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 1. Introduction.  – As is known, stress functions are available for the solution of 
planar and axially-symmetric problems in the theory of elasticity from which 
displacements stresses can be obtained by differentiation from the outset that will satisfy 
all elastic equations.  By contrast, such a method for the solution of general spatial 
problems is obviously still lacking.  The basis for that is in the types of Ansätze that have 
been explored up to now that would all lead to integrals.  Maxwell (2) already related 
stresses and displacements to three functions and exhibited the differential equation that 
exists between the functions by substituting them in the basic spatial equation, but 
without solving them in general form without the help of a further Ansatz.  With later 
Ansätze, on the one hand, the same path was taken and in that way, one will succeed in 
satisfying the differential equation that appears in each case in integral form.  Hence, e.g., 
one of those types of solutions (3) contains an integration over x (Cartesian coordinates), 
and another, an integration over r (polar coordinates).  On the other hand, one is anxious 
to bring the problem back to a boundary-value problem in potential theory (4), which has 
already been done.  The integral equations that appear in that way are solved by either the 
Fredholm theory or the process of successive approximations.  Although each of those 
Ansätze represents a mathematically-unimpeachable solution of the problem, the search 
for more rigorous solutions in arbitrary coordinates is linked with a relatively-large 
expenditure of calculation.  It would then be interesting to learn about a very simple 
Ansatz in what follows, with whose help, one will succeed in obtaining displacements 
and stresses by differentiation alone from general spatial stress functions that are 
composed of three harmonic functions.  The associated differentiation schema will be 
completely symmetric, and for that reason can be easily adapted to arbitrary coordinates. 

                                                
 (1) The present treatise is a theoretical result of the research that the author carried out at the Mech. 
Techn. Labor. der Techn. Hochsch. in Munich on the initiative of Prof. Dr. L. Föppl.  Therefore, I would 
like to express my most sincere thanks to the Notgemeinschaft der Deutschen Wissenschaft for their kind 
support. 
 (2) J. C. Maxwell, Scientific Papers of J. C. Maxwell, Paris, 1927, v. 2, pp. 198, et seq. 
 (3) E. Trefftz , Mathematische Elastizitätstheorie, Handbuch. d. Phys., Bd. VI, pp. 92. 
 (4) L. Lichtenstein, “Über die erste Randwertaufgaben der Elastizitätstheorie,” Math. Zeit. 20 (1924), 
pp. 21; furthermore, A. Korn ., “Über die Lösung des Grundproblems der Elastizitätstheorie,” Math. Ann. 
75 (1914), pp. 497. 
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 As an example, the problem of the hollow cone under an isolated load will be treated.  
The precise expressions for the stresses will be given for three different types of loads. 
 
 
 2. The solution of the basic equations of elasticity with the help of the new 
Ansatz. – In Cartesian coordinates x, y, z, with the normal stresses σx , σy , σz , shear 
stresses τxy , τyz , τzx , and the displacements ξ, η, ζ, the equilibrium conditions will read 
(5): 

xyx xz

x y z

τσ τ∂∂ ∂+ +
∂ ∂ ∂

= 0,    (1) 

 
etc., with cyclic permutations.  Moreover, the following known relations exist between 
stresses and displacements on the basis of Hooke’s law and the assumption of small 
deformations (1): 

σx = 2G 
2

e

x m

ξ∂ + ∂ − 
, ...,     (2) 

in which one sets: 

x y z

ξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

= e,     (3) 

and 

τxy = G
y x

ξ η ∂ ∂+ ∂ ∂ 
, ...     (4) 

 
By combining these with eq. (1), one will get the so-called “basic equations of elasticity”: 
 

∆ξ +
2

m e

m x

∂
− ∂

 = 0, …,    (5) 

in which one defines: 

∆ = 
2 2 2

2 2 2x y z

∂ ∂ ∂+ +
∂ ∂ ∂

.     (6) 

 
 Now, it so happens that the displacements can be derived from harmonic functions 
with the help of a new Ansatz in such a way that eqs. (3) and (5) can be fulfilled without 
any integrals appearing, as in the methods up to now.  One succeeds in doing that with 
the following Ansatz: 

                                                
 (5) A. and L. Föppl, Drang und Zwang, 1st ed., Bd. I, pp. 16 et seq. 
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1

1

3

2 ,

2 ,

2 .

F
G C

x
F

G C
y

F
G C

z

ξ

η

ζ

∂= − + Φ ∂ 
∂ = − + Φ ∂ 

∂= − + Φ ∂ 

    (7) 

 
Φ1, Φ2, Φ3 are harmonic functions in this, so they all satisfy the equation: 
 

∆Φ = 0.     (8) 
 
In order to explain the connection between these functions and the stress function F, we 
substitute the Ansatz (7), which corresponds to the displacements, in eq. (3) and (5).  
With consideration given to eq. (8), we will obtain: 
 

− ∆F + 31 2C
x y z

 ∂Φ∂Φ ∂Φ+ + ∂ ∂ ∂ 
 = 2Ge    (9) 

and 

2
2

m
F Ge

x m

∂  − ∆ + ∂ − 
= 0, …   (10) 

Eq. (10) demands that: 

− ∆F + 2
2

m
Ge

m−
 = const., 

 
or, since the constant on the right-hand side is inessential: 
 

2Ge = 
2

1
m

 − 
 

∆F.     (11) 

 
If one substitutes this in eq. (9) then one will get: 
 

31 2C
x y z

 ∂Φ∂Φ ∂Φ+ + ∂ ∂ ∂ 
= 

1
2 1

m
 − 
 

∆F.   (12) 

 
Whereas the corresponding equation is soluble only in integral form in the methods up to 
now, here, it can be satisfied in an entirely simple way.  Namely, set: 
 

F = Φ0 + x Φ1 + y Φ2 + z Φ3 ,    (13) 
 
in which Φ0 also satisfies eq. (8), so one will have: 
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∆F = 31 22
x y z

 ∂Φ∂Φ ∂Φ+ + ∂ ∂ ∂ 
     (14) 

and 
∆∆F = 0.     (15) 

 
Eq. (12) will ultimately be satisfied completely when we set: 
 

C = 
1

4 1
m

 − 
 

.     (16) 

 
That constant already appears in an axially-symmetric stress state (6), and indeed, one 
sets: 

1
2 1

m
 − 
 

 = a.     (17) 

 
One finally obtains the displacements from: 
 

2G ξ = 
F

x

∂
∂

+ 2a Φ1 , …   (18) 

 
From eqs. (2) and (4), by a brief computation, in which one makes use of eq. (11), (14), 
and (17), the stresses will take on the following expressions: 
 

σx = 
2 2

31 2
2 2

F F
a

y z x y z

 ∂Φ∂Φ ∂Φ∂ ∂+ + − − ∂ ∂ ∂ ∂ ∂ 
, …   (19) 

 

τxy = − 
2

1 2F
a

x y y x

 ∂Φ ∂Φ∂ + + ∂ ∂ ∂ ∂ 
, …     (20) 

 
One easily convinces oneself that the equilibrium conditions are, in fact, fulfilled.  
Likewise, the six compatibility conditions are fulfilled, which can be exhibited as 
combinations of eqs. (2), (3), and (4). 
 
 
 3. Interpretation of the Ansatz. – The Ansatz shall now be discussed in more detail 
in the context of a special theory of elasticity. 
 The theory of torsion of prismatic rods corresponds to the starting equations: 
 

Φ0 = − x Φ1 ,      Φ1 = Φ1 (y, z),      Φ2 = 
G

a

ϑ
x z,      Φ3 = − G

a

ϑ
x y.  (20.a) 

 

                                                
 (6) H. Neuber, “Beiträge für den achssymmetrischen Spannungszustand,” Diss., Munich, 1932, pp. 3. 
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One will then have: 
 

F = 0,  ξ = 
a

G
Φ1 , η = ϑ xz, ζ = − ϑ xy.  (20.b) 

 
 The theory of torsion of round rods of varying cross-sections corresponds to the 
equations: 
 

Φ0 = 0,  Φ1 = 0,  Φ2 = 
G

a
z ⋅⋅⋅⋅ ϕ (x, r), Φ3 = 

G

a
y ⋅⋅⋅⋅ ϕ (x, r), (20.c) 

 

in which x, r are based in cylindrical coordinates (r = 2 2y z+ ).  One will have: 

 
F = 0,      ξ = 0,      η = z ⋅⋅⋅⋅ ϕ,      ζ = − y ⋅⋅⋅⋅ ϕ .   (20.d) 

 
The known differential equation for ϕ follows from ∆Φ2 = 0: 
 

2 2

2 2

3

x r r r

ϕ ϕ ϕ∂ ∂ ∂+ +
∂ ∂ ∂

= 0.     (20.e) 

 
 The case of F = 0 then corresponds to the general torsion. 
 One will get the planar theory of elasticity with: 
 

Φ0  = 0 1a′ ′Φ + Φ ,      Φ1 = 1

x

′∂Φ
∂

,      Φ2 = 0,      Φ3 = 0,      F = F′ + 1a ′Φ , (20.f) 

 
in which 0′Φ  and 1′Φ  are two new harmonic functions that depend upon only x and y.  F′ 
now corresponds to the Airy  stress function. 
 The axially-symmetric theory of elasticity will emerge from the same substitution 
when we assume that 0′Φ  and 1′Φ  depend upon only x and r (cylindrical coordinates; cf., 

supra).  F′ is the axially-symmetric stress function (7). 
 On the basis of that connection, we would like to refer to F as the spatial stress 
function. 
 As for the general stress state, it is remarkable that one can always set one of the four 
harmonic functions to zero without compromising the completeness.  That will emerge 
from the substitution: 
 

3 3 3 3
0 0 3 1 1

3 3
2 2 3 3

2 , ,

, , 2 ,

a x y z
x y z x

F F a
y z

′ ′ ′ ′ ∂Φ ∂Φ ∂Φ ∂Φ′ ′ ′Φ = Φ + Φ − + + Φ = Φ +  ∂ ∂ ∂ ∂  


′ ′∂Φ ∂Φ ′ ′ ′Φ = Φ + Φ = = + Φ
∂ ∂ 

  (20.g) 

                                                
 (7) A. and L. Föppl, Drang und Zwang, 2nd ed., Bd. II, Munich and Berlin, 1928, pp. 208. 
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which does not change the generality of the four functions Φ0 , Φ1 , Φ2 , Φ3 and leads to 
the new system of equations: 
 

0 1 2 1

2

, 2 2 ,

2 2 , 2 ,

F
F x y G a

x
F F

G a G
y z

ξ

η ζ

′∂ ′ ′ ′ ′ ′= Φ + Φ + Φ = − + Φ ∂ 
′ ′∂ ∂ ′= − + Φ = −

∂ ∂ 

  (20.h) 

 
which contains only the three harmonic functions 0′Φ , 1′Φ , 3′Φ .  In reality, only three 

harmonic functions will be required.  A well-defined harmonic function then corresponds 
to precisely three distinct stress states.  The manifold of general elastic states is equal to 
the three-fold manifold of harmonic functions. 
 For the search for solutions, it is preferable in each case to use a coordinate system in 
which the boundary surface of the body is included.  On that basis, we would like to go to 
curvilinear coordinates. 
 
 
 4. Transition to curvilinear coordinates. – If the stress components σu , τuv , …, and 
the displacement components U, V, W belong to the orthogonal coordinate system whose 
axes define the direction cosines cos (x, u), …, with respect to the original axes then since 
the latter transform as vector components, one will have: 
 

U = cos (x, u) ⋅⋅⋅⋅ ξ + cos (y, u) ⋅⋅⋅⋅ η + cos (z, u) ⋅⋅⋅⋅ ζ, …   (21) 
 
As is known, one obtains the direction cosines from: 
 

cos (x, u) = 
1

u

x

h u

∂
∂

, … ,    (22) 

 
in which hu , hv , hw carry the curvilinear deformation calculation and are determined from 
the equations: 

2
uh  = 

2 2 2
x y z

u u u

∂ ∂ ∂     + +     ∂ ∂ ∂     
, …   (23) 

 

(In tensor notation, one will have hu = 11g .) 

 If one introduces the expressions for ξ, η, ϕ that are in eq. (18) and observes that the 
first derivatives of a function also transform as vector components then one will 
ultimately get: 

U = 1 2 2

1
2 2 2

2 u

F x y z
a a a

G h u u u u

∂ ∂ ∂ ∂ − + Φ + Φ + Φ ∂ ∂ ∂ ∂ 
, …  (24) 
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In order to ascertain the stresses, it is simplest for one to employ the equations that exist 
between stresses and displacements in curvilinear coordinates that were probably first 
given by Borchardt  (8).  With the notation that has been chosen here, one will have: 
 

σu = 
2 2

2( 1)
u u

u
u v w

h hG U V W a
h e

h u h v h w a

 ∂ ∂∂ −+ + + ⋅ ∂ ∂ ∂ − 
, …  (25) 

 

τuv = v u

u v v u

h hV U
G

h u h h v h

    ∂ ∂+    ∂ ∂    
, …    (26) 

 
The Laplace operator goes to: 
 

∆ = 
1 v w w u u v

u v w u v w

h h h h h h

h h h u h u v h v w h w

      ∂ ∂ ∂ ∂ ∂ ∂+ +      ∂ ∂ ∂ ∂ ∂ ∂      
.  (26.a) 

 
 Moreover, once all mathematical prerequisites have been given, the process shall find 
an application to the hollow cone with an arbitrarily-directed isolated load. 
 
 
 5. The hollow cone with arbitrarily-directed isolated load. – It is preferable to base 
the discussion on polar coordinates with: 
 

x = u cos v, y = u sin v cos w, z = u sin v sin w.  (27) 
 
One gets from eq. (25) that: 
 

hu = 1,  hv = u,  hw = u ⋅⋅⋅⋅ sin v.   (28) 
 
As is clear from Secs. 1 and 2, the axis of the cone coincides with the X-axis; moreover, 
the vertex of the cone is, at the same time, the coordinate origin.  The hollow cone will be 
bounded by the surfaces v = γ and v = δ.  The freedom in the load on the outer surface 
implies the first group of boundary conditions: 
 

For  

and  

v

v

γ
δ

= 
= 

 σv = 0,  τuv = 0,  τvw = 0,  (29) 

 
and thus, six conditions.  Further conditions will be deduced from the fact that for an 
arbitrary section that is made through the hollow cone, the stresses that act in the surface 
of the section must define an equilibrium system along with the isolated force.  The x-
component of the isolated force must be equal and opposite to the sum of all the x-
components of the stresses that act in the surface of the section.  Corresponding 

                                                
 (8) Borchardt : J. f. Math. (Crelle) 76 (1873), 45-48. 
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statements must also be true for the y and z-components.  If the section is made along a 
spherical surface, and Px , Py , Pz are the components of the isolated force then it will 
follow that: 

− Px − 
, ,

cos( , )uuF
u v w

x dF
µ

τ µ
=
∑∫ , …   (30) 

 
In this, one sets σu = τuu for the sake of simplicity.  Further conditions will come from 
requiring equilibrium under rotations.  For the reference point, the moment of the isolated 
force must be equal and opposite to the moment of the stresses that act in the surface of 
the section.  If the vertex of the cone is chosen to be the reference point and if Mx , My , 
Mz are the moments of the isolated force around the X, Y, Z axes, resp., then one will 
have: 

Mx = 
, ,

[ cos ( , ) cos ( , )]uuF
u v w

y z z y dF
µ

τ µ µ
=

−∑∫ , …  (31) 

 
The general solution to the problem will first decompose into six distinct particular 
solutions when one only demands that only one of those six integrals should be non-zero.  
Since the solutions for Py and Pz , and likewise the ones for My and Mz , will go to each 
other when one switches the Y and Z-axis, that will reduce their number to four.  
Furthermore, since the solution for pure torsion (Mx ≠ 0) was given already by A. Föppl 
(9) with the help of the theory of the torsion of round rods with varying cross-section, 
only three more particular solutions will remain to be given. 

 

a b PI 

x γ δ ν 

u 

 
Figure 1. 

 
 A. The isolated load acts in the direction of the X-axis and is applied to the 
vertex of the cone (see Fig. 1). 
 
 In this case, all integrals must vanish, except for Px .  In detail, the expression for Px 
reads: 

− Px = 
2

2

0

( cos sin ) sinu uvu v v v dv dw
γπ

δ

σ τ−∫ ∫ .  (32) 

 
In one’s search for suitable harmonic functions that satisfy those conditions, one will 
arrive at the following Ansatz: 

                                                
 (9) A. and L. Föppl, Drang und Zwang, 2nd ed., Bd. II, Munich and Berlin, 1928, pp. 108. 
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0

1 2 3

[ln ln(1 cos )] (ln ln sin ),

1
, 0, 0.

A u v C u v

B
u

Φ = + + + + 

Φ = ⋅ Φ = Φ = 

         (33) 

 
With an application of eq. (13), one will obtain the stress function: 
 

F = (A + C) ln u + A ln (1 + cos v) + C ln sin v + B cos v .  (34) 
 
The displacements are defined from this corresponding to eq. (24).  Finally, with the help 
of eq. (25) and (26), one will get the following stresses: 
 

2

2
2

2 2

2 2

1
[ (2 ) cos ],

1 cos
( 1) cos cot ,

1 cos

1 1 1
( 1) cos ,

1 cos sin

sin 1 cos
( 1) ,

1 cos sin

0, 0.

u

v

w

uv

vw uw

A a B v C
u

v
A a B v C v

u v

A a B v C
u v v

v v
A a B C

u v v

σ

σ

σ

τ

τ τ

= − + + 


  = − + − +  + 


  = − + − −  + 


  = − + − +  + 


= = 

  (35) 

 
One sees that the following relation exists between σv and τuv : 
 

σv − τuv ⋅⋅⋅⋅ cot v = 0.     (36) 
 
The six boundary conditions (29) then reduce to two.  It follows from both equations that: 
 

A

C
= − 1 cos cos

(1 cos )(1 cos )

γ δ
γ δ

+
− −

,  
B

C
= − 1

( 1)(1 cos )(1 cos )a γ δ− − −
. (37) 

 
In order to determine C, one can appeal to eq. (32).  It will yield: 
 

C = 
2 2

( 1)(1 cos )(1 cos )

2 (cos cos )[cos cos (2 )cos cos ]
xP a

a

γ δ
π δ γ γ δ γ δ

− − −
− + + −

.  (38) 

 
 The maximal stress is found on the inner side (v = δ, see Fig. 1).  Here, we have u = 

sin

b

δ
= 

cot

cos
a

γ
δ

.  We will get: 

 

σmax = − 
2 2 2 2 2

(cos cos )[3cos ( 1)cos ]

2 ( )cos [cos cos (2 )cos cos ]
xP a

a b a

γ δ δ γ
π γ γ δ γ δ

− − −
− + + −

.  (39) 
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For the complete cone, one will get: 
 

σmax = − 
2 2 2

(1 cos )[3 ( 1)cos ]

2 cos [1 (2 )cos cos ]
xP a

a a

γ γ
π γ γ γ

− − −
+ − +

.   (40) 

 
 The solution for the complete cone coincides with another solution for the axially-
stressed hyperboloid when the latter is considered to be at a large distance from the 
narrowest cross-section (10). 
 For the conical shell (11), one will get a simple formula when one passes to the limit γ  

→ δ.  If h is the wall thickness then one will have a2 – b2 ≈ 
2

cos

ah

γ
, and one will get: 

σmax = − 
2 cos

xP

ahπ γ
.     (41) 

 
 B. The isolated load acts in the direction of the Y-axis and is applied to the vertex 
of the cone (see Fig. 2). 
 

− Py = 
2

2

0

[ sin cos cos cos sin ] sinu uv uvu v w v w w v dvdw
γπ

δ

σ τ τ+ −∫ ∫ .  (42) 

 
The following Ansatz is sufficient for the fulfillment of these conditions: 
 

0

1

2 3

sin sin
cos ,

1 cos 1 cos

cos sin sin
,

1 cos 1 cos

, 0.

v v
w B D

v v

w v v
C E

u v v

A

u

 Φ = +  + −  
 Φ = +  + −  


Φ = Φ = 


   (43) 

 
Eq. (13) correspondingly implies the stress function: 
 

F = cos w sin v 
1 cos 1 cos

B C D E
A C E

v v

− + + − + + + − 
.   (44) 

 
We will get the stresses from this with the help of eqs. (24), (25), and (26): 
 

                                                
 (10)  H. Neuber, “Beiträge für den achssymmetrischen Spannungszustand,” Diss., Munich, 1932, pp. 37, 
et seq. 
 (11) The formulas for the conical shell are valid only for wall thicknesses that are not too small, since the 
assumption of small displacements would no longer be valid otherwise.  
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2

2 2 2

2 2 2

2

sin cos 2 2
(2 )( ) ,

1 cos 1 cos

sin cos 2 2
( 1)( ) ,

1 cos 1 cos (1 cos ) (1 cos )

sin cos
( 1)( ) ,

(1 cos ) (1 cos )

cos

u

v

w

uv

v w aC aE
a A C E

u v v

v w aC aE B C D E
a A C E

u v v v v

v w B C D E
a A C E

u v v

w

u

σ

σ

σ

τ

 = + − − + + − + − 

 − + += − + − + + + − + − + − 

 − += − + − + + + − 

=

2 2 2

2

(1 ) (1 )
( 1)( )cos 2 ( ) ,

1 cos 1 cos

sin cos
,

1 cos 1 cos (1 cos ) (1 cos )

sin (1 ) (1 )
( 1) (1 )( ) .

1 cos 1 cos

vw

uw

B a C D a E
a A C E v a C E

v v

v w aC aE B C D E

u v v v v

w B a C D a E
a A a C E

u v v

τ

τ











− + + + − − − − + + + − + − 

 − += + + − + − + − 

+ + + + = − + + − + + − + − 













(44.a) 

 
That shows, in turn, that a relation exists between the stresses that are involved with the 
boundary conditions (29), and indeed in this case: 
 

σv cos v + τuv sin v – τvw cot w = 0.    (45) 
 
Thus, the conditions (29) correspond to only four equations.  Together with eq. (42), one 
then has five equations for the five still-unknown constants at one’s disposal, such the 
latter will be determined uniquely. 
 We would like to set: 
 

cos γ = c, cos δ = d, N = (1 + c) (1 + d) [(d – c)2 + (c + d)(1 – cd)], (46) 
 

to abbreviate. 
 We then obtain: 
 

2

2

2

2

4
[( ) (2 ) (1 )],

( 1)

(1 )(1 )
[ ( 1)( ) ( 1)( )(1 ) 2 (1 )],

(1 )(1 )
[ ( 1)( ) ( 1)( )(1 ) 2 (1 )],

(1 )(1 )
[ ( ) ( )(1 )],

( 1)

4 (
y

A
d c a cd cd

C a N

B c d
a d c a c d cd acd cd

C N
D c d

a d c a c d cd acd cd
C N
E c d

d c c d cd
C N

P a N
C

a d cπ

= − + − −
−
+ += − − − − − + − − −

− −= − − − + − + − − −

+ += − − + + −

−
=

− 2 2 2 .
){( ) [(3 )(1 ) ( ) ] (4 ) (1 ) }d c cd cd d c a cd cd














− − − − − + − − 

 (46.a) 

 
The maximal bending stress appears at the location w = 180o, v = γ (see Fig. 2).  Here, 
one will have u = a / sin γ.  One will get: 
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σmax = 
2 2

2 2 2 2

sin (1 ){3( ) [3 ( 1) ](1 )}

( ){( ) [(3 )(1 ) ( ) ] (4 ) (1 ) }
yP c d c d c a d cd

a d c d c cd cd d c a cd cd

γ
π

− − + − − −
− − − − − − + − −

.  (47) 

 
The maximal shear stress appears at the location w = 90o, v = δ (see Fig. 1).  Here, we 
will have u = ac / (d sin γ).  We get: 
 

σmax = 
2 2

2 2 2 2

( 1) (1 )(1 )

{( ) [(3 )(1 ) ( ) ] (4 ) (1 ) }
yP a d c cd

a c d c cd cd d c a cd cdπ
− − −

− − − − − + − −
.  (48) 

 

Py 

x 
γ δ v 

u y y 

z 

τmax 

σmax 

a 
b 

w 

 
Figure 2. 

 
 For the complete cone, the constants D and E must be set to zero from the outset, 
since the associated functions possess poles along the axis.  One will then get: 
 

σmax = 2

(4 )sin (1 )

(1 )[2 (2 ) ]
yP a c

a c a c

γ
π

− +
− + −

,   (49) 

 

τmax = 
2

( 1)(1 )

2 [2 (2 ) ]
yP a c

a c a cπ
− +

+ −
,    (50) 

 
 On the other hand, if one sets d = 1 in eqs. (47) and (48) then one will get the 
formulas for the complete cone with a fine axial drill-hole.   σmax will not change, but one 
will get τmax from: 

τmax = 
2

( 1)(1 )

[2 (2 ) ]
yP a c

a c a cπ
− +
+ −

;    (51) 

 
i.e., precisely twice the value.  A fine axial drill-hole then raises the shear stress by 
100%. 
 Furthermore, the stresses for the conical shell can also be given here by passing to the 
limit, and indeed, one will have: 

σmax = 
sin
yP

ahπ γ
, τ = 0.    (52) 
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 C. The isolated load acts in the direction of the Y-axis.  Its point of application 
lies on the X-axis at infinity (pure bending). 
 
 In this case, all integrals must vanish, with the exception of the one for Mz .  In detail 
the expression for Mz reads: 
 

Mz = 
2

3

0

( cos cos sin )sinuv uvu w v w vdv dw
γπ

δ

τ τ−∫ ∫ .  (53) 

 
In order to look for suitable functions, one arrives at the following Ansatz: 
 

0

1 2

2 22

cos sin sin 1
,

1 cos 1 cos sin

cos
sin sin ln tan cot ,

2

1
sin cos ln tan cot , 0.

2

w v v
B D E

u v v v

w v
C v E v v

u

v
A v E v v

u

 Φ = + +  + −  
   Φ = + −   

   
   Φ = + + Φ =  

    

  (54) 

 
With an application of eq. (13), the stress function will become: 
 

F = 
cos sin

( )cos 2 cos ln tan 1
2 1 cos 1 cos

w v v B D
A C v E v

u v v

  + + + + +  + −  
. (55) 

 
When one calculates the stresses with the help of eqs. (24), (25), and (26), that will show 
that in that case, the following relation exists between σy and τvw : 
 

σy – τvw cot w cos v = 0.    (56) 
 
The six boundary conditions (29) then reduce to four again.  Eq. (53) gets added as a 
further condition.  The solution to that integral also poses no complications here.  One 
will once more have five equations for five constants at one’s disposal.  Let us now 
perform the calculation.  Let the maximal stress now be given.  For the sake of brevity, 
we would like to set: 
 

cos γ = c, cos δ = d, ln tan 
2

γ
= g, ln tan 

2

γ
= k,  (57) 

and further: 
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2
2 2 2

2 2

2 2 2 2

2 44
3

2 2 2 2

4 (1 )(1 )
[6(1 ) (4 ) (2 ) ]

3(1 )(1 )

4
(1 )[6(1 ) (4 ) (18 5 )]

3

12(4 ) (1 ) (2 _ 2 ) (4 )(2 ) ( )

8(4 )( ) (1 ){1 (1 ) } 12 ( ) (1

a cd cd
N c d a cd cd

c d

c d c d a cd a acd

g k
a cd cd a cd a a cd c d

c d

a c d cd a cd c d a c d

+ −= − + − +
− −

+ − − + − + +

−
+ − − − − − + −−

+ − − − + + − − − − 2 2)(1 ) .c d










−  

 (58) 

 
The maximal bending stress, which will once more appear at the location w = 180o, v = γ 
(cf., Fig. 2), proves to be: 
 

2 2 2 2
2 2

max 2 2 2

2

2

(1 ) 1
4 [(12 5 ) (1 )

( ) (1 )(1 )

(10 ) 2 (1 ) ] 4 (48 11 ) (1 ) 240

12(1 ) [2 (10 ) (4 5 ) (1 ) ]

4(1 )(8 ) ( )( ) .}

zM c c d
a a c d

a d c N c d

a a c a a d a a d cd d

g k
cd a cd a c a a d

c d

a a d c d g k

σ
π

− −= + + − − − − 
+ − + − + − − + − 
− + − − − + − −
−


+ − + − − 

 (59) 

 
The maximal shear stress [once more at the location w = 90o, v = δ (cf., Fig. 2)] will be: 
 

2 2
2 2

max 2 3 2 2

2

2 2

sin (1 ) 2(1 ) (4 ) 6
4(1 )

( ) 1 1

4 [9 (11 ) ] ( ) 4 (4 ) [ 6 (6 ) ]

12(1 )(1 ) [ (1 ) 3 2(4 ) ]

4(1 )(8 ) ( )( ) .}

zM c d a a cd d
c d c

a d c c N c d

a a cd d c a c a cd a cd

g k
cd d a a c a d a c d

c d

a a c c d g k

γτ
π

−  − + − = − +  − − −  
+ + + + − + − + − + 
− + − − − − − + −
−


+ − + − − 

  (60) 

 
 For the complete cone, the constants D and E must be set to zero from the outset, 
since the associated functions will be infinite along the axis.  One will have: 
 

σmax = 
2

3 2 2

3 (1 ) [(10 ) 2(1 )]

[6(1 ) (4 ) (2 ) ]
zM c a c a

a c a c cπ
+ − + −

− + − +
,   (61) 

 

τmax = 
2

3 3 2 2

9 (1 ) sin

[6(1 ) (4 ) (2 ) ]
zM c

a c c a c c

γ
π

+
− + − +

.   (62) 

 
 For the complete cone with a fine axial drill-hole, [from eq. (60) with d = 1], one will 
have: 
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τmax = 
2

3 3 2 2

18 (1 ) sin

[6(1 ) (4 ) (2 ) ]
zM c

a c c a c c

γ
π

+
− + − +

  (i.e., raised by 100%). 

 
 For the conical shell, when one passes to the limit γ  → δ, one will get: 
 

d – c ≈ 
2

ha

u
, 

g k

c d

−
−

≈ − 2

1

sin γ
,    (63) 

and one will get: 

σmax = 2 cos
zM

a hπ γ
, τmax = 

2

tanzM

a h

γ
π

   (64) 

for the stresses. 
 

P 

τmax 

σmax 

δ γ 
b 

a 

 
Figure 3. 

 
 By superimposing this with the stress state B, we can also give the formulas for the 
truncated cone (see Fig. 3).  To that end, we decompose the force P, which should act 
upon the vertex perpendicular to the axis at a distance of a cot γ – l (let l be the length of 
the truncated cone), into a force of equal magnitude that acts upon the vertex, which is 
identified with Py , and a bending moment of magnitude – P (a cot γ – l), which is set 
equal to Mz . 
 For the truncated conical shell, one will have: 
 

σmax = 2 cos

P l

a hπ γ
⋅

,   τmax = − 2 1 tan
P l

a h a
γ

π
 − 
 

  (65) 

 
 Finally, let us especially give the formulas here for weakly-damped waves (viz., the 
truncated complete cone for small γ), which will be: 
 

σmax = 
3

1
24

1 tan
1

3 1

P l am
a l

m

γ
π

 
+ ⋅

 +
  +    

, τmax = −
2

2
3 4 tan

1
2 1

l
P

m a

a
m

γ

π

 + − 
 

 + 
 

 , (66) 

 
with c ≈ 1 – tan2 γ, and when one neglects the higher powers of tan γ.   
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On the other hand, we can ascertain precisely values for the hollow cylinder when set c ≈ 

1 −
2

22

a

u
, d ≈ 1 −

2

22

b

u
, and u = − ∞.  The maximal shear stress will become: 

 

τmax = −

2 2

4 4

2 2
3 1

1
1 ( )

P a b
m m

a b
m

π

    + + +    
    

 + − 
 

 .   (67) 

 
 For the cone under combined bending, one will then get larger bending stresses, but 
smaller shear stresses than for the cylinder.  That can be explained simply by saying that 
for the cone, the bending stresses also possess transverse force components.  The 
maximal shear stresses will be raised by 100% by means of fine axial drill-hole. 
 
 
 6. Summary. – A new Ansatz makes it possible to derive the three components of the 
elastic displacement vector from four harmonic functions by differentiation alone.  The 
associated system of equations can be converted to a curvilinear coordinate system in a 
simple way.  It will also represent the general solution to the elastic state when one of the 
four functions is set to zero.  As an example, the stress distribution in the hollow cone 
with an isolated load was given. 
 

_____________ 
 

 


