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1. Capillarity and cohesion.— A fluid exhibits a special form of energy at its
boundary with the surrounding medium that influences, iriqudar, the form and
position of free fluid surfaces, such as, e.g., thehteigat of the fluid will rise into a
capillary tube, and that form of energy has generaken on the name aapillarity
from that particular phenomenon. That energy is obiyocsupled with the change of
state across a separation surface, which can be disgoas or rapidly continuous.
Theoretically, it will either be established direcHy a term that is proportional to the
surface area of the separation surface and whose poyaoityy factor will give asurface
tension or it will be explained by the potential energy of speforces that attract all
mass particles to each other, but will make perceptibhtribotions only at extremely
small distances. The main part of that energy \Wwéhtbe proportional to the volume of
the fluid, where the proportionality factor, taken nagdy, will give a spatial pressure
that one calls theohesionof the fluid.

The first conception of capillarity shall be presenbere, which assigns that form of
energy to the separation surface as its exclusive Jé¢wtt conception will then seem to
be a mathematically simpler special case of the atheper conception, which assumes
that all masses are the arena for forces of cohesio

|. — Capillarity as surface energy.

2. Surface energy and its variation— A separation surface between a flaidnd a
second mediurB is coupled with a potential enerdys Fag, WhereFag is the area of the
surface, and ag is a constant that depends upon the media that li@tnsides. In that
way, A andB are thought of as homogeneous, and changes in temperatulle resity
shall not come under consideration initiallfas has the dimensions of erg / gnand
called thesurface tensiof A with respect td. For a fluid, one understands the surface
tension,per se to mean the pressure against its saturated vapor, wherh shows no
difference from a separation surface with dir (For water against air, one has:

T=74-219_ 0. 0o75 9 WeION!
cn? cm

for mercury against aiil, = 0.55 gr weight / cm, and for mercury against walet,0.42
gr weight / cm.

The consequences of the existence of the Tagrag in the energy can be exhibited
most briefly on the basis of the remark that preciskéy same expression for energy
would find a place for an infinitely-thin elastic membrahattoverlaps the separation
surface if constant tension equalligy were present everywhere in it; i.e., each of vhe t
edges of a line that has been cut into it will experientensionTag per unit length from
the other one. However, introducing that comparisomftbe outset will imply the
complication for the theory of capillarity that ased upon the fact that one cannot
ignore the necessity of assuming the existence of ymeesdiscontinuities that are
transverse to a separation surface, but only deferfmggntto another chapter in

() One can speak of surface tension against a gaseous pirasly speaking, only for fluids that
coexist with the gaseous phase in chemical equilibrium.
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mechanics. In order to achieve some clarity in thenaggans of the theory, it is
therefore necessary to essentially follow the patGanissand pursue the possibility that
the influence of the terniF in the energy is based in a general principle of nachka
such as the principle that equilibrium can be charae@rby a minimum of potential
energy, or when one also considers thermodynamiorigdby a minimum of energy at
constant entropy.

One must consider, above all, the virtual variabitity TF. When Gauss first
established the principle of variation of the double irgkgnth variable boundaries by
that on that occasion, he developed a fundamentakdramation of the variation ofF.
As Gaussalso occasionally pointed out, one can generallyyeasake the result of that
transformation plausible by infinitesimal considerationben one decomposes an
arbitrary infinitely-small shift of the surface intoshift that makes each point advance
normally to the surface and another that makes it agvaangentially. However, it
seems appropriate to also give the actual analytical plenap the conversion that
consists of a certain partial integration. Nonetbglevhen one considers the fact that the
calculus of variations, as it will ultimately be usedrén (namely, in the context of
problems with auxiliary conditions), would not possessy agenerally-known
representation to which one might otherwise simplyrreffemight contribute to the
transparency of things if we were to appeal to only thewn tools of the integral
calculus.

During a virtual motion under which the parameteincreases fronw = 0, the

separation surfadéas , which we would like to think has a boundary, will rurotigh a
family of surfacesF (w). We construct two mutually-orthogonal families afels of
curvature on each surface, and then two families ofhsesi, = const.,u; = const.,
which cut out those lines of curvature from thgw). For the sake of simplicity, we
imagine that all of the surfac&s(w) lie on top of each other and in such a way that every
point of a neighborhood that is filled with them wié Bssigned unique valueswaf, u,,
w. The directions from a point in which only, only u,, and onlyw increase shall be
briefly suggested in the arguments of trigonometric fionst andh means the normal to
F (w) that pointsawayfrom B. The directions ol , u,, n shall always define a right-
handed screw system, like the coordinate axgsz (Fig. 1).

Figure 1.
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The boundary oF (w) will be represented by an equation= y (u;, w), and since
we can introduce any function of andw as a new parameter in placewaf we can
assume that this equation does not inclwdel, = y (u1) . The square of the line element
in the region that is filled with thEé (w) can be written as:

(1) ds =d¥X +dy’ +dZ = L2 (duy — |1 dw)® + L2 (duy — |1 dw)® + N 2 dw?,

in whichL; > 0,L, >0, andN / cos (vn) =L > 0, soN will be calculated with the sign of
cos (v n). Now, one has:

F=[[LL,dudu,,

& - M(uS e Jou

in which the double integral extends over the interiancf y (uy).

The expression here admits an important conversigrdnjuct integration?j, on the
grounds of the characteristic property of the lines obature that the normals along
them define developable surfaces. A p®ir(u,, u, W) is associated with a point on the
neighboring surfac& (w + dw) that has the smallest-possible distaNcdw = dn, and
thus, the pointQ (us + I; dw, u; + |I> dw, w + dw) along the normal td~ (w) .
Correspondingly, the poir®; lies normal toP; (u + dug, Uz, W) onF (w + dw). LetM;
be the center of curvature of the line of curvateRe on F (w), so it is the intersection
point of the linedPQ andP; Q1, and letR; be the radius of curvature bF P, which will
be positive whemM; P points in the direction af from B and negative otherwise. One
hasPP; =L; du . It follows from the similarity of the triangléd; PP, andM; QQ;: , and
when one recalls (1), that:

(2)

PQ :QQl_PFl) @:i a_len+|_1idW
M,P PR R L ou )’

i.e., when one drops the factordw :

N (aL1 aL1| aLl+Llﬂj

E_E ou © du, ° ow oy )

A corresponding relation is true for the second radfysriacipal curvatureR, at P, and
when one adds the two, one will get:

1 0
N| —+—
(Rf%j% " ow

L,y Ok, Ol AL,
6W oy ou

() The infinitesimal considerations that follow servdyoto rapidly convert that property of lines of
curvature into a formula.
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If one makes use of (2) in this and carries out parttelgrations with respect tn
andu, then that will yield:

_ dy
dW (!)N[E+Ejdf leLz( OISjds,

(s)

in which df generally means the surface elemenf ¢#), andds means the line element
on its contour, when traversed positively around mlormal. If one let$ denote the
direction of the normal tds that points to the interior of the surfaégqw) (cf., Fig. 1)
then one will have:

duy, . du .
—L=rcos , L,—2=-cos ,
L s (2]) > gs (1))

—Lili =L cos (11 w), —Lolo=Lcos (low.

If one further writes that cos (v j) dw = dj then the last equation will imply the
following representation for the first derivativétbe capillary energyF with respect to
the variation parametev :

dF dn dj .
(3) Tow” Tjd—w[§+§jdf T({) ds,

which is to be applied tav = 0, in particular. Theln = N dwin this then means the
normals to the points of the separation surfacd,thadj = L cos (v j) dw means the
component of a shifiw of each for point of the boundary to the surfded torresponds
to an increase and points normal to the contourn tke basis of that, one can
immediately make the transformation (3) geometycalausible, as was suggested

above 9. When the signs d®; andR; are fixed as above%(%+?éj shall be called
themean curvaturef the locatiordf away from B

Since the parameters of the lines of curvature lmce more been eliminated in (3),
that representation is not linked with the restittin regard to the coordinatasg u,, w
that was made to begin with.

Let the volumes oA andB beVa , Vi, resp., and let their densities be, os , resp.
We further remark that the volumes will vary by:

(4)

Ve _ j%vdf, ZVB:—jﬂdf
W

(*®» We have avoided the otherwise-useful symlals ow, etc. for the first variations, moreover, in
order to make it obvious that we are ultimately dealinth wnly differential quotients in the ordinary
sense.



Minkowski — Capillarity. 7

under the virtual displacement in question, and furtherptbee potential energy of the
two media together that is due to the force of gravily experience a derivative with
respect tov that is equal to:

dn
(5) 9 (on— o) jzd—wdf.

Thez-axis in this is thought to poinertically upwards.

3. Differential equation for a free surface.— Let A and B move freely at their
separation surfaceB(is a liquid or a gas likeA), so only gravity comes under
consideration, in addition to capillarity. Stable edmilim of the system will be
characterized by a minimum of the potential energy pamed to all virtual
displacements. However, an auxiliary condition isoapresent, in the form of the
constancy of the total volume @&f[or of B, cf., (4)]. In order to include that auxiliary
condition in the calculation, we appeal to the ruleditferential calculus for a so-called
“relative extremum.”

We once more imagine that the separation surfagas the elementv = 0 in an
arbitrary family of surfacez= ¢ (x, y, w) that depend upon one parameteand which
might all have the same contour. The auxiliary cooditvould generally not be satisfied
any longer asw varies. However, if we imagine a second such arbitfanyily of
surfacez = ¢ (x, y, W), which once more starts from the given surface when 0, and
if we extend those two one-parameter families in any waa two-parameter family of
surfacez = (¢ (X, y, w, W ) that goes to the first one-parameter family wher 0 and to
the second family whew = 0 then the magnitudes of the volunmvasfor the surfaces of
that more general family will become a functionwbtparameters, and inside of the two-
parameter family, there will be a one-parameter fammt is selected by the condition
thatVa (W, W) = Va (0, 0) and is now an actual virtual motion of the separatiogface.
We must then formulate the condition that among alfases of the two-parameter
family for whichVa (w, w) = Va (0, 0), the surface = 0,w = 0 will yield the minimum
of the potential energy:

E=TagFast+ g,OA'[ zdwv+ g)Bj zd.
A B

(The notation here is understood to mean divatins through the volume element/foin
the first integral, while it runs throudhin the second one.) One now gets the following
two equations for that extremum with the auxiliary caodit

oE oV oE h\Y) .
Ei) Dy Ly Mg @w=ow=0
ow "® aw ow’ % aws W )

from differential calculus in the known way, for aitable constantlag . The second
equation now serves only to show that the valug,gfin no way depends upon the first
family z = ¢ (%, y, w), which was assumed to be arbitrary, so it will haweell-defined
meaning for the separation surfadégs , per s and when one expressly includes that
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fact, the first equation will already appear in thetesysof both of them. Hence [cf., (3),
(4), (5)], with a suitable constadfg that is ultimately determined from the valueMaf,
the condition:

] N{TAB(%+%J+ 9(Pa~ Ps) zMAB} df =0

FAB

must then be true. Due to the arbitrariness irctizece of the family (w), the function

N = dn / dw is subject to the single restriction on the swef&gg that it must be
continuous everywhere and equal to zero on thedayn The integral in question can
prove to be continuously equal to zero Ifbin that neighborhood only when the factor of
N vanishes at every location insidefog ; i.e., the form of the free surface must satisfy
the differential equatior?’Y:

(6) TAB(é+?éj+g(pA_pB)Z+AAB =0.

Fas can also consist of several separate pieces, Whildas the same value for the
different pieces.

In any event, a minimum fd# is possible here only whélng = 0, since otherwisg
could be reduced arbitrarily by bending the sepamegurface back and forth about any
position.

We might haveps # o5 . If we set:

AAB

Zng=— ———
g (pA _IOB)

then z = zag will give us a well-defined horizontal plane theltall be called théevel
plane If we assigrz = 0 to the level plane then equation (6) will do¥l in the form:

(62) Tas [%4'?:2} = 9(par—Ps)Z.

In that way, the mean curvature away fr8nat each location on the separation surface
can be concluded directly from the position of teeel plane. If pn > s then the
locations of the separation surface where that meawature is positivgi.e., when the
surface is convex-convex outward or convex-concaWk a greater contribution from
the first principal curvature @) will lie below the level planeand indeed the stronger
that mean curvature gets, the deeper it will lieocations where that curvature is
negative away from B will lie above the level plaaed locations where it is zero will
necessarily lie at precisely the same height as plene (Fig. 2). In particular, the
separation surface can become asymptotically plan&r at the same height as that
plane, its relationship to the level plane is dghbd with that.

() Laplace, Supplément au livre X de Mécanique célestao. 4.
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7;./7 B ] Z
L - Level
—]
A 2
Figure 2.

4. Boundary angle.— In order to establishag completely, one needs some further
conditions for the boundary of the surface wh&randB meet the third mediur@, in
addition to the differential equation (6).

Jas IBC

=—ZCp—————

Jac A

Figure 3.

If the three fluidsA, B, C with three separation surfacEss, Fac, Fsc, in which the
surface tension$ag, Tac, Tec prevail, are bounded a common curve (Fig. 3) then the
opposite state of motion to every virtual state of omtf the boundary curve would also
be virtual. After all (because the case of displacgméhat are not invertible in that
sense would also come under consideration then), welvi&alto initially vary only the
assumed equilibrium state (but not go through it), andwagine a family of positions of
that boundary that depends upon one parame(er0) and has the same endpoints when
the curve is not closed, and for certain positions eftkinee separation surfaces that are
coupled with it. In that way, they will all constantie on the boundary curve, but
otherwise keep their boundary segment fixed, and at the sama, their interior parts
will experience deformations that leave the total volwha, B, C unchanged. In order
to express the idea that the total endtgy smallest in the equilibrium state for= 0, we
must then merely demand the inequality:

Ez 0 (w=0)
dw

of the initially one-sided variation. However, sindeom (6), the separation surface
already obeys equations that make the terms that appasarface integrals in them equal
to zero, from (3), that inequality will condense to:
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~ [ L[Tas cOS @ jag) + Tac c0S @ jac) + Tec c0S @ jsc)] ds= 0,

in which the integral is extended over the given positbthe boundary curve, and at
each elementls w is understood to mean the directidndw, the magnitude of the
increase dw, the corresponding displacement of the boundary pamd,jag, jac, Jsc
mean the inward-pointing normalsds. Since the functioh can be chosen arbitrarily
here, except that it must be continuous and alxaysnd vanish at the endpoints of the
boundary curve, it will then follow that:

(7) — Tas COS W jag) — Tac €COS W jac) — Tec COS (W jsc) = 0

along the entire boundary curve, and indeed even for agbdreectionsw. However,
we can combine any directiom with its opposite, and the sign can then be replaced
with an = . In that way, the three vectors of les@its, Tac, Tec and directions that are
parallel tojas, jac, jsc, resp., must join together into a closed triangle For example
the angle jas jac) = ai Is then the exterior angle that is defined by the fi® sides of
that triangle and therefore has a constant valuegalbe entire boundary curve that
follows from the three tensions. That angleis called theboundary angleof A with
respect td andC.

A first requirement for the equilibrium that is n@ssumed is that one can define a
triangle from the three lengtiSs, Tac, Tecat all; i.e., that each of the three tensions is
no greater than the sum of the other two. Howevemef had, saylag > Tac+ Tsc then
C would have to be found betwednandB instead, and possibly from a thin layer with
two separation surfaces that are closely-spaced comfmafedndB, in such a way that
some situations would arise that would that would haveetexamined in more detall,
based on the assumption that the capillary energyyasally distributed.

The relationTag > Tac + Tac Serves as a sufficient explanation for the variegat
capillary phenomena for the three medja (

From Marangoni’s observations %, in all cases, the reciprocal surface pressure
between two fluids is smaller than the differenceMeen their surface pressures with air
(%), so that triangle of tensions can never be realiZEde case of mercury and water,
which Marangoni regarded as an exception, obeys that general R)le When water
lies upon mercury as a drop, foreign components will @dhe the surface of the
mercury that reduce its tensiof). (

(% That condition was posed I Neumann and was first published in the dissertatiorPaiil du
Bois-Reymond(Berlin, 1859).

() The article byF. Pockelsin the Handbuch der Physpubl. byA. Winckelmann, v. 1 (Breslau,
1907) gives an overview of the methods and results of olte@rsaegarding capillarity that extends up to
the present.

(®) Marangoni, “Sull’ espansione delle goccie di liquido galleggiate sulla digie di altro liquido,”
Pavia, 1865; Ann. Phys. Cheld3(1871), pp. 348. The same facts were foundasyder Mensbrugghe
Mém. cour. de I’Acad. de Bel®4 (1869), and furthermord,iidtge, Ann. Phys. Cheml37 (1869), pp.
362.

(*» Quincke, Ann. Phys. Chen.39(1870), pp. 66. Lor&Rayleigh, Scientific papers, pp. 562.

() The spreading of a drop of fluid over another fluid wélke place in each case in characteristic
forms that vary quite widely with the substances, nantlke&/Tomlinson cohesion figures; on this, cf).
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2R
C
. B
JBC
i N A
Jac E_ch
7
Figure 4.

If C represents a solid body then the separation linegekaA, B, C can be freely
displaced only on its surface, and we will get the ma(i7) in the correspondingly-
restricted context, namely, whed has no discontinuity on the tangent plane to the
boundary curve (Fig. 4), in one case, such thabincides withjac, and in the other
case, such that coincides withjgc, and we conclude from this that:

(8) COSGp = L ,
TAB

in which a again denotes the boundary angje jac) of A with respect t@® andC (°).

That relation would be impossible when the quotientherright has a magnitude that
is > 1 (or <= 1). Inthe case Ofgc > Tac + Tag (hereTac, Tec do not need to be 0),
equilibrium would come about in such a way that thal fAiwould wetthe solid bodyC
in a microscopically immeasurably thin layer alo@g by which, both sides of the
boundary lineB in question would be bounded By and therefore from just that formula
(8), in which one now takeA instead ofC andTaa = O, the boundary angle &fwould

prove to be zero.
70 7) lsc g

v

A = jne

Figure 5.

If the wall of the solid bod{ has precisely one cut along the boundary curve [which
is a case that can easily present itself with the adhef a fluid to a solid body (Fig. 5)]

Lehmann, Molekularphysikl, Leipzig, 1888, pp. 26(Paul du Bois-Reymond Ann. Phys. Cheml139
(1870), pp. 262.

() Quincke [Ann. Phys. Chem137 (1869), pp. 42] found that water or mercury would firstdyiel
constant boundary angle along a thin, wedge-shaped, lsil)x applied to glass where the thickness of the
silver layer was at least 50107 cm.
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then two kinds of non-opposing displacements of the dawyncurve ofC can come
under consideration. The result would be the same as whe imagines that the cut is
the boundary of rounded forms. One would arrive at thguimléy (7) in such a way that
w would be represented hyc , butjsc would be represented by the direction that is
opposite tojac, in one case, and/ would be represented hyc, butjac would be
represented by the direction that is oppositgdoin the other; one would then get:

— Tag €OS (ac jag) — Tac+ Tec 2 0,

_ — Tag COS {gcjaB) + Tac— Tec20;
l.e..

9 (acinre) = ah , (aBjBC) 2 T— @,

in which ap means the angte 0 and< /7that is replaced by (8). It follows from the two
relations that:

(aciec) = 1.

Hence, in the equilibrium state, the boundary line efftee surface can never lie along a
finite piece of a concave cut in the solid body (

The conditions for four fluids to come together gioant are obvious now with no
further analysis.Gibbs (*% discussed the possibility of the formation of a nepasation
surface along a line along which more than three fluadsectogether.

5. Capillary pressure. Surface tension— If one would also like to employ the
concept of fluid pressure in the phenomena of capillanign it would be necessary to
represent the fact that such a pressure would genefaiyge discontinuously at the
separation surface between two fluids. The discoitsuare made to agree with the
center of mass theorem and law of areas in mechanifcene would further like to
establish the discontinuities without introducing any hyps#is about molecular forces
then one would start from the Ansatz that a spatiakitieiof energy exists at every
location in a fluid that depends upon the mass densiyf,itas well as the differential
guotients of the mass density with position. One would tieve to pass to the limit in
such a way that the differential quotients of the naessity would generally be set equal
to zero, and they would become infinite only for certsurfaces in such a way that the
mass density experienced a constant jump. The concepesdure will then arise from
the negative differential quotient of the energy ofasswith respect to its volume [eq.
(42) in no.18§].

For the sake of brevity, we shall content ourselvee lath the following more-
axiomatic way of establishing it: The pressure variesicootisly with the density inside
of an individual fluidA, but is determined only up to an additive constant; wettiatn
conventions in regard to that constant, we would likespeak of it as the&inetic

() Gauss “Principia generalia theoriae fluidorum,” art. 30.
(*° Gibbs, “Equilibrium of heterogeneous substances,” pp. 453.
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pressure Now let A andB be two different fluids that are subject to gravity ane ar
separated by a horizontal plane 0, and let each of them be arranged to have its density
and temperature depend upon only the vertical héigherywhere. The kinetic pressure
will then suffer a discontinuity at the transitibom A to B that we would like to refer to

as acohesion jump We can put the relevant increase in kinetic energy f&amB into

the formKa — Kg such thaK, depends upon onl, andKg depends upon onB.

The differencePa — Ka = pa shall then be called tHeydrodynamical pressura A ;
that pressure would then experiemzesort of discontinuity at the horizontal separation
surface. In a fluid A at rest in which the density can be regarded as neantadt, the
pressurega varies in such a way that it generally has the exjnegs — oa g z wherepo
is a constant, which then depends upon the vertical teigh

—

MY

SASIOIIIN

Figure 6.

Two fluids at resA andB with differing densities might have an arbitrary separa
surfaceFag that corresponds to the differential equation (6). d&eermine the level
surface for it, choose it to be the plawe 0, and on the other hand, imagine thandB
are likewise inside of a very wide vessel, and that lodtthem are separated by a
horizontal plane, and indeed at precisely the height aif ldvel surface, and finally
couple both ends ofA and both ends oB with communicating tubes (Fig. 6) then
equilibrium will continue to exist according to equati@a). Now, ifpy is equal to the
hydrostatic pressure in the horizontal separation sunieteeenA and B then the
pressure irA at a height o will be equal tapa = po — oa g zand the pressure B at a
height ofz will be equal tops = po — 08 g z. From (6a), one will then find a pressure
discontinuity of:

(10) pA—pB:—g(pA—pe)z:TAB[%féj

at any location in the separation surfd6g . That difference is called theapillary
pressureat the location oA.

If B represents the saturated vapor of the flaidhenpy will be the saturation
pressure over a planar fluid surface, and if, in contsis the vapor pressure that is
found to be in equilibrium with the fluid over a loaatiin the fluid that exhibits a mean
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curvature of%(%Téj towards the vapor then the latter vapor prespgliieill exceed

the pressurgo by ():
1 1
- [_ +_j |
Pr~ Pg Rl Rz

It follows from this that, e.g., there is an increassdiency the smallest water droplets to
evaporate in air, because with the equilibrium presstitbeovapor over a planar water
surface still does not reach the equilibrium pressure thieesurface of the droplet.

If the pressure discontinuity of the capillary pressisrintroduced in that way then
the existence of the separation surface energy wouldhmusted completely, from the
derivation of the expression (3), with the further agstion that, in addition, a constant
tension of Tag per unit length of the boundary line would prevail atrgveoundary
element of the separation surface that would be inwairdi#pg normal to the boundary.

When one now also applies formula (3) to an arbitissgtion of the separation
surface, as far as virtual work is concerned, the eapipressure along the surface and
that tension on its boundary will be equivalent toaksumption tha& constant pressure
equal to g prevails everywhere inside of the separation surfac®wever, when we
speak of a pressure inside of the entire surface in gecérality, that basically means
just: A potential energy Ofag Fag exists for the separation surface, which is just wheat w
said to begin with.

Thomas Young(*?) based a complete theory of capillary phenomendananalogy
between a fluid surface and an elastic membrane thatraey forfeited its clarity by his
avoidance of mathematical symbolsSegner (**) introduced the concept of surface
tension in a fluid.

6. Formation of free surfaces. Drops— The differential equation of a free surface
comes under consideration in experiments in two typesuHtgins especially: Namely,
one is mostly dealing with either surfaces of revoluteamound a vertical axis or
cylindrical surfaces with horizontal generators, andl#éitier surfaces can also serve as
approximations to the former for large cross-sections.

In the case of aurface of revolution around the z-axistr be the distance from the
axis to the meridian curve, lg¢tbe the angle of inclination of the tangent with respe

(Y W. Thomson Edinburgh Proc. Roy. So@.(1870), pp. 63. — In a capillary tube of radius 0.00012
cm in which water rises by 1300 cm, the equilibrium expraggiothe water vapor would be, say, 1 / 1000
smaller than the value for the level plane. The supdérite Siedeverzugof fluids that are free of air is
also connected with the situation that is given byr#iation (10), as well as the difficulty in forminiget
first bubbles in electrolysis.

(*3 Th. Young, “Essay on the cohesion of fluids,” Trans. Roy. Philc. London, 1805. — For a critique
of Young's achievements, cf., LorRayleigh, Phil. Mag.30 (1890), pp. 285, 4565¢ientific Papers, pp.
397).

(**) Segner Comment. soc. reg. Gottinty(1751), pp. 310. Plateay Statique des liquide€hap. V,
gave a historical overview of the work done on the thebsurface tension that led up to 186&an der
Mensbruggheespecially has devoted various documents to that theory.
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the horizontat-axis (Fig. 7), so tag = dz/ dr, so the curvature of the curve will bel—

= cowz—f, and the reciprocal length of the normal will béz—: ﬂ SO equation (6)
will then go to:

d(rsin
(11) T, USING) g (on—pn) 2

rdr
MP =R; (<0)
M Z| NP=R;(<0)

Figure 7.

For the most part, one deals with a particulantsmt of that equation that meets the
axis and then necessarily pierces it perpendigularlorder for the surface to behave
regularly at that location. The solution depeng®ruonly one constant, since one
demands thatlz/ dr = 0 forr = 0. If one lays the coordinate origin at thatnpof
intersection with the curve thenT2g / Aag Will mean the radius of curvature itself, and
when one chooses that quantity to be the unitrajtie the form of the curve will depend
upon onlyone parameter, which must mediate the relationshipvéen the prescribed
value of the boundary angle Afat the end of the meridian curve and the volum&. of

Laplace (**), and later LorcKelvin (*°) have constructed the meridian curve of the
capillary surface of revolution approximately framall circular arcs with a continuous
succession of tangents by calculating the curvatttke origin of that arc using equation
(11). C. V. Boys(*®) made that method especially manageable when $eribed the
circular arcs by a fixed mark along a (transparangr along which the center of rotation
was successively varied, which ensured the comyirafithe tangents at the successive
circular arcs. In addition, the tick marks alohg tuler denoted their reciprocal distances
from the fixed mark at which one finds itself. Bashforth (*) produced extensive
tables of that particular solution of (11)C. Runge (*¥) took the equation as an
illustrative example of a numerical method for greing second-order differential

(Y Laplace, Connaissance des Temfs$12.

(*) W. Thomson “Capillary attraction,” Proc. Roy. InsL1 (1886), reprinted irfPopular lectures and
addressedl, London, 1889. The essay contains various diagram#iustrating the procedure. & C.
Schalkwijk, Leiden Communic., no. 67 (1901).

(*% C. V. Boys Phil. Mag. (5)36 (1893), pp. 75.

(*") Bashforth andAdams, “An attempt to test the theories of capillary acficCambridge, 1883.

(*¥) C. Runge Math. Ann.46 (1895), pp. 167.
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equations.K. Lasswitz (*%) andTh. Lohnstein (*°) treated a development pfn powers
of r for the solution of (11) that was convergent in thgiae 0< ¢ < 77/ 2 . One will
find all kinds of approximation formulas for the radius afrvature forr = 0, the
maximum value ofr, etc., in Poisson (*}), Fr. Neumann (*), A. Kénig (>, H.
Siedentopf(*).

The forms of a drop of mercury on a horizontal basbubble that collides with a
horizontal plane, and a drop of water that hangs frdroraontal plane are surfaces of
revolution that are determined from the differential ¢igua(11) by the demand that they
must meet the axis, the boundary angle at the endpothteoferidian curve, and the
given volume.

If the solution of equation (6) does not depend uposo it is acylindrical surface
with horizontal generators that are parallel to the y-axien the equation of its vertical
cross-section by thezplane will be:

dsing (o]
12 Tyo—— =T,.— = A+ 09 (0a— ,
(12) A X A8 s A+ 0 (0a—p8) Z

when ¢ means the angle of the tangent with respect toxitveis, andds means the
element of arc length. That is the equation for tieilrium form that a uniformly
infinitely-thin, rectilinear, elastic rod will assunie the absence of external forces when
two equal and opposite forces that point in the direstiof the positive and negatixe
axis are applied to its ends, along with the force-couptes they define 2f).
Differentiating (12) with respect ®will yield:

2
TAB%: g (oa —08) sin g,
and with that, assuming that > ps, the dependency of the angte- ¢ on s will be the
same as the dependency of the deflection of an ordimatjhematical pendulum of
lengthTag / (0n — o8) ON time. Ifz= 0 were laid through the level plane, so if one were t
assume thadag = 0, then one would correspondingly get the integrah@¥is vivain the
pendulum motion from (12) upon multiplying by t@rdx = dzand integrating:

2

(13) Tas (C— COS@) =g (0 —pe)% .

19 K. Wasswitz, Inaug.-Diss. Breslau, 1873.

()
(*% Th. Lohnstein, Inaug.-Diss., Berlin, 1891.
(*) Poisson Nouv. théor. de I'act. capill., Paris, 1831.
(*9) Fr. Neumann, Vorl. tiber Capill., 1894.
(*® A. Kénig, Ann. Phys. Cheni6(1882), pp. 10.
(*Y) H. Siedentopf Ann. Phys. Chen61 (1897), pp. 235.
(®® Cf., e.g.A. E. H. Love, A treatise on the mathematical theory of elastigitCambridge, 1893, arts.
227-229.

N
N,
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The integration constant in this will lse= 1 when the surface approaches the level plane
asymptotically, ana > 1 when it otherwise has a horizontal tangent;henather hand,
when the surface possesses an inflectiighy ds = 0), one will necessarily hawe< 1.

Fr. Neumann (*®) has treated the form of a cylindrical drop that hafigsn a
horizontal plane, which might arise when a fluid dripsnfra long tube. In order to
evaluate the stability of its form, we must appeal Jtrcobi criterion for an extremum
in a variational problem. IA wets the plane, andlzs : g (0. — o) is introduced as the
unit of area, for the sake of simplicity, then thatl wifine the variational problem of
determining a continuous functia(x) that vanishes at the ends of an interval < x <
Xo, Whose lengtl2x, one also seeksuch that:

(RS

Xo
will be aminimumwhen one is given thajr zdx =J. At a certain depth z, under the
X
horizontal plane, the dish-like profile of the drapl be exhibited by an inflection point
of the level plane, and then, from (13), it willdgegoing down to the deepest point,
which is a mirror image of the inflection point,cuthatz, will be the total depth of the
drop. If 20is the inclination of the inflection tangent wittspect to the horizontal, ard
= sin @then one will find that:

=212k, %=v2QE-K, J=x2,

on the basis of (13), in whick andE are complete elliptic integrals of the first and
second kind of modulus, resp. The expressidi= X zo has a maximum at roughly=

35° 32 with J = 2.606. Now, when the volunieof the drop per unit length of the tube
lies below that quantity, there will be drop forths&it correspond to the equations of the
problem, and indeed a form that is broader, butasadeep, so one will havx< 35 32,
and a form that is narrower, but hangs lower, fdricv the greatest inclination with
respect to the horizontal will be >%32. Only the first form is stable.

The fact that the behavior of a hanging, rotatigrehaped drop was analogous
emerged from an experiment by Lofelvin (*') in which a horizontal metal ring that
was spanned by a thin rubber membrane was stretcteed shape similar to a drop by
pouring water into it, and at a certain stage @it throcess, a jerky configuration of
unstable equilibrium will come about.

After the drop falls off, the stretched neck vaflap back into one or more smaller
drops. The process would be more accessible tolierver of the formation of the drop

(*®) Fr. Neumann, Vorl. iber Capill, pp. 117.
(") W. Thomson, Popular lectures and addressésLondon, 1889, pp. 38. — The drop forms in Fig. 8
were taken from there.
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were to result in a fluid that was just a little siewplbut that has still not be subjected to a
mathematical treatmert’.

7. Rise height— The mass oA that is found in a vessé@ perpendicular beneath the
separation surfacEag, calculated from the level surfage= zag, exceeds the mass Bf
that it displaces by:

9(0s=P5) [ (2~ 25)c08(n D) di= T, | [%%jcos(n z) df

(14)
= —T,s] cOS (j,p 2)ds,

in which the latter integral extends over the baugdof Fag . The first conversion
follows from (6), while the second one follows by application of formula (3) to a
parallel displacement of the surface in thdirection, under which its area does not
change. If the wall of the vessel is everywherdica at the boundary d¥ag then one
will have (ag 2) = 77— & here, in which one understandg to mean the boundary angle
of A, and the last expression in (14) will then be é¢udas cosan U, whereU means
the circumference of the boundary curve, which t#n be positive, zero, or negative,
in particular, according to whether the angjeis acute, right, or obtuse, resp.

If C represents a vertical capillary tube with a ciacudross-section of radid® then
an elevation or depression of the fluid in the tubk take place (here, we imagine that
Pa > ps, and thaB lies overA) according to whether the boundary angléad acute or
obtuse, resp., so in particular, it will rise whmvets the tube. From (14J)e mean rise
heightover the cross-section of the tuld be:

- 2T 5 COSW, =92 Toc = Tac
9(oa—P:)R 9(Pa—Pe)R

which is theninversely proportional to the radius of the tufd. The meniscus can be
regarded as a spherical surface in the first apmaion. If one approximates it more
precisely as an ellipsoid of rotation around thés af the tube ¥), which agrees with
that meniscus in its boundary angle, the radiusun¥ature on the axis, and the weight
that was raised, then it will follow, e.g., whénwets the tube, that the rise height along
the axis will be:

(*® G. Hagen Ann. Phys. Chem67 (1846), pp. 1, 157ibid., 77 (1849), pp. 449. C. V. Boys
SeifenblasenVorl. Gber Capill, German trans. by G. Meyer, Leipzig, 1893, pp. 33, 65. — Rageigh
treated the relations between the diameter of a tadheéhee weight of a drop that falls from it in Phil. Mag.
48 (1899), pp. 321Scientific Papergl, pp. 415)Th. Lohnstein, Ann. Phys. Chen20 (1906), pp. 237, pp.
606. —A. M. Worthington andR. S. Cole “Impact with a liquid surface,” London Phil. Trari9 (1897),
pp. 137.

(* The proportionality of the rise height in a capillampe with the reciprocal of the diameter seems to
have been first established Byrelli (De motionibus naturalis a gravitate pendentib&eggio, 1670);
many attribute the law tdurin [Phil. Trans.30(1718)].

(% Mathieu, Capillarité, Paris, 1883, pp. 49.
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If several fluidsA, B, B', ... are layered on top of each other in a capillary
they do not wet its wall then the total weight thaesi up will be the same as if o8y
were found ovelA. An objection thatYoung believed had to be raised against this
argument, and therefore agaihstplace’'s theory in its own right, which was based on
observations, was refuted Ppisson(*%).

Figure 8 Figure 9 Figure 10. Figure 11.

As a result of (14), the mean rise height betweenparallel vertical plates is half as
large as it would be in a capillary tube whose diamistequal to the distance between
the plates. If the two vertical plates has a naweedge opening between then the fluid
in it will rise upward to an equilateral hyperbola (Fig. 9nder some circumstances, a
drop in a conical tube can be in equilibrium with an atisendary angle when the tube
is tapered above (Fig. 10) or an obtuse angle when peasdd below (Fig. 11).

8. Capillary buoyancy. Adhesion.— Now, let the bod{ be in contact with only the
fluids A andB. In order to ascertain the componer,~in an arbitrary directiom of the
opposing pressure th@texerts againsh andB in order to maintain equilibrium, we can
displace C parallel to itself in that direction. We will then fole a family of
displacements of the system that depends upon one parantbtt make< advance in
that direction through the lengt so the part&ac, Fsc will also go along while leaving
their common boundary lines unchanged, all boundary surfacgsand B that abut in
other media tha@ will remain fixed, and finallyFag will be deformed in such a way that
the volumes/, andVg remain unchanged. We can then pose the reld&ordw = 0 for
the total energyE that comes into play, including the terms PR, for the opposing
pressure P,, . Now, the areas ¢iac, Fsc are unchanged, the differential equation (6) is
valid alongFag, and to simplify, we set = 0 at the level plane &, B, so we will have
Aag = 0. If we recall (3) and (5) then we will get:

(Y Poisson Nouv. théorie de I'act. capillpp. 141.
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(15) Pu= [ g(pn—ps) zcos(wr) df- [ g(o, - o) zcos (wn) d- Ff cos(wy, )c=0,

FAC FB C

in which the first integral refers tac, the second, tégc, and the third, to their common
boundary, andh denotes the exterior normal @

The vertical buoyancy that is exerted©@ran be calculated from this when we take
w to be thez-direction. If the separation surfaEgs has no boundary o@ except for its
boundary line — i.e., if it asymptotically approaches thellplane, moreover — then the
transformation that is given by (14) will show thag fast term in (15) will then be equal
to g (oa — M) Vag, in which one understand&g to mean the volume undéng that
reaches up to the level plane. (As londg-asexists under the level plane, the volume in
Vg that lies between them will be counted as negattyethat volume, the pai can be
attributed to the medium (Fig. 12, in which one find§ag in place ofFag). On the other

hand, upon continuing the level plai@will split into a lower part of volum&/{” and
an upper part of volumé!®, so the second and third terms in (16) will become:

~g(on—p8) (VP +Vas—V), ~-g (05 —p0) (V&P +Vag+ V),

resp., and it will then follow that:

(16) Pu=09(0n—p)V® +g (o8 —pc) VP -9 (oa—p8) V.
C
B
VAR
SA
AL I
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Figure 12.

The first two terms define the hydrostatic buoyancycase the separation surface
falls in the level plane, while the third term, namehg capillary buoyancy(negative
downward force, resp.), is equal and opposite to the wefltie fluid that is raised
above the level plane as a result of capillaritherefore, in some situations, a body can
float on a fluid of lower specific gravity for abtuseboundary anglew .

If a circular discC that lies on a wide horizontal surface betwAendB (Fig. 5) and
has a base that remains horizontal and is always mplete contact withA is
continuously raised perpendicularly then the free surddcevolution that is located on
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the boundary of the disc will once more obey equatibh).( The meridian curve
asymptotically approaches the level plane, while the boyratagle of A with respect
to the horizontal base of the disc will increase icmatlly as a result of the first inequality
(9) up to the valuew, that is determined by (8), at which point the fluid breals For
large areas$ of the disc, the maximum height of the rise will give approximately =
ap for c = 1 from (13), and indeed, independentlySoaind the maximum weight of the
fluid that is raised above the level plane plus tlegght of the disc will then follow from

(16), when one substitut&s™ = — z, Sin it, andV = Vag will be calculated from (14) by

means ofjag 2 = 77/ 2 + @ .

Given the adhesion of two very close equal horizguitdaes (which might once more
be circular of are&®) by means of a thin fluid lay&x of volumeV, that is found between
them andwetsthem, the meridian curve of heightwhich we measure from the upper
surface of the layer (and thus also regagd/ ds as varying little), will be determined
approximately from (12), and therefore that curve will agpnate a semicircle of
diameterVa / S (Fig. 13). From (12), the level plane is found at aleofz = - z, ,
which is inversely proportional to that value. Once md@i®) implies precisely the
relation (16), in which one sei” =-S g, V = 0, and that will imply the pull that is

exerted on the upper plate from above, together with eigiw, which will, in fact, be
proportional toS* / Va . For smallVa , an extremely large force will be necessary to
separate the plates then.
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Figure 13. Figure 14. Figure 15.

By contrast, if thdboundary anglet the plate i®btusethen the level plane will lie
above the layer, the magnitude of the area of thecutfat covers the plate will depend
upon the value oY, and it will be necessary to exert a correspondingspreson the
plates in order to reduce the distance between them1#).

Let C represent a vertical plate of very large widltthat is parallel to thgzplane
and is arranged to be equal on both sides and is immergedndB, but in such a way
that the position of the separation surf&gg can have different heights on both sides of

(15) (Fig. 15). One can then use (15) to calculate thedduire two pressure® and
P’ in the direction of the-axis that the plate experiences to the left andige,ron the

side of smaller (larger, respx) The two boundary integrals will then cancel, andhait
will remains are the surface integrals for the pathefplate that is covered By on the
one hand, and bg, on the other. IAis to the left of the plate at a heightzofand to the
right at a height of" then the total pressure will be:

Px=9 (on—08) W%ZTAB (c"-c)L,
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when (13) implies that the integration constanfor the form of the surfacExg comes
under consideration on the left atidcomes under consideration on the right.

If two platesC” andC" of equal widthL that are parallel to thgzplane and very
close to each other are immersed now, and if theyratien constant comes under
consideration for the meniscus in tkeplane between them, while beyond them, the
surfaceFas might asymptotically approach the level plane, so thestant in question
would have the value 1 there, then the plates would bdeeduspart by a force dhs (C -

1) L. Now, ifA defines an acute or obtuse angle with both platestbgemeniscus in the
xzplane between the plates will necessarily exhibit acelwhere the tangent is
horizontal, and from (13), one will then hawe> 1. A apparent attraction of the plates
will then take place, and indeed, sirce 1 is proportional to the square of the rise height
at each location, from (13), it will be approximately irsedy proportional to the square

of the distance between the platesA Hefines an acute angle at one plate and an obtuse
angle at the other one then a certain distance betwee plates will correspond to an
unstable equilibrium that will lead to an attraction whies plates are closer (due to the
stronger curvature of the meniscus) and a repulsion Wiegrare further aparty.

9. Eliminating gravity. — According to (6), the action of gravity on the formtloé
separation surface betweArandB seems to disappear whgr = ps, SO when the two
fluids have the same density. That fact, wHggnerhad already pondered®, was
employed in various ways Wlateau (**) in order to study pure capillary action.

From (6), an oil drop that is brought into an equally-demsxture of water and
alcohol will assume the figure of a surface of cortstaean curvature. If the drop is
completely free to float then it will necessarilyhéit the form of a ball, since the sphere
is the single closed surface of constant mean curvatatastfree of singularities?). If
the surface of the drop is not closed on all sides, btiajhateans on an immersed body
of revolution, then it might define a surface of reviointaround the respective axis.
Now, if one has along an arbitrary normal to the meniccurve of that surface, in turn
(Fig. 16), thatP is the point of the curveM is the center of curvatur®| is the point at
which it meets the axisoPM, PN are the two radii of principal curvature of the surface
of revolution), and finalh\@ is placed in such a way theNQM are four harmonic points,
SO one has:

1 1 2
+ = ,
PM PN PQ

then from (6) or (11), the lengthQ must prove to be constant. The mirror im@e)f
Q along the axis will then yield a constant sBiM + NQ = PQ, while PN andNQ will
exhibit equal and opposite inclinations with reggedhe axis. If we now |€® describe

(*? Laplace, Suppl. & la théorie de I'act. capil(De I'attraction et de la répulsion apparente des petits
corps qui nagent a la surface des fluidedoisson Nouv.théor. de I'act. capill. Chap. VI. -W. Voigt
developed some general theorems on the attraction patsion of floating bodies ilKompendium der
theor. Physl, Leipzig, 1895, pp. 239.

(% Plateay Mém. I'Acad. de Belgique, 1843 to 186Btatique expérimentale et théorique des liquides
(Ghent, 1873).

(% Cf., Liebmann, Math. Ann.53, pp. 81.
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the meridian curve and continually constrdcQ, Q in the way that was described then
sincePQ is constantQ will describe a curve that is parallel to the mendtarve, so the
motion of Q will always be normal toNP, and therefore the motion &, which is the
mirror image of it along the axis, will always be nott@aNQ'. It is clear from this that
the meridian curve of our surface of revolution willgenerated by the focal poiRtof a
certain conic section that one rolls without slippingtbe axis of rotation whose other
focus isQ and twice its major axis will beQ (*°).

o) \/\/

Unduloid
M
R \_/
/ Catenoid

/
’ /
: 00

Nodoid

Figure 16. Figure 17.

If the drop is supported by two horizontal discs or rimp®se centers lie vertically
above each other then by changing the distance betwesa two supports, as well as
the mass of oil that is found between them, one caergée the various forms of the
surfaces of revolution of constant mean curvature, nantbé unduloid which is a
sphere — cylinder — catenoid in the limit, th@doid which is a catenoid — sphere in the
limit, and which correspond to a rolling ellipse or hypesbaksp., while the limiting
surface will correspond to a line segment, circle, padhbola, resp. (Fig. 17). In that
way, one can place spherical caps on the rings ¢h ease that have the same mean
curvature as the drop that is found between them. Heresatenoid is a stable figure of
equilibrium, namely, it is actually a surface of smasilarea for a given magnitude of the
volume that is contained between the two basic @raurfaces, but only as long as the
tangents at the two end points to the meridian cuthaisgenerate it find their point of
intersection along the axis of rotatiof})( and the cylinder surface is stable in the same
sense only as long as the height of the cylinder doeattan the circumference of the
cross-section®().

(*®) Ch. Delaunay, J. de Math. (1 (1841), pp. 309. — The literature about the mean curvafure o
surfaces up to 1869 was discussed thoroughRiateau (Statique des liquidek, pp. 131).

(% L. Lindeldf in Moigno-Lindeldf, Calcul des variationsParis, 1861, pp. 209, 231.Peincaré
Capillarité, pp. 66.

(") Plateau Statique des liquide®, Chap. IX. Poincaré, Capillarité, pp. 95.
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If a freely-floating oil drop in the form of a sphaseput into uniform rotation around
an axis (say, the-axis) with the help of a disc that is immersed indh¢hen increasing
values of the angular velocity of the rotation will correspond to different formstbé
drop. It will first appear ellipsoidal with flattenindb@ave and below, and finally a ring
will detach from the equator that takes part in the iamaf®). If one imagines (and of
course, this corresponds to experiments only inadequakelyphly the dropA rotates,
but not the surrounding flui@, and one treats the motion of the co-rotating coatdin

axes by introducing the potential of the centrifugal fOfG(é;—ijrzdv then one will get
A

[with the same notations as in (11)] the equation fer rtieridian curve of the rotating
drop:

1d(rsing)

o’ dz
T =g —— 0, I° —=t .
By dr AB T Pl (df an¢j

One determines from this as a hyperelliptic integral irof genus 2, and one will get
spheroidal or annular surfaces according to theegabfw (*%). One can, if need be,
compare the figures that appear in this case wighforms of gravitating fluid masses
that are found in stationary rotation when one tstavith distant forces with the
—CI

. e
expression Kk
r

(c=0) as a potential for two unit masses at a digtarfic, which will

imply gravitation, on the one hand, and surfacsiten on the other, as the two limiting
caseg = 0 andc = oo, resp.

10. Fluid films. — Under some circumstances, a flAi¢dan exist for a long time in a
mediumB as a thin film with two very close surfaces theparate it fronB. Plateau (*°)
based the permanence of such fluid films upon th@tpous character (surface
viscosity) that emerges primarily in the boundaayelrs. That is further explained by
distributing material components in the surfacestayas the interior of the film, which
will make those layers have the properties of sotidies, rather than fluid&'). In films
of very small thickness, a flow in the interior Wween the surface layers will then be
slowed down considerably by the internal frictidrtie fluid (*3), which will then make a
variation of the mutual distance between the twpasstion layers more difficult. If
F.. Fas are the areas of the two sides of the film thesn# is to have equilibrium then

one must require that the potential energy:

Taa(Fret Fra +9(0 =09 zdw @ [ zd
A

A+B

(¥ Plateay Mém. de I'acad. de Bruxellds$ (1843).

(*°) Beer, Einl. in die math. Theorie der Elastizitét u. Capillaritieipzig, 1869.

(‘9 Plateay Statique des liquide®, Chap. VIL.

(*Y) Marangoni, Nuov. Cim. (2)5, 6 (1871/72);ibid. 3 (1878). — LordRayleigh, Proc. Roy. Soc48
(1890), pp. 127%ci. papers3, pp. 363).

(*3 Cf., the relevant calculation Gfibbs, Equilibrium of heterogeneous substanqggs 475.
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of the film must be a minimum under only those virtuapthcements oA for which the
normal distances between two separation surfacesreiiain unchanged; the other
displacements are then regarded as unfeasible. No&n thle thickness of the film is
considered to be vanishing and one recalls (3), (4), @)ll kollow simply that 2T ag Fag
— henceFag— should be a minimum for the film, and one undedd&ns to mean the
total area of the film. For instance, if a framenwiving filaments is constructed in some
way from fixed wires to serve as the support for a fixedase, and it is dipped into a
soap solution then the soap solution will span the intefithe fixed and variable limits
in the form aminimal surface(art. byvon Lilienthal, 11l D 5, pp. 307), and one will
encounter one of the rare cases in which a purely matlmasubject has been able to
find a multifaceted stimulus from a relatively simplass of experiments.

One will get:

(17) Liloo

R R

for the differential equation for the form of thf, while the condition will result for its
boundary (as long as it is not held fixed) thamitist impinge perpendicularly to the
surface that it spans. In that way, the prescribedndary conditions will imply that
intersections will necessarily arise during theletron of the film. However, in stable
equilibrium, one can never have more than threanlarthat meet along a curve, and
indeed only with equal surface angles then (so”)120hd at most four can meet at a
point, and indeed with equal spatial angl&%. (Hence, e.g., a frame that represents the
edges of a regular tetrahedron will define a saapthat consists of six planar lamina —
namely, the six triangles from the center of mashe tetrahedron to the individual
edges — while a surface will be created insidenefadge framework of a cube that does
not exhibit all of the symmetries of the cube, Wit favor an arbitrary pair of its sides

(Fig. 18)(%.

Figure 18.

It is a characteristic property of minimal surfa¢kat their map by parallel normals to
a conical surface is conformal when one assignaiiées. Now, should the boundary of
that minimal surface be a given closed sequensegrhents, or more generally, should it
lie piecewise along prescribed lines or planes) the lines would have to be asymptotic
curves on the surface, and the planes would hawattout lines of curvature from them,
and that spherical map would be a polygon of carcaftcs of known circumference. The

(*¥ Lamarle, Mém. de l'acad. de Bel@5, 36. —Plateay Statique des liquidek, Chap. V.
(*) Plateay loc. cit, pp. 318.



Minkowski — Capillarity. 26

analytical determination of the minimal surface in goestvould require the conformal
mapping of that polygon onto a half-plane, so that mappinglem would depend upon
a second-order linear differential equation with ratiduactions for its coefficients, and
ultimately one should establish a finite number of parameahat would enter into that
equation and correspond to the lengths and angles of vka fiamework, wherein
transcendental relations would lie whose theory calorbeght to a satisfying conclusion
only in some special case&s)(

Plateau (*®), and laterH. A. Schwarz (**), have realized various types of minimal
surfaces (e.g., the catenoid inside of two circular rthgs are kept perpendicular to each
other, a helicoid inside of a glass cylinder between tweegors) by means of soap
films, and at the same time, have established, theallgtias well as experimentally, the
limits of their character as extremals, as well aw lthey rearrange when instabilities
enter in. Inside of a wire that is spanned by the siegdd a straight, regular, six-sided
prism and the sides of it that are alternately coumlemhte and the other base surface, in
the event that the edges of the prism are sufficidottg in comparison to the basic
sides, one will find a lamina that will lie essengjatloser to one of the two base surfaces
along the centerline of the prism and will skip overhte bpposite image relative to the
other base surface by a slight shake. However, thikingtrphenomenon shall be
attributed entirely to just the slight imperfectiohattare always present in the model.

The condition for the stability of a fluid film in xed framework is that it is not
possible to find an infinitely-close minimal surface throagly closed system of curves
that lie on the surfacé®. Hilbert (*) gave the general criterion for the presence of an
extremum, exclusive of its stability, for the casenoiving boundaries.

Figure 19.

When one proceeds in a suitable way, one can alsosspgnfilms inside of a fixed
framework in which completely closed surfaces (viz., beslill appear. [For example,
one can establish a soap film inside the framework@gttiges of a cube that consists of
closed, outward-curving suspended surfaces with the symmefrthe cube and twelve
planar trapezoidal lamina that couple their intersestiwith the edges of the cube (Fig.
19) (®).] In that way, every closed bublB& will contain a well-defined quantum of air
for any volumeV®) and any pressupg’, and one must accordingly add the corresponding
term —p®” V¥ to the potential energy of the total system. Itl wien follow more
generally, and in agreement with (10), that one will have

:
(4

(4 8

Cf., H. A. Schwarz Gesammelte math. Abh,. Berlin, 1890.

H. A. Schwarz Acta soc. scient. Fennica8 (1885), pp. Ges. math. AbHL, pp. 223).
Hilbert, Gott. Nachr. 1905, pp. 159.

Plateau loc. cit, pp. 361.

NN N

~—~
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e ij,
Py [Rf%

instead of (17), for a side surface of the bubble on whtlser side a pressurg”
prevails, in view of the two separation surfaces of l#mina, in which the radii of
curvature are counted as positive for curvature thatmseooutward. In order to fix the
p", one appeals to the value of the external pressungelss the magnitudes of the
individual quanta of air that are trapped inside. In that, wae can once more arrive at
all forms of the unduloids and nodoids, e.g., with the loélpwvo fixed rings that are
closed with spherical caps. An isolated free soap bubitl@mecessarily have the form
of a sphere, and the excess pressure inside of itbeilinversely proportional to its
radius, while that proportionality factor will be a mplé of the surface tension.

11. Stability of a separation surface— For the stable equilibrium of a separation
surfaceFAB, which already corresponds to the previously-discusseditendE / dw =
0 (w = 0) for every one-parameter family of virtual disgla@nts whose parametemis
it is further necessary that teecond derivative of the potential energy with respect to the
variation parameter wnust be positive-definite; i.e., one must have thquaéty:

d’E

>0 forw=0.
dw?

(18)

If we assume that the boundaryfog is fixed, such that the integral over the curve in (3)
drops out, then it will follow from differentiating (3Y4), (5) with respect tav and

recalling (6) that:
d’E o(1 1 0z
= | NqTg—| =—+— |+ - pg)—; df.

A
Figure 20.

Let us make a special application of that. Theassion surface falls in the level
planez = 0. The fluidB is found aboveé in a vessel that is open at the bottom, but let it
be denser thaf, soos > poa (Fig. 20). We will then have:

z=N w(modw?), i(—+—
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for the varied surface [in which the symboknd the term (mo@?) or (modw), resp.,
shall suggest an equality up to terms of onsfeor w, resp.], and it will emerge from the
condition (18) that:

9°N  9°N
(19) jN{—TA (a A +ay j 905 - pA)N} df >0,

FAB

while the constancy of the volunvg will demand that the equation:

(20) j Ndf =0

FAB

must be satisfied, arfd must further be zero everywhere on the boundaFxgf

In a more elementary treatment of tHidaxwell (*°) said that the integrand in (19)
must be> 0 everywhere, which is never achieved at all dkerentire circumference for
the functiondN that are allowed here.

If the opening of the vessel is a circle of radiuaround the zero point then one will
express the condition of the vanishingh{x, y) on the boundary in the most general
kind of calculation by the Ansatz:

N (r cosg, rsin @) = ii\]m(

m=0 k=1

j(amk cosm ¢ + bk sinm ¢) ,

in which Jn, (A) means théesselfunction of the first kind of ordem, andAn , Az, ...
mean their positive roots, arranged by magnitd%e (19) then implies that:

m=0 k=1

ANAN 2/]nzwk )
]—ZTR ZZ{ Tag — g(pA_pB)}[ I (A2]7( ink+ [i)( >0,
while (20) will imply the equation:

ZHRZEM & = 0.

k=1 0k

In fact, from the sequence of values of thg , the criterion thaMaxwell gave for
stability will imply the requirement here that osteould have:

TA B

R<A, | ———.
g(,OB _pA)

(*% J. C. Maxwell, Scientific Paper®, pp. 585.
(*% Cf., Die part. Differentialgl. d. math. Physikach Riemann’s Vorl., revised byH. Weber, 2, pp.
262;1, pp. 164.
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If B wets the wall of the vessel then the upper limit loanlescribed by%J h, here, if

T2

hn is the mean rise height in a capillary tube of radiysfl no.7) (*Y); the constant
)In/ﬁ has the value 2.7009...

If the opening of the vessel is a rectangle with sajds anda = b then it will be
necessary for the stability of equilibrium that:

4 1
t? (; +§j Tas—9g (08 —n) >0,

from which, the corresponding condition that redatie a wide opening will be likewise
clear fora = co.

12. Capillary oscillations.— In the equilibrium stated is found completely beneath
the level plane = 0, while B is found above it, and its separation surfaceciwhs
thought to beinboundegdwill exhibit surface oscillations, moreover:

z=¢ef(x,y, 1) (modé&)

under the influence of the surface tension andityam which £ means a parameter in a
certain neighborhood of 0. W, as inB, one might find velocity potentials £ ¢ga [=

£ gg, resp.) (mods?), which satisfy the_aplace differential equation, and theiregative
differential quotients with respect to the coordasawill represent the respective velocity
components. At the separation surface, one hatheoone hand foA and on the other
for B, first of all, the kinematic demand that the rnefatvelocity must be tangential to the
surface, and secondly, that the pressure in itehasmpo + £pa (E po + £ps, resp.) (mod
£), must be the integral ofis viva and thirdly, that the pressure difference, as the
capillary pressure, must ke (pa — ps) (mod &%), according to (10). For line= 0 (i.e.,

for infinite surface waves), those conditions wiicome:

ﬂ— 6¢A = a¢B, &: %—gf, &: a¢B—gf (Z: 0),
ot 0z 0z P, Ot Ps Ot
B 9%f  9%f
Pa—Ps=" Ty W+ayz ’

resp.

Should one have limr = — o for A and limz = + o for B then all of the stated
conditions would be satisfied, in such a way thaadditive construction would suffice
for their general solution from the particular Atssa

(*") Observations dbuprez [Mém. de I'Acad. de Belgiqu26 (1851),ibid. 28 (1854)] are in agreement
with that theoretical result.
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f:m [e—i ot F (X, y)], ¢A - R ( |lf- kz—|at Fj ¢B =R (%e—kz—iat Fj,
0" E 0° Iz+k2F 0,
ox~ oy

in which g; k are positive real constantg, is the symbol for the real part of the quantity
that it is applied to, and it will then follow fromeHast relations that one has the relation:

2
k) patps K patps
betweerk and o.
Waves that do not depend uppfollow from the Ansat# =C &, and therefore

A = 2t/ k will be the horizontal-cylindrical length when they trewvesome direction, or
one can also have standing waves of oscillation nurmde27r. Lord Kelvin (>3, and
later Kolagek (°%), gave that relation. It finds application to thegagation of waves in
an unbounded water surface that is under the commam auft gravity and capillarity,
but not wind, and furthermore to those forced standindlaaposcillations for which the
nodal lines can be parallel line¥)(

When one assumes that > o5, equation (21) will have the consequence that the
speed of propagation= s/ k is aminimumc,, for a certain wave length,,, and with
those quantities, (21) will be written:

c? A A,
21a = 4
(212) c2 2[)! A j

m m

Figure 21.

( )W Thomson Phil. Mag. (442 (1871), pp. 368; Proc. Roy. Soc. Edinburgh (1870/71), pp. 374.
( ) Kolacek Ann. Phys. Chen®b (1878), pp. 425pid. 6 (1879), pp. 616.

Y C the extended series of experiments hy Grunmach, WiIss. Abh. d. Kkais.
Nor mala|chungskomm|35|on Berlin (1902), pp. 101.
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(The curve i andc that is determined in that way is depicted in Fig. 21,caleih the
curvesc®/ ¢ = 1A/ Anandc®/c; = 1 Am/ A, in order to compare the effects of gravity

and capillarity.) Each value af > ¢, will then be associated with two types of wave
length, a short oné; < A, and a long ond, > Ay, which will make the quotient&; / An,
and A, / Am reciprocal. LorcKelvin referred to the waves with < Ay, for which the
termTag in (21) exceeds the one with as “ripples.” For water waves in air, one will
have, saydn = 1.75 cmgcy, = 23.2cm/ s.

Lord Kelvin further discussed the influence of wind on the vejooitwater waves.
In that way, one makes the assumption that the upper Blladvances with a given
velocity u in the direction of the-axis for limz = . Two propagation speeds are then
possible for the wave length:

_ P 2 P 2 _Ps
Cu=—"—u+ [C- u o=,
1+p \/ (1+ oY ( ij

in whichc is the velocity fou = 0 that is determined by (21a). Here, an imaginary value
of the square root would mean that the real part ofuthearied complex particular
solution that is taken to be the starting point repitsseaves with continually-increasing
amplitudes. That instability will not come into questfon any wave length when one
hasu < [(1 +0) / 0] cm.

If one again imagines a motion M that is horizontally-cylindrical, so it does not
depend upory, and that deviates only slightly froe= 0, but has an otherwise-arbitrary
wave profile, that advances uniformly throughin the x-direction with the velocityc,
and if, on the other handy is at rest forz = — o« then one will arrive at an integral
equation (viz., &ourier integral) from the integral ofis vivaon the surface oA and, on
the other hand, the capillary pressure that will altove to adapt the wave profile to
precisely any distribution of external presspgethat one might assume to exist on the
surface. In particular, if a line that is parallekive y-axis floats in the-direction with a
velocity ¢ > ¢, which increases the total magnitude of the pressurenitelength at its
location byP, while the pressurps is otherwise constant, precisely like a jump increase
in the direction coefficientslz / dx of the wave profile by an amounP2 Tas , and
creates simply-harmonic waves of length(< Ay) at some distance in front of it and
ones of lengthl, (>An) behind it. A pressure line that defines an anglab® — & with
its direction of advance will then act as if it hagtedocity ofc cos & perpendicular to it,
and by integrating oveé, one can calculate the effect of a point that flaatgormly
with the velocityc and increases the pressure, and in particular, onghcanthat such a
wedge-shaped wave front (think of the waves from a shippeitriven forward with an

opening angl@(l—;— 6’) that is determined fromcosé@=cy.

The consideration ofnternal friction for surface waves that advance in some
direction on apure water surface will have to involve assuming tleg shear stress is
zero on the surface, while the tension is corredppgty calculated from the capillary
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pressuref). If i is the coefficient of friction andt = 1/ / pa then one will find that for a

given wave lengthl, as long as¥ = 27v / cA proves to be small (for water waves/Z ¢y,

= 0.0048 cm), one will find a modified wave velocityc<(1 —\/_2193’2) instead of the

previous speed of propagationwhile at the same time, the amplitudes will thenudel
_8172|/

a damping factor oé ** t, and therefore a relaxation time of:

AZ

= 0.7124% sec for water).
8y ( )

The soothing effect of oil on water waves is teeplained {°)(*) by first saying that
as a result of the excess of surface tension advat oil over the sum of the two surface
tensions of oil on water and air on oil, an extrgntkin film will be removed from the
water, and the surface layer with the added oil @xhibit elastic properties. Its tension
will no longer remain constant, but will grow wheme further seeks to reduce the
thickness by stretching. In that way, it behaves jike a flexible and barely extensible
membrane and will hinder the free unfolding andpagation of the waves that are found
beneath it by its tension. As a result of thatewlone would like to ascertain the
influence of internal friction, no longer by assagnithat the shear stress is zero on the
surface as a limiting condition, as in the casa plire water surface, but rather with the
other one that the horizontal component of the aiglois zero there®f). That other

extreme case has a relaxation time that is smathéyatio 4,/ 29 : 1 in comparison to

the previously-considered situation.

Lord Rayleigh (*°) treated the small oscillations of a separatiaffese with the form
of a circular cylinderin order to be able to assess the stability atifjets from that.
Gravity was not considered. Létbe found insider of the cylinder, whik is found
outside of it, leR be the radius of the cylinder, while its axishie z-axis, and:

r=R+ef(zgt) (modé) (x+iy=re9
is its equation of oscillation in the limit @f= 0. If the external pressurelnis assumed
to be constant (which is equivalent to takjpg= 0) then one can make the particular

Ansatz that the velocity potential Ais:

eR[C &*Z=otMI 3 (i kr)] (mod &),

in which J,, means thé&esselfunction of the first kind of ordem, and one will arrive at
the relation:

(*® Cf.,H. Lamb, Hydrodynamics3" ed., Cambridge, 1906, pp. 563.
(5‘75) Reynolds Brit. Assoc. Rep., 188¢. paperd, pp. 409).
(") Aitken, Edinburgh Roy. Soc. Prot2 (1883), pp. 56.

*® H. Lamb, Hydrodynamics3“ ed., Cambridge, 1906, pp. 370.

(*% Lord Rayleigh, Proc. Roy. Math. Soc. Londdi0 (1878), pp. 4; proc. Roy. So29 (1879), pp. 71
(Sc. paperdl, pp. 361, 377Theory of Sound?™ ed., Chap. XX); the influence of internal friction ireth
fluid was brought into consideration in Phil. M&4.(1892), pp. 1453c. papers8, pp. 585).
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2= KRLAKR op o o Tos
In(TkR) PaR

by the kinematical condition, along with the pressequation on the surface.

Form = 0, one will haves? < 0, in the event tha R< 1, which implies the unstable
character of perturbations whose wave lengthd R exceed the circumference of the
cylinder. As a result of the facter' “!" in the amplitude, the instability will then be
greatest when ¢ | itself is greatest, which leads tar2k = 4.51x 2R, such that the
tendency of the jeA to decompose into drops will be strongest wheh Wave length
swells and contracts.

Lord Rayleigh (°°) treated the case gk = 0, oz > 0 on the basis of similar principles,
which gave the wave length of greatest instab##&\27/ k = 6.48x 2R,

The first result can be applied to the decompmsitf a jet of water in air, while the
second one can be applied to the tearing of afjatirahat goes through water. The
oscillations form = 2, 3, 4 come about predominantly when the jetrgasefrom an
opening of elliptic, triangular, or quadratic forrasp.

The small oscillations of a separation surfacéhefform of asphereare obtained by

starting from the simultaneous Ansat?) (°9):
-Cr" _- -C R™ |
=R ——=Y.(6.¢)e'" |, =R ——=Y,.(6.¢) e |,

in which one takes into account the kinematicaldition that dd¢A = dd¢B . Ther, 6 ¢
r r

in this are polar coordinates from the center & $phere)Yn, (6, ¢) is the spherical
function of ordem, andR is the radius of the sphere. It then turns oat:th

TA B

g=mm+1)m-1) M+ 2) [(m+1)p,+ mp,] R

That result can be applied to the oscillations df@p of water in air and an air bubble in
water. For falling drops, oscillations of orde(r3 = 3) will emerge as a consequence of
the tearing ).

(

(*) Lord Rayleigh, Proc. Roy. So29 (1879), pp. 71%c. paperd, pp. 377).
(*») Webb, Mess. of Math9 (1880), pp. 177.

(*® Lenard, Ann. Phys. Chen80 (1887), pp. 209.

6;’; Lord Rayleigh, Phil. Mag. (5)34 (1892), pp. 177%c. papers, pp. 594).
)
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Il. — Capillarity as spatially-distributed energy.

13. The hypothesis of cohesion forces.Capillary phenomena prove to be necessary
consequences of the hypothesis that, along with gravitatyet another force of
attraction acts between two material particles ef same or different substances that
depends upon only the distance and which one callotbe of cohesionlts law might
take any form, except that it must drop rapidly with insmeg distance in such a way that
it will not be considered outside of an extremely $maicroscopically imperceptible
distance.

Initially, the rise of a fluid in a capillary tube waxplained using only an attraction
that the tube exerts upon the fluid, which could exist betwthe wall of the tube and the
closest particles to it, due to the independence of thagrhena on the thickness of the
tube @%. Clairaut (°°) saw that it would be necessary for one to alscsiden an
attraction of the fluid particles to each othetaplace (°®) could then construct a
complete theory of capillarity that was based solglgn the hypotheses on the force of
cohesion that were just sketched out.

Laplace calculated the potential of the cohesion forces ftluid mass whose parts
cohere according that hypothesis for a position of théase and found that it was a
linear function of the mean curvature of that surfade.then considered the potential of
a ball at a location on the surface, went from therthe potential of a wedge that was
formed from two infinitely-close meridian sectionstbé ball, and finally approximated
an arbitrary fluid surface in the neighborhood of a pbynthe surface that was generated
by the curvature circles of the normal sections; raughly the osculating paraboloid.
He further obtained the differential equation of a freaface from the laws of
hydrostatics, whereby it would be a surface of congtaténtial of all forces that were
acting under constant external presst#d. (

Laplace (°") used the second representation to calculate the tiigesmponent of
the total force of cohesion that is exerted upon thel ffurface at a location on it, in
which the surface equation at that location was develapdd and including third-order
guantities, and obtained the equation of the free surfaca the condition that the
resultant of cohesion and gravity would always be nbtethe surface on it. However,
Laplace had no proof of the constancy of the boundary angle leetwee fluid and a
solid body, but only showed that when the body hasaima bf a vertical cylinder of any
cross-section, the mean value of the cosine ofahgte along the entire boundary curve
must always lead to that constant.

Gauss (*®) narrowed that gap ihaplace’s theory. Starting from the principle of
virtual displacements for an equilibrium stat@aussconverted that principle into the

(*) Hawkesbee Trans. Roy. Soc. Londd6, 27 (1709-1713).

(® Clairaut, Traité sur la figure de la tergeParis, 1743, Chap. X.

(°®®)  Laplace, Théorie de I'action capillaire

(°*3  More preciselyl.aplace proceeded as follows: He imagined that an infinitelyrava channel was
laid in the fluid whose beginning and end joined the surfageepdicularly, calculated the pressure on a
cross-section of the channel that would come about frame$ of cohesion, and finally applied the
“principle of equilibrium in the channel.”

() Laplace, Suppl. & théorie de I'act. capill.

(*® Gauss Principia generalia Géttingen, 1830. — Self-published treatise: Gétt. gelz. AtB29
(Werke5, pp. 287).
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requirement of a minimum of the potential energy ameh ttonsidered the total potential
energy of the cohesion forces that came into pHyat energy took the form of a double
space integral. For every space integration, a limgagration could be carried out,
whereby one term that was proportional to the volland a second one that was
proportional to the area of the surface would appegraiticular, and of the remaining
double surface integraaussknew that undekaplace’'s assumption on the decrease in
the force of cohesion, it would be necessary to wegleinsofar as the radii of curvature
of the surface are infinitely large compared to theadist at which the forces of
cohesion become considerable, so the surface would frdaesalmost planar. Using the
methods of the calculus of variations (which were @kt out in nos3 and4 above),
Gauss then inferred the differential equation of the freefae from the extremal
character of the potential energy, but then he alsor@dehe proof of.aplace’'s law of a
constant boundary angle.

14. Potential energy of cohesion in a medium- The transformation of energy of
cohesion forces®) that Gauss performed can presently be represented as a double
application ofGreen’s theorem.

We next consider the cohesion energy inside of desingmogeneous mediuf
Call its thicknesg. A force of attraction equal to” dv dv ¢ (r) acts between any two
volume elementdy, dv’ of A at the locationg, y, zandx’, y’, z/, resp., at a distance of
apart, wherep (r) shall drop to zero rapidly with increasingn a manner that will be
established more precisely later. If one introduces:

[edr=y®),  [rig@)dr=x(0)

then the total potential energy of those forces oésam inA can be written:

1 1 1

9= EY
ox ox ox
22 -1 (lgr)ydvav=-1p*||| 2L +A L2 T gy,

in whichdv, on the one hand, amly’, on the other, run through all volumesAinand the
factor1 is assumed because in that way, every pair ofezlesdv, dv’will be considered

twice. If we next focus on the integration oaer for a fixeddv then we can convert the
second expression in (22) usi@een's theorem, in which we employ tHeaplace
differential equation for 1/ but as a result of the discontinuity of &t the location odlv,
one must remove a small ball arowhdfrom the integration space fdw’, whose radius
can ultimately allowed to converge to zero. If denote a surface element Ay df”

(*® Simplified presentations of that transformation wgiheen byBertrand, Jour. de math. (1)3
(1848), pp. 185Weinstein, Ann. Phys. ChenR7 (1886), pp. 544. £. Boltzmann, Ann. Phys. Chenl41
(1870), pp. 582 replaced the integrations with summationrsnogkecules.
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(and also bydf, later on) and the external normal thererdy(and n), then (22) will
transform into:
3 1

-2 x (0) jdv—%pzj d\/j)(( r)a—r:, df'.

In the first term of this,j dv =V, is the total volume ofA. We invert the order of
integrations in the second term, introduce:

[xtrydr=9().

and observe that depends upon only the differences- X, y — Y, z — Z, and that we

further have:
0 (arjz o) (&jz _
— | =] =] +|=—| [=0.
on' |\ ox oy 0z

We can then write that second term as:

0900 a1 a51) % ol a5y ¥ ot
1 zJ‘df'J‘ on' _r ., on _r . on _r
1p

ox 0X oy oy 0z 0z

dv

and make it possible to apply the formula for pridaotegration (viz.Green's theorem)
in the integration ovedv a second time. Now, the discontinuity im iés at a location
df” on the surface, this time, and for that reasosmall ball must be removed from the
integration space fadyv, but only from part that lies in the region Af, i.e., afterwards,
the ball will become essentially a half-ball witleadeasing radius, except for the
locations where a cut is present in the surfacA.otn that way, the last expression, in

which j %df represents the projection of that expression dmatangent plane alf’

over the half-ball, will be transformed into:

2 v 12 L Oror .
$mp*9(0)[ df' =4 p*[ et A QLU

in which jdf’ = F defines the area of the surfacefofIf we write:

(23) K = 2% x (0), H = 9(0)
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then the following expression for the energy of théesion forces inside oA will
ultimately result:
1 0r or
- IHF -1 2 ([ =22 '
(24) E=-KV+1iHF-ip jeran an,ﬁ(r)df df’ .

In order for the integrals to make senseddr), x (r), ¢ (r), we assume thaty (r),
as well asr*x(r), r°x(r), converge sufficiently strongly to zero with incseay r.
Furthermore, we assume that(r), ¢ (r), x (r), ¢ (r) drop out for microscopically-
measurable, and it is only with stronger approximationsrcdt zero thajy (r) andZ (r)
will become finite quantities, and we then strive toedmine upper limits ory (0) and
HK0). In order to do that, it would be necessary andicserit that r¥%y(r) should
converge to zero in the limit agyoes to zero. If we refers to a quantgyor which we

can first neglect? (ro) in comparison ta¥ (0) as theadius of activityfor the forces of
cohesion then we will see from the fact that:

9(0)- 9(r0) = [ x()dr <x O)1o

that 7 (0) / x (0) will be an extremely small length that will hatve same order as, at
best.
In order to estimate the double surface integral in (@é)introduce the solid angle
that the elemerdf’ subtends at the location df by way of%%: do” That integral
r< on
will then be written:

(25) ~1p? j df j %ﬁ(r)do’.

Now, the factor? (r) has a noticeable magnitude for smak rp), and on the other hand,
or / on is approximately equal to/ R for suchr <rg, in which one understand® to
mean the radius of curvature of the normal sectidhealbcatiordf that goes througtif’.

If the radii of curvature of the surface Afare then considered to be extremely large
compared ta then neglecting the integral will seem necessary, hehich will then
reduce the expression (24) to:

(26) E=-KV+1HF.

An exceptional case will come about when the surfdc& exhibits a subse® of
finite size to which another subsét of it is continually proceeding at an extremely-
small distance from it, such as, e.g., when the flaites a solid body along with it in an
extremely-thin layer. The radii of curvature ala&gand&' might not drop below a limit
that is extremely-large comparedrtp, either. If one takes an elemafitin the integral
(25) inside ofS, together with all o&', and drops an altitude frodf to &' whose length
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is s then within the same limits of error that were vaiglto now,&' can be considered
to be a plane of unbounded extent that is perpendiculdratoaltitude, and when one

. or _s .
mtroducesy =— = cosy, that plane can be constructed from concentric ringgnal
n r

the altitude that subtend solid angles af €@n y dy at df. Due to the approximate
parallelism betweedf and&’, the factordr / on in (25) can then be replaced wah /

on’, which will give:

2 o _2
- 1p%df [ 27siny cog/9 ¢ Py =- npzdfj%ﬁ(r)dr
0 S
for the relevant part of (25). Now, when one introduces:

ﬁr(;:) dr = 79(r) +r2:.f)((2r) dr ,

a(r)=2r?
(") j r

in which it is clear tha#@ (0) = & (0), and one observes that the combina@igrs’, as

well as&’, G, appears in the double integral (25), ultimately, the sopgheary term:

(27) - p? j 9(s) df,

which is extended over an entire sigleof the layer, will be added to the expression (25)
for the energy, due to the fluid layer betweeand&'.
For the law of attraction with the following expsion for the potential9):

—CrI

(28) ~ () =- ker ,

in whichk andc are positive constants, one will get:

cr

& (r) :ker_2 1 +cr),
x ([ :Lze‘“(l +Cr), J(r) :Z—Ee‘”(l +1cr), a(r) :Z—Ee‘”,
c c c
—L = :2_k = —2)((0) = £
x (0) == J(0) =8(0) =3 c 30) o

(" Vvan der Waals, Zeit. phys. Cheml3 (1894), pp. 657.
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We now compute theirial of the cohesion forcegAs is known, we understand the
“virial” of a force to mean one-half the work done bg force when we displace its point
of application from the coordinate origin.) The suntlegf virials for the two forces that
two volume elementdyv, dv’ mutually exert on each otherdé ¢ (r) r dv dv. The total
virial over the fluid itself will then be:

%pzﬂr P(r)dvadv ,

and it would emerge from the expression (22) fereéhergy when one replaces th¢r)
in it with —3r ¢ (r). In that way, the function:

—1[rlp()dr == 32w (r) =3 r @@ )dr == 1r*p() -3 x()

would have to enter in place gfr), and furthermore, the function:

1
2

e X

rPy(r)dr —%TX(V )dr =-3r x(r) —23(r)

would have to enter in place &f(r), and therefore the roles of the constan(®), & (0)
would have to be taken over by x (0), — 25 (0), resp. Corresponding to formula (26),

it will then result that the expression for thatdorvirial is:

(29) 3KV-HF.

15. Potential energy of adhesion between two media. If one mediumA is
bounded by a second mediBrthen forces of attraction might acts between dmtigles
of A andB whose character in regard to their decrease vistiarite would be analogous
to that of the forces of cohesion insidefgfand which one would probably also refer to
as forces of adhesiorhere in the case of different substances. Thetitums that
correspond to the functiong(r), ¢ (r), x (r), & (r), @ (r) above for the new law of
attraction might be denoted in the same way by regipg lower indiceAB, while the
previous functions might have contained the index The total energy of adhesion
betweerB andA is calculated analogously from formula (22) to be:

(30) = Pa pB'[dV"[l//AB( r) dv,

in whichdv runs through the volume elementsfofwhile dv’runs through those &. A
factor of 2 has not been included now, since the spacasdB are completely separate

now. The expression here once more admits the dovoesponding conversions by
means ofsreen’s theorem. However, in the first conversion, inieh one might operate
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with fixed dv, no particular spatial integral will emerge, becamssv 1f has no
discontinuities in the integration spaBg so a discontinuity in t/will come under
consideration in the integration spakdor fixed surface elementf’in B only for those
elementdf’that belong to exactly the separation surface betwesmdB, and therefore
for the small half-ball that is removed from the ine@gm spaceA arounddf’, the

integral Ig—rdf will have the opposite value to the one above, duthéonormaln’
n

pointing in a different direction. As a result of theituation, after neglecting the
potential energy of adhesionBftto A, as above, one will finally arrive at the expression:

(31) — 7708 P8 SnB (0) Fas = —Hag FaB,

in which Fag denotes the area of the separation surfaéeawidB.

If we now take the typical case of three medi®, C that come together and denote
their volumes by and their constants B¢ andH with the corresponding single indices,
while the areas of their separation surfaces anmbitstantH have the corresponding two
indices, and further boundary surfaces with other medifi sbt come into question as
variable here, then we will have the following expressior the variable part of the
potential energy of the forces of attraction thatiathem:

(32) (:H,+iHy—H,g)F e+ (3H »+3H —H JF ,+(3H gt3H ~H G)F 4
—KaVa—Kg Vs —Kc Ve.

As long as the volume does not change, we will tllenecback to the Ansatz in no.
2, whereby the surface tension between two media seebgsgiven by:

(33) TAB:%HA+%HB_HAB'
In the case where one can get= 0, it will follow that one simply has:
Tag = % HA .

If C represents a solid body and if one cangset 0 then it will follow from eq. (8)
that the boundary anglen of A with the body is:

(34) COSth = M.
Ha

In the event thaC is a vertical cylinder, the angbe, can be acute or obtuse according to
whether a rise or a depression, resp.Aadn C relative to the level plane exists, so
according to whethertac > Ha Oor <Ha, resp. [i.e., one might say, when the meniscus
experiences an attraction to the body that is naréess than twice as strong as its
attraction to the fluidff).
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The relation (34) will be impossible to satisfy whidpc > Ha . However, if we
assume that the fluid is drawn along in an extremely-thin layer in some @axf the
wall of C, and we now understarféhg , Fac to mean only the areas of the separation
surface in question if we ignore that layer, then ifreeall (27) and the relatiofi (0) =

8(0), aterm:
_ '[|:HAC (1_ eAc(S)j_ H A(l_ 0,(9 j} df
5 G, (0) 6,(0)

will be added to the expression (32) for the tamérgy, which is extended over the
surfaceS, in which s denotes the thickness of the layer at the elemieat G. For a
suitable force law — e.g., the one in (28) — thesgulity of reducing the potential energy
by means of the layer would then exist. Hencehsutayer (viz., wetting of the wall)
must actually come about, and in that way, a boynaiagle of zero will then arise on the
boundary of the perceptible separation surfabe (

16. Introduction of cohesion into the relation between densitand pressure.—
From hydrodynamical principles, the appearancéetérm KV in the energy of a fluid
A is equivalent to the assumption that a furtherstamt pressur& exists in the interior

of A, in addition to the so-called hydrostatic pressufeone writesK = ap; thena will

depend upon only the force lagv(r), but not upon the densijg . If one represents the
saturated vapor of the fluid by B then the energy in a subget of the substance

[assuming a homogeneous, continuous distributiomass up to the boundary, along
with the independence of the law of cohesion onpwrature (for a more general
presentation, see the article V 10 Kgmerlingh Onnes), and assuming that, say/V

. . . : M :
does not come under consideration in comparisdirgp will be —-K—=—-a poa M in
Pa

the fluid phase and KpéM: —a s M in the vapor phase, and for that reaaq, —
B

poe) is referred to athe internal latent specific heat of vaporizati@ee V 10 for this, as
well) (". (The additive constant in the energy was fixediich a way that the value zero
would arise as an upper limit for the energy whaa tesolves the medium into nothing
but volume elements that are infinitely-distaninfreach other.)

For the phenomena that take place for constantnwes, the quantit does not
apply at all, while the first term KV in the energy will greatly exceed the other one

+HF. For that reason, one can expect to get infoonabout the magnitude &fonly
in processes that are connected with changes imehsity, and that is whyan der
Waals (") first had the idea of theoretically investigatifg introduction of that quantity
into the relationship between pressure and demdityonstant temperatureVan der

(") Gauss Principia generalig art. 32.
() Dupré, Théorie mécanique de la chaledB69, pp. 152.

("®) Van der Waals Die continuitat des gasf. u. fliiss. Zustandesipzig, 1881.
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Waals based the derivation of the relation on the virigoilem ofClausius (*Y). The
law comes about from the following intuitions: Mattemiot distributed continuously, but
consists of molecules. In addition taplace's forces of cohesion, they are subject to
further repulsive forces (mutual repulsions), and in thag, wleey are not realized by
visible motions, and indeed, such that when one compagéssthtes of motion at any
two momentd andt + 7, one can say approximately that only the relative jpositand
motions of the particles have changed. In any eventnwhe takes the mean value of
the kinetic energy of the progressive motion of théecwe over the time interval from
tot + 7, the difference quotient:

1[1dY m(2+ ¥+ 2"
7|4 dt

t

can already be neglected in comparison to that melae f@r a relatively smalr. The
sum in this extends over all molecules, andneans the mass, whilke y, z are the
coordinates of the center of mass of a molecule. N\\rme makes the approximations
that were just given, a partial integration will trimmen that mean value of the energy
directly into the mean virial of the forces that agton the molecules over the time
interval fromt tot + z. Now, from the principles of the theory of gasest thaan energy

of the progressive motion @MR PVT, whereR represents the universal gas constisint,

is the molecular weightp V is the total mass, ant is the absolute temperature of the
fluid. The virial of the forces of cohesion is cakteld under the assumption that the
radius of activity is much large than the size of theletules, as it would be for
continuous, homogeneously-distributed masses, and therdfom (29), it can be set
equal to2ap®V . The mean virial of the constant forgéhat acts on the surface is found

by decomposing the volume into elementary pyramids whieh zero-point as their
vertices and the surface elements as the base suréakss immediately found to be
equal to2pV. The mean virial of the repulsive forces is calculdtgthe methods of the

theory of gases, can be written as a fractiet})% of the mean energy of the progressive
—bp

motion, in whichb is approximately constant and is connected withrtiolecules in a

space that possesses a mass unit. (For the depgnuolfethe quantityb on volume and

temperature, again see the articlekammerlingh OnnesV 10.) What finally results

then is thevan der Waalsstate equation in the form:

(35) prag="1 P

From the observed data, one can use this relai@@omputeK = 10,500 Atm. for
water at 6 and 1 Atm. pressure amd= 1430 Atm. for ether, while the quotiekt/ K,

(") Cf., alsoMaxwell, Sc. Paper®, pp. 407, 4184. A. Lorentz, Boltzmann-Festschriftt 904, pp. 721
[reprinted in Abh. Uber theor. Phyls(1906)]
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which serves as a measure of the radius of activitieforces of cohesion, amounts to
15x 107 cm for water and 28 10° cm for ether.

17. Theories on the avoidance of discontinuities in density.Laplace's theory of
capillarity was based upon the assumption of homogendaids throughout. Poisson
(") proceeded from the idea that a rapid change in densitst take place at the
boundary surface of a fluid, and took that fact into acteuth the intention of easing
the complications that lay in the assumption of presdis@ntinuities at the separation
surface. InPoissors theory, one does not modify the equations for thellaap
phenomena, but only the meaning of the two constargsdH for the law of cohesion
forces.

Maxwell ("%, Lord Rayleigh ("), van der Waals (®) pursued the further
consequences of the assumption of a continuous variatiolensity at the separation
surface. As the simplest case, one treats the equifitof a fluid A in contact with its
saturated vapdB. Gravity shall be ignored. The entire space ofifund vapor will be
divided by surfaces on which the density is constant g#aeh Transverse to them, the
value of the density varies rapidly inside of an extely-thin layer and very soon comes
close to well-defined limiting values (o5, resp.) on one side of it and the other.

For the complete implementation of the Ansatz thamplied by hydrodynamical (or
thermodynamic) principles, one particular force lasv tohesion has proved to be
especially suitable’}), which shall likewise be used here, namely, the baewas stated
in (28), which represents the potential function for twa m@sses at a distancerdsy:

andk, as well ag, are positive constants. The potential that is dubdedotal mass of
the substance#\(andB) on a unit mass at a locatispy, zis then:

cr

&
r

lJJ(x,y,z):—kjp’ dv,

in which the integral extends over all volume elementsn the substance, amalenotes
the distance from the reference poiny, zto the elementlv’. Now, that function¥ (x,
Yy, 2) satisfies the differential equation:

(") Poisson Nouvelle théorie de I'action capillaire- Critiques ofPoissoris theory were given by
Minding, Dove’s Repert. d. Phys. Bd. &; Stahl, Ann. Phys. Cheni39 (1870), pp. 239B. Weinstein
Ann. Phys. Chen27 (1886), pp. 544.

("®  Maxwell, “Capillary action” Sc. Paperspp. 541).

(")  Lord Rayleigh, Phil. Mag.33 (1892), pp. 209%c. Papers, pp. 513).

("® Van der Waals Zeit. phys. Chem13 (1894), pp. 657H. Hulshof, Ann. Phys. Chem. (4
(1901), pp. 165.

(") Van der Waals loc. cit, pp. 706.
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LW W 0%
x> oy 07

(36) AY =c®W + 4k p

everywhere in the space of the substance, and on sigedfahat relation, the force field
that is present can be described as an initially-gstate of tension in the substance,
instead of stemming from forces at a distance, in thefng way ¢%: One sets:

2 2 2
(a_q)j + 6_l-|-’ +(a_q)j = CDZ,
0x oy 0z

ﬁ(czwz—qu):zl! ﬁ(CZLPZ_I_q)Z):zZ.

The substance appears to be threaded with directed dlirfesce” that are perpendicular
to the surface$! = const. and lead from larger to smaller value$lof A tensionZ;
prevails at each location in the direction of the fdice that goes through it, as well as
the opposite direction, and in all directions that psgpendicular to it, there is a
tensionz, such that for every closed part | of the substanice, domponents and
rotational moments of the cohesions that are exerted fhe remaining part Il on | are
calculated in precisely the same way as the distributidhose tensions on the surface of
l.

At a very slight distance from the transition lgy¢ is already almost constarm®, is
almost zero, and; = 2, , so the phenomena of surface tension can be explaintdg by
previous cohesioK in the transition layer as something that results ftbendifference
>1-2,.

From hydrodynamical principles, in order for there & dguilibrium in the fluid-
vapor system at equal temperature, it is necessarththabmplete differential:

(37) dw=-20

Yo,

where thell in this is a function that depends upon only density amghéeature at the
location that is referred to as ttieermal pressuré®). If we write 27k / ¢ = a then from
(36), at a distance from the transition layer whereflind appears homogeneous, one
will have W = - 2a pa , and where the vapor seems homogeneous, one willhave 2a
ps. We setl1 =p +a p? in general, and capl the hydrostatic pressurep will then
approach the same constanbn both sides of the layer, namely, the externasunes or
saturation vapor pressure. When one recalls (37), equd6pnvill be written:

(%  G. Bakker, Zeit. phys. Chem48 (1904), pp. 17.
() Van der Waals used that terminologyl. A. Lorentz referred to the same concept as “kinetic
pressure” in Zeit. phys. Chem.
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p.p
(38) Aw:—czj@.
0

Po:Pa

From now on, it will be assumed that the dependengyafp and temperature can
be represented in the transition layer by the seaneder Waalsformula (35) as it is in
the homogeneous phases, which admittedly finds its suppamtis the power to believe
in that formula more than in its derivation. The @uferp as a function of the increasing
argument 1o (see the article bitammerlingh Onnes V 10) that is given in that way
varies between the two poirs, 1/oa andpo, 1l/os within the interval from 1gx to 1/os
by falling, rising, and falling again, initially below th@e p = po , then up to a certain
point of intersection with it, then above it, andrajats first segment that lies belqw=
Po, it must obviously exhibit a well-defined poipt, 1/0; for which the integral over that
curve segment is:

P1.oy

_ A
poJPA p

(Fig. 22). From (38), one will then haX¥ = 0 at that location on the curve.

p

A

po EEENIIIY \

i
|
|

/o, 1/p
Figure 22.

The combinationg, 1/pthat correspond to the wavy lines. ¢ p > ps) are unstable
for homogeneous phases, afath der Waalsfound that they were stable in the transition
layer. If (37) were integrated along a path that gaes the homogeneous interior of the
fluid to the homogeneous interior of the vapor thenwaaild give:

Po. P8

dp _
|

Po:Pa

over those wavy lines, which is precisely the formuiat tClausius and Maxwell
presented for the determination of the presguref the saturated vapor by means of
isotherms by applying the second law of thermodynamicsstable states.
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Now, the surfaces of constant density might be assuma family of parallel planes
z = const., in particular. The differential equation (&6uld then be written:

2
d :c2w+4nkp:c2w—4nkd—n,
dz’ dw
and integration would yield:
2
(O(Ij_wj =W -8k (p +a —po).
z

2
Forp=p,p=p1, O(Ij: will increase through zero and thggqi = ® (2) will achieve its
z

greatest valu&; = |/ 877k(p, — p); one will havez = 0 there. In place of the previous
surface tension, one will now have:

1H = — :i 2
iH=[(,-2,)dz e [[®(2)1° dz

when taken along theaxis from the homogeneous fluid to the homogen&apsr.
The curve ford (2) as a function of very soon becomes asymptotic to #exis on
both sides ofz = 0. If the piece of it that lies above tleaxis were replaced

2
approximately by a parabofg; — @ = CD{EJ that contacts it at the vertex and the
z,

piecesz < - 7y andz < z of the z-axis that are placed to the left and right of érev
replaced approximately by an equal area over-thas then it would follow that:

e
in which, at the same timez2= 1—2 :H

is regarded as roughly the density of the

Po
transition layer inside of which the inhomogenebebkavior would take place.

In a recent paperBakker (*3) sought to give a theory that would explain the
observations oReinhold and Riicker (3%), who found that soap films at their thinnest
locations, which are characterized by the discowtirs appearance of black flecks, have
a thickness around 10cm, and immediately next to them they suddenlypum a
density around % 10° cm.

()  G. Bakker, Zeit. phys. Chenb1 (1905), pp. 344.
(%  Proc. Roy. Soc26 (1878), pp. 334; Phil. Tran72 (1882), pp. 447; Phil. Tran$74 (1884), pp.
645; Ann. Phys. Ched4 (1891), pp. 778.
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Bakker computed the constakffor that:

For water: k= 7.53x 1073 for T=2325,
For ether: k= 1.54x 107 for T=125.

18. Entropy and mass density of a dividing surface- When two fluidsA andB
that bound each other are found to be in equilibriurthh Hzermally and chemically, and
they also seem to be homogeneous at a very slight distaoma the separation surface,
nonetheless, each of them will be altered by the inflaeof the other one in the
immediate neighborhood of the boundaribbs (3%) has developed an Ansatz for
including that influence in the calculations without makimy &ypothesis in regard to
the molecular forces of attraction. The inhomogenérarsition layer betweefh andB
has a very narrow thickness, from experiments. Onesd®any point on that layer and
lays a surface through it and all points in the layet libacorrespondingly in regard to
the immediately bounding matter; that surface is cdhedlividing surface The choice
of that surface is arbitrary to some extent. One @&ssume that one can select it
arbitrarily from a family of very-close-lying parallaligaces that fill up the entire layer.
The matter couplings that come under consideratioA, iB, and the transition layer
might be constructed from the material®, ..., which are considered to belependent
components. For the total structure that consisés Bf and the transition layer, let be
the total internal energy, I1&be the total entropy, and Iet,, My, ... be the total masses
ofa, b, ... We letV’, V”denote the volumes & andB, measured up to the dividing
surface, and et denote the area of the dividing surface. Furthermare,le’, 0., o,

... be the spatial densities of energy, entropy, ... of timepoments, b, ..., resp., of the
spaceA, whereA appears homogeneous, anduéts”, p., o , ... be the corresponding

densities forB, whereB appears homogeneous. Finally, we write the quotientbeof
differences:

U-VvV'u-Vv'u, S-V's’-V"s”, Ma—-V'p,-V'p., ...

by the area$ byu, s, ., a, ...; those quotients are called th&face densities of the
energy, entropy, and mass compondntshe dividing surface betweenandB.

It will be assumed that’is a function of the argumerg$ o., o, , ..., just al” is a
function of the argumenss, o., o, , ..., and one will further introduce the assumption

thatu is also only a function of the argumesfsaw, , @ , ... (Cf., on this, the general
conception of spatial energy density that was touchmzh in the beginning of n&.)
Consequently, one will succeed in characterizing theliequm state by means of the
thermodynamic principle thad is a minimum for constant values 8§fM,, My, ... To
the extent that one is dealing with homogeneous massgsinsatz was also spoken of
in the article byBryan, V 3, no.26. Only the special consequences of it that flow out of
the new assumption in the transition layer shaiesued here.

If one develops the complete differential:

(%  Gibbs, Equilibrium of heterogeneous substanges 380.
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(39) du=Tds+ i dad + tp dap + ...

thenT will be the temperature, and, 14, ... are called thpotentialsfor the component
of the transition layer. In order for there to beiblguum, it would be necessary that the
temperature in the bounding homogeneous masses should $enbe and furthermore
that the potential should be the same for each cormparidhe layer that is found in a
bounding homogeneous mass. If a component is found in belialyer then, by
contrast, its surface density in the layer would haugetepecified from the outset.

It follows from (39) that:

d(Fu=TdF9 +odF+ L d(F @) +d(Fw) + ...,
in which one sets:
(40) O=U—-T S~ [l — [y G — ...

From now onowill be referred to as theurface tensioin the dividing surface, and that
will imply that:

(41) do=—-sdT-aw dua —ab disp — ...

A relation that gives! as a function o$, aw , a», ... orsas a function o§, @, w, ...
will be referred to as fundamental equatiofor the dividing surface.
Analogously, one will have:

d(V'u)=Td(V'u)—pdV+u,d(V'p,)+ i, dV )+ ...
(42)
P EU=TS— L 0= P~ -

in the homogeneous ma&gand indeed with the same valueSafndys , b, ... as long
as the component in question actually exist&)nwith corresponding relations in the
homogeneous ma&s In that wayp’andp”then mean the hydrostatic pressurd i(B,
resp.). As was shown in (10), it will follow that:

1 1
43 N = [ N
) PP U[Rf%j

for the form of the dividing surface. The densities, a , ap, ... generally still depend
upon the choice of the dividing surface in the layer; hamein the case of a planar
dividing surface, the value will be independent of that choice, which is easy ® @
the basis of (43).

If the independent componerasb, ... are fixed in such a way that one cannot have
P, <0, and if onlyo, is changed in the homogeneous phasenhile keepingT, p’, o,

... constant, then the behavior of ideal gases and dilltésts will suggest that when
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du,

from stability considerations) limiting value, so for yemall values ofp,, the potential
Ua can be represented essentially by an expresKiglog 0., in which K, means a
positive function off, p’, g, ... ¢°. The total quantity od will then be:

p. decreases to zer@, will approach a well-defined positive (which is necessary

Ma=V'0 +V'p. + Fa, .

Now, if neitherMa nor p., p. can be negative then for small values of the spatial
densities o, p., the surface densityy can have arbitrarily large positive values, but

only small negative values. Moreover, on the baswltdt was just done, the relation
(41) will show that a slight addition of matter canrywestrongly reduce the surface
tension that exists between two media, but it canrwease it appreciably. As a rule,
surfaces that were quite freshly made cannot see aelhatigeir surface tension, insofar
as it takes time to establish the static surface defiSity

If one places small pieces of camphor on a purervgatdace then the camphor will
dissolve in the water at the contact locations, amdstirface tension will be lowered
there. The camphor particles go into a lively stdtenotion in such a way that this
change in surface tension will take place at diffepgaces in different degree€¥)( Lord
Rayleigh (*®) found that the motion of the camphor will come toemd when the water
surface is contaminated by an oil layer of any sorh&dxtent that the tension drops
down to just the value that it would achieve for watet thasaturated with camphor,
namely, 53 erg/cfni.e., 72% of the value 74 for pure water. That “camphoint”
brings about a layer of roughly<210" cm in thickness for olive oil. LorRayleigh (%)
has measured the influence of even more minor impuiitieke water on the surface
tension and found that the drop in tension will firstibég be more discontinuous for an
oil layer of, say, 1x10 cm, and will again become more sluggish when the campho
point is exceeded.

The Ansatz (39) gavésibbs, in particular, an opportunity to carry out many
investigations into the behavior of fluid films.

Gibbs also applied the same principles to the separationcastaetween a fluid and
a fixed amorphous or crystaline body. For crystallimesy the tensioro in the
bounding surface would be a function of the locatiothefsurface in the crystal, and the
form of very small crystals that are in equilibriuntiwthe surrounding solution would be
determined essentially by the condition that the 3um F of the surface energies over
all surfaces must be a minimum relative to the voluma¢ is present.

(%  Gibbs. loc. cit, pp. 194.

(%)  A. Dupré, Théorie mécanique de la chale®aris, 1869, pp. 377; LoRiayleigh, Proc. Roy. Soc.
47 (1890), pp. 2813c. Papers, pp. 341).

¢ Vvan der Mensbrugghe Mém. couronnés de I'acad. de Be3¢.(1869).

(¥  Lord Rayleigh, Phil. Mag.30 (1890) Sc. Papers, pp. 383).

(% Lord Rayleigh, Proc. Roy. Soct7 (1890), pp. 3643c. Papers$, pp. 347)A. Pockels Nature43
(1891), pp. 437ibid., 48 (1893), pp. 153.
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When one considers gravity, as a result of the Anddty the previous condition for
the form of the separation surface will be modifiet ithe equations:

W—W=0-£+i-+gww803 —=04q
R R ’ dz

. : . : 1 1.
in whichn is the normal that points & E+— Is the mean curvature towarBisand w

= w + w + ... means the total mass density at the variaddations on the dividing
surface.

The thermal relationships to which the Ansatz (@auld lead were already deduced
by W. Thomson (°® by considering certain cyclic processes. In prite give an
example, suppose that a planar fluid lamin#s found in a saturated vapBr Let the
dividing surface be laid on each side of the laminsuch a way that the surface density
of the single componemtthat is present will be zero, so it will then &l from (41) that
do=-sdT If the lamina are pulled apart, and one camigisthe process isothermally
and without condensation, then the total heat itiadt be supplied in order to maintain
the unity of the resulting surface will be:

Q=Ts=-T142 - _do_
dT dlogT

By contrast, if one carries out the process adiedifjt and at constant external presspire
then a fixed evaporation temperatdrevill belong top as the saturated vapor pressure,
and in order to obtain that properly, in order taimtain the unity of the resulting surface,
an amount, of vapor must condense whose magnitude will berglyy the condition for
the zero of supplied heat:

sS—-0(s"-95)=0.

That would correspond to an increase in volum&ofo, in the fluid and a decrease in
volume of 9,/ p; in the vapor, and while maintaining the externadsgure, one must
then do an amount of work:

w= ps{ = (—ﬁ——lﬂ
s'-s\ @, P,

in order to maintain the unity of the resultingfage. The expression in square brackets
here follows from the dependency between temperatumd pressure of the saturated
vapor as the differential quotied® / dp [cf., the article byBryan, V 3 eq. (138)], and
that will imply that:

(*® W. Thomson Proc. Roy. Soc9(1858), pp. 255 or Phil. Mag. (4)7 (1859), pp. 61yvan der
Mensbrugghe Bull. de I'acad. de Bruxelle€sl (1876), pp. 769ibid., 52 (1876), pp. 21P. Duhem Ann.
de I'éc. norm. sup. (3 (1885), pp. 207.



Minkowski — Capillarity. 51

_dodT __ do
dT dp dlogp

Ostwald called the product ofr with the 2/3 power of the molecular volurivg of
the fluid (i.e., the volume oM grams, whermM denotes the molecular weight) the

molecular surface energgf the fluid. The differential quotientd(M?°c)/dT (one

could call it themolecular surface entropyies close to the value 2.1 erg /cgnad for a
large number of fluids®)). That remarkable law, which was established exptally
by E6tvos (%) andRamsayandShields (*°) (see the article bikammerlingh Onnes for
this) offers a method for ascertaining the molecwaight of fluids on the basis of
capillary constants.

Finally, those capillarity phenomena whose thecay be based upon tl&ibbs
Ansatz (41) include the dependency of surface aensf a molten metal electrode in an
electrolyte on the electromotive force of its pidation ¢4).

(Completed in the Fall of 1906)

()  For water, which belongs to the exceptions herentbkecular entropy lies between 0.9 and 1.2.
Hence, for a water layer, the aforementioned ldteat of expansion will be almost equal to one-hathef

work that must be don&(= %a) in order to create against surface tension.
(*») Eétvos Ann. phys. Chen27 (1886), pp. 452.
(*® RamsayandShields Zeit. phys. Chemil2 (1893), pp. 433.

(") For the theories in this experimentally richly-explorelupter in electro-capillarity, cf.F.
Kriger, Gott. Nach. (1904), pp. 33; Jahrbuch d. Radioaktivitatilekitronik2 (1904).



