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 In recent times, the important problem of calculating the velocities that exist in a 
frictionless system of material points when one or more points suffer the same 
simultaneous collision has been treated only under the assumption that the system was 
subject to nothing but condition equations, and that the duration of the time during which 
those equations were valid was likewise known.  One can also treat the problem in 
independent determining parts of the system, which is what APPELL did very beautifully 
and clearly in connection with some investigations of NIVEN and ROUTH in the note 
“Sur l’emploi des équations de LAGRANGE dans la théorie du choc et des percussions” 
(1).  By contrast, to my knowledge, no one since OSTRAGRADSKY’s “Mémoire sur la 
théorie générale de la percussion” (2) has further addressed the very interesting case in 
which the system is subject to the constraint of condition inequalities, and one does not 
know at all from the outset whether the system conditions that are fulfilled as equations 
at the moment of collision do or do not continue in the same form after the collision, and 
as significant as the results included in that treatise were, that still leaves the peculiar fact 
that the fundamental question of the duration of those equations still remains entirely 
untouched.  Therefore, the following attempt to solve the problem for a point-system that 
is constrained by condition inequalities seems entirely justified.  The solution is based 
upon the same conclusions that first led STUDY to the correct explanation and which 
also led to the presentation of the differential equations of motion for point systems of the 
kind considered (3), and indeed the argument is, in principle, actually simpler than the 
latter, but questions will arise in the present problem (cf., § 2) that did not present 
themselves at all in the earlier work and which therefore also require a new handling. 
 
 
 

 
 (1) Journal de Mathématiques (1896), 5-20.  Cf., also APPELL, Traité de mécanique rationelle, t. II, 
500-503. 
 (2) Mémoires de l’Académie Impér. de Sci. de Saint-Petersbourg, sixth series, Sci. math. et phys., t. VI, 
269-303. 
 (3) Cf., the foregoing article (in this Journal).  
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§ 1. – Given external impulsive forces. 
 

 A system of n material points with masses m1, m2, …, mn is in motion under the 
action of given forces.  Let xi , yi , zi be the coordinates of the point mi at time t when 
referred to fixed rectangular axes, and let: 
 
(1)      f1  0, f2  0, … 
 
be the analytical expresses for the constraints and restrictions on the system.  The left-
hand sides of the conditions (1) are then single-valued functions of the coordinates of the 
system points and possibly time t, as well.  I assume that those functions, along with their 
first and second partial differential quotients, are continuous at all times and at all 
positions of the system that come under consideration. 
 Although the system has moved completely unperturbed up to now, at the moment t, 
one or more points of it might suddenly be subjected to impacts, and therefore to very 
strong forces whose duration is, however, only exceptionally short, such that one can 
ignore them in all of the changes in position of the system that result from them, or one 
can neglect the duration of the impacts. 
 Let the positions of the points at the beginning of the impact be known, and let the 
velocities i , i , i that each system point mi has attained at the end of the impact when it 
was free at the beginning of it be given. 
 As a result of the constraints and restriction on the system, those impact velocities i , 
i , i do not actually come about, but must be regularized in such a way that they satisfy 
the conditions on the system.  When one neglects not only the duration of the impact, but 
also any friction that might develop due to, say, the restrictions on the system, one will be 
dealing with the calculation of the velocities that have actually been produced in the 
system at the end of the impact, and indeed that problem shall be solved here on the basis 
of Gauss’s principle of least constraint because it leads to the solution in the clearest and 
most natural way, in my opinion. 
 Since the duration of the impact is to be neglected, the point mi will possess the same 
coordinates xi , yi , zi immediately after the impact that it had at the moment t.  If it were 
free then it would arrive at a position Bi whose coordinates are: 
 

xi  + i dt, yi  + i dt, zi  + i dt 
 
after the subsequent infinitely small time interval dt .  However, in reality, the point does 
not have the velocities i , i , i at the end of the impact, but rather it has arrived at the 
still-unknown velocities ,ix  iy , iz .  Therefore, at the moment t + dt, it does not reach the 
position Bi , but another position Ci whose coordinates are: 
 

xi + ix dt , yi + iydt, zi + izdt . 
 
Now, from the principle of least constraint, among all of the positions Ci to which the 
points mi can arrive during the time interval considered without violating the conditions 
on the system, their actual locations will be distinguished by the fact that: 
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must be a minimum for them, and with the coordinates of the points Bi and Ci , that 
requirement will reduce to this one: 
 

(2)     2 2 2
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( ) ( ) ( )

n

i i i i i i i
i

m x y z  


        = min. ; 

 
i.e., the sum on the left must be smaller for the true final velocities ,ix  iy , iz  than it is 
for all velocities that the points of the system can assume at the end of the impact, and 
therefore at the moment t, since one has neglected the duration of the impact (1). 
 Therefore, in order to ascertain the true regularized impact velocities ix , iy , iz , first 
and foremost, it will important to find those restrictions that the system conditions 
impose upon the velocities of its points at that moment. 
 Now, by assumption, the system might exhibit only those motions for which the 
coordinates of its points will continually satisfy the conditions (1). 
 Any one of those conditions might be represented by: 
 

f   0. 
 
 Corresponding to any such possible motion, if one considers the coordinates xi , yi , zi 
of each system point mi to be continuous functions of time t, lets t go to t + dt, and 
develops the condition considered in powers of dt then it will go to: 
 
(a)      f + f dt + r dt 2  0, 
 
where f is the complete differential quotient of the function f with respect to time t, and r 
dt 2 denotes the remainder term in the TAYLOR development. 
 The value that the first term f possesses at the moment t is known, since it contains 
only time and the coordinates, and therefore quantities values are known at that moment, 
by assumption.  By contrast, the first differential quotients of the coordinates – or the 
velocities ,ix  iy , iz  of the system points – also enter into f. 
 Furthermore, as a result of the system condition f  0, the known value of f can only 
be < 0 or = 0.  Therefore, if it is not precisely = 0 then for a sufficiently small dt, the 
condition (a) will already be fulfilled by itself and will not restrict the velocities in any 
way momentarily. 
 By contrast, if f = 0 then one can divide the condition (a) by the positive quantity dt 
and thus reduce it to: 

f + r dt  0 . 

 
 (1) Or, in words: If a system of material points is suddenly subjected to impacts that, in conjunction with 
the velocities that the individual points have attained, make them strive to attain given velocities, then those 
velocities can be regularized in such a way that the vis viva will be a minimum as a result of the conditions 
and restrictions on the system’s lost velocities. 
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However, that condition can be fulfilled for arbitrarily small dt only when one already 
has: 

f  0 . 
 
 Of the system conditions (1), only the ones that exist as equations precisely will 
restrict the velocities of the system points at the moment t.  Let them be the r conditions: 
 

f1  0,      f2  0,      …,      fr  0. 
  
 I then assume that the known position of the system at the moment t corresponds to 
the r equations: 

f1 = 0,      f2 = 0,      …,      fr = 0, 
 
while perhaps all of the remaining system conditions (1) exist momentarily with only the 
upper sign. 
 The system points mi at that moment are then allowed to have all velocities ,ix  iy , iz  
that the conditions: 
 
(3)  1f   0, 2f   0,     …,  rf   0 
 
will tolerate.  If we now once more restrict the notations ix , iy , iz  to the desired true 
velocities of the system points mi at the end of the impact then we will, on the other hand, 
understand: 

i ix x  ,      i iy y  ,      i iz z   
 
to mean any other velocities of the system points that are possible at the same time and 
likewise deviate only slightly from the unknown true velocities, and on the grounds of the 
identities: 

i

f
x


  

i

f
x



, …, 

if one introduces the abbreviation: 
 

(4)     f  
1

n

i i i
i i i i

f f fx y z
x y z

          
 , 

 
then the conditions (3) will imply the following r conditions on the variations ix  , iy  , 

iz  , of the velocities: 

1 1f f    0, 2 2f f    0,  …, r rf f    0, 
 
and from (2), one must have: 
 

(5)     
1

( ) ( ) ( )
n

i i i i i i i i i i
i

m x x y y z z     


            0 
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for all sufficiently small values of those variations fulfill those r conditions. 
 However, if: 

f   0, but only < 0 
 
for the unknown true final velocities ,ix  iy , iz  then the condition: 
 

f  + f   0 
 
will not restrict the velocities in any way, since it is then fulfilled by itself for all 
arbitrary, but sufficiently small, values of the variations. 
 Such a restriction will first come into play, moreover, when the actual final velocities 
satisfy the equation: 

f  = 0, 
which will reduce our condition to: 

f   0 . 
 
 However, the true final velocities are still yet-to-be-found.  For the time being, they 
are still completely unknown, and we can then by no means decide directly which of the 
derivatives f are = 0 for the true velocities at the moment considered t and which of them 
are < 0. 
 Hence, nothing else remains but to attempt to solve the problem by an indirect path, 
and indeed we can obviously proceed only as follows: We first assume, in a purely 
arbitrary way, that the unknown regularized impact velocities fulfill some of the 
conditions (3) as equations, and the others as only inequalities, determine the values of 
our unknowns from that arbitrary assumption, and thereafter look around for criteria that 
will show us whether the calculated values of the velocities will or will not be correct. 
 We then assume now that the unknown true final velocities  ,ix  iy , iz  satisfy, say, 
the  equations: 

(6)   f  
1

n

i i i
i i i i

f f f fx y z
t x y z
   



             
  = 0  ( = 1, 2, …, ) 

 
and the r –  inequalities: 
 

(6)   f  
1

n

i i i
i i i i

f f f fx y z
t x y z
   



             
  < 0  ( =  + 1, 2, …, r), 

 
in which  can be any one of the numbers 0, 1, …, r, and then ask what values of the 
desired velocities does that assumption imply? 
 I shall make that more specific with the further assumption that none of the  
equations (6) should be a mere consequence of the remaining ones in the known 
momentary position of the system.  Otherwise, they would indeed contribute nothing to 
the determination of the unknowns ,ix  iy , iz , and could therefore be simply dropped.  I 
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shall then assume that the  equations (6) determine  of the unknowns ,ix  iy , iz  in 
terms of the 3n –  remaining ones. 
 With those assumptions, the variations of the velocities are momentarily subject to 
only the  conditions: 
 

(7)   f    
1

n

i i i
i i i i

f f fx y z
x y z
    



          
   0  ( = 1, 2, …, ), 

 
and the desired velocities must then satisfy the requirement (5) for all values of their 
variations that are compatible with those  conditions. 
 In particular, one must then have: 
 

 
1

( ) ( ) ( )
n

i i i i i i i i i i
i

m x x y y z z     


           = 0 

 
as long as one subjects the 3n variations ix  , iy  , iz   to the  equations: 
 
(7)      f   = 0   ( = 1, 2, …, ), 
 
and from the assumption that was introduced in regard to equations (6), those equations 
will determine  of the variations as functions of the remaining 3n –  . 
 If one now multiplies the latter equations by the temporarily undetermined factors – l 
and then adds them to the previous equation then one will get the equation: 
 

(8)    
1

( ) ( ) ( )
n

i i i i i i i i i i
i

m x x y y z z     


          = 
1
l f



 





 . 

 
However, one can determine the multipliers l1, l2, …, lr in such a way that the coefficients 
of those of the  variations ix  , iy  , iz   that can be expressed in terms of the remaining 
ones by the  equations (7) will be equal to each other on the left and right.  After 
dropping those equal terms, equation (8) will contain only entirely arbitrary variations.  
Therefore, the coefficients of the 3n –  variations that remain on both sides of it must be 
equal to each other.  In that way, one will arrive at the 3n equations: 
 

(9)     

1

1

1

( ) ,

( ) ,

( ) ,

i i i
i

i i i
i

i i i
i

fm x l
x
fm y l
y
fm z l
z































   
   


  









  (i = 1, 2, …, n) 
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However, one still has the  equations (6) themselves, moreover, and it is easy to see that 
under our assumption, the determinant of the 3n +  linear equations (6) and (9) in the 3n 
+  unknowns: 

ix ,      iy ,      iz ,      l 
cannot be zero. 
 Namely, if it were = 0 then one would be able to satisfy the  + 3n homogeneous 
linear equations (7) and: 

(9)     

1

1

1

0,

0,

0

i i
i

i i
i

i i
i

fm x l
x
fm y l
y
fm z l
z































    
    


   









 

 
with values of the 3n +  variables ix  , iy  , iz  , l that do not all vanish. 
 However, from (7), it follows from equations (9) upon multiplying by ix  , iy  , 

iz  , and adding that: 

2 2 2

1
( )

n

i i i i
i

m x y z  


     = 0. 

 
Equations (7) and (9) then require that all ix  , iy  , iz   will be = 0, and as a result of 
our assumption in regard to equations (6) to (9), that will also imply the vanishing of all 
multipliers l . 
 The determinant of equations (6) to (9) is then, in fact,  0, and those equations will 
then determine their 3n +  unknowns ,ix iy , iz , l uniquely in terms of the given impact 
velocities i , i , i , the coordinates xi , yi , zi , and possibly the time t, so in terms of 
nothing but quantities whose values will be known completely at the moment t. 
 Our assumption has then yielded a single completely-determined system of values for 
those velocities ,ix iy , iz  that the points of the system can attain at the end of the impact. 
 However, that assumption cannot by any means be established a priori.  Thus, 
whether or not the values of the velocities that are obtained from it are also the true 
regularized impact velocities is still entirely questionable. 
 Meanwhile, our assumption itself, as well as the principle of least constraint, contains 
more conditions than the ones that are fulfilled already. 
 Namely, of the r conditions (3) that restrict the velocities of the system points at the 
moment t, up to now, we have only satisfied the first , and indeed satisfied them by 
means of equations (6).  Hence, if our assumption were correct then, above all, the last r 
–  conditions (3) would have to be fulfilled by the values of the ix , iy , iz  thus-obtained 
by themselves; i.e., of the uniquely determined values that the expressions (6) take on by 
substituting the solutions of equations (6) and (9), none of them can be > 0.  Therefore, if 
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one of those values were found to be > 0 then our assumption would be false, and the 
calculated values of the velocities would not be their true values. 
 Moreover, the formulas (9) convert equation (8) into an identity and then reduce our 
original demand (5) to: 

1
l f



 





   0. 

 
 That condition must also be fulfilled then for all variations ix  , iy  , iz   that fulfill 
the  conditions (7), and that is identical to the condition that none of the multipliers can 
satisfy: 

l < 0. 
 
 The principle of least constraint then adds the  conditions: 
 
(10) l > 0  ( = 1, 2, …, ) 
 
to our equations (6) and (9), in which the > sign should not exclude equality. 
 Thus, whenever the solution to equations (6) and (9) for the unknowns ,ix iy , iz , l 
yields a negative value for some l, our assumption will not, in turn, correspond to 
reality, and once more the calculated values of the velocities cannot be the correct ones. 
 Since those two criteria have only a negative nature, they will generally tell us 
nothing immediately except that conversely, whenever the solution of equations (6) and 
(9) does not contain a negative l nor do any of the derivatives (6) provide a positive 
value, that solution will also certainly represent the true velocities of the system points at 
the end of the impact.  In order to prove that, strictly speaking, one would first have to 
show that one could not also arrive at other systems of values for the ,ix iy , iz  that 
likewise satisfy all of those conditions, as well as all of the demands of the principle of 
least constraint with any other decomposition of the conditions (3).  However, if one 
ignores the fact that one can actually carry out this proof only in the two simplest cases r 
= 1 and r = 2 (1), and very appreciable complications seem to present themselves for 
larger values of r, then one might, on the other hand, probably regard it as obvious for 
that reason that two different systems of velocities with the required behavior cannot 
exist, because if they did exist then there would be no means of deciding which of the 
two is the correct one.  Namely, for the sake of dynamics, it is only essential that the 
demand (5) should be fulfilled, but otherwise it is entirely irrelevant whether the sum (2) 
is an actual minimum or not, and in addition, whether the value that the sum takes on by 
means of equations (6) and (9) is also, in fact, the smallest of all of the values that it 
might assume under the conditions (3) and the assumptions (6), as long as it does not 
imply that some l < 0 and some f  > 0. 
 In all cases, one can state with certainty that our method must surely yield the true 
velocities of the systems points at the end of the impact in all examples in which it leads 
to only a single solution.  However, one likewise sees that for larger values of r, very 

 
 (1) See pp. 237 of this volume. 
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many detailed investigations might be necessary until one arrives at those assumptions 
(6) that ultimately fulfill all requirements. 
 
 In the foregoing, we have sought the total final velocities that the system points have 
attained at the end of the impacts.  However, instead of that, one might also wish to know 
the changes in velocity that the points of the system will suffer during the impacts. 
 If one lets ui, vi , wi denote the velocities that the system points mi possess immediately 
before the impacts, and lets ui , vi , wi denote changes in velocity that the impacts 
actually confer to those points then one will have: 
 
(11)   ui = ix   ui ,  vi = iy vi ,  wi  = iy   wi , 
 
when one denotes the regularized impact velocities by ,ix  iy , iz , as always.  On the 
other hand, the velocities i , i , i that the points mi would have attained at the end of the 
impacts if they were free at the beginning of it will be the resultants of the velocities ui, 
vi, wi and the velocities ai, bi , ci that the impacts would impart to the free points mi when 
starting from rest.  One will then have: 
 
(12)   i = ui + ai ,  i = vi + bi ,  i = wi + ci , 
 
such that in order to know the values of the i , i , i , the individual values of the ui, vi , 
wi and the ai, bi , ci must be given. 
 Now, it follows from (11) and (12) that: 
 

i   ix   ai  ui , … 
When one generally sets: 

(13)    F 
1

n

i i i
i i i i

f f f fu v w
t x y z
   



    
       
 , 

 
from (6) and (9), one will then have the following equations for the calculation of the 
changes in velocity ui , vi , wi  : 
 

(14)  f  
1

n

i i i
i i i i

f f fu v w
x y z
  



   
        

 + F = 0 ( = 1, 2, …, ) 

 

(15)    

1

1

1

( ) ,

( ) ,

( ) .

i i i
i

i i i
i

i i i
i

fm a u l
x
fm b v l
y
fm c w l
z

























 
   

    


 
  









  (i = 1, 2, …, n) 
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One will then get the desired changes in velocity when one solves the  + 3n equations 
(14) and (15) for the 3n +  unknowns: 
 

ui , vi , wi , l , 
 
and in order for those solutions to represent the correct changes in velocity, none of the l 
can be < 0, and when they are substituted, no of the r –  expressions: 
 

(14)  f  
1

n

i i i
i i i i

f f f
u v w

x y z
  



   
        

 + F  ( =  + 1, …, r) 

will be > 0. 
 
 In the foregoing, it was assumed that the point-system considered was subject to 
condition inequalities exclusively.  If condition equations: 
 

1 = 0,2 = 0, … 
 
that its points should satisfy at every time are also prescribed, moreover, then it should be 
obvious that all that will change is that along with equations (6) and the equations: 
 

1  = 0,       2  = 0, …, 
 
and therefore equations (14), as well, one must add the ones that arise by introducing the 
ui , vi , wi in place of the ,ix  iy , iz  in the ones that were just written down.  In that 
way, terms of the form: 

1 2
1 2

i i

p p
x x
  


 

+ …, 

1 2
1 2

i i

p p
y y
  


 

+ …, 

1 2
1 2

i i

p p
z z
  


 

+ … 

 
will appear on the right-hand sides of equations (9) and (15), but whose multipliers p1, p2, 
… are no longer subordinate to the conditions p > 0, but might be positive, as well as 
negative. 
 
 

§ 2. – Internal collisions. 
 

 Up to now, we have always tacitly assumed that the collisions were produced by 
actual external impacts.  In that way of looking at things, in the absence of impacts, the 
system would continue to move unperturbed, and the velocities ui , vi , wi of the system 
points would already be compatible with the momentary system conditions (3) 
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immediately before the impact.  Due to the condition f  0 and the assumptions that f = 
0 at the moment t, from (13), one will also have F  0 in each case then, and indeed one 
will have F < 0 when the constraint or restriction f = 0 proves to be rigorously true, but 
= 0 when it also persists for unperturbed motion. 
 However, the sudden changes in velocity in the system also arise without any special 
impacts in such a way that once the system has moved for a long enough time that one or 
more of its conditions f  0 consists of only an inequality, at the moment t, it will arrive 
at a position in which those conditions will be fulfilled as equalities.  In that way, the 
functions f in question will increase, so their complete differential quotients must also 
satisfy f   0 at the moment t, and the new position can only be attained only with 
velocities ui , vi , wi for the system points for which the associated F  0. 
 Therefore, whenever one of the expressions F > 0, an impact will occur in the 
system, and the possibility of such impacts, which are most simply illustrated by loose 
connecting threads that are suddenly tensed violently or the impinging of system points 
on rigid surfaces, shows quite clearly that one cannot attach the constraints and 
restrictions on the system to any insurmountable obstacle without contradicting the 
continuity of the changes in velocity beyond resolution. 
 Namely, whenever f = 0, the system condition f  0 will forbid any increase in the 
function f, and will also demand that f  0 then.  However, if F > 0 then the moment 
at which the equation f = 0 is established will be when the value of f  just becomes > 0.  
Now, the velocities of the system points cannot unexpectedly jump from values for which 
f  possesses a finite positive value to values that will make f   0.  It must then be 

necessary (if also only minimally and during an exceptionally short time) to overcome 
the obstacle of the condition f  0 and for f to increase until the exceptionally turbulent, 
but also continuously varying, velocities have been regularized in such a way that the 
equation f  = 0 has been established, at which point, the impact considered has reached 
its conclusion (1). 
 In that argument, it should not at all be said that the equation f = 0 must now 
necessarily persist after the impact.  Rather, as the second example in the following § will 
show, in some situations, that equation might be in force only during the impact itself, but 
once more cease to apply afterwards, just as it did beforehand. 
 For the sake of brevity, I would like to call the impacts that arise within the system 
itself internal collisions, in contrast to the ones that are produced by actual impulsive 
forces, although naturally they can arise from sudden tensions in connecting threads, as 

 
 (1) OSTRAGRADSKY, pp. 287.  Naturally, the process does not play out in the same way when the 
system constraint or restriction f 0 is elastic.  The turbulent changes in velocity will then endure beyond 
the moment at which the equation f  = 0 has been established, and at the end of the impact one will 

already have f  < 0.  In that case, one will then no longer have any right to subject the desired velocities to 

the equation f= 0, and one will then also no longer have the sufficient number of equations for 
determining those unknowns, but one must (as in the collision of moving bodies) appeal to the theory of 
elasticity for the missing equations.  However, in that way, the entire problem will lose its purely 
mechanical character, and will become a physical problem, and in a certain sense, the same thing will also 
be true whenever any sort of friction should be considered. 
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well as from collisions with external obstacles.  Indeed, the latter must also be included 
among the system conditions as long as the system falls within their scope. 
 What are the values of the velocities i , i , i that such internal collisions would 
impart to the points mi that are already equipped with the velocities ui , vi , wi when they 
were free immediately before them and obviously also remain free afterward?  Now, by 
assumption, the impacts now originate from only the fact that one or more constraints 
(restrictions, resp.) f = 0 suddenly come about that did not exist before.  Hence, if the 
points were free and remained free then they would experience no impacts at all, and the 
impact velocities i , i , i would then reduce to simply the velocities ui , vi , wi that the 
points possessed before the equations f = 0 became valid in the system.  From (12), that 
coincidence of the i , i , i with the ui , vi , wi will simultaneously show immediately that 
the velocities ai , bi , ci will all have the value zero, moreover. 
 Since the values of the i , i , i , as well as the ai , bi , ci , are also known for internal 
collisions then, we can also seek to determine the final velocities or changes in velocity 
from the previous type that are produced by such collisions in the system.  To that end, 
among equations (6), we must now absorb those of the equations f  = 0 that correspond 
to the equations f = 0 that are established at the moment t when F has positive values, 
and once more construct equations (9) or (15) with the equations (6) that are obtained in 
that way, and  set (1): 

(16)    
, , or

0, 0, 0
i i i i i i

i i i

u v w
a b c
    

   
 

 
in them everywhere.  Moreover, the further conditions that were cited in § 1 must be 
fulfilled if the velocities or changes in velocity that are calculated in that way are to be 
the correct ones. 
 However, if sudden changes of velocity in the system are produced, in particular, in 
such a way that one imposes entirely new condition equations f = 0 at the moment t, 
such as, e.g., when system points are suddenly obliged (or rather seized and forced) to 
move in a given way, then the conditions l > 0 will, in turn, drop away for the 
corresponding multipliers l (2). 
 
 
 

 
 (1) For internal collisions, from (16), the general formula (2) will go to: 

 2 2 2

1
( ) ( ) ( )i i i i i i i

n

i
x u y v z wm



         = min., 

and one will then get the theorem: 
  Any sudden appearance of new constraints or restrictions in a system of material points will change 
the velocities of the points in such a way that the vis viva of the changes in velocities that come about will 
be a minimum. 
 See pp. 216 of this volume. 
 (2)  Should impacts from outside the system points also be simultaneously exerted at the moment of the 
internal collisions, then one would obviously preserve the ai , bi , ci in (15) and give the i , i , i the values 
(12), in which, as before, one understands the ai , bi , ci to mean the velocities that the external impulsive 
forces would impart upon the free points mi from a state of rest. 
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§ 3. – Examples. 
 

 In order to explain the method that was deduced, allow me to pursue it in two simple 
examples. 
 
 I. Two material points m1 and m2 are linked by an inextensible string, and when the 
string is tensed, they move from the side f1 < 0 of a fixed surface: 
 

f1 (x, y, z) = 0 
 
until the point m1 impinges upon it at the moment t.  What changes in velocity will the two 
points experience then? 
 
 If we call the length of the connecting thread L then we will have the following 
equations here: 
 
 f1 (x1, y1, z1) = 0, 
 
 f2  (x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2 – L2 = 0,  
 
 F2  (x1 – x2)(u1 – u2) + (y1 – y2)(v1 – v2) + (z1 – z2)(w1 – w2) = 0, 
 
while preserving the previous notations; at the same time: 
 
 f1 (x2, y2, z2)  0, 
 

 F1  1 1 1
1 1 1

1 1 1

f f fu v w
x y z
  

 
  

 > 0, 

 
while the system conditions themselves are: 
 

f1 (x1, y1, z1)  0, f2  0 . 
 
 If we next assume that the string still remains tensed after the collision then we will 
get the following eight equations for the determination of the changes in velocity of the 
two points from (14), (15), and (16): 
 

 1f   1 1 1
1 1 1

1 1 1

f f fu v w
x y z
  

    
  

 + F1 = 0, 

 
 2f   (x1 – x2)(u1 – u2) + (y1 – y2)(v1 – v2) + (z1 – z2)(w1 – w2) = 0, 
  

 m1 u1 + 1
1

1

fl
x



 + l2 (x1 – x2) = 0, …  
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 m2 u2  l2 (x1 – x2) = 0, …, 
 
and when we substitute the values of the u, v, w from the last six equations into the 
first two and employ the abbreviations: 
 

(A)   

2 2 2

1 1 1
1

1 1 1

1 1 1
12 1 2 1 2 1 2

1 1 1

,

( ) ( ) ( ) ,

f f fB
x y z

f f fB x x y y z z
x y z

                         
   

        

 

 
they will come down to these two: 
 

(B)     
2

1 1 12 2 1 1
2

2 12 1 1 2 2

,
( ) 0.

B l B l m F
m B l m m L l

  


  
 

 
 However, if one lets 1, 1, 1 denote the direction cosines of the normal to the 
surface f1 = 0 that points upwards from the side f1 > 0 at the point x1, y1, z1, and lets 1 
denote the angle that the normal makes with the line 2 1m m


 then one will have: 

 

(C)    1

1 1

1 f
B x




 = 1 , 1

1 1

1 f
B y




 = 1 , 1

1 1

1 f
B z




 = 1 , 

and as a result: 
B12 = L B1 cos 1 . 

 
The two equations (B) then show that l1 and l2 cannot both be > 0 whenever 1 is an acute 
angle.  On the other hand, the line 2 1m m


 meets the surface f1 = 0 on the side f1 < 0.  If we 

ignore the latter case then equations (B) will require that one must have l < 0, in any 
event, and that will prove that the string cannot remain tensed after the collision (1). 
 The actual changes in velocity cannot satisfy the equation 2f   = 0 then.  We must 
drop that equation, and then set l2 = 0, so we will get only the equations: 
 
 1f  = 0, 
 

(D)     
1

1 1 1
1

2 2

0,

0,

fm u l
x

m u

    
  




 

 
for the true values of the u, v, w .  In fact, from (A), they imply that: 

 
 (1) Moreover, it will remain tensed only in the case 1 =  / 2 or B12 = 0, where equations (B) will imply 
that l1 > 0, l2 = 0, as well as in the case F1 = 0, in which l1 = l2 = 0 and there will be no collision at all. 
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2
1 1B l  = m1 F1 > 0 , 

from which, (C) will imply that: 
 

u1 =  1
1

1

F
B
 ,  v1 =  1

1
1

F
B

 ,  w1 =  1
1

1

F
B
 , 

 
and due to the fact that u2 = v2 = w2 = 0, one will have: 
 

2f  =  1

1

L F
B

cos 1 < 0 

 
with those values, so they fulfill all of the requirements that the true changes in velocity 
are subject to and are, at the same time, the unique solutions to our problem. 
 
 II. One finds a rigid circular ring in a state of forced rectilinear translational motion 
on the fixed horizontal xy-plane, such that its center advances with constant positive 
velocity  along the x-axis.  At the moment t, the ring collides with a point of mass m that 
rests upon the xy-plane.  What velocity does the point attain by the collision with the ring 
when the plane and ring are assumed to be completely smooth? 
 
 The condition equation: 
 
(a)     2 f (x, y, z)  (x –  t)2 + y2 – r2 = 0 
 
between the coordinates x, y of the point and the time t is suddenly established at the 
moment t, but 2f  0 or – 2f  0 according to whether the ring meets the point on the 
inside or on the outside, resp. 
 In order to calculate the initial velocities x, y that the collision of the ring and the 
point brings about, since the point was at rest beforehand, we will then get the following 
equations from (9) and (16): 
 

f  (x –  t) (x – ) + y y = 0,  m x = l (x –  t),  m y = l y, 
 
in the first case, and when we consider (a), they will imply that: 
 

l r2 =  m  (x –  t) . 
 
Therefore (in agreement with the impact condition F > 0 in § 2, which reduces to f / t 
> 0 here), one must have: 

x –  t < 0 
 
at the moment t of the collision, which should be obvious a priori, since otherwise no 
collision would even happen.  If equation (a) is fulfilled by the substitutions: 
 
(b)     x –  t = r cos , y = r sin  
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then one will get the following values for the initial velocities of m : 
 
(c)    x =  cos2 ,  y =  cos  sin  . 
 
 By contrast, in the second case, as a result of the condition – 2f  0, one will have: 
 

m x = l (x –  t), m y = l y, 
and one will get: 

l r2 = + m  (x –  t) . 
 
Hence, the condition l > 0 now demands that: 
 

x –  t > 0, 
 
which should be, in turn, obvious, and one again comes back to the same initial velocities 
(c). 
 By contrast, the further motion is entirely different in both cases. 
 Namely, if the point remains on the advancing circular ring then its motion will obey 
the differential equations: 

m x =  (x –  t),  m y =  y, 
 
and therefore, one must have either  > 0 or  < 0 according to whether the motion 
proceeds on the inner or outer side of the ring, resp. (1)  However, in conjunction with the 
equation: 

(x –  t) x + y y + (x –  t)2 + y 2 = 0, 
 
which follows from (a), that will yield the differential equations: 
 

 r2 = m{(x –  t)2 + y 2}. 
 
Therefore,  can never be negative and can vanish only for x = , y = 0 .  Thus, whereas 
the point will remain on the ring as long it meets the ring from the inside, by contrast, it 
will always collide with the ring when it meets it from the outside, except when  = 0 ; 
i.e., when the point is found along the x-axis itself.  In the former case, the point will 
traverse the inner circular ring with the constant angular velocity: 
 

 = sin
r

  , 

 
while in the latter case, it will separate from the ring with the constant velocity: 
 

V =  cos  
 

 
 (1) Cf., pp. 236 of the volume.  
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in the direction of the line that goes through the point and the center of the circle at the 
moment of impact without being overtaken by the ring again.  Only when the point lies 
on the x-axis itself will the same motion occur in both cases, namely, the point will be at 
rest relative to the ring. 
 
 

___________ 
 


