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A new Ansatz for the solution of spatial problemsn the theory
of elasticity. The hollow cone under an isolatedohd as an
example ().

By H. Neuberin Munich.

Translated by D. H. Delphenich

1. Introduction. — As is known, stress functions are available for sbkition of
planar and axially-symmetric problems in the theory o&sttity from which
displacements stresses can be obtained by differientiabm the outset that will satisfy
all elastic equations. By contrast, such a method Her sblution of general spatial
problems is obviously still lacking. The basis for thahithe types of Anséatze that have
been explored up to now that would all lead to integrafaxwell (%) already related
stresses and displacements to three functions anfitexhthe differential equation that
exists between the functions by substituting them in lsic spatial equation, but
without solving them in general form without the helpaofurther Ansatz. With later
Anséatze, on the one hand, the same path was taken #mat Wway, one will succeed in
satisfying the differential equation that appears in €aske in integral form. Hence, e.g.,
one of those types of solutior§ ¢ontains an integration overCartesian coordinates),
and another, an integration ove(polar coordinates). On the other hand, one is anxious
to bring the problem back to a boundary-value problem innpiateheory ), which has
already been done. The integral equations that app#aatiway are solved by either the
Fredholm theory or the process of successive approximationshoédth each of those
Ansatze represents a mathematically-unimpeachable sobiftithe problem, the search
for more rigorous solutions in arbitrary coordinates is lhkeith a relatively-large
expenditure of calculation. It would then be interestio learn about a very simple
Ansatz in what follows, with whose help, one will seed in obtaining displacements
and stresses by differentiation alone from generaliadpatress functions that are
composed of three harmonic functions. The associateerelitiation schema will be
completely symmetric, and for that reason can beyeaddpted to arbitrary coordinates.

() The present treatise is a theoretical result efréssearch that the author carried out at the Mech.
Techn. Labor. der Techn. Hochsch. in Munich on theaim# of Prof. DrL. Foppl. Therefore, | would
like to express my most sincere thanks to the Notgentafisder Deutschen Wissenschaft for their kind
support.

() J. C. Maxwell, Scientific Papers of J. C. MaxweRaris, 1927, v. 2, pp. 198 seq.

() E. Trefftz, Mathematisch&lastizitatstheorieHandbuch. d. Phys., Bd. VI, pp. 92.

() L. Lichtenstein, “Uber die erste Randwertaufgaben der Elastizitatstagdvlath. Zeit.20 (1924),
pp. 21; furthermoreA. Korn., “Uber die Losung des Grundproblems der Elastizitatstagdviath. Ann.
75(1914), pp. 497.
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As an example, the problem of the hollow cone undesaated load will be treated.
The precise expressions for the stresses will be dorethree different types of loads.

2. The solution of the basic equations of elasticity with # help of the new
Ansatz. — In Cartesian coordinatesy, z, with the normal stresse% , ¢, g;, shear
stressesyy , Tyz, Ix, and the displacemenés 7, ¢, the equilibrium conditions will read
C):

90, ar,, 20T _ 0, (1)
ox o9y 0z

etc., with cyclic permutations. Moreover, the follogsiknown relations exist between
stresses and displacements on the basidooke's law and the assumption of small

deformations¥):
0¢ e
=26 | —+ R 2
* (ax m—2j @)
in which one sets:
g+a_,7+%: e (3)
ox dy 0z
and
o0& on
Ly=G| —=—+—1|, ... 4
y ( o axj (4)

By combining these with eq. (1), one will get tleecalled “basic equations of elasticity”:

m de _

A&+ — =0, ..., 5
< m—-290x ®)
in which one defines:
0> 0% 09°?
=t —+—. 6
ox* oy° 07 ©)

Now, it so happens that the displacements canebged from harmonic functions
with the help of a new Ansatz in such a way that €8) and (5) can be fulfilled without
any integrals appearing, as in the methods up @ Mdne succeeds in doing that with
the following Ansatz:

() A.and L. Féppl, Drang und Zwang1® ed., Bd. I, pp. 1&t seq.
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oF
2GE=-—+Co,,
¢ ox !
2Gn = O, Co,, (7)
oy

oF
26 =—+Co,,.
¢ 0z 3

®,, d,, P3 are harmonic functions in this, so they all satisfyegfaation:
AD = 0. (8)
In order to explain the connection between these iumetand the stress functidén we

substitute the Ansatz (7), which corresponds to the atisptents, in eq. (3) and (5).
With consideration given to eq. (8), we will obtain:

_AF+C 66Dl+6q>2+6q>3 _ Ge )
ox 0y 0z
and
i(—AF+ m ZGej:O, (10)
0x m-2
Eq. (10) demands that:
-AF +— M 2Ge = const,,

m-2

or, since the constant on the right-hand sidedssantial:
2
2Ge= (1——}AF. (12)
m

If one substitutes this in eq. (9) then one wili:ge

c| 9P, 0%, 09 )_ 2{ —EJAF. (12)
ox o0y 0z m

Whereas the corresponding equation is soluble mnigtegral form in the methods up to
now, here, it can be satisfied in an entirely sienphy. Namely, set:

F:cDo+Xch+chz+ZcD3, (13)

in which @y also satisfies eg. (8), so one will have:
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AF = 2 0P, N 0P, N 0P, (14)
ox dy 0z
and
AAF = 0. (15)
Eq. (12) will ultimately be satisfied completely when set:
C= 4(1—% . (16)
m
That constant already appears in an axially-syrimetress state®), and indeed, one
sets:
1
2(1——} =a a7)
m

One finally obtains the displacements from:
26e=F i, .. (18)
0x

From eqgs. (2) and (4), by a brief computation, molk one makes use of eq. (11), (14),
and (17), the stresses will take on the followirgressions:

_ 0°F +62F ta 0b, 0P, 0D, (19)
dy’> 07 ax oy adz)
2
oxay dy 0Xx

One easily convinces oneself that the equilibrivomditions are, in fact, fulfilled.
Likewise, the six compatibility conditions are flléd, which can be exhibited as
combinations of egs. (2), (3), and (4).

3. Interpretation of the Ansatz.— The Ansatz shall now be discussed in more detail
in the context of a special theory of elasticity.
The theory of torsion of prismatic roderresponds to the starting equations:

Qp=—-XDP;, D=D(y, 2, CDz:GT:?xz CDg:—GT:?xy. (20a)

() H. Neuber, “Beitrage fiir den achssymmetrischen Spannungszustand,’ Bissich, 1932, pp. 3.
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One will then have:
F=0, 5:%%, n=9xz  {=-9xy (20b)

The theory of torsion of round rods of varying cross-sectmsesponds to the
equations:

CD(): 0, CDJ_: 0, ch: %Z Ew (X, r), CD3: %y Ew (X, r), (ZOC)

in whichx, r are based in cylindrical coordinates=(./ y*+ zZ* ). One will have:

F=0, ¢é=0, n=z0p, dJ{=-y. (20d)

The known differential equation fa follows fromA®, = O:

2 2
99,909,300 _, (20e)
ox- or° ror

The case of E Othen corresponds to the general torsion.
One will get theplanar theory of elasticityvith:

®o = @y +ad), <D1=agbl, ®,=0, ®3=0, F=F'+ad®;,, (20f)
X

in which ®; and ® are two new harmonic functions that depend updy »andy. F’

now corresponds to thEry stress function.
The axially-symmetric theory of elasticityill emerge from the same substitution

when we assume tha®, and ®; depend upon only andr (cylindrical coordinates; cf.,

suprg. F’is the axially-symmetric stress functio. (

On the basis of that connection, we would like éfer to F as thespatial stress
function.

As for the general stress state, it is remark#dizie one can always set one of the four
harmonic functions to zero without compromising tmenpleteness. That will emerge
from the substitution:

d, = P, +2ad’, - xa¢3+ y<9d33+ za(b?' , CDl:cD'1+a(D3,
0x oy 0z 0 X
B, =Pyt —F @y=—>, F=F'+20,
y z

() A. andL. Foppl, Drang und Zwang2™ ed., Bd. II, Munich and Berlin, 1928, pp. 208.
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which does not change the generality of the four funstig, @1, P, , ®3;and leads to
the new system of equations:

F'=®,+x®;+yd’, 2G5=—6—F+ 2ad’,
0X
oF' oF' (20h)
2Gn =—-——+2a9,, 2 =——,
oy 0z

which contains only the three harmonic functioh§, ®;, ®,. In reality, only three

harmonic functions will be requiredA well-defined harmonic function then corresponds
to precisely three distinct stress states. The manifold ofrgleglastic states is equal to
the three-fold manifold of harmonic functions.

For the search for solutions, it is preferable in ezade to use a coordinate system in
which the boundary surface of the body is included. Onbidwsis, we would like to go to
curvilinear coordinates.

4. Transition to curvilinear coordinates.— If the stress components, 7y, ..., and
the displacement componerdsV, W belong to the orthogonal coordinate system whose
axes define the direction cosines caalj, ..., with respect to the original axes then since
the latter transform as vector components, onehaile:

U=cosk u)X+cosy u)dy+cosgu L, ... (21)
As is known, one obtains the direction cosines from

cos & u) = i% (22)

h, ou’

in whichhy , hy, hy, carry the curvilinear deformation calculation amd determined from

the equations:
) 0x oy 0z
= (6uj (6uj (6uj B (23)

(In tensor notation, one will have = / g,, .)

If one introduces the expressions &, ¢ that are in eq. (18) and observes that the
first derivatives of a function also transform asctor components then one will
ultimately get:

U=_= ( F 1220, %4 200, Y + 2000 a_zj . (24)
2Gh, ‘ou 20u ‘0u
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In order to ascertain the stresses, it is simptasoe to employ the equations that exist
between stresses and displacements in curvilinear cotaslitiaat were probably first
given byBorchardt (]). With the notation that has been chosen herewilhkave:

QFE@LL%JMLizﬂ@W (25)

h,\du h dv how 2(al
nﬁqﬁi@}m%g]m 6)
h,oul h ) hov h
ThelLaplace operator goes to:
ae L HM&}& Mi}i Miﬂ (262)
h,hh,/oul h du 0 h o 0 h o

Moreover, once all mathematical prerequisites H@en given, the process shall find
an application to the hollow cone with an arbitsadirected isolated load.

5. The hollow cone with arbitrarily-directed isolated load.— It is preferable to base
the discussion on polar coordinates with:

X=UCO0SV, Yy=usinvcosw, Z=usinvsinw. (27)
One gets from eq. (25) that:
h, =1, h, = u, hy =u kinv. (28)

As is clear from Secd. and2, the axis of the cone coincides with kexis; moreover,
the vertex of the cone is, at the same time, tloedtoate origin. The hollow cone will be
bounded by the surfaces= yandv = & The freedom in the load on the outer surface
implies the first group of boundary conditions:

Forv=y } & =0, v = 0, Fn=0, (29)
andv=90

and thus, six conditions. Further conditions vl deduced from the fact that for an

arbitrary section that is made through the hollmmes the stresses that act in the surface

of the section must define an equilibrium systeonglwith the isolated force. The

component of the isolated force must be equal gmubsite to the sum of all the

components of the stresses that act in the surfdcthe section. Corresponding

() Borchardt: J. f. Math. (Crelley6 (1873), 45-48.
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statements must also be true for yhendz-components. If the section is made along a
spherical surface, ané, , Py, P, are the components of the isolated force then it wil
follow that:

- Py - L > r,cosku)dF, ... (30)

H=U,V,W

In this, one setgr, = 1y, for the sake of simplicity. Further conditionslivasome from
requiring equilibrium under rotations. For theemeince point, the moment of the isolated
force must be equal and opposite to the momertettresses that act in the surface of
the section. If the vertex of the cone is chosehe the reference point andMf , My,
M. are the moments of the isolated force aroundXh¥, Z axes, resp., then one will
have:

My = L > r,lycos(z,u)- zcos(yu )IdF, ... (31)

H=U,V,W

The general solution to the problem will first degmse into six distinct particular
solutions when one only demands that only oneasietlsix integrals should be non-zero.
Since the solutions fd?, andP,, and likewise the ones fdi, andM., will go to each
other when one switches thé and Z-axis, that will reduce their number to four.
Furthermore, since the solution for pure torsibi £ 0) was given already b&. Foppl

(®) with the help of the theory of the torsion of nourods with varying cross-section,
only three more particular solutions will remain given.

Figure 1.

A. The isolated load acts in the direction of theX-axis and is applied to the
vertex of the cone(see Fig. 1).

In this case, all integrals must vanish, excepto. In detail, the expression &

reads:
2my

-Px= uzj '[(0' cosv-T,, Sinv) sinv dv dw. (32)
0J

u

In one’s search for suitable harmonic functions thetisfy those conditions, one will
arrive at the following Ansatz:

() A. andL. Foéppl, Drang und Zwang2™ ed., Bd. II, Munich and Berlin, 1928, pp. 108.
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®, = Alln u+In(l+cosv)]+ C(Inu+ Insinv),

33
CDl:Bgl—, ®,=0, ®,=0. (33)
u
With an application of eq. (13), one will obtain theess function:
F=A+C)Inu+Aln(1+ cosv) +ClInsinv+Bcosv. (34)

The displacements are defined from this correspondiegt¢24). Finally, with the help
of eq. (25) and (26), one will get the following stresses:

1
o, =—[A-(2+a)Bcosv+ C],
u
g, =%[—A cosv +(a—-1)Bcosv+ C cot \ﬂ ,
u 1+ cosv
1 1
awz—z[—A +(a-1)Bcosv- C— } : (35)
u 1+ cosv Sif v
r,,= S'T’[—A " +(a-1B+C C.OS’]
u 1+ cosv sif v
r, =0, r,=0.

One sees that the following relation exists betweaeand 7, :
o — Ty [Totv =0. (36)

The six boundary conditions (29) then reduce to twoollttws from both equations that:

A___ 1l+cosy co® B__ 1 (37)
C (-cosy)(t co® ' C (a-1)@-coy ) cod
In order to determin€, one can appeal to eq. (32). It will yield:
_ P(a-1)(1-cos )(t co® )
C= : : (38)
271(cosd— coy )[cosy+ céd+ (Ra )cgs ads

Themaximal stresss found on the inner side € J, see Fig. 1). Here, we hauve=

_b = aCOty. We will get:
sind C0SO

B P (cosy- co® )[3cod—- - 1)cgs ]
2m(@2-b*)cosy [cody+ co8d+ (2a )cgs cds

Omax =

(39)
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For thecomplete coneone will get:

P.(1-cosy )[3- @- 1)coy |

2ra’cosy [+ (2-a)coy+ coy (40)

Omax = —

The solution for the complete cone coincides vaittother solution for the axially-
stressed hyperboloid when the latter is considéoede at a large distance from the
narrowest cross-sectioff.

For theconical shell(*Y), one will get a simple formula when one passesedimit

2ah

~ d If his the wall thickness then one will haa'e—b*=~ —— , and one will get:
cosy
P
Umax =— X . (41)
2rrahcosy

B. The isolated load acts in the direction of th&-axis and is applied to the vertex
of the cone(see Fig. 2).

2y
-Py= uzj I[a sinvcosw+r1,, COS/ cosv-T,, Siw ] siwvdvd. (42)
0o

u

The following Ansatz is sufficient for the fulfillemt of these conditions:

CDOZCOSW[B sinv_, _sinv }
1+ cosv + cow
:cosw[c siv__ o sinv }
u

®
! 1+cosv 1+ cow
_A
u

(43)

®,=2, o,=0.

Eq. (13) correspondingly implies the stress functio

(44)

- +
F:coswsinv[A+C—E+ B-C + D E}.

l1+cosv T cow

We will get the stresses from this with the helgq$. (24), (25), and (26):

(*% H. Neuber, “Beitrage fiir den achssymmetrischen Spannungszustand,’ Bissich, 1932, pp. 37,
et seq

(Y The formulas for the conical shell are valid ofdywall thicknesses that are not too small, sinee th
assumption of small displacements would no longer be gtierwise.
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U:SInVCZIOSN (2+a)(A-C+ B+ aC  ZE }
u L l1+cosv T cow
O_V:SII’]VCZIOSN (a-1)(A+ C—- B)+ aC | &E - Bt CZ_ Dr E ,
u | l+cosv F cov (& cos®) ( cos
W:smvc2:03N (a-1)(A+ C—- B)+ B-C D+ E ,
u | (1+cosvy (+ cow? (44 9)
T, = Cofw{(a—l)(—A— C- E)cosw 2a(C+ Ex B-(+a)C_D+(+3) E} :
u 1+ cosv + cow
_sinvcosw aC _ aE = B C = DE
" u? 1+cosv + coy (* cos?)  cog)
i + (1+ + (1+
UW=SIn2W{(a—1)A+ 1+ a)- C+ B+ B+ (1+a)C_ D+ (I+ a) E]
u 1+ cosv } cow

That shows, in turn, that a relation exists betweerstiesses that are involved with the
boundary conditions (29), and indeed in this case:

Oy COSV + Ty SinV — 1, cotw = 0. (45)
Thus, the conditions (29) correspond to only four equatidmmgyether with eq. (42), one
then has five equations for the five still-unknown ¢ants at one’s disposal, such the

latter will be determined uniquely.
We would like to set:

COSy=c, coso=d, N=(1+c) (1 +d) [(d-c)2 + (c+d)(1—cd)], (46)
to abbreviate.

We then obtain:
A _ 4 2 : :
c (a—l)N[(d 0" +(2-3acdl- cd],
g=%l\(ll+d)[—(a—l)(d— 97 -(a-1)(c+ (1~ cd- 2 acdl- c,
%=&,\(ﬁ“”[—(a—n(d—c)2+(a—1)<c+ J(- cd- 2 acdl- cd], (462)
=8 (g-97 +(c+ gu- ca)

P (a-1)N

C= :

4ma(d-c{(d-91B-cd( - cd -( & ¥ +(4 - pc- cf}

The maximal bending stresappears at the locatiom= 180, v = y (see Fig. 2). Here,
one will haveu =a/ siny. One will get:
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P,siny (1- & }{3(d— 0%+ d3¢-(a1) d(1- cd}
ma’(d-of(d-¢1(3 - cdd - cii-( & X1+(4- Jadd- o

Omax =

(47)

The maximal shear stresappears at the locatiom= 9C°, v = J (see Fig. 1). Here, we
will haveu =ac/ (d sin)). We get:

P, (a-1)d*(1- ¢)(1- cd)
ma’d(d-¢iB - cd(l- cd—( o ¥]+(4- p od- od}

Omax =

(48)

Figure 2.

For thecomplete conethe constant® andE must be set to zero from the outset,
since the associated functions possess poles along theCmaswill then get:

P,(4-a)siny(1+c)
- mai(l-o)2+ (2- a)d’

(49)

Omax

P,(a-1)(1+c)
~ 2malc[2+ (2-a)d’

(50)

max

On the other hand, if one seals= 1 in eqgs. (47) and (48) then one will get the
formulas forthe complete cone with a fine axial drill-holegmax Will not change, but one
will get 7max from:

P, (a-1)(1+c)

ma’c[2+(2- a) q;

Tmax =

(51)

i.e., precisely twice the valueA fine axial drill-hole then raises the shear stdsy
100%.
Furthermore, the stresses for tmmical shellcan also be given here by passing to the
limit, and indeed, one will have:
P

Onax= ———, r=0. (52)
rmahsiny
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C. The isolated load acts in the direction of the&/-axis. Its point of application
lies on theX-axis at infinity (pure bending).

In this case, all integrals must vanish, with the p&oa of the one foM, . In detail
the expression favl, reads:

2y
M, = u3j I(ruv COSW—T,, COS/ Sinw )sirvdvdv. (53)
0o

In order to look for suitable functions, one arriveshatfbllowing Ansatz:

CDOZCOSW[B Siv_, 5 Siv__ o 1}

u 1+ cosv I cow Siv

®, = CO?N{Csinw E(sinvlntan\z—/— cot\/ﬂ : (54)
1 . v

o, :F Asinv+ E| cosv Intan2—+ covj| ,®,= 0.

With an application of eq. (13), the stress functiall become:

F

_ COSw Sinv
1+ cosy I cos

(A+C)cosv+ ZE( cosv Inta%/+ j1+ B + D } (55)

When one calculates the stresses with the helgf(@4), (25), and (26), that will show
that in that case, the following relation existéAmeng, and r,, :

oy — huw cotw cosv = 0. (56)

The six boundary conditions (29) then reduce ta fagain. Eq. (53) gets added as a
further condition. The solution to that integrédaposes no complications here. One
will once more have five equations for five conssaat one’s disposal. Let us now
perform the calculation. Let thmaximal stressiow be given. For the sake of breuvity,
we would like to set:

4

cosy=c, coso=d, In tanE =g, IntanZ=k, (57)

NI

and further:
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N = 4a(1+ cd)(1- cdy
3(1-c*)(1-d?)

[6(1- 2d?)+ (4— a) cd(2+ cd?]

4 2 42 _ A~2A42 _
+§(1—c d?)[6 (1~ c?d?)+ (4- a) cd(18+ 5a+ acd)] (58)

+9=X[12(a-a)d (- cdf (2= a_2dy £ (+ @)@ acd(e

+8(4-a)(c- df (1- cd)l+ (1+ Jcd- & d)-12 e PF@-c*)1-d?)].

The maximal bending stresshich will once more appear at the locatiws 180, v = y
(cf., Fig. 2), proves to be:

- M,@-c’y {4 1-c'd® o a)o(- o)

" mal(d-9N| (21— &)(L- )

+a(l0-a)c+ 2a(l- a)dl+ 4(48- 11a- & )d(* cd)} 240d (59)

+12(1—cd)2%§ [2(10- a)cd - (4+ Ba)e- a(t a)d]

+4(1-a)8+a)d (c- d)(g- K} .

Themaximal shear stregence more at the locatiom= 9¢, v = d(cf., Fig. 2)] will be:

_ M, siny (1-¢*)d? _ 2.2y .21-a)+ (4-a)cd 6d
fmax = 2 (d-0) @ N {4(1 cd )[C 1- ¢ - cf}

+4a]9+ (11+ a)cd]+ (d- 9+ 4(4- @ d & 6 cd (6+ 3 ] ©0)

+12(1-cd )(1- d? )g%;‘ Fa(l- a)c 3adt 2(4 a)t d

+4(1-a)(8+a)c(c- d)(g- K} .

For thecomplete conethe constant® andE must be set to zero from the outset,
since the associated functions will be infinitergdhe axis. One will have:

o - 3NLZ (1+ c)zz[(lo— a)c+ 2(1- az)]’ (61)
ma’[6(1-c)+ (4-a)c(2+ )]
L= 9M, (L+c) siny (62)

%6 (1- ¢°)+ (4- @) c(2+ 9]

For thecomplete cone with a fine axial drill-hglgrom eq. (60) withd = 1], one will
have:
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18M, (1+cY¥ siny

i.e., raised by 100%).
B (=)t (4= a) o2t oF] y 100%)

Tmax =

For theconical shell when one passes to the lipit— J, one will get:

== , (63)

and one will get:
(64)

for the stresses.

Figure 3.

By superimposing this with the stress stBteve can also give the formulas for the
truncated condsee Fig. 3). To that end, we decompose the Braghich should act
upon the vertex perpendicular to the axis at adcs# ofa cot y—| (let| be the length of
the truncated cone), into a force of equal mageitthdt acts upon the vertex, which is
identified withPy , and a bending moment of magnitud® {a cot y—1), which is set
equal toM; .

For thetruncated conical shelbne will have:

_ PO
ma’hcosy

Omax =

Tmax = —iz(l—l tanyj (65)
mma“h a

Finally, let us especially give the formulas h&e weakly-damped wavesiz., the
truncated complete cone for smgll which will be:

1 2 |
2+ P(3+—4 tanyj
Omax — 4PEH 1+ I’;]_ % tany |, Tmax=— m 1a ) (66)
71a 3(1+j 277(1+ja2
m m

with ¢ = 1 —tafl y; and when one neglects the higher powers oftan
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On the other hand, we can ascertain precisely vatudtdhollow cylinderwhen set =

a’ b? . .
1-—.,d=1 —?, andu = - . The maximal shear stress will become:
u

2u?’
el
m m . (67)

n@+ly£—w)
m

Imax=—

For the cone under combined bending, one will thenhlarger bending stresses, but
smaller shear stresses than for the cylind€hat can be explained simply by saying that
for the cone, the bending stresses also possessvérae force components. The
maximal shear stresses will be raised by 100% nsef fine axial drill-hole.

6. Summary.— A new Ansatz makes it possible to derive theglesomponents of the
elastic displacement vector from four harmonic fiores by differentiation alone. The
associated system of equations can be convertadctovilinear coordinate system in a
simple way. It will also represent the generatiioh to the elastic state when one of the
four functions is set to zero. As an example, stress distribution in the hollow cone
with an isolated load was given.




