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 Under the assumption that H1, H2, …, Hl are mutually independent functions of the 2n 
variables: 

q1, …, qn, p1 = 
1

V

q

∂
∂

, …, pn = 
n

V

q

∂
∂

,  

 
and that these functions pair-wise fulfill the conditions: 
 

[Hi, Hk] = 0, 
 
the Lie method of integration yields the well-known theorem: 
 
 I. If H1, H2, …, Hl are mutually independent relative to the differential quotients p 
then the simultaneous integrations of the r partial differential equations: 
 
(1)     H1 = h1, H2 = h2, …, Hl = hl , 
 
comes down to the complete integration of a single partial differential equation with only 
n – r + 1 independent variables. 
 
 By contrast, if the quantities p can be eliminated completely from equations (1) – 
always under the assumption that was given above – then these equations have no 
common solution at all, and therefore one can also no longer speak of a simultaneous 
integration of them.  However, just the same, those of equations (1) that are mutually 
independent relative to the p define a Jacobi system in their own right, and if the Lie 
method may actually be performed on it, which my simplification of the Jacobi method 
affords, with its improvement by Lie ** ), then, with no recourse to extra considerations, 
this will show that in the latter case one can also reduce each Jacobi system that is 
contained in equations (1) with the help of the remaining equations (1), to a single partial 
differential equation that possesses only n – r + 1 independent variables. 
 The objective of the following communication *** ) is to achieve this proof, and 
therefore to give the Lie method of integration the same generality that was Lie’s purpose 

                                                
 *) Cf., these Annalen, Bd. VI, pp. 162. 
 ** ) Cf., pp. 240. 
 *** ) Indeed, a previous Note (Göttinger Nachr., 1873, No. 11) already pursued a similar objective, but 
considered only the special case in which r – 1 of equations (1) define a Jacobi system. 
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in regard to the Jacobi method.  The desire to extend my previous paper in volume VI of 
these Annalen in such a way that both of them together define a unified complete picture 
of Lie’s method, so to speak, might be excused if I, in part, also reproduce known things 
anew, such as the aforementioned theorem I, in fact. 
 Along with the known symbol: 
 

(F, Φ) = 
1

h n

h h h h h

F F

q p p q

=

=

 ∂ ∂Φ ∂ ∂Φ− ∂ ∂ ∂ ∂ 
∑ , 

 
in the following, if F and Φ are regarded as functions of other variables 1q′ , …, nq′ , 1p′ , 
…, np′ , I will use the notation: 

(F, Φ)′ =
1

h n

h h h h h

F F

q p p q

=

=

 ∂ ∂Φ ∂ ∂Φ− ′ ′ ′ ′∂ ∂ ∂ ∂ 
∑ . 

 
 From this definition, one immediately infers the theorem: 
 
 II.  If, in the functions F and Φ, one exchanges the variables: 
 

q1, …, qm , qm+1, …, qn, p1, …, p m, pm+1, …, pn 
with: 

1q′ , …, mq′ , 1mp +′ , …, np′ , − 1p′ , …, − mp′ , 1mq +′ , …, nq′ , 

 
resp., then (F, Φ) goes over to – (F, Φ)′. 
 
 Now, having established this, let H1, H2, …, Hm be functions of q1, …, qn, p1, …, pn 
that pair-wise satisfy the conditions: 

(Hi, Hk) = 0. 
 
I assume that the variables p1, p2, …, pm can be determined from the m equations: 
 
(2)     H1 = h1, H2 = h2, …, Hm  = hm, 
 
in which h1, h2, …, hm refer to arbitrary constants, and denote the values thus obtained by: 
 
(3)     p1 = F1, p2 = F2, …, pm = Fm, 
 
where only the variables q1, …, qn, pm+1, …, pn enter into the functions F1, F2, …, Fm . 
 By the substitutions (3), the equations Hi = hi, along with the equation: 
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will then be fulfilled immediately, as long as one understands x to mean one of the 
variables q1, …, qn, pm+1, …, pn .  However, since each ∂pλ / ∂x = 0 in this assumption, 
one can also write the latter equation thus: 
 

(4)     
1

( )m
i iH H F p

x p x

λ
λ λ

λ λ

=

=

∂ ∂ ∂ −+
∂ ∂ ∂∑  = 0 

 
and in this form, one immediately sees that the equation also remains correct for x = p1, 
p2, …, pm .  Now, the expression (Hi, Hk) is a linear, homogeneous function of the 
differential quotients of Hi .  If one then substitutes the values of these differential 
quotients that follow from (4) then this yields: 
 

(Hi, Hk) = − 
1

( , )
m

iH
F p H

p

λ

λ λ λ
λ λ

=

=

∂ −
∂∑ , 

 
and when one also applies formula (4) to the differential quotients, one sees that from the 
substitutions (3), one will have identically: 
 

(Hi, Hk) = 
1 1

( , )
mm

i kH H
F p F p

p p

µλ

λ λ µ µ
λ µλ µ

==

= =

∂ ∂ − −
∂ ∂∑ ∑ . 

 
 If one now imagines that the determinant: 
 

1 2

1 2

m

m

HH H

p p p

∂∂ ∂±
∂ ∂ ∂∑ ⋯ , 

 
since it is not in itself zero, can also not vanish when one sets the quantities h that do not 
enter into them at all equal to the given functions H, then this immediately implies, from 
the formula obtained, when one first applies the m identities: 
 

(Hi, Hk) = 0, …, (Hm, Hk) = 0, 
 
and then considers that the same thing shall also be true for k = 1, 2, …, m, that each of 
the: 

(Fλ – pλ , Fµ – pµ) 
 
is identically zero as a consequence of our assumptions.  However, it follows from 
theorem IX of my previous paper that the m partial differential equations (3), and 
therefore, also the given ones (2), can be reduced to a single partial differential equation 
with only n – m + 1 independent variables, from which theorem I is proved. 
 However, we assume that we are given any m + s independent functions H1, H2, …, 
Hm+s, of the variables q1, …, qn, p1, …, pn, which fulfill the conditions: 
 

(Hi, Hk) = 0, 
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but are so arranged that the differential quotients p can be eliminated completely from the 
m + s equations: 
(5)     H1 = h1,  H2 = h2,  …, Hm+s = hm+s. 
 
 Since the case in which all m + s functions H are free of the p makes no sense, I 
would like to assume that perhaps the first m equations (5) can be solved for p1, p2, …, 
pm, while, by substitution, these solutions might make the last s equations (5) free of all p. 
 In this assumption, from the foregoing, the equations: 
 
(2)     H1 = h1,  H2 = h2,  …, Hm = hm  
 
define a Jacobi system, and one now asks how one can, without abandoning the Lie 
method, realize the integration of this Jacobi system for the s remaining equations (5). 
 In order to answer this question, we must first examine to which of the m + s of the 
2n variables q and p the functions H1, H2, …, Hm+s are mutually independent, under our 
assumptions. 
 If we again denote the solutions of equations (2) by: 
 
(3)     p1 = F1,  p2 = F2,  …, pm = Fm  
 
then we known from the foregoing that each: 
 

(Fλ – pλ , Fµ – pµ) = 0. 
 
Furthermore, if we understand Φm+1, …, Φm+s  to mean the values that the functions Hm+1, 
…, Hm+s take on under the substitutions (3) then for k = m + 1, …, m + s, and x = q1, …, 
qn , pm+1, …, pn , along with the equation Hk = Φk, these substitutions also likewise fulfill 
the equation: 

k
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which, when one gives it the form: 
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also keeps its validity for x = p1, …, pm .  From this and (4), one will thus have by the 
substitutions (3) for i = 1, 2, …, m and k = m + 1, …, m + s: 
 

(Hi, Hk) = −
1 1 1

( , ) ( , )
mm m

i i k
k

H H H
F p F p F p

p p p
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∂ ∂ ∂− Φ + − −
∂ ∂ ∂∑ ∑∑ , 

 
from which, it follows that the identities: 
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(Hi, Hk) = 0 and (Fλ – pλ , Fµ – pµ) = 0 
imply the following one: 
(6)      (Fλ – pλ , Φk) = 0. 
 
 Now, by assumption, the functions Φm+1, …, Φm+s, as the values that the H m+1, …, H 

m+s take on by way of the substitutions (3), are free of all the p and mutually independent 
functions of the variables q.  From (6), therefore, each of them is a common solution of 
the m equations: 

1

h n

h m h h

F

q p q
λ

λ

=

= +

∂∂Φ ∂Φ−
∂ ∂ ∂∑ = 0. 

 
However, from this, it follows immediately that Φm+1, …, Φm+s are mutually independent 
relative to s of the variables: 

qm+1, …, qn . 
The assumption: 

Φm+s = ϕ(Φm+1, …, Φm+s−1, q1, …, qm) 
would then yield: 

qλ

ϕ∂
∂

 = 0, 

 
for λ = 1, 2, …, m, and, as a result, it would contradict the independence of the functions 
Φm+1, …, Φm+s . 
 With this, we have achieved the theorem: 
 
 III.  Let H1, H2, …, Hm+1 be mutually independent functions of the variables q1, …, qn, 
p1, …, pn that pair-wise satisfy the conditions: 
 

(Hi, Hk) = 0. 
 

If the quantities p1, p2, …, pm can be determined from m of the equations: 
 

H1 = h1, H2 = h2,…, Hm+s = hm+s , 
 

and by substitution of these values, the s remaining equations will be free of all the 
variables p then the functions H1, H2, …, Hm+s are independent of each other relative to 
the p1, …, pm  and s of the variables qm+1, …, qm . 
 
 In order to arrive at the answer to the question that we posed, moreover, we need only 
to apply the following theorem to our Jacobi system (2), which immediately appears to be 
a special case of theorem II in my previous treatise when one takes: 
 

ϕ = cm qm + … + cn qn 
 
and suitably alters the notation of the variables: 
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 IV.  If the m equations: 
 

H1 = h1, H2 = h2, …, Hm = hm,  
1

i

V
p

q

 ∂= ∂ 
, 

 
which are soluble in terms of p1, p2, …, pm, define a Jacobi system then the same thing is 
also true for the m equations: 
 

1H ′  = h1, 2H ′  = h2, …, mH ′ = hm , 
1

i

V
p

q

 ∂′ = ′∂ 
, 

 
into which the foregoing are converted when one exchanges: 
 

q1, …, qm , qm+1, …, qn , p1, p2, …, pm , pm+1, …, pn , 
with: 

1q′ , …, mq′ , 1mp +′ , …, np′ , − 1p′ , …, − mp′ , 1mq +′ , …, nq′ , 

 
resp., and one can obtain a complete solution to the latter system by just algebraic 
operations on an arbitrary complete solution of the former one. 
 
 The functions 1H ′ , 2H ′ , …, m sH +′ , which, in fact, arise from our functions H1, H2, …, 

Hm+s by the given exchange, are, from theorem III, independent of each other relative to 
the differential quotients p′.  Due to the identities (Hi, Hk) = 0, one also has that each 
( , )i kH H′ ′  = 0 from theorem II, moreover.  From theorem I, therefore, the m + s 

equations: 

1H ′  = h1, 2H ′ = h2, …, m sH +′ = hm+s  

 
define a Jacobi system whose integration can be reduced to the complete integration of a 
single partial differential equation with only n – m – s + 1 independent variables.  Every 
complete solution of this Jacobi system is, however, at the same time a complete solution 
of the system: 

1H ′  = h1, 2H ′ = h2, …, mH ′ = hm , 

 
and the given system (2) can be reduced to the latter one by theorem IV. 
 We thus obtain the following theorem as our ultimate result: 
 
 In order to be able to reduce the given Jacobi system of m partial differential 
equations with n independent variables: 
 

Hi(q1, …, qn, p1, …, pn) = hi,  i = 1, 2, …, m 
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to a single partial differential equation with only n – m – s + 1 independent variables, it 
suffices to have found any s functions Hm+1, …, H m+s  that are independent of each other, 
as well as H1, …, H m , and which fulfill all of the equations (Hi, Hk) = 0. 
 
 If one would like to apply this theorem to the most important case of a single partial 
differential equation then one need only take m = 1.  If one sets s = n – 1, moreover, then 
one obtains the theorem of Lie: 
 
 The complete integration of the given partial differential equation: 
 

H1(q1, …, qn , p1, …, pn) = h1 
 
always requires just one quadrature, as long as one has found any n – 1 functions H2, …, 
H n that are independent of each other, as well as H1, and which satisfy the demands that 
(Hi, Hk) = 0. 

______ 
 


