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A system of material points that is coupled with eattter in any way, and at the
same time can be subject to external restrictionsjemander the influence of given
forces.

If the driving forces, couplings, and restrictions oa flystem, as well as the masses
of its points, are given, and one knows, moreoverinitial stateof the system — i.e., one
knows theposition and velocity that each system-point possesses at a gial
moment— then it is assumed in so doing that, other than thitigpwss of the system-
points, the given forces depend upon at most only thecitiel® and time, and that all
possiblefriction can be neglected, and thetion of the systemill be defineduniquely
in a mechanical context. However, in order to alsalide to carry outalculations one
must find thedifferential equationsof the motion thus-defined; i.e., when one refers
everything in space to a fixed rectangular system of ardssaggests the complete
differentiations with respect to time by primes, onasmknow how to express the
accelerations X y”, z” that the system-points would achieve at an arbitrarjmemdt in
the moment in terms of thewordinates xy, z and the velocitiex’, y’, z’ of the points at
the same moments.

As is known, that basic problem in dynamics can beesbVlery easily as long as the
couplings and restrictions on the system are expressegdruition equationdetween
the coordinates of its points or also between them are tiHowever, the problem will
become much more difficult when the system is subatd to the constraint @abndition
inequalities e.g., when its points are coupled, not by rigid lines, dyuinextensible
strings whose weights can be neglected.

As far as | know, onlyDstragradsky has addressed the latter case up to now, first in
“Considérations générales sur les moments des folmaisthen, above all, in the treatise
“Sur les déplacements instantanées des systémes tissujdes conditions variables,”
which were papers that were submitted to the St. Petrgr&itademy in 1834 and 1838
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(*). However, in that second treati€stragradsky arrived at two different systems of
inequalities that the solution to the problem must fuliid was content to assert that the
one system could be replaced with the other one withmany way establishing that
replaceability, which is entirely essential to thédiy of the result. On first glance, his
argument generally seems so natural and convincing thavd long believed that the
gap in the method of proof must be eliminated in a purebhemaatical way. However,
from a correspondence that | had withStudy on that question in 1889, | learned that it
is not merely an oversight that is included in “Déptaeats,” but an actual fallacy.
Study was then, above all, the first person we have toktfarnthe correct solution to the
problem, which shall be summarized here, at least ircipien One will obtain it most
simply and clearly when one starts fr@auss's principle of least constrainwhich also
reduces t@stragradsky’'s concept of the equilibrium of lost forces.

8 1. — The method of solution and the impossibility of a direolution.

Letmy, my, ..., m, be the masses of the system-points, and in geag¢rtile moment
t in the motion. Lek , Vi, z be the coordinates of the poimbts, and letX;, Y;, Z be the
components of the driving forces that act upon them, wéhetl be given, single-valued
functions of time, and the coordinates and velocitieghefpoints in all of what follows.
Finally, let the couplings and restrictions of the sysbendefined bynequalities:

(1) f1<0, <0, ...,

in which f, f,, ... denote given single-valued functions of the coordinttas might
possibly include time itself, as well. | assume thaséhfunctions, along with their first,
second, and third partial differential quotients, will aj remain continuous for all of
the motions of the system that come under considerati

The positions and velocities of all points are knowa given moment. One next
askswhat accelerations can those system points assume at that instant?

The system allows only those motions for which th@rdmates of its points
continually satisfy the conditions (1). Any of thoseditions might be represented by:

f<O.

For any motion of the system, the coordinatesy: , z of its pointsm will be
functions of time with continuous differential quotient$ we consider those coordinates
to be such functions and legjo tot + dt, in order to focus on the following moment, then
when the system conditidrs O is developed in powers df, it will be converted into:

, , dt?
(a) f+fdt+ f 7+ro|t3so,

() The latter seems to remain unknownJazobi. However, he cited the result of the former in a
Berlin lecture, which unfortunately remained uncongden the publication afacobi's Vorlesungen Uber
Dynamik althoughScheibnerhas presented it in an excellent fashion.
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in whichr dt® denotes the remaining terms in feylor development.

Besidest, that development df includes only thecoordinatesof the system-point,
along with itsvelocity f, and finally, itsacceleration f.

If we now think of the coordinates, y;, z and the velocitie(, y/, zZ as being set

equal to the values, which are known, by assumption,thiegt possess at the moment
thenf can only be < 0 or = 0, since otherwise the knpasitionsof the points at time
would not indeed be possible positions of them.

If f is only< O, but not= 0 then for a sufficiently-smatlt, the condition (a) will
already be fulfilled by itself, and the system willtio® instantaneously restricted in any
way.

However, if = 0 then, after dividing by the positive quantilty the condition (a) will
reduce to:

(b) f'+f"%+rdt2s0,

and that condition can only be fulfilled for an arhilsasmall dt when its first term is
already itselk 0.

Hence, as long as the position of the system antmaentt satisfies the assumptidn
= 0, thevelocitiesof its points must already fulfill the condition:

f’<0
by themselves.

However, iff"is only< 0 and not= 0 at the moment for which thepositionsand
velocitiesof the point are known then for a sufficiently-smat| the condition (b) will
once more be fulfilled by itself, and therefore tlgstem will not be assigned any sort of
restrictions instantaneously.

Rather, such a restriction will first occwhen one also has#$ 0. The condition (b)
will then reduce to:

f”+2rdt<0

and can then exist for arbitrarily-smédtlonly when one already has:
(c) f”<0.

Therefore, of the system conditions (1), doeelerationof a point are not restricted
in any way at the momenin question by:

1. All of the ones that are not fulfilled eguations but only asnequalities as well
as:

2. All of the ones that exist precisely as equationsselemmplete first derivatives
are howevert 0, but only < 0, for the known position and velocitytbé point at the
momentt.

After dropping all of thosenstantaneously ineffectiv@nditions, let:
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(2) f1<0,f,<0, ....fi<0

be the remaining system conditions (1). For themethations:

(3) f]_:O, f2:0, ...,fr:0
and
(4) f/ =0,f,=0,..,f=0

will then be fulfilled by the known state of the systeand at that moment, the system
will admit all accelerations that are compatible with the conditions:

(5) f' <0, f/<0, ..., f"<0.

Among all of those instantaneously-possible accelerations must also include the
unknown true accelerationthat the points will attain at the momenfor the actual
motion of the system. In order to find them, we turrih® aid of just therinciple of
least constraint.

The pointm that is foundat the position a= x, yi, z at the moment and already
possesses the velocitiaS, y', Z is acted upon by the given accelerating forces:

XX 4
m'm’'m
If the point werdreethen it would arrivaat a position bwith the coordinates:

X, dt?
+ X dt+——,
&=%+X m 2

2
i = y.+y.dt+—d—t
m 2

Z dt?
+ dt+——
=2tz m 2

at the next infinitely-small time-elemedt. However, due to its coupling to the system,
it will not actually reach that location, but rather,the timedt, it will come to another
location ¢, andwhen we understand’, vy, z' to mean the unknown true accelerations

of the point at the momentitt will possess the coordinates:
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2

2
7, =y +y i+ yd%

2
{i=a+7dt+ Zd—;-

Now, from the principle of least constraint, @etual positions joof the system-points at
timet + dt are characterized by the fact that, among alltjposic, to which they can be
brought from the positiog; in the time intervatt considered by any possible motion of
the system of pointsy, they are the ones for which the sum:

>meh'= Y mi(E -8 +n -2 -0

attains the least-possible value.
If one replaces the coordinates of the locatipreadc; in this with their values then
one will see immediately that this principle cordesvn to:

For the desired true accelerations, y', z' of the system-point;mat the moment t,
one must have that the sum:

o el

i.e., it must be smaller for all other acceleratsatmat are allowed for points of the system
instantaneously.

If we understand:
)ﬁ”+5){’ , yi"+5>{' , ZII+5ZI

to mean any other instantaneously-possible act®lasaof the system-pointsy that
likewise deviate only slightly from thenknown true accelerations of the system, and
when we observe the identities:

of" _ of

ok
and introduce the notation:

0 [ of of of
(7) of”= (—5-"+—5>{’+—5.'j,
le 0x "oy 0z ?
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the conditions (5), which instantaneous restrict theelacations of the system
exclusively, will also imply only the conditions:

8) f+5f/<0, f/+6f/<0, .. f"+5f"<0

for the variations of the accelerations. From (&g will then get the following
requirement for the determination of the true acceteratx’, y', z thatone must

have

(©) SHOG=m ) SR+ Y= YO (2= Y J< 0

for all sufficiently-small values of the variatiodig', dy", 6z' that the conditiong8)

fulfill.
However, when the unknown, true acceleratighsy’, z' make:

f”#0, butonly <0,
the condition:
f7+0f” <0

will in no way restrict the variations of the acesdtion, since they will then be fulfilled
by themselves for all arbitrary, but sufficientiypall, values of those variations.
Rather, a restriction will first occur when thadracceleration satisfies the equation:

which will make that condition reduce to:
of”<0.

How can one nonetheless recognize which of thelesioatives f at the given moment t
during the actual motion of the system possessegdine zero and which of them is only
<0?

On first glance, it would seem that thsrdinal questionrmust necessarily obviate the
entire investigation. Indeed, we do not know tle tacceleration itself at all, so how can
we decide whethdr’= 0 or only < O for it, and yet we have to knowitin order to even
be able to calculate the true acceleration.

In generalOstragradsky helped us avoid that complication by an argumbat, tin
fact, initially seems very enlightening for the sateration of surfaces. Namely, he
simply argued that’: One replaces the unknown acceleratiotis y', z' of the

system-points with the values:

X ¥ Z
m'm’'m

() Déplacements, &
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that those accelerations would possess if the points fiee, and then examines which
of the conditions (5) are fulfilled by that and whicle arot. Only the latter conditions
will restrict the accelerations instantaneously, wtiike former will express obstacles that
do not presently stand in the way of the motion, andtharefore also not come under
consideration.

However, the argument is correct only in the casa sihgle condition (5). For more
than one condition, as the discussion of the cas2 in8 3 will show clearly, it can very
well happen that a condition that poses no obstadleetfree motion of the point in time
will define a real restriction for thactual motion of the system as a result of other
conditions, and likewise a condition can, conversehgtantaneously limit thdree
motion, but pose no obstacle to @etual motion. In fact,Ostragradsky also came to
two systems of inequalitidyy his argument, about which, he said (but totally forgot to
prove): “We will see that the one of them is alwaylélfed at the same time as the other,
and that one can therefore replace the one with thez.btiHowever that is contradicted
by the fact that, in reality, the one can be fuldill@ithout the other one being fulfilled.

This much is then clear in any case, that it is imfdes to answer the basic question
abovedirectly. Therefore, nothing else remains but to try to mak decision in an
indirectway. To that end, we will first have to estableiw the true accelerations of the
system-point would be determined if we had already solved our cardinalomeskl we
must then sewhether we cannot find some criterion from which we could then recognize
whether the values that were found for the accelerations are canréalse

8 2. — Indirect solution of the problem.
From the foregoing, | shall now assume that we ayrdatbw thatduring the

unknown, true motion of our systewhich is instantaneously subordinate to onlythe
conditions (5)the k equations:

n (of of of
10 f = —Ax'+—2y+—271+F;=0, =1,2,..K
(10) g ;[a&x ayijazzj 9 © )
are valid, while the r — k expressions:
n (of of of
(12) f) = [a—):x+a—yy %'+6_zy zf’j+ Fy, (yv=k+1,2,..r
i=1 - i :

all possess negative value®bviously, the=; andF, denote the sums of all terms in the
complete second differential quotientg and f; that are free of the second differential

guotients of the coordinates, akndan be any number from the sequence 0O, 1r....,

One next askahat values will this assumption (which is still entirely arbireor
the moment, mind you) yield for the true accelerations of thersymbint at time ?

| shall make that assumption even more precise bplestimg that for a given state
of motion of the system at the momentnone of equations (10) should be a mere
consequence of the remaining ones. Indeed, such an equatid®) would not
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contribute to the determination of the unknown accatara and would therefore be
simply dropped. | shall then assume tha k equationg10) determine k of th&n
unknownsy’, y', z'in terms of the remainingn — k

With those assumptions, the variations of the acagds are instantaneously subject
to only thek conditions:

n [ of of of
12 of" = —IX'+—20y'+—207|<0 =1, 2, ...K),

and the unknown, true acceleratioxs, y', z must then satisfy the demand (9) for all
values of their variation®x’, dy', dz' that fulfill thosek conditions.
In particular, one must then have:

SO =M Y SR+ Y= Y8 W( 2 MY, =0

forall dx', oy', 7' that satisfy thé equations:
(12) of, =0, h=1,2, ..K),

and from our assumption on the nature of equaiid@ys equations (XRwill determinek
of those variations as functions of the remaining-X

If one multiplies the last equations by the tenapily undetermined factors A, and
then adds them to the foregoing conditions thenval@et the equation:

n k
(13) z{( X;—m X) 5?2'*'( A mivffi’ﬂﬁ( Vi im")25i "}2_24 5h’: 0.
i=1 h=1
Now, one can always determine the multiplidis, A2, ..., A« in such a way that the

coefficients of thek variations in that equation that are expressetkrims of the other
ones from equations (D2will be zero, and all that will remain then inuagion (13) will

be completely-arbitrary variations. Their coeffigsis must also vanish then, and one will
thus get the following 83equations from (13):

X -m ){':i&%
i 0 L axl’
(14) Y-mz=>4 %
i i L ayI’

K of

z-mz72=4 %
m 7 ;/L o

(=12 ..
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However, by assumption, the componeXts Y;, Z of the driving force that acts at the
point m are given, single-valued functions of timyeéhe coordinates, and the velocity of
the system-point, so they are functions whose vadtuése moment will be, at the same

time, determined completely by the state of motion efsijistem. Equations (14) then

express therBunknownsx’, y;' , z' in terms of th&k multipliers uniquely.
If one further sets, in general:

of of, , of of, , of of, j

(15) CD|hE —t———
Izlm axax ayay 020,z

such thatby, = ¢, and eachlp; > 0, and if:

oo 1, of o
(16) CD,—Z [Xa)$ 6y+Z j+Fl

denotes the values that the complete second derivatiffevould assume for theee
motion of the point, s@®i, and ®; will also be quantities whose instantaneous values are
known completely, then substituting the values ofthey’, z'in equations (13) in the

k equations (10) will yield the following linear equations for the determination of the
multipliers A, themselves:

k
(17) > o A,= Y 9=1,2 ..K.

h=1

One also sees directly that thésequations will actually determine tkeunknownAs ,
A2, ..., A, so their determinant:

(18) A= Ziq)ll(bzz"'q)kk

will not be zero.
Namely, due to equations (14), and from (15), the sum (6bhbt#in the value:

However, that sum is always positive and will vanish avilen all 31 differences:

ﬁ_xlﬂ i_yﬂ i_zlﬂ
m m m

vanish simultaneously. Moreover, among tineeguations (14), there will already ke
of them whose derivatives determine tkemultipliers A, as linear, homogeneous
functions ofk of those differences.
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The values of thosen3lifferences that are implied by equations (14) can tharsia
simultaneously only when all, = 0. Therefore, the value ofXthat the sum (6)
assumes because of equations (14) will be a positive-@eforin of the variabled; , A,

, .., A, and that is known to involvep ipso the fact thaf\, is non-zerpand indeeavill
necessarily be positiyavhich will be used in the following 8.

Thek linear equations (17) then, in fact, determine thkainknownsAy, and when

one substitutes the solutions in equations (14), one withge® unknowns x', y', z'

themselves uniquely and expressed in terms of nothing but gesntitiose values are
known at timet.

With that, the question that was posed at the beginditigso8 is answered, and one
seedhat it always admits only one solution.

However, we must now ask: Were the assumptions that stattechvine foregoing
in a completely arbitrary way correct or not?

Certain criteria can be obtained for them, as well.

In fact, we must imposeven more conditiongpon our assumptions, as well as in the
principle of least constraint, than the ones that axeeHulfilled by way of equations (14)
and (17).

Namely, for one thing, of theconditions (5) that restrict the motion of our systat
the moment, up to now only the firsk were satisfied, and indeed, they were satisfied as
a result of thek equations (10). If our assumptions were applicable therdastr — k
conditions (5) would be fulfilled by our solution automatig.

n

However, by substituting the values of tke, y', z' in equations (14), from (15),
(16), and (17), the— k expressions (11) would take on the values:

k
(19) f, :qn(;—hz:qayh)lhsqn (y=k+1, ...,
=1

k
y
in which CD; shall denote the value that the linear function ofAhen the left-hand side
would assume if one were to substitute the solutiorexjaitions (17). These values of
CD; are also once more merely functions of time, therdinates and the velocities, and
as such, can likewise be determined completely at thaeantt.

Our assumptions can therefore next be true in any cagevbeh everyd)j < 0. By
contrast, whenever an_w; > 0 that assumption would be falsand the last — k

conditions (5) would instantaneously prevent the moti@t tie have calculated from
taking place.

Furthermore, the formulas (14) will convert equation (&®) an identity that is valid
for all arbitrary values of the variatior®" , dy’, dz', and will thus reduce our original

requirement (9) to:

k
Y A ofr<o0.
h=1

In addition, this condition must then be fulfilled falt values of the variations that fulfill
thek conditions (12), so the ones that make each:
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5t <0.

However, it is necessary and sufficient for this tdrioe that nol, < 0. The principle of
least constraint then appends the followkngpnditions to our equations (14) and (17):

(20) Ah>0 h=12 ..k

in which the > sign should not exclude equality.

Our assumptions will, in turn, be false whenever equat{@@$ imply a negative
value for anyAn , and once more the system cannot be instantaneouslyleapia
performing the motion that is determined by equations (1d)&n).

Conversely, howevemhen the accelerations that are calculated fridm) and (17)

are not associated with negativg or positive ®*, one can conclude thétey will give

the true instantaneous accelerations of the system points m

Strictly speaking, in order to leave no doubt in regarchi® ¢onclusion, one must
obviously first show thait is only by that one way of fulfilling the r instantaneous system
conditions(5) that one will arrive at values for th&', y’', z that fulfill not only those

conditions, but also all of the demands of the principle of least constraim. proof of
that will be provided in the following § for the two simplilecases of = 1 andr = 2. By
contrast, its implementation can present very gredicdlifies for arbitraryr. On the
other hand, for that reason, one might also regarslobaious that two different systems
of accelerations with the given properties cannot esiste if they did exist, there would
exist no means whatsoever of establishing which of thesywwtems is the correct one,
because whether or not the sum (6) is an actual mininsuentirely irrelevant for
mechanics, and anyway, due to the conditions (5) ararasult of equations (10) and
(14), that sum will, in fact, actually attain a smallealue whenever it leads to either a

. -y k
negatived, or positive®) .

8 3. — Proof of the uniqueness of the solution in
the two simplest cases= landr = 2.

Although, on the grounds that were just cited, one cabbabtyg consider the proof of
the uniqueness of the solution to be a much-too-tedious @brigor, on the other hand,
it is still important to recall the different steggat one must take from the foregoing in
order to ascertain the true instantaneous motion iwdheus possible cases. Therefore,
the following complete discussion of the two simplestes = 1 andr = 2 might not be
superfluous in its own right.

Therefore, first let = 1, soonly one conditior{5) is presentsuch that the numbér
of equations (10) can possess only the values 0 and 1.e Awdment considered, the
accelerations are now subordinate to only one condition:

(5 fr <0.
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In order to find the true instantaneous accelerations, thee must first calculate the
value @; that f" assumes for the accelerations:

— Xi " "

Y.
(0) X Y ==, z
m m

-4
m

that the pointsn would possess instantaneously fi@e motion.
If that yields ®? < 0 then there would be nothing present instantaneouslythgd

prevent the point from exhibiting that free motion, arat thill also occur necessarily.
By contrast, if®) > 0 then the condition {(Bwill not allow the free motion to take

place, and the true accelerations must then satiefgdbation:
(10) f,'=0.
From (14) and (17), one can then determine those acoeterfitom the equations:

of of of
"= X —) L V= Y-A L, 7= 2 L
(1) m ){ X laxI m y i 1ay| m| z= i laZ

q)llAl = q)?.’

and due to that fact thet;; > 0 and the assumptioh; > 0, those equations will, in fact,
also imply thatd; > 0.

By contrast, in the case @b, < 0, they would imply thatl; < 0, and that would
directly characterize the accelerations (1) as ik@tywhile for ® = 0, one would also

haveA; = 0, and theonstrained motioifl) would coincide with thé&ree motion (0).
Now let r= 2, such that the two conditions to be fulfilledts moment are:

(5") fr <0, fr <0,

andk can assume the values 0, 1, 2.
We then first calculate the values’ and @3 that f" and f, assume for the free
accelerations (0).

If both values arec O then neither of the two conditions)(Will pose an obstacle to
the free motion, which it will already be the truetamganeous motion then.

By contrast, if®? and ® are not bottx Othe let:
®? >0

in any case. The first condition"}5Swill oppose the free motion then, and we must once
more examine the motion (1), which satisfies equatiof),(a@d only that equation. For
that motion, we will have:
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(1) f; :(Dg_cbzl)ll:cbg_cbf%zq);

11

Therefore, if®} < 0 then nothing prevents the system from exhibiting theomg1.),
and that will therefore also occur presently.
By contrast, if®} > 0 then the second equatiori)(will also prevent the acceleration

(1) from taking place, and one will then have to disthesnotion(2) that would occur if
only that second condition were in effect at the mancensidered.

However, that motion (2) will itself be once mordetient according to whether one
has:

®) <0 or >0.
In the first casethe motion (2) is nothing but the free motion (0), &nerefore
already impossible, due to the first conditiof)(5
With our present assumption that:
®°> 0, ®? <0, ) >0,
the true accelerations must necessarily satisfywbheconditions:

(10") f7=0, f7=0,

then. From (14) and (17), the accelerations can nowteendieed from the equations:

of of

= —-A=1-) _2,

mx=X vox 2 ox

. of of

(1,2) my=Y-A_—-42,

oy, Y

of of

f=7-A1-) 22

mZ7Z=1Z PR

and

1, 2) { (Dll/]l+cblz/]2:q)01,
¢21A1+(D22A2:(D02

In fact, if one sets:
Dy = D11 Doy — Pyp Dy,

from (18), then sincé,; = ®1,, the last two equations will give:

(1 2), { Az/]lz q)gq)zz_q)ozq)lz

A2 /]2 = —(Dg (D12+cD°2cD 11
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However, from (1) the last equation can be written:
JAY) Az = cbll (Dlz,

and therefore, sinaf, > 0, ®,; > 0, along with®} > 0, it will likewise also imply thad,

> 0.
It follows, moreover, from our assumptions:

® >0,  ®I<0,  Pis q:g—qnf% >0

11

that @1, must necessarily be < 0. Due to the fact that> 0O, the first equation (1, 2)
will then tell us that we also havie > 0.

One sees here how, in agreement with the objectiah Was made against
Ostrogradsky’s argument at the conclusion ofL§although the system conditiof] <0
in itself presents no obstacle to fhee motion, nevertheless, due to the assumptigre
0, theactual motion will be subject to the restriction tHdt = 0, as a result of the other
condition thatf,” < 0.

By contrast, if ® > 0 then the accelerations (2) can be determined fram th
equations:

of of of
"= X -A,—2, y=Y-A,—2, = A, —2,
(2) m ){ x 26)ﬂ m y i 26yl m| i ZGZ
CDZZAZ = CDOZ’
and one will have:
n CD
2y f'= @ =P 4 = DY - )12 = ?

22
for them.

Therefore, if®? < 0, or the case:
®2> 0, ®J >0, @, >0, ®? <0
occurs, then the accelerations (2), in whigh» 0, will already be the true accelerations.
Since ®;> 0, now, as opposed to before, the conditfgn< 0 will be a real obstacle
to thefree motion, and therefore it will imply no restricti@am theactual motion.

By contrast, if®? > 0 then one will have the inequalities:

®?> 0, ®) >0, ol >0, ®? >0,
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so the first condition (5 will allow the accelerations (2) to take place justlitile as it
will the second of the accelerations (1). The achgaklerations must then once more
necessarily satisfy equations (1, 2), and since, frohad (2), equations (1, 2)can be
written:

Az A]_: (DZZ (Di, Az Azz (Dllq)lz,

A1 and Az will, in fact, both be < 0 now, as well.

With that, the case af= 2 is also dealt with, and one sees quite cleany &mong
the various possible motions of the system, ultimatiedye will always bgust one of
them that is determined completédy be the one that represents the true instantaneous
motion.

However, at the same time, the foregoing argument itilsninates the fact that for
larger values of, in some situations, a good number of detailed investigatioight be
necessary before one is fortunate enough to discovehwahiequations (10) and (14)
determines the true instantaneous motion of the system.

8 4. — Determining the motion of the system during an arbitray finite time interval.

However, once one has found those equations, one s@anrgalto pursue the further
motion of the system during an arbitrary finite timeeimal with the help of thent)

To that end, one must integrate the systemnafeond-order differential equations
in the 31 coordinates , Vi, z, and timet that equations (14) go to upon substituting the
values of/ from equations (17), which is an integration in whicle omust also appeal to
the X equations:
f.=0 and fg3=0 @=1,2,..K.

In other words, one must look for the motion that $histem would execute if it were
subject to thek condition equation§; = 0, and no further restrictions. The integration
constants are determined from the known initial stathefsystem at timg which, by
assumption, will fulfill the 21— k) equations:

f' =0 and f,=0 =k+1,2, ..5),

y
in addition to thoseRequations. If one has succeeded in calculating the catediof

the system-point, and therefore the multipliéras well, in that way then if the system is
subordinate to only the k conditions:

from the outset (which assumes that k, in particular), those functions will represent
thetrue motion of the systerwhenever none of the multiplietsare negative.

() Déplacements, § 13.
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By contrast, if thos& conditions define only a part of the system conditid)shen
the fact that the multipliers remain positive alond still not suffice to ensure that the
calculated motion is the true system motion, since on more of the other system
conditions that do not restrict the motion of the eysat the initial momeritcan come
into play in some situations that would prevent the system proceeding with its initial
motion.

In order to get information about that, so to decide thdreany of the system
conditions that are in effect might meanwhile male gkrsistence of the motion that is
determined by equations (10) and (14) impossible, by substitutnfutictions of time
that are obtained for the coordinates and multiplene, must further examine:

First of all, whether the — k quantitiesd)j that are defined by equations (19) and
(17) are alk 0 at the initial momertt (viz., the assumption thgt= 0, f, = 0), and

Secondly, whether the functiorig in the original system conditiorfs < O either
possess only negative values (the cask ef0) or go straight through zero to negative
values (the case 6§=0, f, = 0) at timet, since none of them are positive.

The motion that is calculated fro(®0) and (14) will coincide with the true motion
whenever either one of all those functions or any of the multigliersges signs.

By contrast, as soon as one or more of the afargamed quantities changes its sign
by going through zero at a certain momintthat coincide will persist from that moment
on, and one must then once more address the problemtli®ireginning with those
initial values of the coordinates and velocities that¢alculated motion implies for t;.

However, when such a later deviation of the calcdlatetion of the system from the
true one is not predicted by merely the sign changegfmultiplierA, the tool that was
obtained in the foregoing might becomadequatei.e., by itself, it would not succeed in
solving the new problem for the new values that the acatdns of the system points
achieve at the moment=t; . Namely, whenever the point that has moved acogrdin
any system conditiofy, < 0 up to now such that one continues to Have 0, and with a
velocity for which f_ is not exactly zero, but possesses a finite positee, gets into a

position in whichf, = 0 (so whenever, e.g., a connecting string that weselop to now
suddenly tensed violently or a system-point impinges upogic wall), ashockto the
system will always arise. The velocities of the oidtion will then suddenly come into
conflict with the system conditions, and must firetregulated in such a way that those
conditions are once more obeyed, and those regulatpett selocities will be the initial
velocities of the new motion. One then sees hasaritbecome necessary to appeal to the
theory of shocksn order to determine the system motion during a finitee tinterval
from time to time ).

Finally, it is self-explanatory that when the coastts and restrictions on the point-
system in question are defined by not only inequalities, budlyday inequalitiesand
partly bycondition equationsonly the condition equations on the system:

() Cf., the following article.
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$=0 ©=1,2,..)
which are always valid, will have to be appended to tkhoseition equations:
fg<O =12, ...%

that actually restrict the mobility of the systentla moment considered. In that way,
terms of the form:

¢, . 09,
Py gy 22 4.,
Hogy THegy

¢, , 99,
2Ly 22 4
H dy H, ay ,

0¢, ., 99,

14 —T24...

H oz H, 37

will occur in the right-hand sides of equations (14), agdadgons (17) will be altered
accordingly. However, the new multipliess, /&, ... can have arbitrary signs now and
will no longer be subject to the condition that thaystrbe positive, unlike thé




