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 If one sets: 

T = 
2 2 21

2

1

( )
n

i i i i

i

m x y z
=

  + +  , 

 

and W is equal to an arbitrary function of t, the 3n unknown functions xi, yi, zi of t and their first 

differential quotients ix , iy , iz  then the problem: 

 
1

0

( )

t

t

T W dt +  = 0 

 

will lead to the 3n second-order differential equations: 

 

i im x  = 
i i

W d W

x dt x

 
−

 
, 

i im y  = 
i i

W d W

y dt y

 
−

 
, 

i im z  = 
i i

W d W

z dt z

 
−

 
. 

 

When one regards m1, m2, …, mn as the masses of n points and the variables xi, yi, zi as the 

coordinates of the point mi in a fixed, rectilinear system of axes at time t, those equations are also 

the differential equations of the motion of a free system of material points for which the 

components of the force that acts upon the point mi at time t have the values: 

 

 
 (*) Submitted to the printer on 23 April 1877. 
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(1)      

,

,

.

i

i i

i

i i

i

i i

W d W
X

x dt x

W d W
Y

y dt y

W d W
Z

z dt z

  
= −

 
  

= −
 

  
= −

 

 

 

Forces whose analytical expressions have those forms are what I call, as usual, potential forces, 

and the function W that determines them completely when it has been given is its potential. 

Furthermore, I understand internal forces in the system to mean ones that originate in just the 

mutual actions of the points in the system and would therefore preserve equilibrium in the system 

at each moment if the system were converted into a rigid body by introducing rigid connecting 

lines between its points at the same moment. The problem that this note is mainly concerned with 

solving is that of finding the most-general possible analytical express for the internal forces of a 

system of material points that is found to be in motion when one establishes that those forces should 

possess a potential. 

 By their definition, the internal forces in the system are characterized by the six constraint 

equations: 

(II)     
1

n

i

i

X
=

  = 0 , 
1

n

i

i

Y
=

  = 0 , 
1

n

i

i

Z
=

  = 0 , 

 

(III)     

1

1

1

( ) 0,

( ) 0,

( ) 0.

n

i i i i

i

n

i i i i

i

n

i i i i

i

y Z z Y

z X x Z

x Y y X

=

=

=


− =




− =



− =








 

 

 When expressed analytically, one then deals with the question: 

 

 What are the most-general values of the forces Xi, Yi, Zi that equations (I) would imply when 

one demands that W should be a function of time, the coordinates, and the velocities that is free of 

accelerations that satisfies the six conditions that arise by substituting the values (I) in equations 

(II) and (III) identically? 

 

 On first glance, it might seem as though that problem can be expressed much more simply as: 

 

 Find the most-general value of the potential W that satisfies the requirements that were posed. 
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 Although the solution of the latter problem, by itself, also implies a solution of the former eo 

ipso, nonetheless, as a result of a known property of the differential equations of the calculus of 

variations, the second problem is not completely identical to the original one, although it is much 

simpler. 

 Namely, if  is any function of only time and the coordinates and one sets: 

 

 = 
d

dt


 

then one will have: 

ix




 = 

i

d

dt x




,  

ix




 = 

ix




,  

and as a result: 

i i

d

x dt x

  
−

 
= 0 , 

 

which is a formula that is naturally also valid when one switches x with y or z in it. 

 Therefore, if the potential W possesses the form: 

 

W = V + 
d

dt


 

 

then the part d / dt will drop out of formulas (I) by itself, and it will then have no effect on the 

values of Xi, Yi, Zi . 

 Based upon that remark (which is by no means new), in what follows, we can and will neglect 

all of those terms in the potential W that are complete differential quotients with respect to time as 

being entirely superfluous to our question. In other words, when we follow C. Neumann’s 

procedure (1) and say effective potential to mean what remains of the total potential W after 

neglecting all of those terms, we will not need to determine the total potential, but only the effective 

potential. 

 We now split that problem into two mutually-independent parts by subjecting the function W, 

on the one hand, to only the conditions (II), and on the other, to only the conditions (III). A 

comparison of the most-general values of the effective potential that can be inferred from one and 

the other requirement will then imply the answer to our question immediately, which shall 

ultimately be combined with yet another, much-simpler, problem, but one that is (as far as I know) 

just as general as the foregoing one that was treated up to now, namely, with the problem of finding 

the most-general value of the force-potential (I) that fulfills the demand of the principle of vis viva, 

i.e., the condition that the expression: 

 

1

( )
n

i i i i i i

i

X x Y y Z z
=

  + +  

 
 (1) C. Neumann, Die Principien der Elektrodynamik. Tübungen, 1868. 
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should be a complete differential quotient with respect to time (1). 

 In order to treat the subject more-or-less completely, some things that are known already will 

also be derived anew in the last §. 

 

 

 

 

 
 (1) If one assumes that the forces Xi, Yi, Zi are independent of the velocities and the accelerations then, as is known, 

that demand will imply that one should have: 

 

1

( )
n

i i i i i i

i

dU
X x Y y Z z

dt=

  + + =  

 

identically, since when that is solved by the equations: 

 

0 = 
U

t




, Xi = 

i

U

x




, Yi = 

i

U

y




, Zi = 

i

U

z




, 

 

it will imply, conversely, that the forces must possess a potential, or that the principle of vis viva can never be valid 

unless Hamilton’s principle is, as well. However, that will not at all be the case when the forces also depend upon the 

velocities and the accelerations. For example, when V is any function of x, y, z, x , y , z  that is free of t, the equation: 

 

X x Y y Z z  + +  = 
d V V V

V x y z
dt x y z

  
  − − −

    

 
 
 

 

 

will be satisfied identically by the substitutions: 

 

X = 
V d V

C z B y
x dt x

 
 − + −

 
, 

Y = 
V d V

B x Az
y dt y

 
 − + −

 
, 

Z = 
V d V

A y C x
z dt z

 
 − + −

 
, 

 

no matter what values the functions A, B, C might have. However, if one sets, say: 

 

A = x , B = y , C = z  

 

in it then one will get formulas that can be put into the form: 

 

X = 
V d V

x dt x

 
−

 
, … 

 

just like with the demand that the principle of vis viva can be satisfied by forces Xi, Yi, Zi whose analytical expressions 

include the velocities, but not, at the same time, the accelerations. 
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§ 1. 

 

Determining the effective potential from the requirements (II). 

 

 If one substitutes the values (I) in the conditions (II) then one will get three condition equations 

for the potential W, the first of which is: 

 

(1)      
1

n

i i i

W d W

x dt x=

  
− 

  
  = 0 , 

 

and the other two of which will emerge from that by switching x with y (z, resp.). One next treats 

the problem of determining the potential W (up to the terms that are neglected) from equation (1) 

in the most general way. To that end, I set: 

1

n

i i

W

x=




  = A, 

 

and in that way, I will convert equation (1) into: 

 

1

n

i i

W

x=




  = 

dA

dt
. 

 

Now, by assumption, W, and therefore the left-hand side of the last equation, as well, is free of the 

second differential quotients x , y , z  . Therefore, the equation cannot be true identically unless 

the function A itself does not include any differential quotients of the x, y, z at all. As a result, the 

demand (1) implies the two linear first-order partial differential equations for the potential W : 

 

(2)      
1

1

,

,

n

i i

n

i i

W
A

x

W dA

x dt

=

=


= 


 =

 




 

 

in which A is an arbitrary function of t and the coordinates. 

 Now, if W = U is any common solution to those two equations, and one sets: 

 

W = U + V 

then they will go to: 

(3)  
1

1

0,

0.

n

i i

n

i i

V

x

V

x

=

=


= 


 =

 




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We can then reduce equations (2) to the much-simpler (3) as soon as we have found any common 

solution to equations (2). However, one such solution is implied immediately by the assumption 

that: 

W = 
d

dt


, 

 

in which  means an unknown function of time and the coordinates. Namely, that assumption will 

give: 

i

W

x




 = 

ix




, 

i

W

x




 = 

i

d

dt x




, 

and equations (2) then then go to: 

(4)   
1

1

,

.

n

i i

n

i i

A
x

d dA

dt x dt





=

=


= 


 =

 




 

 

However, the second of those two equations is an immediate consequence of the first one. Thus, if 

 is any solution of equation (4), and V is the general solution of the system (3) then: 

 

W = V + 
d

dt


 

 

will be the general solution of the two equations (2), so from the prefatory remark: 

 

W = V 

 

 will be the most-general value for the effective potential that one can get from the condition (1). 

 However, the two equations (3) say nothing beyond the fact that V can include the variables 

x1, …, xn, 1x , …, nx  only in the combinations: 

 

x2 − x1,      …,      xn − x1,      2 1x x − ,      …,      1nx x − , 

 

so when W is equal to an arbitrary function of those differences into which t, the y, z, and their first 

differential quotients can enter in an arbitrary way, it will be the most-general solution to our first 

problem. 

 Now, since the other two condition equation that arise from (I) and (II) differ from equation 

(1) only insofar as y (z, resp.) enters in place of x, we have then arrived at the theorem: 

 

 I. The most-general expressions for the force-potentials (I) that satisfy the conditions (II) 

identically will be obtained when one sets the potential W equal to an arbitrary function of time, 

the relative coordinates, and the relative velocities of the points in the system. 
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§ 2. 

 

Determining the effective potential from the requirements (III). 

 

 The substitution of the formulas (I) in equations (III) produces three conditions for the potential 

W, the first of which is: 

 

(1) 
1

n

i i

i i i i i

W d W W d W
y z

z dt z y dt y=

        
− − −    

         
  = 0 , 

 

and the other two will be obtained from it when one switches the symbols y, z with the symbols z, 

x (x, y, resp.). 

 We shall again initially consider only the condition (1). 

 If we add the following identity to it: 

 

1

m

i i i i

i i i i i

W d W W d W
y y z z

z dt z y dt y=

    
 + − − 

       
  = 

1

m

i i

i i i

d W W
y z

dt z y=

  
− 

   
  

 

then it will be converted into: 

 

1

m

i i i i

i i i i i

W W W W
y z y z

z y z y=

    
 − + − 

     
  = 

1

m

i i

i i i

d W W
y z

dt z y=

  
− 

   
  , 

 

and can then decompose into the following two: 

 

(2) 
1

1

,

.

m

i i

i i i

m

i i i i

i i i i i

W W
y z M

z y

W W W W dM
y z y z

z y z y dt

=

=

   
− =  

    


      − + − =       





 

 

The second of those conditions shows that M can be only a function of t and the coordinates. We 

further set: 

W = 
d

dt


, 

 

in which  means a function such that equations (2) will then be converted into: 
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(3)     
1

1

,

.

m

i i

i i i

m

i i

i i i

y z M
z y

d dM
y z

dt z y dt

 

 

=

=

   
− =  

   


  
− =    





 

 

The substitution W = d / dt will then fulfill the two equations (2) as long as  is a solution of 

equations (3). However, with that assumption, if one assumes that: 

 

W = V + 
d

dt


 

 

then the two equations (2) will go to the following ones: 

 

(4) 
1

1

0,

0.

m

i i

i i i

m

i i i i

i i i i i

V V
y z

z y

V V V V
y z y z

z y z y

=

=

   
− =  
    


      − + − =       





 

 

The determination of the effective potential then comes down to only the problem of finding the 

most-general common solution to the two equations (4). 

 Now, from the foregoing, the assumption that: 

 

V = 
d

dt


 

 

will simultaneously satisfy those two equations as long as  is a solution of the equation: 

 

(5)  
1

m

i i

i i i

y z
z y

 

=

  
− 

  
  = 0 . 

 

However, that equation is equivalent to the system of 2n – 1 ordinary differential equations: 

 

dzi : dyh = yi : − zh , 

whose 2n – 1 integrals are: 

(6)  

2 22 const.,

const.,

i i i

hk h k h k

u y z

u y y z z

 = + =


= + =
 

 

in which i = 1, 2, …, n, k is any one of those numbers, and h = 1, …, k – 1, k + 1, …, n. As a result, 

the 2n – 1 expressions: 
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(7)  
,i i i i i

hk h k h k h k h k

u y y z z

u y y y y z z z z

  = +


    = + + +
 

 

will be common solutions of the two equations (4). However, those two equations will reduce to 

the one equation (5) in that way such that one can set V equal to a function  that is free of y , z   

directly. Therefore, the 2n – 1 expressions (6) will also be common solutions to equations (4) in 

their own right. Moreover, those two equations can have no more than 4n – 2 mutually-independent 

solutions relative to the variables y, z, y , z , and that condition satisfies the 4n – 2 expressions 

(6) and (7). As a result, the general solution V of the two equations (4) will have the following 

form: 

 

(8)  V = ( , , , , , , )i hk i hk h hF u u u u t x x    , 

 

in which F denotes an arbitrary function, and of the various arguments that can include that 

arbitrary function, along with t, only one of them will ever give a representative. Moreover, from 

the foregoing, it will be, at the same time, the most-general value for the effective potential that 

can be inferred from the condition (1). 

 Now, the second condition equation that arises from the demands (III) on the potential W differs 

from (1) only by the fact that z, x have taken the places of y, z, resp. The most-general solution to 

that second equation that can come under consideration is the following one: 

 

W = ( , , , , , , )i hk i hk h hv v v v t y y    , 

 

in which  is an arbitrary function, and: 

 

 2 vi = 2

iz   + 2

ix , 

 vhk = zh zk  + xh xk , 

 iv  = i iz z  + i ix x , 

hkv  = h k h k h k h kz z z z x x x x   + + +  . 

 

However, if one compares that function with the formulas (6), (7), (8) then one will see 

immediately that the most-general value of the effective potential W that satisfies the first two 

conditions (III) simultaneously will have the form: 

 

(9)  W = ( , , , , )i hk i hkp p p p t   , 

 

in which  is an arbitrary function: 
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(10) 

2 2 22 ,

,

,

,

i i i i

hk h k h k h k

i h k h k h k

hk h k h k h k h k h k h k

p x y z

p x x y y z z

p x x y y z z

p x x x x y y y y z z z z

 = + +


= + +


   = + +
       = + + + + +

 

 

and since those arguments will remain unchanged when one permutes the symbols x, y, z with each 

other, that will likewise shed light upon the fact that this value of W already satisfies the third 

condition by itself, which the requirements (III) imply for that function. 

 The last remark shows that one will always have the theorem for a force-potential that for the 

motion of a system of material points under the influence of a potential that is independent of 

velocities, two of the three laws of areas can never be true without the third one also being true, 

namely, the theorem that when forces with the analytical form (I) fulfill two of the three conditions 

(III), they will always necessarily satisfy the third one, as well (1). 

 Finally, if we set: 

 2

ir  = 2 2 2

i i ix y z+ + , 

2

hkr  = 2 2 2( ) ( ) ( )h k h k h kx x y y z z− + − + −  

 

then it will follow upon differentiating (10) with respect to t that: 

 

 2

ir  = 2 pi , 

 2

hkr  = 2 ph + 2 pk – 2 phk , 

 
 (1) That theorem can be proved without any integration in the following way: 

 For the effective potential W = V, the condition (1) reduces to the two equations (4). If one then denotes the left-

hand sides of those two equations by X1 (V) and X2 (V) and understands Y1 (V) and Y2 (V) [Z1 (V) and Z2 (V), resp.] to 

mean the expressions that arise by permuting the symbols z, x (x, y, resp.) then the requirements (III) for the effective 

potential V will successively imply the conditions: 

 

   X1 (V) = 0   and  X2 (V) = 0 , 

 Y1 (V) = 0    Y2 (V) = 0 , 

 Z1 (V) = 0     Z2 (V) = 0 . 

However, one has: 

Y1 (X1 (V)) − X1 (Y1 (V)) = Z1 (V) , 

Y1 (X2 (V)) − X2 (Y1 (V)) = Z2 (V) , 

 

identically. Every common solution V of the four equations: 

 

X1 (V) = 0 , X2 (V) = 0 , 

Y1 (V) = 0 , Y2 (V) = 0 , 

 

will therefore always simultaneously satisfy the two equations: 

 

Z1 (V) = 0 , Z2 (V) = 0 . 
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 i ir r   = ip , 

hk hkr r  = h k hkp p p  + − . 

 

We can also replace formula (9) with this one then: 

 

W = ( , , , , )i i hk hkF r r r r t  , 

 

with which, we have arrived at the theorem: 

 

 II. The most-general expressions for the force-potential (I) that fulfill the requirements (III) 

will arise when one replaces W with an arbitrary function of time, the distances from the points of 

the system to the coordinate origin, their mutual distances, and the first differential quotients of 

those two types of distances with respect to time. 

 

 

§ 3. 

 

The principle of vis viva. 

 

 From the demand that the sum: 

1

( )
n

i i i i i i

i

X x Y y Z z
=

  + +  

 

should be a complete differential quotient with respect to time, one will get the condition: 

 

(1) 
1

n

i i i

i i i i i i i

W d W W d W W d W
x y z

x dt x y dt y z dt z=

            
  − + − + −      

              
  = 

dU

dt
 

 

when one denotes those differential quotients by dU / dt and replaces the forces Xi, Yi, Zi with their 

values (I). When one adds the identity: 

 

1 1

n n

i i i

i ii i i

W d W d W
x x x

x dt x dt x= =

     
  + + − +   

       
   = 0 

 

to that, one will convert that condition into the following one: 

 

(2)  
1

n

i i i

i i i i

d W W W W
W x y z

dt x y z t=

      
  − + + −  

        
  = 

dU

dt
. 
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In order for that to be true identically, it is then necessary and sufficient that the partial differential 

quotient W / t should be a complete differential quotient with respect to time. Now, the potential 

W includes only the first differential quotients of the coordinates, and we can therefore always 

regard any function for which W / t is supposed to be a complete differential quotient as the 

partial differential quotients with respect to t of a function  that depends upon only time and the 

coordinates. However, the formula: 

W

t




 = 

d

dt t




 

implies that: 

W = 
d

dt


+ V, 

 

in which V is free of t and is a function of just x, y, z, x , y , z . Thus, the effective potential V 

cannot include time, i.e.: 

 

 III. One will get the most-general expressions for the force-potentials (I) that satisfy the 

demand of the principle of vis viva when one assumes that the potential W is free of time t. 

 

 

§ 4. 

 

Summary of the results obtained and their consequences. 

 

 If we now combine the three theorems that we obtained then that will give the following result: 

 

 IV. The most-general analytical expressions for the force-potentials for a system of material 

points in motion that satisfy the demand of the principle of vis viva will be obtained from formula 

(I) when one sets the potential W equal to an arbitrary function of the mutual distances between 

the points of the system and the first differential quotients of those distances. 

 

 If one drops the requirement of the principle of vis viva in order to obtain the answer to our 

original question then the potential W can even be obtained in yet another way, moreover. 

 If we further subject the system, which was free up to now, to the conditions: 

 

(1)     1 = 0 , 2 = 0 , ..., 

 

in which 1, 2, … are given functions of t and the coordinates of the points of the system then the 

differential equations of its motion will now be: 
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(2)  

1 2
1 2

1 2
1 2

1 2
1 2

,

,

i i i

i i

i i i

i i

i i i

i i

m x X
x x

m y Y
y y

m z Z
z z

 
 

 
 

 
 

  
= + + +

 
  

= + + +
 

  
= + + +

 

 

 

From them and equations (1), one will then get: 

 

 
dT

dt
 = 1

1

1

( )
n

i i i i i i

i

X x Y y Z z
t




=


  + + − −


 , 

 
1

n

i i

i

d
m x

dt =

  = 1
1

1 1

n n

i

i i i

X
x




= =


+ +


  , 

1

( )
n

i i i i i

i

d
m y z z y

dt =

 −  = 1 1
1

1 1

( )
n n

i i i i i i

i i i i

y Z z Y y z
z y

 


= =

  
− + − + 

  
   

 

However, the terms in the latter equations that are multiplied by  will vanish completely when 

one subjects each of the functions  to the conditions: 

 

t




 = 0 ,      1

1

n

i ix



=




  = 0 ,      1 1

1

n

i i

i i i

y z
z y

 

=

  
− 

  
  = 0 , 

 

and under that assumption and when one assigns the values to the forces Xi, Yi, Zi that follow from 

Theorem IV, so just as if the system were free, one will then get the following integrals of the 

equations of motion: 

1

n

i i i

i i i i

W W W
T W x y z

x y z=

   
  − + + + 

     
  = const., 

 
1

n

i i

i

m x
=

  = const., 

 
1

( )
n

i i i i i

i

m y z z y
=

 −  = const. 

 

From the foregoing, that will imply the theorem: 
 

 V. If a system of material points is subject to only forces whose analytical expressions emerge 

from formulas (I) when one sets W in them equal to a function of merely the mutual distances rhk 

between the points of the systems and first differential quotients hkr   of those distances with respect 

to time then the motion of the system will obey the principle of the conservation of areas and the 

principle of vis viva, which will assume the form: 
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,

hk

h k hk

W
T W r

r


− +


  = const., 

 

and in fact regardless of whether the system is free or subjected to the constraint of conditions in 

which only the mutual distances play a role. 
 

 Finally, if we let the system reduce to two points m1 and m2 and call the distance between them 

r then based upon Theorem IV, that will give the following values for the components of the force 

that acts between the points: 

X1 = 
1 1

W d W

x dt x

 
−

 
, …, 

 

in which W is a function of just r and r . Upon performing the differentiations, we can then 

represent those values thusly: 
 

X1 = 
1 1 1 1

W r W r r d W W d r

r x r x x dt r r dt x

         
+ − −

           
, … 

However, one has: 

1

r

x




= 

1

r

x




, 

1

r

x




 = 

1

d r

dt x




, 

so they will reduce to (1): 

X1 = 
i

W d W r

r dt r x

   
− 

   
, …, 

 

and we will then obtain the theorem: 
 

 VI. If one establishes the axiom that the interaction between two points that takes place during 

their motion must possess a potential and satisfy the demand of the principle of vis viva then it will 

follow that this interaction must consist of a force R that acts between the two points in the direction 

of their connecting line and its analytical expression will have the form: 
 

R = 
W d W

r dt r

 
−

 
, 

or what amounts to the same thing: 

R = 
1 d W

W r
r dt r

 
− 

  
 , 

 

in which W is a function of just the distance r between the two points and its differential quotient 

r . 

____________ 

 
 (1) Cf., C. Neumann, loc. cit., pp. 27.  


