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First Communication.

Introduction.

1. What the recent experimental facts about the behavViatoms say is essentially in
the negative, namely, that the laws of mechanics hadviaxwellian equations are no
longer valid in their interiors. However, these exmenmntal facts say nothing about just
which equations must replace these equations or what vieinguree must take in order to
satisfy the most noteworthy facts that go by the nafrguantum effects, much less the
laws of atomic spectra, and so on. | believe that most not merely wait for some
appropriate sort of experiment to change all of thixperiment and theory must work
hand-in-hand, and that is not possible as long as theythas no basis upon which one
might found it.

It therefore seems to me that in order for our knowledgadivance it is necessary to
create a new foundation for the theory of matterthtnwork that follows, | have sought
to make a start in this direction, but one must not éxpem the difficulty of the subject
that correspondingly tractable experimental resultsewevolved. The next goals that |
set for myself are to clarify the existence of inglile electrons and to find an
unavoidable connection between the facts of gravitatiwhthe existence of matter. |
believe that one must begin at this point becauseldwrical and gravitational effects
are certainly the immediate statements of the fotleatsthe existence of matter must rest
upon. It is meaningless to think of matter whose smatlesstituents do not have
electrical charge, and just as meaningless to think ofematthout gravitation. Only
when both of the stated objectives are reached wi# be able to think about the
complexities, of which | spoke above, that appear in cotipmevith bringing the theory
into unified entity. However, there is another wayr@éach both of the aforementioned
goals, and in the sequel | shall present only the prelimivark that might perhaps take
us in that direction.

The basic assumption of my theory is thkctric and magnetic fields also exist in the
interior of electrons. According to this way of thinking, electrons, and themefthe
smallest constituents of matter, are not distinct ftbenether. They are not, as has been
believed for twenty years, foreign particles in thieeet butthey are only places at which
the ether takes on a particular state that we give the name adfieddécharge. Indeed,
the enormous intensity of the field and charge at ploatt, which we have called an
electron, in itself suggests that the usual Maxwell equsigwe no longer valid. The use
of electromagnetic fields in the electron will presmbly seem strange when one
considers the laws of the “pure ether.” However,afave to speak of an electromagnetic
field in the interior of an electron in any sense@nthive must not understand this to mean
that it is impossible to make a continuous transitiomnfconsidering the “pure” ether to
considering the ether inside an electron. Thereforeny theory the electron is not a
sharply defined region of the ether, but it possessesreel that goes continuously over
into an atmosphere of electric charge that exteadsfinity, although it is already so
extraordinarily thin near the kernel that that one cannmgine any experimental
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verification of this. An atom is an amalgamation dage number of electrons that are
held together with a comparatively weak charge of oppssgn. Atoms are obviously

surrounded with a powerful atmosphere that is nevedbeddways so thin that no

noticeable electrical field remains, although it migavdnsome influence in gravitational
effects.

One might perhaps think that one can make little progsass the aforementioned
basic assumption. However, one is led to a genenal for the fundamental equations
of ether physics when one adds two more assumptionsfir$hene is thathe principle
of relativity shall have a general validitand the second one is thtae hitherto known
states of the ether, namely, electric field, magnetic fiéatrec charge, and current are
completely sufficient to describe everything that one can obserwe imaterial world.
The justification for the first assumption is complgt beyond doubt. Whether the
second one is equally justifiable is yet to be determioad;must examine it next. One
is then left with a theory that correctly reproduces tiaterial world, so it is therefore
justified. In the contrary case, one must ask the muesf how one is to extend the
fundamental quantities.

In what follows, | will first present the considerat®that led me from the three
assumptions that were made above to a general fortmdogquations of the ether in a
rather detailed fashion, in order to facilitate a discus®f whether the form that |
assumed is possibly unique, or whether there are not petrgysdundamental equations
for ether physics that are consistent with the tlisseimptions. | confess that | have yet
to find any other possibilities. The fact that | haveuas=d the validity of the principle
of the conservation of energy and that energy exalized quantity is self-explanatory.



Chapter One

The Field Equations
General Form of the field equations.

2. When one examines the Maxwell equations, which aregresented in the form
that Minkowski gave to them, one immediately sees ttiea four-dimensional six-vector
of “electromagnetic field strength” is not, by itsedfjfficient to completely describe all
phenomena in space and time. A self-explanatory fouckethe “four-current,” must
therefore appear in Maxwell's equations, which is thstliéhat must be added to them in
order to make the description complete.

By assumption, the time component of the four-currerihe charge density —
represents a singular property of the universal ethetdkas on a noticeable magnitude
at only one point, and it brings with it the consequédheagéthe electric field line simply

vanishes at this point, in order for dito be non-zero. We can therefore take the value
of div 0 to be a measure for the new state of the ether:

p =div.

Likewise, the space components of the four-currethe electric current — describe

a singular property of the ether that takes on noticealees only at a single point, and
that it brings with it the introduction of a vortexanthe magnetic field) that cannot be

compensated for by a timelike variation of the eledteill 0. From this, we can use the
difference roth —0 as a measure of the new state of the ether:

roth -o=v.

3. We now make use of the basic assumptions that we ingddnd. In order for
the “electromagnetic field” and “four-current” to deseri collectively all of the
phenomena in the material world, the causality princgpiils that one must impose ten
differential equations upon the ten components of the statiables, h, p, v, whose

left-hand side is always a differential quotient of finst order in time of one of these
variables or a function of it, whereas a functiontloé variables and their spacelike
differential quotients appears in the right-hand side. y@mfough such a system of
equations does the distribution of the etheora given moment always determine the
distribution at the next moment after an infinitedirtimme dt has elapsed, which thus
satisfies the causality principle.

If the relativity principle is to still remain valid thehe differential quotients in these
equations must describe vectorial differential operatordour-dimensional variables;
this reduces the number of possibilities considerablye @mmediately sees e.g., that
only differential quotients of the first order in theoecdinates can appear, that all of the
differential quotients appear to the first power, etc.
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Ultimately, one must have that the equations must agevi® the Maxwell equations
in the “pure” ether, in order for the transition fromtteato ether to be gradual. In order
for the existence of true magnetic charges to be exclusedmust therefore characterize
the magnetic field by means of a quantitthat above all must have the property that div

b = 0. We then come to the equations:

(1)
(2)

and, indeed, one must have that in the pure étieeientical toh ande is identical tob.
On the contraryg andb can be complicated functions of h, o, v in the interior of

matter. Equations (1) and (2) can only superficially réderthe Maxwell equations.
Since at least half of them are no longer linearldhe of the fields inside the atom are
completely different from those of the pure ethed ane can give no electromagnetic
waves there, by way of example, whose existence @sjihear equations and the like.

In what follows, we shall therefore clearly distimgiu between the two “intensity
variables:” electric field strengtk and magnetic inductiorb, and the “quantity

variables:” electrical displacememiand the magnetic field strendgjh The superposition
principle for the electromagnetic field valid only etpure ether, which we shall express
bye=0,b=b.

In the nomenclature of four-dimensional vector anal§)siquations (1) and (2) take
the following form:

(1a) A-v(h, —i0) = (v, i),
(2a) A-\(e, ib) = 0.

All that remains for us now is to give the four corresping equations for the four-
vector @, 10). There are two kinds of first order differential ogters in four dimensions,
namely, the operators Div afiot ?). Time components are differentiated by means of

the first operator, whereas the three space compoaentiifferentiated with respect to
by means of the second. We must therefore use bollesd bperators in order to obtain
the four missing differential equations. The operator &ppears in the well-known
equation:

3) 6_,0+ dive = 0.
ot

In the four-dimensional notation this is written as:

! M. Laue, Das Relativitatsprinzip, pp. 70, Friedr. View§e§ons, 1911.
2 M. Laue, loc. cit., pp. 70.
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(3a) Divf, ip) = 0.
The missing equations must then be include in a formula:
Rot(f, i) =3,

in which §, i@) is a four-vector that is related to, () in the same way that the six-
vector p, —ie) is related to i, —10). Next, we only know thaf and ¢ are arbitrary

functions of all of the state variables that colledlly define a four-vector. The right-
hand side of the equation, vig, is some six-vector that is likewise a function loé t

state variables, among which only one is known, narttedy,the condition:
A-vg*=0

must be satisfied), because nothing else can be obtained from applyingpbatorRot

to a four-vector. This condition must further implyhen we do not assume as much,
that§ = const., which then actually gives an identity tisaidentical with equation (2a).

If this is not the case then, besides the ten eiffigal equations that are required by the
causality principle, we have three extra ones. The @molution of the state in the ether

is then overdetermined, which is naturally impossiblee Must then necessarily either

setF = const. oF = C - (b, —ie), in whichC means an arbitrary constant factor. We can
bring this factor to the other side of our equati®et(f, i@) = F and absorb it intg, i¢,

and we thus simply s = (b, —ie). The three equations, which include a differential
guotient with respect to time, then take the general form:

—%=D¢+C-e+c,

in whichC is either zero or one andneans vector that is constant in all of spacetime. |

a region of the pure ether whefre 0 ande = 0 one must havelg = —c. Although the

state variables are thus a constant equal to zero &eregll, if ¢, which shall be a
function of the state variables, has a non-zero gnatlen it must be non-constant. This
is impossible, so we must therefore hawe0. Otherwise, it is easy to show tkamust
be non-zero. If the state of the ether is in equilib in the neighborhood of an electron
that moves with constant velocity then all of thdesténtial quotients with respect to time
must be zero. The equation then becomes:

O0¢+C-e=0.

1 M. Laue, loc. cit., pp. 71.



Foundations of a theory of matter I. 6

Now, if C = 0 then we will also havélg = 0; hence@ = const. The variabl® is
therefore completely independent of the field magnitualed,the same is also true for f,
from the relativity principle, and the aforementioned éiguacollapses to an identity.
One must therefore hate= 0. The last three equations of ether dynamics ase th

@) -= g+

which can be written, in four-dimensional notation:
(4a) Rot(f, 19) = (b, —ie).

The expression (4a) includes the following three equatiomsyhich no differential
guotients with respect to time appeatr:

(4b) tot f = b.

One easily sees that if one derives equations (4b) @)mwith the help of (2) then one
obtains nothing new.
When everything is in equilibrium in the neighborhood ofedectron at rest or a
uniform velocity equation (4) becomes:
Og +c¢=0.

We shall call this theequilibrium conditionfor the field in the neighborhood of an
electron. If may clearly be interpreted as the state that both of the forcesand=¢

must be equal and opposite to each other. The eleetdcstrengtle endeavors to draw

the charge of the electron outward so it fills thegdst possible space; it therefore
represents &ody forcethat lives in the matter. It acts against sheface forcelJg,
which is computed as the gradient of the singular surfesiang ') that acts on the
electric charge. Body forces and surface forces aite dffects upon which the existence
of matter certainly rests, so they must enter intoparsgible theory of matter.

Equation (8) may be called equation of motion of thetetecurrent. The vectofris

the quantity of motion’) that corresponds to the electric current In conventional

mechanics the quantity of motion is known to be thesntases the velocity and is
measured by means of the push that is necessary in ordendathe velocity up to its

value. Since the quantity of motion and tension arddothought of as “intensity
variables,” i.e., as quantities that one measures bysnefforce effects then we shall
also regardp andf as “intensity variables” that correspond to the “quantasiables” o

andv, respectively.

11t is well known that a tension of this sort wastiiused by H. Poincaré (Compt. read0, pp. 1504,
1905). Cf., also H. Th. Wolff, Ann. d. Phy&6, pp. 1066, 1911.
" DHD: i.e., energy-momentum four-vector.
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We can thus describe the state of the ether in terraghefr the ten quantity variables
(0, b, p, v) or the ten intensity variables, ¢, @, f).

4. The six differential equations (4) and (4b), which susmmarized in formula (4a),
are precisely the same as the differential equatiortseo$o-called “four-potential” that
one constructs from the scalar potentpadnd the vector potentigl One can say with

some justification the theory that was developed henplgisays that the two potentials,
¢ andf, embody the physical state of the universal ethenehathe surface tension and

guantity of motion.
We must therefore make a further important remarks khown that the solution of

equation (4a) for a given six-vectay, (—i¢) is still undetermined when one makes no
assumption about the value of Giv(@). In the theory of electricity, one defines both
potentials by simply setting Dig(ig) = 0. However, this equation is not valid for the

ether state that was chosen in our theory, and thethasegenerally not identical with
the usual potentials. In place of the aforementionedtieaseof the theory of electricity,
equation (3) appears in our ether dynamics: ivp) = 0. This equation cannot be

included with the other equations because then the time evohitthe ether state will
be governed by eleven equations; hence it is over-deternvimach is impossible. We
thus have that Diw ip) # 0 in general. In a later section (pp. ?) we will findimple
meaning for the quantity Div(i0).

In the rest casen(= 0, h = 0) the quantity is actually identical with the electrostatic
potential because one then has the following equation:

e+0g =0.

5. When we understand to mean a tension anplto mean a density then we can
easily see that it would be advantageous for these tjgartb always take on positive
values, at least as far as the physics of gases isroedce

We would like for them to have a constant positive valgen the pure ether, where
there are no fields, a value that we call the nomealsity. For any arbitrary choice of
spacetime coordinate systems, it must naturally defineuaviector 6o, i0 o) that is
constant over all of some spacetime region. Eleetnd magnetic fields will enter into
the picture only wher@ andv take different values fronpo andvo, and equations (1)

and (3) will thus take on the following form:

A - v(bh, =iv) = ((0-vo), iI(0 — P0)),
Div((v-v0), i(0 =p0)) = 0.

One can naturally choogm in such a way that quantigy the “ether density,” that enters
into these equations is always positive. For thatorgas what follows, | will simply
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write v and p instead ofv—vo andpo — oo, SO we therefore compute with positive and

negative densities, and | also set the pure ether deoasagro.
All of the above is likewise true for the surface tensp. Sinceg¢ andf appear in the

fundamental equations for ether dynamics only when #neydifferentiated by time or
space one can augment them with arbitrary quantiigsfo that are completely
independent of time and space, or else the descriptidre oifte evolution would take on
a different form. One can, by way of example, takelae ¢, that is large enough that
@o — ¢ always remains positive. The equilibrium conditidmsnt become:

e —0(go—9¢) = 0.

In pure ether we now have the positive tensfignin the electron we have the smaller
tension(¢o — @) and e is the tension gradient O(¢o — @) that the ether exerts on the
electron in equilibrium. In fact, H. Poincaré (leit.) spoke of a tension that the electron
exerted on the external space. However, | beliea¢ ithis simpler for the sake of
representation when the null point of the tensios irethe pure ether, and may thus be
computed in such a way thatis set to zero at an infinite distance from the etact

Likewise, we would also like for energy, which one @aways augment with an
additive constant, as is well-known, to have a nulhpthat is so arranged that the
energy density is zero in pure field-free ether. Smiyilgust like p and ¢, the energy
density W, for that matter, can also take on negatalees as well as positive ones;
however, there is not the slightest reason that avealmpel us to always s&¥ to be
positive.

With these associationg ¢, W are now completely determined quantities with no
further additive ambiguity.

Energy.

6. | will now assume that not only the principle of ttenservation of energy, but also
the principle of the localization of energy and egyemgnsport') are valid. In other
words: if we denote the energy density Wyand the energy current lay then the

following consequence must ensue from field equations (@ygfr (4):
w =-divs,
ot

in which not only the scalan, but also the vector s are universal functions ofstage
associated with the chosen spacetime point. Onerdae at this energy equation from
the field equations in onlpne way: one must determine factots(, m, n that are
universal functions of the state variables, multiply eiquat(1) to (4) by them, and add
the equations. It must therefore also be possible tordeethe factors, [, m, n in such

! G. Mie, Wiener Sitzungsbet07, Vol. 11a, pp. 1117 and 1126, 1898.
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a way that a complete differential quotient with resge time appears in the left-hand
side and a divergence appears on the right-hand sidewdel now like to find the
conditions for this to be true.

E.ﬁ.{- [ .%+m.ﬁ+n.ﬁ

ot ot ot ot
=t-voth—t-v—l-vote—m-divo—n-Op—n-e.

Next, we see that both of the termg —v and —n - ¢, which are pure universal functions
of the state variables, must drop out, because dan only depend on terms that include
differential quotients with respect to the coordinatese @nost therefore have:

E=u-e,
n=-u-bv,

in whichu is again a universal function of the state variabkesimple computation then
gives, for the right-hand side of the equation:

div(u-[h-e]) + div(u-¢ -v) + (U-h =) -tot e —h-[e -Lu] —(M+u-@P) - divo — @ - (v -[u).
In general, this expression can only be a divergence wieelash summands drop out,
and thus:
(u =0,
ubh—-I1=0,
m+u-¢=0.
The first of these equations givas= const., and indeed this constant is determined in

such a way that the expression for the energy cumeptire ether must becomes the
well-known Poynting expression-p] = [e-h]. From this, it follows:

u=1 t=e, [=h m=-9, n=-u.
We have thus found the energy equation:

00 ob - .ﬂ— ﬁ =—di . — 0 -
e 5t b T praiLie div([e-b]) — ¢ - v).

The expression for thenergy currenin general ether dynamics is then:

) s=[eh])—¢@-v.
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7. The energy principle now tells us more: that the @sgion on the left-hand side of
the energy equation is a complete differential. Wistrtherefore state the condition for
this, that:

(6) e-do+h-do—¢ -do-v-df =dW

is a complete differential, and that may therefore be determined as a functiornpf(

P, v). Just as we did fdV, we can initiate a search for a quantityhat is determined by
means of the following equation:

(7) W=H+bh -b-v-f.

If Wis a function ofd, b, p, v) then so idH, and vice versa. From (6) and (7), we obtain
the following expression for the differential ldf

(8) dH=¢ -do—b-dy—¢ -do+7-dv,

in whiche, b, @, {f are functions ofq, h, o, v). We would now like to abbreviate the
notation for a vector whose components are:

oH oH oH
. dv,

X y z

by simply sayin@H/do, and analogous expressions in all other cases. Itftiiemws
from (8), with no further assumptions, that:

(9) e:a_H, b:—aH

oH _0H oH
Iy oh

¢= 0 ](:E'

The condition for this, that the energy principgevialid, is, since all of the intensity
variablese, b, ¢, f can be computed by means of a single function tagnitude
variablesH(d, b, o, v), which we would like to use for a Hamiltonian fuonati Indeed,

each intensity variable is obtained as a differainjuotient of Hwith respect to the
corresponding magnitude variable, in two ca@eand ¢) with the negative sign

One can also find the energy dendf\from just the Hamiltonian function. If we use

(9) then (7) gives:

oH oH
10 W=H-—-§h— "y,
(10) 00 " ov

From the form of fundamental equations of ether dynan{its through (4), one
immediately obtains the following theorem, when onesaers equation (9):
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The relativity principle is valid for all physical motions, as longtlas Hamiltonian
function Ho, b, p, v) is invariant under Lorentz transformations.

We will have therefore completely exhibited the equatimnsether dynamics when
we know sort of form the universal functithtakes. Finding this form is, however, an
extremely difficult problem.

The problem of a theory of matter goes back to the problem of finding trexsahiv
function Hb, b, p, v).

Certainly, we know one thing aboHit In pure ether, the superposition principle for
electromagnetism is known with considerable accuratypne then substitutes a
summand §* — §%)/2 for H:

H =1 (b - 5% +Hy,

then the remaining term ;Hmust be vanishingly small compared to the first term
anywhere thap is very small. On the other hand, in the inteabthe atom, wher@ is
large,H; will far outweigh that term, such that the lawdiefds are completely different
here from what they are in pure ether.

8. For the sake of computation, it is generally moreveaient to take the intensity
variables ¢, b, ¢, f) to be the independent variables in terms of whichsth&e of the

ether is determined, and the magnitude variablgs, (o, v) to be functions of them.
We would now like to define the following functicpx

(11) P(e, b, 9, f)=H—-(-0-b-h)+ (¢ -p—f ),

and we next compute the quantitiesh, p, v as functions ot, b, @, f, using equations

(9), and then substitute the expression so obtaindeinght-hand side of equation (11).
If we refer to (8) then we obtain the following expiesdor the differential ofp:

(12) dP=-0-de+h-db+p-dg—v -do.
From this, it follows that:

_ 0P

0P _ 0P _ 0P _ 09
de

(13) 0= —E, p—w, b= a—](

b

The magnitude variables, h, o, v may be then computed with the help of a single
function of the intensity variablaB(e, 0, ¢, f) when one differentiates this function with
respect to the corresponding intensity variables. In two c@sasdv) one must give the
differential quotients the negative sign.



Foundations of a theory of matter I. 12

The energy densit may then be obtained froé by the following equation:

o0 oD
14 W=P+e-0-¢g-p=®-"".c—"". 9.
(14) ©o=dep PR ¢

The Hamiltonian functioid is then computed from (11):

o0 00 00 00

(15) H=op -2 :
d b Y of

Instead of looking for the universal functiondHb, p, v), one can also seek the
universal functiort(e, 0, @, ).

| will often refer to® more briefly as thevorld function.
@ must be invariant under Lorentz transformations, just as.H
Just likeH, ® may be broken into two pieces:

D =1 (0% —¢?) + Dy,

in which the first term is dominant in pure ether and #@sd one is dominant in the
interior of atoms.

9. We may build a ¥4 matrix®) with the help of the world function that includes the
energy current and the Maxwellian ether stressesuiogeneral ether dynamics:

(16) S=
cl:)_bh-i-exax-i-hxbx-i-fxnx e>py+h>by+fpy eQz+hQ z-i-fq z _I(a by ;a E’y_z}f)
60, +hb, +1p,  ®-bhtep +hp +fp, e #by Ffy, -i@b 700, 5} )
€0, +0 b, +p, ephh pfe,  P-bhted #hb tfv, (b, b,5f)
Sifeh, —eh,~gB,)  -ileh,meh P )  -Aleh,eh gB) O+ gl

If one performs the following operation:

N- V:i-{-i.{-i +i

ox oy o0z ildt

on the last row of the matrix then one obtains thergy equation when one sets the
expression so obtained to zero:

div((e 5] - ¢ -v) +§(¢+e-a—¢ =0,

1 H. Minkowski, Zwei Abhandlungen, B. G. Teubner, 1910,3%.
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since (14) givesb +¢ -0 — ¢ - p=W. From the relativity principle it then follows

further that:
(17) A -vS=0.

What remains are three equations that correspond torgheHhiee rows of S, and also
with little difficulty we obtain the field equationsl)(through (4), directly.

As to the question of whether the matrix (16) is symmeicioss the diagonal or not,
we will return to it later (pp. ?).

Hamilton’s Principle

10. When we were in the foregoing purely theoretical eectit was stated that the
form of the field equations that was given was the ipessne; let us discuss this further
now. It seems to me that there is some value invisigothat one can obtain the field
equations through quite simple mathematical operations whemssumes the validity of
Hamilton’s principle.

| shall therefore make the following two assumptiokgst: that the state of the ether
is completely characterized by the quantities, o, v; moreover, the last two are defined
by the equations:

p=divd, v=toth-9;

Second: that the time evolution of the ether satidflamilton’s Principle, which we shall
now formulate:

Hamilton’s Principle. There a function(® b, o, v), whose integral over any given

spacetime with boundary is an extremum for all real motions, when ores Yiae state
variables at all points inside a region, but not on the boundary.

(18) chSH @, b, p,v) -dx-dy-dz-dt=0.

On the boundary of the regi@) one has:
D=h=9P=>=0.

One can show that the principle of relativity is validenH is invariant under Lorentz
transformations. We assume that this is the caseepfate the quantitias b, o, v with
the known expressions,ly', p,v’ that are obtained by a transformation from a coordinate
system X, y, z, } into anothe(x,Vy,Z,t). Hence, we must obtain a
functionH'(?',h', p,v') that involves the new variable®'(y', p,v") in precisely the same
way that H involves the variableg, §, p, v). We conclude from this that we must Bt
=H. Now, letG' be the region of the new coordinate systghy/, Z, t)thatH goes over
to under the transformation. One then has:
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jG,cSH (., 0 0" X [y Ddzmdt:chSH @, h, p,v) -dx-dy-dz-dt,

If Hamilton’s Principle is valid for the coordinasystem X, v, z, } then it follows
from this equation that is it also valid for anyhet systenix’, y',Z,t). Indeed, the

Hamiltonian function is the same functibinin every coordinate system.

The laws of nature, i.e., the differential equasidhat one derives from Hamilton’s
principle, are the same in any coordinate systexhdhe obtains by means of a Lorentz
transformation; this is the principle of relativity

We would now like to derive the field equationsnredamilton’s principle. To this
end, we define the variation:

PO .y B BN L, Y
a0 ah 9P dv

We would now like to introduce the following abbiaions:

oH oH oH oH
19 — =g, — =P, — = =, — =¥,
(19) n TR AN Y G

The variation oH is then:
(20) H=e¢e-D-b-H—-¢ -p+7- .

In order to elaborate upon this expression further must employ a formula from four-
dimensional calculus of variations, whose derivatiee shall briefly recall: We use the

following notation for the four-vectd) that is the product of the four-vect®r= (f, ig)
and the six-vectog = (h, —i0):

[P-81=(f-bl+¢-0,i-(-2)).
We define the Div of this vector by:

o(f L)

Div[P -] = div{[f - b] + ¢ - 0} + ———= P

Now we have:
div[f -B] = b -vot f —f -vot b,
div(g-0)=0-Up+¢- divb,
o Do) _ . oF f i)

ot ot
From this, we get:

! M. Laue, Das Relativitatsprinzip, pp. 67.
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o(j o)
ot

f

(1) divi[id +¢ @ + :l‘)[&otf—b[ﬁD¢+%}—fE€toth—%}+¢[divb.

In four-dimensional symbols these formulas loolk:lik
(22) DiVIP -F]=-(F -RotP)— P -A - F).

We would now like to use these formulas in our peob Therefore, we remark that:

00 )
th—=wv, divo = p.
vot b P 0 P.
One thus has:
Div[P-&]:bBotf—aE€D¢+%J—f-n+¢-p.

If we put the variationgd andd in place ofo andh then we obtain:

f-oo+p -Op = t0tf@b—(D¢+%}B§a - DiV[P - &].

Now, we see that the integral:

jG Div[ P (&3] CeixCHydZ1d,

which is precisely the space integral of a thremedisional divergence, turns into an
integral over the boundary &&. However, since Hamilton’s principle assumes that
variations of all of the state variables, as wsllidgg, are null on the boundary then one

has:
jG Div[ P [&] Ceix[HydZ]d= 0.

As a result, when one uses formula (20)ddrone obtains:
chSH -dx-dy- dz-dt

:.[G[(e+D¢+%j (D0 + (votf—0) @bj - dxdydzdt.

Since there are no further relations betweeandh, and consequentlg and & are

completely independent of each other, one canfgdtiamilton’s principle only if the
following differential equation is satisfied:
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of
+0¢+—=0,
erbo* 5

tot f—0=0.

From these two equations, it follows that:
%+ tot e = 0.
ot

Since the differential equations (19) fer b, ¢, p are in complete agreement with

equation (9), these equations are identical with thd &eguations (2) and (4), since we
started with equations (1) and (3) as defining equations to betj.

From this, it is proved that the form of the field eqoiasi that | chose is the only one
that is consistent with Hamilton’s principle.

In conclusion, let us remark that one can give equd#i@han interesting form when
one takes:

vot f = b, D¢+%=—e, totb—%ﬂa, divo = p.

If we recall equation (11) then we obtain:

o(j @)

(23) +div{[f-p]+¢ -0} =D -H.

The invariants.

11. Should the functioi (0, h, p, v) be invariant under Lorentz transformations, i.e.,
should it be a four-dimensional scalar, then it must & function of other four-
dimensional scalars that one can construct out, df, p, v. There are four) such
guantities that are independent of each other:

1. The absolute value of the four-vedkox (v, 10). Itis:

_0

o=yp* v’ =pQ1-A, =

2. The absolute value of the six-vectpr= (h, —10). For this, we will use the
guadratic expression:
p=2°-h>

" Translators note: This list is incomplete; it latke invariant that would correspond Eo” F in
modern electrodynamics. Other researchers had pointedisdact at the time, such as Pailln¢ Theory
of Relativity, Weyl (Space, Time, and Matjeiand Born (?7?).
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3. The scalar product of the six-vecfe (h, —10) with its dualg* = (-0, h). If we
multiply this product by/2 then we obtain the quantities:

qa=(-0).

4. If we multiply the four-vectoP by the six-vector§ and its dualg* then one
obtains two new four-vectors:

A=P-g =(le -0+ [o-b]), i -0 -2)),
B=P-3* =(i(o-b-[v-b]) (v-D)).
The squares of their absolute values are:

A= (o -o+[o-b)>-(v-d)
B°=-(0 b +[v-2])°+ (v - )~

These two quantities are no longer independent of eaeh athone easily sees, but:
A +B=(°-0) 6" -p")=0 -p.
Likewise, the scalar product of the two also gives ukingtnew:

(A-B)=i(o-o+[o-b])- (0 -Hh-[v-0) —(v-9): (0-b)
:—i.(b.a).(nz—pZ):i.Oz.q.

We thus obtain onlpnefourth scalar, and indeed for this we will choose thentjiya
s=-B*
s=(0 -h-[o-2])*~ (0 -b)

From the theory of four-dimensional vectors, one may@that no more independent
scalars can be given; however, | shall skip the proaf.her

We have thus found the following four possible independerdhas:

V2
o=4p*-v’ =pQl-—

C
(24) p=0"-h°

q= (o),
s=(pH—[o@])* (v )"

12. The intensity variables ¢, b, f can now be computed in the following way:
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e_zgaLm m+2a‘L[an(pm [0 @])],
p=- g“aﬁ zaiupta [ 0)) ,
g o

(25)
b= ZGaL[B— ﬁ) ZGaLE(pE(p[B [0 @]) - v {p [B)),

= 6Hgn_ Z&m[aw—[nm]wmv@)-

00 O

We observe that:

(0-B)=2 0@ b-[o-o])
0

and one immediately recognizes that the faétdr 0s vanishes in expression (25) when:
— [U . ‘0] =

We make the further assumption that an electrat i®st in the field = 0, so that
0H /dgmust have either the factgror the factors, because it does not, on the other
hand, vanish fov = 0, = 0; however, we now have:

q=@-h)=—-0-( -h—[o-0]).

Thus, under the same restrictiadl /0q must be null, like the factoH /ds, namely,
when:
— [U . ‘0] =

However, one obtains the quantity: [ = p - h — [v - 9] when one subjects the ether

state to a Lorentz transformation that takes infits coordinate system into another one
that moves with the velocity = v / p. If q is constant in space and time then one can

transform to a rest system, in whigk O; i.e., the condition that we just described is
satisfied for a stationary motion.

When we make the assumption that not erdayd b, but alsob and{, are null in the

field of an electron at rest, all terms in the intensity varialiteat do no(?) contain the
invariants q and s drop out for a stationary motion.

Now, since certainly all of the applications ofsthio electrons and matter correspond
to only quasi-stationary motions, and there is omtpin burdening ourselves with the
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search for quantities that obviously have no influencéherresults, in what follows, we
will make the simplifying assumption thgtands do not enter intdd at all.

13. Hypothesis: The Hamiltonian functiond¢pends only upon the invariardsand

p.
We then have the following simple expressions for ttengity variables:

e=2gﬂﬁ3, bIZgﬂ[ﬁj,
op ap

¢:—6_H£, :—a_HGU__
do o 0o O

(26)

Each of the intensity vectors b, f has the same direction as the corresponding
magnitude vectors, h, v, and furthermore, one has the two proportions:

fro=¢:p b:h=e:0.

From this, one deduces the theorédhe world matrix(16) is symmetric about the
diagonal.

Just likeH, ® also naturally depends on two variables, and in ordexhdit this, we
shall take the following two quantities:

— 2 _¢2
27 X=N$*
n =+e¢* —b°.

If we set:

qa

v_f_
o ¢
then we can also write:

(27a) X=¢ - J1-q°.

In conclusion, one must remark that one can findirm@resting meaning for the
quantity:
Div(f, i¢) = div§ +%—f.
To abbreviate, | will set:
_iﬂz 4[/
o 00
One then has:
¢=¢-p f=¢-v;
hence:
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¢_ [ oY
d|vf+ (dlvn+atj+(n Oy +p- a5t

Now, we have:

divo +6_p =
ot

and we can further set= p - q, in whichq may be understood to means wadocitywith
which the charge is moving at the point in questi@me then has:

0 0 0 0
V= (4” Vg + 2 wﬁxzj.

v - + I =
( Dp: P ot 0x oy 0z

If we now consider a single individual volume elemghat contains the charge, as we are
wont to do with material volume elements, and rdgaras a characteristic property of
the moving charge element then the time variatio® :

Dy _ oy 040@'

+ .
Dt ot 0x Bl am'z

z

We thus arrive at the equation:

op Dz//
28 dive +—L=
(28) o+ =P 5

This last equation has particular interest in rdgar Abraham’s recently proposed
theory of gravitatior?). In a region where the electric field is nuleteame equations

follow for the quantities that Abraham call@d, Ty, 52 Su as the ones that follow for the
quantities that | denoted By fy, -, i@, except with one difference, that Abraham set:

Divg =-4my-v,

in which ymeans the gravitational constant antheans the mass density, whereas the
equation that we just derived follows for my vector

Dy
Div(f, i :
(f.ig)=p- Dt
One will therefore go from my Ansatze to Abrahamyavitational field theory when
one makes the assumption that wherever there iataria mass one finds a constant
increase in the quantiyy. The curreng that converges upon the mass distribution is then
the gravitational field. However, since such asuagption is physically absurd, it is
therefore out of the question that such a simpléh gxists from my Ansatze to a

1 M. Abraham, Physik. Zeitschrl3, pp. 1, 1912.
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gravitational theory. | have suggested how this probablyhimliappen in the
Introduction (pp. ? and ?).

In the following chapter | will next examine whether tagistence of irreducible
electrons is consistent with my Ansatze.

Greifswald, Physikalisches Institut, 6 January 1912.

(Submitted 9 January 1912.)
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(Second Part)

Chapter Two

The Problem of the Electron.
Knot Singularities in the Field.

11. It is well known that the Nature of the electromeic field originates in a six-
vector that is capable of introducing transversal wawmées the ether. A superficial
examination of the fundamental equations for ether diggr(iL) through (4), that | gave
previously can also lead to the conclusion that, analdgotie four-vector ¢, ip) can
give rise to longitudinal waves; however, that wasistake. In the interior of atoms,
where the ternt, in the Hamiltonian function (I, pp. 524) is appreciablensrersal and
longitudinal momenta might possibly obey similar lawdowever, these cannot be the
correct laws of wave motion because, by assumptiendifferential equations are linear,
which is not the case in the interior of atoms. Pdag distances from the atom, whetlie

is negligible compared t@? — %)/2, thetransversemomentum converges to a spherical

shell that expands with constant velocity 1 (velocityigtit). However, théongitudinal
momentum exhibits no such motion since the equationgfandv are never linear.
Often, the longitudinal momentum essentially stangsdie of a small volume, namely the

volume of an electron, which neither contracts nqua@ds as a spherical surface, and its
velocity can have all possible values, but always tbes1 1. In other words: the
momentum of the four-vecton,(ip) never has the character of a longitudinal wave, but
that of “quantum radiation;” it is the electronic radia. If longitudinal waves were
possible in the ether then the existence of unchangmgradation points for the stage

and thus, the existence of electronic radiation, coultd b compatible with the
fundamental equations. Conversely, the fact of eledroadiation thus excludes the
appearance of longitudinal waves.

Before we do anything else, we must find the conditionsthe character of the
Hamiltonian functiorH (or the world functior¥) in order for it to lead to the existence of
unchanging knot singularities in the field. These comas then apply just as well for
the existence of quantum radiation. Namelydéte the charge density and tebe the
electrical displacement in the neighborhood of a knogwdarity, as functions of the
distancer from the center, such that the equilibrium condgieg@ + ¢ = O is satisfied. If
we now apply a Lorentz transformation to the four-ee¢0, ip) and the six-vector (0O,
-i0) along with the coordinate systenx, (y, z, } then we obtain a coordinate
system(x, Yy, Z, 1), a four-vecto(v’,i0'), and a six-vectdp',—i0'), as known functions
of(x,y,Z,1), and indeed both vectors satisfy the fundamental equatibrether
dynamics that we stated. From the transformatiomdide, one immediately sees that

! Continuation of the article in Ann. d. Ph@g, pp. 511; referred to as .



Foundations of a Theory of Matter. Il 23

[q -0'], v'= (g - q, in which q is a three-dimensional vector that is less thand ian

constant over all time and space. The new solutiah dne obtains by the use of this
transformation thus represents a knot singularity thates forwards with the constant

velocity q.

When equilibrium is possible for a knot singularity at rest then thegealso knot
singularities that move with any arbitrary velocity less than 1, hemeantum radiation
without longitudinal waves.

12. One arrives at an interesting conclusion concerningnibtgon of electric charge
in general when one makes the following two assumptiorss; that the function Hs
not an even function af, andsecond, that both ldnd ® have no jumps or breaks for all
physically meaningful values of the variables b, o, v) and (¢, b, @, f). The first of

these two assumptions is identical with the assumphianpositive and negative charges
exhibit a fundamentally different behavior that theyidaeality, where electrons have
only onesign. IfH were an even function @fthen one could change the signmf.e.,

of p, without changing the equations in any way; thereforsitige and negative charges
must behave the same way. The second assumptios &ose the fact that the state
variables of one type (e.g., the intensity variables) only be infinite or vary in a
discontinuous way when one allows the corresponding quantifithe other type (the
magnitude variables) to become infinite or vary discomatusly.

In many respects, the quantityplays a role in the equations of ether dynamics that is
analogous to the role that is played by the deviationthedensity from their normal
state in the equations of aerodynamics (cf. |, pp. 52Daetodynamics, one can consider
positive and negative density variationdor example, interference — and add them to
zero or at least a small density variation. Sirtylahe charge density in the ether can
be chosen in such a way that positive and negativegedacancel each other upon
superposition, and, conversely, nothing new can come ofaemathem. In fact, these
assumptions rest on the foundations of modern atomacythiethe atom is considered to
be a large volume of positive electrical charge thabiapletely permeated by negatively
charged electrons. If, when an electron enterstivgqositive electrical charge volume,
one superimposes its charge upon the latter charge tleewith obtain a smaller charge
than that of a free electron. If an electron lsatlee atom then during the separation it
restores the large negative charge of the electronhenldtge positive charge of what is
left of the atom.

When one accepts both of the previous assumptions, ouy thearimplies that ideas
of this sort or to be ruled out. From the equationstleéredynamics, one obtains that
when a state variable,(h, p, v), or, what amounts to the same thing, according to the

second assumptiorg, (b, @, f) has a jump as a function of, (y, 2 then one must have

that another state variable is infinite. Thus, as lasagwve exclude singular points at
which the state variables, in whole or in part, becomaiiaf hence, singularities that
cannot enter into any integrals of the equations thatve\everywhere reamotions, one
must make all of the state variabt@mnstantfunctions ofx, y, z, t Moreover, it follows
from the first of our assumptions that one must alweyeo? < p?, orv?/ p?< 1. If we

hadv? > o thens would have an imaginary value, and therefore since hbt an even
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function of oit would be complex. Since that cannot be the éasall real motion one
must always have?/ p? < 1. However, we can think of charges in the realdvhat are

subdivided into spacelike elements of the aforemendicoet, and any variation in the
charge density that the existence of the veetmduces can be thought of as translating

each of the elementary components with the (varia@®cityq = v / p. From this, as
we have always assumedq, is an everywhere finite and constafiinction of the

coordinate. However, if such is not the case thencanenever interchange any of the
elementary components that we introduced. Every silgi®ent then remains distinct,
and it cannot be the case that the positive and negett@rges can cancel each other or
that they can be created from nothing.

The laws regarding charges are valid not only for the sum of all chabgéshey also
apply equally to positive and negative charges.

Thus, if an electron enters the positive spatial regicam atom then, according to our
theory, the positive charge must first evade it, and &wer it, like a liquid into which a
solid body has penetrated.

The equilibrium conditions.

13. The energy in the entire space in which the timeutiwl is defined may be
computed from equation (7) (I, pp. 523):

E:j (H+b-h—f-v)-dV.

When everything is at rest, one has:
Eo=[ H-dV.

The condition for equilibrium is that for any smalituial variationdb, dp (in which o =
div &) no energy can be converted into the energy of mot@ne must therefore have
& = 0 when one varieg ando:

-j[aH 5 +‘Z_Hmjmv

:j (-¢ -Jp+e &) -dV.
Now, one has:
¢ -dp=div(g -&)-0¢ &,
and further:
jv div(g - &) -olv:jS $ - O - dS
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in which S represents the bounding surface of the spaaedN is the direction of the
surface normal. If one choos¥¢ssufficiently large then the bounding surface integral is
vanishingly small, and it follows that:

&zzj (O¢ +¢) d -dVv.

The following equation, which is already known to us, thesults as thequilibrium
conditionthat we obtain frondE = O:

(29) O¢ +e=0.

14. 1t is very difficult to determine whether the equilibm is stable or unstable. Let
the quantitieso, 00, @o, & be computed in such a way that the equilibrium conditaras

satisfied. The system then moves infinitely slowlyan infinitesimal neighborhood of
the equilibrium point, in such a way that:

0=00+ X, pP=pot+dp h=0d, b=,
just as:

e=et&  P=dot Op.

The stategh) andd bring with them the consequence that throughout thati@miof
0 andp over an infinitesimal timelt, which we shall caltio anddp (cf. eq. (1) and (3)),

we have:
do =-(do —vot &) - dt,
do=-div o - dt

On the other hand, if we have the small deviation femuilibrium that is due to a
variation of the motion state variablggndv, or, what amounts to the same thihggnd

f, over the time intervalt (I, eq. (2) and (4)), then:

db = - vot & - d,
df = - (& + 03) - dt

In order to clearly understand the energy balancediwide do into two piecesio =
do' +do", where:

do' =-ov [dt
(30) { ’

do” = vot op ot
One immediately sees that:

& -do-op -do = Jv-df+div(dp-do) - dt,
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& - do” =— & -db — div[& - ] - dt.

If we integrate over a region of spa¢an which only internal energy balance is found
and on whose boundary the energy curre@ip— o and [ - &) are null then one

obtains:
[ (Getdv -Spreip) oV = [ &old Odv

(31)
jvaema :-jvabmbtdv.
We shall assume that in the moment considéhednd dv are directed in such a way
thatdd’ andd?” have the same direction &, anddp has the same sign dg, so that the

deviation of the equilibrium state increases. If efqyuilim is to be stable then one must
remove the motion state variables; one must thexefive & the opposite direction tdy,

and & must be given the opposite direction dp. Conversely, if the motion state
variablesd and & increase for the given directions & and & then the equilibrium is
unstable. If the equilibrium is to be stable then:

j (09 -P—-& - 0')-dV,
must have the same sign as:

[ & & av,
and:

[ & o0"-av
must have the same sign as:

j &b -dv,

wheredd' + 50" = & and indeed divd' = Jo, divdd" = 0, and in which we have further
chosen the variation® anddy in such a way thafv is proportional t@?' androt & is
proportional t@o" .

We consider the two conditions separately by firsu@mmsg thatdo' = &, and then
thatoo"= &®. This leads to a very important case in which absglutelmagnetic effects
interfere; thus,00"= 0, and, as a resulgd’'= ®. We then introduce infinitesimal
variations into a centrally symmetric field of a spbatielectron in such a way that
everything remains centrally symmetric, and thus, thatcttncentration and dilution of
the charges happens only on concentric sphericaksheadlalso assume thgp, and thus
o, are radially directed. Furthermoidb, anddo must be functions of only, the distance
from the center. For any such variatidhmust always have a potential; no magnetic
fields ever appear. In the sequé,= dd0o/at is always radially directed and a function
of onlyr; the central symmetry is never lost during the furtharlution of the variations.
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Now, if the electron, together with its field, is te m stable equilibrium, in such a
way that the charge in its interior and atmospheré nait explode under any sort of
displacement, then the following condition must be dvddir the centrally symmetric
variations that we chose, that the expression:

| (0 dp-&- &) av,
must have the same sign as:
[ &-&-dv.

We would now like to examine a variation @f that is only found on two
infinitesimally thin spherical shells of thicknessande&,. Let the distance between the
shells bea, wherea is small compared to the mean radiusof the two shells.
Furthermore, let us denote the variationg by op1 and— p», in such a way that:

&-001=& - 002

(if we neglect the quantities of ordafr larger than 1). We then have a variation of the
electric field in the space between the two layers:

XD =901 & =002 &,

whered® converges continuously to zero with the laygrande,.

With the hypothesis that was introduced in secti8dl, pp. ?), | further compute that
H depends only upon the two variables:

o=p 1-v°}? and p=0*-H2
One then has:

9= 5029 0.0

0o
&:25p+220&’
do ap

in which do/p is ignored as infinitesimal when compared to 1,08e can sevu = p.
Now, since eq. (26) of part I, pp. ?? gives:

oH oH
¢ = — .Dl - T,
p Jo
SO one has:
ap do

thus:
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op -5,0—&-53=%-5p2+4-%-b-53-5,0—2-2-0-532.
ap ap ap

If we now integrate over the entire shell in which taeiation has been introduced then
we obtain:

j (0% P -&-®) -dV=

ar rz-[%w}f@ﬁé}é@wzﬂ@m @2+ § 22)- 200 P i@ffaj-
ilez op op

If we chooses and & to be sufficiently small that the only term in theatkets above
that determines the sign is the first term, and ttpe sf the overall expression is then the

same as that 0fp/do , or, as we can also say in the rest case ), that obg/0p.
The sign of:

[ & &-dv
is easy to deduce from this when we observe tlat &q. (26), part I, pp. ?:

:ﬁ.&’
Yo,

that sign is identical with the sign @f / p. From this, one obtains the following
theorem:

A necessary condition for the stability of the equilibrium is that diieerential
qguotien @/ d} must have the same sign everywhere as the qugtient

This condition is always satisfied, for example enlp always has the same sigh@s
and wheng always increases along with an increasg.inThis is the case wheth is an
even function ofp that can be represented by means of series dewnetdpwith only
negative coefficients.

If H also includes odd powers pfas is true in any case (cf. secti®), then the sign
of d¢/0p, as well agp / p, can change. Wheth (cf. I, pp. ?) depends only up@mand
likewise ong, in turn, thendg@/dp can be null only wherevep attains a maximum or
minimum value. It will then be impossible for thigns ofdg/dpand ¢ / p to change
simultaneously. However, @ (and thus als#d|) contains both of the variablesandp
then one cannot exclude the existence of fields gaaisfy this condition; naturally, the
field of the electron must belong to this categoryhis consideration is therefore
important because the principle of superpositiontfe electromagnetic vectors, upon
which the Maxwell equations rest, in no longer dati the interior of the atom wheth
depends not only upowm;, but alsop. It is therefore not for us to choose whether
Maxwell's equations shall or shall not be abandoingthe interiors of atoms, and we are
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forced to abandon then as long as we make the funddreguottions asymmetric in the
positive and negative charges. In a later section, iNealso examine further whether
this asymmetry is necessary.

In order to discuss the second stability condition,ceesider a perturbation of the

equilibrium that gives an incremed® to the field in such a way thap = 0 around a

closed curve. The curve may have the form of a rgtgamith two sides parallel to the
field lineso and two sides perpendicular to them at every pdié focus our attention

on a moment at which = 0, so that only the second of equations (31) is ofaster
Along the curves that are at right angles to the lofe@s we construct the integral:

[ & @-av.
Along the lines that are perpendicular to the lines, efe have:

&:za_H .&,

ap

sincep remains unaffected by the quantities of ord& On the other hand, along the
curves that are parallel to we have:

This therefore means the differential quotient tdfat one obtains when one varies anly
and, moreover, in such a way that it incredeesny directionabout®. We thus have:

j &-&-dv:jﬁmzqu 2ﬁﬂmzmv,
0 I ap

in which | means the region of space in which thed run parallel to, and Il is then
one in which they are perpendicular to them. @natiher hand, we have:

_ H o
| d)-éb-dV-jZB%—p@h L\2
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If both integrals should have the sign in all circumstan@as the stability conditions
demand, and also if the curv&sare so directed that integral | greatly dominates ialegr

I, then de /00 must have the same sign28H /dpore /0.

A necessary condition for the stability of the equilibrium is thaptr&al differential
guotientde/ 0o that one obtains when one varies the magnitudevathout varying the

direction has the same sign aso everywhere.

This condition is always satisfied wheralways has the same signtaand when,
moreover, ¢ always grows with increasing. As is well known in conventional
electrostatics the equilibrium of the field is thalg/ays stabile.

In our general theory the situation is no longeategso simple. We will soon see that
if the sign ofe/o must necessarily change in the interior of an atbem the sign of
de/ 00 must also change in that same place.

Whether both conditions that we know to be necgdsairstability of the equilibrium
are also sufficient cannot be stated, for certairhis much is clear in any case: that
unstable equilibria can also enter into the gertiedry. In fact, it would be impossible
for the theory to make any pretense of being argémleeory of matter if it did not also
embrace the cases of unstable equilibrium thatdgtoccur.

15. As we already saw before, it is often more coremnto compute with the world
function @ instead of the Hamiltonian functidth. One must then (cf. I, pp ?) take the
intensity variablese( b, ¢, f) to be the independent state variables. In theiapcase =
0, f = 0, so thaty is simply the absolute value efand y = ¢ in equation (27), part I, pp.
?, one then has:

_0p _d¢+6_,0_eme

dp - 5 4 L]
¢ on n
do :@ -d¢ +@ . eme.
¢ on n
If we setdo = 0 then we have:

@

ede_ 04

n 0 @

on

in whichdo means that we vary the magnitudedoWithout varying its direction. One
thus has:
9p po _0p P

op on on o
d,0: ¢ ,76D n ¢ d¢,

an
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00

op_ _ on
0p 0p P _0p P
¢ on 9an 0¢

However, one then has:
o __ 0P e
0p 0pOn n

or, sincadd shall mean the variation of the absolute valug: of

o __ 0P _ _9p
op oag@n on’

With that, we ultimately come to:

0
0 0
(32) £ = 7 .
0’ ), 00 9p
opldn) On 0¢
Likewise, when one setto = 0 one obtains:
ap
33) X0

The expressions (32) and (33) must therefore alwaysthav&ame signs @s/ o (¢/o,
resp.) if the equilibrium is to be stable.

16. All that remains is for us to address the questiont@twort of conditions that the
world function must satisfy in order for it to be possithlat a spherical knot singularity
with an extremely thin electrical atmosphere is an dguwim point in the ether state.
We think of a radiug pointing outward from the center of a knot singulatitgt is so
long that its end already satisfies the principleugfespositione = 9. Letm be the total

charge in the interior of a ball of this large radiuso the potential of the electric field at
the endpoint of is ¢ =m/ 4rx. In equilibrium, the quantity must be identical witkp:

@ =m/ 4xr. Now, let the charge density of the electrical atmesplat the endpoint of
equalp. Hence, the charge that is contained in a sphericllafht@icknessdr is dm=
47r% - p - dr, which makes the variation gfalong the incremerr:
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dg =- m 5 .dr +ﬂ_
4t 4Tt

The second term must become vanishingly small compaitbe fost one. I.e, since:

——=r-.p -dr,
4t p

r - o must be vanishingly small comparedd 477- r%, and therefore - p must converge
to zero faster thar®.

The charge density of the atmosphere of an electrical knot singularity must converge
to zero faster than®.

If the world function® is to be represented by a power series for small values

x=\J#?-1>  and =¥ -0?
then this sum must look like the following:
®=-3 P+ ay ¥ +E B+ X 1T
m>4,n>2 h=1, n=2.

In the event that the exponents h involve fractional numbers their denominators
must always be odd, or el§e would become imaginary for negative valuesgothis
rule is not valid forv, k; sincer; is always positive.

When and only when the series fbrsatisfies these conditions, the following are true:

First: 0 andp cannot become infinite fop = 0 (y= 0, resp.).

Second:0v/0e goes to 1 for small values gfandy.
Third: p converges to zero faster thehfor y =m/ 477 andn = m/ 4712 when one
letsr go to infinity.

For small values ofy and y - i.e., in a vacuum- the stability conditions are
admittedly not satisfied for just any sort of fuoctid, but still in very many cases; for
example, this is always the case when both of thdlesha&xponentg/ andh are even
and the coefficients of the term with these smalpesters ofy is positive. One then has
that for small values of the variabl@g/d} is always positive, just likéd/oe; from
(32) and (33), we therefore also haosg/0dp > 0, 00/de > 0. Furthermore, sinago and

@/ p are likewise always positive in weak fields, trecwum stability conditions are
always satisfied in these cases.
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The differential equation of the electrostatic field
for the case of spherical symmetry.

17. For a static field one hags = y and, up to directiory, = 17, hence:

|‘0|—a£ pa£
on’ Y

Furthermore, when the field is spherically symmetiagd we abbreviate the magnitude
of 0 by writing 0, instead ofd|, we have:

1 d,, do 20
—O0—(r"D)=—+—=
r? dr( ) dr r P
From this, it follows that:
2
r.aq).%-i-r acD d¢ 2 r.aﬁzo_

an® dr 6/76¢ dr on 09
However, at equilibrium, one has:

dé _ dp_
dr v dr or?

n=-

® is a given function ofp andg': d(¢, ¢'). We then obtain the following differential
equation forg as theequilibrium condition with spherical symmetry:

0°d " 0P 0
(34) r.W.¢ +2- a¢+ra¢(a¢gp cpj

This is a second order differential equation whose gemgeggral therefore has two
arbitrary constants. Since the equatio@’iis of first degree, it has no singular integrals.

Both arbitrary constants are determined when the potehtaid field strength-¢'are

given fora definiter, or when the potentialg; and ¢, are given on both boundary
components of a spherical condensor. One can thasnadmy arbitrary field between
the shells of a spherical condensor as an integratjodtion (34). It is self-explanatory
that nothing should be noticeably different in the ekpentally achieved cases of
ordinary electrostatics; the exact integral gives oty imperceptible electrical

atmosphere that lies on both boundary components beyendstlal situation. Hence,
we will next focus our attention on the region betwésn spherical surfaces. If one
traverses this region then, as we will see, thegmlehas singular points for certain
values ofr, which makes it physically impossible, so it is validyoin a neighborhood of

the boundary.
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In general, the integral hasesingularity, for the value = 0. One thus sees from this
that terms of order higher th@fimust be multiplied by. Indeed, the singularity ig at

r = 0 is, in general, apssentialone that only transcendental functions (e.g., elliptic
functions, exponential functions, etc.) can have. éupar property of these functions is
that these essential singularities can be made tohvéonsa certain choice of arbitrary
constants in the integral. One can see this easignwne develops the world functidn

in a power series ing(— a) andg’ about the system of valugs=a, ¢'= 0. From the
Ansatz on pp ?, the lowest poweois the second. Therefore, let:

® =g +axn- §'*+ag: 7+ ...
+(@—8 - @uot+aunp’+tang+ ...
+(@—a° (oa+and'?+and+ ...

in which the coefficients of all of the given quanstare to be determined. We now set
p=0P/0¢,0=0P/0¢":

(p—a)= amr’+ asr*+ ...,
¢' 20'2I’+30’3I’2+ ceey

in which a», as, ... are unknown, and equation (34), which can bé&savritten:

d(r2 Bagj
99 _ . 00

dr ¢’
then gives recursion formulas by which one can eetaily expressn, as, etc., in terms
of a and the coefficients of the world function. Wevédhus obtained an integral that
has no singularity at the point= 0 and that also involves ordysinglearbitrary constant,
namelya. It remains for us to prove that other integaa be given in terms of a power
series about = 0, possibly one with fractional exponents oralodpmic terms. From
that, we can prove that all other integrals musehanessentiakingularity atr = O.

d(u‘2 B"Ej
99 0@
du g

If one developsb in a power series i andg’ aboutg = 0 andp’ = 0 (cf. pp. ?) and then
sets:
¢ =a-u-(L+mu+mli®+...),
p'=—a-u’ (1+2nu+3mi®+..),
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then one obtains a recursion formula by which one egoemntially obtainr, as, etc., in
terms ofa and the coefficients of the world function. We thawé an integral in a
neighborhood oti = 0 that has no singularities at that point. Morepteis integral
involves only onearbitrary constant, namely. All other solutions of the differential
equation (34) have assentiakingularity atu = 0.

Whereas, as we saw on pp ?, the general integral dietdebetween two boundary
components of a spherical condensor, on which we aen @irbitrary potentialg, and
@2, can be computed, the particular integral that hasnguilgrity at the point = 0 gives
us the field in the interior of a charged hollow sphdreconventional electrostatics, one
hasg = const.e = 0 in that region, and in all practically realizabteations the integral

that we spoke of will not differ appreciably. The poweries expansion on pp. ?:
(p-d=a-r*+as-r*+ ...

must therefore have vanishingly small coefficients irpadictically realizable situations,
and the quantitya gives an almost precisely constant potential inside @utside the
hollow sphere. Meanwhile, from our theory a field mexsst in the interior, although it
has an extremely weak electrical atmosphere, arariegponds to the electrical field that
was computed by the power series expansion on pp. ?. levany, the state inside the
hollow sphere is completely determined when the pateon it (and therefora) is
given. From this, one recognizes the manner by whigyiat that we obtain inside the
hollow sphere may involve only one arbitrary constant.

The particular integral for which the point=c0 or r™* = u = 0 is not a singularity
gives us a representation of the field outside of agethball, from which, everything
else may be infinitely extended. In conventional tetetynamics, one would have=a
/ r, wherea = m/ 47z andm is the charge of the ball. Therefore, in all pradiyca
realizable situations the coefficierts a», etc., in the series on pp. ?:

¢ =a-u-(L+au+mi®+...)

are vanishingly small. One carries out the computafmmextremely weak fields, which
corresponds to a thin atmosphere around the chargedlbadiny case, one recognizes
that the external field is completely determined whe@ lonows the charga of the ball,
and thus, the constaat One then understands the manner in which the integnath
has no singularity at = O, involves only one arbitrary constant.

We thus see how the integrals of equation (34) exhausif dhe possibilities for
spherically symmetric fields, and, with a slight genesdion, we may deduce the
following conclusion from this:

There are infinitely many forms for the world functdnthat do not bring one into
conflict with conventional electrodynamics.

Discussion of an example® = -1 /77 +1a)’.

18. The function:
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(35) ®=-1i7+ia- Y

satisfies all of the conditions that were specifiedthe world function irl6. In a static
field, it gives:
(36) d=¢, p=a-¢.

Since everything is symmetric in positive and negatV®arges, the superposition
principle d = e is also valid in the interior of theoknsingularity, or else the equilibrium
would be unstable.

The differential equation (34) may be simplified consadbéy in this case; it becomes:

(37) r-¢"+2-¢'+a-r-¢° =0.

This equation may be immediately integrated once. Whbea introduces the
abbreviatiorr - ¢* = v then if we multiply (37) by & (2 ¢'+ @) may be written in the
following way:

2 2
rﬂ%{iﬂ+Z@L—w+%@ﬂW:Q
r Vv

(38) v

v =r§°.

By integration, we obtain:

2 12
r —v+%-v3:C,
v

in which C is an integration constant. This equatnay be solved by a quadrature when
one introduces the independent variable Inr / ro in place ofr, in whichrg is the
second arbitrary constant.

(ﬂj =cw+v -2y
d¢

5 O
5:mL,¢:J2
Iy r

In general, the integral of this equation is anpad function of & As we might
expect, it therefore has an essential singulanty o, i.e., forr = 0 andr =co.

Sinceg@ must naturally be real, I will now discuss theusioihs of (39) that is real and
positive for real arguments. We will distinguidhrde cases, namel{ positive, C
negative C precisely zero.

(39)

19. |. CaseC > 0.
| will always denote the (singl@ositivesolution of the cubic equation:
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(40) C+ y—% yi=
by y:
(40a) y>0,

and use the following quantity in place®©fs the integration constant:

C

(41) h= :
3C+2y

We compute the following three quantities from the integmeconstant:

_h2
b=h ﬁ i,
1-3n? U4a

@ < 1= -3n)

(42) :
(1+h) {1+ 3)

_ . [@-h)+ 3n)

P=2 1-3*

WhenC increases from O t®, h steadily increases from 0 to 13,b andp then always
remain real, and indeed they both steadily incrdag®m 0 too, andp from +0.5 to»o.
On the other hand?, which takes the value 1 fbr= 0, decreases steadily to zerdat
1/3, changes its sign at that point, and attains thaaevaaz—\/ﬁ)2 = - 0.0718 forh =

1/4/3. One summarizes the behavior of the three quantitils the help of the
following table:

C h b p k
0 0 0 +1 +1
P A
3@/a *3 3@/a +1 0
1
+00 +ﬁ +00 +00 —(2-+/3)?

When one substitutes the functierfor v, whereu is defined by following equation:

_ 1+u
(L-u)+h(l+u)’

then an elementary calculation gives thaatisfies the well-known differential equation
for the Jacobi function of modulks and we obtain:
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1+u
’= \fJ(l NELE)
(43) (—j = (1-u?)[{1- k*u?),
dx
X = pEIhL.
r0

If K> > 0 then when we set=—cn x / dn xve obtain:

¢—\/ED dnx- cnx
r V@dnx+cnX+ H{dnx cnkX

X = p[ﬂnL, K >0,
rO

(44)

in which dn xandcn x are the well-known Jacobi functions. In this foratidn, the
arbitrary constant, means the value of the integeathat corresponds to theat whichg
becomes nully =rq ; hencex = 0 becomesin x=cn x= 1. In the vicinity ofx = 0 we
have the power series expansion:

2,2 2 2 2 2 4
dnle—k X K 4+k )_X4_k {16+ 44k” + K )-x6+...

2 24 720

x*  1+4k* 1+ 44° +1&k* ¢
cnx=1-— + - X - - X +.

2 24 720

If one substitutes these series then one obtagn®tlowing development:

dnx- cnx XA mM- kz)EE

+... ],
(dnx+ cny+ H{ dnx cnjx p* 360p j

The first few terms of the infinite series that st wrote also define the beginning of
the series expansion for the following function:

X X

2p _ o 2p 2 41 _ 1,2 2
(1—k2)p2 e e :X |11 k) 1+ X2+ )(14+“. .
2 4 12p= 360p

From the term in® onward the series begin to deviate. If one sultet the latter
function instead of the former in (44) then oneanit an approximation fop that
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deviates only very slightly from the precise valuegofor small values ok. This

approximation is:
_Pohmo ol L_\ﬁ |
2 NI

which one may also write:

¢ = A[Ei—}j
(45) rO r
Azgu/bml— @), .

In the vicinity of r = g the value ofg that one computes in our theory deviates only
very unnoticeably from the value of the potentiak ttonventional electrostatics gives for
a spherical condensor for which the potential il atir = ro and the field strength/A?
predominates.

When one is given the poing and the field strength a$ then one can also compute
the value ofth from the aforementioned formula (45) f8r this makes both arbitrary
constants in the integrals of (37) completely deteed.

One sees from the theorem that we just provedtheatlectrical atmosphere in the
neighborhood of the null point is extraordinariiyt However, the further that one goes
away from the null point, the stronger the eleefratmosphere becomes. Conventional
electrostatics is then only valid for a sphericaidensor whose shells are not to far away
from each other. The larger one takes the spaiveeba them, the more one feels the
influence of the electrical atmosphere that botéllshpresent; the positive electrical
atmosphere comes from the shell with the positvtemial, and the negative electrical
atmosphere comes from the other shell. Ultimatedg, atmosphere becomes so thick
when the shell is very from the point that the value that corresponds to becomes
closely equal to the half-perid@K of the elliptic functiongin xandcn x For the given
ro this has the effect that the smaller one makesh2ksmaller thak becomes and the
larger thath becomes. However, from formula (45) it is easgée that the quantity A,
i.e., the field strength ab, decreases with increasihg The largest value df for which
formula (44) is still valid i = 1/3, which corresponds to the value:

ﬁ
A=0.2890Y2
4a

In this special case, we hage x= 1,cn x= cosx. If one wants the field strengthratto
be larger then one must compute with a somewhatfimddormula. Sincd? < 0 forh >
1/3, one introduces the following quantikyas the modulus, which is positive and less
than 1:44 = - ¥/ (1 —k®), and one further replaces the quanpityith a quantityq = p -

J1-k? , whereas one leavesunchanged. One must therefore replace formulpvih
the following one:

and X=1m1
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_ K2
b=h 1—hz i,
1-3n V4a

o2 @B-Di-h)_ -K

(46)

8h 1-Kk?

2h
= = pL- k).
Q= gz = P K)

If h increases from 1/3 to {Bthen all three quantities constantly decrease.
boundary values give the following table:

C h b q K
+ 1 +l + 1
3G/a 3 3G/a +1 0
1
+0o0 +£ + o0 +oo 2—\/?3
4

If one introduces the following variable in placexof

y=x/v1-k*=q-Inr/rg

then one obtains the following equation instead of (43):

_\/B 1+u
q - - |:| ]
r \V(@-u)+h(1+u)
d 2
(47) (—”j = (1-0°) (- K2)+ K ° IP),
dy
r
y=qlh—.
r0
If one replaces the solutiom of the differential equation withh = — cn y, then one
obtains:
¢:\ED\/ 1 1:# 1+u)’
(48) r V@-u)+h@d+u)
r
y=qln—.

o

The
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If one letsh increase from 1/3 to YBthenA in formula (45), and thus the field
strengths img, increase without bound. If we letdenote the value for whichy equals
the half-period K of the elliptic functiorcn ythen we have:

&
rR=ro-e?.

If one lets the field strengths g increase without bound thenpwill likewise become
infinitely large, whereask remains finite, and; returns ever closer 1@, therefore, for
large field strengths the context in which conventioakdctrostatics is valid will
ultimately become infinitesimal.

Conversely, if we let the field strengths get very $itien we can calculate the half-
period, which corresponds to the modulutbat differs only very slightly from 1, almost
precisely from the formula:

2K=2-1In

1-Kk2

In this case, since =3, the valuey, for whichx =p - Inr/ro equals K is:

1
- _( 16 jp:r (256
LT k2 ®la-k¥ye )

As k gets closer to the value d;, increases without bound; the regime in which the
electrostatic laws are valid for very small fietdemgths then extends to infinity.
We can summarize the results that we just obtaméue following theorem:

In a spherical condensor, the electrical field éols the laws of conventional
electrostatics to a very high degree of precisiorthe neighborhood of the null surface
ro, on which the potential is zero. However, the distathat one may separate the two
spherical condensor surfaces before the electrisahosphere that surrounds the
charged surfaces produces noticeable deviationmftbe usual laws of electrostatics
depends on the field strengths. For very weakldielhe associated distance becomes
unbounded. With increasing field strengths it bees smaller and smaller, and at
indefinitely large field strengths it ultimatelyays infinitesimal.

Since elliptic functions are periodic, the integ(4B) takes on the value of zero not
only forr =ro, but also at infinitely many other points. Thdlsurfaces of the potential
are the spherical shells of the following radii:

_4vK _A4(v-DK _8K _4K LAK 8K
oroe P rgre P r0re? rpe®? rgr0e®f rpe’”, ...

The direction of the field alternates; if it pointsthe direction of positive at one null
point, it points in the negative direction at thexnone, back to the positive direction at
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the next one after that, etc. Between any two nutitpove have alternated between a
spherical shell with a positive electrical atmospherg¢ ame with a negative electrical
atmosphere. The positive and negative maxima of thegehdensity are found at
roughly the following places:

—(4v+2)5 —(4v—2)5 LS - +2K +5K
., Io-e P ro-e P roe P rpe® rpe®,rpe?,..

The potentials at these places are:
b_1
¢|\/| =% \/: —,
h Jy

in which one assumes that the positive and negatiyve alternate. Both of the curves:

_, o1
o ot

touch the undulating curve of the potential on bgittes. The closer one comes to the
null point the more the potential, and with it, tbkarge density, increases. In the
neighborhood of the null point, they become unbeand

The integral (44) may be described in the followmmgnner:

The center is enveloped by concentric sphericallsloé electrical charge, like an
onion. Moreover, the positive and negative eleatrshells regularly alternate. Between
any two shells in the neighborhood of the null acefg = O, there is a more or less wide
region in which the electrical atmosphere is extednthin, and in which an electrical
field exists, as it should in the usual laws otelestatics for a spherical condensor. In
the neighborhood of the center, the onion sheltsngdenser and denser, and likewise,
the charge density, potential, and field betweentam shells grows without bound.

The integral (44) therefore has assentialsingularity at the point = 0, in the sense
that forr = 0, ¢ is not constrained to any finite or infinite valurit fluctuates between
unbounded positive and negative values in the beidiood ofr = O over very short
intervals.

The pointr = o is also an essential singularity of the functiarmether or notg
converges to zero far = . There are always infinitely many positive andjatéve
maxima ofg between any two arbitrary finite value rodnd the value = o, and this is
what characterizes the singularityrat o .

If one wishes to make a precise definition of taage of the integral (44) then the
case of a very small value bfis well suited. In this case, one can obtainfthestion
over its entire range by elementary computatiopakations.

In the sequel, I will set:

(2v-1)2K 22K
wafore P =g, ro-e P =ry,
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(2v+1)2K

ro-e P =rasg, ...

The series of quantitig (n = 2v -1, 2, 2v + 1, ...) defines a geometric progression, for
which we always have:
2K

Mifpi=fm=..=e’.
n may take on odd and even, positive and negative valuesth@méas, in general:
2_
M =TIn-1 - Mhe

If we now introduce the assumption thats very small compared to 1 then we can
neglect the higher powers df in formula (42), and calculate with the following
approximation:

b= > 1-n=81; p=1i.
a 2

Furthermore, we can compute the half-peri&do2 the elliptic function as:

16 2
=In=.

2K =1In
1-k? h

2K

The quotient of the geometric progressigrs thuse P = 4 / h%, which is a very large
number; i.e., any two successive values in thenpssipn:

ey rn—l, rn, rn+1,

are of very different orders of magnitude. Comgaer, ro-1 is infinitesimal and -1 is
infinite. In general, we compute them as:

r _r . in
n 0 h2 ’

in whichn may be odd or even and positive or negative.
By making use of formula (45), one obtains the galfig in the neighborhood of the

pointray:
3d2 1 1 3 1 1
= 4= I, —-=1=4=0Q/r — -,
/ Va 2 ZV[ErZV rj \a ZHEErZV rj

For a value of that is very large compared tg, but very small compared tg,;, one
can simply compute:

¢ :—4§ ]_Vrzv_l :

a .,
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for a value of that is very large comparedrtg, but small compared t6,+1, one has:

¢ = +4§|3_“I‘2"_1:4§E]L.

a r2V a V r2V+1

In order to compute@ in the neighborhood afy+1 (and thusr,,.1), | set:

X=p-In——=p-In——(@v+1) K=x—(@+1) X
2v+1l r0
Now:

ch x=-cnx', dn x=+dnx',

P :ED dnX+ cnx
Jr V(@nX-cnX)+ H{ dn% cn)

Since we would like to neglect terms of higher ondéh, we developnx' anddnx’in a
power series in (1 &) aboutk? = 1. This gives the following expressions:

hence:

_ L2
(@n),, = dnx),_+ 2232 Ly renxn 20X |
K K2=1 4 cnX 2 1- sn X .
_ L2
(Cnx)z:(cn)() 2_—£ ﬂ__lgn)(mcn)r(m.ll+snx +
k k=1 4 cn )( 2 1— sn )’( e
We have set:
2
(enX),._ = (dnX)._ = e
e -~
(Sn X)kzzl = m ’
1-h*=ar.

The use of this formula gives, by a very simple patation:

¢ — 4§D r2V+1
a \r2+r2
2v+1l

PN CIRES,

a V r2v+1

For small values of:

For large values af
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¢ :4§[_|\/£.
a r

In the neighborhood ab,-1 one has, since the opposite sign must dominate there:

r +r2v -1

Thus, for increasing values nof¢ goes through the following values of the series:

_4§E}L- _i/: 2v1 : _ﬁ/gg\_erV—l;
a A ov-1 2V1 a r

. ,

3 1 1), 3
e
1 +4\1/:|3\/£

+4
a My TT
3 1 1 ).
‘\‘/: EL/ via 7~ '
a L PP

20. 1. Case:C < 0. Again, | will letydenote the unique positive solution of the
third degree equation:

—C+y—— V=0, y>0,

and introduce the following quantityin place of theC as the integration constant:

-C

h=+ |———.
-3C+2y

Moreover, | will again compute the three quantitiek?, p from (42):

b=h. 1-h? E{/E

1-2n* V4da’

2 =d-h)@a-3n)
(L+h)(1+ 3h)’

_1_[@+h)a+ 3)
2 1-3%
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Thus, if | replacer with the following quantityu:

_ 1+k [
(L-ku) - h(1+ kOu)’

then in the cas€ < 0, one obtains the following equation in platequation (39):

duz_ 2N L2, 2
(&j =(1-u")@-k°u?),

(49) x= plh—,
r0

¢:\PD\/ 1+ kLU |
r '\ (@—ku)-hi{1+ ku)

The integral (49) is then real only when:

> 0.

We have therefore have to merely restrict ourselvelse regime 0 f < 1/3, in which
this condition is satisfied. If one then introdsi¢ke integral -€n x/ dn xfor u, then one

obtains:
b= ED Jdnx—ken x
(50) r J(dnx+ kCcny- I dnx K cr)x

X= pEI]nL, 0< h<+1.
r0

The characteristic of this integral is that, byttast with (44), it never goes to zero, so
one always has:

dnx>k-cnx

and the expression under the square root signftineralways stays greater than zero.
However, whenp never goes through zero, it must therefore alwatan the same sign,
and it goes continuously from the very large valaesmallr to the very small values at
large r. Meanwhile, the periodic function that appearslamnthe square root sign
regularly fluctuates back and forth between a maxmand a minimum. The maximum
is attained for the value= (2v + 1) - X; hence:

_(2v+DK _(2v-12K _6K _2K L2K L6K
r=..,rpce ° .rpce ? ... r0e?,rpre? ., rpre,rpe’,..

and the minimum is attained fai= 4vK; hence:



Foundations of a Theory of Matter. Il 47

aviK 4(v-1)K 4K 4K 8K
-—_— -— + +

r=..,ro-e P ,rpre P ... rgre? roroe®,rpe?, ..

The values of the maximum and minimum are:

1+k 1-k
+ and + :
@-k)—-h(1+ k) @+k)-h(@-k)
The values of the potential at the points with; (maximum) and, (minimum) then

become:
boa= | PEFK) 1
N A--ha+ k)

po= | DK 1
TN+ -ha-K)

As a result of the periodicity of the expressiomemthe radical one has the drawback
that ¢ is not regular with increasing but stepwise. The two smooth curves:

_ b1+ k) 1
? _\/(1—k)— h(1+ k) Gﬁ
_ [ bmi-k) 1
’ _J(1+k)—h<1— 9

touch the step-wise curve of the potential andhat way, they mutually bound it. One
can best recognize the form of the potential cumvihe case of a smat| where one can
easily carry out an approximate calculation in élyadbe same way that we did at the end
of section19. in the case of a positi@ We again set:

+2vE7r£ +(2v+1)§p£

ro-e P =ry, fo-€ = Iov+1,

and we obtain, for smallin the neighborhood of the valug:

3ok gt
¢_\/; r2v—1|:Er2V+rj’

and, in the neighborhood of.:
3 r
= 4= D 2v+1 ]
= e

With increasing, ¢ then goes through the following sequence of values
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+4§|3L; +§/§D Mov-1 : +</§B\_/r2v—1;
NP a \r2_ +r a r
3

a 2v-1

+4\1/§ ,r2v—1 1'+_1 : +4_E}L;
a rry & o
a a r

r2v+1 +r
3.—41, 1
* ‘\1/: Gy =7 :
a U P

One then sees that in the range between andra-1, ¢ will remain at an almost
constant value for a rather long time. rAt,, the ¢-curve drops down, and between
andry, it almost exactly equals a one-sided hyperbola foorg Istretch, but once it
reaches,, the curve becomes flat again. Betwegrandr,,.1, it again takes on the form
of an almost completely horizontal step; betwegn andrau..,, it goes upwards in the
form of a forward-pointing hyperbola, and so on.

The closer that one comesita= 0, the more frequent the steps become — ultimately,
they are infinitely frequent — and in this way one als® ihahis case that, whether or not
@ becomes infinitely large far = 0 uniquely, the point = 0 is anessentiakingularity of
the function. Likewiser = o is an essential singularity, because between aitg fin
andr = o there will still be an infinitude of steps.

For large values dfi the behavior of the function is essentially the sasi¢he case
that we just described of infinitesimial only the steps become finer and finer, in such a
way that in the case of infinitesimalone can not distinguish distinctly differing regions
very well. Ultimately, when one choodes 1/3,k = 0 the steps vanish completely, and
both of the limiting curves that were computed on pp. Rvd®n which the step-wise
curve of the potential goes back and forth, now mergelegeito the curve:

_ [ 1
o3 5%

which agrees with the potential curve. From the dedinitafb (on pp. ?), we have:

3b :i

\/a L]
and, when one sets the arbitrary consheefjual to 1/3, the integrgl looks like:

1 1
== O—.
? e i

It is therefore algebraic, and the second arbitcarnstant, falls out of it.
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In practically realizable cases, the integral @« 0 gives us the field in a spherical
condensor whose two reference potentials are chargeheittame sign. If the potentials
are low then one can taketo be small, and the field in the interior of the demnsor is

given by the formula:
3 1 1 B
=4=Q/r — + - |=A+—.
¢ \ a ZHEErZV rj r

This is the usual formula from electrostatics. When isrgiven the potential and field
strength at a point of the condensor, hence, the dgesnfi and B, then one can
immediately compute,, andra-1, and fromry, andra.-1, one can compute the period of
the function, hence, the modulisand ro, as well. With the field, both integration
constants are likewise known.

The formula that was just used is, however, no longéd vehen the potential is

sufficiently small. Large values @ are associated such strong electrical atmospheres
that the formulas of conventional electrostaticsravdonger useful. There is no point in
discussing these unrealizable cases any further.

21. lll. Case:C = 0. When one divides equation (39):

[Eﬁ}zzvz_ﬂé.v4
dé 3

by 4a/ 3 - V* and sets:
3.1
a 2v

[ﬂg:M—L
dé

then one obtains:

The solution of this equation is:
w=1(ef +€7).
If one now sets:

W:l g[_)i, f:|nL
2Va rig o

then one obtains:
bw 1
(52) ¢ =4—2>0 .
a /rz +I’02

If one then chooses the value 0 for the integrationstantC then the essential
singularities at the point = 0, as well as = «, disappear. The integral now has only
algebraic singularities, and for real values d@fhas no singularities at all.

One goes from the integral that was discussetito the function (52) when one
allows the integration constahtto sink without bound. The modulkshen rises to 1,
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and the period K becomes infinitely large. The electric sphericallsh®at contain the
shell ro then expand without bound on both sides. On the one thay, push the
infinitude of onion shells that surround the null point ddwithe null point itself. On the
other hand, null surface of the potential is shifted ounfinity completely, in such a
way that no more electrically charged shells can éxastieerr =ro andr =.

If the value of the potentigd on a sphere of radilR is given asp = A then we have
the following equation for the determination of the ing&&@mn constanto:

3 r
A= S0,
a R2+'6

1 3
r02 —?q/:aﬁi(ﬁ R2: 0.

3 ~-R>0.
4aliA

The field that was represented by (52) is therefmrgsible only when the potentil
does not exceed a well-defined large value:

A > 43[—1i

4a R
on a sphere of radil&
The usual laws of electrostatics thus remain valiegn the potentiaA is sufficiently
small in comparison to this largest possible valtibis is the case when:

\/E .AZ.R:g,
3

in which € means a very small number. One can easily congpfieoximate values for
ro, in which & is ignored when compared to 1. The quadratic Emuayives two
solutions:

~1 |3 R

“wa e

2. ro:\/g AZ LR =6R

The first value ofrg is infinitely large compared t&; thus, in the interior of a ball of
radiusR (hencer <R), when one deleteg by comparison to 1 the potential is:

1. lo

3.1

1. ¢ :ﬁaL =2g—=A
a “’2+r02 a \/E
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By contrast, the second valuergfs infinitesimal compared tB. If one again deletes
& by comparison to 1 then one has, for all valuegs>oR:

2. ¢_4§Gﬁ_‘\l/:g/7|3]: A-

By comparison with the usual laws of electrostatite first solution then in the
interior of a hollow ball that is charges with thetential A when no more charge exists
in an infinitely large region around it. If oneassthe precise formula without neglecting
&£, then one can compute the weak electrical atmasptich, in our theory, must exist
inside, as well as outside the ball.

22. We shall now consider several concentric sphefeadiusRy, Ry, Rs, R4 that are
charged with potentials &, Az, As, As. Two integrals withC = 0 produce the field in
the interior of the smallest sphere and the fielthe exterior of the largest sphere. In the
shells between these two shells one must takentegral withC > 0 orC < 0. As long
as the potential®\, Az, As, A4 are all sufficiently small one obtains a very good
approximation for the usual formulas of electrasgatand the deviation from them is
unnoticeably small. In this special case, we tbea that the theorem that we discussed
in general on pp. ? is valid, that there are fumgt{b that do not bring one into conflict
with conventional electrostatics.

However, we must now address the question of hogv aam imagine that charged
spherical surfacel’;, Ry, Rs, Rscan occur in such a way that they separate anyspaoes
from each other as an instability surface, in whiglcan take on various integrals.
Naturally, the charge on such a spherical surfaceat be evenly distributed. We would
then have solved the differential equation (37) tlee case of spherical symmetry in
complete generality, and there is nothing about ifgegrals, which can have
discontinuities for the valueR;, Ry, Rs, R4, that would correspond to the surface charge.
The integrals, which must be valid on both sideswfh a discontinuity surface, must
therefore both converge very quickly, but still tonously, to one and the same third
solution of the general equilibrium condition, wiigs now no longer spherically
symmetric, inside a very thin layer on the surfadeis quite clear that these solutions
must correspond to an atomistic distribution ofrgkain the charged surfacedt is
interesting to remark that the theory that | soudhtt not subsequently give the basis for
us to choose between a continuous versus an atorstigicture for the charge at all, but
only that this is completely feasible if it leadsany sort of atoms of electricity.

The problem of the electron.
23. On first glance, the example that was discussetid previous chapter seems to

suggest a world function that must be very cargfaliosen, because, in fact, it leads to
isolated knot singularities of the electrical cleargNamely, if, in formula (52):
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2
4= 30 5 1
a /r2+r02

we choose the integration constamt to be infinitesimal when compared to all
measurable lengths, perhaps the order of magnitude that oeealye ascribes to the
electron radius, thep represents the potential in the neighborhood of a tiegtrecal
knot singularity whose atmosphere is practically equakto at any measurable distance
from the center. Since the charge dengity given by equation (36)=a - ¢°, we then
have:

B 3@02D 307
a ’(r2+r02)5

The total charge of the knot singularity is then given by integration:

2
(53) e =4 ,4/320 :

A simple computation shows that the total charge of @mosphere of the knot
singularity outside of a sphere of radiy$as the magnitude:

0

3
e |1-| ——2 ||
[rlZ +r02

Whenr; is large compared 1o, this is only a vanishingly small fraction efin fact, the
charge is then almost completely confined to a sinadl

In general, the theory provides no elementary quamf charge. If one varies the

arbitrary constant, in (53) then one can obtain all possible magnigudee, and indeed,
e can be just as likely have a positive or negasige. The “electrons” that one obtains
from the chosen world function are therefore naducible. Many knot singularities can
be merged into a single larger one, and a singte &imgularity can be subdivided into
smaller ones, since knot singularities with allgble charges can exist.

Whether or not this peculiarity corresponds to #lctually observed facts, one can
perhaps believe that such a theory of matter thabmstructed out of the world function
of the example is completely feasible, since tleeteical charge of a large body can be
thought of as due to discrete knot singularitiesemhihis does not also lead to the
property of irreducibility; however, this is a mage. From formula (52) and (53) the
potential at a sufficiently large distance from Wt singularity is always give g =
e/drr. Equilibrium then dominates in the field of theokisingularity only when there is
a space that has zero potential. Among all ofritegrals of equation (37), none of them
represents a knot singularity in a space of a palegy, that is arbitrarily different from
zero, in such a way that we have, at a large dist&nom the knot singularity =e/ 47
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+ @, in which ¢o means a non-zero constant. Thus, there cannot beakd&wvet
singularities near other in equilibrium, as must bectige in a material body. If there are
many of them then there must be an immediate reordamzaf the charges. If two
neighboring knot singularities have the same sign they must seek to merge into a
single larger knot singularity for which equilibrium igaaned. On the contrary, two knot
singularities with differing charges cannot remain clwseach other at all. They must
flee further and further away from each other in ordercome to space with null
potential. A world that is governed by the world function:

©=-if+iaf

must therefore ultimately coagulate into two large cluropslectrical charge- one
positive and one negative — and these two clumps mualysimove further and further
away from each other.

24. In the general discussion of the equilibrium cooditijpp. ? and ?) we pointed out
that there is an integral wittnearbitrary constant that has no singularity at the tpomn
0, also one witlonearbitrary constant that is regular at the poirtco. In general, both
of these integrals correspond to the tferentvalues of the second arbitrary constant
that the general integral still contains; they are @etely different from each other and
include the self-explanatory solutign = 0 as the single mutual special case.

However, the example that was discussed by us exhibiepetuliarity that both of
the integrals that we just spoke of were identical wabheother. Namely, when one
gave the value of zero to the arbitrary cons@uipp. ? and ?) then both of the essential
singularities ar = 0 andr =« simultaneouslydrop out of the general integral. This is
the basis for the fact that the example gives knogudarities, but not elementary
guantum, and likewise, the fact that the knot singudsrican only exist in a space in
which the potentia$p = 0 in equilibrium. Apparently, the amalgamation of timeissions
of both singularities is connected with the questiomnvbéther the differential equation
(837) on pp. ? is reducible or not, i.e., whether it cartraesformed into a first order
algebraic differential equation by a single equation. World fumesi that lead to such
integrals are therefore not needed.

If we would seek a world function of the form:

®=-37+ia-x,

in which v shall mean an arbitrary even number that is diffefiem 6 and greater than
four, then we would find no solution without essential slagues(except forg = 0).
The field in the infinite external space around a chatgddwould then be represented
by a solution that has an essential singularity=a0, and the solution that we take for the
interior of a charged hollow sphere is not regular at~. For this choice of world
function we find no solution at all that representsisaated spherical knot singularity
with a finite charge. We will prove this rigorously in ooéthe following sections.
World functions of this form are thus not to be used\aay, shape, or form.
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If the theory is to be practicable at all then theld/éunction must have a complicated
form in any case. The electron will obviously be repmess# by a solution to the
equilibrium condition (34) that has a singularity at geentr = O that is to be indicated
function-theoretically as an essential singularityichi, however, gives no physically
sensible value fop. An example of such a singularity is the function:

1
g =atb-er forr =0.

The differential equation (34) must then provide, amongghalintegrals that have an
essential singularity at = 0, one of them whose singularity is not associatétht w
physical senselessness. This integral must inameearbitrary constant, which can be
chosen in such a way thgtdiminishes to an arbitrary, but chosen constant argel
distance from the center: the potential of the spaaehich the electron is found. For
=oo this integral will generally have an essential singiyldhat must either drop out or
have no physical meaning only in the case where the paltehthe neighboring space is
null.

Whether or not it is amusing to find world function thaglly leads to an electron,
nevertheless one must not deny the possibility of sumh a world function exists.
Therefore, in the sequel, | will next simply make #msumptions that bring about a
world function F that leads to knot singularities ofceleal charge in the same way that
one finds in the electron. In an eventual continuatiotihie research, | will compute the
dynamics of such knot singularities, their inertial ssyaand the forces that they
experience.

Greifswald, Physik. Inst., 1 June 1912.

(Received 7 June 1912.)
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Chapter Three

Force and Inertial Mass.

Computation of the force that acts on a massive particle.

25. In order to compute the force we use the world mat6y that was described in I,
pp. ? However, we will make no sort of restricting agstions on the invariants that
appear in the world function, but we will assume il §€énerality that all four of the
variables that were listed in I, pp. ? enter iRto A simple calculation gives that the
theorem that was next discussed on pp. ? under restrggechptions is true in complete
generality:

The world matrix is symmetric about the diagonal.

If one applies the multiplication rule:

[a-b]-c=@-¢)-b—(0-¢)-a
and the formula that one obtains from it:
[[a-b]-c]+[[b-c]-a]+[[c-a]-b]=0
E)hen one easily finds the following two equations frive general formula (25) in I, pp.

(54) £ 0]+ [h-b]+[f-0] =0,
(55) f -]+ [6-0]+ (0 f-¢ 0)=0,

therefore, when one writes out the components oéxipeessions explicitly, one has:

exay+bxby+fxnyzaxey+bxhy+nxfy, etC
Dybz+azby+pfx:eybz+ezhy+¢nx, etC

The theorem is therefore proved.

26. We would now like to represent a material particle, Beatther an electrical knot
singularity or a more complicated structure that ismaged of similar singularities, that
moves in a widely extended electromagnetic field. Apaint, let the energy current that
is associated with the forward motion of the ethatesbe denoted by as in I. (5), pp.

522. We then have:

! Annalen der PhysiB7 (1912), 511-53439 (1912), 1-40.
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e,B,—¢, 5 -p,=0 b -0 b ~}H,
€, x_ex[ﬁz_¢|])y:‘oz|]] x_‘0 zl]J x_}l:ﬂy

(56) Ly
e,d,~¢,b,~¢®,=0,B ~0 B -},

m W\ W
1

X
y
z

Furthermore, we would also like to define the thitmee-dimensional vectogs, po,
p3 by the following equations:

¢‘b[ﬁ)+€x |Ex+bxEH)X-*_fxl}x:plx’
e, 0, +b b, +f B, =p
ez |Ex-i_bzl:ﬁ)x-i_leﬁ x:plz
ex |Ey+bx|:H)y+fx|}y:]:'2x’
(57) {®-bl+e, D, +b, 0, +f D, =p,,
ez |Ey-i_bzl:ﬁ)z-i_leﬁ y:pz 2
ex |Ez-i_bxl:ﬁ)z-i_fxlﬁz:p?ne
e, 0, +b b, +f B ,=p;,
¢‘b[ﬁ)+€z |Ez-i_bz [H)z+fz|}z:p32

As we saw in | on pp. ?, namely, eq. (17), the finsee rows world matrix give us three
differential equations that, if we keep (56) and)(%n mind, may be written in the
following way:

aﬁx - aplx + asz +ap3x

ot ox oy 0z

aﬁy - aply + ap2y + ap:a’y

ot ox o9y 0z

aﬁz - aplz + apZz +ap32

ot ox o9y 9z

(58)

We would now like to express the energy of a flindt flows with a certain velocity
q. If Wis the energy density then, by definitigns determined from:

(59) s=W-q.

Furthermore, if we letiM denote the instantaneous total energy of the welalament
dx-dy-dz=dVthendM =)V -dV, and we can also write equations (58) in the Voilhy
way:

i(dM mx): aplx +ap2x +ap3x dV,
ot ox dy o0z
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0 Op,, Op,, Op,
—(d™m = Y+ 24 .y,
at( ) [ ox dy 0z

9 (aM@,) =[Pz 4 P2z O | gy
ot ox dy 0z

We would like to integrate these equations over a voMmeket:

M:deM

be the total energy that is contained/iat the moment in question. Lgetoe the velocity
of the “mean mass point” i, which is defined by way of the equation:

(60) M -a:jvqu .

Furthermore, letS denote the bounding surface of the voluwhdet N be the outward-
pointing normal at a point &, and finally, letpy be a three-dimensional vector that is

defined by the equation:
(61) pn=p1 - COSN, X) + pz - cosl, y) + p3- cos, 2) ...
The components gy can also be computed in the following way:

Prx = Pix - COSN, X) + pox - cosl, y) + pax - cosl, 2), etc.

The integration oveY then gives the following result:
oM Lq) _
(62) T_jSpN [S.

The volumeV is chosen in such a way that it is infinitesimalcomparison to the
widely extended field, but infinitely large in comparisonthe material particle that it
encloses. The second condition shall express: firat,the energy of the singularity that
the material particle possesses is as good as cahtmrthe volumeV, hence, only a
vanishingly small fraction of the total energy existssale of the surfacg and, second,
the vacuum laws are as good as exactly valid, hencesasnseto andv to zero ana =

0, b =h. For this choice of volum&/, M -q is the momentum of the particle, and thus its
inertial mass is identical with its enerlyly and the right-hand side of equation (62) gives
the force that acts on the particle. Since it fefiothat the second conditign is

identical, up to vanishingly small correction terms, wite components of the Maxwell
stress tensor on the bounding surf@cd the element in question, one obtains a value for
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the force that is independent of the value of the velMnassuming that both of the
aforementioned conditions are satisfied, and, moreocaevalue that is completely
identical with the one that is provided by the electiwoty for a material particle that is
surrounded by precisely the same electric and magneticaettie particle in question.
Just like in the theory of the electron, the force tthoiss not depend upon the particular
way in which the electric charge and the electric ormatig dipoles are arranged inside
of a material particle, as long as the particle prodticessame external field, and, in
particular, it does not depend on the laws that pertathe effect of the surface tension
on the particle or the laws that govern the electromiagfield inside the particle instead
of Maxwell's equations. Precisely the same theonmch we will next study in the
case of the translational motignof the particle, may also be proved for a rotational

motion with no further assumptions. The inertial mataen may thus be computed just
as in ordinary mechanics, in which one always usesettergy in place of the inertial
mass. This essentially follows from the fact tiat)(implies thapiy = pox, P12 = Ppax, P2z

= p3y-

The ponderomotive forces that bring a material particle into translational or
rotational motion may be computed from the electric and magnetic fieMhich one
finds the particle according to the same rules as in conventional ielgctheory. The
existence of a particular four-vectdp, ip) in the interior of the particle and the

deviation of the laws of electromagnetic fields from the Maxweglb®ons inside the
particle have no noticeable influence on the external ponderomotice.forces

According to our theory, by way of example, the force:
(63) P=e-(+[q-b])

acts on an electron of total chargeghat moves in an electromagnetic field with the
velocity q.

This expression corresponds precisely with the onetkieatheory of the electron is
founded upon.

On the contrary, the internal forces that act insitlan elementary particle of matter,
which might perhaps contribute fine structure effects ®hrticle itself, are completely
different from the ponderomotive forces of the usbabty of electricity. However, they
may not be computed without further knowledge of the worntdtion.

Among the external forces that affect the materiafigde, one also finds gravitation.
From the theorem that we just proved, it follothat the fundamental equations of ether
dynamics). (1) through(4), which we have founded our theory upon, do not, however,
clarify the issue of gravitationThe hope that | spoke of at the beginning of my work (I,
pp. ?, et seq.) is therefore not yet satisfied. later Ichapter, we will examine how the
fundamental equations must be extended in order to encemstation, as well.
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The inertial mass of a material particle.

27. By the term “material particle” we mean, quite gaflgr a small region of the
ether where the state variables take on enormouglg Malues. In the sequel, we will
frequently have to evaluate integrals of state varg&bleer the entire volume of the
particle. We understand that to mean a volume whoter boundary is sufficiently far
from the center of the particle that the state vagglohn be assumed to be infinitesimal
on it. Thus, when one chooses the outer boundarphefvblume to be completely
arbitrary, but also such that this definition of particléasmpletely” invalid on it, then
this choice may have no noticeable influence on the ltiee integral.

When we say that a particle is at rest and unchangiegingerstand this to mean that
either all of the state variables are constant in/tiheme that fills the particle or that that
the average value of each state variable is constadch point of the volume over a
time interval that is infinitesimal compared to thatleé experiment itself.

Let K be, e.g., the value of a state variable at a pointy( 2 of the particle.
Furthermore, letr be a time interval that is infinitesimal compared bhattof the
experiment. We then have that the average value ahwine spoke is:

J— _ 1 T
K—;%K@L
As is well know, the following equations are vai)d

0K oK 0K oK

—_—=— —=— etc.
ot ot 0X O0X

The conditions for the particle to be at rest are then:

The following two relations ensue from the fundamemgakgions (1) through (4):

e 0—¢ - p=—div(p -0) -0 %

: 00
b-h—f-o==div[h-f]-f —.
h—f [b -] fm
For a particle at rest, one then has:

—¢ -p=-div(¢-2),
—f-

¢-0
b-h o =—div[h -{].

1 H.A. Lorentz, Versuch eine Theorie der electrisched optischen Erscheinung in bewegten Kérpern,
pp. 13.
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If we now integrate over the entire volume that esedothe particle and observe that
one may sep -0 and p - f] equal to zero on the boundary surface of the volumewlgen

obtainfor a material particle at rest:

(64) [e-0-dv=[g-p -dV,
(65) [6-5-dvV=] §-0-dV,

From |, eq. (7) and (14) on pp. ? and pp. ?, we compute thgyetensity:
W=H+b:-h—-f-0=F+e-0-¢:-p0
One then obtainthe energy of a material particle at rdsbm (64) and (65):
(66) Eo=[H -dvV=]® -dV.

Let S be any surface without boundd)yhat the particle intersects transversally, and
let N be the normal to the surface at any point. Nasguming that the particle is at rest,
since lasting variation of the energy can occur on eithee of this surface one must
have:

(67) [ syms=o,

in whichs is the average value of the components of the vectbat is normal to S.
From (56), this vector is given by:

s=[e-pl-¢ -0=[0-b]-p-F.

Laue?) has proved that, as long as equation (67) is valid — asdsthherefore the
case for any arbitrary material particle — the followtihgorem also exists:

Laue’s Theorem. The integral of a single component of the world rmatver the
volume of a material particle at rest is null, egtér the component with the index 4, 4,
which provides the energy of the particle.

Thus, in general, the average value of each componentacsmall time interval is to
be taken, as in equation (67).

As M. Laue has pointed out, one can use this theoremmasans of computing the
energy of a moving particle. | would like to carry oustbomputation for the theory that
is being discussed at the moment. Let the field quesitibr a particle at rest at a point
Xo, Yo, Zo all be characterized by the index 0. From the theorglafivity, they give the
corresponding values at a poxty, zof a moving particle that has a veloaityalong the

! |.e., either closed or extending to infinity.
2 M. Laue, Das Relativitatsprinzip, pp. 168, et seq.
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z-axis when this pointx( y, 2 has a position at the timehat is given by the following
equations:

X = Xo, Y =Yo = 2,
1-¢°
by means of the following conversion formulae:
X:DXO_q[H)yO, Dy:Dyo_quo’ 0,= 0,
V1-¢9° V1-¢9°
b — QD byo —aLD,
hX:O—ZVO, hy:yo—z", b2 = b0,
1-q 1-q
IOO_quO _ Dyo_quo

Yo, :W, Ux = Ux0, Dy = Dyo, b; = N

Precisely the same relations that exist betweeh)(and 0o, ho) are also valid between
(e, h) and ¢o, ho), and, similarly, the same relations that exisgtMeen o, v) and o, vo)

is valid betweend, f) and o, fo).
The use of these formulae leads, by an element@mpagtation, to the following

equation:
2

0-h—f-0 =00-ho—fo-vo— a 5 (€0 - 00 = @o - Po)
1-q

2
_1?q2 + (€20 920 = bxo - Bxo = byo - byo + f0 - 0:0)
2

~ & (0l ~ fo- 00 + [0 bl = Po- fa).
1-q

We now construct the timelike average value anegrate it over the volume that the
material particle fills. If we then use equatidgd), (65), (67) and further note that it
follows from the definition of the point, y, zthat the following relationship exists:

dx-dy-dz=41-g° -dx - dy - dz,

dV=y1-g° - dV,

or.

then one obtains:

(68) f(b[ﬁ—ﬁ) [dV = 1q2 2 Ij(bo |:ﬁo_ezogzo_bzo[ﬁ zo_](zom' z&mv
-q
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If we let Ho denote the quantity at the pointx, Yo, zo Of the particle at rest then we
can regard:

Ho — F(Xo, Yo, 20)

as a function ofx, Yo, 20). Furthermore, letx( y, 2 be the point of the moving particle
that one obtains at the timdy subjectingXo, Yo, Zo) to a Lorentz transformation. Since
H is an invariant for the Lorentz transformation, vedue at the pointx( y, 2 of the
moving particle at the timemust be computed as:

H :Fix, Y, zZqt }
whereF means precisely the same function as before. En@mnit follows that:
(69) JH- dV=\1-° - [Ho- dVo=\1-¢? - Eo.
Now, the energ¥e of the moving particle is given by adding (68) £68):

E:j(ﬁ+b_—ﬁ)mv,

2
E= 1_q2 ) '[Homvo-*' 1q_q2 : J(bo |:ﬁo_ezogzo_bzo[ﬁ zo_](zom' zc)mv

We can simplify this result further with the help laue’s theorem. Namely, if we
apply this theorem to the term of the world mafdi®) that has the index 3, 3, then we
obtain:

,[(CTDO _bo |:ﬁo_e20|120_b20|:ﬁ zO_szm) Z()ECHV: 0.

Therefore, from (66):

[®,- dv=[H, dV=E,,
J(bo Mo—e,0@,0=0 000 ,n—F o0 z()mv:'[ao -dV=Eo.

From this, as M. Laue has already prove (Das Raktsprinzip, pp. 170), one then
obtains:

(70) E= 5o

28. One can deduce another interesting consequentaus’'s theorem. If one
applies it to the three terms in the diagonal efworld matrix with the indices (1, 1), (2,
2), and (3, 3) then one obtains:
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j(bo By =00 M0 40 0~ Frol® 1o LV = Eo,
j(bo [ﬁo _byo |:ﬁyo_eyogyo_](yom' y() mVc: Eo,
j(bo By =0, 0= ¢ 0 o~ F »B o V= Eo

When one adds these terms, one obtains:

[ (20, B, ~¢, @, o ) @Vy= 3 Eo,
so, keeping (64) and (65) in mind:

a1 {a:—%m(eomo—bomamv,

=-10(p, B, —f, ) [V,

In addition, one immediately sees from the previbumee equations that:

J0,0 B0+, @0+ 00,0 [V,
=[(by0 Myo+e,0D 0+ f 00 o) [V,
=J(b,0 Mo te oD 5+, HEV,
=1[(b, @, +e,@,+f,0 ) [V,

(72)

These equations become particularly interestingrwphe 0, v = 0, which is the case

for the electron.
In the field of an electron, one has:

(73) Eo = —1Je, 1,00V, = —1[ ¢, 0p, [@V,,
and:
(74) Jero @, [V, = Ieyom’yo[dvo: Je o ,odV,=3Te Jd SV

29. For the special case that we discussed in l1?pthe relation (73) is easily proved
to be true. If we introduce the static field quaes 7 = ¢o, ¥ = @o into the world
function:

®=-17"+galy’
then we obtain:
Eo=[ ®o-dV=-1[el@V+ia]g5rav.
However, we have:
0P

0P
0 =———=¢p, = —a ,
o " PTag R

SO we can therefore write:
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Eo =4 [ e, 0, [V + al] ¢, [p, (V.

If one applies (64) to this then the result is (73).
If we had given the world function in the general form

®=-1n° + alx’
then a completely analogous computation would give:
Eo = —1[e, @, [V +2 alf ¢, [p, 1V,

but the relation (73) would be impossible to satisfy unles$. From this, it follows
that:

Among all of the world functions of the form:
® =-3n°+jaly’
only the case ¥ Oleads to isolated knot singularities of electriaahe.

If one takes any value far then all of the integrals of equation (34) in II, pp. ? must
have essential singularities, either a singularityhatiull point or one at infinity, or both.
There is therefore no single integral that could repriean electron.

One sees from this that can occasionally use equd#8h as a criterion for
determining whether a given form of the world functisrconsistent with the existence
of isolated knot singularities or not.

30. From formula (73), it follows that in the exampleat we discussed in Il, the
energy of a knot singularity isegative. It therefore follows in this case that the surface
tension of the charge contributes negative energyddsitive energy of the electric
field. Sincedo and o are completely distinct from each other in the Heomian

function:
H(Do, 0, po, 0) =Pg+eg- Do—¢o “Po=W

6
:;‘02_§5p_0

20 6 !
a

one can also compute both of the total energies separ&ne obtains:
%[J’aoz [V, =3 qeo (D, [V,

for the energy of the electric field, and:
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6
S

for the energy of the surface tension.

However, if the energy of the particle is negative tthensame must be true for the its
inertial mass. The knot singularities, of which we spokél on pp. ?, thus have a
negative inertial mass, and they must therefore ac@uiracceleration in a force field
that is in the opposite direction to the force. @stfglance, this appeared to be such an
absurd behavior, which we were led to in Il, pp. ?, by gemenagiderations, that knot
singularities with the same sign tended to amalgamagethier, whereas knot
singularities with opposite signs tended to repel away feach other, whether or not the
ponderomotive force of the electric field acted in oppaditection.

One can deduce a very important consequence of (73):

The necessary and sufficient condition for the inertial mass of arrceletd be
positive is that:

[eo @,V <0
or:

[ ¢, o, @V < 0.

At a great distance from the electron one ha, henceey - 0¢ is certainly positive.
From this, it follows that:

Both of the vectorsandb must have opposite signs in the interior of an electron.

One sees from this that it is completely impossibletfie Maxwell equations to still
be valid in the interior of the electron.

Likewise, @, since it is precisely the electric potential, alss the same sign as
outside of the sphere of the electron. Indegditains its maximum at the point where

goes through zero, in order to take on the opposite sighel interior of the electron.
Furthermore, in the interiogy must become so strong that it ultimately changesigts,
as well, andd, - po becomes quite negative, since the space integral dfbausegative.

In the interior of the electrop must have the opposite signdo



Chapter Four.
The problem of the quantum action.
Elementary dipole.

31. When both of the vectors ande always have the same sign then there can be

only one sort of elementary particle of matter tatharacterized by the fact that div

takes on considerable values in its interior. Howabere can, as we may, from the last
statement, assume, place very strong fieldsde in opposition to each other then there

is a second type of elementary particle that onemagine, in whichot 0 takes on very
large values, but div gets very small. In these elementary particlesgesthed is very
small the vectob will therefore quickly converge to closed lines, simila the lines of

magnetic induction around a small permanent magnet. \Alecgtl such a particle an
elementary electric dipole. The behavior of the veetor equilibrium is characterized

by the fact thatot ¢ = O, whereas di¢ ! O is possible. The lines of the vectothus

surround the dipole like the lines of magnetic force peamanent magnet; thus, in the
interior of dipole they are directed oppositely to thector 9. The possibility of

elementary dipoles is therefore linked with the conditlmat the vecto¢ changes its sign
for very large values af.

The precise conditions for the possibility of such p@$ existing is extremely
difficult and might also use very little of the intion that we have gained on the nature
of the world function. | will assume once and fdrthat there is an elementary dipole,
and then deduce whatever consequences this assumption suggests.

32. From the theorem that we proved in sect&f) we can easily compute the
ponderomotive force that a dipole experiences in anrgdigtld. It is precisely the same
force that an electrical double point with the sametatal moment as our dipole would
experience, as it is presented in conventional eldatios, the electrical moment may
then be computed from the external field. From this, ae that an electrical field
mostly exerts a torque on the dipole that makes it seekdjtist the direction of the field,
which is very small compared to the force that gives dipole a translatory motion.
Thus, external forces will powerfully drive the dipoletward from the atomic bond
like electrons — and there is very little hope of fmgdcorpuscular rays that originate in
the dipole.

By contrast, one may presume that the dipole, unligeetbéctron, can experience very
small internal force effects, similar to ones ttia electrical double points suffer in the
usual conception of electrical fields when both of tharges attract each other. More
precisely, one can say nothing about these internattsffas we saw on pp ?, but
presumably also look for the electrical field that witilock the structure of our dipole. |
shall now show that too large of an unlocking field wdlroinous for the dipole.

In the vacuum, where Maxwell's equations are valid, theme dipoles without
electrical charge, though certainly not in the equilibristate; such dipoles are the
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spherical electrical waves. According to H. Hertz {G@/erke2, pp. 150), one can
compute the field of a spherical wave with the help &dractionll = f(r —t), wherer
denotes the radius vector from the center out.zLebe cylindrical coordinates, where
is the symmetry axis of the spherical wave @nd the direction that is perpendicular to

it. One then has:
2
Eg[pgﬂj, p =0T

o 1
o op\~ op dpot’

D“ == y
0p0z

0z

where the magnetic fiel§ is parallel to thez-axis. One must observe that in these

equations =+/p°+z* . If we substitute the value that was given abovélfand denote

the angle betweenandz by 4, so that: co® =z/r, sind = p/r, then one finds the
following formula:

f'(r-t) _30F'(~t) 30 ¢ -t)

r r? rs

(75){0, = + f"(rr_t)—m'r(zr _t)+3Efr(r3_t )j@;inzm(mr'g‘t )_ Zmr‘(g‘t )j

j [tos? [sin?

b= f"(rr O _f '(rrz‘t)j 3ind.

We shall now choose a function fi§r —t) whose first two differential quotients take
on their values in the interval betweam@andb, and whose first two differential quotients
will be equal to zero at the boundary poiatandb; let the values thdttakes on ah and
b beA and O:

f(a) = A, f'(a)=0, f"(a)=0,

f(a) = A, f'(a)=0, f"(a)=0.
For allr —t > a, we seff equal to the constaA; and for allr — t > b, we set it equal to the
constant zero.

With this, the field quantities in the region agigen moment are given by (75):

0o >r=a+tt,

0, =2 GosI sing |

(76) :;A 2A

Dz = +—3|3in279——3 ,
r r

h=0.

This is the field of an electric dipole of moment-A.
In the region whera +t>r >b +t, one finds spherical waves with electric fieldekn
that flow back into the interior of a ball of radib + t; hencepd =h =0 forr < b + 1.
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From this, we see that a spherical momentum wawvealgtrepresents an uncharged
electric dipole.
An example of a functiofy for which one can easily show uniqueness, is:

1 w>r-t>2,  fE-t)=21A=A,
m

@7) 2. Zsr-t>-L f¢-t)=asin@imOf -t }rme—ty ?
m m

3. -Tsr—t>-o f(-t)=0.
m

The dipole that we just described is not in eqtiiliim; rather, its hollow interior seeks
to expand with light velocity and dissipate intahing. Since a continuous transition to
the spherical wave dipole must be possible foreleenentary dipole that we chose —
when it exists, — it then follows that there is attainable expansion of the elementary
dipole, perhaps by strong internal pulsations,tlfi@ case of unstable equilibrium, such
that the dipole, when it goes over into that statéorced to take the form of a spherical
wave dipole that dissipates completely, whereasa fweaker expansion it seeks to return
to the equilibrium point. Thus, when there is géameentary dipole, it must be explosive;
its explosion transforms matter into a light pulsgince all transitions are reversible in
relativity theory, it must naturally be possible folight pulse to create a new elementary
dipole. In order to mathematically represent aesighl wave that moves towards the
center, which might possibly condense into an etearg dipole, one must replaae(t)
with (r + t) in formula (75), and likewise switch the signhof

33. From these considerations, it follows that oneudth not expect a new
corpuscular wave, but a light pulse, to follow frome existence of a possible elementary
dipole. It might be possible, e.g., for the lightthe band spectrum to be emitted by
exploding dipoles. The absence of a true Zeemigatebr this light draws attention to
the fact that it is not excited by electronic dstibns. When one assumes that each
radiating atom does not produce merely a singlesggubut a multitude, perhaps
thousands of pulses in regular intervals, the foh@annelization of the bands must
certainly be understood as originating in the ietemce due to the fine structure in the
bands. The emission of the pulse must be connedtadhe proper oscillations of the
atom, and the complicated laws that these propaHlai®ns must be discovered if we
are to clarify the notable laws of the bands. @wst naturally fail when one attempts to
test this theory on the most complicated aspectbamid spectra. Perhaps one can,
however, enlighten the simpler case of the resanapectra as a logical consequence of
pulses, once one proves their existence or noweexist

34. In conclusion, we must remark that it is justpassible for magnetic dipoles to
exist as it is for electric dipoles. They are ghementary particles for whichandv are

taken to be very small, and for whiett ) is then as good as null, although gi« 0.
As always, the vectdr must, by contrast, satisfy the condition @i O precisely. Thus,
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there will be closed curves in the field linesbofor an elementary magnetic dipole that

appear to be similar to the lines of magnetic inductwnaf permanent magnet. On the
contrary, the lines of vectoly will be similar to the lines of magnetic force for a

permanent magnet and inside the dipole they have the tgpplrgction to the lines of
the vector.

Planck’s quantum of action.

35. As long as one thinks of the heat exchanging relationséipreen ether and
matter in terms of resonators, one will never arrivarainterpretation of Planck’s laws
of radiation that is free of internal contradiction#/hen one thinks of resonators, as one
will, one must always think of the laws of mechanicatitfators, so energy must be
emitted and absorbed according to Maxwell's laws, which complete contradiction to
the existence of quantum effects. It is self-explawyatbat the existence of electrical
resonators in the atom must be beyond question. Thdityabf the Zeeman
phenomenon, particularly the simple kind that the helimes exhibit, plainly indicates
that the sine waves of the line series will be emitiédlectrons in the atom that exhibit a
regular pendulum oscillation. Moreover, the Zeemampheenon certainly shows that
one can completely attribute the motion of the teailg electrons to the laws of
mechanics by means of forces that obey the usual ofléese theory of electricity.
However, from this it is absolutely necessary thatmfthe laws of mechanics and the
theory of electricity, the oscillating electrons camtinually absorb energy, and from
Maxwell's laws, it can also emit it back again. Heowould rather avoid contradicting
the accepted meaning of the Zeeman phenomenon then onelswstccept that the
aforementioned quantum theory is not applicable to trectrenic oscillations.
Therefore, there is nothing else to say about thisgstrcertainly leads to a large number
of consequences in which quantum effects play no role a#aats. One thinks, to take
an example, of a cathode ray particle that flies betvibe poles of an electromagnet
with a large velocity. Whenever the electron is i@ sppace between them the magnetic
field must be excited for a particular instant so that path of the particle must assume
the form of a closed circle. Now, the particle enatsvave that gets briefer as the
magnetic field gets stronger. Naturally, this emitti@gticle suffers no quantum effects,
and, as a result, one can give no upper bound on itdatiscis. At the very least, one
can think of long infrared waves being produced in this fashiae gull.

These considerations in no way contradict the appeadhgeantum effects in the
exchange of heat between matter and ether. It only tedtie idea that we must ascribe
a truly essential role to the electronic oscillationsthis heat exchange. Of course,
resonators, when they are not coupled with any othethamsms, certainly do not
mediate the exchange of heat between ether and muatben they do not absorb
radiation they only scatter it. One imagines a holpace that is surrounded by a
reflecting wall, and in which, very many electrical nestwrs are distributed. If one
allows any radiation to enter this hollow space them rfsonators do not alter the
spectral composition of the radiation at all, norsdbalter the blackbody radiation, ...(?)
It is therefore quite obvious that one can do withoutrdsmnators completely if one
wishes to understand the exchange of heat between naaiterether, since their



Foundations of a Theory of Matter IlI. 70

contribution to the behavior is of a secondary natucktheoretically it represents only
an unnecessary complication.

In section32 we have just learned of the possibility of radiatibattis not produced
by resonators. During the previously described explosioa dipole, the energy of
matter will be immediately transformed into the ewnedd radiation. An elementary
dipole, just like an electron, must then be regardech &teamentary building block of the
atom. It takes part in the internal motion of thenatand might sometimes take on such
an unusually large energy that it crosses its stalaityelope and explodes. With that, it
and all of its internal energy is transformed intarapulse wave.

The explosion of a dipole has an exact analog in thisston of an electron from an
atom. This emission then takes place when an elerona state of motion that is so
violent that it passes beyond a certain stability limitthe atom. Just as the kinetic
energy of a free electron, which can assume varioluesawhose violent motion leads
to its emission from the atomic bonds, so will fhdse wave that is produced by the
exploding dipole have incommensurably many energies, depgemghon the violence
with which the stability limit is exceeded. The morelent the transition the higher the
energy of the pulse wave; similarly, when the duratibthe transition becomes quite
small, so does the width of the impulse. If we asstima¢ there is only one kind of
dipole then there will be one definite degree of violeraetlie transition, hence, one
definite impulse width, and always the same quantum afggnevhich increases with
decreasing impulse width.

The radiation that an exploding dipole produces must be quantized, assuming that
there is only one sort of elementary dipole, and furthermore, thgegeantum must be
a radiation pulse that gets bigger as the impulse width gets smaller.

Since electron emission and dipole explosion are gkersely related transitions, one
must expect that both of them go hand-in-hand. In éaet,can observe this in the case
of fluorescent particles. On the other hand, sincetwmetransitions are not causally
linked to each other, one must expect that generallg qaialitative laws do not govern
their common behavior.

Even more difficult than the problem of the emissidbragliation in the theory that we
are presently treating is the question of absorptio’bsorption must naturally be
synonymous with the creation of material dipoles bydtwecentration of radiant energy.
Obviously, one must assume that every exploding dipcd@ iatom leaves behind a germ
on which subsequent radiation can easily condense. wonél then do well to first
approach the question of absorption in earnest, whemimgrgal exploration teaches us
something of the possibility of the theory of elemeynt@ipoles, and, in the affirmative
case, to give more substance to a precise elabordtiba theory.

36. The question now arises of what the intuitive megmf the quantum effect in
our theory might be. As for that question, one mestark that this meaning will further
depend on the details of the theory that we have, Her moment, left completely
undetermined. Thus, in the sequel, when we seek a meanitigef@uantityh, after
making an additional assumption that we add to the théweg, we must not forget that
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another specialization of the theory can lead to otheanings. We thus make the
following:

Additional assumption: The impulse wave of the exploding dipole has the same form
for all impulse widths.

The function that was introduced in (75) for the comportatf the wave shall then
have the form:

f(r—1) = g m(r 1),

in which ¢ is a universal function anch is a factor that can take on all possible values.
The factomm is inversely proportional to the impulse width.
With this assumption, | can prove the following theorem:

The number of closed electrical field lines that are in the holfgvescal vortex ring
that is created by the explosion of a dipole is a universal constanthanguantum of
action h is nothing but the square of this constant, multiplied by a numeaatal that
depends only upon the choice of units.

On the boundary surface of a very large ball of radjuthe field quantities are
computed from (75), after ignoring the higher negative powirsas follows:

oo, $Tmr=Y

- Sing,

sing.

r
)
r

0 points along the longitude circles of the sphere fapdints along the latitude circles.

The following total energy passes through a spherical afevidthdd, whose spherical
area is 2r% - sind - d9, and during the time interval

dE=2 - - 2% - sind -dd -dt=27-m*- ¢" - sind -dd - dt

When we leta andb denote the limiting values af—t, between which the spherical
wave is trapped, as we did above on pp. ?, then the valgem - a andb’'=m - b are
independent of our additional assumptionnanWe further set(r —t) = «y which then
makes the energy of the impulse wave:

— a n 2 T . 3
E=27n -jb, ¢"(w) mw[jo sin® 9 .
If we set:
(78) [ ¢"(@) Bw=a

thenais a quantity that is independentrafand:
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(79) E=—- -a-m.

We now imagine that the impulse has been decomposed @untinuous sequence of
sine waves, as in Fourier’'s theorem. In preciselysdme way, a spectroscope would
resolve it into a continuous spectrum. We may assbhaielhie form of the functiog is
such that the spectrum of the impulse is a ratheowaband whose mean wavelength
may be calledi. The corresponding mean frequencig then computed from:

v=—,

and Planck’s radiation theorem is identical with theotlem that:

If we now observe that the quotient:

(80) —=p

is a number that does not depend on the impulse widthftieem (79), we obtain:

8

(81) h:?-a-,[z’-ms.

8m- a- [/ 3 is a numerical factor that does not depend on thelsapuidth.

We now like to compute the number of field lines that pose the vortex ring of the
impulse. To that end, we consider the equatorial cffcte 772). Through it, and during
the time intervat, a numbeidn of electrical field lines crosses it transversaliyich is
easily computed from:

dn=2r -0 -dt=27-n’ -¢" - dt

If we now set the argumembin the functiorp” tob’, where it is null and increasing
then we must ultimately come to a vatuief the argument where the signgdfchanges,

in order to be null again at the other liglit c¢', likea'andb’, is independent of the
impulse width, and likewise, the integral:

(82) [ ¢ () Ww=-¢"(w) do=y
The total number of lines that comprise the electfieldd vortex is:

(83) n=2y -m
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By combining (81) and (83) one ultimately obtains:

(84) h:C.nz, C:ig

C is a numerical factor that is independent of the ispuwbidth. The theorem is thus
proved.

With this assignments the quantum actieror, more precisely, the square of the
guantum actior- is a quantity that is completely analogous to the quawtuetectrical
charge. Just as the latter gives the number of fiedés that terminate in the electron in
the form of a knot singularityJﬁ represents the number of field lines that comprise the
dipole in the form of a cluster, at least after itslegjon. It is perhaps of interest to
compare these two numbers. Indeed, an unknown fé&tenters into (84) that will
depend on the form of the functign In order to have, at the very least, some ide¢hef
order of magnitude of the numberwe would like to introduce a completely determined
function that was already mentioned in the exampl@ ¢n pp. ?, hence:

g"=-a-sinmr —t).
One then computes the const@irom the equation:

C:i,
3[C

wherec shall mean the velocity of light. However, thanhbern can be computed this
way only in the system of electrostatic units in which Kmown factor 4 has been
removed § =e, divd = p). If we compute the number of field lines in the pradtimit

of Coulomb, and we then denote itldythen if we set:

N = 10 N
cBfamr
equation (84) then looks like:
h :4772_@ NG
800

If we introduce the value &f h = 65.5 - 107 then we obtain:
N =129 - 107 Coulomb.
The elementary quantum of electrical charge is:

e=15.6 - 107° Coulomb.
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From the special assumption tat= a - sinm(r —t) one then obtains the number of
electrical field lines that comprise the vortex clustéan elementary dipole as almost
exactly eight times the elementary electric quantumany case, both of the quantities,
N ande, lie in roughly the same range of magnitude, ldnsl larger thare.



Chapter Five.
Gravitation.
The extended fundamental equations of ether dynamics.

37. We saw on pp. ? that the surface tension we cheosanfelectric charge, along
with the electromagnetic field, still did not suffit@ clarify all of the forces that act in
the material world. We are still lacking gravitationdave are now compelled to extend
the system of fundamental quantities, in which we haesidered (I, pp ?) only the
fewest number of quantities possible, namely, onlysikerector §, —i-0) and the four-

vector @, i1p).

What we must do next is to consider gravitation as anggrihat lives in the surface
tension. However, if we wish to agree upon the validitthe principle of relativity then
we cannot introduce the energy for its own sake intoetktended equations, where the
energy density is the last term in the world matrixdfativity theory; it must therefore
already enter into the entire matrix as such in thetemsa If one seeks to link the
matrix with any other four-dimensional quantities throémlr-dimensional operators, in
order to obtain equations in this way that satisfy #hesality principle (1., pp. ?), as well
as the energy principle, then one comes up against insipelifficulties. For a long
time now, | have sought for such a link that would leacklia the existing system of
equations, with great pains, and | am convinced that it ipety impossible to arrive
at a theory of gravitation in this way that obeys bibign principle of relativity and the
energy principle.

On the other hand, one reaches this goal quite simplyasity when one attributes
the work due to surface tension, not to the té/nbut to the quantityd that was defined
in I on pp. ?? by way of equation (7)lds=W—-b -h +v - f. As long as the velocity of
the elementary particle of matter is small comparethéovelocity of light, one cannot
experimentally distinguish wheth& or H equals the action due to gravity. From
equations (69) and (70), we have, for a moving mass particle:

[ H-dv=y1-¢° -E,

1
j W-dV= —

- Bo,

in which the integral is to be taken over volumatttine particle fills upk, is the energy
of a particle at rest, argimeans is its velocity over the velocity of lighbne thus sees
that both of the integral are not noticeably d&ttin practical terms.

Now, the quantityH is, however, a four-dimensional scalar, and thesans that the
differential operator can be applied in only onshfan; it gives a four-vector: the
gradient of the scalar. Conversely, one can atdothe four-vector with a scalar by
applying the “divergence” operator. On the othandh a six-vector cannot lead to a
scalar by means of a four-dimensional operatoirstf drder. From this, it follows that:
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The gravitational field must necessarily be represented by a fotwryemt a Six-
vector.

This theorem rests completely on the assumption tleagthvitational mass is to be
computed by means of a four-dimensional scalar, nanfeyguantityH. Otherwise, if
the gravitational mass density were the fourth compoagat four-vector, it would be
like the electric charge density. The gravitationaldfielould be given by a six-vector,
like the electromagnetic field. As far as | seés itmpossible to find a four-vector whose
fourth component is close to the energy density, andné@y of gravitation, in which,
according to O. Heavisid®, H. A. LorentZ’), R. Gans), the gravitational field behaves
just like the electromagnetic field, can thereforéhazitfail to be consistent with the
principle of relativity or the gravitational mass canuoequal to the inertial mass.

In order to present the equations of the gravitational,fi@e now proceed just as we
did in the presentation of the electromagnetic field egnsatin |, section® to 5. We
assume that in order to give a complete descripticheofnaterial world, along with the
six-vector @, —i-0) and the four-vectom( ip), it necessary to also consider a second four-

vector @, i-u) and a scalata This system of quantities runs parallel to a secoedtloat

is completely determined when all of the quantitieshef first system are given. We
already know that in the second system the six-ve@torie), the four-vector «, ip),

which now depends not only oy, (-i0) and ¢, ip), but also ong, iu) and w In
addition, we must introduce four-vectdr fv) and a scalaH, which correspond toh(
-i0) and ¢, ip). The scalaH shall be essentially identical to the quantities thare
defined in I., pp ?. Just like the energy den¥ityt therefore depends not only o, (
—i0) and ¢, ip), but also on the quantities of the gravitationaldfi¢dlence {, iu) and w
and the relation (7) must consequently experience at stiglification. We now apply
one of the two possible four-dimensional vector openatto §, iu) andw and the other
one to ¢, iw) andH. In this way, we obtain the one possible form foe taws of
gravitation that is in harmony with the principle ofatality:

ow
ox
ow
oy
ow
Ea
0w
E,

Ix

9y
(85)

9;

1 0. Heaviside, Electromagnetic Thedrypp. 455, 1894.
2H. A. Lorentz, Vers. Kon. Ak. Wet. Amsterda8n pp. 603, 1900.
% R. Gans, Physik, ZeitscH8, pp. 803, 1905.
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ot
(86) £+_y+£+a_vv:_y H
ox dy 0z Ot

Here, yshall mean a universal constant. Equations (85) are éeptivta the following
ones:

%+a_u:()’
ot o0x
0

(87) By U,
ot oay
agz+a_u:O’
ot 0z
Jw

88 —=-

(88) ot

Equations (86), (87), (88) collectively define a systemd fndependent equations,
each of which includes a first differential quotient okaf the five state variables with
respect to time. The causality principle is therefatesged.

The complete system of fundamental equations for ether dynamics including
gravitation is comprised of equatio(F), (2), (3), (4), (86), (87), (88).

With the nomenclature of four-dimensional vector gsigl one can also write
equations (85) to (88):

(g, iu) =T pad w
div(t, iw) =— y- H,
vot(g, iu) = 0.

The system of equations (85) and (86) formally agreestiwtlones that M. Abraham
1) based his theory of gravitation upon when one setsettors §, iu) and ¢, iw) equal

to each other. In his theory M. Abraham started withdssumption that the density of
the gravitating mass (which he calledl is a four-dimensional scalar, and since he
employed the methods of relativity theory in the citek then he necessarily arrived at
this system of equations, which is the only one thativélatheory can deliver.

38. The first question that must be addressed is whetbesrinciple of energy is also
satisfied when we add equations (86), (87), (88). We will tuisiply equations (87) by
the components of a three-dimensional veetmay a, — multiply equation (86) by a
scalars, and then we add the equations. The terms that catteérential quotients of
the coordinates are then:

! M. Abraham, Physik. Zeitscht3, pp. 1, 1912.
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at, Oot, ot
+—L+ .
ox o0y 0z

ax_+a — 4 az_+s
ox  ay 0z

ou ou ou {

Since this expression represents a divergence, onehanesta = f, s = u. With this, we
have found the last part of the energy equation:

d|v(ut)+t% +u.a_\N —yH .a_a):o,
ot ot ot

in which, from equation (88), the last summanduds replaced with the val@sv/ot.
When we add the gravitational action we then obtairidtas energy current:

(89) s=[e-hl—@-v+u-t
instead of I, equation (5) on pp. ?, and furthermore,tated variation of the energy
density:
(90) dW=¢-do+h-do—¢ -do—v -df+t-dg+u-dw—-y-H dw
The functionH must now be defined by the following equation:
(91) W=H+H:0-v-f+u-w
instead of equation (7) in I, pp. ? From (90), it thefotd that:

(92) dH=¢-do+b-dhy—¢ -dp—f-do+t-dg—w-du—p-H - da

Since H is a function of the following variables; §, o, v, g, u, @), we then have:

_H o __OH_oH
@' oy’ ~ p v
(93) y o Y
(2ot ,o_oH oH __
dg u

From the last equation in (93), it follows that:
(94) H=€".H(,b, po,g U).

If we now define:
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]
tf=— wW=—"-—
Jg ou

in which the primed quantities all depend only, o, v, g, u), but nota then we have:

(96) e=e”, b=e”h', ¢=¢e"”P,
f=e®i, t=e™0a', w=e”0iw

If equations (93) are satisfied then the energgqggple is still valid for the extended
fundamental equations, and if all of the variabtesl appear only in combinations that
are invariant under Lorentz transformations thenrtHativity principle is also valid.

We have thus succeeded in presenting a theory of gravitation in which ndhenly
energy principle, but also the relativity principle is valid.

| would like to place particular weight on thistléact, since an Ansatz in the theory of
matter that we develop here that contradicts theciple of relativity must be rejected
immediately. M Abraham maintained the viewpointhis work on gravitatior) that
gravitation and relativity theory are not compatillith each other. If this were the case,
then one must reach the conclusion that gravitatianso-called “purely external” field
that is indifferent to the existence of matter.thén, as | shall assume, belongs to the
forces that essentially determine the form of eletiaug particles of matter and the entire
inner structure of the atom, and if it did not olbeg principle of relativity then it would
be unthinkable that the elementary particles ottenatnd forces that bind them together
into atoms, molecules, and tangible bodies canalmpmplete general motion of the
matter through space, avoid the variation thatde¢adhe contraction of matter that was
shown in the Michelson experiment. On the othe&dh& also believe that one will come
up against very great difficulties when one triesreat gravitation as an effect that plays
no appreciable role in the internal motions of atpand | then believe that one must give
up the viewpoint of M. Abraham, as long as the tiied gravitation is not to be treated
as detached from the theory of matter. It theeefmems to me that it is very important
that one can bind gravitation and relativity themrguch a simple fashion as we just did.

It must still be noted thaiamilton’s Principle, in the form that we learned in I,
sectionl0, is also valid for the equations (86), (87), ofeexled ether dynamics. The
proof of this presents no hardships.

Invariants.

39. The number of invariants will be significantlycreased by the addition of the
gravitational quantities. Along with the gravitatal potentiaky four more quantitiest(

! M. Abraham, Ann. d. Phy&8., pp. 1056, 1912.
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iw) must be added to the four in | on pp. ?, and the funefiam (94) can therefore
depend upon possiblgight independent variables. One can then take the following
combinations of state variables:

p=0°-p7

q=(o0),

O =+ p* -7,

s=(pB—[v®])* (o)

K =+g°—Uu?,

t=uB-[gl])*-(s@°

h=(g®)-ulp,

b=(oB—-[v@]) QuB-[gl) (ol CgH.

(97)

By the methods of four-dimensional vector analyiis, proof leads to the fact that all
of the other invariants may be computed from treaght invariants. However, | would
prefer to not give that proof here.

Likewise, | would also prefer not to write the farlas that are analogous to formulas
(25) in I, pp. ?, for computing’,b’,¢’,§",wW ,t" from the functiorH', since they are quite
easy to deduce.

The differential equation of the electron.

40. The following quantities are naturally also ineats for the Lorentz
transformation:
e-0-b-h=€". (¢'Dd-0b'0),
¢ -p—fro=€" (¢'P-fB),
t-g—w-u=¢e". (t'I-w ).
For many purposes, it is more convenient to uséexreht function in place of H, one

that differs from it only by a summand that we veitinstruct out of the aforementioned
invariants. Exactly as in |, pp. 524, we shall ndfine:

(98) F=H-(-0-b-h)+(@p—F0).
We can also set:

(99) { =@

O =H'-(/D-b'h) +(4'Lo—f 1),
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in whichd'is a quantity that depends upon only the variablés p, v, g, u, but not on
« Since ¢',b',¢',§' W ,t") can be computed from the variablesl, o, v, g, u), one can,
conversely, compute( h, p, v) from (¢',b',¢',f ,g,u), and one may then conside'rto
be a function of this new system of variables:

(100) O =e".0'(,b',¢',§ ,g,u).
Now, from (99) and (95), it follows that:

do'=-20 -de' +hLdb’ + p g’ + o [ +t' Odg — WdL,

hence:
L0} 0P’ L0} 0P’
N R R P
(101) 0P’ L0}
t'= - w=—-—"-
Jg ou

In the case of an electron at rest the quantitifs u are a constant that equals zero,
and the remaining three depend only upon the distanl set:

(102) Y=¢ =e"p,

We thus have a functiah' of only three variables:

' (X, Y, 2.
However, since:
X = —d_Y +y- Y- -Z
dr

we have, in reality, only two unknown variablé&sandZ, and the derivative of one of
them,dY/dr, in®’.
We then have the following two differential equasofor these two unknown
variables:
1ot
r< dr
ot
r< dr

(r" )

101

r2
(r’d)=-y-H,

or.
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izgd—( B Sl L
103) ar - dx | dy
izgd_ Gd—)+y[€cb _x Py zmdq’j:o.
ar aX | dY T dz

If one wishes to discuss the problem of the electroh wonsideration to gravitation
then one must replace equation (34) in Il, pp?, with theseequations. By the way, one
can also eliminate the unknown Z and its derivative ftbentwo equations by the usual
procedures of differential equations. One then obtairtkird order equation for the
unknownY =& ¢, whereas (34) was an equation of second ordeg.for

The world matrix.

41. (..)



