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Introduction.  
 

1.  What the recent experimental facts about the behavior of atoms say is essentially in 
the negative, namely, that the laws of mechanics and the Maxwellian equations are no 
longer valid in their interiors.  However, these experimental facts say nothing about just 
which equations must replace these equations or what viewpoint one must take in order to 
satisfy the most noteworthy facts that go by the name of quantum effects, much less the 
laws of atomic spectra, and so on.  I believe that one must not merely wait for some 
appropriate sort of experiment to change all of this.  Experiment and theory must work 
hand-in-hand, and that is not possible as long as the theory has no basis upon which one 
might found it. 

It therefore seems to me that in order for our knowledge to advance it is necessary to 
create a new foundation for the theory of matter.  In the work that follows, I have sought 
to make a start in this direction, but one must not expect from the difficulty of the subject 
that correspondingly tractable experimental results were involved.  The next goals that I 
set for myself are to clarify the existence of indivisible electrons and to find an 
unavoidable connection between the facts of gravitation and the existence of matter.  I 
believe that one must begin at this point because the electrical and gravitational effects 
are certainly the immediate statements of the forces that the existence of matter must rest 
upon.  It is meaningless to think of matter whose smallest constituents do not have 
electrical charge, and just as meaningless to think of matter without gravitation.  Only 
when both of the stated objectives are reached will one be able to think about the 
complexities, of which I spoke above, that appear in conjunction with bringing the theory 
into unified entity.  However, there is another way to reach both of the aforementioned 
goals, and in the sequel I shall present only the preliminary work that might perhaps take 
us in that direction. 

The basic assumption of my theory is that electric and magnetic fields also exist in the 
interior of electrons.  According to this way of thinking, electrons, and therefore the 
smallest constituents of matter, are not distinct from the ether.  They are not, as has been 
believed for twenty years, foreign particles in the ether, but they are only places at which 
the ether takes on a particular state that we give the name of electrical charge.  Indeed, 
the enormous intensity of the field and charge at that point, which we have called an 
electron, in itself suggests that the usual Maxwell equations are no longer valid.  The use 
of electromagnetic fields in the electron will presumably seem strange when one 
considers the laws of the “pure ether.”  However, if we are to speak of an electromagnetic 
field in the interior of an electron in any sense, then we must not understand this to mean 
that it is impossible to make a continuous transition from considering the “pure” ether to 
considering the ether inside an electron.  Therefore, in my theory the electron is not a 
sharply defined region of the ether, but it possesses a kernel that goes continuously over 
into an atmosphere of electric charge that extends to infinity, although it is already so 
extraordinarily thin near the kernel that that one cannot imagine any experimental 
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verification of this.  An atom is an amalgamation of a large number of electrons that are 
held together with a comparatively weak charge of opposite sign.  Atoms are obviously 
surrounded with a powerful atmosphere that is nevertheless always so thin that no 
noticeable electrical field remains, although it might have some influence in gravitational 
effects. 

One might perhaps think that one can make little progress past the aforementioned 
basic assumption.  However, one is led to a general form for the fundamental equations 
of ether physics when one adds two more assumptions.  The first one is that the principle 
of relativity shall have a general validity, and the second one is that the hitherto known 
states of the ether, namely, electric field, magnetic field, electric charge, and current are 
completely sufficient to describe everything that one can observe in the material world.  
The justification for the first assumption is completely beyond doubt.  Whether the 
second one is equally justifiable is yet to be determined; one must examine it next.   One 
is then left with a theory that correctly reproduces the material world, so it is therefore 
justified.   In the contrary case, one must ask the question of how one is to extend the 
fundamental quantities. 

In what follows, I will first present the considerations that led me from the three 
assumptions that were made above to a general form for the equations of the ether in a 
rather detailed fashion, in order to facilitate a discussion of whether the form that I 
assumed is possibly unique, or whether there are not perhaps other fundamental equations 
for ether physics that are consistent with the three assumptions.  I confess that I have yet 
to find any other possibilities.  The fact that I have assumed the validity of the principle 
of the conservation of energy and that energy is a localized quantity is self-explanatory. 



Chapter One 
 

The Field Equations 
 

General Form of the field equations. 
 

2.  When one examines the Maxwell equations, which are best presented in the form 
that Minkowski gave to them, one immediately sees that the four-dimensional six-vector 
of “electromagnetic field strength” is not, by itself, sufficient to completely describe all 
phenomena in space and time.  A self-explanatory four-vector, the “four-current,” must 
therefore appear in Maxwell’s equations, which is the least that must be added to them in 
order to make the description complete. 

By assumption, the time component of the four-current − the charge density ρ − 
represents a singular property of the universal ether that takes on a noticeable magnitude 
at only one point, and it brings with it the consequence that the electric field line d simply 

vanishes at this point, in order for div d to be non-zero.  We can therefore take the value 

of div d to be a measure for the new state of the ether: 

 
ρ  = div d. 

 
Likewise, the space components of the four-current - the electric current v – describe 

a singular property of the ether that takes on noticeable values only at a single point, and 
that it brings with it the introduction of a vortex into the magnetic field h that cannot be 

compensated for by a timelike variation of the electric field d.  From this, we can use the 

difference rot h − ɺd as a measure of the new state of the ether: 

 
rot h − ɺd = v. 

 
3.  We now make use of the basic assumptions that we introduced in 1.  In order for 

the “electromagnetic field” and “four-current” to describe collectively all of the 
phenomena in the material world, the causality principle entails that one must impose ten 
differential equations upon the ten components of the state variables d, h, ρ, v, whose 

left-hand side is always a differential quotient of the first order in time of one of these 
variables or a function of it, whereas a function of the variables and their spacelike 
differential quotients appears in the right-hand side.  Only through such a system of 
equations does the distribution of the ether at one given moment always determine the 
distribution at the next moment after an infinitesimal time dt has elapsed, which thus 
satisfies the causality principle. 

If the relativity principle is to still remain valid then the differential quotients in these 
equations must describe vectorial differential operators on four-dimensional variables; 
this reduces the number of possibilities considerably.  One immediately sees e.g., that 
only differential quotients of the first order in the coordinates can appear, that all of the 
differential quotients appear to the first power, etc. 
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Ultimately, one must have that the equations must converge to the Maxwell equations 
in the “pure” ether, in order for the transition from matter to ether to be gradual.  In order 
for the existence of true magnetic charges to be excluded, one must therefore characterize 
the magnetic field by means of a quantity b that above all must have the property that div 

b = 0.  We then come to the equations: 

 

(1)    
t

∂
∂
d

= rot h – v, 

(2)    
t

∂
∂
b

= − rot e, 

 
and, indeed, one must have that in the pure ether b is identical to h and e is identical to b.  

On the contrary, e and b can be complicated functions of d, h, ρ, v in the interior of 

matter.  Equations (1) and (2) can only superficially resemble the Maxwell equations.  
Since at least half of them are no longer linear the laws of the fields inside the atom are 
completely different from those of the pure ether, and one can give no electromagnetic 
waves there, by way of example, whose existence implies linear equations and the like. 

In what follows, we shall therefore clearly distinguish between the two “intensity 
variables:” electric field strength e and magnetic induction b, and the “quantity 

variables:” electrical displacement d and the magnetic field strength h.  The superposition 

principle for the electromagnetic field valid only in the pure ether, which we shall express 
by e = d, b = h. 

In the nomenclature of four-dimensional vector analysis 1) equations (1) and (2) take 
the following form: 
(1a)    ∆· v(h, −id) = (v, iρ), 

(2a)    ∆· v(e, ib) = 0. 

 
All that remains for us now is to give the four corresponding equations for the four-

vector (v, iρ).  There are two kinds of first order differential operators in four dimensions, 

namely, the operators Div and Rot 2).  Time components are differentiated by means of 

the first operator, whereas the three space components are differentiated with respect to t 
by means of the second.  We must therefore use both of these operators in order to obtain 
the four missing differential equations.  The operator Div appears in the well-known 
equation: 

(3)    
t

ρ∂
∂

+ div v = 0. 

 
In the four-dimensional notation this is written as: 
 

                                                
 1 M. Laue, Das Relativitätsprinzip, pp. 70, Friedr. Vieweg & Sons, 1911. 
 2 M. Laue, loc. cit., pp. 70. 
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(3a)    Div(v, iρ) = 0. 

 
The missing equations must then be include in a formula: 
 

Rot(f, iϕ) = F, 

 
in which (f, iϕ) is a four-vector that is related to (v, iρ) in the same way that the six-

vector (b, −ie) is related to (h, −id).  Next, we only know that f and ϕ are arbitrary 

functions of all of the state variables that collectively define a four-vector.  The right-
hand side of the equation, viz., F, is some six-vector that is likewise a function of the 

state variables, among which only one is known, namely, that the condition: 
 

∆ · vF* = 0 

 
must be satisfied 1), because nothing else can be obtained from applying the operator Rot 

to a four-vector.  This condition must further imply, when we do not assume as much, 
that F = const., which then actually gives an identity that is identical with equation (2a).  

If this is not the case then, besides the ten differential equations that are required by the 
causality principle, we have three extra ones.  The time evolution of the state in the ether 
is then overdetermined, which is naturally impossible.  We must then necessarily either 
set F = const. or F = C · (b, −ie), in which C means an arbitrary constant factor.  We can 

bring this factor to the other side of our equation Rot(f, iϕ) = F and absorb it into f, iϕ, 

and we thus simply set F = (b, −ie).  The three equations, which include a differential 

quotient with respect to time, then take the general form: 
 

t

∂−
∂
f

= ∇ϕ + C · e + c, 

 
in which C is either zero or one and c means vector that is constant in all of spacetime.  In 

a region of the pure ether where f = 0 and e = 0 one must have ∇ϕ = −c.  Although the 

state variables are thus a constant equal to zero here, as well, if ϕ, which shall be a 
function of the state variables, has a non-zero gradient then it must be non-constant.  This 
is impossible, so we must therefore have c = 0.  Otherwise, it is easy to show that C must 

be non-zero.  If the state of the ether is in equilibrium in the neighborhood of an electron 
that moves with constant velocity then all of the differential quotients with respect to time 
must be zero.  The equation then becomes: 
 

∇ϕ + C · e = 0. 

 

                                                
 1 M. Laue, loc. cit., pp. 71. 
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Now, if C = 0 then we will also have ∇ϕ = 0; hence, ϕ = const.  The variable ϕ is 
therefore completely independent of the field magnitudes, and the same is also true for f, 
from the relativity principle, and the aforementioned equation collapses to an identity.  
One must therefore have C = 0.  The last three equations of ether dynamics are thus: 
 

(4)    
t

∂−
∂
f

= ∇ϕ + c, 

 
which can be written, in four-dimensional notation: 
 
(4a)    Rot(f, iϕ) = (b, −ie). 

 
The expression (4a) includes the following three equations, in which no differential 
quotients with respect to time appear: 
 
(4b)    rot f = b. 

 
One easily sees that if one derives equations (4b) from (4) with the help of (2) then one 
obtains nothing new. 

When everything is in equilibrium in the neighborhood of an electron at rest or a 
uniform velocity equation (4) becomes: 

∇ϕ  + c = 0. 

 
We shall call this the equilibrium condition for the field in the neighborhood of an 

electron.  If may clearly be interpreted as the statement that both of the forces c and =ϕ 

must be equal and opposite to each other.  The electric field strength e endeavors to draw 

the charge of the electron outward so it fills the largest possible space; it therefore 
represents a body force that lives in the matter.  It acts against the surface force ∇ϕ, 
which is computed as the gradient of the singular surface tension ϕ 1) that acts on the 
electric charge.  Body forces and surface forces are both effects upon which the existence 
of matter certainly rests, so they must enter into any possible theory of matter. 

Equation (8) may be called equation of motion of the electric current.  The vector f is 

the quantity of motion *) that corresponds to the electric current v.  In conventional 

mechanics the quantity of motion is known to be the mass times the velocity and is 
measured by means of the push that is necessary in order to bring the velocity up to its 
value.  Since the quantity of motion and tension are to be thought of as “intensity 
variables,” i.e., as quantities that one measures by means of force effects then we shall 
also regard ϕ and f as “intensity variables” that correspond to the “quantity variables” ρ 

and v, respectively. 

                                                
 1 It is well known that a tension of this sort was first used by H. Poincaré (Compt. rend. 140, pp. 1504, 
1905).  Cf., also H. Th. Wolff, Ann. d. Phys. 36, pp. 1066, 1911. 
 * DHD: i.e., energy-momentum four-vector. 
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We can thus describe the state of the ether in terms of either the ten quantity variables 
(d, h, ρ, v) or the ten intensity variables (e, b, ϕ, f). 

 
4.  The six differential equations (4) and (4b), which are summarized in formula (4a), 

are precisely the same as the differential equations of the so-called “four-potential” that 
one constructs from the scalar potential ϕ and the vector potential f.  One can say with 

some justification the theory that was developed here simply says that the two potentials, 
ϕ and f, embody the physical state of the universal ether, namely the surface tension and 

quantity of motion. 
We must therefore make a further important remark.  It is known that the solution of 

equation (4a) for a given six-vector (b, −ie) is still undetermined when one makes no 

assumption about the value of Div(f, iϕ).  In the theory of electricity, one defines both 

potentials by simply setting Div(f, iϕ) = 0.  However, this equation is not valid for the 

ether state that was chosen in our theory, and they are thus generally not identical with 
the usual potentials.  In place of the aforementioned equations of the theory of electricity, 
equation (3) appears in our ether dynamics: Div(v, iρ) = 0.  This equation cannot be 

included with the other equations because then the time evolution of the ether state will 
be governed by eleven equations; hence it is over-determined, which is impossible.  We 
thus have that Div(v, iρ) ≠ 0 in general.  In a later section (pp. ?) we will find a simple 

meaning for the quantity Div(v, iρ). 

In the rest case (v = 0, h = 0) the quantity ϕ is actually identical with the electrostatic 

potential because one then has the following equation: 
 

e + ∇ϕ  = 0. 

 
5.  When we understand ϕ to mean a tension and ρ to mean a density then we can 

easily see that it would be advantageous for these quantities to always take on positive 
values, at least as far as the physics of gases is concerned. 

We would like for them to have a constant positive value ρ 0 in the pure ether, where 
there are no fields, a value that we call the normal density.  For any arbitrary choice of 
spacetime coordinate systems, it must naturally define a four-vector (v0, iρ 0) that is 

constant over all of some spacetime region.  Electric and magnetic fields will enter into 
the picture only where ρ and v take different values from ρ 0 and v0, and equations (1) 

and (3) will thus take on the following form: 
 

∆ · v(h, −id) =  ((v−v0), i(ρ  − ρ 0)), 

Div((v−v0), i(ρ  −ρ 0)) = 0. 

 
One can naturally choose ρ 0 in such a way that quantity ρ, the “ether density,” that enters 
into these equations is always positive.  For that reason, in what follows, I will simply 
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write v and ρ instead of v−v0 and ρ  − ρ 0, so we therefore compute with positive and 

negative densities, and I also set the pure ether density to zero. 
All of the above is likewise true for the surface tension ϕ.  Since ϕ and f appear in the 

fundamental equations for ether dynamics only when they are differentiated by time or 
space one can augment them with arbitrary quantities ϕ0, f0 that are completely 

independent of time and space, or else the description of the time evolution would take on 
a different form.  One can, by way of example, take a value ϕ0 that is large enough that 
ϕ0 – ϕ always remains positive.  The equilibrium conditions then become: 

 
e − ∇(ϕ0 – ϕ) = 0. 

 
In pure ether we now have the positive tension ϕ0, in the electron we have the smaller 
tension (ϕ0 – ϕ) and e is the tension gradient − ∇(ϕ0 – ϕ) that the ether exerts on the 

electron in equilibrium.  In fact, H. Poincaré (loc. cit.) spoke of a tension that the electron 
exerted on the external space.  However, I believe that it is simpler for the sake of 
representation when the null point of the tension lies in the pure ether, and may thus be 
computed in such a way that ϕ is set to zero at an infinite distance from the electron. 

Likewise, we would also like for energy, which one can always augment with an 
additive constant, as is well-known, to have a null point that is so arranged that the 
energy density is zero in pure field-free ether.  Similarly, just like ρ and ϕ, the energy 
density W, for that matter, can also take on negative values as well as positive ones; 
however, there is not the slightest reason that would compel us to always set W to be 
positive. 

With these associations ρ, ϕ, W are now completely determined quantities with no 
further additive ambiguity. 

 
Energy. 

 
6.  I will now assume that not only the principle of the conservation of energy, but also 

the principle of the localization of energy and energy transport 1) are valid.  In other 
words: if we denote the energy density by W and the energy current by s then the 

following consequence must ensue from field equations (1) through (4): 
 

W

t

∂
∂

= − div s, 

 
in which not only the scalar W, but also the vector s are universal functions of the state 
associated with the chosen spacetime point.  One can arrive at this energy equation from 
the field equations in only one way: one must determine factors k, l, m, n that are 

universal functions of the state variables, multiply equations (1) to (4) by them, and add 
the equations.  It must therefore also be possible to determine the factors k, l, m, n in such 

                                                
 1 G. Mie, Wiener Sitzungsber. 107, Vol. 11a, pp. 1117 and 1126, 1898. 
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a way that a complete differential quotient with respect to time appears in the left-hand 
side and a divergence appears on the right-hand side.  We would now like to find the 
conditions for this to be true. 

k ·
t

∂
∂
d

+ l ·
t

∂
∂
b

+ m ·
t

∂
∂
}

+ n ·
t

∂
∂
f

 

= k · rot h – k · v – l · rot e – m · div v – n · ∇ϕ – n · e. 
 
Next, we see that both of the terms – k · v and – n · e, which are pure universal functions 

of the state variables, must drop out, because div s can only depend on terms that include 

differential quotients with respect to the coordinates.  One must therefore have: 
 

k = u · e, 
n = − u · v, 

 
in which u is again a universal function of the state variables.  A simple computation then 
gives, for the right-hand side of the equation: 
 

div(u·[h·e]) + div(u·ϕ ·v) + (u·h – l) · rot e – h·[e ·∇u] − (m + u·ϕ) · div v – ϕ · (v ·∇u). 

 
In general, this expression can only be a divergence when the last summands drop out, 
and thus: 

       ∇u = 0,     
  u·h – l = 0, 

m + u·ϕ = 0. 
 
The first of these equations gives u = const., and indeed this constant is determined in 
such a way that the expression for the energy current in pure ether must becomes the 
well-known Poynting expression [d·h] = [e·h].  From this, it follows: 

 
u = 1, k = e, l = h, m = −ϕ, n = −v. 

 
We have thus found the energy equation: 
 

e ·
t

∂
∂
d

+ h ·
t

∂
∂
b − ϕ ·

t

∂
∂
}

− v ·
t

∂
∂
f

= − div([e·h]) – ϕ · v). 

 
The expression for the energy current in general ether dynamics is then: 
 

(5)    s = [e·h]) – ϕ · v. 
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7.  The energy principle now tells us more: that the expression on the left-hand side of 
the energy equation is a complete differential.  We must therefore state the condition for 
this, that: 
(6)   e · dd + h · db − ϕ  · dρ − v · df = dW 

 
is a complete differential, and that W may therefore be determined as a function of (d, h, 

ρ, v).  Just as we did for W, we can initiate a search for a quantity H that is determined by 

means of the following equation: 
 
(7)    W = H + h · b – v · f. 

 
If W is a function of (d, h, ρ, v) then so is H, and vice versa.  From (6) and (7), we obtain 

the following expression for the differential of H: 
 
(8)   dH = e · dd – b · dh – ϕ  · dρ + f · dv, 

 
in which e, b, ϕ, f are functions of (d, h, ρ, v).  We would now like to abbreviate the 

notation for a vector whose components are: 
 

x

H∂
∂d

, 
y

H∂
∂d

, 
z

H∂
∂d

, 

 
by simply saying /H∂ ∂d , and analogous expressions in all other cases.  It then follows 
from (8), with no further assumptions, that: 
 

(9)  e =
H∂

∂d
, b = − H∂

∂h
, ϕ = − H

ρ
∂
∂

, f =
H∂

∂v
. 

 
The condition for this, that the energy principle is valid, is, since all of the intensity 

variables e, b, ϕ, f can be computed by means of a single function the magnitude 

variables H(d, h, ρ, v), which we would like to use for a Hamiltonian function.  Indeed, 

each intensity variable is obtained as a differential quotient of H with respect to the 
corresponding magnitude variable, in two cases (b and ϕ) with the negative sign. 

 
One can also find the energy density W from just the Hamiltonian function.  If we use 

(9) then (7) gives: 

(10)   W = H − H∂
∂d

· h − H∂
∂v

· v, 

 
From the form of fundamental equations of ether dynamics, (1) through (4), one 

immediately obtains the following theorem, when one considers equation (9): 
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The relativity principle is valid for all physical motions, as long as the Hamiltonian 
function H(d, h, ρ, v) is invariant under Lorentz transformations. 

 
We will have therefore completely exhibited the equations for ether dynamics when 

we know sort of form the universal function H takes.  Finding this form is, however, an 
extremely difficult problem. 

 
The problem of a theory of matter goes back to the problem of finding the universal 

function H(d, h, ρ, v). 

 
Certainly, we know one thing about H: In pure ether, the superposition principle for 

electromagnetism is known with considerable accuracy; if one then substitutes a 
summand (b2 – h2)/2 for H: 

H = 1
2 (b2 – h2) + H1, 

 
then the remaining term H1 must be vanishingly small compared to the first term 
anywhere that ρ is very small.  On the other hand, in the interior of the atom, where ρ is 
large, H1 will far outweigh that term, such that the laws of fields are completely different 
here from what they are in pure ether. 
 

8.  For the sake of computation, it is generally more convenient to take the intensity 
variables (e, b, ϕ, f) to be the independent variables in terms of which the state of the 

ether is determined, and the magnitude variables (d, h, ρ, v) to be functions of them. 

We would now like to define the following function Φ: 
 

(11)  Φ(e, b, ϕ, f) = H – (e · d – b · h) + (ϕ · ρ – f · v), 

 
and we next compute the quantities d, h, ρ, v as functions of e, b, ϕ, f, using equations 

(9), and then substitute the expression so obtained in the right-hand side of equation (11).  
If we refer to (8) then we obtain the following expression for the differential of Φ: 
 
(12)  dΦ = − d · de + h · db + ρ · dϕ – v · dΦ. 

 
From this, it follows that: 
 

(13)  d = − ∂Φ
∂e

,  h = 
∂Φ
∂b

,  ρ =
ϕ

∂Φ
∂

,  v = − ∂Φ
∂f

. 

 
The magnitude variables d, h, ρ, v may be then computed with the help of a single 

function of the intensity variables Φ(e, d, ϕ, f) when one differentiates this function with 

respect to the corresponding intensity variables.  In two cases (d and v) one must give the 

differential quotients the negative sign. 
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The energy density W may then be obtained from Φ by the following equation: 
 

(14)   W = Φ + e · d – ϕ · ρ = Φ − ∂Φ
∂e

· e –
ϕ

∂Φ
∂

· ϕ . 

 
The Hamiltonian function H is then computed from (11): 
 

(15)   H = Φ − ∂Φ
∂e

· e –
∂Φ
∂b

· b − 
ϕ

∂Φ
∂

· ϕ − ∂Φ
∂f

· f. 

 
Instead of looking for the universal function H(d, h, ρ, v), one can also seek the 

universal function Φ(e, d, ϕ, f). 

I will often refer to Φ more briefly as the world function. 
Φ must be invariant under Lorentz transformations, just as H is. 
Just like H, Φ may be broken into two pieces: 
 

Φ = 1
2 (d2 – e2) + Φ1, 

 
in which the first term is dominant in pure ether and the second one is dominant in the 
interior of atoms. 
 

9.  We may build a 4×4 matrix 1) with the help of the world function that includes the 
energy current and the Maxwellian ether stresses for our general ether dynamics: 

 
(16) S = 
 

( )

( )

( )

(

x x x x x x x y x y x y x z x z x z y z y z x

y x y x y x y y y y y y y z y z y z z x x z y

z x z x z x z y z y z y z z z z z z x y y x z

y z

i

i

i

i

Φ − + + + + + + + − − −
+ + Φ − + + + + + − − −
+ + + + Φ − + + + − − −

− −

bh e d h b f v e d h b f v e d h b f v d b d b f

e d h b f v bh e d h b f v e d h b f v d b d b f

e d h b f v e d h b f v bh e d h b f v d b d b f

e h

}

}

}

) ( ) ( )z y x z x x z y x y y x zi iϕ ϕ ϕ ϕ

 
 
 
 
 − ⋅ − − − ⋅ − − − ⋅ Φ + ⋅  e h v e h e h v e h e h v ed- }

 
If one performs the following operation: 
 

∆· v =
x

∂
∂

+
y

∂
∂

+
z

∂
∂

+
i t

∂
⋅ ∂

 

 
on the last row of the matrix then one obtains the energy equation when one sets the 
expression so obtained to zero: 
 

div([e · h] – ϕ · v) +
t

∂
∂

(Φ + e · d – ϕ  · ρ) = 0, 

                                                
 1 H. Minkowski, Zwei Abhandlungen, B. G. Teubner, 1910, pp. 36. 
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since (14) gives Φ + e · d – ϕ  · ρ = W.  From the relativity principle it then follows 

further that: 
(17)     ∆ · vS = 0. 
 
What remains are three equations that correspond to the first three rows of S, and also 
with little difficulty we obtain the field equations, (1) through (4), directly. 

As to the question of whether the matrix (16) is symmetric across the diagonal or not, 
we will return to it later (pp. ?). 

 
 

Hamilton’s Principle 
 
10.  When we were in the foregoing purely theoretical section, it was stated that the 

form of the field equations that was given was the possible one; let us discuss this further 
now.  It seems to me that there is some value in showing that one can obtain the field 
equations through quite simple mathematical operations when one assumes the validity of 
Hamilton’s principle. 

I shall therefore make the following two assumptions:  First: that the state of the ether 
is completely characterized by the quantities d, h, ρ, v; moreover, the last two are defined 

by the equations: 
ρ = div d, v = rot h − ɺd ; 

 
Second: that the time evolution of the ether satisfies Hamilton’s Principle, which we shall 
now formulate: 
 

Hamilton’s Principle.  There a function H(d, h, ρ, v), whose integral over any given 

spacetime with boundary is an extremum for all real motions, when one varies the state 
variables at all points inside a region, but not on the boundary. 

 

(18)   
G

Hδ∫  (d, h, ρ, v) · dx · dy · dz · dt = 0. 

 
On the boundary of the region G, one has: 
 

δd = δh = δρ = δv = 0. 

 
One can show that the principle of relativity is valid when H is invariant under Lorentz 

transformations.  We assume that this is the case and replace the quantities d, h, ρ, v with 

the known expressions , , ,ρ′ ′ ′d h v  that are obtained by a transformation from a coordinate 
system (x, y, z, t) into another( , , , )x y z t′ ′ ′ ′ .  Hence, we must obtain a 
function ( , , , )H ρ′ ′ ′ ′d h v  that involves the new variables (, , ,ρ′ ′ ′d h v ) in precisely the same 

way that H involves the variables (d, h, ρ, v).  We conclude from this that we must set H′ 
= H.  Now, let G′ be the region of the new coordinate system( , , , )x y z t′ ′ ′ ′ that H goes over 
to under the transformation.  One then has: 
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G
( , , , )H dx dy dz dtδ ρ

′
′ ′ ′ ′ ′ ′ ′ ′⋅ ⋅ ⋅ ⋅∫ d h v =

G
Hδ∫ (d, h, ρ, v) · dx · dy · dz · dt. 

 
If Hamilton’s Principle is valid for the coordinate system (x, y, z, t) then it follows 

from this equation that is it also valid for any other system( , , , )x y z t′ ′ ′ ′ .  Indeed, the 
Hamiltonian function is the same function H in every coordinate system. 

The laws of nature, i.e., the differential equations that one derives from Hamilton’s 
principle, are the same in any coordinate system that one obtains by means of a Lorentz 
transformation; this is the principle of relativity. 

We would now like to derive the field equations from Hamilton’s principle.  To this 
end, we define the variation: 

 

δH =
H∂

∂d
· δd + 

H∂
∂h

· δh + H

ρ
∂
∂

· δρ +
H∂

∂v
· δv. 

 
We would now like to introduce the following abbreviations: 
 

(19)  
H∂

∂d
= e, 

H∂
∂h

= −h, H

ρ
∂
∂

 = −ϕ, 
H∂

∂v
= f. 

 
The variation of H is then: 
 
(20)   δH = e · δd − b · δh – ϕ · δρ + f · δv. 
 
In order to elaborate upon this expression further, we must employ a formula from four-
dimensional calculus of variations, whose derivation we shall briefly recall: We use the 
following notation for the four-vector 1) that is the product of the four-vector P = (f, iϕ) 

and the six-vector F = (h, −id): 

 
[P · F] = ([f · h] + ϕ · d, i · (f · d)). 

 
We define the Div of this vector by: 
 

Div[P · F] = div{[ f · h] + ϕ · d} +
(   )

t

∂ ⋅
∂
f d

. 

Now we have: 
div[f · h] = h · rot f – f · rot h, 

div(ϕ · d) = d · ∇ϕ + ϕ · div d, 

(   )

t

∂ ⋅
∂
f d

= d ·
t

∂
∂
f

+ f ·
t

∂
∂
d

. 

From this, we get: 
                                                
 1 M. Laue, Das Relativitätsprinzip, pp. 67. 
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(21) 
( )

div{[ ] } div
t t t

ϕ ϕ ϕ∂ ⋅ ∂ ∂   ⋅ + ⋅ + = ⋅ − ⋅ ∇ + − ⋅ − + ⋅  ∂ ∂ ∂  

f d f d
f h d h rot f d f rot h d.  

 
In four-dimensional symbols these formulas look like: 
 

(22)   Div[P · F] = − (F · Rot P) – (P · ∆ · F). 

 
We would now like to use these formulas in our problem.  Therefore, we remark that: 
 

rot h −
t

∂
∂
d

= v,  div d = ρ. 

One thus has: 

Div[P · F] =
t

ϕ ∂ ⋅ − ⋅ ∇ + ∂ 

f
h rot f d − f · v + ϕ · ρ. 

 
If we put the variations δd and δh in place of d and h then we obtain: 

 

f · δv + ϕ  · δ ρ  = 
t

δ ϕ δ∂ ⋅ − ∇ + ⋅ ∂ 

f
rot f h d  − Div[P · δF]. 

 
Now, we see that the integral: 
 

Div[ ]
G

P dx dy dz dtδ⋅ ⋅ ⋅ ⋅ ⋅∫ F , 

 
which is precisely the space integral of a three-dimensional divergence, turns into an 
integral over the boundary of G.  However, since Hamilton’s principle assumes that the 
variations of all of the state variables, as well as δF, are null on the boundary then one 

has: 

Div[ ]
G

P dx dy dz dtδ⋅ ⋅ ⋅ ⋅ ⋅∫ F = 0. 

 
As a result, when one uses formula (20) for δH one obtains: 
 

G
Hδ∫ · dx · dy · dz · dt 

= ( )
G t

ϕ δ δ ∂ + ∇ + ⋅ + − ⋅  ∂  
∫

f
e d rot f d h · dx dy dz dt. 

 
Since there are no further relations between d and h, and consequently δh and δd are 

completely independent of each other, one can satisfy Hamilton’s principle only if the 
following differential equation is satisfied: 
 



Foundations of a theory of matter I.                                                         16 

t
ϕ ∂+ ∇ +

∂
f

e = 0, 

rot f – d = 0. 

 
From these two equations, it follows that: 
 

t

∂
∂
b

+ rot e = 0. 

 
Since the differential equations (19) for e, b, ϕ, ρ are in complete agreement with 

equation (9), these equations are identical with the field equations (2) and (4), since we 
started with equations (1) and (3) as defining equations to begin with. 

From this, it is proved that the form of the field equations that I chose is the only one 
that is consistent with Hamilton’s principle. 

In conclusion, let us remark that one can give equation (21) an interesting form when 
one takes: 

rot f = b, ∇ϕ +
t

∂
∂
f

= − e,  rot h −
t

∂
∂
d

= v,  div d = ρ. 

 
If we recall equation (11) then we obtain: 
 

(23)   
( )

t

∂ ⋅
∂
f d

+ div{[ f · h] + ϕ  · d} = Φ – H. 

 
 

The invariants. 
 

11.  Should the function H(d, h, ρ, v) be invariant under Lorentz transformations, i.e., 

should it be a four-dimensional scalar, then it must be a function of other four-
dimensional scalars that one can construct out of d, h, ρ, v.  There are four †) such 

quantities that are independent of each other: 
1.  The absolute value of the four-vector P = (v, iρ).  It is: 

 

σ = 2 2ρ −v = 21ρ β⋅ − ,  β =
ρ
v

. 

 
2.  The absolute value of the six-vector F = (h, −id).  For this, we will use the 

quadratic expression: 
p = d2 – h2. 

                                                
 † Translators note:  This list is incomplete; it lacks the invariant that would correspond to F ^ F in 
modern electrodynamics.  Other researchers had pointed out this fact at the time, such as Pauli (The Theory 
of Relativity), Weyl (Space, Time, and Matter), and Born (??). 
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3.  The scalar product of the six-vector F = (h, −id) with its dual F* = (−id, h).  If we 

multiply this product by i/2 then we obtain the quantities: 
 

q = (h · d). 

 
4.  If we multiply the four-vector P by the six-vector F and its dual F* then one 

obtains two new four-vectors: 
 
  A = P · F = ((ρ  · d + [v · h]), −i · (v · d)), 

  B = P · F* = (i(ρ  · h − [v · b]), (v · h)). 

 
The squares of their absolute values are: 
 
  A2 =    (ρ  · d + [v · h])2 − (v · d)2, 

  B2 = − (ρ  · h + [v · d])2 + (v · h)2. 

 
These two quantities are no longer independent of each other, as one easily sees, but: 
 

A2 + B2 = (h2 – d2) · (v2 − ρ 2) = σ2 · p. 

 
Likewise, the scalar product of the two also gives us nothing new: 
 

(A · B) = i(ρ  · d + [v · h]) · (ρ  · h − [v · d]) − (v · d) · (v · h) 

  = − i · (h · d) · (v2 − ρ 2) = i · σ2 · q. 

 
We thus obtain only one fourth scalar, and indeed for this we will choose the quantity 

s = − B2: 
s = (ρ  · h − [v · d])2 – (v · h)2. 

 
From the theory of four-dimensional vectors, one may prove that no more independent 

scalars can be given; however, I shall skip the proof here. 
We have thus found the following four possible independent variables: 
 

(24)   

2
2 2

2

2 2

2 2

1

( ),

( [ ]) ( ) .

v

c
p

q

s

σ ρ ρ

ρ


= − = ⋅ −


= −

 = ⋅
 = ⋅ − ⋅ − ⋅

v

d h

d h

h v d v h

 

 
12.  The intensity variables e, ϕ, b, f can now be computed in the following way: 
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(25) 

[ ]

[ ]( )

2 2 ( [ ) ,

2 ( [ ) ,

2 2 ( ( [ ( )),

2 ( [ ( ) .

H H H

t q s

H H

s
H H H

p q s

H H

s

ρ

ρϕ ρ
σ σ

ρ ρ

ρ
σ σ

∂ ∂ ∂ = ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ∂ ∂ ∂


∂ ∂ − ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ∂ ∂
 ∂ ∂ ∂ = ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅
 ∂ ∂ ∂
 ∂ ∂ = − ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅
 ∂ ∂

e d h v h v d]

= h v d] h

b h d h v d]) v v h

v
f d h v d h v h

 

 
We observe that: 

(v · h) =
1

ρ
 · (v · (ρ  · h – [v · d])), 

 
and one immediately recognizes that the factor /H s∂ ∂  vanishes in expression (25) when: 
 

ρ · h – [v · d] = 0. 

 
We make the further assumption that an electron is at rest in the field b = 0, so that 

/H q∂ ∂ must have either the factor q or the factor s, because it does not, on the other 

hand, vanish for v = 0, h = 0; however, we now have: 

 

q = (d · h) =
1

ρ
· (d · (ρ  · h – [v · d])).  

 
Thus, under the same restriction, /H q∂ ∂  must be null, like the factor /H s∂ ∂ , namely, 
when: 

ρ · h – [v · d] = 0. 

 
However, one obtains the quantity: ρ ′ ′⋅h = ρ · h – [v · d] when one subjects the ether 

state to a Lorentz transformation that takes it from its coordinate system into another one 
that moves with the velocity q = v / ρ.  If q is constant in space and time then one can 

transform to a rest system, in which′h = 0; i.e., the condition that we just described is 
satisfied for a stationary motion. 

 
When we make the assumption that not only v and h, but also b and f, are null in the 

field of an electron at rest, all terms in the intensity variables that do not (?) contain the 
invariants q and s drop out for a stationary motion. 

 
Now, since certainly all of the applications of this to electrons and matter correspond 

to only quasi-stationary motions, and there is no point in burdening ourselves with the 
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search for quantities that obviously have no influence on the results, in what follows, we 
will make the simplifying assumption that q and s do not enter into H at all. 

 
13.  Hypothesis:  The Hamiltonian function H depends only upon the invariants σ and 

p. 
We then have the following simple expressions for the intensity variables: 
 

(26)    

2 , 2 ,

, .

H H

p p

H Hρϕ
σ σ σ σ

∂ ∂ = ⋅ ⋅ = ⋅ ⋅ ∂ ∂


∂ ∂ − = − ⋅
 ∂ ∂

e d b h

v
= f

 

 
Each of the intensity vectors e, b, f has the same direction as the corresponding 

magnitude vectors d, h, v, and furthermore, one has the two proportions: 

 
f : v = ϕ : ρ,  b : h = e : d. 

 
From this, one deduces the theorem: The world matrix (16) is symmetric about the 

diagonal. 
Just like H, Φ also naturally depends on two variables, and in order to exhibit this, we 

shall take the following two quantities: 
 

(27)     
2 2

2 2 .

χ ϕ

η

 = −


= −

f

e b
 

If we set: 

ρ
v

=
ϕ
f

= q, 

then we can also write: 

(27a)     χ = ϕ  · 21− q . 
 

In conclusion, one must remark that one can find an interesting meaning for the 
quantity: 

Div(f, iϕ) = div f +
t

ϕ∂
∂

. 

To abbreviate, I will set: 

− 1 H

σ σ
∂⋅
∂

= ψ. 

One then has: 
ϕ  = ψ  · ρ, f = ψ  · v; 

hence: 
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div f +
t

ϕ∂
∂

= ψ  · div
t

ρ∂ + ∂ 
v + (v · ∇ψ) + ρ ·

t

ψ∂
∂

. 

Now, we have: 

div v +
t

ρ∂
∂

 = 0, 

 
and we can further set v = ρ · q, in which q may be understood to means the velocity with 

which the charge is moving at the point in question.  One then has: 
 

(v · ∇ψ) + ρ ·
t

ψ∂
∂

= ρ · x y zt x y z

ψ ψ ψ ψ ∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ 
q q q . 

 
If we now consider a single individual volume element that contains the charge, as we are 
wont to do with material volume elements, and regard ψ as a characteristic property of 
the moving charge element then the time variation of ψ is: 
 

D

Dt

ψ
= x y zt x y z

ψ ψ ψ ψ∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂

q q q . 

 
We thus arrive at the equation: 

(28)    div v +
t

ρ∂
∂

= ρ · 
D

Dt

ψ
. 

 
This last equation has particular interest in regard to Abraham’s recently proposed 

theory of gravitation 1).  In a region where the electric field is null the same equations 
follow for the quantities that Abraham called Fx, Fy, Fz, Fu as the ones that follow for the 

quantities that I denoted by fx, fy, fz, iϕ, except with one difference, that Abraham set: 

 
Div F = − 4π γ · ν, 

 
 in which γ means the gravitational constant and ν means the mass density, whereas the 
equation that we just derived follows for my vector: 
 

Div(f, iϕ) = ρ · 
D

Dt

ψ
. 

 
One will therefore go from my Ansätze to Abraham’s gravitational field theory when 

one makes the assumption that wherever there is a material mass one finds a constant 
increase in the quantity ψ.  The current f that converges upon the mass distribution is then 

the gravitational field.  However, since such an assumption is physically absurd, it is 
therefore out of the question that such a simple path exists from my Ansätze to a 
                                                
 1 M. Abraham, Physik. Zeitschr., 13, pp. 1, 1912. 
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gravitational theory.  I have suggested how this probably might happen in the 
Introduction (pp. ? and ?). 

In the following chapter I will next examine whether the existence of irreducible 
electrons is consistent with my Ansätze. 

 
Greifswald, Physikalisches Institut, 6 January 1912. 

_______ 
(Submitted  9 January 1912.) 

________ 
 



Ann. d. Phys. 39 (1912), 1-40. 
(Second Part. 1) 

_______ 
 

Chapter Two 
 

The Problem of the Electron. 
 

Knot Singularities in the Field. 
 

11.  It is well known that the Nature of the electromagnetic field originates in a six-
vector that is capable of introducing transversal waves into the ether.  A superficial 
examination of the fundamental equations for ether dynamics, (1) through (4), that I gave 
previously can also lead to the conclusion that, analogously, the four-vector (v, iρ) can 

give rise to longitudinal waves; however, that was a mistake.  In the interior of atoms, 
where the term HI in the Hamiltonian function (I, pp. 524) is appreciable, transversal and 
longitudinal momenta might possibly obey similar laws.  However, these cannot be the 
correct laws of wave motion because, by assumption, the differential equations are linear, 
which is not the case in the interior of atoms.  At great distances from the atom, where HI 
is negligible compared to (d2 – h2)/2, the transverse momentum converges to a spherical 

shell that expands with constant velocity 1 (velocity of light).  However, the longitudinal 
momentum exhibits no such motion since the equations for ρ and v are never linear.  

Often, the longitudinal momentum essentially stays inside of a small volume, namely the 
volume of an electron, which neither contracts nor expands as a spherical surface, and its 
velocity can have all possible values, but always less than 1.  In other words: the 
momentum of the four-vector (v, iρ) never has the character of a longitudinal wave, but 

that of “quantum radiation;” it is the electronic radiation.  If longitudinal waves were 
possible in the ether then the existence of unchanging accumulation points for the state ρ, 
and thus, the existence of electronic radiation, could not be compatible with the 
fundamental equations.  Conversely, the fact of electronic radiation thus excludes the 
appearance of longitudinal waves. 

Before we do anything else, we must find the conditions on the character of the 
Hamiltonian function H (or the world function F) in order for it to lead to the existence of 
unchanging knot singularities in the field.  These conditions then apply just as well for 
the existence of quantum radiation.  Namely, let ρ be the charge density and let d be the 

electrical displacement in the neighborhood of a knot singularity, as functions of the 
distance r from the center, such that the equilibrium conditions =ϕ + e = 0 is satisfied.  If 

we now apply a Lorentz transformation to the four-vector (0, iρ) and the six-vector (0, 
−id) along with the coordinate system (x, y, z, t) then we obtain a coordinate 

system( , , , )x y z t′ ′ ′ ′ , a four-vector( , )iρ′ ′v , and a six-vector( , )i′ ′−h d , as known functions 
of ( , , , )x y z t′ ′ ′ ′ , and indeed both vectors satisfy the fundamental equations of ether 
dynamics that we stated.  From the transformation formula, one immediately sees that′h = 

                                                
 1 Continuation of the article in Ann. d. Phys. 37, pp. 511; referred to as I. 
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[q · ′d ], ′v = ρ′ · q, in which q is a three-dimensional vector that is less than 1 and is 

constant over all time and space.  The new solution that one obtains by the use of this 
transformation thus represents a knot singularity that moves forwards with the constant 
velocity q. 

When equilibrium is possible for a knot singularity at rest then there are also knot 
singularities that move with any arbitrary velocity less than 1, hence, quantum radiation 
without longitudinal waves. 

 
12.  One arrives at an interesting conclusion concerning the motion of electric charge 

in general when one makes the following two assumptions: first, that the function H is 
not an even function of σ, and second, that both H and Φ have no jumps or breaks for all 
physically meaningful values of the variables (d, h, ρ, v) and (e, b, ϕ, f).  The first of 

these two assumptions is identical with the assumption that positive and negative charges 
exhibit a fundamentally different behavior that they do in reality, where electrons have 
only one sign.  If H were an even function of σ then one could change the sign of σ, i.e., 
of ρ, without changing the equations in any way; therefore, positive and negative charges 
must behave the same way.  The second assumption arises from the fact that the state 
variables of one type (e.g., the intensity variables) can only be infinite or vary in a 
discontinuous way when one allows the corresponding quantities of the other type (the 
magnitude variables) to become infinite or vary discontinuously. 

In many respects, the quantity ρ  plays a role in the equations of ether dynamics that is 
analogous to the role that is played by the deviations of the density from their normal 
state in the equations of aerodynamics (cf. I, pp. 520).  In aerodynamics, one can consider 
positive and negative density variations − for example, interference – and add them to 
zero or at least a small density variation.  Similarly, the charge density ρ in the ether can 
be chosen in such a way that positive and negative charges cancel each other upon 
superposition, and, conversely, nothing new can come of separating them.  In fact, these 
assumptions rest on the foundations of modern atomic theory if the atom is considered to 
be a large volume of positive electrical charge that is completely permeated by negatively 
charged electrons.  If, when an electron enters into the positive electrical charge volume, 
one superimposes its charge upon the latter charge then one will obtain a smaller charge 
than that of a free electron.  If an electron leaves the atom then during the separation it 
restores the large negative charge of the electron and the large positive charge of what is 
left of the atom. 

When one accepts both of the previous assumptions, our theory now implies that ideas 
of this sort or to be ruled out.  From the equations of ether dynamics, one obtains that 
when a state variable (d, h, ρ, v), or, what amounts to the same thing, according to the 

second assumption, (e, b, ϕ, f) has a jump as a function of (x, y, z) then one must have 

that another state variable is infinite.  Thus, as long as we exclude singular points at 
which the state variables, in whole or in part, become infinite, hence, singularities that 
cannot enter into any integrals of the equations that involve everywhere real motions, one 
must make all of the state variables constant functions of x, y, z, t.  Moreover, it follows 
from the first of our assumptions that one must always have v2 < ρ 2, or v2 / ρ 2 < 1.  If we 

had v2 > ρ2 then s would have an imaginary value, and therefore since H is not an even 
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function of σ it would be complex.  Since that cannot be the case for all real motion one 
must always have v2 / ρ 2 < 1.  However, we can think of charges in the real world that are 

subdivided into spacelike elements of the aforementioned sort, and any variation in the 
charge density that the existence of the vector v induces can be thought of as translating 

each of the elementary components with the (variable) velocity q = v / ρ.  From this, as 

we have always assumed, q is an everywhere finite and constant function of the 

coordinate.  However, if such is not the case then one can never interchange any of the 
elementary components that we introduced.  Every single element then remains distinct, 
and it cannot be the case that the positive and negative charges can cancel each other or 
that they can be created from nothing. 

 
The laws regarding charges are valid not only for the sum of all charges, but they also 

apply equally to positive and negative charges. 
 
Thus, if an electron enters the positive spatial region of an atom then, according to our 

theory, the positive charge must first evade it, and then enter it, like a liquid into which a 
solid body has penetrated. 

 
The equilibrium conditions. 

 
13.  The energy in the entire space in which the time evolution is defined may be 

computed from equation (7) (I, pp. 523): 
 

E =∫ (H + b · h – f · v) · dV. 

 
When everything is at rest, one has: 

E0 =∫ H · dV. 

 
The condition for equilibrium is that for any small virtual variation δb, δρ (in which δρ = 

div δd) no energy can be converted into the energy of motion.  One must therefore have 

δE = 0 when one varies ρ and d: 

 

  δE  =
H H

dVδρ δ
ρ

 ∂ ∂⋅ + ⋅ ⋅ ∂ ∂ 
∫ d

d
 

   =∫ (−ϕ  · δρ + e · δd) · dV. 

Now, one has: 
ϕ  · δρ = div(ϕ  · δd) − ∇ϕ · δd, 

and further: 

V∫ div(ϕ  · δd) · dV = 
S∫ ϕ  · δdN · dS, 
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in which S represents the bounding surface of the space V and N is the direction of the 
surface normal.  If one chooses V sufficiently large then the bounding surface integral is 
vanishingly small, and it follows that: 
 

δE ==∫ (∇ϕ  + e )  δd · dV. 

 
The following equation, which is already known to us, then results as the equilibrium 
condition that we obtain from δE = 0: 
 
(29)    ∇ϕ  + e = 0. 

 
14.  It is very difficult to determine whether the equilibrium is stable or unstable.  Let 

the quantities e0, d0, ϕ0, ρ0 be computed in such a way that the equilibrium conditions are 

satisfied.  The system then moves infinitely slowly in an infinitesimal neighborhood of 
the equilibrium point, in such a way that: 

 
d = d0 + δd,  ρ = ρ 0 + δ ρ, h = δh,  v = δv, 

just as: 
e = e0 + δe, ϕ = ϕ0 + δϕ. 

 
The states δh and δv bring with them the consequence that throughout the variation of 

d and ρ over an infinitesimal time dt, which we shall call dd and dρ (cf. eq. (1) and (3)), 

we have: 
dd = − (δv – rot δh) · dt, 

    dρ = − div δv · dt. 

 
On the other hand, if we have the small deviation from equilibrium that is due to a 

variation of the motion state variables h and v, or, what amounts to the same thing, b and 

f, over the time interval dt (I, eq. (2) and (4)), then: 

 
db = − rot δe · dt, 

df = − (δe + ∇δϕ) · dt. 

 
In order to clearly understand the energy balance, we divide dd into two pieces dd = 

d d′ ′′+d d , where: 

(30)    
.

d dt

d dt

δ
δ

′ = − ⋅
 ′′ = ⋅

d v

d rot h
 

One immediately sees that: 
 
  δe · d ′d − δϕ  · dρ =    δv · df + div(δϕ ·δv ) · dt, 
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  δe · d ′′d   = − δh · db – div[δe · δh] · dt. 

 
If we integrate over a region of space V in which only internal energy balance is found 
and on whose boundary the energy current – δϕ · δv and [δe · δh] are null then one 

obtains: 

(31)  V V

V V

( ) =

.

d d dV d dV

d d dV

δ δϕ ρ δ

δ δ

 ′⋅ − ⋅ ⋅ ⋅ ⋅


′′⋅ ⋅ ⋅

∫ ∫

∫ ∫

e d v f

e d = - h b
 

 
We shall assume that in the moment considered δh and δv are directed in such a way 

thatd ′d andd ′′d have the same direction as δd, and dρ has the same sign as dρ, so that the 

deviation of the equilibrium state increases.  If equilibrium is to be stable then one must 
remove the motion state variables; one must therefore give δf the opposite direction to df, 

and δb must be given the opposite direction to δh.  Conversely, if the motion state 

variables δf and δb increase for the given directions of δv and δh then the equilibrium is 

unstable.  If the equilibrium is to be stable then: 
 

∫ (δϕ  · δρ – δe · δ ′d )· dV, 

must have the same sign as: 

∫ δv · δf · dV, 

and: 

∫ δe · δ ′′d · dV 

must have the same sign as: 

∫ δh · δb · dV, 

 
whereδ δ′ ′′+d d = δd and indeed divδ ′d = δρ, divδ ′′d = 0, and in which we have further 

chosen the variations δv and δh in such a way that δv is proportional toδ ′d and rot δh is 

proportional toδ ′′d . 
We consider the two conditions separately by first assuming thatδ ′d = δd, and then 

thatδ ′′d = δd.  This leads to a very important case in which absolutely no magnetic effects 

interfere; thus, δ ′′d = 0, and, as a result, δ ′d = δd.  We then introduce infinitesimal 

variations into a centrally symmetric field of a spherical electron in such a way that 
everything remains centrally symmetric, and thus, that the concentration and dilution of 
the charges happens only on concentric spherical shells; we also assume that δρ, and thus 
δb, are radially directed. Furthermore, δb and δρ must be functions of only r, the distance 

from the center.  For any such variation δe must always have a potential; no magnetic 

fields ever appear.  In the sequel, δv = / tδ∂ ∂d  is always radially directed and a function 

of only r; the central symmetry is never lost during the further evolution of the variations. 
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Now, if the electron, together with its field, is to be in stable equilibrium, in such a 
way that the charge in its interior and atmosphere will not explode under any sort of 
displacement, then the following condition must be valid for the centrally symmetric 
variations that we chose, that the expression: 

 

∫ (δϕ  · δρ – δe · δd)  · dV, 

must have the same sign as: 

∫ δv · δf · dV. 

 
We would now like to examine a variation of ρ that is only found on two 

infinitesimally thin spherical shells of thickness ε1 and ε2.  Let the distance between the 
shells be a, where a is small compared to the mean radius r of the two shells.  
Furthermore, let us denote the variations of ρ by δρ 1 and − ρ 2, in such a way that: 

 
ε1 · δρ 1 = ε2 · δρ 2 

 
(if we neglect the quantities of order a/r larger than 1).  We then have a variation of the 
electric field in the space between the two layers: 
 

δd = δρ 1 · ε1 = δρ 2 · ε2, 

 
where δd converges continuously to zero with the layers ε1 and ε2. 

With the hypothesis that was introduced in section 13 (I, pp. ?), I further compute that 
H depends only upon the two variables: 

 

σ = ρ  · 2 21 /−v }  and p = d2 – h2. 

One then has: 

    δϕ  = 
ϕ
σ

∂
∂

 · δρ + 2 ·
p

ϕ∂
∂

 · d · δd, 

    δe =
σ

∂
∂
e  · δρ + 2 · 

p

∂
∂
e  · d · δd, 

 
in which δv/ρ is ignored as infinitesimal when compared to 1, so one can set σ = ρ.  

Now, since eq. (26) of part I, pp. ?? gives: 
 

e =  2 ·
H

p

∂
∂

 · d,  ϕ = − H

σ
∂
∂

, 

so one has: 

2 ·
p

ϕ∂
∂

 · d · δd · δρ  =  − 2  ·
σ

∂
∂
e

· δρ  · δd, 

thus: 
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δϕ  · δρ − δe · δd =
p

ϕ∂
∂

 · δρ 2 + 4 · 
p

ϕ∂
∂

 · d · δd · δρ  − 2 ·
p

∂
∂
e  · d · δd2. 

 
If we now integrate over the entire shell in which the variation has been introduced then 
we obtain: 
 

∫ (δϕ · δρ  − δe · δd) · dV = 

4π · r2 · 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1( ) 2 ( ) 2 a

p p

ϕ ϕδ ε δ ε δ ε δ ε δ ε
σ

 ∂ ∂ ∂⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ∂ ∂ ∂ 

e
d d} } } } } . 

 
If we choose ε1 and ε2 to be sufficiently small that the only term in the brackets above 
that determines the sign is the first term, and the sign of the overall expression is then the 
same as that of /ϕ σ∂ ∂ , or, as we can also say in the rest case (σ = ρ), that of /ϕ ρ∂ ∂ . 

The sign of: 

∫ δv  · δf · dV 

 
is easy to deduce from this when we observe that, from eq. (26), part I, pp. ?: 
 

δf = 
ϕ
ρ

 · δf, 

 
that sign is identical with the sign of ϕ  / ρ.  From this, one obtains the following 
theorem: 
 

A necessary condition for the stability of the equilibrium is that the differential 
quotient /ϕ∂ ∂} must have the same sign everywhere as the quotient ϕ / ρ. 

 
This condition is always satisfied, for example, when ϕ always has the same sign as ρ, 

and when ϕ always increases along with an increase in ρ.  This is the case when H is an 
even function of ρ that can be represented by means of series development with only 
negative coefficients. 

If H also includes odd powers of ρ, as is true in any case (cf. section 12), then the sign 
of /ϕ ρ∂ ∂ , as well as ϕ  / ρ, can change.  When HI (cf. I, pp. ?) depends only upon σ and 

likewise on ϕ, in turn, then /ϕ ρ∂ ∂  can be null only wherever ϕ attains a maximum or 

minimum value.  It will then be impossible for the signs of /ϕ ρ∂ ∂ and ϕ  / ρ to change 
simultaneously.  However, if ϕ (and thus also HI) contains both of the variables σ and p 
then one cannot exclude the existence of fields that satisfy this condition; naturally, the 
field of the electron must belong to this category.  This consideration is therefore 
important because the principle of superposition for the electromagnetic vectors, upon 
which the Maxwell equations rest, in no longer valid in the interior of the atom when HI 
depends not only upon σ, but also p.  It is therefore not for us to choose whether 
Maxwell’s equations shall or shall not be abandoned in the interiors of atoms, and we are 
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forced to abandon then as long as we make the fundamental equations asymmetric in the 
positive and negative charges.  In a later section, we will also examine further whether 
this asymmetry is necessary. 

In order to discuss the second stability condition, we consider a perturbation of the 
equilibrium that gives an increment δd to the field in such a way that δρ = 0 around a 

closed curve.  The curve may have the form of a rectangle with two sides parallel to the 
field lines d and two sides perpendicular to them at every point.  We focus our attention 

on a moment at which v = 0, so that only the second of equations (31) is of interest.  

Along the curves that are at right angles to the lines of d, we construct the integral: 

 

∫ δe · δd · dV. 

 
Along the lines that are perpendicular to the lines of d, we have: 

 

δe = 2 · H

p

∂
∂

 · δd, 

 
since p remains unaffected by the quantities of order δd2.  On the other hand, along the 

curves that are parallel to d, we have: 

 

δe = 4 · 
2

2

H

p

∂
∂

 · d2 · δd + 2 · H

p

∂
∂

 · δd. 

 
To abbreviate, we shall now set: 
 

4 · 
2

2

H

p

∂
∂

 · d2 + 2 · H

p

∂
∂

=
∂
∂
e

d
. 

 
This therefore means the differential quotient of e that one obtains when one varies only d 

and, moreover, in such a way that it increases for any direction about δd.  We thus have: 

 

∫ δe · δd · dV = 2 2

I II
+ 2

H
dV dV

p
δ δ∂ ∂⋅ ⋅ ⋅ ⋅ ⋅

∂ ∂∫ ∫
e
d d

d
, 

 
in which I means the region of space in which the lines δd run parallel to d, and II is then 

one in which they are perpendicular to them.  On the other hand, we have: 
 

∫ δh · δb · dV = 22
H

dV
p

δ∂⋅ ⋅ ⋅
∂∫ h . 
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If both integrals should have the sign in all circumstances, as the stability conditions 
demand, and also if the curves δd are so directed that integral I greatly dominates integral 

II, then /∂ ∂e d  must have the same sign as 2 /H p∂ ∂ or e / d. 

 
A necessary condition for the stability of the equilibrium is that the partial differential 

quotient /∂ ∂e d  that one obtains when one varies the magnitude of d without varying the 

direction has the same sign as e / d everywhere. 

 
 This condition is always satisfied when e always has the same sign as d and when, 

moreover, e always grows with increasing d.  As is well known in conventional 

electrostatics the equilibrium of the field is thus always stabile. 
In our general theory the situation is no longer quite so simple.  We will soon see that 

if the sign of e/d must necessarily change in the interior of an atom then the sign of 

/∂ ∂e d  must also change in that same place. 
Whether both conditions that we know to be necessary for stability of the equilibrium 

are also sufficient cannot be stated, for certain.  This much is clear in any case: that 
unstable equilibria can also enter into the general theory.  In fact, it would be impossible 
for the theory to make any pretense of being a general theory of matter if it did not also 
embrace the cases of unstable equilibrium that actually occur. 

 
15.  As we already saw before, it is often more convenient to compute with the world 

function Φ instead of the Hamiltonian function H.   One must then (cf. I, pp ?) take the 
intensity variables (e, b, ϕ, f) to be the independent state variables.  In the special case b = 

0, f = 0, so that η is simply the absolute value of e and χ = ϕ in equation (27), part I, pp. 

?, one then has: 

dρ  = 
ρ
ϕ

∂
∂

 · dϕ  + 
ρ
η

∂
∂

 · d

η
⋅e e

, 

    dd =
ϕ

∂
∂
d  · dϕ  + 

η
∂
∂
d  · d

η
⋅e e

. 

If we set dd = 0 then we have: 

    
d

η
⋅e e

= − ϕ

η

∂
∂
∂
∂

d

d
 · dϕ, 

 
in which∂dmeans that we vary the magnitude of d without varying its direction.  One 

thus has: 

    dρ =

ρ ρ
ϕ η η ϕ

η

∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

∂
∂

d d

d
 · dϕ, 
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ρ
ϕ

∂
∂

=
η

ρ ρ
ϕ η η ϕ

∂
∂

∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

d

d d
. 

However, one then has: 

ϕ
∂
∂
d

= −
2

ϕ η
∂ Φ

∂ ⋅ ∂
·
η
e

, 

 
or, since∂d  shall mean the variation of the absolute value of d: 

 

ϕ
∂
∂
d

= −
2

ϕ η
∂ Φ

∂ ⋅ ∂
= − ρ

η
∂
∂

. 

 
With that, we ultimately come to: 

(32)    
ϕ
ρ

∂
∂

 = 22

η
ρ

ϕ η η ϕ

∂
∂

 ∂ Φ ∂ ∂+ ⋅ ∂ ⋅∂ ∂ ∂ 

d

d
. 

 
Likewise, when one sets dρ = 0 one obtains: 
 

(33)    
∂
∂
e

d
 = 22

ρ
ϕ

ρ
ϕ η η ϕ

∂
∂

 ∂ Φ ∂ ∂+ ⋅ ∂ ⋅∂ ∂ ∂ 

d
. 

 
The expressions (32) and (33) must therefore always have the same signs asϕ  / ρ (e/d, 

resp.) if the equilibrium is to be stable. 
 
16.  All that remains is for us to address the question of what sort of conditions that the 

world function must satisfy in order for it to be possible that a spherical knot singularity 
with an extremely thin electrical atmosphere is an equilibrium point in the ether state.  
We think of a radius r pointing outward from the center of a knot singularity that is so 
long that its end already satisfies the principle of superposition e = d.  Let m be the total 

charge in the interior of a ball of this large radius r, so the potential of the electric field at 
the endpoint of r is ψ = m / 4πr.  In equilibrium, the quantity ψ must be identical with ϕ: 
ϕ = m / 4πr.  Now, let the charge density of the electrical atmosphere at the endpoint of r 
equal ρ.  Hence, the charge that is contained in a spherical shell of thickness dr is dm = 
4πr2 · ρ · dr, which makes the variation of ϕ along the increment dr: 
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dϕ  = −
24

m

rπ ⋅
· dr +

4

dm

rπ ⋅
. 

 
The second term must become vanishingly small compared to the first one.  I.e, since: 
 

4

dm

rπ ⋅
= r · ρ  · dr, 

 
r · ρ must be vanishingly small compared to m / 4π · r2, and therefore r · ρ must converge 
to zero faster than r -2. 
 

The charge density ρ of the atmosphere of an electrical knot singularity must converge 
to zero faster than r-3. 

 
If the world function Φ is to be represented by a power series for small values of: 
 

χ = 2 2ϕ − f  and η = 2 2−e d  

 
then this sum must look like the following: 
 

Φ = − 1
2 η2 +∑ αµ  · χµ +∑ βν  · ην +∑ γhk  · χh · ηk, 

 
m > 4, n > 2, h ≥ 1, η ≥ 2. 

 
In the event that the exponents µ, h involve fractional numbers their denominators 

must always be odd, or else Φ would become imaginary for negative values of ϕ; this 
rule is not valid for ν, k, since η is always positive. 

When and only when the series for Φ satisfies these conditions, the following are true:  
 
First: d and ρ cannot become infinite for η = 0 (χ = 0, resp.). 

Second: /∂ ∂d e  goes to 1 for small values of η and χ. 
Third: ρ converges to zero faster than r -3 for χ = m / 4πr and η = m / 4πr2 when one 
lets r go to infinity. 
 
For small values of η and χ − i.e., in a vacuum − the stability conditions are 

admittedly not satisfied for just any sort of function Φ, but still in very many cases; for 
example, this is always the case when both of the smallest exponents µ and h are even 
and the coefficients of the term with these smallest powers of χ is positive.  One then has 
that for small values of the variables /ϕ∂ ∂}  is always positive, just like /∂ ∂d e ; from 

(32) and (33), we therefore also have /ϕ ρ∂ ∂  > 0, /∂ ∂d e > 0.  Furthermore, since e/d and 

ϕ / ρ are likewise always positive in weak fields, the vacuum stability conditions are 
always satisfied in these cases. 
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The differential equation of the electrostatic field 
for the case of spherical symmetry. 

 
17.  For a static field one has ϕ  = χ and, up to direction, e = η, hence: 

 

| d | = −
η

∂Φ
∂

,  ρ =
ϕ

∂Φ
∂

. 

 
Furthermore, when the field is spherically symmetric, and we abbreviate the magnitude 
of d by writing d, instead of |d|, we have: 

 

2
2

1
( )

d
r

drr
⋅ ⋅ d =

d

dr

d
+

2

r

d
= ρ. 

From this, it follows that: 
 

r ·
2

2η
∂ Φ
∂

·
d

dr

η
+ r ·

2

η ϕ
∂ Φ

∂ ∂
 · d

dr

ϕ
+ 2 ·

η
∂Φ
∂

+ r · 
ϕ

∂Φ
∂

 = 0. 

 
However, at equilibrium, one has: 
 

η = − d

dr

ϕ
= −ϕ ′ , d

dr

η
= −

2

2r

ϕ∂
∂

= −ϕ ′′ . 

 
Φ is a given function of ϕ andϕ ′ : Φ(ϕ, ϕ ′ ).  We then obtain the following differential 

equation for ϕ as the equilibrium condition with spherical symmetry: 
 

(34)   r ·
2

2ϕ
∂ Φ

′∂
 · ϕ ′′ + 2 · 

ϕ
∂Φ

′∂
+ r ·

ϕ
∂

∂
ϕ

ϕ
 ∂Φ ′⋅ − Φ ′∂ 

 = 0. 

 
This is a second order differential equation whose general integral therefore has two 

arbitrary constants.  Since the equation inϕ ′′ is of first degree, it has no singular integrals.  

Both arbitrary constants are determined when the potential ϕ and field strength −ϕ ′are 

given for a definite r, or when the potentials ϕ1 and ϕ2 are given on both boundary 
components of a spherical condensor.  One can thus obtain any arbitrary field between 
the shells of a spherical condensor as an integral of equation (34).  It is self-explanatory 
that nothing should be noticeably different in the experimentally achieved cases of 
ordinary electrostatics; the exact integral gives only the imperceptible electrical 
atmosphere that lies on both boundary components beyond the usual situation.  Hence, 
we will next focus our attention on the region between the spherical surfaces.  If one 
traverses this region then, as we will see, the integral has singular points for certain 
values of r, which makes it physically impossible, so it is valid only in a neighborhood of 
the boundary. 
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In general, the integral has one singularity, for the value r = 0.  One thus sees from this 
that terms of order higher thanϕ ′′ must be multiplied by r.  Indeed, the singularity in ϕ at 
r = 0 is, in general, an essential one that only transcendental functions (e.g., elliptic 
functions, exponential functions, etc.) can have.  A peculiar property of these functions is 
that these essential singularities can be made to vanish for a certain choice of arbitrary 
constants in the integral.  One can see this easily when one develops the world function Φ 
in a power series in (ϕ – a) andϕ ′ about the system of values ϕ = a, ϕ ′ = 0.  From the 
Ansatz on pp ?, the lowest power ofϕ ′ is the second.  Therefore, let: 

 
Φ = Φ0 + a20 · 2ϕ ′ + a30 · 3ϕ ′ + … 

   + (ϕ – a) ·  (a10 + a21
2ϕ ′ + a31

3ϕ ′ + … 

   + (ϕ – a)2 ·  (a02 + a22
2ϕ ′ + a32

3ϕ ′ + … 
 

in which the coefficients of all of the given quantities are to be determined.  We now set 
ρ = / ϕ∂Φ ∂ , d = / ϕ ′∂Φ ∂ : 

 
  (ϕ – a) =  α2r

2 +   α3r
3 + …, 

       ϕ ′  =  2α2r + 3α3r
2 + …, 

 
in which α2, α3, … are unknown, and equation (34), which can also be written: 
 

2d r

dr

ϕ
 ∂Φ⋅ ′∂  = r2 ·

ϕ
∂Φ
∂

, 

 
then gives recursion formulas by which one can sequentially express α2, α3, etc., in terms 
of a and the coefficients of the world function.  We have thus obtained an integral that 
has no singularity at the point r = 0 and that also involves only a single arbitrary constant, 
namely a.  It remains for us to prove that other integrals can be given in terms of a power 
series about r = 0, possibly one with fractional exponents or logarithmic terms.  From 
that, we can prove that all other integrals must have an essential singularity at r = 0. 
 

2d u

du

ϕ
− ∂Φ⋅ ′∂  = − u4 · 

ϕ
∂Φ
∂

. 

 
If one develops Φ in a power series in ϕ andϕ ′about ϕ  = 0 andϕ ′= 0 (cf. pp. ?) and then 
sets: 

ϕ  = a · u · (1 + α1u + α2u
2 + …), 

ϕ ′= − a · u2 · (1 + 2α1u + 3α2u
2 + …), 
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then one obtains a recursion formula by which one can sequentially obtain α2, α3, etc., in 
terms of a and the coefficients of the world function.  We thus have an integral in a 
neighborhood of u = 0 that has no singularities at that point.  Moreover, this integral 
involves only one arbitrary constant, namely a.  All other solutions of the differential 
equation (34) have an essential singularity at u = 0. 

Whereas, as we saw on pp ?, the general integral of the field between two boundary 
components of a spherical condensor, on which we are given arbitrary potentials ϕ1 and 
ϕ2, can be computed, the particular integral that has no singularity at the point r = 0 gives 
us the field in the interior of a charged hollow sphere.  In conventional electrostatics, one 
has ϕ = const., e = 0 in that region, and in all practically realizable situations the integral 

that we spoke of will not differ appreciably.  The power series expansion on pp. ?: 
 

(ϕ – a) = α2 · r2 + α3 · r3 + … 
 
must therefore have vanishingly small coefficients in all practically realizable situations, 
and the quantity a gives an almost precisely constant potential inside and outside the 
hollow sphere.  Meanwhile, from our theory a field must exist in the interior, although it 
has an extremely weak electrical atmosphere, and it corresponds to the electrical field that 
was computed by the power series expansion on pp. ?.  In any event, the state inside the 
hollow sphere is completely determined when the potential on it (and therefore a) is 
given.  From this, one recognizes the manner by which integral that we obtain inside the 
hollow sphere may involve only one arbitrary constant. 

The particular integral for which the point r =∞  or r−1 = u = 0 is not a singularity 
gives us a representation of the field outside of a charged ball, from which, everything 
else may be infinitely extended.  In conventional electrodynamics, one would have ϕ = a 
/ r, where a = m / 4π, and m is the charge of the ball.  Therefore, in all practically 
realizable situations the coefficients α1, α2, etc., in the series on pp. ?: 

 
ϕ  = a · u · (1 + α1u + α2u

2 + …) 
 
are vanishingly small.  One carries out the computations for extremely weak fields, which 
corresponds to a thin atmosphere around the charged ball.  In any case, one recognizes 
that the external field is completely determined when one knows the charge m of the ball, 
and thus, the constant a.  One then understands the manner in which the integral, which 
has no singularity at u = 0, involves only one arbitrary constant. 

We thus see how the integrals of equation (34) exhaust all of the possibilities for 
spherically symmetric fields, and, with a slight generalization, we may deduce the 
following conclusion from this: 

 
There are infinitely many forms for the world function Φ that do not bring one into 

conflict with conventional electrodynamics. 
 

Discussion of an example:  Φ = − 1
2 η2 + 1

6 aχ6. 

 
18.  The function: 
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(35)    Φ = − 1
2 η2 + 1

6 a · χ6 

 
satisfies all of the conditions that were specified for the world function in 16.  In a static 
field, it gives: 
(36)    d = e, ρ  = a · ϕ5. 

 
Since everything is symmetric in positive and negative charges, the superposition 
principle d = e is also valid in the interior of the know singularity, or else the equilibrium 
would be unstable. 

The differential equation (34) may be simplified considerably in this case; it becomes: 
 

(37)    r · ϕ ′′ + 2 ·ϕ ′+ a · r · ϕ5 = 0. 
 
This equation may be immediately integrated once.  When one introduces the 
abbreviation r · ϕ2 = v then if we multiply (37) by 4r · (2rϕ ′+ ϕ) may be written in the 
following way: 

(38)   

2 2
2 2

2

2 4 0,

.

d v v
r r v a v v

dr v v

v r ϕ

 ′ ′  ′ ′⋅ + ⋅ − + ⋅ ⋅ =  
  
 = ⋅

 

 
By integration, we obtain: 

2 2r v

v

′⋅ − v +
4

3

a
· v3 = C, 

 
in which C is an integration constant.  This equation may be solved by a quadrature when 
one introduces the independent variable ξ = ln r / r0 in place of r, in which r0 is the 
second arbitrary constant. 

(39)    

2

2 4

0

4
,

3

ln , .

dv a
C v v v

d

r v

r r

ξ

ξ ϕ

  = ⋅ + − ⋅ 
 

 = =


 

 
In general, the integral of this equation is an elliptic function of ξ.  As we might 

expect, it therefore has an essential singularity for ξ =∞ , i.e., for r = 0 and r =∞ . 
Since ϕ must naturally be real, I will now discuss the solutions of (39) that is real and 

positive for real arguments.  We will distinguish three cases, namely: C positive, C 
negative, C precisely zero. 

 
19.  I. Case: C > 0. 
I will always denote the (single) positive solution of the cubic equation: 
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(40)    C + γ − 4

3

a  · γ 3 = 0 

by γ: 
(40a)      γ > 0, 
 
and use the following quantity in place of C as the integration constant: 
 

(41)    h =
3 2

C

C γ+
. 

 
We compute the following three quantities from the integration constant h: 
 

(42)   

2

2

2

1
2 2

1 3
,

41 3

(1 ) (1 3 )
,

(1 ) (1 3 )

(1 ) (1 3 )
.

1 3

h
b h

ah

h h
k

h h

h h
p

h

 −
 = ⋅ ⋅

−
 − ⋅ − = + ⋅ +
 − ⋅ +
 = ⋅

−

 

 

When C increases from 0 to ∞, h steadily increases from 0 to 1 /3 , b and p then always 
remain real, and indeed they both steadily increase, b from 0 to∞ , and p from +0.5 to∞ .  
On the other hand, k2, which takes the value 1 for h = 0, decreases steadily to zero at h = 

1/3, changes its sign at that point, and attains the value –(2 − 3 )2 = − 0.0718 for h = 

1/ 3 .  One summarizes the behavior of the three quantities with the help of the 
following table: 
 

C h b p k2 

0 

+
1

3 a⋅
 

 
+∞  

 

0 
 

+ 1
3  

+
1

3
 

0 

+
1

3 a⋅
 

 
+∞  

+ 1
2  
 

+1 
 

+∞  

+1 
 
0 
 

–(2 − 3 )2 

 
When one substitutes the function u for v, where u is defined by following equation: 
 

v = b · 1

(1 ) (1 )

u

u h u

+
− + +

, 

 
then an elementary calculation gives that u satisfies the well-known differential equation 
for the Jacobi function of modulus k, and we obtain: 
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(43)   
2

2 2 2

0

1
,

(1 ) (1 )

(1 ) (1 ),

ln .

b u

r u h u

du
u k u

dx

r
x p

r

ϕ
 += ⋅

− + +

  = − ⋅ − 
 

 = ⋅


 

 
If k2 > 0 then when we set u = − cn x / dn x we obtain: 
 

(44)   
2

0

,
( ) ( )

ln , 0,

dn x cn xb

r dn x cn x h dn x cn x

r
x p k

r

ϕ
 −= ⋅ + + ⋅ −

 = ⋅ >


 

 
in which dn x and cn x are the well-known Jacobi functions.  In this formulation, the 
arbitrary constant r0 means the value of the integral u that corresponds to the r at which ϕ 
becomes null, r = r0 ; hence x = 0 becomes dn x = cn x = 1.  In the vicinity of x = 0 we 
have the power series expansion: 
 

dn x = 1 −
2 2

2

k x
+

2 2(4 )

24

k k⋅ +
· x4 −

2 2 4(16 44 )

720

k k k⋅ + +  · x6 + … 

cn x = 1 − 
2

2

x
 +

21 4

24

k+  · x4  −
2 41 44 16

720

k k+ +
· x6  + … 

 
If one substitutes these series then one obtains the following development: 
 

( ) ( )

dn x cn x

dn x cn x h dn x cn x

−
+ + ⋅ −

=
2 2 2 4

2 4

(1 )
1

4 12 360

x k x x

p p

 ⋅ − ⋅ + + + 
 

⋯ . 

 
The first few terms of the infinite series that we just wrote also define the beginning of 
the series expansion for the following function: 
 

(1 – k2) · p2 · 
2 2

2

x x

p pe e
− 

− 
 
 
 

=
2 2 2 4

2 4

(1 )
1

4 12 360

x k x x

p p

 ⋅ − ⋅ + + + 
 

⋯ . 

 
From the term in x6 onward the series begin to deviate.  If one substitutes the latter 
function instead of the former in (44) then one obtains an approximation for ϕ that 
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deviates only very slightly from the precise value of ϕ for small values of x.  This 
approximation is: 

ϕ = 2 0

0

1
(1 )

2

rp r
b k

r rr

 
⋅ ⋅ − ⋅ ⋅ −  

 
, 

which one may also write: 
 

(45)   0

2
0

1 1
,

(1 ) .
2

A
r r

p
A b k r

ϕ
  

= ⋅ −  
  
 = ⋅ ⋅ − ⋅

 

 
In the vicinity of r = r0 the value of ϕ that one computes in our theory deviates only 

very unnoticeably from the value of the potential that conventional electrostatics gives for 
a spherical condensor for which the potential is null at r = r 0 and the field strength A/r0

2 
predominates. 

 
When one is given the point r0 and the field strength at r0 then one can also compute 

the value of h from the aforementioned formula (45) for A; this makes both arbitrary 
constants in the integrals of (37) completely determined. 

One sees from the theorem that we just proved that the electrical atmosphere in the 
neighborhood of the null point is extraordinarily thin.  However, the further that one goes 
away from the null point, the stronger the electrical atmosphere becomes.  Conventional 
electrostatics is then only valid for a spherical condensor whose shells are not to far away 
from each other.  The larger one takes the space between them, the more one feels the 
influence of the electrical atmosphere that both shells present; the positive electrical 
atmosphere comes from the shell with the positive potential, and the negative electrical 
atmosphere comes from the other shell.  Ultimately, the atmosphere becomes so thick 
when the shell is very from the point r0 that the value x that corresponds to r becomes 
closely equal to the half-period !2K of the elliptic functions dn x and cn x.  For the given 
r0 this has the effect that the smaller one makes 2K the smaller that k becomes and the 
larger that h becomes.  However, from formula (45) it is easy to see that the quantity A, 
i.e., the field strength at r0, decreases with increasing h.  The largest value of h for which 
formula (44) is still valid is h = 1/3, which corresponds to the value: 

 

A = 0.289 · 0

4

r

a
 and 2K = π. 

 
In this special case, we have dn x = 1, cn x = cos x.  If one wants the field strength at r0 to 
be larger then one must compute with a somewhat modified formula.  Since k2 < 0 for h > 
1/3, one introduces the following quantity κ as the modulus, which is positive and less 
than 1: κ2 = − k2 / (1 – k2), and one further replaces the quantity p with a quantity q = p · 

21 k− , whereas one leaves b unchanged.  One must therefore replace formula (42) with 
the following one: 
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(46)   

2

2

2
2

2

2
2

1 3
,

41 3

(3 1) (1 )

8 1

2
(1 ).

1 3

h
b h

ah

h h k

h k

h
q p k

h

κ

 −
 = ⋅

−
 − ⋅ − − = = −


= = ⋅ −
−

 

 

 If h increases from 1/3 to 1/3 then all three quantities constantly decrease.  The 
boundary values give the following table: 
 

  
If one introduces the following variable in place of x: 
 

y = x / 21 κ− = q · ln r/r0 
 
then one obtains the following equation instead of (43): 
 

(47)  
2

2 2 2 2

0

1
,

(1 ) (1 )

(1 ) ((1 ) ),

ln .

b u
q

r u h u

du
u u

dy

r
y q

r

κ κ

 += ⋅ − + +

  = − ⋅ − + ⋅ 
 


= ⋅


 

 
If one replaces the solution u of the differential equation with u = − cn y, then one 
obtains: 

(48)  

0

1
,

(1 ) (1 )

ln .

b u

r u h u

r
y q

r

ϕ
 += ⋅ − + +

 = ⋅


 

 

C h b q κ2 

+
1

3 a⋅
 

 
+∞  

+
1

3
 

+
1

3
 

+
1

3 a⋅
 

 
+∞  

 
+1 
 

+∞  
 

 
0 
 

2 3

4

−
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If one lets h increase from 1/3 to 1/3 then A in formula (45), and thus the field 
strengths in r0, increase without bound.  If we let r1 denote the value r for which y equals 
the half-period 2K of the elliptic function cn y then we have: 

 

r1 = r0 · 
2K

qe . 
 

If one lets the field strengths in r0 increase without bound then q will likewise become 
infinitely large, whereas 2K remains finite, and r1 returns ever closer to r0; therefore, for 
large field strengths the context in which conventional electrostatics is valid will 
ultimately become infinitesimal. 

Conversely, if we let the field strengths get very small then we can calculate the half-
period, which corresponds to the modulus k that differs only very slightly from 1, almost 
precisely from the formula: 

2K = 2 · ln
2

4

1 k−
. 

 
In this case, since p = 1

2 , the value r1, for which x = p · ln r/r0 equals 2K is: 

 

r1 = r0 · 
1

2

16

1

p

k
 
 − 

= r0 · 2 2

256

(1 )k

 
 − 

. 

 
As k gets closer to the value 1, r1 increases without bound; the regime in which the 

electrostatic laws are valid for very small field strengths then extends to infinity. 
We can summarize the results that we just obtained in the following theorem: 
 
In a spherical condensor, the electrical field follows the laws of conventional 

electrostatics to a very high degree of precision in the neighborhood of the null surface 
r0, on which the potential is zero.  However, the distance that one may separate the two 
spherical condensor surfaces before the electrical atmosphere that surrounds the 
charged surfaces produces noticeable deviations from the usual laws of electrostatics 
depends on the field strengths.  For very weak fields, the associated distance becomes 
unbounded.  With increasing field strengths it becomes smaller and smaller, and at 
indefinitely large field strengths it ultimately grows infinitesimal. 

 
Since elliptic functions are periodic, the integral (43) takes on the value of zero not 

only for r = r0, but also at infinitely many other points.  The null surfaces of the potential 
are the spherical shells of the following radii: 

 

…, r0 ·
4vK

pe
−

, r0 ·
4( 1)v K

pe
−

−
, …, r0 ·

8K

pe
−

, r0 ·
4K

pe
−

, r0,  r0 ·
4K

pe
+

, r0 ·
8K

pe
+

, … 
 
The direction of the field alternates; if it points in the direction of positive r at one null 
point, it points in the negative direction at the next one, back to the positive direction at 
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the next one after that, etc.  Between any two null points we have alternated between a 
spherical shell with a positive electrical atmosphere and one with a negative electrical 
atmosphere.  The positive and negative maxima of the charge density are found at 
roughly the following places: 
 

…, r0 ·
(4 2)

K
v

pe
− +

, r0 ·
(4 2)

K
v

pe
− −

, …, r0 ·
6K

pe
−

, r0 ·
2K

pe
−

, r0 ·
2K

pe
+

, r0 ·
6K

pe
+

, … 
 

The potentials at these places are: 

ϕM = ± 
M

1b

h r
⋅ , 

 
in which one assumes that the positive and negative signs alternate.  Both of the curves: 
 

ϕ  = ± 
1b

h r
⋅ , 

 
touch the undulating curve of the potential on both sides.  The closer one comes to the 
null point the more the potential, and with it, the charge density, increases.  In the 
neighborhood of the null point, they become unbounded. 

The integral (44) may be described in the following manner: 
 
The center is enveloped by concentric spherical shells of electrical charge, like an 

onion.  Moreover, the positive and negative electrical shells regularly alternate.  Between 
any two shells in the neighborhood of the null surface ϕ = 0, there is a more or less wide 
region in which the electrical atmosphere is extremely thin, and in which an electrical 
field exists, as it should in the usual laws of electrostatics for a spherical condensor.  In 
the neighborhood of the center, the onion shells grow denser and denser, and likewise, 
the charge density, potential, and field between any two shells grows without bound. 

 
The integral (44) therefore has an essential singularity at the point r = 0, in the sense 

that for r = 0, ϕ is not constrained to any finite or infinite value, but fluctuates between 
unbounded positive and negative values in the neighborhood of r = 0 over very short 
intervals. 

The point r = ∞  is also an essential singularity of the function, whether or not ϕ 
converges to zero for r = ∞ .  There are always infinitely many positive and negative 
maxima of ϕ between any two arbitrary finite value of r and the value r = ∞ , and this is 
what characterizes the singularity at r = ∞ . 

If one wishes to make a precise definition of the range of the integral (44) then the 
case of a very small value of h is well suited.  In this case, one can obtain the function 
over its entire range by elementary computational operations. 

In the sequel, I will set: 

…, r0 · 
(2 1) 2v K

pe
− ⋅

= r2v-1,  r0 · 
2 2v K

pe
⋅

 = r2v, 
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  r0 · 
(2 1) 2v K

pe
+ ⋅

= r2v+1, …,  
 

The series of quantities rn (n = 2v –1, 2v, 2v + 1, …) defines a geometric progression, for 
which we always have: 

rn : rn-1 = rn+1: rn = … =
2K

pe . 
 
n may take on odd and even, positive and negative values.  One then has, in general: 
 

rn
2
 = rn−1 · rn+1. 

 
If we now introduce the assumption that h is very small compared to 1 then we can 

neglect the higher powers of h in formula (42), and calculate with the following 
approximation: 

b =
3

2

h

a
⋅ ;  1− h2 = 8h; p = 1

2 . 

 
Furthermore, we can compute the half-period 2K of the elliptic function as: 
 

2K = ln
2

16

1 k−
= ln

2

h
. 

 

The quotient of the geometric progression rn is thus
2K

pe = 4 / h2, which is a very large 
number; i.e., any two successive values in the progression: 
 

…, rn−1,  rn,  rn+1, … 
  
are of very different orders of magnitude.  Compared to rn, rn−1 is infinitesimal and rn−1 is 
infinite.  In general, we compute them as: 

rn = r0 · 2

4
n

h
 
 
 

, 

 
in which n may be odd or even and positive or negative. 

By making use of formula (45), one obtains the value of ϕ in the neighborhood of the 
point r2v: 

ϕ  = 4
2

2

3 1 1

2 v
v

h
r

a r r

 
⋅ ⋅ ⋅ − 

 
 = 4

2 1
2

3 1 1
v

v

r
a r r−

 
⋅ ⋅ − 

 
. 

 
For a value of r that is very large compared to r2v, but very small compared to r2v+1, one 
can simply compute: 

ϕ  = − 2 14

2

3 v

v

r

a r
−⋅ ; 
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for a value of r that is very large compared to r2v, but small compared to r2v+1, one has: 
 

ϕ  =  + 2 14

2

3 v

v

r

a r
−⋅  = 4

2 1

3 1

v
a r +

⋅ . 

 
In order to compute ϕ in the neighborhood of r2v+1 (and thus, r2v-1), I set: 
 

x′ = p · ln
2 1v

r

r +

= p · ln
0

r

r
− (2v + 1) · 2K = x – (2v + 1) · 2K. 

Now: 
cn x = − cnx′ ,  dn x = + dnx′ , 

hence: 

ϕ  = 
( ) ( )

dn x cn xb

dn x cn x h dn x cn xr

′ ′+⋅
′ ′ ′ ′− + ⋅ +

. 

 
Since we would like to neglect terms of higher order in h, we develop cnx′ and dnx′ in a 
power series in (1 – k2) about k2 = 1.  This gives the following expressions: 
 

2( )
k

dn x′ = 2 1
( )

k
dn x =

′ +
2

2 2

1

11 1
ln

4 2 1
k

sn xk sn x
sn x cn x

cn x sn x =

′′ +− ′ ′⋅ + ⋅ ⋅ ⋅ ′ ′− 
+ … 

 

2( )
k

cn x′ = 2 1
( )

k
cn x =

′ −
2

2 2

1

11 1
ln

4 2 1
k

sn xk sn x
sn x cn x

cn x sn x =

′′ +− ′ ′⋅ − ⋅ ⋅ ⋅ ′ ′− 
+ … 

 
We have set: 

2 1
( )

k
cn x =

′  = 2 1
( )

k
dn x =

′  = 
2

x xe e′ ′−+
 

   2 1
( )

k
sn x

=
′  = 

x x

x x

e e

e e

′ ′−

′ ′−

−
+

, 

   1 – h2 = 8h2. 
 

The use of this formula gives, by a very simple computation: 
 

ϕ  = 2 14
2 2

2 1

3 v

v

r

a r r
+

+

⋅
+

. 

For small values of r: 

ϕ  = 4

2 1

3 1

v
a r +

⋅ . 

For large values of r: 
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ϕ  = 2 1
4

3 vr

a r
+⋅ . 

 
In the neighborhood of r2v−1 one has, since the opposite sign must dominate there: 
 

ϕ  = − 2 14
2 2

2 1

3 v

v

r

a r r
−

−

⋅
+

. 

 
Thus, for increasing values of r, ϕ goes through the following values of the series: 
 

− 4

2 1

3 1

v
a r −

⋅ ;   − 2 14
2 2

2 1

3 v

v

r

a r r
−

−

⋅
+

; − 2 1
4

3 vr

a r
−⋅ ; 

4
2 1

2

3 1 1
v

v

r
a r r−

 
⋅ ⋅ − 

 
; + 4

2 1

3 1

v
a r −

⋅ ; 

+ 2 14
2 2

2 1

3 v

v

r

a r r
+

+

⋅
+

;  + 2 1
4

3 vr

a r
+⋅ ; 

4
2 1

2 2

3 1 1
v

v

r
a r r+

+

 
⋅ ⋅ − 

 
; 

… 
 
20.  II. Case: C < 0.  Again, I will let γ denote the unique positive solution of the 

third degree equation: 

  − C + γ − 4

3

a
· γ3 = 0,  γ > 0, 

 
and introduce the following quantity h in place of the C as the integration constant: 
 

h = +
3 2

C

C γ
−

− +
. 

 
Moreover, I will again compute the three quantities b, k2, p from (42): 
 

    b = h ·
2

2

1 3

41 3

h

ah

− ⋅
−

, 

    k2 =
(1 )(1 3 )

(1 )(1 3 )

h h

h h

− −
+ +

, 

    p =
2

1 (1 )(1 3 )

2 1 3

h h

h

+ +⋅
−

. 
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Thus, if I replace v with the following quantity u: 
 

v = b · 1

(1 ) (1 )

k u

ku h k u

+ ⋅
− − + ⋅

, 

 
then in the case C < 0, one obtains the following equation in place of equation (39): 
 

(49)  

2
2 2 2

0

(1 )(1 ),

ln ,

1
.

(1 ) (1 )

du
u k u

dx

r
x p

r

b k u

r ku h ku
ϕ

   = − − 
  
 = ⋅

 + ⋅ = ⋅

− − ⋅ +

 

 
The integral (49) is then real only when: 

k2 ≥ 0. 
 

We have therefore have to merely restrict ourselves to the regime 0 < h < 1/3, in which 
this condition is satisfied.  If one then introduces the integral – cn x / dn x for u, then one 
obtains: 

(50)  

0

,
( ) ( )

ln , 0 1.

dn x k cn xb

r dn x k cn x h dn x k cn x

r
x p h

r

ϕ
 − ⋅

= ⋅
+ ⋅ − − ⋅


 = ⋅ < < +


 

 
The characteristic of this integral is that, by contrast with (44), it never goes to zero, so 

one always has: 
dn x > k · cn x, 

 
and the expression under the square root sign therefore always stays greater than zero.  
However, when ϕ never goes through zero, it must therefore always retain the same sign, 
and it goes continuously from the very large values at small r to the very small values at 
large r.  Meanwhile, the periodic function that appears under the square root sign 
regularly fluctuates back and forth between a maximum and a minimum.  The maximum 
is attained for the value x = (2v + 1) · 2K; hence: 
 

r = …, r0 ·
(2 1) 2v K

pe
+ ⋅

−
, r0 ·

(2 1) 2v K

pe
− ⋅

−
, …, r0 ·

6K

pe
−

, r0 ·
2K

pe
−

, r0 ·
2K

pe
+

, r0 ·
6K

pe
+

, … 
 
and the minimum is attained for x = 4vK; hence: 
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r = …, r0 ·
4v K

pe
⋅

−
, r0 ·

4( 1)v K

pe
− ⋅

−
, …, r0 ·

4K

pe
−

, r0, r0 ·
4K

pe
+

, r0 ·
8K

pe
+

, … 
 

 
The values of the maximum and minimum are: 
 

+
1

(1 ) (1 )

k

k h k

+
− − +

 and +
1

(1 ) (1 )

k

k h k

−
+ − −

. 

 
The values of the potential at the points with r2v+1 (maximum) and r2v (minimum) then 
become: 

  ϕ2v-1 =
2 1

(1 ) 1

(1 ) (1 )
v

b k

k h k r −

⋅ + ⋅
− − +

, 

  ϕ2v =
2

(1 ) 1

(1 ) (1 )
v

b k

k h k r

⋅ − ⋅
+ − −

. 

 
As a result of the periodicity of the expression under the radical one has the drawback 

that ϕ is not regular with increasing r, but stepwise.  The two smooth curves: 
 

ϕ  =
(1 ) 1

(1 ) (1 )

b k

k h k r

⋅ + ⋅
− − +

 

  ϕ  =
(1 ) 1

(1 ) (1 )

b k

k h k r

⋅ − ⋅
+ − −

 

 
touch the step-wise curve of the potential and, in that way, they mutually bound it.  One 
can best recognize the form of the potential curve in the case of a small k, where one can 
easily carry out an approximate calculation in exactly the same way that we did at the end 
of section 19. in the case of a positive C.  We again set: 
 

r0 · 
2

2
K

v
pe

+ ⋅
= r2v,  r0 · 

2
(2 1)

K
v

pe
+ + ⋅

= r2v+1, 
 

and we obtain, for small h in the neighborhood of the value r2v: 
 

ϕ  = 4
2 1

2

3 1 1
v

v

r
a r r−

 
⋅ ⋅ + 

 
, 

and, in the neighborhood of r2v+1: 

ϕ  = 2 14
2 2

2 1

3 v

v

r

a r r
+

+

⋅
+

. 

 
With increasing r, ϕ then goes through the following sequence of values: 
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+ 4

2 1

3 1

v
a r −

⋅ ;   + 2 14
2 2

2 1

3 v

v

r

a r r
−

−

⋅
+

; + 2 1
4

3 vr

a r
−⋅ ; 

+ 4
2 1

2

3 1 1
v

v

r
a r r−

 
⋅ ⋅ + 

 
; + 4

2 1

3 1

v
a r +

⋅ ; 

+ 2 14
2 2

2 1

3 v

v

r

a r r
+

+

⋅
+

;  + 2 1
4

3 vr

a r
+⋅ ; 

+ 4
2 1

2 2

3 1 1
v

v

r
a r r+

+

 
⋅ ⋅ + 

 
; 

… 
 

One then sees that in the range between r2v-2 and r2v−1, ϕ will remain at an almost 
constant value for a rather long time.  At r2v−1, the ϕ-curve drops down, and between r2v−1 
and r2v it almost exactly equals a one-sided hyperbola for a long stretch, but once it 
reaches r2v the curve becomes flat again.  Between r2v and r2v+1, it again takes on the form 
of an almost completely horizontal step; between r2v+1 and r2v+2, it goes upwards in the 
form of a forward-pointing hyperbola, and so on. 

The closer that one comes to r = 0, the more frequent the steps become – ultimately, 
they are infinitely frequent – and in this way one also has in this case that, whether or not 
ϕ becomes infinitely large for r = 0 uniquely, the point r = 0 is an essential singularity of 
the function.  Likewise, r = ∞  is an essential singularity, because between any finite r 
and r = ∞  there will still be an infinitude of steps. 

For large values of h the behavior of the function is essentially the same as the case 
that we just described of infinitesimal h, only the steps become finer and finer, in such a 
way that in the case of infinitesimal h one can not distinguish distinctly differing regions 
very well.  Ultimately, when one chooses h = 1/3, k = 0 the steps vanish completely, and 
both of the limiting curves that were computed on pp. ?, between which the step-wise 
curve of the potential goes back and forth, now merge together into the curve: 

 

ϕ  =
3 1

2

b

r
⋅ , 

 
which agrees with the potential curve.  From the definition of b (on pp. ?), we have: 
 

3b =
1

a
, 

 
and, when one sets the arbitrary constant h equal to 1/3, the integral ϕ looks like: 
 

ϕ =
4

1 1

4a r
⋅ . 

 
It is therefore algebraic, and the second arbitrary constant r0 falls out of it. 
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In practically realizable cases, the integral for C < 0 gives us the field in a spherical 
condensor whose two reference potentials are charge with the same sign.  If the potentials 
are low then one can take h to be small, and the field in the interior of the condensor is 
given by the formula: 

ϕ = 4
2 1

2

3 1 1
v

v

r
a r r−

 
⋅ ⋅ + 

 
= A + 

B

r
. 

 
This is the usual formula from electrostatics.  When one is given the potential and field 
strength at a point of the condensor, hence, the quantities A and B, then one can 
immediately compute r2v and r2v−1, and from r2v and r2v−1, one can compute the period of 
the function, hence, the modulus k and r0, as well.  With the field, both integration 
constants are likewise known. 

The formula that was just used is, however, no longer valid when the potential is 
sufficiently small.  Large values of ϕ are associated such strong electrical atmospheres 
that the formulas of conventional electrostatics are no longer useful.  There is no point in 
discussing these unrealizable cases any further. 

 
21.  III.  Case: C = 0.  When one divides equation (39): 
 

2
dr

dξ
 
 
 

= v2 − 4

3

a
· v4 

by 4a / 3 · v4 and sets: 

3 1

2a v
⋅ = w, 

then one obtains: 
2

dw

dξ
 
 
 

= w2 – 1. 

The solution of this equation is: 
w = 1

2 (eξ + e−ξ ). 

If one now sets: 

w =
2

1 3 1

2 a r ϕ
⋅

⋅
, ξ = ln

0

r

r
 

then one obtains: 

(52)    ϕ  = 
2

04
2 2

0

3 1r

a r r

⋅
⋅

+
. 

 
If one then chooses the value 0 for the integration constant C then the essential 

singularities at the point r = 0, as well as r = ∞ , disappear.  The integral now has only 
algebraic singularities, and for real values of r it has no singularities at all. 

One goes from the integral that was discussed in 19 to the function (52) when one 
allows the integration constant h to sink without bound.  The modulus k then rises to 1, 
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and the period 4K becomes infinitely large.  The electric spherical shells that contain the 
shell r0 then expand without bound on both sides.  On the one had, they push the 
infinitude of onion shells that surround the null point down to the null point itself.  On the 
other hand, null surface of the potential is shifted out to infinity completely, in such a 
way that no more electrically charged shells can exist between r = r0 and r =∞ . 

If the value of the potential ϕ on a sphere of radius R is given as ϕ = A then we have 
the following equation for the determination of the integration constant r0: 

 

A2 = 0
2 2

0

3 r

a R r
⋅

+
, 

r0
2 − 02

1 3
r

A a
⋅ ⋅ + R2 = 0. 

2

3

4a A⋅
− R2 > 0. 

 
The field that was represented by (52) is therefore possible only when the potential A 

does not exceed a well-defined large value: 
 

A  ≫ 4
3 1

4 Ra
⋅  

on a sphere of radius R. 
The usual laws of electrostatics thus remain valid when the potential A is sufficiently 

small in comparison to this largest possible value.  This is the case when: 
 

3

a  · A2 · R = ε, 

 
in which ε means a very small number.  One can easily compute approximate values for 
r0, in which ε2 is ignored when compared to 1.  The quadratic equation gives two 
solutions: 

  1. r0 = 2

1 3

A a
⋅ =

R

ε
, 

  2. r0 = 
3

a  · A2 · R2 = εR. 

 
The first value of r0 is infinitely large compared to R; thus, in the interior of a ball of 
radius R (hence r < R), when one deletes ε2 by comparison to 1 the potential is: 
 

  1. ϕ  = 0
4

2 2
0

3 r

a r r
⋅

+
 = 4

2
0

3 1

a r
⋅ = A. 
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By contrast, the second value of r0 is infinitesimal compared to R.  If one again deletes 
ε2 by comparison to 1 then one has, for all values of r > R: 

 

  2. ϕ  = 0
4

2 2
0

3 r

a r r
⋅

+
 = 4

0

3 1
r

a r
⋅ ⋅  =  A · 0r

r
. 

 
By comparison with the usual laws of electrostatics, the first solution then in the 

interior of a hollow ball that is charges with the potential A when no more charge exists 
in an infinitely large region around it.  If one uses the precise formula without neglecting 
ε2, then one can compute the weak electrical atmosphere, which, in our theory, must exist 
inside, as well as outside the ball. 

 
22.  We shall now consider several concentric spheres of radius R1, R2, R3, R4 that are 

charged with potentials of A1, A2, A3, A4 .  Two integrals with C = 0 produce the field in 
the interior of the smallest sphere and the field in the exterior of the largest sphere.  In the 
shells between these two shells one must take the integral with C > 0 or C < 0.  As long 
as the potentials A1, A2, A3, A4 are all sufficiently small one obtains a very good 
approximation for the usual formulas of electrostatics, and the deviation from them is 
unnoticeably small.  In this special case, we then see that the theorem that we discussed 
in general on pp. ? is valid, that there are functions Φ that do not bring one into conflict 
with conventional electrostatics. 

However, we must now address the question of how one can imagine that charged 
spherical surfaces R1, R2, R3, R4 can occur in such a way that they separate any two spaces 
from each other as an instability surface, in which ϕ can take on various integrals.  
Naturally, the charge on such a spherical surface cannot be evenly distributed.  We would 
then have solved the differential equation (37) for the case of spherical symmetry in 
complete generality, and there is nothing about its integrals, which can have 
discontinuities for the values R1, R2, R3, R4, that would correspond to the surface charge.  
The integrals, which must be valid on both sides of such a discontinuity surface, must 
therefore both converge very quickly, but still continuously, to one and the same third 
solution of the general equilibrium condition, which is now no longer spherically 
symmetric, inside a very thin layer on the surface.  It is quite clear that these solutions 
must correspond to an atomistic distribution of charge in the charged surfaces.  It is 
interesting to remark that the theory that I sought did not subsequently give the basis for 
us to choose between a continuous versus an atomistic structure for the charge at all, but 
only that this is completely feasible if it leads to any sort of atoms of electricity. 

 
The problem of the electron. 

 
23.  On first glance, the example that was discussed in the previous chapter seems to 

suggest a world function that must be very carefully chosen, because, in fact, it leads to 
isolated knot singularities of the electrical charge.  Namely, if, in formula (52): 
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ϕ  = 
2

04
2 2

0

3 1r

a r r

⋅
⋅

+
 

 
we choose the integration constant r0 to be infinitesimal when compared to all 
measurable lengths, perhaps the order of magnitude that one generally ascribes to the 
electron radius, then ϕ represents the potential in the neighborhood of a tiny electrical 
knot singularity whose atmosphere is practically equal to zero at any measurable distance 
from the center.  Since the charge density ρ is given by equation (36) ρ = a · ϕ5, we then 
have: 

ρ  = 
2 2

0 04
2 2 5

0

3 3

( )

r r

a r r

⋅ ⋅
⋅

+
. 

 
The total charge e of the knot singularity is then given by integration: 
 

(53)     e = 4π · 
2

04
3 r

a

⋅
. 

 
A simple computation shows that the total charge of the atmosphere of the knot 

singularity outside of a sphere of radius r1 has the magnitude: 
 

e · 

3

1

2 2
1 0

1
r

r r

  
  −
  +   

. 

 
When r1 is large compared to r0, this is only a vanishingly small fraction of e; in fact, the 
charge is then almost completely confined to a small ball. 

In general, the theory provides no elementary quantum of charge.  If one varies the 
arbitrary constant r0 in (53) then one can obtain all possible magnitudes for e, and indeed, 
e can be just as likely have a positive or negative sign.  The “electrons” that one obtains 
from the chosen world function are therefore not irreducible.  Many knot singularities can 
be merged into a single larger one, and a single knot singularity can be subdivided into 
smaller ones, since knot singularities with all possible charges can exist. 

Whether or not this peculiarity corresponds to the actually observed facts, one can 
perhaps believe that such a theory of matter that is constructed out of the world function 
of the example is completely feasible, since the electrical charge of a large body can be 
thought of as due to discrete knot singularities when this does not also lead to the 
property of irreducibility; however, this is a mistake.  From formula (52) and (53) the 
potential at a sufficiently large distance from the knot singularity is always give as ϕ = 
e/4πr.  Equilibrium then dominates in the field of the knot singularity only when there is 
a space that has zero potential.  Among all of the integrals of equation (37), none of them 
represents a knot singularity in a space of a potential ϕ0 that is arbitrarily different from 
zero, in such a way that we have, at a large distance from the knot singularity ϕ  = e / 4πr 
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+ ϕ0, in which ϕ0 means a non-zero constant.  Thus, there cannot be several knot 
singularities near other in equilibrium, as must be the case in a material body.  If there are 
many of them then there must be an immediate reorganization of the charges.  If two 
neighboring knot singularities have the same sign then they must seek to merge into a 
single larger knot singularity for which equilibrium is attained.  On the contrary, two knot 
singularities with differing charges cannot remain close to each other at all.  They must 
flee further and further away from each other in order to come to space with null 
potential.  A world that is governed by the world function: 

 
Φ  =  − 1

2 η2 + 1
6 a · χ6, 

 
must therefore ultimately coagulate into two large clumps of electrical charge − one 
positive and one negative – and these two clumps must always move further and further 
away from each other. 
 

24.  In the general discussion of the equilibrium condition (pp. ? and ?) we pointed out 
that there is an integral with one arbitrary constant that has no singularity at the point r = 
0, also one with one arbitrary constant that is regular at the point r = ∞ .  In general, both 
of these integrals correspond to the two different values of the second arbitrary constant 
that the general integral still contains; they are completely different from each other and 
include the self-explanatory solution ϕ  = 0 as the single mutual special case. 

However, the example that was discussed by us exhibited the peculiarity that both of 
the integrals that we just spoke of were identical with each other.  Namely, when one 
gave the value of zero to the arbitrary constant C (pp. ? and ?) then both of the essential 
singularities at r = 0 and r =∞  simultaneously drop out of the general integral.  This is 
the basis for the fact that the example gives knot singularities, but not elementary 
quantum, and likewise, the fact that the knot singularities can only exist in a space in 
which the potential ϕ = 0 in equilibrium.  Apparently, the amalgamation of the omissions 
of both singularities is connected with the question of whether the differential equation 
(37) on pp. ? is reducible or not, i.e., whether it can be transformed into a first order 
algebraic differential equation by a single equation.  World functions that lead to such 
integrals are therefore not needed. 

If we would seek a world function of the form: 
 

Φ = − 1
2 η2 + 1

v a · χν, 

 
in which ν shall mean an arbitrary even number that is different from 6 and greater than 
four, then we would find no solution without essential singularities(except for ϕ = 0).  
The field in the infinite external space around a charged ball would then be represented 
by a solution that has an essential singularity at r = 0, and the solution that we take for the 
interior of a charged hollow sphere is not regular at r =∞ .  For this choice of world 
function we find no solution at all that represents an isolated spherical knot singularity 
with a finite charge.  We will prove this rigorously in one of the following sections.  
World functions of this form are thus not to be used in any way, shape, or form. 
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If the theory is to be practicable at all then the world function must have a complicated 
form in any case.  The electron will obviously be represented by a solution to the 
equilibrium condition (34) that has a singularity at the point r = 0 that is to be indicated 
function-theoretically as an essential singularity, which, however, gives no physically 
sensible value for ϕ.  An example of such a singularity is the function: 

 

ϕ  = a + b · 
1

re
−

 for r = 0. 
 

The differential equation (34) must then provide, amongst all the integrals that have an 
essential singularity at r = 0, one of them whose singularity is not associated with 
physical senselessness.  This integral must include one arbitrary constant, which can be 
chosen in such a way that ϕ diminishes to an arbitrary, but chosen constant at a large 
distance from the center: the potential of the space in which the electron is found.  For r 
=∞  this integral will generally have an essential singularity that must either drop out or 
have no physical meaning only in the case where the potential of the neighboring space is 
null. 

Whether or not it is amusing to find world function that really leads to an electron, 
nevertheless one must not deny the possibility of that such a world function exists.  
Therefore, in the sequel, I will next simply make the assumptions that bring about a 
world function F that leads to knot singularities of electrical charge in the same way that 
one finds in the electron.  In an eventual continuation of this research, I will compute the 
dynamics of such knot singularities, their inertial mass, and the forces that they 
experience. 
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Chapter Three 
 

Force and Inertial Mass. 
 
 

Computation of the force that acts on a massive particle. 
 

25.  In order to compute the force we use the world matrix (16) that was described in I, 
pp. ?  However, we will make no sort of restricting assumptions on the invariants that 
appear in the world function, but we will assume in full generality that all four of the 
variables that were listed in I, pp. ? enter into H.  A simple calculation gives that the 
theorem that was next discussed on pp. ? under restricted assumptions is true in complete 
generality: 

The world matrix is symmetric about the diagonal. 
If one applies the multiplication rule: 
 

[a · b] · c = (a · c) · b – (b · c) · a 
 

and the formula that one obtains from it: 
 

[[a · b] · c] + [[b · c] · a] + [[c · a] · b] = 0 

 
then one easily finds the following two equations from the general formula (25) in I, pp. 
?: 
(54)    [e · d] + [h · b] + [f · v] = 0, 

(55)    [e · h] + [b · d] + (ρ · f − ϕ · v) = 0, 

 
therefore, when one writes out the components of the expressions explicitly, one has: 
 

ex · dy + hx · by + fx · vy = dx · ey + bx · hy + vx · fy, etc. 

dy · bz + dz · by + ρ · fx = ey · hz + ez · hy + ϕ · vx, etc. 

 
The theorem is therefore proved. 
 

26.  We would now like to represent a material particle, hence, either an electrical knot 
singularity or a more complicated structure that is comprised of similar singularities, that 
moves in a widely extended electromagnetic field.  At an point, let the energy current that 
is associated with the forward motion of the ether state be denoted by s, as in I. (5), pp. 

522.  We then have: 

                                                
 1 Annalen der Physik 37 (1912), 511-534, 39 (1912), 1-40. 
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(56) 

,

,

.

x y z z y x y z z y x

y z x x z y z x z x y

z x y y x z x y y x z

ϕ
ϕ
ϕ

 = ⋅ − ⋅ − ⋅ = ⋅ − ⋅ − ⋅
 = ⋅ − ⋅ − ⋅ = ⋅ − ⋅ − ⋅
 = ⋅ − ⋅ − ⋅ = ⋅ − ⋅ − ⋅

s e h e h v d b d b f

s e h e h v d b d b f

s e h e h v d b d b f

}

}

}

 

 
Furthermore, we would also like to define the three three-dimensional vectors p1, p2, 

p3 by the following equations: 

 

(57) 

1

1

1

2

2

2

3

3

,

,

,

,

,

,

,

,

x x x x x x x

y x y x y x y

z x z x z x z

x y x y x y x

y y y y y y y

z y z z z y z

x z x z x z x

y z y z y z y

z z

Φ − ⋅ + ⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =

Φ − ⋅ + ⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =

Φ − ⋅ + ⋅ +

b h e d b h f v p

e d b h f v p

e d b h f v p

e d b h f v p

b h e d b h f v p

e d b h f v p

e d b h f v p

e d b h f v p

b h e d 3 .z z z z z














 ⋅ + ⋅ = b h f v p

 

 
As we saw in I on pp. ?, namely, eq. (17), the first three rows world matrix give us three 
differential equations that, if we keep (56) and (57) in mind, may be written in the 
following way: 

(58)   

1 2 3

1 2 3

31 2

,

,

.

x x x x

y y y y

zz z z

t x y z

t x y z

t x y z

∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂
 ∂∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

s p p p

s p p p

ps p p

 

 
We would now like to express the energy of a fluid that flows with a certain velocity 

q.  If W is the energy density then, by definition, q is determined from: 

 
(59)    s = W · q. 
 
Furthermore, if we let dM denote the instantaneous total energy of the volume element 
dx · dy · dz = dV then dM = W · dV, and we can also write equations (58) in the following 

way: 

( )xdM
t

∂ ⋅
∂

q = 1 2 3x x x

x y z

∂ ∂ ∂ 
+ + ∂ ∂ ∂ 

p p p
 · dV, 
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( )ydM
t

∂ ⋅
∂

q  = 1 2 3y y y

x y z

∂ ∂ ∂ 
+ + ∂ ∂ ∂ 

p p p
 · dV, 

 

( )zdM
t

∂ ⋅
∂

q  = 31 2 zz z

x y z

∂∂ ∂ 
+ + ∂ ∂ ∂ 

pp p
 · dV. 

 
We would like to integrate these equations over a volume V.  Let: 
 

M =
V

dM∫  

 
be the total energy that is contained in V at the moment in question.  Letq  be the velocity 
of the “mean mass point” in V, which is defined by way of the equation: 
 

(60)    M ·q=
V

dM⋅∫ q . 

 
Furthermore, let S denote the bounding surface of the volume V, let N be the outward-
pointing normal at a point of S, and finally, let pN be a three-dimensional vector that is 

defined by the equation: 
 
(61)   pN = p1 · cos(N, x) + p2 · cos(N, y) + p3 · cos(N, z) … 

 
The components of pN can also be computed in the following way: 

 
pNx = p1x · cos(N, x) + p2x · cos(N, y) + p3x · cos(N, z), etc. 

 
The integration over V then gives the following result: 
 

(62)    
( )M

t

∂ ⋅
∂
q

= NS
dS⋅∫ p . 

 
The volume V is chosen in such a way that it is infinitesimal in comparison to the 

widely extended field, but infinitely large in comparison to the material particle that it 
encloses.  The second condition shall express: first, that the energy of the singularity that 
the material particle possesses is as good as contained in the volume V, hence, only a 
vanishingly small fraction of the total energy exists outside of the surface S, and, second, 
the vacuum laws are as good as exactly valid, hence, one can set ρ and v to zero and e = 

d, b = h.  For this choice of volume, V, M ·q  is the momentum of the particle, and thus its 

inertial mass is identical with its energy M, and the right-hand side of equation (62) gives 
the force that acts on the particle.  Since it follows that the second condition pN is 

identical, up to vanishingly small correction terms, with the components of the Maxwell 
stress tensor on the bounding surface S of the element in question, one obtains a value for 
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the force that is independent of the value of the volume V, assuming that both of the 
aforementioned conditions are satisfied, and, moreover, a value that is completely 
identical with the one that is provided by the electron theory for a material particle that is 
surrounded by precisely the same electric and magnetic field as the particle in question.  
Just like in the theory of the electron, the force thus does not depend upon the particular 
way in which the electric charge and the electric or magnetic dipoles are arranged inside 
of a material particle, as long as the particle produces the same external field, and, in 
particular, it does not depend on the laws that pertain to the effect of the surface tension 
on the particle or the laws that govern the electromagnetic field inside the particle instead 
of Maxwell’s equations.  Precisely the same theorem, which we will next study in the 
case of the translational motion q of the particle, may also be proved for a rotational 

motion with no further assumptions.  The inertial momentum may thus be computed just 
as in ordinary mechanics, in which one always uses the energy in place of the inertial 
mass.  This essentially follows from the fact that (54) implies that p1y = p2x, p1z = p3x, p2z 

= p3y. 

 
The ponderomotive forces that bring a material particle into translational or 

rotational motion may be computed from the electric and magnetic field in which one 
finds the particle according to the same rules as in conventional electricity theory.  The 
existence of a particular four-vector (v, iρ) in the interior of the particle and the 

deviation of the laws of electromagnetic fields from the Maxwell equations inside the 
particle have no noticeable influence on the external ponderomotice forces. 

 
According to our theory, by way of example, the force: 
 

(63)    P = e · (e + [q · b]) 

 
acts on an electron of total charge e that moves in an electromagnetic field with the 
velocity q. 

This expression corresponds precisely with the one that the theory of the electron is 
founded upon. 

On the contrary, the internal forces that act inside of an elementary particle of matter, 
which might perhaps contribute fine structure effects to this particle itself, are completely 
different from the ponderomotive forces of the usual theory of electricity.  However, they 
may not be computed without further knowledge of the world function. 

Among the external forces that affect the material particle, one also finds gravitation.  
From the theorem that we just proved, it follows that the fundamental equations of ether 
dynamics, I. (1) through (4), which we have founded our theory upon, do not, however, 
clarify the issue of gravitation.  The hope that I spoke of at the beginning of my work (I, 
pp. ?, et seq.) is therefore not yet satisfied.  In a later chapter, we will examine how the 
fundamental equations must be extended in order to encompass gravitation, as well. 
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The inertial mass of a material particle. 
 
27.  By the term “material particle” we mean, quite generally, a small region of the 

ether where the state variables take on enormously large values.  In the sequel, we will 
frequently have to evaluate integrals of state variables over the entire volume of the 
particle. We understand that to mean a volume whose outer boundary is sufficiently far 
from the center of the particle that the state variables can be assumed to be infinitesimal 
on it.  Thus, when one chooses the outer boundary of the volume to be completely 
arbitrary, but also such that this definition of particle is “completely” invalid on it, then 
this choice may have no noticeable influence on the value of the integral. 

When we say that a particle is at rest and unchanging, we understand this to mean that 
either all of the state variables are constant in the volume that fills the particle or that that 
the average value of each state variable is constant at each point of the volume over a 
time interval that is infinitesimal compared to that of the experiment itself. 

Let K be, e.g., the value of a state variable at a point (x, y, z) of the particle.  
Furthermore, let τ be a time interval that is infinitesimal compared to that of the 
experiment.  We then have that the average value of which we spoke is: 

 

K =
0

1
K dt

τ

τ
⋅ ⋅∫ . 

 
As is well know, the following equations are valid 1): 
 

K

t

∂
∂

=
K

t

∂
∂

, 
K

x

∂
∂

=
K

x

∂
∂

, etc. 

 
The conditions for the particle to be at rest are then: 
 

t

∂
∂
d

 = 0, 
t

∂
∂
h

 = 0, 
t

ρ∂
∂

 = 0, 
t

∂
∂
v

 = 0, etc. 

 
The following two relations ensue from the fundamental equations (1) through (4): 
 

e · d – ϕ  · ρ = − div(ϕ  · d) – d ·
t

∂
∂
f

, 

b · h – f · v = − div[h · f] – f ·
t

∂
∂
d

. 

 
For a particle at rest, one then has: 
 

e · d – ϕ  · ρ = − div(ϕ · d), 
b · h – f · v = − div[h · f]. 

                                                
 1 H.A. Lorentz, Versuch eine Theorie der electrischen und optischen Erscheinung in bewegten Körpern, 
pp. 13. 
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If we now integrate over the entire volume that encloses the particle and observe that 
one may set ϕ  · d and [h · f] equal to zero on the boundary surface of the volume then we 

obtain for a material particle at rest: 
 

(64)    ∫ e · d · dV = ∫ ϕ · ρ   · dV, 

(65)    ∫ b · h · dV = ∫  f · v · dV, 

 
From I, eq. (7) and (14) on pp. ? and pp. ?, we compute the energy density: 
 

W = H + b · h − f · v = F + e · d − ϕ · ρ. 

 
One then obtains the energy of a material particle at rest from (64) and (65): 
 
(66)    E0 = ∫ H · dV = ∫ Φ · dV. 
 

Let S be any surface without boundary 1) that the particle intersects transversally, and 
let N be the normal to the surface at any point.  Now, assuming that the particle is at rest, 
since lasting variation of the energy can occur on either side of this surface one must 
have: 

(67)    NN
dS⋅∫ s  = 0, 

 
in which Ns is the average value of the components of the vector s that is normal to S.  

From (56), this vector is given by: 
 

s = [e · h] – ϕ  · v = [d · b] – ρ · f. 
 

Laue 2) has proved that, as long as equation (67) is valid – and this is therefore the 
case for any arbitrary material particle – the following theorem also exists: 

 
Laue’s Theorem.  The integral of a single component of the world matrix over the 

volume of a material particle at rest is null, except for the component with the index 4, 4, 
which provides the energy of the particle. 

 
Thus, in general, the average value of each component over a small time interval is to 

be taken, as in equation (67). 
As M. Laue has pointed out, one can use this theorem as a means of computing the 

energy of a moving particle.  I would like to carry out this computation for the theory that 
is being discussed at the moment.  Let the field quantities for a particle at rest at a point 
x0, y0, z0 all be characterized by the index 0.  From the theory of relativity, they give the 
corresponding values at a point x, y, z of a moving particle that has a velocity q along the 

                                                
 1 I.e., either closed or extending to infinity. 
 2 M. Laue, Das Relativitätsprinzip, pp. 168, et seq. 



Foundations of a Theory of Matter III. 61 

z-axis when this point (x, y, z) has a position at the time t that is given by the following 
equations: 

x = x0, y = y0,   
21

x q t

q

− ⋅

−
= z0, 

 
by means of the following conversion formulae: 
 

dx =
0 0

21

x yq

q

− ⋅

−

d h
, dy =

0 0

21

y xq

q

− ⋅

−

d h
, dz = dz0, 

hx =
0 0

21

x yq

q

− ⋅

−

h d
, hy =

0 0

21

y xq

q

− ⋅

−

h d
, hz = hz0, 

ρ = 0 0

21

yq

q

ρ − ⋅

−

v
, vx = vx0,   vy = vy0, vz = 0 0

21

y xq

q

− ⋅

−

d h
. 

 
Precisely the same relations that exist between (d, h) and (d0, h0) are also valid between 

(e, h) and (e0, h0), and, similarly, the same relations that exist between (ρ, v) and (ρ 0, v0) 

is valid between (ϕ, f) and (ϕ0, f0). 

The use of these formulae leads, by an elementary computation, to the following 
equation: 

d · h – f · v  = d0 · h0 – f0 · v0 –
2

21

q

q−
(e0 · d0 − ϕ0 · ρ 0) 

  −
2

21

q

q−
· (ez0 · dz0 − bx0 · hx0 − by0 · hy0 + fz0 · vz0) 

  −
2

21

q

q−
· ([e0 · h0] − ϕ0 · vz0 + [d0 · b0] −   ρ 0 · fz0). 

 
We now construct the timelike average value and integrate it over the volume that the 

material particle fills.  If we then use equations (64), (65), (67) and further note that it 
follows from the definition of the point x, y, z that the following relationship exists: 

 

dx · dy · dz = 21 q−  · dx0 · dy0 · dz0 , 

or: 

dV = 21 q−  · dV0, 
then one obtains: 
 

(68)  
2

0 0 0 0 0 0 0 02
( ) ( )

1
z z z z z z

q
dV dV

q
∫ ⋅ − ⋅ ⋅ = ⋅ ∫ ⋅ − ⋅ − ⋅ − ⋅ ⋅

−
b h f v b h e d b h f v  
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If we let H0 denote the quantity H at the point x0, y0, z0 of the particle at rest then we 
can regard: 

H0 – F(x0, y0, z0) 
 

as a function of (x0, y0, z0).  Furthermore, let (x, y, z) be the point of the moving particle 
that one obtains at the time t by subjecting (x0, y0, z0) to a Lorentz transformation.  Since 
H is an invariant for the Lorentz transformation, its value at the point (x, y, z) of the 
moving particle at the time t must be computed as: 
 

H =
2

, ,
1

z qt
F x y

q

 −
 
 − 

 

 
where F means precisely the same function as before.  From this, it follows that: 
 

(69)   ∫ H ·  dV = 21 q−  · ∫ H0 ·  dV0 =
21 q− ·  E0 . 

 
Now, the energy E of the moving particle is given by adding (68) and (69): 
 

E = ( + )H dV⋅ − ⋅ ⋅∫ b h f v , 

E = 21 q− · 
2

0 0 21

q
H dV

q
⋅ +

−∫ · 0 0 0 0 0 0 0 0( )z z z z z z dV⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h e d b h f v  

 
We can simplify this result further with the help of Laue’s theorem.  Namely, if we 

apply this theorem to the term of the world matrix (16) that has the index 3, 3, then we 
obtain: 

0 0 0 0 0 0 0 0 0( )z z z z z z dVΦ − ⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h e d b h f v = 0. 

 
Therefore, from (66): 
 

0Φ∫ ·  dV = 0H∫ ·  dV = E0, 

0 0 0 0 0 0 0 0( )z z z z z z dV⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h e d b h f v = 0Φ∫ · dV = E0 . 

 
From this, as M. Laue has already prove (Das Relativitätsprinzip, pp. 170), one then 

obtains: 

(70)    E = 0

21

E

q−
. 

 
28.  One can deduce another interesting consequence of Laue’s theorem.  If one 

applies it to the three terms in the diagonal of the world matrix with the indices (1, 1), (2, 
2), and (3, 3) then one obtains: 
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 0 0 0 0 0 0 0 0 0( )x x x x x x dV⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h b h e d f v = E0, 

 0 0 0 0 0 0 0 0 0( )y y y y y y dV⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h b h e d f v = E0, 

 0 0 0 0 0 0 0 0 0( )z z z z z z dV⋅ − ⋅ − ⋅ − ⋅ ⋅∫ b h b h e d f v = E0. 

 
When one adds these terms, one obtains: 
 

   0 0 0 0 0 0 0(2 ) dV⋅ ⋅ − ⋅ − ⋅ ⋅∫ b h e d f v = 3 · E0, 

 
so, keeping (64) and (65) in mind: 
 

(71)  
1

0 0 0 0 0 03

1
0 0 0 0 03

( ) ,

( ) .

E dV

dVρ ϕ

 = − ⋅ ∫ ⋅ − ⋅ ⋅


= − ⋅ ∫ ⋅ − ⋅ ⋅

e d b h

f v
 

 
In addition, one immediately sees from the previous three equations that: 
 

(72)  

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
0 0 0 0 0 0 03

( )

( )

( )

( ) .

x x x x x x

y y y y y y

z z z z z z

dV

dV

dV

dV

 ∫ ⋅ + ⋅ + ⋅ ⋅


= ∫ ⋅ + ⋅ + ⋅ ⋅


= ∫ ⋅ + ⋅ + ⋅ ⋅
= ∫ ⋅ + ⋅ + ⋅ ⋅

b h e d f v

b h e d f v

b h e d f v

b h e d f v

 

 
These equations become particularly interesting when h = 0, v = 0, which is the case 

for the electron. 
In the field of an electron, one has: 
 

(73)  E0  = 1
0 0 03 dV− ∫ ⋅ ⋅e d  = 1

0 0 03 dVϕ ρ− ∫ ⋅ ⋅ , 

and: 

(74)  1
0 0 0 0 0 0 0 0 0 0 0 03x x y y z zdV dV dV dV∫ ⋅ ⋅ = ∫ ⋅ ⋅ = ∫ ⋅ ⋅ = ∫ ⋅ ⋅e d e d e d e d . 

 
29.  For the special case that we discussed in II, pp. ?, the relation (73) is easily proved 

to be true.  If we introduce the static field quantities η = e0, χ = ϕ0 into the world 

function: 
Φ = 2 61 1

2 6 aη χ− + ⋅  

then we obtain: 

E0 =∫ Φ0 · dV = 2 61 1
0 02 6dV a dVϕ− ⋅ + ⋅ ⋅∫ ∫e . 

However, we have: 

d0 =
0

∂Φ−
∂e

= e0,  ρ0 =
0ϕ

∂Φ
∂

= a· ϕ0, 

so we can therefore write: 
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E0 = 1 1
0 0 0 02 6dV a dVϕ ρ− ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫e d . 

 
If one applies (64) to this then the result is (73). 

If we had given the world function in the general form: 
 

Φ = 21 1
2 a ν

νη χ− + ⋅  

 
then a completely analogous computation would give: 
 

E0 = 1 1
0 0 0 02 dV a dVν ϕ ρ− ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫e d , 

 
but the relation (73) would be impossible to satisfy unless ν = 6.  From this, it follows 
that: 
 

Among all of the world functions of the form: 
 

Φ  = 21 1
2 a ν

νη χ− + ⋅  

 
only the case v = 0 leads to isolated knot singularities of electric charge. 
 

If one takes any value for ν then all of the integrals of equation (34) in II, pp. ? must 
have essential singularities, either a singularity at the null point or one at infinity, or both.  
There is therefore no single integral that could represent an electron. 

One sees from this that can occasionally use equation (73) as a criterion for 
determining whether a given form of the world function is consistent with the existence 
of isolated knot singularities or not. 

 
30.  From formula (73), it follows that in the example that we discussed in II, the 

energy of a knot singularity is negative.  It therefore follows in this case that the surface 
tension of the charge contributes negative energy to the positive energy of the electric 
field.  Since d0 and ρ0 are completely distinct from each other in the Hamiltonian 

function: 
H(d0, 0, ρ 0, 0) = Φ0 + e0 · d0 – ϕ0 · ρ 0 = W 

  =
6

2 051 5
02 6 a

ρ−d , 

 
one can also compute both of the total energies separately.  One obtains: 
 

21
0 02 dV⋅ ⋅∫ d = 1

0 0 02 dV⋅ ⋅ ⋅∫e d , 

 
for the energy of the electric field, and: 
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6
05 5

06 dV
a

ρ− ⋅ ⋅∫  = 5
0 0 06 dVρ ϕ− ⋅ ⋅ ⋅∫ = 5

0 0 06 dV− ⋅ ⋅ ⋅∫e d . 

 
for the energy of the surface tension. 

However, if the energy of the particle is negative then the same must be true for the its 
inertial mass.  The knot singularities, of which we spoke in II on pp. ?, thus have a 
negative inertial mass, and they must therefore acquire an acceleration in a force field 
that is in the opposite direction to the force.  On first glance, this appeared to be such an 
absurd behavior, which we were led to in II, pp. ?, by general considerations, that knot 
singularities with the same sign tended to amalgamate together, whereas knot 
singularities with opposite signs tended to repel away from each other, whether or not the 
ponderomotive force of the electric field acted in opposite direction. 

One can deduce a very important consequence of (73): 
 
The necessary and sufficient condition for the inertial mass of an electron to be 

positive is that:  

0 0 dV⋅ ⋅∫ e d < 0 

or: 

0 0 dVϕ ρ⋅ ⋅∫ < 0. 

 
At a great distance from the electron one has e = d, hence e0 · d0 is certainly positive.  

From this, it follows that: 
 
Both of the vectors e and b must have opposite signs in the interior of an electron. 

 
One sees from this that it is completely impossible for the Maxwell equations to still 

be valid in the interior of the electron. 
Likewise, ϕ, since it is precisely the electric potential, also has the same sign as ρ 

outside of the sphere of the electron.  Indeed, ϕ attains its maximum at the point where e 

goes through zero, in order to take on the opposite sign in the interior of the electron.  
Furthermore, in the interior, ϕ must become so strong that it ultimately changes its sign, 
as well, and ϕ0 · ρ 0 becomes quite negative, since the space integral of must be negative. 

 
In the interior of the electron ϕ must have the opposite sign to ρ. 



Chapter Four. 
 

The problem of the quantum action. 
 

Elementary dipole. 
 

31.  When both of the vectors d and e always have the same sign then there can be 

only one sort of elementary particle of matter that is characterized by the fact that div d 

takes on considerable values in its interior.  However, if we can, as we may, from the last 
statement, assume, place very strong fields d and e in opposition to each other then there 

is a second type of elementary particle that one can imagine, in which rot d takes on very 

large values, but div d gets very small.  In these elementary particles, since div d is very 

small the vector d will therefore quickly converge to closed lines, similar to the lines of 

magnetic induction around a small permanent magnet.  We shall call such a particle an 
elementary electric dipole.  The behavior of the vector e in equilibrium is characterized 

by the fact that rot e = 0, whereas div e ! 0 is possible.  The lines of the vector e thus 

surround the dipole like the lines of magnetic force of a permanent magnet; thus, in the 
interior of dipole they are directed oppositely to the vector d.  The possibility of 

elementary dipoles is therefore linked with the condition that the vector e changes its sign 

for very large values of d. 

The precise conditions for the possibility of such particles existing is extremely 
difficult and might also use very little of the intuition that we have gained on the nature 
of the world function.  I will assume once and for all that there is an elementary dipole, 
and then deduce whatever consequences this assumption suggests. 

 
32.  From the theorem that we proved in section 26, we can easily compute the 

ponderomotive force that a dipole experiences in an electric field.  It is precisely the same 
force that an electrical double point with the same electrical moment as our dipole would 
experience, as it is presented in conventional electrostatics; the electrical moment may 
then be computed from the external field.  From this, we see that an electrical field 
mostly exerts a torque on the dipole that makes it seeks to adjust the direction of the field, 
which is very small compared to the force that gives the dipole a translatory motion.  
Thus, external forces will powerfully drive the dipole outward from the atomic bond − 
like electrons – and there is very little hope of finding corpuscular rays that originate in 
the dipole. 

By contrast, one may presume that the dipole, unlike the electron, can experience very 
small internal force effects, similar to ones that the electrical double points suffer in the 
usual conception of electrical fields when both of the charges attract each other.  More 
precisely, one can say nothing about these internal effects, as we saw on pp ?, but 
presumably also look for the electrical field that will unlock the structure of our dipole.  I 
shall now show that too large of an unlocking field will be ruinous for the dipole. 

In the vacuum, where Maxwell’s equations are valid, there are dipoles without 
electrical charge, though certainly not in the equilibrium state; such dipoles are the 
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spherical electrical waves.  According to H. Hertz (Ges. Werke 2, pp. 150), one can 
compute the field of a spherical wave with the help of a function Π = f(r – t), where r 
denotes the radius vector from the center out.  Let z, ρ be cylindrical coordinates, where z 
is the symmetry axis of the spherical wave and ρ is the direction that is perpendicular to 
it.  One then has: 

d�  =
2

zρ
∂ Π−
∂ ∂

, dz  =
1 ρ
ρ ρ ρ

 ∂ ∂Π⋅ ⋅ ∂ ∂ 
, h  =

2

tρ
∂ Π
∂ ∂

, 

 
where the magnetic field h is parallel to the z-axis.  One must observe that in these 

equations r = 2 2zρ + .  If we substitute the value that was given above for Π and denote 

the angle between r and z by ϑ, so that: cos ϑ = z / r, sin ϑ = ρ / r, then one finds the 
following formula: 
 

(75)

2 3

2
2 3 2 3

2

( ) 3 ( ) 3 ( )
cos sin ,

( ) 3 ( ) 3 ( ) 2 ( ) 2 ( )
sin

( ) ( )
sin .

z

f r t f r t f r t

r r r

f r t f r t f r t f r t f r t

r r r r r

f r t f r t

r r

ϑ ϑ

ϑ

ϑ

′′ ′ − ⋅ − ⋅ − = − − + ⋅ ⋅ 
 

 ′′ ′ ′− ⋅ − ⋅ − ⋅ − ⋅ −    = + − + ⋅ + −    
   

 ′′ ′− − = − − ⋅  
  

}d

d

h

 

 
We shall now choose a function for f(r − t) whose first two differential quotients take 

on their values in the interval between a and b, and whose first two differential quotients 
will be equal to zero at the boundary points a and b; let the values that f takes on at a and 
b be A and 0: 

f(a) = A, ( )f a′ = 0, ( )f a′′ = 0, 
f(a) = A, ( )f a′ = 0, ( )f a′′ = 0. 

 
For all r – t > a, we set f equal to the constant A, and for all r – t > b, we set it equal to the 
constant zero. 

With this, the field quantities in the region at a given moment are given by (75): 
 

(76)  
3

2
3 3

,

3
cos sin ,

3 2
sin ,

0.

z

r a t

A

r
A A

r r

ρ ϑ ϑ

ϑ

∞ > ≥ +

 = − ⋅ ⋅


 = + ⋅ −

 =

d

d

h

 

 
This is the field of an electric dipole of moment 4π ·A. 

In the region where a + t ≥ r ≥ b + t, one finds spherical waves with electric field lines 
that flow back into the interior of a ball of radius b + t; hence, d = h = 0 for r ≤ b + t.  
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From this, we see that a spherical momentum wave actually represents an uncharged 
electric dipole. 

An example of a function f, for which one can easily show uniqueness, is: 
 

(77) 

1. , ( ) 2 ,

2. ( ) sin(sin ( ) ( ) ?)

3. ( ) 0.

r t f r t a A
m

r t f r t a m r t m r t
m m

r t f r t
m

π π

π π

π

 ∞ > − ≥ − = ⋅ =

 ≥ − ≥ − − = ⋅ − + − +

 − ≥ − ≥ −∞ − =


 

 
The dipole that we just described is not in equilibrium; rather, its hollow interior seeks 

to expand with light velocity and dissipate into nothing.  Since a continuous transition to 
the spherical wave dipole must be possible for the elementary dipole that we chose – 
when it exists, – it then follows that there is an attainable expansion of the elementary 
dipole, perhaps by strong internal pulsations, for the case of unstable equilibrium, such 
that the dipole, when it goes over into that state, is forced to take the form of a spherical 
wave dipole that dissipates completely, whereas, for a weaker expansion it seeks to return 
to the equilibrium point.  Thus, when there is an elementary dipole, it must be explosive; 
its explosion transforms matter into a light pulse.  Since all transitions are reversible in 
relativity theory, it must naturally be possible for a light pulse to create a new elementary 
dipole.  In order to mathematically represent a spherical wave that moves towards the 
center, which might possibly condense into an elementary dipole, one must replace (r − t) 
with (r + t) in formula (75), and likewise switch the sign of h. 

 
33.  From these considerations, it follows that one should not expect a new 

corpuscular wave, but a light pulse, to follow from the existence of a possible elementary 
dipole.  It might be possible, e.g., for the light in the band spectrum to be emitted by 
exploding dipoles.  The absence of a true Zeeman effect for this light draws attention to 
the fact that it is not excited by electronic oscillations.  When one assumes that each 
radiating atom does not produce merely a single pulse, but a multitude, perhaps 
thousands of pulses in regular intervals, the fine channelization of the bands must 
certainly be understood as originating in the interference due to the fine structure in the 
bands.  The emission of the pulse must be connected with the proper oscillations of the 
atom, and the complicated laws that these proper oscillations must be discovered if we 
are to clarify the notable laws of the bands.  One must naturally fail when one attempts to 
test this theory on the most complicated aspects of band spectra.  Perhaps one can, 
however, enlighten the simpler case of the resonance spectra as a logical consequence of 
pulses, once one proves their existence or nonexistence. 

 
34.  In conclusion, we must remark that it is just as possible for magnetic dipoles to 

exist as it is for electric dipoles.  They are the elementary particles for which ρ and v are 

taken to be very small, and for which rot h is then as good as null, although div h ≠ 0.  

As always, the vector b must, by contrast, satisfy the condition div b = 0 precisely.  Thus, 
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there will be closed curves in the field lines of b for an elementary magnetic dipole that 

appear to be similar to the lines of magnetic induction for a permanent magnet.  On the 
contrary, the lines of vector h will be similar to the lines of magnetic force for a 

permanent magnet and inside the dipole they have the opposite direction to the lines of 
the vector b. 

 
Planck’s quantum of action. 

 
35.  As long as one thinks of the heat exchanging relationship between ether and 

matter in terms of resonators, one will never arrive at an interpretation of Planck’s laws 
of radiation that is free of internal contradictions.  When one thinks of resonators, as one 
will, one must always think of the laws of mechanical oscillators, so energy must be 
emitted and absorbed according to Maxwell’s laws, which is in complete contradiction to 
the existence of quantum effects.  It is self-explanatory that the existence of electrical 
resonators in the atom must be beyond question.  The validity of the Zeeman 
phenomenon, particularly the simple kind that the helium lines exhibit, plainly indicates 
that the sine waves of the line series will be emitted by electrons in the atom that exhibit a 
regular pendulum oscillation.  Moreover, the Zeeman phenomenon certainly shows that 
one can completely attribute the motion of the oscillating electrons to the laws of 
mechanics by means of forces that obey the usual rules of the theory of electricity.  
However, from this it is absolutely necessary that, from the laws of mechanics and the 
theory of electricity, the oscillating electrons can continually absorb energy, and from 
Maxwell’s laws, it can also emit it back again.  If one would rather avoid contradicting 
the accepted meaning of the Zeeman phenomenon then one must also accept that the 
aforementioned quantum theory is not applicable to the electronic oscillations.  
Therefore, there is nothing else to say about this, since it certainly leads to a large number 
of consequences in which quantum effects play no role whatsoever.  One thinks, to take 
an example, of a cathode ray particle that flies between the poles of an electromagnet 
with a large velocity.  Whenever the electron is in the space between them the magnetic 
field must be excited for a particular instant so that the path of the particle must assume 
the form of a closed circle.  Now, the particle emits a wave that gets briefer as the 
magnetic field gets stronger.  Naturally, this emitting particle suffers no quantum effects, 
and, as a result, one can give no upper bound on its oscillations.  At the very least, one 
can think of long infrared waves being produced in this fashion quite well. 

These considerations in no way contradict the appearance of quantum effects in the 
exchange of heat between matter and ether.  It only leads to the idea that we must ascribe 
a truly essential role to the electronic oscillations in this heat exchange.  Of course, 
resonators, when they are not coupled with any other mechanisms, certainly do not 
mediate the exchange of heat between ether and matter; when they do not absorb 
radiation they only scatter it.  One imagines a hollow space that is surrounded by a 
reflecting wall, and in which, very many electrical resonators are distributed.  If one 
allows any radiation to enter this hollow space then the resonators do not alter the 
spectral composition of the radiation at all, nor does it alter the blackbody radiation, …(?)  
It is therefore quite obvious that one can do without the resonators completely if one 
wishes to understand the exchange of heat between matter and ether, since their 
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contribution to the behavior is of a secondary nature and theoretically it represents only 
an unnecessary complication. 

In section 32 we have just learned of the possibility of radiation that is not produced 
by resonators.  During the previously described explosion of a dipole, the energy of 
matter will be immediately transformed into the energy of radiation.  An elementary 
dipole, just like an electron, must then be regarded as an elementary building block of the 
atom.  It takes part in the internal motion of the atom and might sometimes take on such 
an unusually large energy that it crosses its stability envelope and explodes.  With that, it 
and all of its internal energy is transformed into an impulse wave. 

The explosion of a dipole has an exact analog in the emission of an electron from an 
atom.  This emission then takes place when an electron is in a state of motion that is so 
violent that it passes beyond a certain stability limit in the atom.  Just as the kinetic 
energy of a free electron, which can assume various values, whose violent motion leads 
to its emission from the atomic bonds, so will the pulse wave that is produced by the 
exploding dipole have incommensurably many energies, depending upon the violence 
with which the stability limit is exceeded.  The more violent the transition the higher the 
energy of the pulse wave; similarly, when the duration of the transition becomes quite 
small, so does the width of the impulse.  If we assume that there is only one kind of 
dipole then there will be one definite degree of violence for the transition, hence, one 
definite impulse width, and always the same quantum of energy, which increases with 
decreasing impulse width. 

 
The radiation that an exploding dipole produces must be quantized, assuming that 

there is only one sort of elementary dipole, and furthermore, the energy quantum must be 
a radiation pulse that gets bigger as the impulse width gets smaller. 

 
Since electron emission and dipole explosion are very closely related transitions, one 

must expect that both of them go hand-in-hand.  In fact, one can observe this in the case 
of fluorescent particles.  On the other hand, since the two transitions are not causally 
linked to each other, one must expect that generally valid qualitative laws do not govern 
their common behavior. 

Even more difficult than the problem of the emission of radiation in the theory that we 
are presently treating is the question of absorption.  Absorption must naturally be 
synonymous with the creation of material dipoles by the concentration of radiant energy.  
Obviously, one must assume that every exploding dipole in an atom leaves behind a germ 
on which subsequent radiation can easily condense.  One would then do well to first 
approach the question of absorption in earnest, when experimental exploration teaches us 
something of the possibility of the theory of elementary dipoles, and, in the affirmative 
case, to give more substance to a precise elaboration of the theory. 

 
36.  The question now arises of what the intuitive meaning of the quantum effect in 

our theory might be.  As for that question, one must remark that this meaning will further 
depend on the details of the theory that we have, for the moment, left completely 
undetermined.  Thus, in the sequel, when we seek a meaning for the quantity h, after 
making an additional assumption that we add to the theory, then we must not forget that 
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another specialization of the theory can lead to other meanings.  We thus make the 
following: 

 
Additional assumption:  The impulse wave of the exploding dipole has the same form 

for all impulse widths. 
 
The function that was introduced in (75) for the computation of the wave shall then 

have the form: 
f(r – t) = ϕ m(r – t), 

 
in which ϕ is a universal function and m is a factor that can take on all possible values.  
The factor m is inversely proportional to the impulse width. 

With this assumption, I can prove the following theorem: 
 
The number of closed electrical field lines that are in the hollow spherical vortex ring 

that is created by the explosion of a dipole is a universal constant, and the quantum of 
action h is nothing but the square of this constant, multiplied by a numerical factor that 
depends only upon the choice of units. 

 
On the boundary surface of a very large ball of radius r, the field quantities are 

computed from (75), after ignoring the higher negative powers of r, as follows: 
 

   d = m2 · ( )m r t

r

ϕ ′′ −
· sin ϑ, 

   h = m2 · ( )m r t

r

ϕ ′′ −
· sin ϑ. 

 
d points along the longitude circles of the sphere and h points along the latitude circles.  

The following total energy passes through a spherical area of width dϑ, whose spherical 
area is 2πr2 · sin ϑ · dϑ, and during the time interval t: 
 

dE = d · h · 2πr2 · sin ϑ · dϑ · dt = 2π · m4 · ϕ ′′  · sin ϑ · dϑ · dt. 

 
When we let a and b denote the limiting values of r – t, between which the spherical 
wave is trapped, as we did above on pp. ?, then the values a′ = m · a andb′ = m · b are 
independent of our additional assumption on m.  We further set m(r – t) = ω, which then 
makes the energy of the impulse wave: 
 

E = 2π · m3 · 2 3

0
( ) sin

a

b
d d

π
ϕ ω ω ϑ ϑ

′

′
′′ ⋅ ⋅ ⋅∫ ∫ . 

If we set: 

(78)    2( )
a

b
dϕ ω ω

′

′
′′ ⋅∫ = α 

 
then a is a quantity that is independent of m, and: 
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(79)    E =
8

3

π
· α · m3. 

 
We now imagine that the impulse has been decomposed into a continuous sequence of 

sine waves, as in Fourier’s theorem.  In precisely the same way, a spectroscope would 
resolve it into a continuous spectrum.  We may assume that the form of the function ϕ is 
such that the spectrum of the impulse is a rather narrow band whose mean wavelength 
may be called λ.  The corresponding mean frequency ν is then computed from: 

 

ν =
c

λ
, 

 
and Planck’s radiation theorem is identical with the theorem that: 
 

E = h · ν. 
 

If we now observe that the quotient: 

(80)     
m

ν
= β 

 
is a number that does not depend on the impulse width then, from (79), we obtain: 
 

(81)    h =
8

3

π
· α · β · m3. 

 
8π · α · β / 3 is a numerical factor that does not depend on the impulse width. 

We now like to compute the number of field lines that comprise the vortex ring of the 
impulse.  To that end, we consider the equatorial circle (ϑ = π/2).  Through it, and during 
the time interval t, a number dn of electrical field lines crosses it transversally, which is 
easily computed from: 

dn = 2πr · d · dt = 2π · m2 ·ϕ ′′ · dt. 

 
If we now set the argument ω in the functionϕ ′′ tob′ , where it is null and increasing 

then we must ultimately come to a valuec′ of the argument where the sign ofϕ ′′ changes, 
in order to be null again at the other limita′ .  c′ , likea′ andb′ , is independent of the 
impulse width, and likewise, the integral: 

 

(82)    ( )
c

b
dϕ ω ω

′

′
′′ ⋅∫ = − ( )

a

c
dϕ ω ω

′

′
′′ ⋅∫ = γ. 

 
The total number of lines that comprise the electrical field vortex is: 
 

(83)     n = 2πγ · m. 
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By combining (81) and (83) one ultimately obtains: 
 

(84)    h = C · n2, C =
2

3π
·

2

α β
γ
⋅

. 

 
C is a numerical factor that is independent of the impulse width.  The theorem is thus 
proved. 

With this assignments the quantum action − or, more precisely, the square of the 
quantum action − is a quantity that is completely analogous to the quantum of electrical 
charge.  Just as the latter gives the number of field lines that terminate in the electron in 

the form of a knot singularity, h represents the number of field lines that comprise the 
dipole in the form of a cluster, at least after its explosion.  It is perhaps of interest to 
compare these two numbers.  Indeed, an unknown factor C enters into (84) that will 
depend on the form of the function ϕ.  In order to have, at the very least, some idea of the 
order of magnitude of the number n, we would like to introduce a completely determined 
function that was already mentioned in the example (77) on pp. ?, hence: 

 
ϕ ′′ = − a · sin m(r – t). 

 
One then computes the constant C from the equation: 
 

C =
3 C

π
⋅

, 

 
where c shall mean the velocity of light.  However, the number n can be computed this 
way only in the system of electrostatic units in which the known factor 4π has been 
removed (d = e, div d = ρ).  If we compute the number of field lines in the practical unit 

of Coulomb, and we then denote it by N, then if we set: 
 

N =
10

4c π⋅
 · n, 

equation (84) then looks like: 

h =
24

800

cπ ⋅
· N2. 

 
If we introduce the value of h: h = 65.5 · 10−28, then we obtain: 

 
N = 129 · 10−20 Coulomb. 

 
The elementary quantum of electrical charge is: 

 
e = 15.6 · 10−20 Coulomb. 
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From the special assumption thatϕ ′′ = a · sin m(r – t) one then obtains the number of 
electrical field lines that comprise the vortex cluster of an elementary dipole as almost 
exactly eight times the elementary electric quantum.  In any case, both of the quantities, 
N and e, lie in roughly the same range of magnitude, and N is larger than e. 
 
 
 
 
  



Chapter Five. 
 

Gravitation. 
 

The extended fundamental equations of ether dynamics. 
 

37.  We saw on pp. ? that the surface tension we chose for an electric charge, along 
with the electromagnetic field, still did not suffice to clarify all of the forces that act in 
the material world.  We are still lacking gravitation, and we are now compelled to extend 
the system of fundamental quantities, in which we have considered (I, pp ?) only the 
fewest number of quantities possible, namely, only the six-vector (h, −i·d) and the four-

vector (v, iρ). 

What we must do next is to consider gravitation as an energy that lives in the surface 
tension.  However, if we wish to agree upon the validity of the principle of relativity then 
we cannot introduce the energy for its own sake into the extended equations, where the 
energy density is the last term in the world matrix in relativity theory; it must therefore 
already enter into the entire matrix as such in the equations.  If one seeks to link the 
matrix with any other four-dimensional quantities through four-dimensional operators, in 
order to obtain equations in this way that satisfy the causality principle (I., pp. ?), as well 
as the energy principle, then one comes up against insuperable difficulties.  For a long 
time now, I have sought for such a link that would lead back to the existing system of 
equations, with great pains, and I am convinced that it is completely impossible to arrive 
at a theory of gravitation in this way that obeys both the principle of relativity and the 
energy principle. 

On the other hand, one reaches this goal quite simply and easily when one attributes 
the work due to surface tension, not to the term W, but to the quantity H that was defined 
in I on pp. ?? by way of equation (7) as H = W – b · h + v · f.  As long as the velocity of 

the elementary particle of matter is small compared to the velocity of light, one cannot 
experimentally distinguish whether W or H equals the action due to gravity.  From 
equations (69) and (70), we have, for a moving mass particle: 

 

   ∫ H · dV = 21 q−  · E0, 

   ∫ W · dV =
2

1

1 q−
 · E0, 

 
in which the integral is to be taken over volume that the particle fills up, E0 is the energy 
of a particle at rest, and q means is its velocity over the velocity of light.  One thus sees 
that both of the integral are not noticeably distinct in practical terms. 

Now, the quantity H is, however, a four-dimensional scalar, and this means that the 
differential operator can be applied in only one fashion; it gives a four-vector: the 
gradient of the scalar.  Conversely, one can also link the four-vector with a scalar by 
applying the “divergence” operator.  On the other hand, a six-vector cannot lead to a 
scalar by means of a four-dimensional operator of first order.  From this, it follows that: 
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The gravitational field must necessarily be represented by a four-vector, not a six-
vector. 

 
This theorem rests completely on the assumption that the gravitational mass is to be 

computed by means of a four-dimensional scalar, namely, the quantity H.  Otherwise, if 
the gravitational mass density were the fourth component of a four-vector, it would be 
like the electric charge density.  The gravitational field would be given by a six-vector, 
like the electromagnetic field.  As far as I see, it is impossible to find a four-vector whose 
fourth component is close to the energy density, and the theory of gravitation, in which, 
according to O. Heaviside 1), H. A. Lorentz 2), R. Gans 3), the gravitational field behaves 
just like the electromagnetic field, can therefore either fail to be consistent with the 
principle of relativity or the gravitational mass can be unequal to the inertial mass. 

In order to present the equations of the gravitational field, we now proceed just as we 
did in the presentation of the electromagnetic field equations in I, sections 2 to 5.  We 
assume that in order to give a complete description of the material world, along with the 
six-vector (h, −i·d) and the four-vector (v, iρ), it necessary to also consider a second four-

vector (g, i·u) and a scalar ω.  This system of quantities runs parallel to a second one that 

is completely determined when all of the quantities of the first system are given.  We 
already know that in the second system the six-vector (b, −ie), the four-vector (v, iρ), 

which now depends not only on (h, −id) and (v, iρ), but also on (g, iu) and ω.  In 

addition, we must introduce four-vector (t, iw) and a scalar H, which correspond to (h, 

−id) and (v, iρ).  The scalar H shall be essentially identical to the quantities that were 

defined in I., pp ?.  Just like the energy density W it therefore depends not only on (h, 

−id) and (v, iρ), but also on the quantities of the gravitational field, hence (g, iu) and ω, 

and the relation (7) must consequently experience a slight modification.  We now apply 
one of the two possible four-dimensional vector operations to (g, iu) and ω, and the other 

one to (t, iw) and H.  In this way, we obtain the one possible form for the laws of 

gravitation that is in harmony with the principle of relativity: 
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 1 O. Heaviside, Electromagnetic Theory 1., pp. 455, 1894. 
 2 H. A. Lorentz, Vers. Kon. Ak. Wet. Amsterdam 8., pp. 603, 1900. 
 3 R. Gans, Physik, Zeitschr. 6, pp. 803, 1905. 
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(86)   yx z w

x y z t

∂∂ ∂ ∂+ + +
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tt t
= − γ · H. 

 
Here, γ shall mean a universal constant.  Equations (85) are equivalent to the following 
ones: 
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(88)    
t

ω∂
∂

= − u. 

 
Equations (86), (87), (88) collectively define a system of five independent equations, 

each of which includes a first differential quotient of one of the five state variables with 
respect to time.  The causality principle is therefore satisfied. 

 
The complete system of fundamental equations for ether dynamics including 

gravitation is comprised of equations (1), (2), (3), (4), (86), (87), (88). 
 
With the nomenclature of four-dimensional vector analysis, one can also write 

equations (85) to (88): 
    (g, iu) = Γραδ ω, 

    div(t, iw) = − γ · H, 

    rot(g, iu) = 0. 

 
The system of equations (85) and (86) formally agrees with the ones that M. Abraham 

1) based his theory of gravitation upon when one sets the vectors (g, iu) and (t, iw) equal 

to each other.  In his theory M. Abraham started with the assumption that the density of 
the gravitating mass (which he called ν) is a four-dimensional scalar, and since he 
employed the methods of relativity theory in the cited work then he necessarily arrived at 
this system of equations, which is the only one that relativity theory can deliver. 

 
38.  The first question that must be addressed is whether the principle of energy is also 

satisfied when we add equations (86), (87), (88).  We will thus multiply equations (87) by 
the components of a three-dimensional vector − say a, − multiply equation (86) by a 

scalar s, and then we add the equations.  The terms that contain differential quotients of 
the coordinates are then: 

                                                
 1 M. Abraham, Physik. Zeitschr. 13, pp. 1, 1912. 
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Since this expression represents a divergence, one must have: a = f, s = u.  With this, we 

have found the last part of the energy equation: 
 

div(u · t) + t ·
t

∂
∂
g

 + u · w

t

∂
∂

 − γ · H ·
t

ω∂
∂

= 0, 

 
in which, from equation (88), the last summand for u is replaced with the value /w t∂ ∂ . 

When we add the gravitational action we then obtain the total energy current: 
 

(89)    s = [e · h] – ϕ · v + u · t 
 
instead of I, equation (5) on pp. ?, and furthermore, the total variation of the energy 
density: 
(90)  dW = e · dd + h · db – ϕ  · dρ – v · df + t · dg + u · dw – γ · H · dω. 

 
The function H must now be defined by the following equation: 
 

(91)    W = H + h · d – v · f + u · w 

 
instead of equation (7) in I, pp. ?  From (90), it then follows that: 
 
(92)  dH = e · dd + b · dh – ϕ  · d ρ – f · dv + t · dg − w · du – γ · H · dω. 

 
Since H is a function of the following variables: (d, h, ρ, v, g, u, ω), we then have: 

 

(93)  
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From the last equation in (93), it follows that: 
 
(94)   H = e−γω ·  H′(d, h,  ρ, v, g, u). 

 
If we now define: 



Foundations of a Theory of Matter. 79 

(95) 
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in which the primed quantities all depend on (d, h, ρ, v, g, u), but not ω, then we have: 
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If equations (93) are satisfied then the energy principle is still valid for the extended 

fundamental equations, and if all of the variables in H appear only in combinations that 
are invariant under Lorentz transformations then the relativity principle is also valid. 

 
We have thus succeeded in presenting a theory of gravitation in which not only the 

energy principle, but also the relativity principle is valid. 
 
I would like to place particular weight on this last fact, since an Ansatz in the theory of 

matter that we develop here that contradicts the principle of relativity must be rejected 
immediately.  M Abraham maintained the viewpoint in his work on gravitation 1) that 
gravitation and relativity theory are not compatible with each other.  If this were the case, 
then one must reach the conclusion that gravitation is a so-called “purely external” field 
that is indifferent to the existence of matter.  It then, as I shall assume, belongs to the 
forces that essentially determine the form of elementary particles of matter and the entire 
inner structure of the atom, and if it did not obey the principle of relativity then it would 
be unthinkable that the elementary particles of matter and forces that bind them together 
into atoms, molecules, and tangible bodies can, by a complete general motion of the 
matter through space, avoid the variation that leads to the contraction of matter that was 
shown in the Michelson experiment.  On the other hand, I also believe that one will come 
up against very great difficulties when one tries to treat gravitation as an effect that plays 
no appreciable role in the internal motions of atoms, and I then believe that one must give 
up the viewpoint of M. Abraham, as long as the theory of gravitation is not to be treated 
as detached from the theory of matter.  It therefore seems to me that it is very important 
that one can bind gravitation and relativity theory in such a simple fashion as we just did. 

It must still be noted that Hamilton’s Principle, in the form that we learned in I, 
section 10, is also valid for the equations (86), (87), of extended ether dynamics.  The 
proof of this presents no hardships. 

 
Invariants.  

  
39.  The number of invariants will be significantly increased by the addition of the 

gravitational quantities.  Along with the gravitational potential ω, four more quantities (t, 

                                                
 1 M. Abraham, Ann. d. Phys. 38., pp. 1056, 1912. 
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iw) must be added to the four in I on pp. ?, and the functionH′ in (94) can therefore 
depend upon possibly eight independent variables.  One can then take the following 
combinations of state variables: 

 

(97)  

2 2

2 2

2 2

2 2

2 2

,

( ),

,

( ]) ( ) ,

,

( [ ]) ( ) ,

( ) ,

( [ ]) ( [ ]) ( ) ( ).

p

q

s

u

u

h u

u

σ ρ
ρ

κ

ρ
ρ

 = −
 = ⋅
 −
 = ⋅ ⋅ − ⋅

 −
 = ⋅ − ⋅ − ⋅
 = ⋅ − ⋅


= ⋅ − ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅

d h

d h

= v

h-[v d v h

= g

t h g d g h

g v

b h v d h g d v h g h

 

 
By the methods of four-dimensional vector analysis, the proof leads to the fact that all 

of the other invariants may be computed from these eight invariants.  However, I would 
prefer to not give that proof here. 

Likewise, I would also prefer not to write the formulas that are analogous to formulas 
(25) in I, pp. ?, for computing , , , , ,wϕ′ ′ ′ ′ ′ ′e b f t  from the function H′, since they are quite 
easy to deduce. 

 
The differential equation of the electron. 

 
40.  The following quantities are naturally also invariants for the Lorentz 

transformation: 
e · d – b · h = e−γω · ( )′ ′⋅ − ⋅e d b h , 

ϕ  · ρ – f · v = e−γω · ( )ϕ ′ ′⋅ − ⋅f v} , 

t  · g – w · u = e−γω · ( )w u′ ′⋅ − ⋅t g . 

 
For many purposes, it is more convenient to use a different function in place of H, one 

that differs from it only by a summand that we will construct out of the aforementioned 
invariants.  Exactly as in I, pp. 524, we shall now define: 

 
(98)  F = H – (e · d – b · h) + (ϕ ρ – f · v). 

 
We can also set: 
 

(99)  
,

( ) ( ),

e

H

γ ω

ϕ ρ

− ⋅ ′Φ = ⋅Φ
 ′ ′ ′ ′ ′ ′Φ = − ⋅ − ⋅ + ⋅ − ⋅ e d b h f v
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in which ′Φ is a quantity that depends upon only the variables d, h, ρ, v, g, u, but not on 

ω.  Since ( , , , , ,wϕ′ ′ ′ ′ ′ ′e b f t ) can be computed from the variables (d, h, ρ, v, g, u), one can, 

conversely, compute (d, h, ρ, v) from ( , , , , ,uϕ′ ′ ′ ′e b f g ), and one may then consider′Φ to 
be a function of this new system of variables: 
 
(100)  Φ = e−γω · ( , , , , , )uϕ′ ′ ′ ′ ′Φ e b f g . 
 
Now, from (99) and (95), it follows that: 
 

d ′Φ = − d ·d d d d d w duρ ϕ′ ′ ′ ′ ′ ′+ ⋅ + ⋅ + ⋅ + ⋅ − ⋅e h b v f t g , 

hence: 

(101)  

, , , ,

, .w
u

ρ
ϕ

′ ′ ′ ′∂Φ ∂Φ ∂Φ ∂Φ = − = − = − = − ′ ′ ′ ′∂ ∂ ∂ ∂
 ′ ′∂Φ ∂Φ ′ ′= − = −
 ∂ ∂

d h v
e b f

t
g

 

 
In the case of an electron at rest the quantities,′ ′b f , u are a constant that equals zero, 

and the remaining three depend only upon the distance r.  I set: 
 

(102)   

,

,

.

d
X e

dr
Y e

d
Z

dr

γω

γω

ϕ

ϕ ϕ
ω

+

+

 ′= = − ⋅


′= = ⋅

 = =


e

g

 

 
We thus have a function′Φ of only three variables: 
 

′Φ (X, Y, Z). 
However, since: 

X = − Yd

dr
 + γ  · Y · Z, 

 
we have, in reality, only two unknown variables, Y and Z, and the derivative of one of 
them, dY / dr , in ′Φ . 

We then have the following two differential equations for these two unknown 
variables: 

   2
2

1
( )

d
r

drr
⋅ ⋅ d = ρ, 

   2
2

1
( )

d
r

drr
⋅ ⋅ t = − γ · H, 

or: 
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(103)  

2
2

2
2

1
( ) 0

1
( ) 0.

d d d
r

r dr dX dY
d d d d d

r X Y Z
r dr dZ dX dY dZ

γ

′ ′Φ Φ ⋅ ⋅ + =
 ′ ′ ′ ′Φ Φ Φ Φ  ′⋅ ⋅ + ⋅ Φ − ⋅ − ⋅ − ⋅ =   

 

 
If one wishes to discuss the problem of the electron with consideration to gravitation 

then one must replace equation (34) in II, pp?, with these two equations.  By the way, one 
can also eliminate the unknown Z and its derivative from the two equations by the usual 
procedures of differential equations.  One then obtains a third order equation for the 
unknown Y = eγω · ϕ, whereas (34) was an equation of second order for ϕ. 

 
The world matrix. 

 
41.  (…) 


