
“Ueber die Differentialgleichungen der Mechanik,” Kgl. Ges. d. Wiss. Nachrichten. Math.-phys. Klasse 2 (1905), 91-

116. 

 

On the differential equations of mechanics 
 

By 

 

L. Maurer 

 
Presented by D. Hilbert on 25 February 1905 

 

Translated by D. H. Delphenich 

_________ 

 

 

 The present investigation was inspired by the discussion of the question of whether Hamilton’s 

principle did or did not retain its validity in the case of non-holonomic condition equations. In 

order to briefly clarify the gist of the question, I shall restrict myself to the simple case in which 

the motion of a single material point is to be determined. For the sake of simplicity, I shall assume 

that no forces act on the point, while its degrees of freedom shall be restricted by one constraint 

equation. 

 We initially assume that the constraint equation includes only the coordinates of the point, but 

not the velocities, so it has the form: 

 

(1)  f (x, y, z) = 0 . 

 

When Hamilton’s principle is applied to that case, it will demand that the variation of the integral: 

 

 = 
2

1

2 2 21
2

( )
t

t
m x y z dt  + +  

 

must vanish for all variations, x, y, z that are compatible with the constraint equation (1), and 

assume the value zero for t = t1 and t = t2 . That will imply the following differential equations for 

the coordinates: 

dx
m

dt


= 

f

x





,  

dy
m

dt


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f
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




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m
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
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f
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




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We now let the “non-holonomic” constraint equation appear in place of the “holonomic” constraint 

equation: 

 

(2)      x y z    + +  = 0 . 

 

The , ,  in it mean functions of x, y, z that do not satisfy any equation of the form: 
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 :  :  = : :
f f f

x y z

  

  
, 

 

such that equation (2) will not be integrable with no further restrictions. 

 One also often writes the constraint equation (2) in the form: 

 

(2.a)  dx +  dy +  dz = 0 . 

 

The two forms (2) and (2.a) of the constraint equation correspond to different ways of 

conceptualizing the situation: When one uses the form (2.a), one considers x, y, z to be independent 

variables, whereas when one uses equation (2), one considers those quantities to be functions of t. 

 If one demands that the variations x, y, z satisfy equation (2) then one will get the equation: 

 

x y z x y z             + + + + +  

(8)  = x y z      + +  

+ x x y z y x y z z x y z
x y z x y z x y z

        
        

             
  + + + + + + + +     

             
 = 0 . 

 

In order for the variation   for to vanish for all variations that satisfy that equation, as is known, 

the differential equations: 

dx
m

dt


 = 

d
x y z

dt x y z

   


   
  − + + 

   
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(4)   
dy

m
dt


 = 

d
x y z

dt x y z

   


   
  − + + 

   
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dz

m
dt


 = 

d
x y z

dt x y z

   


   
  − + + 

   
 

are necessary and sufficient. 

 For the motion that actually takes place, it is not those differential equations that are valid, but 

the following ones: 

dx

dt


 =   , 

dy

dt


 =   , 

dz

dt


 =   . 

 

One will arrive at those differential equations when one demands that the variation   must vanish 

for all of the variations x, y, z that satisfy the condition that (1): 

 

(6)       x +  y +  z = 0 . 

 

 
 (1) See Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Göttinger Nachrichten (1896), pp. 122. 
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 In his Mechanik, Hertz referred to the path that is determined by equations (4) as the “geodetic” 

path, while he referred to the one that is determined by equations (5) as the “straightest” path. 

 There is no doubt that the fact that the motion that actually takes place will result along the 

straightest path and not along a geodetic path must be regarded as an experimental fact. By 

contrast, opinions differ as to whether that fact agrees with Hamilton’s principle or whether the 

validity of that principle is restricted to the case of holonomic constraint equations. Hertz was of 

the latter opinion (1). He based that upon the fact that from the principles of the calculus of 

variations in the case of a non-holonomic constraint equation (2), the variations must satisfy 

equation (3), and not equation (6). Hölder maintained the opposite viewpoint. He distinguished 

two types of variations that are compatible with the constraint equation (2.a). They are 

characterized by equations (3) and (6). Once that distinction has been made, one can obviously 

say: Hamilton’s principle is also true for the case of a non-holonomic constraint equation, but when 

one assumes that the admissible virtual displacements are defined by equation (6). 

 Hamel (2) went one step further: He considered the variations that are defined in the calculus 

of variations to be special cases of virtual displacements. For the former, the following well-known 

relations are true: 

  x  = 
dx

dt
  = 

d x

dt


, etc., 

 

while they are not true for the latter, in general. Therefore, six mutually-independent defining data 

come under consideration for a virtual displacement: 

 

x, y, z, x , y  , z  . 

 

In order to define the virtual displacements that are compatible with the non-holonomic constraint 

equation (2.a), Hamel proceeded as follows: He first considered the point to be free and set: 

 

 dx +  dy +  dz = d . 

 

If  were a true coordinate then the condition for the virtual displacements that  = 0 would 

follow from the equation d = 0. Hamel also kept that constraint equation  = 0 in the case where 

 is a generalized (improper) coordinate. He ultimately came to the same definition of an 

admissible virtual displacement as Hölder then. 

 One is free to choose whether one prefers the viewpoint of Hertz or Hölder since what one 

cares to understand the term “admissible” variation to mean in a given case is a matter of definition. 

However, as long one decides to accept the extension of the concept of a variation that Hölder 

introduced, one must demand to know which types of variation should be regarded as admissible, 

except for a viewpoint that is established for each application to mechanics, in principle, and one 

 
 (1) Mechanik, pp. 23. 

 (2) “Die Lagrange-Eulerschen Gleichungen in der Mechanik,” Zeit. Math. Phys.. Bd. 50, Heft 1. “Ueber die 

virtuellen Verschiebungen in der Mechanik,” Math. Ann., Bd. 59, pp. 416. 
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must further demand that the relations between the differential equations to which the different 

types of variation will lead must be verified. 

 One can satisfy those demands when one starts from an obvious generalization of the concept 

of the singular solution for a differential equation. However, that concept suggests itself even more 

so for the present question: Based upon it, one can exhibit the dynamical equations for unfree 

systems without making use of the principle of virtual displacements. One can get around all 

difficulties that might give rise to disputes in that way. 

  

 

I. – On the singular integrals of a system of first-order differential equations. 

 

 1. – Let a system of m first-order differential equations be given: 

 

(1)  
dx

dt

  = X    = 1, 2, …, n . 

 

The X1, X2, …, Xn in this mean single-valued functions of the independent variable t and the 

dependent variables x1, x2, …, xn . 

 Let the general solution of those differential equations be: 

 

(2)  x = f (a1, a2, …, an, t)   = 1, 2, …, n, 

 

in which a1, a2, …, an mean integration constants. 

 In order to arrive at the singular integrals of the differential equations (1), we now consider the 

available constants a1, a2, …, an to be functions of the independent variable t. 

 We denote the differential quotients that this assumption corresponds to by 
dx

dt

 
 
 

. We shall 

save the notation 
dx

dt

  for the differential quotients that are defined under the assumption that the 

quantities do not depend upon t. 

 We will then have: 

(3)  
dx

dt

 
 
 

 = 
1

n dadx x

dt a dt

 

 =


+


    = 1, 2, …, n, 

 

and when we recall (1), it will then follow that: 

 

(4)  
dx

dt

 
 
 

 = 
1

n dax
X

a dt




 =


+


    = 1, 2, …, n. 
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If we would like to demand that those differential equations should agree with equations (1) such 

that the assumption that quantities a1, a2, …, an are functions of t will imply no change in form of 

the differential equations then the equations: 

 

1

n dax

a dt



 =




  = 0 

must be true for  = 1, 2, …, n. 

 Now, since the functional determinant 1 2

1 2

( , , , )

( , , , )

n

n

x x x

a a a




 does not vanish [since otherwise 

equations (2) would not represent the general solution of the differential equations (1)], it will then 

follow from those equations that: 

   
da

dt


 = 0 for  = 1, 2, …, n, 

 

i.e., the quantities a must be independent of t. 

 Thus, when a relation is established between the quantities a and the independent variable t, 

the form of at least some of the equations (1) must change. 

 We now divide the n variables x1, x2, …, xn into two groups (the first one might subsume, say, 

the variables x1, x2, …, xm, while the other might subsume the remaining n – m variables) and 

demand that the first m of the differential equations (1), which refer to the variables of the first 

group, must keep their form. 

 That demand seems entirely arbitrary as long as we must also draw upon the remaining n – m 

differential equations that change their forms in order to determine the n functions x. However, 

things will be essentially different when, to that end, different types of constraint equations are 

employed. We initially consider the simplest case: We set all of the variables of the second group 

equal to zero. The variables of the first group, about which nothing is required from the outset, 

might be referred to as “free” variables in order to distinguish them from the variables that are set 

equal to zero. 

 In order for the first m of equations (4) to have the same form as the first m of equations (1), it 

is necessary that: 

(5)   
1

n dax

a dt



 =




  = 0 for  = 1, 2, …, m. 

 

 The convention that the variables of the second group should vanish implies the following 

equations for the quantities a1, a2, …, an : 

 

(6)  x = f (a1, a2, …, an, t) = 0 for  = m + 1, m + 2, …, n. 

 

The quantities a1, a2, …, an are determined completely by equations (5) and (6) as long as the 

initial values for those m quantities are known. The type of those initial values can be specified in 

such a way that that the free variables assume prescribed initial values. 
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 Equations (6) split into two groups: The first group subsumes the equations: 

 

(4.a)  
dx

dt

 
 
 

 = X   = 1, 2, …, m, 

 

while the second group consists of the partial (†) differential equations: 

 

(4.b)  
dx

dt

  = X   = m + 1, m + 2, …, n. 

 

 In order to determine the free variables x1, x2, …, xm, equations (4.a) are sufficient, and for 

them to be true, it is not necessary to know the general solution to equations (1) or to draw upon 

equations (4.b). 

 I shall refer to a system of integrals for the differential equations (4.a) as a singular system of 

integrals for the differential equations (1). 

 

 

 2. – The definition of a singular system of integrals that was just proposed deviates somewhat 

from the usual terminology. The following argument will serve to justify it: We eliminate the 

variables xm+1, xm+2, …, xn from equations (1) and the equations that can be derived from them by 

differentiation. We then arrive at a system (S) of higher-order differential equations that replace 

the differential equations (1) completely, to the extent that one deals with the determination of the 

variables x1, x2, …, xm . Therefore, the general system of integrals (2) of the differential equations 

(1), as well as the general system of integrals for the differential equations (S) and the singular 

system of integrals that is determined by equations (6) and (4.a), is also a singular system of 

integrals for the differential equations (S). 

 

 

 3. – The definition of singular system of integrals that was presented above can be easily 

extended. 

 To that end, we introduce the variables: 

 

(7)  y =  (x1, x2, …, xn),   = 1, 2, …, n 

 

into the differential equations (1) in place of the variables x . The equations: 

 

(8)   
dy

dt

  = Y ,    = 1, 2, …, n, 

in which: 

 
 (†) Translator: His use of the word “partial” in this context means only “some of the equations,” and does not refer 

to partial differentiation in the usual sense, 
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(9)  Y = 
1

n y
X

x




 =




 , 

in place of equations (1). 

 We now consider the variables y1, y2, …, ym to be free variables and set the variables ym+1, ym+2, 

…, yn equal to zero. The singular system of integrals that corresponds to that classification is 

determined by the equations: 

 

(10) 
dy

dt

 
 
 

 = Y ,   = 1, 2, …, m, 

and 

 

(11) ym+1 = 0 , ym+1 = 0 , …, yn = 0 . 

 

 Since equations (8) are equivalent to equations (1), we would also like to refer to that system 

of integrals as a singular system of integrals for the differential equations (1). 

 In order for the singular system of integrals to be well-defined, one must give: 

 

 1. The “constraint equations”: m+1 = 0, m+2 = 0, …, n = 0 . 

 

 2. The “free functions: 1, 2, …, n, relative to which the validity of the originally-given 

differential equations (1) will remain unchanged. 

 

 Of course, the singular system of integrals will remain unchanged when we replace the n – m 

functions m+1, m+2, …, n with n – m functions of those functions, because that means only a 

conversion of the constraint equations. However, it is easy to see that the singular system of 

integrals will also remain essentially unchanged when we replace the m free functions 1, 2, …, 

n with arbitrarily-chosen functions of those functions. In order for the singular system of integrals 

to be well-defined, only the system of constraint equations and the system of free functions must 

then be given. 

 

 

 4. – We have tacitly assumed that the functions 1, 2, …, n are mutually independent, as long 

as the quantities x1, x2, …, xn can be considered to vary independently. 

 We set: 

 

(12)     x =  (y1, y2, …, yn),    = 1, 2, …, n. 

 

We now make the further assumption that this solution to equations (8) will also remain valid when 

the variables ym+1, ym+2, …, yn vanish. In other words: We assume that not only does the functional 

determinant 1 2

1 2

( , , , )

( , , , )

n

n

y y y

x x x




 not vanish identically when the quantities x1, x2, …, xn are considered 
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to vary independently, but we will further assume that this determinant does not vanish for all 

values of the variables x1, x2, …, xn that satisfy the constraint equations m+1 = 0, m+2 = 0, …, n 

= 0, either. 

 Under that assumption, we can convert the differential equations (10) in a remarkable way. 

 Let: 

 

(13) 1 2( , , , )ny y y  

 

denote the expression to which the expression  (y1, y2, …, yn) will go when one considers 

equations (11). One obviously has that: 

  
y








 ( = 1, 2, …, m ;  = 1, 2, …, n) 

 

will be the value that the derivatives  / y will assume when one considers those equations. 

Introduce the notation: 

(14) 
y








 = p ( = m + 1, m + 2, …, n ;  = 1, 2, …, n) 

 

for the values that the derivatives  / y ( > m) when one considers equations (11). If the n 

functions 1 2( , , , )ny y y  are given then the n (n – m) functions p (y1, y2, …, yn) can still be 

chosen arbitrarily. When one recalls (1), the following equations will exist: 

 

(15) 
d

dt


 = 

1

m dy

y dt



 



=

 
 

  
  = 

1

m

Y
y




 



=




 ,  = 1, 2, …, n. 

 

On the other hand, when one considers the quantities x1, x2, …, xn to vary independently and recalls 

(12), it will follow from equations (9) that: 

 

  X = 
1

m

Y
x




 



=




 ,    = 1, 2, …, n. 

 

When one recalls equations (11) and uses the relations (13) and (14), one can write those equations 

in the form: 

1

m

Y
y




 



=




  = 

1

n

m

X Y p  
= +

−  . 

 

Now, since one is only dealing with the determination of the m functions: 

 

  y =  (x1, x2, …, xn),    = 1, 2, …, m, 
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the quantities Y = dy / dt ( = m + 1, m + 1, …, n) will play the role of parameters. In order show 

that expressly, one sets Y = Ym+ = −  ( = 1, 2, …, n – m). 

 We further set 
d

dt


 = 

dx

dt

 
 
 

, in agreement with the notation that was introduced above. With 

the use of that notation, the foregoing equations will take the form: 

 

(16) 
dx

dt

 
 
 

 = ,

1

n m

mX p   



−

+

=

+  ,   = 1, 2, …, n. 

 

Those n equations, in conjunction with the n – m constraint equations m+1 = 0, m+2 = 0, …, n = 

0, will suffice to determine the n functions x1, x2, …, xn and the n – m parameters 1, 2, …, n . 

 The n (n – m) quantities p ( = m + 1, m + 2, …, n ;  = 1, 2, …, n) will be determined 

completely when the m free functions 1, 2, …, m are given, in addition to the constraint 

equations. Namely, when the n quantities x1, x2, …, xn can be considered to vary independently, 

the following equations will be valid: 

  
1

n xy

x a



  =



 
  =  ,   ,  = 1, 2, …, n. 

 

If we now consider the constraint equations then, with the use of the notations (14), we will get: 

 

  
1

n

p
x




 



=




  =  ,  = m + 1, m + 2, …, n ;  = 1, 2, …, n. 

 

Conversely, the system of free functions 1, 2, …, m will be determined when the n (n – m) 

quantities p are given, because the following differential equations will be true for them: 

 

  
1

n

p
x




 



=




  = 0 ,  = m + 1, m + 2, …, n ;  = 1, 2, …, n. 

 

In regard to that, it should be remarked: The quantities p cannot be chosen arbitrarily as functions 

of the quantities x1, x2, …, xn . Rather, they must be satisfy the condition that the foregoing n – m 

linear partial differential equations must define a complete system when one considers the 

constraint equations. 

 In the foregoing, the singular systems of integrals were defined for only first-order differential 

equations. However, that definition can be extended immediately to a system of higher-order 

differential equations since such a system can indeed be converted into a first-order system by 

adding new variables. For example, if the dependent variables x1, x2, …, xn are determined by n 

second-order differential equations then we add the equations 1dx

dt
 = 1x , 2dx

dt
 = 2x , …, ndx

dt
 = nx  
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to those equations and thus come to a system of 2n first-order differential equations with 2n 

undetermined functions. 

 

 

II. – Application to the variational problem. 

 

 5. – Now that the concept of the singular system of integrals has been established, we turn to 

the resolution of the question that was posed to begin with. 

 It would seem appropriate to begin with a brief presentation of the line of reasoning in the 

usual calculus of variations. 

 Let the integral: 

(1)   = 
2

1
1 2 1 2( , , , , , , , , )

t

n n
t

F t x x x x x x dt    

 

be given. The F in it means a single-valued function of the independent variable t, the n functions 

x1, x2, …, xn of that variable, and their first derivatives 1x , 2x , …, nx . Let the n functions x1, x2, 

…, xn be subject to the k constraint equations: 

 

(2)  1 = 0 , 2 = 0 , …, k = 0 . 

 

We assume that “non-holonomic” constraints also appear among the constraint equations, i.e., 

equations in which a number of the derivatives 1x , 2x , …, nx  occur, and they are not completely 

integrable. In order to avoid going too far afield, we would like to assume that among the constraint 

equations, there are none that do not include the derivatives, and that no such equation can be 

derived by converting the constraint equations. That assumption implies no essential restriction. 

Namely, if say the derivatives do not occur in the expression 1 then we can replace the constraint 

equation 1 = 0 with the equation d 1 / dt = 0. 

 For mechanical problems, the only non-holonomic constraint equations that come under 

consideration are ones that are linear and homogeneous in the derivatives. That restriction is 

unnecessary for the general investigation that is being carried out here. 

 We now vary the functions x1, x2, …, xn . In that way, we assume that the values of the functions 

are given for the limiting values t = t1 and t = t2 such that the variations  x1,  x2, …,  xn will then 

vanish at the limits. 

 (1) implies, in a known way, that: 

 

  = 
2

1 1

nt

t

F F
x x dt

x x
 

  

 
=

  
 + 

  
 , 

 

and with an application of partial integration, it will then follow from this that: 
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(3)    = −
2

1 1

nt

t

d F F
x dt

dt x x


  


=

  
− 

  
 . 

 Moreover, we have: 

(4)    = 
1

n

x x
x x

 
 

  

 
=

  
 + 

  
  . 

 

We multiply that by an arbitrarily-chosen function  of the independent variable t and integrate 

between the limits t1 and t2 . When we also apply partial integration to that, we will get: 

 

2

1

t

t
dt     = − 

2

1 1

nt

t

d F F
x dt

dt x x


  


=

  
− 

  
  

(5) 

  = − 
2

1 1

nt

t

d d
x dt

dt x dt x x

   
 

   


 

=

    
+ −  

     
 . 

 Now pose the problem: 

 

 (A): Determine the functions x1, x2, …, xn such that   = 0 for all variations  x1,  x2, …, 

 xn that satisfy the constraint equations: 

 

 1 = 0 ,  2 = 0 , …,  k = 0  

and vanish for t = t1 and t = t2. 

 That problem might be referred to as the general variational problem. When one recalls the 

conditions that were posed, it will follow from equations (3) and (5) that: 

 

(6)   
2

1 1 1

n kt

t

dd F F d
x dt

dt x x dt x dt x x

   
  

     


  

= =

     
− + + −  

        
   = 0 . 

 

We will then satisfy the imposed constraints in any event when we set: 

 

(7)  
1

k dd F F d

dt x x dt x dt x x

   
 

    


 

=

    
− + + − 

       
  = 0 

for  = 1, 2, …, n. 

 Those n equations, in conjunction with the k constraint equations (1), will suffice to determine 

the n functions x1, x2, …, xn, and the k multipliers 1, 2, …, k . 

 One can convince oneself of the fact that equations (7) represent not only sufficient, but also 

necessary, conditions on the functions x1, x2, …, xn by the following argument (1): The left-hand 

 
 (1) For its proof, see A. Mayer, Math. Ann., Bd. 27, pp. 74. 
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sides of equations (4) vanish on the basis of the constraints that were imposed. When one considers 

the equations: 

x   = 
d

x

x

d

  = 
d

x

x

d


, 

 

one will get a system of k differential equations for the n variations  x1,  x2, …,  xn . n – k of 

those variations (say, the variations  xk+1,  xk+2, …,  xn) can then be taken arbitrarily. If one then 

determines the multipliers 1, 2, …, k, which are at one’s disposal, by means of the first k of 

equations (7), in which the functions x1, x2, …, xn are assumed to be given, then the variations x1, 

 x2, …,  xk will drop out of the integral, and the integral must vanish for arbitrary values of the 

remaining variations. Now, those variations can be chosen such that they are all everywhere equal 

to zero, except for one of them, while that one is non-zero only in an arbitrarily-small sub-interval. 

One can conclude from this that the coefficients of the individual variations  xk+1,  xk+2, …,  xn 

must vanish. However, those coefficients are nothing but the left-hand sides of the last n – k 

differential equations (7). 

 Two groups of dependent variables occur in the differential equations (7): One of them consists 

of the variables x1, x2, …, xn and their derivatives  1x , 2x , …, nx , and the other consists of the 

multipliers 1, 2, …, k . The problem that was posed demands only the determination of the 

variables x1, x2, …, xn . The multipliers are parameters that are introduced as only tools for 

calculation. That state of affairs is closely related to the idea of turning one’s attention to not only 

the general system of integrals of the differential equations (7), but also to those singular systems 

of integrals that are characterized by constraint equations for the parameters. One easily convinces 

oneself that those singular systems of integrals are not solutions to the general variational problem 

(A). However, that raises the question of whether they can be considered to be at least solutions of 

suitably-defined “special” variational problems. It can be shown immediately that this is the case 

for at least some of the singular systems of integrals. 

 

 

 6. – We will get a singular system of integrals for the differential equations (5) when we 

consider the variables x1, x2, …, xn ; 1x , 2x , …, nx  to be free variables and set the parameters 1, 

2, …, k equal to zero (see no. 1). Under that assumption, we must substitute: 

 

1 =  2 = 0, …, k = 0 , 
dx

dt




 = 
dx

dt


 

 
 

, 
dx

dt

  = x
  = 

dx

dt

 
 
 

,  = 1, 2, …, n. 

 

The quantities d / dt ( = 1, 2, …, k) are considered to be parameters. We set d / dt =  , and 

we can then drop the parentheses around the differential quotients, since they will no longer be 

necessary. We will get: 

(8)  
1

kd F F

dt x x x




  


=

 
− +

   
  = 0,  = 1, 2, …, n. 
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We multiply that by  x, add over all , and integrate between the limits t1 and t2. To abbreviate, 

we introduce the notation: 

(9)     = 
1

k

x
x




 


=




 . 

 

When we recall equation (3), it will follow that: 

 

  = 
2

1 1

kt

t
dt 



 
=

 . 

 With that, we have proved: 

 

 (B): Equations (8) represent the sufficient conditions for the variation   to vanish for all 

values of the variations x1,  x2, …,  xn that satisfy the conditions: 

 

  = 0,   = 0, …,  k = 0 

 

and vanish at the limits t = t1 and t = t2. 

 The argument from the calculus of variations that was discussed in the previous section shows 

that the given conditions are not only sufficient, but also necessary. 

 Equations (8) then represent the solution to a “special” variational problem. In the case where 

the constraint equations k = 0 are linear and homogeneous in the derivatives 1x , 2x , …, nx , the 

variational problem (B) will be nothing but Hölder’s variational problem. 

 Instead of setting all k parameters equal zero, we can also count some of them (say, the 

parameters 1, 2, …, i) among the free variables and set the last k – i equal to zero. Under that 

assumption, we must set: 

i+1 = 0,  i+2 = 0, …, k = 0 , 

 

1d

dt


 = 1d

dt

 
 
 

, 2d

dt


 = 2d

dt

 
 
 

, …, id

dt


 = id

dt

 
 
 

, 

 

dx

dt




 = 
dx

dt


 

 
 

, 
dx

dt

  = x
  = 

dx

dt

 
 
 

,   = 1, 2, …, n 

 

in equations (5). The quantities 1d

dt

 + , 2d

dt

 + , …, kd

dt


 are considered to be parameters. We set 

d

dt

  + = ,  = 1, 2, …, k – i, and we can then once more drop the parentheses around the 

differential quotients. We will get: 
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(10) 
1 1

i k i
idd F F d

dt x x dt x dt x x x

   
  

      


  

−
+

= =

     
− + + − + 

         
   = 0,  = 1, 2, …, n. 

 

We again multiply that by  x , add over all , and integrate between the limits t1 and t2. When we 

recall equations (3), (5), and (9), we will get: 

 

  = − 
1 1

i k i

i   
 

   
−

+

= =

 +    . 

 It will then follow that: 

 

 (C): Equations (10) represent the necessary and sufficient conditions for the variation   

to vanish for all values of the variations x1,  x2, …,  xn that satisfy the equations: 

 

 1 = 0,  2 = 0, …,  i = 0,  i+1 = 0,  i+2 = 0, …,  k = 0 

 

and vanish at the limits t1 and t2. 

 Equations can also be considered to be the solution to a “special” variational problem. 

 The variational problem (C) can be easily generalized. To that end, we replace the constraint 

equations  = 0 with arbitrary linear combinations of them, in which we set: 

 

   = c1 1 + c2 2 + … + ck k ,   = 1, 2, …, k. 

 

At the same time, we introduce be parameters in place of the parameters 1, 2, …, k by means 

of the equations: 

   = c1 1 + c2 2 + … + ck k   ( = 1, 2, …, k), 

 

such that the following identity will exist: 

 

1 1 + 2 2 + … + k k = 1 1 + 2 2 + … + k k . 

 

The c mean arbitrarily-chosen functions of the quantities t ; x1, x2, …, xn ; 1x , 2x , …, nx . They 

are subject to only the condition that their determinant does not vanish. It is clear with no further 

explanation that equations (5) are equivalent to the equations that they will go to when one 

simultaneously replaces the functions 1, 2, …, k with the functions 1, 2, …, k, and 

replaces the parameters 1, 2, …, k with the parameters 1, 2, …, k . Therefore, the singular 

system of integrals of equations (5) that is characterized by the k – i equations: 

 

   = c 1 + c 2 + … + ck k = 0 ,   = i + 1, i + 2, …, k 

 

will correspond to a variational problem in which the allowable variations are defined by the 

equations: 
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 1 = 0,  2 = 0, …,  k = 0,  i+1 = 0,  i+2 = 0, …,  k = 0 . 

 

 Since the quantities c can be chosen arbitrarily, it will follow that: Any singular system of 

integrals of the differential equations (5) that is characterized by linear and homogeneous relations 

between the parameters 1, 2, …, k will correspond to a special variational problem. 

 

 

 7. – In the case of the general variational problem, the allowable variations are determined by 

equations of the form: 

(11)      = 
1

n

x x
x x

 
 

  

 
=

  
 + 

  
  = 0 . 

 

In the case of the special variational problem, either the only equations that appear will have the 

form: 

(12)       = 
1

n

x
x




 


=




  = 0 

 

[case (B) of the previous section] or the two types of equations will occur alongside each other 

[case (C)]. 

 We would like to establish the conditions under which those equations are equivalent. 

 Since the variations  x1,  x2, …,  xn vanish for the limiting values t = t1 and t = t2, equation 

(12) will be fully represented by the equation 
d

dt

 
 = 0. When one recalls the identity 

d x

dt


 = 

x  , one will have: 

d

dt

 
 = 

1

n d
x

dt x x

 


  


=

  
+ 

   
  , 

and as a result: 

dt




 



−   = 

1

n d
x

dt x x

 


  


=

  
− 

  
  . 

 

Should the equations (11) and (12) mean the same thing, then the following equations would have 

to exist: 

  
d

dt x x

 

 

 
−

 
 = M

x








, for  = 1, 2, …, n, 

 

in which M means an arbitrary function of the independent variable t. When we set M = − 
1

,
dN

N dt
 

those equations will take the form: 

 



Maurer – On the differential equations of mechanics. 16 

 

(13) 
N Nd

dt x x

 

 

   
−

 
 = 

N

x





 


. 

 

The equations must either be fulfilled identically or at least when one recalls the given constraint 

equations: 

1 = 0,  2 = 0,  …, k = 0. 

 

If they are fulfilled identically then N  can be represented in the form N  = d  / dt, where  

is a function of the variables t, x1, x2, …, xn . In that case, the constraint equation  = 0 is 

holonomic. If equations (13) are true only when one considers the constraint equations  = 0 then 

the equation will be at least equivalent to a holonomic equation. In any other case, equations (11) 

and (12) will have different meanings. 

 If all of the given constraint equations are holonomic then each equation   = 0 will be 

equivalent to the corresponding one   = 0, and the difference between the general variational 

problem and the special one will drop away. In that case, one will have: 

 

  
d

dt x x

 

 

 
−

 
 = 0  for 

1,2, , ,

1,2, , .

n

k





=


=
 

 

The quantities 1, 2, …, k will then drop out of equations (5), and those equations will differ 

equations (8), which are true for the special variational problem (B), by only the notations for the 

multipliers. By contrast, the special variational problem will differ essentially from the general one 

when the equations  = 0 are not all holonomic, and they are also not equivalent to a system of 

nothing but holonomic equations. 

 

 

 8. – We would like to clarify the foregoing general discussion with an example. 

 We address the problem of determining the motion of a two-wheeled cart that rolls without 

slipping on a horizontal plane. For the sake of simplicity, we assume that the center of mass is 

found at the center of the axle. We can ignore forces since the effect of gravity on the motion will 

not come under consideration. 

 We lay the xy-plane horizontally through the axle and let x, y denote the coordinates of the 

center of mass, while  denotes the angle that a horizontal normal to the axle makes with the 

direction of increasing x, and finally M will denote the mass of the cart, while 
2M l  is its moment 

of inertia relative to a vertical that goes through the center of mass. The vis viva of the cart is: 

 

T = 2 2 2 21
2

[ ]M x y l   + + . 

 

Since the cart should roll without slipping, a translation can result only perpendicular to the 

direction of the axle. The non-holonomic constraint equation will then exist: 
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(1)      cos siny x  −  = 0 . 

 

The differential equations for the motion of the cart are implied by the condition: 

 
2

1

t

t
T dt   = 0 

 

for all variations that satisfy the condition cos  y – sin  x = 0 and vanish for t = t1 and t = t2. 

We will then get: 

 

(2)    M x  = −  sin  , M y  =  cos ,   = 0  . 

 

It then follows from this that: 

  = ,   =  (t – t0), 

 

and furthermore, when we recall (1): 

 

x  = c cos  , y  = c sin  . 

 

The following equations are then true for the motion of the cart: 

 

(3)  x – x0 = sin
c




, y – y0 = (1 cos )
c




− ,   =  (t – t0) . 

 

We now determine the functions x, y,  by the constraints on the general variational problem: 

 
2

1

t

t
T dt   = 0 

 

for all variations x ,  y  , z   that satisfy the condition: 

 

cos sin (sin cos )x y y x      − − +  = 0 

and vanish at the limits. 

 In that case, we will get the differential equations: 

 

  M x  =   sin cos    + , 

(4)  M y  = − cos sin    + , 

  
2l M= − (sin cos )y x    + . 

 

The integration of the first two equations gives: 
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M x  =  sin  + a cos , M y  = −  cos  + a sin , 

 

and when one recalls (1), it will then follow from this that: 

 

 = a sin ( – ) , ( cos sin )M x y  +  = a cos ( – ) . 

 

If one introduces those values in the last of equations (4) then one will get: 

 
2 22 l M   = − 2 sin 2( )a  −  , 

and it will then follow that: 

 

2 2 2l M   = − 21
2

cos2( ) const.a  − +  = − 
2 21 1

2 2 2

2
cos 2( ) 1a a

k
 

 
− + − 

 
 , 

so 

  = 
2 21 cos ( )

a
k

k l M
 − −  . 

 

Eliminating the time differential will yield the equations: 

 

dx

d
 = 

2 2

sin cos

1 cos ( )

k l a

a k

  

 

+

− −
 = 

2 2

cos( )cos

1 cos ( )
k l

k

  

 

−

− −
, 

 

dy

d
 = 

2 2

cos sin

1 cos ( )

k l a

a k

  

 

− +

− −
 = 

2 2

cos( )sin

1 cos ( )
k l

k

  

 

−

− −
. 

 

We will ultimately obtain the integral equations: 

 

  x − x0 = 
2 2

0

cos ( )cos

1 cos ( )

d
k l

k


   

 

−

− −
  , 

(5)  y − y0 = 
2 2

0

cos ( )sin

1 cos ( )

d
k l

k


   

 

−

− −
  , 

  t − t0  = 
2 2

0 1 cos ( )

k l M d

a k




 − −
  . 

 

 We will arrive at the singular system of integrals of the differential equations (4) that is 

characterized by the constraint equation  = 0 when we consider the integration constants a, k, x0, 

y0 to be constants, as before, while the integration constant  is defined to be a function of time. 



Maurer – On the differential equations of mechanics. 19 

 

The integral equations (5) will then be identical to the integral equations (3), except for the notation 

of the integration constants. 

 

 

III. – The dynamical equations for unfree systems. 

 

 9. – In conclusion, we would like to show that the concept of a singular system of integrals 

will lead to a new conception of the equations of motion for unfree systems. 

 To that end, we start from the second form of the Lagrange equations for a free system: 

 

(1)  
d T T

dt x x 

 
−

 
 = X ,  = 1, 2, …, n. 

 

Here, x1, x2, …, xn mean general coordinates that determine the configuration of the system. X is 

the component of the forces that strives to increase x . T means the vis viva of the system. 

 We assume that the coefficients of the quadratic form T and the force components X are 

functions of the coordinates, but they do not include time explicitly. 

 Along with the coordinates x1, x2, …, xn, we also consider the components of the velocity 1x , 

2x , …, nx  to be autonomous dependent variables. The two systems of variables are coupled with 

each other by the relation: 

(2)   
dx

dt

  = x
 ,   = 1, 2, …, n. 

 

We now assume that the system that was considered to be free up to now is subject to the 

constraints: 

 

(3)  1mx +
  = 0, 2mx +

  = 0, …, nx  = 0. 

 

The motion of that unfree system will be determined by the equations: 

 

(4)   
d T T

dt x x 

 
−

 
 = X ,  = 1, 2, …, n, 

 

in conjunction with equations (2) and (3). 

 Here, T  means the expression that the quadratic form T goes to when one sets 1mx +
 , 2mx +

 , …, 

nx   equal to zero. 

 For the moment, we shall assume that the products of the variables 1x , 2x , …, mx  with the 

variables 1mx +
 , 2mx +

 , …, nx  do not occur in the quadratic form T, so T will be the sum of a quadratic 
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form in the m variables 1x , 2x , …, mx  and a quadratic form in the n – m variables 1mx +
 , 2mx +

 , …, 

nx . Under that assumption, we will obviously have: 

 

1

T

x




 = 

1

T

x




, 

2

T

x




 = 

2

T

x




, …, 

m

T

x




 = 

m

T

x




. 

 

In that case, equations (4) and (2), together with equations (3), will then determine a singular 

system of integrals of the differential equations (1) and (2), and indeed the variables x1, x2, …, xn; 

1x , 2x , …, mx  are considered to be free variables (see no. 1). 

 Nothing about this relationship between the equations of motion for the free and unfree system 

will change essentially when we drop our assumption that the quadratic form T is composed of 

two forms, except that the free variables 1x , 2x , …, mx  will be replaced with linear and 

homogeneous functions of the n velocity components as free functions (see no. 3). 

 In the foregoing, we assumed that the constraint equations for the unfree system were 

holonomic; that assumption is not essential, either. If the constraint equations are linear and 

homogeneous in only the velocity components then the integral equations that determine the 

motion of the unfree system will always be a singular system of integrals of the differential 

equations that are true for the free system. 

 We must preface the proof of that assertion with some remarks about the quadratic form T. 

 

 

 10. – When one regards the velocity components as autonomous variables that are on an equal 

footing with the coordinates, that is closely related to the idea that one can also transform 

themselves among themselves with no regard for the coordinates. However, in that way one will 

restrict oneself to transformations that are linear and homogeneous in the quantities x
  in order for 

the characteristic form of the expression for the vis viva to remain preserved. One sets: 

 

(5)  u = 
1

n

p x 
=

 ,   = 1, 2, …, n. 

 

The p in that mean functions of the quantities x1, x2, …, xn that are subject to only the condition 

that their determinant should not vanish. We refer to the quantities u as general velocity 

parameters (1). Along with the velocity parameters x
  and u, it is also convenient to introduce the 

“impulses” that are associated with them: 

 

 
 (1) The components of the translational velocity and the angular velocity of a rigid body, relative to a coordinate 

system that is fixed in the body, are to be regarded as “general velocity parameters,” in a sense. Volterra was probably 

the first to propose the transformation of the equations of motion by introduction of general velocity parameters [Atti 

di Torino 33 (1898)]. 
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 = 
T

x




,  = 

T

u




. 

When one recalls (5), the identity: 

 

1 x1 +  x2 + … + n xn = 1 u1 +  u2 + … + n un 

 

will imply the equations: 

(6)   = 
1

n

p 



=

 ,   = 1, 2, …, n. 

      

 We introduce the variables u1, u2, …, un into the quadratic form T in place of the variables 1x , 

2x , …, mx . 

 One can choose the substitution coefficients such that the transformed form splits into two 

parts, one of which includes only the variables u1, u2, …, um, while the other one includes only the 

remaining variables um+1, um+2, …, un. In that case, the two systems of variables might be referred 

to as conjugate systems of velocity parameters. 

 Now, it will be important in what follows to point out: One of the two conjugate systems can 

be chosen arbitrarily, while the other one then essentially determined. 

 In order to prove that assertion, we would like to write down the transformation equations in 

detail. Let: 

T = 1
2

a x x  
   = 1

2
b u u   . 

 

If we introduce the associated impulses in place of the velocity parameters then that will give the 

equations: 

T = 1
2       = 1

2      . 

 

If b = 0 for   m and  > m then the corresponding equations  = 0 for   m and  > m will 

also be true for the adjoint form, and vice versa. Now, as a result of (6), one has: 

 

 = p p  
 

  . 

The equations: 

  p p  
 

  = 0  for   m and  > m 

 

will imply, when the substitution coefficients are given: 

 

  p 1, p 2, …, p n ,   = m + 1, m + 2, …, n, 

 

a system of n – m linear and homogeneous equations that each of the systems of quantities: 
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  p 1, p2, …, p n ,   = 1, 2, …, m, 

 

must satisfy. In that way, those m systems of quantities, and therefore the velocity parameters u1, 

u2, …, um, are not in fact completely determined. If we let 1u , 2u , …, nu  denote a special system 

of those quantities that satisfy the requirement that was imposed then that can be represented in 

the most-general form: 

u = 
1 1 2 2 n nc u c u c u  + + + . 

 

 

 11. – We can now formulate the theorem that was stated at the conclusion of no. 9 more 

precisely. 

 The equations of motion for the unfree systems are a singular system of integrals of the 

differential equations that are true for the corresponding free systems, and indeed they are to be 

regarded as free functions of the coordinates x1, x2, …, xn, and those velocity parameters that are 

conjugate to the velocity parameters that vanish as a result of the equations of constraint. 

 In order to prove that we assume that the constraint equations (1): 

 

(7)  1 1 2 2 n np x p x p x  
  + + +  = 0 ,  

 

in which p1, p2, …, pn mean functions of the coordinates x . We initially ignore those constraint 

equations and introduce the general velocity parameters u1, u2, …, un into T by the substitution (5). 

We choose the available coefficients: 

 

  p1, p2, …, pn  ( = 1, 2, …, m) 

such that the systems of parameters: 

 

u1, u2, …, um  and  um+1, um+2, …, un 

 

are conjugate. The impulses 1, 2, …, m that are associated with the velocity parameters u1, u2, 

…, um depend upon only those parameters, but not upon um+1, um+2, …, un, and correspondingly, 

the impulses m+1, m+2, …, n depend upon only um+1, um+2, …, un, but not upon u1, u2, …, um. It 

then follows that: We can replace the constraint equations (7), which we can also write in the form: 

 

um+1 = 0 , um+2 = 0 , …, un = 0 , 

with the equations: 

m+1 = 0 , m+2 = 0 , …, n = 0 , 

 

 
 (1) We can replace a constraint equation  = 0 in which only the coordinates x  occur with the equation d / dt = 

0, and the initial condition  = 0 for t = t0 . Therefore, the assumption that we made in regard to the form of the 

constraint equations comes down to the fact that they either do not include the velocity components at all or they are 

linear and homogeneous in those quantities. 
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and we can consider the associated impulses 1, 2, …, m to be free functions, instead of the 

velocity parameters u1, u2, …, um. (Cf., no. 3, conclusion) 

 When we introduce the impulses in place of the velocity components, equations (1), which are 

true for the free system, will take the form: 

 

  
d T

dt x





 
−


= X ,   = 1, 2, …, n. 

 

 In order to determine the singular systems of integrals that imply the equations of motion for 

the unfree system, we return to what we did in no. 4. 

 In place of the n variables x that were used there, the 2n variables: 

 

x1, x2, …, xn, 1, 2, …, n 

 

will now appear, and the n variables: 

 

y1, y2, …, ym ; ym+1, ym+1, …, yn 

 

will be replaced with the variables: 

 

x1, x2, …, xn, 1, 2, …, m ; m+1, m+2, …, n . 

 

 When one recalls equations (6) (no. 10), equations (14) in no. 4: 

 

 
y








 = 

x

y








 = p ( = m + 1, m + 2, …, n ;  = 1, 2, …, n) 

 

will be replaced with the equations: 

 

 
x






 = 










 = p ( = m + 1, m + 2, …, n ;  = 1, 2, …, n). 

The equations: 

 
Td

dt x





  
− 

 
 = ,

1

n m

mX p   



−

+

=

+  , 

 = 1, 2, …, n,   

  
dx

dt

 
 
 

 = x
  

 

will then enter in place of equations (16) (no. 4), and here one has: 
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 = 
T

x




. 

 

 The foregoing equations agree with the second form of the Lagrange equations for the unfree 

system. Our theorem is proved with that. 

 

 We have made two assumptions in regard to the constraint equations: They are linear and 

homogeneous in the velocity components, and they do not include time. 

 We made the latter assumption for the sake of simplicity, while the former assumption is 

essential because the possibility of splitting the quadratic form T into two parts is based upon it 

[cf., the remark in regard to (7)]. 

 

 

 12. – Instead of proving the theorem that was expressed in the previous section with the help 

of the Lagrange equations for the unfree systems, we can also take the opposite route and regard 

that theorem as a principle that is inferred from experiments. With the help of that principle, we 

can then derive the Lagrange equations for the unfree systems, as well as the principle of virtual 

displacements and Hamilton’s principle, in the formulation that Hölder gave it. 

 The principle that was presented here has the advantage over the principle of virtual 

displacements that Lagrange used that it is not based upon a mathematical expedient but makes 

use of only quantities that are mechanically well-defined. It is also not lacking in intuitive appeal. 

 For example, let us assume that a body rolls on a fixed surface without slipping. The motion at 

each moment in time will be the same as that of a freely-moving body that contacts the fixed 

surface in its initial configuration and is endowed with an initial velocity that creates a rotation 

around an axis that goes through the point of contact. In order for the agreement between the 

motion that actually results and the fictitious free motion to be preserved, the initial velocities that 

determine the free motion must be changed at each moment in time. However, mathematically 

speaking, that means nothing but the statement: The equations that determine the motion of the 

body are to be regarded as singular solutions to the differential equations that are true for the free 

motion. 

 

 Tübingen, February 1905. 

 

__________ 

 


