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 Abstract. – Starting from force equilibrium, the author exhibits the basic equations of the theory of stability in 

arbitrary curvilinear coordinates with the use of the absolute differential calculus.  The advantages of that derivation 

are that no assumptions need to be made initially about the laws of deformation and that the quantities, which also 

acquire tensor properties under finite displacements, emerge clearly as tensors. The integration of the basic equations 

of the anisotropic continuum for stationary preloading will be performed with a vectorial stress function that satisfies 

a sixth-order differential equation. In the case of isotropy, the process arrives at second-order differential equations. 

 

 

1. – Introduction. 

 

 In the presentations of stability theory up to now [1-8] (2), Cartesian coordinates were 

employed for exhibiting the basic equations. In the present article, that theory will be derived by 

applying the absolute differential calculus in arbitrary curvilinear coordinates. The representation 

offers the advantage that those quantities, which also acquire tensor properties for finite 

displacements, will emerge clearly as tensors. Above all, an essential difference from the previous 

representations consists of the fact that the equilibrium conditions will be derived from force 

equilibrium, not from the energy principle, i.e., with no assumptions on the law of deformation 

(the elastic potential, resp.). After eliminating the additional stress tensor that is required by elastic 

deformation with the help of the stress-extension equations, that will yield a new system of 

equations for the displacement vector in anisotropic continua that corresponds to a modification 

of the law of anisotropic elasticity in such a way that a new tensor will appeal in place of the 

original elasticity tensor that will depend upon the preloading. The general integral of the basic 

equations for stationary preloads will be performed with a vectorial stress function that satisfies a 

sixth-order differential equation. In the case of an isotropic continuum, it can be shown that the 

 
 (1) Talk given at the meeting of the Society of Mathematicians in Würzburg in 1943.  

 (2) The numbers in square brackets refer to the list of references that is given at the end of the article. During its 

printing, I was made aware of a paper by E. A. Denker [Deutsche Math. 5 (1940), 546-563], in which general 

coordinates were already employed. The problem was represented as a variational problem there by introducing an 

auxiliary parameter. However, the variation was not performed in general, such that the basic equations did not appear 

explicitly. The integration was not treated there, either. 



Neuber – The basic equations of elastic stability in general coordinates. 2 

 

same Ansatz that the author had successfully applied in the usual spatial theory of elasticity will 

lead to a simple path to solution. Only second-order differential equations will appear along it. 

 

 

2. – Notations and basic geometric relations. 

 

 The notations x = 1x , y = 2x , z = 3x , and in general kx , might characterize orthogonal 

Cartesian coordinates, and Roman indices will always refer to Cartesian coordinates. The 

quantities kx  are assumed to be differentiable functions of the new curvilinear coordinates 1x , 
2 ,x  3x , and in general x , and Greek indices will always refer to curvilinear coordinates. Each of 

the components of a quantity kA  = Ak that represents a vector in Cartesian coordinates is assigned 

the quantity: 

A = 
k

k

k

x
A

x




      (1) 

 

in the new coordinates, which can also be referred to as a vector or a first-rank tensor. That way 

of distinguishing the Cartesian starting coordinates from the general coordinate indeed deviates 

from the usual notation, but it has certain advantages under differentiation insofar as Cartesian 

vectors will be treated as invariants for the new coordinates. Moreover, the known notations (cf., 

e.g., Levi-Civita [9]). With the abbreviation: 

 
kx

x




 = kc ,      (2) 

 

the quantities B, which are correspondingly obtained from the quantities Bkl by the relation: 

 

B = 
,

k l

kl

k l

B c c  ,           (3) 

 

generally define a second-rank “tensor.” Corresponding statements are true for higher-rank 

tensors. The metric tensor, which is crucial for the determination of length, will be: 

 

g = k k

k

c c  ,           (4) 

 

with the Cartesian components gkl = k

l , in which: 

 

k

l  = 
1 when

0 when

k l

k l

=



     (5) 
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is the Kronecker symbol. If one further defines the adjoint of the determinant kc
 and divides by 

the determinant | |kc
 then that will yield the quantities: 

 

kc  = 
, , ,

1

2 | |

l m

klmk
l m

e e c c
c



 
 

  .    (6) 

 

For the auxiliary quantities eklm that appear in it, one has: 

 

eklm = 

1 when , , define a cyclic form

1 for odd permutations of the upper indices,

0 when at least two indices coincide.

k l m


−



  (7) 

 

Corresponding statements are true for the quantities e
. It follows for the determinant that: 

 

| |kc  = 1
6

, , , , ,

k l m

klm

k l m

e e c c c

  
  

 .    (8) 

 

From the theory of determinants, when one sums over an upper index and a lower one, the 

summation sign will be omitted, so: 

 
k

kc c

 = 

 , k

lc c

 = k

l , etc.    (9) 

If one further sets: 

| g | = 1
6
e e g g g 

   = g    (10) 

and 

g
 = 

1

2
e e g g

g

 

       (11) 

then it will follow that: 

g g

  = 

 ,  etc.,    (12) 

 

i.e., the g  will also define a tensor. Furthermore, one will have: 

 

| |kc  = g , | |kc  = 
1

g
 ,     (13) 

and the quantities 
kc , 

 , as well as: 

 

1
e

g

  = 
   and g e =  ,   (14) 
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will represent all tensors. (In so doing, one must generally agree that the new coordinate system 

must rotate in the same sense as the Cartesian one.) 

 According to eq. (3), the quantities B are covariant tensor components, while the associated 

quantities: 

B  = kl

k lB c c             (15) 

 

are contravariant components. It then follows that: 

 

B  = g g B 

 .           (16) 

 

Differentiating an invariant C will produce a vector: 

 

k

C

x




 = C, k = 

,kc C

 .           (17) 

 

Differentiating a vector Ak will produce a tensor: 

 

Ak, l = k

l

A

x




 = 

,l kc A

  = ( )l kc c A
x

 






 .    (18) 

 

The corresponding curvilinear components of that tensor are then: 

 

A,  = 
,

k l

k lc c A   = 
A

A
x


 


− 


.        (19) 

In that, one has set: 

k kc
c

x



 




 = − 

k

k

c
c

x

 






 = − 

      (20) 

 

(which correspond to the Christoffel symbols of the second type). 

 In general, it follows from the rules of covariant differentiation that the operations: 

 

B  = 
B

B B
x

  

   


−  − 


,    (21) 

B

  = 
B

B B
x


   

 


+  + 


,    (22) 

 

etc., always produce new tensors. Their contravariant components are: 

 

B | = 
,g B

  , |B 
 = 

,B g 

 , etc.   (23) 
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Furthermore, the Ricci relations follow from this: 

 

,

kc 
 = 

,kc


 = g,  = 

,g

  = |g   = g |  = 0 .     (24) 

 

 

3. – Stress tensor and equilibrium conditions. 

 

 If the normal stresses x, y, z are characterized by t11, t22, t33 and the shear stresses yz , zx , 

xy are characterized by t23, t31, t12 then tkl will generally represent the components of the stress 

tensor in Cartesian coordinates.  The associated covariant components in curvilinear systems are 

then: 

t = k l

klt c c  ,      (25) 

 

and the respective contravariant components are: 

 

t
 = kl

k lt c c   .     (26) 

 

The equilibrium conditions under a displacement in the x-direction: 

 

xyx xz
xP

x y z

  
+ + +

  
 = 0 , etc.,    (27) 

will go to the form: 

,

kl l

kt P+  = 0 .      (28) 

 

The lP  in that is the body force vector. Correspondingly, one has: 

 

,t P 

 +  = 0       (29) 

 

as the equilibrium conditions in the new coordinates, in which P  is determined from: 

 

P  = k

kP c .      (30) 

 

When eq. (29) is written out in detail, it takes the form: 

 

t
t t P

x


    

 


+  +  +


 = 0 .    (31) 

 

A further condition is the equilibrium of the forces under a rotation. In Cartesian coordinates, the 

known symmetry property 
klt  = 

lkt  of the stress tensor will follow from that, which will also be 
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true for t , as a result. In order to represent the physical stress components  , which are not 

identical to the quantities t , one must determine the stress vector that acts on a surface x  = 

const. If one imagines that surface as the fourth face of an elementary tetrahedron whose remaining 

faces are defined by surfaces kx  = const. then one will have the equilibrium condition for the 

resultant force in the lx -direction: 
lc

g



 

  = kl k

k

c
t

g





 ,    (32) 

 

The   in that represent the -components of the physical stress vector that acts upon the surface 

x  = const. /lc g   is the direction cosine of the -direction with respect to the lx -direction, 

while /kc g 
 represents the direction cosine of the normal to the surface x

= const. with 

respect to the 
kx -direction. Upon multiplying by 

lc  and summing over l, it will follow that: 

 

  = 
g

t
g




.     (33) 

 

The quantities   are not a tensor then. The normal stress will be: 

 

 = 
t

g




,      (34) 

 

while the total component of the shear stress that falls in the -direction will assume the quantities: 

 




 = 
g

t
g g

 






 .     (35) 

 

If the forces per unit area 
lf  are given on the surface of the body then then boundary conditions 

will read: 

1lt c
g



 
 = 

lf           (36) 

 

when the surface is represented by x
 = const. 

 

 

4. – Geometry of the deformed body. 

 

 After the deformation, the coordinates 
kx  will go to: 
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kx  = k kx V+ .      (37) 

 

The quantities kV  represent the Cartesian components of the elastic displacement vector. If all 

new quantities are characterized by a prime accordingly then the relations will follow: 

 
kc 

  = k kc V +  = 
,

k kc c V 

  + ,     (38) 

g
  = 

, , , ,g V V V V

       + + + ,    (39) 

g  = 
,(1g V

+  + higher-order order).   (40) 

 

All of the other quantities can be likewise reduced to the corresponding quantities of the initial 

system and the derivatives of the displacement vectors. In the context of the problem statement 

that will be stated below for the elastic continuum, the displacement vector V and its derivatives 

already represent second-order quantities, since the components of the preloading tensor T   are 

regarded as first-order quantities. Upon restricting oneself to second-order terms, that will make: 

 

g
  = 2g d + ,     (41) 

in which: 

d = 1
, ,2

( )V V   +      (42) 

 

is the deformation tensor. One further obtains: 

 
kc 

  = 
,

k

kc V c 

 − , g   = 2g d − ,    (43) 




  = 

,V 

  + .       (44) 

 

The second derivatives of the displacement vector can correspondingly be always reduced to the 

first derivatives of the deformation tensor by the relation: 

 

,V 


= 

, , |d d d  

    + − ,        (45) 

 

which emerges from eq. (42). If the covariant derivative in the deformed system is characterized 

by an * then it will follow that: 

 

c   = c,  , A 
 = 

, ,A V A

   − ,    (46) 

A


 = 

,A V A  

   + ,  etc.      (47) 
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5. – Equilibrium of deformed bodies. 

 

 If K  is the stress tensor of a deformed body, i.e.: 

 

K  = lm

l mK c c   ,      (48) 

 

and if P p +  is the vector of body forces after the deformation then it will follow from the 

foregoing that in addition to the symmetry property K  K  , the equilibrium conditions are: 

 

,K P p  

 + +  = 0     (49)  

or 

, , ,K V K V K P p      

   + + + +  = 0 ,           (50) 

 

resp. The equations thus-obtained define the foundation for the treatment of stability problems. If 

preloads T   were already present before the displacements V 
 occurred then the stress tensor 

K  would be combined with a tensor T   that is due to only the preloads (first-order quantities) 

and a tensor t  that is required by the deformation (second-order quantities): 

 

K = t T + .     (51) 

 

In that expression, T  , as well as t
, represents a symmetric tensor. In order to establish the 

connection between T   and the preload tensor T  , one must appeal to the physical process (3). 

The force that actually acts on a surface 1x  = const. in the k-direction is: 

 

  
1 2 3kT g c dx dx




   11 2 3(surface area )g g dx dx  

before the deformation, and: 
1 2 3kT g c dx dx




   

after the deformation. The projective operation, which is given by multiplication by kc , indeed 

means forming the exact k-component. In reality, however, in the immediate neighborhood of the 

 

 (3) The exact calculation of the tensor T


would require one to refer to the initial deformation that is coupled with 

the preloading by the law of deformation. Such a calculation would require an extension of the initial equations to 

third-order quantities, since the metric tensor in the initial state represents a first-order quantity, and each of the initial 

deformations already include second-order quantities. At the same time, an extension of the elasticity law to second-

order quantities would be required, for which corresponding statements can hardly be guaranteed by experimental 

findings. In order to get around that difficulty, a special relationship must be imposed upon the behavior of the 

preloading tensor under deformation for which I shall give two formulations below that are based upon the behavior 

that one would expect physically. 
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point in question, the material has performed an overall rotation (i.e., also as a rigid body), i.e., 

apart from the deformation, that is given by the skew-symmetric tensor: 

 = 1
2

(V,  − V, ) .          (52) 

 

The derivatives of that tensor can all be reduced to the derivatives of the deformation tensor, 

moreover. Namely, when one recalls eq. (45), it will follow that: 

 

   = d,  − d,  .          (53) 

 

If the force quantities that were characterized above are not regarded as directly equal to each 

other, but only after eliminating the rotation that is included in kc 
 , then kc 

  = ( )k kc c d 

    + +  

must be replaced with the tensor: 
k kc c 

   
 −  = k kc c d

  + ,           (54) 

 

which includes only a pure deformation. When one next introduces a tensor T


+

 in place of T  , 

that line of reasoning will lead to a relation of the form: 

 

or      
( ) ,

(1 ) ,

k k kT g c T g c c d

T T d T d

  

   

    

 

+

+ +

= + 

= + + 

   (55) 

resp. Solving that for T


+

 will yield: 

T 
+

= (1 )T d T d   

 − −            (56) 

in the context of the second-order theory. One sees that the tensor T


+

 is asymmetric, so it cannot 

be identified with T   directly. If one sets its purely-symmetric part equal to T   then that will 

give: 

T   = 1
2

(1 ) ( )T d T d T d     

  − − +  .       (57) 

Moreover, eq. (51) implies that: 

 

K  = 1
2

(1 ) ( )t T d T d T d      

  + − − + ,          (58) 

 

and the equilibrium conditions (50) go to: 

 
1

, , , ,2
( )t T T d T d d T P p         

      + + + − + +  = 0 .       (59) 

 

In that expression, use was made of the fact that t  is small of the same order as |V  
. If one 

further observes that the preloading tensor T   is in equilibrium with the original body force P , 

i.e.: 
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,T P 

 +  = 0      (60) 

 

is fulfilled then eq. (60) can be put into the form: 

 
1

, , , , ,2
( )t T T d T d V T d T P p           

       + − + + − + +  = 0 .         (61) 

 

If all deformation quantities are expressed in terms of the derivatives of the displacement vector 

then that will give the following equilibrium condition: 

 
1

, , , , ,4
( | ) ( | ) ]t T V p V V T V V T P d           

       + + − + + + +  = 0 .          (62) 

 

On the other hand, if the derivatives of the displacement vector are expressed in terms of the 

derivatives of the deformation tensor [eq. (45)] then that will give: 

 
1

, , ,2
(2 | ) ( )t T d d T d T d p P d          

       + − − + + +  = 0 .  (63) 

 

The relations thus-obtained are based upon the relation (58), which has a heuristic character, 

strictly speaking. Another way of looking at things will be discussed below that is likewise closely 

related. 

 If one considers the components of the stress vector before and after the deformation then a 

certain deformation of the preloading tensor can also be assumed along with the deformation of 

the material. The simplest way of envisioning that would be the one in which the components of 

the stress vector that acts upon the surface x  = const. will experience the same deformation as 

the components of the line element, i.e.: 

 

:k kT g c dx

  = :k kT g c dx



+

   .   (64) 

 

Due to the facts that kdx  = kc dx

 , kdx  = kc dx


 , those relations demand that: 

 

T g  = T g
+

   or T 
+

 = (1 )T d 

− .   (65) 

 

That new tensor is manifestly symmetric and can therefore be identified with T   directly. Eq. 

(51) then implies that: 

 K  = (1 )t T d  

+ − ,          (66) 

 

and when one recalls eq. (60), the equilibrium conditions (50) will read: 

 

, ,t V T p P d     

  + + +  = 0    (67) 
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or 

, ,(2 | )t d d T p P d      

    + − + +  = 0 ,    (68) 

 

resp. In the case of isotropy, those equations possess certain computational advantages over eqs. 

(63) and (64) that will be exhibited in Section Nine. The difference between both systems of 

equations mostly relates to the terms that are connected with only small deformation components 

and are hardly essential. Eq. (63) formally corresponds to a system of equations that was exhibited 

by Biot [6]. However, Biot did not employ all of the geometric relations in order to connect the 

derivatives of the deformation tensor with the rotation tensor, but only some of them [namely, the 

ones that emerge from eq. (53) in Cartesian coordinates when two indices coincide], such that 

deformation tensors and rotation tensors appear together in his final equations. Eqs. (63) and (68) 

that were presented here then represent a new formulation for Cartesian coordinates, as well. On 

the other hand, the relations (67) are similar to the equations that Trefftz [3] employed without 

discussing the physical meaning there in the sense that was given here. For the two authors, the 

derivation of the equilibrium conditions also resulted from the energy principle, i.e., only indirectly 

from the assumption of the elastic potential, while the derivation here is based upon only force 

equilibrium. The existence of the elastic potential here will first be a consequence of the 

superposition principle and the proportionality between stress and extension tensor that will be 

treated in the next section. 

 

 

6. – The law of elasticity and the differential equations of the elastic displacement vector. 

 

 In the context of second-order theory, d represents the deformation tensor directly, which is 

coupled with the stress tensor t  by the linear law of elasticity. For general elastic behavior 

(anisotropy), that proportionality will be defined by the coefficients E , which define a fourth-

rank tensor: 

t  = E d

 .     (69) 

 

Corresponding to the symmetry of the stress and extension tensors, those coefficients will also 

have the symmetry property: 

E  = E  = E .         (70) 

 

The superposition principle, and therefore the existence of the elastic potential, corresponds to the 

further symmetry property: 

E  = E .      (71) 

 

That will imply the expression for the elastic potential or the deformation energy: 

 

A = 1
2
t d

  = 1
2

E d d

  .    (72) 
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The equilibrium conditions (63) [(68), resp.] then go to the following differential equations of the 

displacement vector: 

[ ]L V P 

 +  = 0 .     (73) 

 

The [ ]L  in that is a tensorial operator, and when one recalls eq. (62), it will have the following 

form: 

( )

( )

3 1 1 1
,4 4 4 4

1
, , ,4

[ ] [ ]

[ ] ,

L E g T T g g T g T

g P g P T g T g

         



       

  

= + − − − 


+ + − − 

 (74.a) 

or 

[ ]L  = 
, ,( )[ ] [ ]E g T g T    

 + + ,     (74.b) 

 

resp., when it is based upon eq. (68). Therefore, with the introduction of that operator, the system 

of equations is already formally reduced to the one for an anisotropic continuum without 

preloading, and one will then be dealing with the integration of partial differential equations whose 

coefficients are variable or constant according to whether the preloading is variable or stationary, 

resp. 

 

 

7. – Integrating the basic equations for an anisotropic continuum  

with stationary preloading. 

 

 In the case of stationary preloading, one will have: 

 

,T 

  = 0 .      (75) 

 

If it were further assumed that no body forces were present initially and that the supplementary 

body force vector p  that is required by the deformation represents a pure inertial force, i.e.: 

 

p  = − 
2

2
( )V

t





              (76) 

 

( is the specific mass, t is the time coordinate), then eq. (73) would go to: 

 

[ ]V

  = 0 ,          (77) 

in which: 

  = 
2

, 2
[ ] [ ]E g

t

 

 


−


 .       (78) 

 

The new tensor E   that is introduced in that is calculated to be: 
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E   = 3 1 1
4 4 4

E g T g T g T      + − −    (79.a) 

or 

E   = E g T  + ,          (79.b) 

 

resp., according to whether one uses eq. (74.a) or (74.b), resp., as a basis (4). That implies the 

theorem: The elastic behavior of an anisotropic continuum under preloading corresponds to a 

change in the anisotropy that makes the tensor E   enter in place of the tensor E . 

 The solution to eq. (77) represents a problem that was treated before by Herglotz [10] and 

Weierstrass [11]. In the notation that was given here, the differential equation for the components 

of the displacement vector is given by the determinant of the operator [ ] : 

 

[ ]V  

        = 0 .    (80) 

 

If a vectorial stress function were introduced then the Ansatz: 

 

V = 1
2

[ ]X  

          (81) 

 

would yield solutions of eq. (77) when X   satisfies the differential equation (80), which has order 

six. It can be shown that one of the three Cartesian components of the stress function will generally 

suffice to represent the solution. 

 

 

8. – Propagation of perturbations in an anisotropic continuum for stationary preloading. 

 

 An instructive example of how preloading can influence elastic properties is given by their 

behavior under perturbations. For example, if one is dealing with the propagation of a planar wave 

front then the following Ansatz will be true for the displacement vector (fl is an arbitrary function 

of the argument k

ka x ct+ ): 

 

Vl = ( )k

l kf a x ct+  ,  V = l

lc f  .    (82) 

 

ak might be a unit vector in that. The spreading of the perturbation is then characterized by the 

temporal evolution of each location in the medium for which the argument k

ka x ct+  possesses 

the same value. At equal times, those locations lie on a plane whose velocity of propagation in the 

direction of the normal is given by c. The differential equations (77) then give: 

 

 
 (4) In so doing, one should observe that the symmetry properties (70) and (71) are no longer true for the new tensor 

E
  

.  
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2( ) l

lE a a g c f c 

   −  = 0 .    (83) 

 

Finally, the differential equation (80) leads to a relation that represents an equation that has degree 

three in 2c . The known phenomenon for anisotropic media of the existence of three differential 

sound velocities (5) will then be modified by the presence of stationary preloading only insofar as 

other elastic numbers will be true. 

 

 

9. – Integrating the basic equations for stationary preloading in the special case of isotropy. 

 

 Isotropic media represent one special case. The tensor E  then has the special form: 

 

E  = 
2

2
G g g g g g g

m

      
+ + − 

    (84) 

 

(G is the shear modulus, m is the Poisson constant), and when one recalls eq. (79.b), the tensor 

will go to: 

E  = 
2

2
G g g g g g g g T

m

        
+ + + − 

.   (85) 

 

As will be derived below, that expression admits an especially-simple integration of the basic 

equations. Eqs. (77) and (78) next give the differential equation of the displacement vector as: 

 
2

, , 2

1
| | ( )

2

m
V V T V V

m G G t

     

  





+ +  −

− 
 = 0 .  (86) 

 

It was, in fact, with the help of that same Ansatz, which the author [12] applied in the usual three-

dimensional theory of elasticity, that he succeeded in finding a direct general path of solution that 

led to differential equations of order only two. The Ansatz read: 

 

2 G V = − F   +  .     (87) 

 

F represents a scalar and  represents a vectorial stress function in that. After substitution in eq. 

(86), that will give: 

 
2

, , , , , 2

2 2 1
| | | ( | ) ( | )

2 2

m m
F T F F

m m G G t

         

    


   

− + 
+  +  + − +  + −

− − 
 = 0 .   (88) 

 

For brevity of notation, it would be suitable to introduce the following operators: 

 
 (5) See, e.g., Green, Cambridge Phil. Soc. Trans. 7 (1839).  
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2

, , 2

1
( ) | ( ) ( )T

G G t

 

 





+ −


 =   ,     (89) 

 
2

, , 2

2 1
( ) | ( ) ( )

2 2

m
T

m G G t

 

 




 − 
+ − 

−  
 =  .    (90) 

Eq. (88) will then go to: 

,

2 2
1 2 1 | |F

m m

   



   
−   − −  +    

   
 = 0 .   (91) 

 

That vector equation will be integrable when  satisfies the second-order differential equation: 

 
   = 0 .             (92) 

The remaining equation (91) will then read: 

 

1
2 1 F

m

 
−  

 
 =  |,  + C2      (93) 

 

after integration, in which C2 is an integration constant, just like C1 . For the sake of further 

integration, it would be convenient to introduce the vector function X   in place of , which 

corresponds to the relation: 

 = 
1

2 1 X
m

 
−  

 
.          (94) 

 

Eq. (93) is then, in turn, integrable, and leads to the equation: 

 

F = 
, 1

k

kX C x x

 + + ,         (95) 

 

in which  satisfies the homogeneous eq. (93): 

 

  = 0 ,            (96) 

and C1 is coupled with C2 by the relation: 

 

1

1 2
2 1 6

( 1)

m
C T

m m G





 − 
− +  

−   
 = C2 .         (97) 

 

It then follows from (92) and (94) that X   satisfies the fourth-order differential equation: 

 

X   = 0 ,               (98) 
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which therefore combines solutions of eq. (92), as well as eq. (96). However, one needs will only 

the former in order to define the displacement components, because solutions of eq. (96) once 

more drop out of eq. (94) correspondingly when one forms  . On the other hand, from eq. (95), 

they would appear in F only in the scalar form 
,X 


, which is already included in the function , 

in general. Thus, one can make the simplifying assumption that X includes only solutions of eq. 

(92), i.e., that: 

X  = 0 ,              (99) 

 

with no restriction of the general validity. As a result of the rules of covariant differentiation, that 

equation includes not just one of the components X , but all of them. Therefore, it is convenient 

for the sake of practical considerations to first determine the Cartesian components Xk from the 

analogous equation: 

 

kX  = 0 ,            (100) 

 

which includes only one component, and then calculate X from X = k

kc X  . By contrast, the 

operator   can be written in the new system. When one knows the functions X and , the stress 

function F will be determined according to eq. (95), and it will satisfy the differential equation: 

 

F   = 0 .            (101) 

 

 The displacement components are then calculated from: 

 

2 G V = − ,

1
2 1F X

m
 

 
+ −  

 
.         (102) 

 

The stress tensor can then either follow from the displacements by way of the equations: 

 

t  = ,

2
| |

2
G V V g V

m

     



 
+ + 

− 
 ,   (103) 

 

which follow from (69), (42), and (84), or they can be determined directly from the stress functions, 

for which the relations: 

 

t  = , ,

1 1
| 1 ( | | ) | 2 1

2

g
F X X F X

m m m


      

  

    
+ −  + + − + −     

−    
 (104) 

 

are definitive. Eq. (104), which is obtained from (103) when one substitutes the expressions in 

(102), allows one to check the calculation by substitution in the equilibrium conditions (77). A 

brief calculation will show that they are, in fact, fulfilled. 
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