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 A system of material points that is coupled with each other in any way, and at the 
same time can be subject to external restrictions, moves under the influence of given 
forces. 
 If the driving forces, couplings, and restrictions on the system, as well as the masses 
of its points, are given, and one knows, moreover, the initial state of the system – i.e., one 
knows the position and velocity that each system-point possesses at a given initial 
moment – then it is assumed in so doing that, other than the positions of the system-
points, the given forces depend upon at most only the velocities and time, and that all 
possible friction can be neglected, and the motion of the system will be defined uniquely 
in a mechanical context.  However, in order to also be able to carry out calculations, one 
must find the differential equations of the motion thus-defined; i.e., when one refers 
everything in space to a fixed rectangular system of axes and suggests the complete 
differentiations with respect to time by primes, one must know how to express the 
accelerations x″, y″, z″ that the system-points would achieve at an arbitrary moment t in 
the moment in terms of the coordinates x, y, z and the velocities x′, y′, z′ of the points at 
the same moments. 
 As is known, that basic problem in dynamics can be solved very easily as long as the 
couplings and restrictions on the system are expressed by condition equations between 
the coordinates of its points or also between them and time.  However, the problem will 
become much more difficult when the system is subordinate to the constraint of condition 
inequalities, e.g., when its points are coupled, not by rigid lines, but by inextensible 
strings whose weights can be neglected. 
 As far as I know, only Ostragradsky has addressed the latter case up to now, first in 
“Considérations générales sur les moments des forces,” but then, above all, in the treatise 
“Sur les déplacements instantanées des systèmes assujettis à des conditions variables,” 
which were papers that were submitted to the St. Petersburg Academy in 1834 and 1838 
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(1).  However, in that second treatise, Ostragradsky arrived at two different systems of 
inequalities that the solution to the problem must fulfill, and was content to assert that the 
one system could be replaced with the other one without in any way establishing that 
replaceability, which is entirely essential to the validity of the result.  On first glance, his 
argument generally seems so natural and convincing that I have long believed that the 
gap in the method of proof must be eliminated in a purely mathematical way.  However, 
from a correspondence that I had with E. Study on that question in 1889, I learned that it 
is not merely an oversight that is included in “Déplacements,” but an actual fallacy.  
Study was then, above all, the first person we have to thank for the correct solution to the 
problem, which shall be summarized here, at least in principle.  One will obtain it most 
simply and clearly when one starts from Gauss’s principle of least constraint, which also 
reduces to Ostragradsky’s concept of the equilibrium of lost forces. 
 
 

§ 1. – The method of solution and the impossibility of a direct solution. 
 

 Let m1 , m2 , …, mn be the masses of the system-points, and in general, at the moment 
t in the motion.  Let xi , yi , zi be the coordinates of the points mi , and let Xi , Yi , Zi be the 
components of the driving forces that act upon them, which shall be given, single-valued 
functions of time, and the coordinates and velocities of the points in all of what follows.  
Finally, let the couplings and restrictions of the system be defined by inequalities: 
 
(1)      f1 ≤ 0, f2 ≤ 0, …, 
 
in which f1 , f2 , … denote given single-valued functions of the coordinates that might 
possibly include time itself, as well.  I assume that these functions, along with their first, 
second, and third partial differential quotients, will always remain continuous for all of 
the motions of the system that come under consideration. 
 The positions and velocities of all points are known at a given moment t.  One next 
asks what accelerations can those system points assume at that instant? 
 The system allows only those motions for which the coordinates of its points 
continually satisfy the conditions (1).  Any of those conditions might be represented by: 
 

f ≤ 0. 
 

 For any motion of the system, the coordinates xi , yi , zi of its points mi will be 
functions of time with continuous differential quotients.  If we consider those coordinates 
to be such functions and let t go to t + dt, in order to focus on the following moment, then 
when the system condition f ≤ 0 is developed in powers of dt, it will be converted into: 
 

(a)     f + f′ dt + 
2

2

dt
f ′′ + r dt3 ≤ 0, 

                                                
 (1) The latter seems to remain unknown to Jacobi.  However, he cited the result of the former in a 
Berlin lecture, which unfortunately remained unconsidered in the publication of Jacobi’s Vorlesungen über 
Dynamik, although Scheibner has presented it in an excellent fashion. 
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in which r dt3 denotes the remaining terms in the Taylor  development. 
 Besides t, that development of f includes only the coordinates of the system-point, 
along with its velocity f′, and finally, its acceleration f″. 
 If we now think of the coordinates xi , yi , zi  and the velocities ix′ , iy′ , iz′  as being set 

equal to the values, which are known, by assumption, that they possess at the moment t 
then f can only be < 0 or = 0, since otherwise the known positions of the points at time t 
would not indeed be possible positions of them. 
 If f is only < 0, but not = 0 then for a sufficiently-small dt, the condition (a) will 
already be fulfilled by itself, and the system will not be instantaneously restricted in any 
way. 
 However, if f = 0 then, after dividing by the positive quantity dt, the condition (a) will 
reduce to: 

(b)      f′ +
2

dt
f ′′ + r dt2 ≤ 0, 

 
and that condition can only be fulfilled for an arbitrarily-small dt when its first term is 
already itself ≤ 0. 
 Hence, as long as the position of the system at the moment t satisfies the assumption f 
= 0, the velocities of its points must already fulfill the condition: 
 

f′ ≤ 0 
by themselves. 
 However, if f′ is only < 0 and not = 0 at the moment t for which the positions and 
velocities of the point are known then for a sufficiently-small dt, the condition (b) will 
once more be fulfilled by itself, and therefore the system will not be assigned any sort of 
restrictions instantaneously. 
 Rather, such a restriction will first occur when one also has f′ = 0.  The condition (b) 
will then reduce to: 

f″ + 2r dt ≤ 0 
 
and can then exist for arbitrarily-small dt only when one already has: 
 
(c)            f″ ≤ 0 . 
 
 Therefore, of the system conditions (1), the accelerations of a point are not restricted 
in any way at the moment t in question by: 
 
 1. All of the ones that are not fulfilled as equations, but only as inequalities, as well 
as: 
 
 2. All of the ones that exist precisely as equations whose complete first derivatives 
are however ≠ 0, but only < 0, for the known position and velocity of the point at the 
moment t. 
 
 After dropping all of those instantaneously ineffective conditions, let: 



Mayer – Equations of motion with inequality constraints 4 

(2)     f1 ≤ 0, f2 ≤ 0, …, fr ≤ 0 
 
be the remaining system conditions (1).  For them, the equations: 
 
(3)       f1 = 0,   f2 = 0, …, fr = 0 
 
and 
 
(4)     1f ′  = 0, 2f ′ = 0, …, rf ′ = 0 

 
will then be fulfilled by the known state of the system, and at that moment, the system 
will admit all accelerations that are compatible with the conditions: 
 
(5)     1f ′′  ≤ 0, 2f ′′ ≤ 0, …, rf ′′ ≤ 0. 

 
Among all of those instantaneously-possible accelerations, one must also include the 
unknown true accelerations that the points will attain at the moment t for the actual 
motion of the system.  In order to find them, we turn to the aid of just the principle of 
least constraint. 
 The point mi that is found at the position ai ≡ xi , yi , zi at the moment t and already 
possesses the velocities ix′ , iy′ , iz′  is acted upon by the given accelerating forces: 

 

i

i

X

m
, i

i

Y

m
, i

i

Z

m
. 

 
If the point were free then it would arrive at a position bi with the coordinates: 
 

 ξi = xi + 
2

2
i

i
i

X dt
x dt

m
′ + , 

 

 ηi = yi + 
2

2
i

i
i

Y dt
y dt

m
′ + , 

 

 ζi = zi + 
2

2
i

i
i

Z dt
z dt

m
′ +  

 
at the next infinitely-small time-element dt.  However, due to its coupling to the system, 
it will not actually reach that location, but rather, in the time dt, it will come to another 
location ci , and when we understand ix′′ , iy′′ , iz′′  to mean the unknown true accelerations 

of the point at the moment t, it will possess the coordinates: 
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 iξ = xi + 
2

2i i

dt
x dt x′ ′′+ , 

 

 iη  = yi + 
2

2i i

dt
y dt y′ ′′+ , 

 

 iζ = zi + 
2

2i i

dt
z dt z′ ′′+ . 

 
Now, from the principle of least constraint, the actual positions ci of the system-points at 
time t + dt are characterized by the fact that, among all positions ci to which they can be 
brought from the position ai in the time interval dt considered by any possible motion of 
the system of points mi , they are the ones for which the sum: 
 

2

1

n

i i i
i

m c b
=
∑ ≡ 2 2 2

1

{( ) ( ) ( ) }
n

i i i i i i i
i

m ξ ξ η η ζ ζ
=

− + − + −∑  

 
attains the least-possible value. 
 If one replaces the coordinates of the locations bi and ci in this with their values then 
one will see immediately that this principle comes down to: 
 
 For the desired true accelerations ix′′ , iy′′ , iz′′ of the system-point mi at the moment t, 

one must have that the sum: 
 

(6)    
2 2 2

1

n
i i i

i i i i
i i i i

X Y Z
m x y z

m m m=

       ′′ ′′ ′′− + − + −      
       

∑  = min; 

 
i.e., it must be smaller for all other accelerations that are allowed for points of the system 
instantaneously. 
 
 If we understand: 

i ix xδ′′ ′′+ , i iy yδ′′ ′′+ , i iz zδ′′ ′′+  

 
to mean any other instantaneously-possible accelerations of the system-points mi that 
likewise deviate only slightly from the unknown, true accelerations of the system, and 
when we observe the identities: 

i

f

x

′′∂
′′∂

 ≡ 
i

f

x

∂
∂

, … 

and introduce the notation: 
 

(7)    δ f″ ≡ 
1

n

i i i
i i i i

f f f
x y z

x y z
δ δ δ

=

 ∂ ∂ ∂′′ ′′ ′′+ + ∂ ∂ ∂ 
∑ , 
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the conditions (5), which instantaneous restrict the accelerations of the system 
exclusively, will also imply only the conditions: 
 
(8)    1 1f fδ′′ ′′+ ≤ 0, 2 2f fδ′′ ′′+ ≤ 0, …, r rf fδ′′ ′′+ ≤ 0 

 
for the variations of the accelerations.  From (6), we will then get the following 
requirement for the determination of the true accelerations ix′′ , iy′′ , iz′′  that one must 

have: 

(9)   
1

{( ) ( ) ( ) }
n

i i i i i i i i i i i i
i

X m x x Y m y y Z m z zδ δ δ
=

′′ ′′ ′′ ′′ ′′ ′′− + − + −∑  ≤ 0 

 
for all sufficiently-small values of the variationsixδ ′′ , iyδ ′′ , izδ ′′  that the conditions (8) 

fulfill.  
 However, when the unknown, true accelerations ix′′ , iy′′ , iz′′  make: 

 
f″ ≠ 0, but only < 0, 

the condition: 
f″ + δ f″  ≤ 0 

 
will in no way restrict the variations of the acceleration, since they will then be fulfilled 
by themselves for all arbitrary, but sufficiently-small, values of those variations. 
 Rather, a restriction will first occur when the true acceleration satisfies the equation: 
 

f″ = 0, 
 
which will make that condition reduce to: 
 

δ f″  ≤ 0 . 
 

How can one nonetheless recognize which of the two derivatives f″ at the given moment t 
during the actual motion of the system possesses the value zero and which of them is only 
< 0? 
 On first glance, it would seem that this cardinal question must necessarily obviate the 
entire investigation.  Indeed, we do not know the true acceleration itself at all, so how can 
we decide whether f″ = 0 or only < 0 for it, and yet we have to know that in order to even 
be able to calculate the true acceleration. 
 In general, Ostragradsky helped us avoid that complication by an argument that, in 
fact, initially seems very enlightening for the consideration of surfaces.  Namely, he 
simply argued that (1): One replaces the unknown accelerations ix′′ , iy′′ , iz′′  of the 

system-points with the values: 

i

i

X

m
, i

i

Y

m
, i

i

Z

m
 

                                                
 (1) Déplacements, § 8.  
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that those accelerations would possess if the points were free, and then examines which 
of the conditions (5) are fulfilled by that and which are not.  Only the latter conditions 
will restrict the accelerations instantaneously, while the former will express obstacles that 
do not presently stand in the way of the motion, and will therefore also not come under 
consideration. 
 However, the argument is correct only in the case of a single condition (5).  For more 
than one condition, as the discussion of the case r = 2 in § 3 will show clearly, it can very 
well happen that a condition that poses no obstacle to the free motion of the point in time 
will define a real restriction for the actual motion of the system as a result of other 
conditions, and likewise a condition can, conversely, instantaneously limit the free 
motion, but pose no obstacle to the actual motion.  In fact, Ostragradsky also came to 
two systems of inequalities by his argument, about which, he said (but totally forgot to 
prove): “We will see that the one of them is always fulfilled at the same time as the other, 
and that one can therefore replace the one with the other.”  However that is contradicted 
by the fact that, in reality, the one can be fulfilled without the other one being fulfilled. 
 This much is then clear in any case, that it is impossible to answer the basic question 
above directly.  Therefore, nothing else remains but to try to make that decision in an 
indirect way.  To that end, we will first have to establish how the true accelerations of the 
system-point would be determined if we had already solved our cardinal question, and we 
must then see whether we cannot find some criterion from which we could then recognize 
whether the values that were found for the accelerations are correct or false. 
 
 

§ 2. – Indirect solution of the problem. 
 

 From the foregoing, I shall now assume that we already know that during the 
unknown, true motion of our system, which is instantaneously subordinate to only the r 
conditions (5), the k equations: 
 

(10)  gf ′′  ≡ 
1

n
g g g

i i i
i i i i

f f f
x y z

x y z=

∂ ∂ ∂ 
′′ ′′ ′′+ + ∂ ∂ ∂ 

∑ + Fg = 0, (g = 1, 2, …, k) 

 
are valid, while the r – k expressions: 
 

(11)  fγ′′  ≡ 
1

n

i i i
i i i i

f f f
x y z

x y z
γ γ γ

=

∂ ∂ ∂ 
′′ ′′ ′′+ + ∂ ∂ ∂ 

∑ + Fγ , (γ = k + 1, 2, …, r) 

 
all possess negative values.  Obviously, the Fg and Fγ denote the sums of all terms in the 
complete second differential quotients gf ′′  and fγ′′  that are free of the second differential 

quotients of the coordinates, and k can be any number from the sequence 0, 1, …, r. 
 One next asks: What values will this assumption (which is still entirely arbitrary, for 
the moment, mind you) yield for the true accelerations of the system-point at time t ? 
 I shall make that assumption even more precise by establishing that for a given state 
of motion of the system at the moment t, none of equations (10) should be a mere 
consequence of the remaining ones.  Indeed, such an equation in (10) would not 



Mayer – Equations of motion with inequality constraints 8 

contribute to the determination of the unknown accelerations and would therefore be 
simply dropped.  I shall then assume that the k equations (10) determine k of the 3n 
unknowns ix′′ , iy′′ , iz′′ in terms of the remaining 3n – k. 

 With those assumptions, the variations of the acceleration are instantaneously subject 
to only the k conditions: 
 

(12)  gfδ ′′  ≡ 
1

n
g g g

i i i
i i i i

f f f
x y z

x y z
δ δ δ

=

∂ ∂ ∂ 
′′ ′′ ′′+ + ∂ ∂ ∂ 

∑  ≤ 0  (g = 1, 2, …, k), 

 
and the unknown, true accelerations ix′′ , iy′′ , iz′′ must then satisfy the demand (9) for all 

values of their variations ixδ ′′ , iyδ ′′ , izδ ′′  that fulfill those k conditions. 

 In particular, one must then have: 
 

1

{( ) ( ) ( ) }
n

i i i i i i i i i i i i
i

X m x x Y m y y Z m z zδ δ δ
=

′′ ′′ ′′ ′′ ′′ ′′− + − + −∑ = 0 

 
for all  ixδ ′′ , iyδ ′′ , izδ ′′ that satisfy the k equations: 

 
(12′)    hfδ ′′  = 0,  (h = 1, 2, …, k), 

 
and from our assumption on the nature of equations (10), equations (12′) will determine k 
of those variations as functions of the remaining 3n – k. 
 If one multiplies the last equations by the temporarily undetermined factors – λh and 
then adds them to the foregoing conditions then one will get the equation: 
 

(13)  
1 1

{( ) ( ) ( ) }
n k

i i i i i i i i i i i i h h
i h

X m x x Y m y y Z m z z fδ δ δ λ δ
= =

′′ ′′ ′′ ′′ ′′ ′′ ′− + − + − −∑ ∑ = 0. 

 
Now, one can always determine the multipliers λ1 , λ2 , …, λk in such a way that the 
coefficients of the k variations in that equation that are expressed in terms of the other 
ones from equations (12′) will be zero, and all that will remain then in equation (13) will 
be completely-arbitrary variations.  Their coefficients must also vanish then, and one will 
thus get the following 3n equations from (13): 
 

(14)    

1

1

1

,

,

.

k
h

i i i h
h i

k
h

i i i h
h i

k
h

i i i h
h i

f
X m x

x

f
Y m z

y

f
Z m z

z

λ

λ

λ

=

=

=

 ∂′′− = ∂
 ∂ ′′− = ∂
 ∂′′− =

∂

∑

∑

∑

 (i = 1, 2, …, n) 
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However, by assumption, the components Xi , Yi , Zi of the driving force that acts at the 
point mi are given, single-valued functions of time t, the coordinates, and the velocity of 
the system-point, so they are functions whose values at the moment t will be, at the same 
time, determined completely by the state of motion of the system.  Equations (14) then 
express the 3n unknowns ix′′ , iy′′ , iz′′  in terms of the k multipliers uniquely. 

 If one further sets, in general: 
 

(15)   Φlh ≡ 
1

1n
l h l h l h

i i i i i i i i

f f f f f f

m x x y y z z=

 ∂ ∂ ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ ∂ ∂ 
∑ , 

 
such that Φlh ≡ Φhl and each Φll  > 0, and if: 
 

(16)   0
lΦ  ≡ 

1

1n
l l l

i i i
i i i i i

f f f
X Y Z

m x y z=

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∑  + Fl  

 
denotes the values that the complete second derivative of fl would assume for the free 
motion of the point, so Φlh and 0

lΦ  will also be quantities whose instantaneous values are 

known completely, then substituting the values of the ix′′ , iy′′ , iz′′ in equations (13) in the 

k equations (10) will yield the following k linear equations for the determination of the 
multipliers λh themselves: 

(17)    
1

k

gh h
h

λ
=

Φ∑ = 0
gΦ   (g = 1, 2, ..., k) . 

 
One also sees directly that these k equations will actually determine the k unknown λ1 , 
λ2, …, λk , so their determinant: 
 
(18)    ∆k ≡ 11 22 kk± Φ Φ Φ∑ ⋯  

 
will not be zero. 
 Namely, due to equations (14), and from (15), the sum (6) will obtain the value: 
 

2Ω ≡ 
1 1

k k

gh g h
g h

λ λ
= =

Φ∑∑ . 

 
However, that sum is always positive and will vanish only when all 3n differences: 
 

i
i

i

X
x

m
′′− , i

i
i

Y
y

m
′′− , i

i
i

Z
z

m
′′−  

 
vanish simultaneously.  Moreover, among the 3n equations (14), there will already be k 
of them whose derivatives determine the k multipliers λh as linear, homogeneous 
functions of k of those differences. 
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 The values of those 3n differences that are implied by equations (14) can then vanish 
simultaneously only when all λh = 0.  Therefore, the value of 2Ω that the sum (6) 
assumes because of equations (14) will be a positive-definite form of the variables λ1 , λ2 

, …, λk , and that is known to involve, eo ipso, the fact that ∆k is non-zero, and indeed will 
necessarily be positive, which will be used in the following §. 
 The k linear equations (17) then, in fact, determine their k unknowns λh , and when 
one substitutes the solutions in equations (14), one will get the 3n unknowns  ix′′ , iy′′ , iz′′  

themselves uniquely and expressed in terms of nothing but quantities whose values are 
known at time t. 
 With that, the question that was posed at the beginning of this § is answered, and one 
sees that it always admits only one solution. 
 However, we must now ask: Were the assumptions that started with in the foregoing 
in a completely arbitrary way correct or not? 
 Certain criteria can be obtained for them, as well. 
 In fact, we must impose even more conditions upon our assumptions, as well as in the 
principle of least constraint, than the ones that we have fulfilled by way of equations (14) 
and (17). 
 Namely, for one thing, of the r conditions (5) that restrict the motion of our system at 
the moment t, up to now only the first k were satisfied, and indeed, they were satisfied as 
a result of the k equations (10).  If our assumptions were applicable then the last r – k 
conditions (5) would be fulfilled by our solution automatically. 
 However, by substituting the values of the ix′′ , iy′′ , iz′′  in equations (14), from (15), 

(16), and (17), the r – k expressions (11) would take on the values: 
 

(19)   fγ′′  = 0

1

k

h h
h

γ γ λ
=

Φ − Φ∑ ≡ k
γΦ   (γ = k + 1, …, r), 

 
in which k

γΦ  shall denote the value that the linear function of the λh on the left-hand side 

would assume if one were to substitute the solutions of equations (17).  These values of 
k
γΦ  are also once more merely functions of time, the coordinates and the velocities, and 

as such, can likewise be determined completely at the moment t. 
 Our assumptions can therefore next be true in any case only when every k

γΦ  ≤ 0.  By 

contrast, whenever any k
γΦ  > 0 that assumption would be false, and the last r – k 

conditions (5) would instantaneously prevent the motion that we have calculated from 
taking place. 
 Furthermore, the formulas (14) will convert equation (13) into an identity that is valid 
for all arbitrary values of the variations ixδ ′′ , iyδ ′′ , izδ ′′ , and will thus reduce our original 

requirement (9) to: 

1

k

h h
h

fλ δ
=

′′∑ ≤ 0. 

 
In addition, this condition must then be fulfilled for all values of the variations that fulfill 
the k conditions (12), so the ones that make each: 
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hfδ ′′  ≤ 0. 

 
However, it is necessary and sufficient for this to be true that no λh < 0.  The principle of 
least constraint then appends the following k conditions to our equations (14) and (17): 
 
(20) λh > 0   (h = 1, 2, …, k) 
 
in which the > sign should not exclude equality. 
 Our assumptions will, in turn, be false whenever equations (17) imply a negative 
value for any λh , and once more the system cannot be instantaneously capable of 
performing the motion that is determined by equations (14) and (17). 
 Conversely, however, when the accelerations that are calculated from (14) and (17) 
are not associated with negative λh or positive k

γΦ , one can conclude that they will give 

the true instantaneous accelerations of the system points mi . 
  Strictly speaking, in order to leave no doubt in regard to this conclusion, one must 
obviously first show that it is only by that one way of fulfilling the r instantaneous system 
conditions (5) that one will arrive at values for the ix′′ , iy′′ , iz′′ that fulfill not only those 

conditions, but also all of the demands of the principle of least constraint.  The proof of 
that will be provided in the following § for the two simplest cases of r = 1 and r = 2.  By 
contrast, its implementation can present very great difficulties for arbitrary r.  On the 
other hand, for that reason, one might also regard it as obvious that two different systems 
of accelerations with the given properties cannot exist, since if they did exist, there would 
exist no means whatsoever of establishing which of the two systems is the correct one, 
because whether or not the sum (6) is an actual minimum is entirely irrelevant for 
mechanics, and anyway, due to the conditions (5) and as a result of equations (10) and 
(14), that sum will, in fact, actually attain a smallest value whenever it leads to either a 
negative λh or positive k

γΦ . 

 
 

§ 3. – Proof of the uniqueness of the solution in  
the two simplest cases r = 1 and r = 2. 

 
 Although, on the grounds that were just cited, one can probably consider the proof of 
the uniqueness of the solution to be a much-too-tedious point of rigor, on the other hand, 
it is still important to recall the different steps that one must take from the foregoing in 
order to ascertain the true instantaneous motion in the various possible cases.  Therefore, 
the following complete discussion of the two simplest cases r = 1 and r = 2 might not be 
superfluous in its own right. 
 Therefore, first let r = 1, so only one condition (5) is present, such that the number k 
of equations (10) can possess only the values 0 and 1.  At the moment t considered, the 
accelerations are now subordinate to only one condition: 
 
(5′)      1f ′′  ≤ 0. 
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In order to find the true instantaneous accelerations then, one must first calculate the 
value 0

1Φ  that 1f ′′  assumes for the accelerations: 

 

(0)  ix′′  = i

i

X

m
, iy′′  = i

i

Y

m
, iz′′  = i

i

Z

m
 

 
that the points mi would possess instantaneously for free motion. 
 If that yields 0

1Φ  ≤ 0 then there would be nothing present instantaneously that could 

prevent the point from exhibiting that free motion, and that will also occur necessarily. 
 By contrast, if 0

1Φ  > 0 then the condition (5′) will not allow the free motion to take 

place, and the true accelerations must then satisfy the equation: 
 
(10′)     1f ′′ = 0. 

 
From (14) and (17), one can then determine those accelerations from the equations: 
 

(1)   
1 1 1

1 1 1

0
11 1 1

, , ,

,

i i i i i i i i i
i i i

f f f
m x X m y Y m z Z

x y z
λ λ λ

λ

∂ ∂ ∂ ′′ ′′ ′′= − = − = − ∂ ∂ ∂
 Φ = Φ

 

 
and due to that fact that Φ11 > 0 and the assumption 01Φ  > 0, those equations will, in fact, 

also imply that λ1 > 0. 
 By contrast, in the case of 01Φ  < 0, they would imply that λ1 < 0, and that would 

directly characterize the accelerations (1) as incorrect, while for 0
1Φ  = 0, one would also 

have λ1 = 0, and the constrained motion (1) would coincide with the free motion (0). 
 Now let r = 2, such that the two conditions to be fulfilled at the moment t are: 
 
(5″)    1f ′′  ≤ 0, 2f ′′  ≤ 0, 

 
and k can assume the values 0, 1, 2. 
 We then first calculate the values 01Φ  and 0

2Φ  that 1f ′′  and 2f ′′  assume for the free 

accelerations (0). 
 If both values are ≤ 0 then neither of the two conditions (5′) will pose an obstacle to 
the free motion, which it will already be the true instantaneous motion then. 
 By contrast, if 0

1Φ  and 0
2Φ  are not both ≤ 0 the let: 

 
0
1Φ  > 0 

 
in any case.  The first condition (5″) will oppose the free motion then, and we must once 
more examine the motion (1), which satisfies equation (10′), and only that equation.  For 
that motion, we will have: 
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(1)    2f ′′  = 0
2Φ  − Φ21 λ1 = 0 0 12

2 1
11

ΦΦ − Φ
Φ

≡ 1
2Φ . 

 
 Therefore, if 1

2Φ  ≤ 0 then nothing prevents the system from exhibiting the motion (1), 

and that will therefore also occur presently. 
 By contrast, if 1

2Φ  > 0 then the second equation (5″) will also prevent the acceleration 

(1) from taking place, and one will then have to discuss the motion (2) that would occur if 
only that second condition were in effect at the moment considered. 
 However, that motion (2) will itself be once more different according to whether one 
has: 

0
2Φ  ≤ 0  or > 0 . 

 
 In the first case, the motion (2) is nothing but the free motion (0), and therefore 
already impossible, due to the first condition (5″). 
 With our present assumption that: 
 

0
1Φ > 0,  0

2Φ  ≤ 0, 1
2Φ  > 0, 

  
the true accelerations must necessarily satisfy the two conditions: 
 
(10″)    1f ′′ = 0,  2f ′′ = 0, 

 
then.  From (14) and (17), the accelerations can now be determined from the equations: 
 

(1, 2)    

1 2
1 2

1 2
1 2

1 2
1 2

,

,

,

i i i
i i

i i i
i i

i i i
i i

f f
m x X

x x

f f
m y Y

y y

f f
m z Z

z z

λ λ

λ λ

λ λ

 ∂ ∂′′= − − ∂ ∂
 ∂ ∂′′= − − ∂ ∂
 ∂ ∂′′= − −

∂ ∂

 

and 

(1, 2)′    
0

11 1 12 2 1
0

21 1 22 2 2

,

.

λ λ
λ λ

 Φ + Φ = Φ
 Φ + Φ = Φ

 

In fact, if one sets: 
∆2 ≡ Φ11 Φ22 − Φ12 Φ21 , 

 
from (18), then since Φ21 ≡ Φ12 , the last two equations will give: 
 

(1, 2)″    
0 0

2 1 1 22 2 12
0 0

2 2 1 12 2 11

,

.

λ
λ

 ∆ = Φ Φ − Φ Φ
 ∆ = − Φ Φ + Φ Φ
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However, from (1)′, the last equation can be written: 
 

∆2 λ2 = 1
11 2Φ Φ , 

 
and therefore, since ∆2 > 0, Φ11 > 0, along with 1

2Φ  > 0, it will likewise also imply that λ2 

> 0. 
 It follows, moreover, from our assumptions: 
 

0
1Φ  > 0, 0

2Φ  ≤ 0, 1
2Φ ≡ 0 0 12

2 1
11

ΦΦ − Φ
Φ

 > 0 

 
that Φ12 must necessarily be < 0.  Due to the fact that Φ22 > 0, the first equation (1, 2)″ 
will then tell us that we also have λ1 > 0. 
 One sees here how, in agreement with the objection that was made against 
Ostrogradsky’s argument at the conclusion of § 1, although the system condition 2f ′′  ≤ 0 

in itself presents no obstacle to the free motion, nevertheless, due to the assumption 0
2Φ  ≤ 

0, the actual motion will be subject to the restriction that2f ′′  = 0, as a result of the other 

condition that 1f ′′  ≤ 0. 

 By contrast, if 0
2Φ  > 0 then the accelerations (2) can be determined from the 

equations: 

(2)   
2 2 2

2 2 2

0
22 2 2

, , ,

,

i i i i i i i i i
i i i

f f f
m x X m y Y m z Z

x y z
λ λ λ

λ

∂ ∂ ∂ ′′ ′′ ′′= − = − = − ∂ ∂ ∂
 Φ = Φ

 

 
and one will have: 

(2)′    1f ′′ = 0
1Φ  − Φ12 λ2 = 0 0 12

1 2
22

ΦΦ − Φ
Φ

 ≡ 2
1Φ  

for them. 
 Therefore, if 2

1Φ  ≤ 0, or the case: 

 
0
1Φ > 0,  0

2Φ  > 0, 1
2Φ  > 0, 2

1Φ  ≤ 0 

 
occurs, then the accelerations (2), in which λ2 > 0, will already be the true accelerations. 
 Since 0

1Φ > 0, now, as opposed to before, the condition 1f ′′  ≤ 0 will be a real obstacle 

to the free motion, and therefore it will imply no restriction on the actual motion. 
 By contrast, if 2

1Φ  > 0 then one will have the inequalities: 

 
0
1Φ > 0,  0

2Φ  > 0, 1
2Φ  > 0, 2

1Φ  > 0, 
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so the first condition (5″) will allow the accelerations (2) to take place just as little as it 
will the second of the accelerations (1).  The actual accelerations must then once more 
necessarily satisfy equations (1, 2), and since, from (1)′ and (2)′, equations (1, 2)″ can be 
written: 

∆2 λ1 = 2
22 1Φ Φ , ∆2 λ2 = 1

11 2Φ Φ , 

 
λ1 and λ2 will, in fact, both be < 0 now, as well. 
 With that, the case of r = 2 is also dealt with, and one sees quite clearly how among 
the various possible motions of the system, ultimately there will always be just one of 
them that is determined completely to be the one that represents the true instantaneous 
motion. 
 However, at the same time, the foregoing argument also illuminates the fact that for 
larger values of r, in some situations, a good number of detailed investigations might be 
necessary before one is fortunate enough to discover which of equations (10) and (14) 
determines the true instantaneous motion of the system. 
 
 
§ 4. – Determining the motion of the system during an arbitrary finite time interval.  

 
 However, once one has found those equations, one can also try to pursue the further 
motion of the system during an arbitrary finite time interval with the help of them (1). 
 To that end, one must integrate the system of 3n second-order differential equations 
in the 3n coordinates xi , yi , zi , and time t that equations (14) go to upon substituting the 
values of λ from equations (17), which is an integration in which one must also appeal to 
the 2k equations: 

gf ′ = 0  and fg = 0  (g = 1, 2, …, k). 

 
In other words, one must look for the motion that the system would execute if it were 
subject to the k condition equations fg = 0, and no further restrictions.  The integration 
constants are determined from the known initial state of the system at time t, which, by 
assumption, will fulfill the 2 (r – k) equations: 
 

fγ′  = 0  and fγ = 0  (γ = k + 1, 2, …, r), 

 
in addition to those 2k equations.  If one has succeeded in calculating the coordinates of 
the system-point, and therefore the multipliers λ, as well, in that way then if the system is 
subordinate to only the k conditions: 
 

f1 ≤ 0, …, fk ≤ 0 
 
from the outset (which assumes that r = k, in particular), those functions will represent 
the true motion of the system whenever none of the multipliers λ are negative. 

                                                
 (1) Déplacements, § 13.  
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 By contrast, if those k conditions define only a part of the system conditions (1) then 
the fact that the multipliers remain positive alone will still not suffice to ensure that the 
calculated motion is the true system motion, since one or more of the other system 
conditions that do not restrict the motion of the system at the initial moment t can come 
into play in some situations that would prevent the system from proceeding with its initial 
motion. 
 In order to get information about that, so to decide whether any of the system 
conditions that are in effect might meanwhile make the persistence of the motion that is 
determined by equations (10) and (14) impossible, by substituting the functions of time 
that are obtained for the coordinates and multipliers, one must further examine: 
 
 First of all, whether the r – k quantities k

γΦ  that are defined by equations (19) and 

(17) are all ≤ 0 at the initial moment t (viz., the assumption that fγ = 0, fγ′  = 0), and 

 
 Secondly, whether the functions fσ in the original system conditions fσ ≤ 0 either 
possess only negative values (the case of fσ < 0) or go straight through zero to negative 
values (the case of fσ = 0, fσ′  = 0) at time t, since none of them are positive. 

 
 The motion that is calculated from (10) and (14) will coincide with the true motion 
whenever either one of all those functions or any of the multipliers changes signs. 
 
 By contrast, as soon as one or more of the aforementioned quantities changes its sign 
by going through zero at a certain moment t1 , that coincide will persist from that moment 
on, and one must then once more address the problem from the beginning with those 
initial values of the coordinates and velocities that the calculated motion implies for t = t1. 
 However, when such a later deviation of the calculated motion of the system from the 
true one is not predicted by merely the sign change of any multiplier λ, the tool that was 
obtained in the foregoing might become inadequate; i.e., by itself, it would not succeed in 
solving the new problem for the new values that the accelerations of the system points 
achieve at the moment t = t1 .  Namely, whenever the point that has moved according to 
any system condition fσ ≤ 0 up to now such that one continues to have fσ < 0, and with a 
velocity for which fσ′  is not exactly zero, but possesses a finite positive value, gets into a 

position in which fσ = 0 (so whenever, e.g., a connecting string that was loose up to now 
suddenly tensed violently or a system-point impinges upon a rigid wall), a shock to the 
system will always arise.  The velocities of the old motion will then suddenly come into 
conflict with the system conditions, and must first be regulated in such a way that those 
conditions are once more obeyed, and those regularized shock velocities will be the initial 
velocities of the new motion.  One then sees how it can become necessary to appeal to the 
theory of shocks in order to determine the system motion during a finite time interval 
from time to time (1). 
 Finally, it is self-explanatory that when the constraints and restrictions on the point-
system in question are defined by not only inequalities, but partly by inequalities and 
partly by condition equations, only the condition equations on the system: 

                                                
 (1) Cf., the following article.  
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ϕρ = 0   (ρ = 1, 2, …) 
 
which are always valid, will have to be appended to those condition equations: 
 

fg ≤ 0   (g = 1, 2, …, k) 
 
that actually restrict the mobility of the system at the moment t considered.  In that way, 
terms of the form: 

 1 2
1 2

i ix x

ϕ ϕµ µ∂ ∂+ +
∂ ∂

⋯ , 

 

 1 2
1 2

i iy y

ϕ ϕµ µ∂ ∂+ +
∂ ∂

⋯ , 

 

  1 2
1 2

i iz z

ϕ ϕµ µ∂ ∂+ +
∂ ∂

⋯  

 
will occur in the right-hand sides of equations (14), and equations (17) will be altered 
accordingly.  However, the new multipliers µ1 , µ2 , … can have arbitrary signs now and 
will no longer be subject to the condition that they must be positive, unlike the λ. 
 

_____________ 
 
 


