 = 1

2

( , )
( )

a c
P a Q

a
+  . 

 That gives: 

 

(1)     
2 2

1 2
22 122 2

k
a a

a t t

   
− 

  
 = − 

22 12

22 12 11

1 2

11 1 2 2 21
2

1 1 1

a a

p pa a a a

 

  

 
  

     
 − + − +     

       
 
 

 , 
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(2)     
2 2

2 1
11 122 2

k
a a

a t t

   
− 

  
 = − 

11 12

22 12 11

2 1

11 1 2 2 21
2

2 2 2

a a

p pa a a a

 

  

 
  

     
 − + − +     

       
 
 

 , 

 

(3)     
2

2

2
k

t




 = − 1

2

( , ) ( , )
( )

a c c
P Q

a a


− +  . 

 

 As long as the middle surface is not closed, the following boundary conditions [cf., § 8 (4)] 

will have to be considered: 

(4)     

( )1 2
11 12 1

22 11

( )1 2
12 22 2

22 11

cos cos1
( ) ,

cos cos1
( ).

R

R

P
a a a

P
a a a

 
 

 
 

  
− = −  

   


 
− + = − 

  

 

 

 Here, 1 means the angle that the outward-directed normal to the boundary curve that contacts 

the middle surface makes with the normal to the curve p1 = const. that contacts the middle surface 

and points in the direction of increasing p1 . 2 has an analogous meaning. 

 The connection between the quantities  and the displacements is mediated by equations [§ 

10, (4) and § 3, (1) and (2)]: 

 

(5)    = 
( ) 1 2 ( , )

2
2 1 1

P a
K a

K a
 

  


 

 +  
+ −  + +  

  (,  = 1, 2) 

and 

(6)  

1 2 3

1 1
,

2 2

1
.

1 22

u x v y w z u x v y w z

p p p p p p p p p p p p

c
p p



           

 


 



    
  

               
= + + + + +                      


     

= + − − +             

 

 

It follows from (5) that: 

( , )a

a


 = 

2 1 3 ( , )
( ) 2

1 1

a
P K

a

  

 

+
−

+ +
, 

and from that: 

(7)   = 
1 1 2 ( , )

( )
2 1 3 1 3

a
a P a

K a
  

  


 

+ 
− + + + 

. 
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Weingarten denoted the expressions that define the right-hand sides of equations (1) and (2), 

when taken negatively, by a (p1) [ (p2), respectively]. He proved that those expressions 

transform like the differentials dp1, dp2, which will also emerge from the development that was 

carried out here. He further proved that the two expressions will vanish when one replaces  with 

a or c . 

 One can give the expressions a (p1) and a (p2) a form that is more convenient for many 

applications. 

 Namely, if one observes that (1): 

 

  
11 12

1 1 1 1

1 2
a a

   
+   

   
  = 11

1

1

2

a

p




, 

12 22

1 1 1 1

1 2
a a

   
+   

   
 

 = 12 11

1 2

1

2

a a

p p

 
−

 
, 

  
11 12

1 2 1 2

1 2
a a

   
+   

   
  = 11

2

1

2

a

p




, 

12 22

1 2 1 2

1 2
a a

   
+   

   
  = 22

1

1

2

a

p




, 

  
11 12

2 2 2 2

1 2
a a

   
+   

   
 = 12 22

2 1

1

2

a a

p p

 
−

 
, 

12 22

2 2 2 2

1 2
a a

   
+   

   
  = 22

2

1

2

a

p




 

 

then that will give: 

 

(8)  a11 a (p1) + a12 a (p2) = 11 22 12 12 11 12 12 11

1 2

1 a a a a

p pa a a

       − − 
−    

         

 

  − 11 22 12
22 11 12

1 1 1

1
2

2

a a a

a p p p
  

   
+ − 

   
 , 

 

(9) a12 a (p1) + a22 a (p2) = 22 11 12 12 22 12 12 22

2 1

1 a a a a

p pa a a

       − − 
−    

         

 

  − 11 22 12
22 11 12

2 2 2

1
2

2

a a a

a p p p
  

   
+ − 

   
 , 

 

 

 12. Conditions for equilibrium. – I shall not go further into the theory of oscillations, but 

only restrict myself to a closer examination of the conditions for equilibrium. 

 For the case of equilibrium, the first three equations of the previous article take the form: 

 

a (p1) = 0 , a (p2) = 0 , 

 
 (1) Cf., Knoblauch, loc. cit., pp. 170, et seq. 
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( , )c

a


 = 

1 ( , )
( )

2

a c
P Q

a
+ . 

 

 We now imagine that the deformation that actually occurs is composed of a superposition of 

two simple deformations. The first of those two deformations corresponds to the assumption that 

Q = 0, while the second one corresponds to the assumption that (P) = 0. 

 For the first deformations, one has the equations: 

 

1( )a p   = 0 , 2( )a p   = 0 , 
( , )c

a

 
 = 

1 ( , )
( )

2

a c
P

a
, 

  = 
1 1 2 ( , )

( )
2 1 3 1 3

a
a P a

K a
  

  


 

+ 
 − + + + 

 

= 
1

2

u x v y w z u x v y w z

p p p p p p p p p p p p           

                 
+ + + + + 

             

 . 

 

 For the second deformation, one has the equations: 

 

1( )a p   = 0 , 2( )a p   = 0 , 
( , )c

a

 
 = Q , 

  = 
1 1 2 ( , )

2 1 3

a
a

K a
 

 




+ 
 − + 

 . 

 

 These must be combined with the three equations that mediate the connection between the 

quantities   and the components of the displacements u , v , w . 

 We satisfy the first system of equations by the assumption that: 

 

1( )a p   = 1
2
( )P a ,   = − 

( ) 1

4 1 3

P
a

K






−

+
, 

u

x


 = 

v

y


 = 

w

z


 = − 

( ) 1

4 1 3

P

K





−

+
 . 

 

 That deformation consists of a uniform compression of the middle surface under which it 

remains similar to its original form. 

 Since there is no obstacle to reducing the case in which (P) is non-zero to the case in which 

(P) = 0, I shall assume that (P) = 0 in what follows. 

 

 

 13. On the uniqueness of the solution. – The differential equations that are true for the case 

of equilibrium now take the form: 
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a (p1) = 0 , a (p2) = 0 , 
( , )c

a


 = − Q . 

 

When the middle surface is not closed, the following boundary conditions must be appended: 

 

  1 2
22 12

22 11

cos cos1

a a a

 
 

 
− 

  

  = − ( )( )

1

RP  , 

  1 2
12 11

22 11

cos cos1

a a a

 
 

 
− + 

  

  = − ( )( )

2

RP  . 

 

The dilatations and the displacements are defined by the equations: 

 

   = 
1 2 ( , )

2
1 3

a
K a

a
 

 




+ 
− + 

, 

   = 
1 2 3

1

1 22
c

p p

 


 

    
  

     
+ − − +            

 . 

 

These must be combined with the continuity conditions: 

 The quantities  and  are single-valued and continuous on the entire surface. 

 If the quantities  and  are not determined uniquely by the given conditions then there must 

be a system of quantities  ,  that satisfy the equations that the foregoing ones go to when one 

sets Q equal to zero, and in the event that the surface is not closed, ( )( )

1

RP  and ( )( )

2

RP , as well. 

 The integral over the entire middle surface is: 

 

 J = 1 1 2 2

( )

[ ( ) ( ) ]a a

S

p p S   +   

 

  = 

22 12

22 12 11
1

1 2( )

11 1 2 111
2

1 1 1
S

a a

p pa a a a

 

  


  
   

       − + − +     
         
  

 

  

+ 

11 12

22 12 11 1 2
2

2 1

11 1 2 2 21
2

2 2 2

a a p p

p pa a a a a

 

  


 
   

        − + − +     
        
 

  

 , 
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 = 1 2
22 1 2 11 1 2

1 2( )

11 11 2 2 2 2

1 2 1 2
S

p p

 
     

            
− + + + − + +           

            
  

− 1 2 1 2
12 1 2

2 1

12 121 1
2

1 22 2

p p
R

p p a

 
  

       
− − + + +    

      

. 

 

 When the middle surface is closed, one must set R = 0. If it is bounded by a boundary curve L 

then R will be the integral along that curve: 

 

1 2 2 1
22 12 1 11 12 2

( ) 22 11 11 22

cos cos cos cos

L

L

a a a a a

   
     

     
− + −    

        
  . 

 

The integral is equal to zero, due to the initial conditions. 

 Based upon the equations that are valid for the displacements, one now gets: 

 

J = 1 2
3

( )

[ ( , ) ( , ) ]
S

p p
c

a
   

 
− + . 

Now: 

  (c, ) = 0  

and 

  (, ) = 
21 2 ( , )

2 2
1

a
K

a

 




 +
− 

+ 
 . 

As a result: 

J = 
2

( )

1 2 ( , )
2 2

1
S

a
K S

a a

  



 +
−  

+ 
 . 

 

 Since the form 2 2

11 1 12 1 2 22 22a dp a dp dp a dp+ +  is definite, the expression under the integral sign 

is non-zero and positive as long as not all three quantities  vanish. 

 Now since J = 0, it follows that the quantities  are all equal to zero. The line element of the 

middle surface then experiences no dilatation. It follows from this that by our differential equations 

and the associated continuity and initial conditions, the deformation of the middle surface is 

determined up to an inextensible bending. 

 If the middle surface is a closed surface with everywhere-positive curvature then, as Liebmann 

has proved, an inextensible bending is impossible. The question of whether (to what extent, 

respectively) such a bending of a closed surface is possible when its curvature is partially positive 

and partially negative has not been answered yet. 

 If the middle surface is not closed then in order for the deformation to be determined 

completely, further conditions must be added to the boundary conditions that were given above, 

e.g., the condition that the boundary curve is fixed. 
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 However, the question of whether that condition is also sufficient to determine the deformation 

must remain open for now. 

 

 

 14. Determining the components of the displacement. – When the quantities  are known, 

and therefore the quantities , as well, the determination of the components of the displacement 

will require the integration of a linear, but not homogeneous, second-order partial differential 

equation, which will require only quadratures, in addition. 

 In order to exhibit that partial differential equation, we employ the procedure that Weingarten 

gave (1). 

 It is preferable determine the components of the displacement u, v, w, as evaluated in the 

direction of the Cartesian coordinates, not the quantities  . 

 We introduce three new unknowns, namely: 

 

(1)      = 
1 2 2 1

1

2

x u x u

p p p pa

    
− 

    
   , 

 

(2)     1 = 
1

u
X

p




 , 2 = 

2

u
X

p




 . 

Here, we wrote: 

1 2

x u

p p

 

 
  

as an abbreviation for: 

1 2 1 2 1 2

x u y v z w

p p p p p p

     
+ +

     
, 

etc. 

  is a differential invariant. Namely, the numerator of the expression  is the linear invariant 

of the bilinear differential form: 

2 2

1 1

x u
dp dp

p p
 

   = =

  
 

   
  . 

 

1, 2 are the coefficients of a linear differential covariant, which will emerge immediately from 

the equation: 

1 dp1 + 2 dp2 = X du + Y dv + Z dw . 

 

 In order to see the mechanical meaning of the quantities , 1, 2, we imagine, for the moment, 

that the origin of the Cartesian coordinates x, y, z is placed at a point of the middle surface, and the 

positive z-axis coincides with the outward-pointing normal. We then have: 

 
 (1) “Über die Deformation einer biegsamen unausdehnbaren Fläche,” Crelle’s Journal, Bd. 100, pp. 296. 
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1 dp1 + 2 dp2 = dw . 

 

Therefore, 1 11/ a  is the cosine of the angle that a line element that has the direction of 

increasing p1 after the deformation makes with the original direction of the surface normal. The 

meaning of 2 is explained analogously. 

 In the case where the coordinate lines p1 = const., p2 = const. are perpendicular to each other, 

1 11/ a , 2 22/ a  mean the components of the rotation around the line p1 = const. (p2 = const., 

resp.). 

 If one chooses the Cartesian coordinates x, y to be independent variables, for the moment, then 

one will have: 

 = 1
2

u w

y x

  
− 

  
 , 

 

where  means the component of the rotation around the normal of the middle surface (1). 

 The equations: 

   = 1
2

x u x u

p p p p   

    
+ 

     
   (,  = 1, 2) 

are now replaced by the equations: 

 

(3)    

11 22

1 1 2 2

12 12

1 1 2 1

, ,

, .

x u x u

p p p p

x u x u
a a

p p p p

 

   

   
= =    


    = + = −

    

 

 
 

 

They must be combined with the equation [see § 11, (7)]: 

 

(4)      = 
1 1 2

2 1 3
H a

K
 






+ 
− + 

 , 

 

in which one has set (a, ) / a = H, to abbreviate. 

 It now follows from (3) that: 

 

(5)    
2 2

2

1 2 1 2 1

x u x u

p p p p p

   
−

    
   = 12 11

1 1 2

a

p p p

  
+ −

  
. 

 

In order to convert the right-hand side of that equation, we remark that: 

 
 (1) Weingarten, loc. cit., used  to denote the quantity that is denoted by  here and called it the “displacement 

function.” 
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1

a

p




 = 

2

11 1 2

1 2

a
a

p

     
+    

    
 = 

2 2 1 2

2 1
a

    
+    

    
 . 

 As a result: 

 

(6)  

12 11

12 11

1 2 1 1 2

12 11

1

11 1 2 2 2 1 2 11 1 2
.

1 2 2 2 1 2

a a a
a

p p p p p

a a
p

 

 


  

  
      − + = −

      
 
 

                 
+ + − + + + +                 

                 

 

 

 In order to convert the left-hand side of equation (5), we make use of the equations: 

 

  
2x

p p 



 
 = 

1 2
1 2

x x
c X

p p


       
+ −   

    
  (,  = 1, 2), 

 

and the equations that are obtained from them by cyclically permuting x, y, z. When we recall (3), 

we will get: 

 

 
2 2

2

1 2 1 2 1

x u x u

p p p p p

   
−

    
   

 

= 
12 22 11 2 11 12 12 1

11 11 12 12
[ ] [ ]

1 2 1 2
a c a c       

       
+ + − − − − +       

       
 . 

 

We substitute that value in equation (5) and simultaneously employ (6). That will give: 

 

12 11

11 12 22

1 2

2 2 1 2 11
2

2 2 2

a a
a

p p

 

  

 
  

     
 − − + −     

        
 
 

 = − 11 2 12 1

1

a c c
p


 


− +


. 

 

 With the use of Weingarten’s notation, one can write: 

 

a (p2) = 11 2 12 1

1

1 c c

p aa

  −
+


. 

 Now, as a result of (4): 
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a (p2) = 
2 2 11 12

2 1

1 1 2 1 2
( ) ( )

2 1 3 1 3
a a

H H
p H a p a a

K p p

 


 

  + +  
− − −  

+ +    
 , 

 

so since a (p2) = 0 (art. 12) and aa (p2) = 0 (art. 11): 

 

(7)    c11 2 – c12 1 = − 11 12

1 2 1

1 1 2

2 1 3

H H
a a a

p K p p

 



  +  
− − 

 +   
 .  

 

When one switches p1 and p2 , so –  will enter in place of , that will give: 

 

(8)    c22 2 – c12 2 = 22 12

2 1 2

1 1 2

2 1 3

H H
a a a

p K p p

 



  +  
− − 

 +   
 .  

 

We solve equations (7) and (8) for 1 and 2 . We obtain: 

 

(9)   

1 11 12 11 12

2 1 1 2

2 22 12 21 22

1 2 1 2

1 1 2
,

2 1 3

1 1 2
.

2 1 3

H H
c a c c A A

p p K p p

H H
c a c c a A A

p p K p p

  




  




      +  
= − − +    

  +      


     +  
= − + − +      +     

 

 

Here, one sets: 

(10)   
11 22 11 12 12 12 11 12 12 11

21 22 12 12 22 22 11 22 12 12

, ,

, ,

a A a c a c a A a c a c

a A a c a c a A a c a c

= − = −


= − = −
 

 

to abbreviate. The quantities A have a simple meaning. Namely, one has the equations: 

 

  
X

p




 = 1 2

1 2

x x
A A

p p
 

 
+

 
  ( = 1, 2) 

 

and four more equations that are obtained from them by cyclically permuting x, y, z. 

 Now, it follows from (2) and (3) that: 

 

1 2

2 1p p

  
−

 
 = 

2 1 1 2

X u X u

p p p p

   
−

   
   

 

= 
21 11 22 12 11 12 12 22[ ( )] [ ( ) ]A A a A a A     + − − + +  

= 
21 11 12 22 11 22 12 11 22[ ( ) ] ( )A A A A a A A   − − − − +  . 
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One can write the expression in the first bracket on the right-hand side in the form: 

 

− 

11 12 22

11 12 22

11 12 22

1
a a a

c c c
a

  

 = − 

11 12 22

11 12 22

11 12 22

1

2

a a a

c c c
K a

  

 . 

 

We denote the determinant on the right (which is the simultaneously invariant of the three 

quadratic forms 2

11 1a dp + , 2

11 1c dp + , 2

11 1dp + ) by (a, c, ), to abbreviate. 

 One further has A11 + A22 = (a, c) / a . We then get: 

 

2 1

1 2

1

p pa

   
− 

  
 = 

3/2

1 ( , , ) ( , )

2

a c a c

K a a


+  . 

 

If we introduce the values (9) for 1 and 2 then we will get the partial differential equations for 

: 

(11)

22 12 11 12

1 1 2 2 2 1

21 22 11 12 3/2

1 1 2 2 1 2

1 1 ( , )

1 1 2 1 1 ( , , )
.

2 1 3 2

a a a c
c c c c

p c p p p c p p aa a

a H H a H H a c
A A A A

K p c p p p c p p K aa

   


 



            
− + − +      

              



       +       
= + + + −       

+              










 

 

If  is determined then equations (9) will yield 1 and 2 , and the derivatives of the components 

u, v, w can then be calculated. The determination of the components themselves then requires 

nothing more than quadratures. 

 
(to be continued) 

 

___________ 
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“Über die Deformation gekrümmter elastischer Platten,” Archiv. d. Math. u. Phys. (3) 6 (1904), 260-283. 

 

(continuation) 

 

 

Part III: A more precise examination of the special case in which  

the middle surface is a surface of revolution. 

 

 15. Definition of the surface. Choice of coordinate system. – We apply the general theory 

to the case in which the middle surface is a surface of revolution. In so doing, we restrict ourselves 

to the case in which the curve whose rotation generates the surface is an oval whose symmetry 

axis is perpendicular to the axis of rotation. We choose the axis of rotation to be the z-axis and 

imagine that it is vertical. We choose the plane z = 0 to be the symmetry plane of the surface – i.e., 

the equatorial plane. We denote the distance from a point on the surface to the axis of rotation by 

r. The quantities r and z are considered to be functions of a parameter p. We denote the derivatives 

of r and z with respect to p by r , z , etc., and denote the derivative of the line element on the 

meridian curve by s . The quantities r and s  are everywhere positive. The parameter p is chosen 

in such a way that r  is positive at the highest point of the meridian curve and negative at the 

lowest one. The reciprocal value of the positively-taken radius of curvature of the meridian curve 

is then R = 
2( ) /z r r z s    − . 

 For the second parameter, we employ the angle that an arbitrary meridian defines with the 

initial meridian that goes through the x-axis. We denote that second parameter by q (which deviates 

from the notation that we have used up to now). 

 We now get the following representation for the coordinates of a point in the middle surface 

and the direction cosines of the outward-pointing normal: 

 

(1)     

cos , sin ,

cos , sin , .

x r q y r q

z z r
X q X q Z

s s s

= =


  
= − = − =   

 

 

One easily verifies that the determinant: 

 

1 1 1

2 2 2

x y z

p p p

x y z

p p p

X Y Z

  

  

  

  
 = r s  

 

is then positive, which would correspond to the convention that was made before (cf., the 

beginning of art. 2). 

 We get the following values for the first and second order fundamental quantities: 
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(2)   

2 2 2 2

11 12 22

2

11 12 22

, 0, , ,

, 0, , .

a s a a r a r s

z r r z r z
c s R c c c r z s R

s s

  = = = =

     −

  = = = = − = −
 

 

 

 It is preferable to introduce the displacements in the directions of increasing r and q in place 

of the displacement components u, v. We set: 

 

u =  cos q –  sin q ,  v =  sin q +  cos q . 

 

We then have [see § 11, (6) and § 14, (2)]: 

 

(3)   

11

22

12

12

1

2

,

,

,

,

,

.

u x w
r z

p p p p

u x
r r

q q q

u x
r s r

p q q

u x w
r s r r z

q p q q

u z r w
X

p s p s p

u z r w
X

q s q s q





 


 


  





 

   
 = = +    


  

= = +   


  
− = =   


   

    + = = − +
   

    
 = = − +

   


     = = − − +      













 

 

Equations [§ 14, (9)] yield: 

(4)     

2

1

2

1
,

1 1
.

s s H
r

r q E z p

r H

s R p E R p







   
= − +   


  = − −

   

 

 

Here, the elastic modulus E = 
1 3

2
1 2

K




+

+
 (art. 1, conclusion) was introduced in place of the 

Kirchhoff constant on the right-hand sides. 

 The further investigation takes an essentially different form according to whether the middle 

surface is or is not intersected by the axis of rotation. In the first case, the surface will be 

everywhere convex-outward, and in the second case, we will be dealing with a tubular surface. 
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 16. Middle surface with everywhere-positive curvature. – We first consider the case in 

which the middle surface is a simply-connected, everywhere convex-outward surface. In order to 

split off the elastic deformation from the motion of the body, when considered to be rigid, we 

assume (and this is obviously permissible) that the connecting line between the two poles of the 

surface experiences no elastic deformation and that its bisecting point is fixed. Furthermore, the 

surface element that goes through the upper pole might experience no rotation around the vertical. 

Obviously, every point of the surface will be displaced only in its meridian plane, and all meridian 

curves will be deformed in the same way. 

 It follows from this that the quantities 11, 12, 22, , and w depend upon only the parameter p, 

and the quantities , , and 2 vanish [cf., the remark in § 14, (2)]. The third of equations (3) in 

the previous article shows that 12, and therefore 12 will vanish, as well, as a result. 

 In order to determine the quantities 11, 12, 22, we employ equations (8) and (9) of art. 11. 

They give: 

(1)      22
22 11

sd s r

dp r r s


 

   
− −   

 = 0 , 

 

(2)       12rd

dp s

 
  

 = 0 , 

to which we add the equation: 

 

(3)      
( , )c

a


 = 22 112 3

R z

r r s
 


−


 = Q . 

 

Since 12 cannot become discontinuous at the poles of the surface of rotation, equation (2) demands 

that 12 = 0, which agrees with remark that was made above. 

 It follows from (1) that: 

22

11

d
rrs

dp s






 −


 = 0 . 

 

If we introduce the value of 11 that follows from (3) into that equation then that will give: 

 

22
2 2

22

d
s r R r r srs Q

dp z r z


   

 − +
 

 = 0 . 

 

We multiply that by 
2/z s  . The coefficient of 22 / r will be: 

 

− 
3

( )r z r r z

s

    −


 = − 

2

3

( )z r r z z s z

s

      + −


 = 

2

z z s

s s

  
−

 
 = 

z
d

s

dp



  . 
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We then get 22zd

dp s r

 
 

 
 = − r r Q , and as a result: 

(4)      22z

s r




 = − 2

2

Q
r  + const. 

 

In order to determine the integration constant, it should be pointed out that our system of surface 

coordinates p, q violates the previous assumption that the determinant of the quadratic form that 

represents the square of the line element should not vanish anywhere on the surface. As a result, 

yet another condition must be added to the continuity conditions that the quantities 11, 22 must 

satisfy: 

 The differential invariant H = 
( , )a

a


 = 11 22

2 2s r

 
+


 must also remain continuous at the poles. It 

then follows that the integration constant that we speak of is set equal to zero. 

 We then get: 

  22 = − 
3

2

Q r s

z




, 

  11 = − 
2

2 2

2
2

2

Q s s
s r r R

z z

  
 +   

, 

  H = − 
2

2

2
3

2

Q s s
r r R

z z

  
+   

 . 

 

For z  = 0, one also has r = 0, so the quotient /r z will remain continuous, and as a result, 11, 22 

and H will be continuous on the entire middle surface. 

 When we introduce the constants E = 
1 3

2
1 2

K




+

+
 and  = 

1 2



+
 (cf., art. 1, conclusion), 

equations [§ 14, (4)] will give: 

(5)     11 = 
2

11 22 2

1 s

E r
  

 
− 

 
, 22 = 

2

22 11 2

1 r

E s
  

 
−  

 . 

 

 The first two of equations (3) in art. 15 imply that r z w   + = 11, r  = 22. The 

determination of w will be completed by the remark that that quantity must vanish on the grounds 

of the symmetry in the equatorial plane. 

 One easily verifies that the values of  and w thus found will be single-valued and continuous 

on the entire middle surface. 

 For the sake of brevity, I shall pass over the application of the fully-developed general formulas 

to examples. 
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 17. Deformation of a tube. – We shall now assume that the middle surface has the form of a 

bent circular tube. However, it does not define a complete closed ring, but is bounded by two 

meridian planes. The angle through which the given oval must rotate in order to generate the 

middle surface will be denoted by 2 – 2 . 

 We imagine that the open ends of the tube are closed by caps. These caps (as well as the tube 

itself) are acted upon by the normal pressure 
3( )P+  from the outside and the normal pressure 

3( )P−  

from the inside. That pressure carries over to the boundaries of the tube: On each of those 

boundaries, a force acts perpendicularly to the boundary plane whose total magnitude is the 

product of the pressure difference 
3( )P+ + 

3( )P−  and the area of the oval whose rotation generals 

the middle surface. How that force is distributed over the boundary depends upon the form of the 

endcaps, and likewise depends upon the component of the pressure that acts upon the boundary 

whose direction falls in the plane of the boundary. When the distance from the generating oval to 

the axis of rotation is somewhat considerable with respect to its dimensions, one can assume that 

the influence of the form of the endcaps is noticeable only in the close vicinity of the ends of the 

tube, but that at some distance from the boundaries, the elastic stresses that originate in the tube 

are independent of it. To that extent that this oversight is permissible, the remark that the stresses 

(so the quantities 11, 12, 22) depend upon the parameter p, but not the parameter q, will also be 

true here. We choose the middle meridian plane, relative to which the surface of the tube is 

symmetric, to be the initial meridian (as the plane y = 0). We think of the point at which the surface 

intersects the x-axis, which lies next to the axis of rotation, as fixed, and we further assume that 

under elastic deformation, that element of the meridian curve that goes through that point does not 

change in direction and the surface element that goes through it does not change its location, which 

are assumptions that are obviously permissible. 

 On the grounds of symmetry, one finds that the displacement component  is an even function 

of the parameter q, and the component  is an odd function of q. The component w must be 

independent of q, since we have indeed neglected all forces that can bring about a dependency 

upon that the parameter q. Of the components of the rotation 1 / s  , 2 / r,  [cf., the remark in § 

14, (2)], the first one (viz., the component of the rotation around the parallel circle) must be 

independent of q, while the other two (viz., the components of the rotation around the meridian 

and the surface normal) are odd functions of q. 

 The first of equations [§ 15, (4)] shows that  / q is independent of q. As a result,  is the 

product of q with a function of p. The third of equations [§ 15, (3)] shows that the quantity 12 

(just like  and ) is an odd function of q. Now, since, by assumption, the quantities 11, 12, 22, 

and as a result, the quantities 11, 12, 22 [see § 14, (4)], as well, are independent of q, one must 

have 12 = 0, and as a result, 12 = 0, as well. 

 Up to now, no closer determinations of the parameter p have been made. We now assume that 

the parameter p is chosen such that the points of the middle surface that lie symmetrically to the 

equatorial plane correspond to opposite values of the parameter p. Let p = 0 at the point on the 

meridian curve that lies next to the axis of rotation. Let p =  / 2 at the highest point of the meridian 

curve and let p =  at the point that is furthest from the axis of rotation. We index the 
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aforementioned three points by the numbers 0, 1, 2, respectively. We denote the values that any 

function f of p assumes that those points by f0, f1, f2, resp. 

 The points 0 and 2 are the endpoints of the symmetry axis of the oval, and the tangent to the 

point 1 is parallel to the symmetry axis. r and z are periodic functions of p with period 2, and 

indeed r is an even function, while z is odd. 

 The displacement components  and  are even functions of p, and w is an odd function of p. 

 From the convention that was made above,  = 0 for p = 0, q = 0. 

 

 

 18. Integrating the differential equations of the problem. – The integration of the 

differential equations of elasticity theory proceeds in the present case just as it did in the case of 

art. 16. We first get [equation (4) of the cited art.]: 

 

22z

s r




 = − 2

2

Q
r  + const. 

 

In order for 22 to remain continuous at the point 1, where z  = 0, the expression on the right-hand 

side must vanish at that point. One then has: 

 

(1)      22 = − 2 2

1( )
2

Q s
r r r

z


−


. 

 From the equation [see § 16, (3)]: 

 

( , )c

a


 = 22 112 2

R z

r r s
 


−


 = Q , 

one will get: 

(2)     11 = − 
2

2 2 2

12
2 ( )

2

Q s s
s r R r r

z z

  
 + −   

 . 

 If one writes 11 in the form: 

(2.a)    11 = − 2 2

12 ( )
2

Q d r
s r z r r

dp z

  
  + −    

 

 

then one will see that 11 is continuous along the entire oval. 

 It follows from (1) and (2.a) that: 

 

(3)    H = 11 22

2 2s r

 
+


 = − 

2 2
2 2 1

1

1
2 ( )

2

r rQ z d r s
r r r

s s dp z z r

   − 
+ − +       

 . 

The function  must next be determined. 

 The expression on the right-hand side of the partial differential equation that this function 

satisfies [§ 14, (11)] vanishes, since A21 = 0, 12 = 0, and H is independent of q. The second term 
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on the left vanishes because c12 = 0 and  is a linear function of q (cf., the previous art.). We then 

get [see § 15, (2)]: 

(4)            
1 1r z

R
r s p R s p s r




    
+ −   

      
 = 0 . 

 

A further condition must be added: The left-hand side of equation [§ 14, (8)] vanishes for p = / 2  

and arbitrary values of q. Therefore, for p =  / 2 and arbitrary values of q, one has: 

 

q




 = 

1 1 2

2 1 3

r
H

K s





+


+
= 

1 r
H

E s



. 

 

 We denote the value that the derivative 
dH

ds
 = 

H

s




 assumes for p =  / 2 by Q h. The constant 

h is characteristic of the deformation of the tube. 

 We will satisfy the differential equation (4) and the auxiliary conditions when we set: 

 

(5)        = 1

Q r
h r q

E s




. 

 

 It now follows from [§ 14, (8)], when one recalls [§ 14, (8)], that: 

 

(6)      1 = − 1

1 r s r s
Q h r H

E z z

    
−   

 . 

 One further has: 

r
d

s

dp

  = 
2

s r r s

s

   −


 = 

2 2

3

( ) ( )r z r r r r z z

s

       + − +


 = z R , 

so 

d

dp


 = 1Q h r

z R q
E

 . 

 

If we introduce that value into [§ 14, (7)] then it will follow that: 

 

(7)         2 = − 1Q h r z
r q

E s




. 

 The quantities 11, 22 are determined from equations [see art. 16, (5)]: 

 

(8)    11 = 
2

11 222

1 s

E r
  

 
− 

 
 , 22 = 

2

22 112

1 r

E s
  

 
−  

 . 
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Equations (3) of art. 15, which determine the components of the displacement, take the form: 

 

(9)      r z w
p


  +


 = 11 , 

(10) r r
p





+


  = 22 , 

(11) 
p




 = − 1Q h r

r q
E

 , 

(12) 
p




 −  =    1Qhr

r q
E

, 

(13) − 
z r

w
s p s

 
+

 
 = 1 . 

 

The last equation in that system can be dropped since it is identical to (12). 

 Equation (9) shows that  / p is independent of q. We set  = 0 +  . Here, 0 means the 

value that  assumes for p = 0, and   is a function of p that vanishes for p = 0. 

 It follows from (11) that: 

 

(14)  = − 1Qhr
r q

E
 +  , 

where  means a function of q. 

 If we differentiate equation (10) with respect to q and eliminate  and  by using equations 

(12) and (14) then that will give: 
2

2q




 +  = 0 . 

 

 is an odd function of q, and the same thing is true for . Therefore, one has: 

 

 = const. sin q . 

 

 If we denote the integration constant by 2

0 /r Q E  then we will have: 

 

(15)      = − 
2

1 0[ sin ]
Q

hr r q r q
E

− . 

 

In order to determine the constant , we set p = 0 and q = 0 in equation (10). For that system of 

values, the parameter is  = 0, so: 
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22

2r


= − 

2 2

0 1

02

r rQ

r

−
, 11

2s




= − 2 2

0 0 0 1[2 ( )]
2

Q
r R r r+ − , [(1) and (2)] 

and as a result (8): 

22

2r


 = − 

2 2
2 20 1

0 0 0 1

0

2 ( )
2

r rQ
r R r r

E r


 −
− − − 

 
 . 

 A simple calculation gives: 

(16)      = 
2 2

0 11
0 02

0 0

1 ( )
2

r rr
h r R

r r


−
+ + −  . 

 

 It follows from (10), when one recalls (15), that: 

 

(16)      = 222
1 0[ cos ]

Q
hr r r q

r E


+ −  . 

 In particular, for p = 0: 

(18)     0 = 2

0 (1 cos )
Q

r q
E

 − . 

 

 If one multiplies equation (9) by 
2/z s   and (13) by /r s   and adds them then it will follow 

that: 

w  = 11 12

z r

s s
 

 
+

 
 , 

so since w = 0 for p = 0: 

w = 11
12

0

p
r

z dp
s s




 
 +   

 . 

Now, one has (6): 

1

0

p
r

dp
s




 = − 
2

1

0

1
p

r r
Q h r r H dp

E z s

  
−   

  . 

 

 Upon partial differentiation, the expression on the right-hand side will go to: 

 

2

1 1 1

0

1 1
( ) ( )

p
r r

d
r r r zH H Q h r H H dp

E z E z dp

 
   − − + − 

 
 
 

 , 

  

in which one must consider that r  = 0 at the point 0. 

 We then get: 
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w = 
2

11
1 1 12

0 0

1 1
( ) ( )

p p
r r

d
r r r zH H z dp Q h r H H dp

E z s E z dp


 

   − + − + − 
  

 
 

  . 

 

 Before we enter into a discussion of the formulas that we developed, it is first necessary for us 

to calculate the constants h and . 

 

 

 19. Determining the constants h and . – For the determination of the constant h, it is 

preferable to choose the first parameter to be the arc-length along the meridian curve, as measured 

from the point 0. 

 h was the value that the quotient 
1 dH

Q ds
 assumed at the point 1, and one has [§ 18, (3)]: 

 

− 
H

Q
 = 

2 2
2 20

0

1 1
( )

2 2

r rdz ds d dr
r r r

ds dz r ds dz

−  
+ + − 

 
. 

 

 We set 2 2

0( ) /
dr

r r
dz

−  =  and get: 

− 
H

Q
 = 

1 1

2 2

dr
d

dz dz
r

ds r ds




 
 
 + +  . 

 

At the point 1, we have 
dz

ds
 = 0, 

dr

ds
 = 1, 

2

2

d r

ds
 = 0, and as a result: 

 

(1)    − h = 
2 2 3

1
1 12 2 2 3

11 11 1 1

1 1 1 1

2 2 2 2

d z d d d r
r

ds r r ds ds ds

  


      
− + + +      

      
. 

 

 We next express the derivatives of r and z in terms of the curvature R and its derivatives. One 

has: 

  R = 
2 2

2 2

d r dz d z dr

ds ds ds ds
−  = 

2 2
2 2

2 2

d r d z

ds ds

   
+   
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dR

ds
 = 

3 3

3 3

d r dz d z dr

ds ds ds ds
− , 

  
2

2

d R

ds
 = 

4 4 3 2 3 2

4 4 3 2 3 2

d r dz d z dr d r d z d z d r

ds ds ds ds ds ds ds ds
− + −  . 

Furthermore: 
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2 2

2 2

d r dr d r dz

ds ds ds ds
+  = 0 , 

  
2 2

2 2

d r dr d r dz

ds ds ds ds
+  = − 2R . 

As a result: 
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 
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 Hence, 
dz

ds
  = 2 2

1r r− , and as a result: 
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 
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ds ds ds ds ds ds ds

  
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r
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 A consideration of (2) then gives the following equations for the values of the function  and 

the derivatives at the point 1: 

 

(3)    

1 1
1 2

1 11 1 1

22 2

1 1

2 2 2 3 2

1 11 1 11 1

1
2 , ,

2 1
.

3

r rd dR

R ds R ds R

r rd d R dR dR

ds R ds R ds R ds






    
= − = −   

   


        = − +              

 

 

If we substitute that value in (1) then we will get: 

 

(4)    h = − 

22

1 1

2 2 3 2

1 11 1 1 1 11

1 1 1 1 1

3 2 2

r rd R dR dR

R ds R ds R ds r R

     
+ − −     

    
. 

 

The constant  is then determined by that [see equation (16) of the previous article]. 

 The differential invariant that appears in the expression for h as a factor of r1 : 
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J = 

2 2

3 2 2

1 1 1 1

2 3

dR d R

R ds R ds

 
− 

 
 

 

depends upon the curvature and its derivatives of first and second order. Therefore, when two 

curves have five-point contact, that invariant will have the same value for both curves at that 

contact point. 

 In order to assess the dependency of the invariant J on the curvature of the curve precisely, we 

calculate J for an arbitrary point of an ellipse. 

 We represent the coordinates of a point of the ellipse in the form a sin p, b cos p. That will 

give: 

J = − 
2 2 2 2 2 2

3

cos 2 3 ( ) sin 2

8

a b p a b p

ab s ab s

− −
−

 
. 

 

 Here, one has s  = 
2 2 2 2cos sina p b p+ . The absolute value of J attains a maximum at the 

endpoints of the axes, and indeed at the endpoints of the a-axis J = 
2 2

2

a b

ab

−
, while J = 

2 2

2

b a

a b

−
 at 

the endpoints of the b-axis. When the distance from the surface of the tube to the axis of rotation 

is sufficiently large in comparison to the dimensions of the cross-section of the surface, the terms 

on the right-hand side of (4) that are multiplied by r1 will be definitive in determining the order of 

magnitude of h. When one is then trying to achieve a greatest-possible value of h one will then 

choose the cross-section of the tube in such a way that it possesses curvatures of the same type at 

the highest and lowest point that an ellipse possesses at the endpoints of its major or minor axis, 

resp. 

 Under the assumption that J is sufficiently large, we will get the following approximate values 

for h and  [see § 18, (16)]: h = r1 J,  = h + 1 = r1 J + 1. 

 

 

 20. On the continuity and boundary conditions. – The formulas that were developed in art. 

18 show that the quantities 11, 22, , , and w  are single-valued and continuous on the entire 

middle surface. However, since the middle surface is doubly-connected, the single-valuedness and 

continuity of the derivatives are still not sufficient to guarantee the single-valuedness of the 

function w. Rather, one must further demand that the integral 

2

0

w dp



  will vanish when it is 

extended over the meridian curve. If one recalls that w  is an even function of p and that the 

derivative r  vanishes for p =  then one can also replace that condition with the following one [§ 

18, (19)]: 

(1)    w2 = 
2

11
1 12 2

0 0

1
( )

r r
d

r zz dp Q h r H H dp
s E s dq

 


 
   − + − 

 
 
 

   = 0 . 
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 In general, the modulus of periodicity 2w2 is non-zero, so the assumptions that we started from 

in art. 9 will not be admissible in the general case. However, we will prove in what follows that 

the cross-section of the tube can be chosen in many ways that make the modulus of periodicity 

2w2 vanish. There is then an extended class of cases in which the theory that was developed here 

finds it place. Those cases are precisely the ones that are important in practice. That is because, 

obviously, it is preferable to give a tube of the type that is considered here, which might serve for 

barometric or thermometric measurements, such a form that the stresses that occur are as 

continuous as possible, where the word continuous is used in a practical sense, not a purely-abstract 

one. 

 The irregularity in operation that many aneroid barometers exhibit is probably due to the fact 

that the continuity conditions that were assumed here are not fulfilled. 

 In the following statements, we shall assume that the condition w2 = 0 is fulfilled. 

 The pressure that a surface element in the body that is perpendicular to a parallel circle 

experiences from the side of decreasing q is equal to 2

11 / s  . It acts in the direction of increasing 

q [§ 10, (5)]. 

 The pressure that a surface element that is perpendicular to a meridian experiences from the 

side of decreasing p is 2

22 / r .  When the distance from the tube to the axis of rotation is large 

compared to its dimensions, one will have the following values, in the first approximation: 

 

  11

2s




 = − 1

1 1

( )r r rz d
Q r r

s dp z

 − 
+      

 , 

  22

2r


 = − 1( )

s
Q r r

z


−


     [§ 18, (1) and (2.a)]. 

 

The pressure that acts in the direction of the parallel circle then rises to an appreciably larger value 

than the one that acts in the direction of the meridian. 

 The force [§ 18, (2.a)] that acts from the inside outward in the direction of increasing q upon 

an element of the boundary that lies on the side of positive q is: 

 

11

2s




 2 ds = − 2 2

1 1

1
2 ( )

z d r
Q r r r

s s dp z


   
+ −      

 . 

 

Thus, the total force that acts upon the boundary is: 

 

− 

2

0

2Q r z dp



   = 

2

1

0

2 ( )Q r r z dp



 − . 

 

The integral on the right-hand side represents the area that the meridian curve encloses. The factor 

2Q in front of the integral sign is equal to (art. 10) − 
3 3[( ) ( )]P P+ −+ . The force that acts upon the 
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boundary and originates in the elasticity of the tube is then (as theory would demand) equal and 

opposite to the forces that originates in the pressure difference (cf., art. 17). 

 One has the following values [art. 18, (15) and (18)] for the displacement of the end of the tube 

that lies on the side of positive q (q =  – ): 

 

0 = − 
0

Q
r

E
[h r1 ( – ) –  r0 sin ] , 0 = 2

0

Q
r

E
  (1 + cos ) . 

 

 If r1 is large and  is small compared to the difference r1 – r0 then we will get (see art. 19, 

conclusion), 0 = − 3

1

Q
J r

E
 , 0 = 2

1

Q
J r

E
 in the first approximation. The displacement of the tube 

in the tangential direction is appreciably larger than the displacement in the radial direction. 

 The two displacement components have opposite signs. 

 If the tube has the same type of curvature at its highest point as an ellipse has at the endpoints 

of its major axis then J will be positive, so when Q is positive (so the external pressure is greater 

than the internal pressure), the end of the tube will shrink back in the tangential direction. If the 

tube has the same type of curvature at the highest point that an ellipse has at the endpoints of its 

minor axis, so J is negative, then the end of the tube will move forward. 

 

 

 21. Analytic representation of the meridian curve. – It remains to be proved that the cross-

section of the tube can be chosen in such a way that the integral w2 = 
0

w dp



  will vanish. To that 

end, it is necessary to make certain assumptions about the analytical representation of the oval at 

which the surface of the tube is intersected by a meridian plane. 

 It can be proved that w2 will necessarily be non-zero when one chooses the oval to be an ellipse, 

and as far as I can see, w2 cannot vanish at all when the oval possesses two symmetry axes. That 

can be proved in full rigor for the case in which r1 is very large compared to the dimensions of the 

cross-section. One will arrive at ovals with only one symmetry axis, which are useful for our 

purposes, most simply in the following way: We assume an ellipse with one axis that falls along 

the r-axis (it can be the major or minor axis of the ellipse) and assume that this ellipse contacts the 

other axis of the oval that is parallel to the axis of rotation at five points. We now assign any point 

of the ellipse to the point of the oval at which the outward-pointing normal has the same direction. 

The coordinates of a point of the ellipse can be represented in the form r1 – b cos p, a sin p. The 

following differential equations are true for the coordinates of the corresponding point of the oval: 

 

(1)          r  = b sin p (1 +  m) , z  = a cos p (1 +  m) , 

 

 and the initial conditions r = r1 for p =  / 2, z = 0 for p = 0. Here, m means an everywhere-

continuous periodic function of p with a period of 2, and  is a constant whose absolute value is 

smaller than the maximum of the absolute value of 1/m. Furthermore, the function m is considered 

to be given, while  is an auxiliary parameter. 
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 In order for the r-axis to be the symmetry axis of an oval, m must be an even function of p, so 

it will be a single-valued function of cos p. Moreover, we would like to assume that m is an odd 

function of cos p. That assumption is not essential for the following considerations, but it will lead 

to a significant simplification in the proof. 

 In order for z to be a periodic function of p, it is necessary that 
0

cosm p dp



  = 0. Since cosm p

is an even function of cos p, that condition can also be replaced with: 

 
/2

0

cosm p dp



  = 0 . 

 

It follows from that equation that z = a for p =  / 2, as required. We denote the differences between 

the coordinates of a point on the ellipse and the corresponding point on the oval by  b u cos p and 

 a v sin p, resp. One then has: 

 

(3)    

1 cos (1 ), sin (1 ),

( cos ) ( sin )
sin , cos .

r r b p u z a p v

d u p d v p
m p m p

dp dp

 = − + = −



= − = −


 

 

It follows from the penultimate equations that since 
du

dp
 = − 

cos

du

d p
 sin p : 

 

u + 
cos

du

d p
  cos p = m , 

and from that: 
/2

0
cos

du
dp

d p



  = 

/2 /2

0 0
cos cos

m u
dp dp

p p

 

−   . 

Now, one has: 

 
/2

0
cos

u
dp

p



  = 
/2 /2

1 1 12

0

( )sin
cos

p

dp
m p p dp

p

 

  = 
1/2

1 1 1 2

0

( )sin
cos

p

p

dp
m p p dp

p



   

= 
/2 2

1
1 1

1

sin
( )

cos
p

p
m p dp

p



 = 

/2 /2

0 0

cos
cos

m
dp m p dp

p

 

−  . 

 

The second integral vanishes due to (2), so as a result: 

 

(4)       

/2

0
cos

du
dp

d p



  = 0 . 
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 It still remains for us to express the idea that the oval contacts the associated ellipse at five 

points that correspond to the parameter values p =   / 2. 

 We denote the differential of arc-length of the ellipse by dt and its curvature by P. One then 

has: 

t  = 
2 2 2 2cos sina p b p+ ,  P = 

3

a b

t
 . 

 

The following relations exist between the quantities t , P and the corresponding quantities s , R 

on the oval: 

(5)     s = (1 +  m) t , R = 
1

P

m+
. 

 

Since m is an odd function of cos p, the function m itself and its derivatives of even order will 

vanish for p =  / 2. We now assume that the first derivative m  = 0 is also true for p =  / 2. Under 

that assumption, one has that: 

R = P,      
dR

ds
 = 

dP

dt
,      

2

2

d R

ds
 = 

2

2

d P

dt
  

 

for p =  / 2. That will then imply a five-point contact, as required. If follows from the assumption 

that was introduced above that m / cos3 p will remain finite and continuous for p =  / 2. Equations 

(3) show that u and v are odd functions of cos p, like m, and that the quotients u / cos3 p and v / 

cos3 p remain continuous for p =  / 2. 

 We summarize the properties of the functions m, u, v that are obtained from the assumptions 

that were introduced up to now: 

 

(A)   

3 3 3

1

1) , ,  are single - valued and continuous odd functions of  cos .

2) , ,  are continuous for  = / 2.
cos cos cos

In addition, we would like to assume :

3) The maximum of  the absolute value of   is sm

m u v p

m u v
p

p p p

r r



− 1aller than .r











 

 

Equations (2) and (4) are added to that. 

 That assumption will suffice for the proof that w2 can be made to vanish by suitable conditions 

on the parameter  . Moreover, for practical applications, one will demand that the oval takes as 

simple a form as possible. In order to achieve that, we introduce a second group of parameters. We 

assume: 
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(B)  

The functions  and  /  cos  change sign at   location in the 
1)

interval 0, / 2. [At least one change of  must occur due to (2) and (4).]  

The functions  and  are everywhere - positive in 
2)

m du d p only one

u v



the same intervals, and

indeed  = 1 for  = 0.u p









 

 

 Since u is equal to zero for cos p = 0 and positive for cos p > 0, du / d cos p will be positive for 

small positive values of cos p and negative for cos p = 1. The same thing will be true of the function 

m. 

 The simplest function m that satisfies the conditions that were posed is m = 20 cos3 p – 
524cos p . In that case, one will have: 

 

u = 5 cos3 p – 4 cos5 p , v = 4 cos5 p . 

 

 

 22. Proof that there exist forms for the cross-section that correspond to the assumptions 

of the theory. – We now prove that once the function m has been combined with the constants a, 

b, one can choose the quantities r1 and  in a number of ways that will make the integral [§ 20, 

(1)] w2 = 
0

w dp



  vanish. 

 We introduce the values that were given in (3) of the previous article into equations (1) and (2) 

of art. 18 and order them in powers of r1 . 2

11 / s   is a linear function of r1 . 2

22 / r  can be 

developed in an advancing series of decreasing powers of r1 [since, by assumption (A.3 of the last 

article), the absolute value of r – r1 is smaller than r1]. That series begins with a term that is 

independent of r1 . The series developments of H and 2

11 / s   begin with terms that includes r1 

[cf., § 18, (3) and (8)], the series development of w  begins with a term that includes 2

1r  [see, § 

18, (19)]. We then get a series for w  that takes the form: 

 

(1)     w  = 
2

1 1 2

1 1

D E
Ar Br C

r r
+ + + + + , 

 

and that will imply an analogous series development for w2 : 

 

(2)     w2 = 
2

1 1 2

1 1

( ) ( )
( ) ( ) ( )

D E
A r B r C

r r
+ + + + + , 

 

In that series, the coefficients of even powers of r1 are odd functions of the parameter , while the 

coefficients of odd powers of r1 are even functions of . In particular, (A) is an odd function of . 
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 To prove that, we remark: If we simultaneously replace r1 with – r1 ,  with – , and p with  

– p in equations (3) of the previous article then the quantities – m, − u, − v will enter in place of 

the quantities m, u, v, resp., and correspondingly, − r, − z  will enter in place of r, z , resp.; the 

quantities z, r , s  will remain unchanged. The quantities 2

11 / s   and 2

22 / r  also remain 

unchanged under the given exchanges, while – w  will enter in place of w . 

 We now imagine that the coefficients A, B, C, … of the series that represents w  are developed 

into series that advance in increasing powers of . The coefficients of the doubly-infinite series 

that now represents w  are single-valued functions of cos p, and indeed the coefficient of 
1

i jr   

will be an even or odd function of cos p according to whether the sum of the exponents i + j is an 

odd or even number, resp., because the w  will also change sign under a simultaneous sign change 

of r1, , and cos p. 

 The integral that extends from 0 to  will have the value zero for an odd function of cos p. 

Therefore, in the series development of the quantity w2 that we obtain by term-wise integration, 

only those products 
1

i jr   for which the sum of the exponents i + j is an odd number will occur. 

Q.E.D. It is now easy to complete the proof that was mentioned to begin with. 

 To that end, we assign an arbitrarily-chosen positive value  to the parameter  that must satisfy 

only the one condition that 1 /  must be less than the maximum of the absolute value of the 

function m. We then choose the constant r1 to be large enough that the absolute value of the first 

term in the series (2) is greater than the sum of the absolute values of all following terms. w2 will 

then have the same sign as (A). We fix the value of r1 and let  decrease from  to – . The final 

value of w2 will have the opposite sign to the initial value because (A) is an odd function of . As 

a result, since w2 is a continuous function of , it must vanish for at least one value of  that lies 

between  and –  . With that, we have proved: There are forms for the cross-section for which the 

assumptions of our theory are fulfilled. 

 

 

 23. Approximate determination of the constant  . – In the foregoing, we made use of only 

the assumptions (A) of art. 21. We shall now add assumptions (B) and assume, moreover, that the 

dimensions of the cross-section of the tube are small compared to its distance from the axis of 

rotation, so the semi-axes a, b are small compared to r1. 

 We will get an approximate value for the parameter  when we preserve only the first two 

terms on the right-hand side of equation (2) in the previous article: 

 

w2 = 2

1 1( ) ( ) ( )A r B r C+ + +  = 0 . 

 

We develop the quantities (A) and (B) in series that proceed in increasing powers of  and keep 

only the first term in each series, so the term that is multiplied by  in the odd function (A) and the 

absolute term in the even function (B). 

 We must now calculate the approximate values for the individual quantities that appear in 

equation [§ 20, (1)]. One has: 
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w2 = 
2

11
1 12

0 0

1
( )

r r
d

r zz dp Q h r H H dp
s E z dp

 


 
   − + − 

 
 
 

   . 

 From [art. 18, (1) and (2.a)], one has: 

 

  11

2s




 = − 2 2

1

1
( )

2

z d r
Q r r r

s s dp z

   
+ −      

 , 

 

  22

2r


 = − 1

1( )
2

r rs
Q r r

z r

 +
−


 . 

 

We introduce the values that were given in [art. 21, (1), (3), and (5)] here and immediately suppress 

all terms that do not come under consideration in the calculation of our approximate value. We 

will get: 

2 2

1( )
r

r r
z


−


 = − 2 2

1tan [2 cos (1 ) cos ]
b

p r b p u b p
a

+ − +  

  = − 
2

1
1 14

2 [ sin sin 2 sin ]
b

r p b p r u p
a

− + +  , 

 

2 2

1

1
( )

2

d r
r r

dp z

 
−  

 = − 
2

1
1 12

2 cos cos 2 cos
cos

b du
r p b p r m p

a d p


  
− + − +  

  
 , 

 

In the last term that was written out on the right-hand side, use was made of the identities: 

 

m = u + 
cos

du

d p
  cos p , 

 

( sin )d u p

dp
 = u cos p − 

2sin
cos

du
p

d p
 = m cos p − 

cos

du

d p
 . 

We further have: 

1

s
 = 

1

(1 )m t +
 = 

1

t
 (1 –  m + …) . 

As a result: 

 

2 2

1

1 1
( )

2

d r
r r

s dp z

 
−   

 = − 
2

1
1 12
cos cos 2 cos

cos

b du
r p b p r m p

a d p


  
− + − +  

  
 . 

Hence: 



Maurer – On the deformation of curved elastic plates. 47 
 

z
r

s




 = [r1 – b cos p + …]

cosa p

t
 = 

2

1

cos cosa p p
r ab

t t
−

 
, 

so 

(1)   11

2s




 = − 2 2 2 2 2 3 21

1 12
( )cos ( )cos

cos

Q du
r a b p b a b p b r b

at d p


 
− − − − − +   

 . 

Moreover: 

(2)   22

2r


 = 

b
Q t

a
 +  =

2 2 2 2( ) cos
Qb

a b p b
t a

 − + + 
 . 

That will give: 

 

(3)   H = − 2 2 2 2 2 3 23
1 12
( )cos 2( ) cos

cos

Q du
r a b p a b b p b r b

at d p


 
− − − − − +   

 , 

   H1 = 
2

3
2

b
Q

a
. 

Now: 

   
r r

z




= 1tan [ cos ]

b
p r b p

a
−  = 

2

1 tan sin
b b

r p p
a a

− , 

   

r r
d

z

dp



 = 
2

1 2

1
cos

cos

b b
r p

a p a
− . 

As a result: 

 

(4)  

r r
d

z

dp



 (H – H1)  

= − 2 2 2 2 2 2 23
1 1 1 122 2 2

1 1
( ) 3 ( )

cos cos cos cos

Qb t b du
r a b r a b b r b r b

t a p p p d p


 −
− − − + − +   

 . 

 

Furthermore, one has (art. 19): 
2

1

r
Q h r

z




 = 

2 2 2
2

1 2

sin

cos

a b p
Qr

a p

−
(1 +  m) . 

As a result: 

(5)  
2

1 1( )

r r
d

r zQ h r H H
z dp


 + −


 

= − 
2

2 2 2 2 2 23
1 1 122 2

sin
( ) 3 ( )

cos cos

Q b t p t b
r a b r a b b r b

a t p p

  − −
− − − +   
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+ 
2 2 2

2

1 2 2 2

cos
cos

cos cos

du

a b m b d p
Q r m p

a p a t p


 
  −

− +  
  

  

. 

 

Finally, [§ 18, (8) and eq. (1) of this article]: 

 

11

2
z

s





 = a cos p 11

2E s





 = − 

2 2 2

1

( ) cosQ a b p
r

E t


−


. 

 

 When we recall that the integral of an odd function of cos p from 0 to  will vanish and that 

the integral from 0 to  of an even function will be equal to twice the integral from 0 to  / 2 [cf., 

also § 21, (2)], we will have: 

(6)   w2 = − 

/2 2 2 3
2

1 2 2 2

0

cos
2

cos cos

du

Q a b m b d p
r dp

E a p a t p





 
 −

+ 
 

  

  

 

− 
/2 2 2 2 2 2 2 3

1 2 2 2 2

0

( )cos 3( ) 3
2

2 cos

Q a b p a b b b t b
r dp

E a a t a t p




 − − −

 + −   
 . 

 We set: 

w2 = − 1 12 [ ]
Q

r r L M
E

 + + , 

 

to abbreviate, where L and M are independent r1 and . By assumption [art. 21, (B)], the two 

functions m and du / d cos p are negative at the lower limit of the integration, positive at the upper 

one, and change sign only once in the integration interval. Furthermore [art. 21, (2) and (4)]: 

 
/2

0

cosm p dp



  = 0 and 

/2

0
cos

du
dp

d p



  = 0 . 

 

Since the function 1 / cos2 p increases monotonically in the integration interval, the integral 
/2

2

0

1
cos

cos
m p dp

p



  will be positive. If a > b then the function 
1

t
 = 

2 2 2 2

1

cos sina p b p+
will 

increase monotonically, so the integral 

/2

2

0

1

cos cos

du
dp

t p d p




  will be likewise positive. It then 

follows that L is positive for a > b. That will also still be true for a = b. 
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 If a < b then the sign of L cannot be determined from the outset. However, it is easy to see that 

L will become negative for very small values of the quotient a / b. Namely, if we denote the value 

of p for which du / d cos p = 0 by p1 then the first integral on the right-hand side of the equation: 

 
/2

2

0

1

cos cos

du
dp

t p d p




  = 

1

1

/2

2 2

0

1 1

cos cos cos cos

p

p

du du
dp dp

t p d p t p d p



 + 
    

 

will be negative and its absolute value will grow beyond all limits when one fixes the value of b 

and lets a converge to zero. The second integral on the right will take on a finite positive value. As 

a result, the integral on the left will have a negative value for a sufficiently-small value of a, and 

the same thing will be true of L. 

 It follows from the identity: 

 

[tan ( )]
d

p t b
dp

 −  = 
2 2 2

2

( )sin

cos

t b a b p

p t

 − −
−


 

  = 
2 2 2 2 2 2

2 2

( )cos

cos cos

a b p b b a b

t p p t

− + −
− −

 
 

  = − 
2 2

2

1

cos

b b
t b

t p t

 
+ − − 

  
 

that 
/2 2

2

0

1

cos

b
b dp

p t


 

− 
 

  = 

/2 2

0

b
t dp

t


 

 − 
 

  = 

/2 2
2 2

0

cos
( )

p dp
a b

t



−
  . 

 

 We then get: 

M = 

/2 22 2 1
2 2 2

2

0

1 coscos 3
( )

pp b
a b dp

t a t




 −

− +   
 . 

M has the same sign as 
2 2a b− . 

 The quantities L and M then have the same sign in the case where a > b, as well as in the case 

where a < b, and at the same time, the quotient a / b is small. 

 Now, the equation w2 = 0 gives  = − 
1

1 M

r L
 in the first approximation, so  will be negative. 

Hence, the oval in which the meridian plane cuts the tube will be flattened on the side of the axis 

of rotation and sharpened on the opposite side. 
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