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 n mass-points m1 (x1, y1, z1), m2 (x2, y2, z2), …, mn (xn, yn, zn) that are subject to the condition: 

 

(1)     f (x1, y1, z1, x2, y2, z2, …, xn, yn, zn) = 0 

 

might be in equilibrium under the influence of any sort of unknown forces P1, P2, …, Pn . The 

properties and formulas that this assumption of equilibrium implies for those unknown forces shall 

be developed. 

 The equilibrium that exists will obviously not be perturbed when one adds any sort of new 

restrictions to the condition (1) [rather, by contrast, it will only be further strengthened in the event 

that such an expression is allowed]. Thus, e.g., that equilibrium will persist when one fixes the (n 

– 1) points m2, m3, …, mn , so one considers their coordinates to be unvarying, by which the motion 

of the point m1 will be restricted to that well-defined surface  that is represented by equation (1) 

[when those coordinates are thought of as unvarying]. However, the original state of affairs will 

then be reduced by the fact that the point m1 that displaces on  is found to be in equilibrium under 

the influence of the force P1. It follows from this that the force P1 must be normal to the surface 

, so its components X1, Y1, Z1 must possess the following form: 

 

X1 = 1

1

f
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




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Y1 = 1
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Z1 = 1

1
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




, 

in which 1 represents a still-unknown factor. 

 
 (1) Presented and submitted for printing at the session on 8 March 1886.  
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 Obviously, analogous statements will be true for the remaining forces P2, P3, …, Pn (their 

components X2, Y2, Z2, X3, Y3, Z3, …, Xn, Yn, Zn, respectively), such that one will arrive at the 

following 3n formulas: 

Xh = h

h

f

x





, 

(2) Yh = h

h

f

y





,  h = 1, 2, 3, …, n, 

Zh = h

h

f

z





, 

 

in which 1, 2, …, n represent still-unknown factors. 

 Once the directions of the unknown forces P1, P2, …, Pn have been determined from formulas 

(2), one must further deal with investigating their intensities, or (what amounts to the same thing) 

with investigating the unknown factors 1, 2, …, n . In order to go deeper into that, we revert to 

the original situation, which mean that the points m1, m2, …, mn that are subject to the condition 

(1) are in equilibrium under the influence of the forces P1, P2, …, Pn. That equilibrium will persist 

when one spatially fixes the (n – 2) points m3, m4, …, mn, but restricts the motion of the two points 

m1 and m2 to two fixed rectilinear tracks, moreover, which might be parallel, and whose common 

direction cosines might be denoted by , , . Therefore, as a consequence of the condition (1), 

the points m1 and m2 can move along those tracks only in such a way that their simultaneously-

traversed path-elements  s1 and  s2 will relate to each other as follows: 

 

1 2

1 1 1 2 2 2

f f f f f f
s s

x y z x y z
       

        
+ + + + +   

        
 = 0 , 

 

and those simultaneous path-elements  s1,  s2 will then be equal to each other as soon as one 

subjects the , ,  to the relation: 

 

(3)  
1 1 1 2 2 2

f f f f f f

x y z x y z
     

        
+ + + + +   

        
 = 0 . 

 

 Having established that, the points m1 and m2 can then be displaced along their parallel tracks 

G1 and G2 by only equal amounts, so they can move only in such a way that their mutual distance 

remains constant. Consequently, that mobility of the two points will suffer no obstruction or 

restriction in the event that one couples the two points with each other by a rigid line L. 

 However, if one imagines implementing such a thing then that will now reduce the original 

situation by the fact that the rigid line L, whose endpoints m1 and m2 can displace along the fixed 

parallel tracks G1 and G2, will be in equilibrium under the influence of forces P1 and P2 that are 

applied to their endpoints. It follows immediately from this that the sum of those components of 

P1 and P2 that correspond to the tracks must be equal to zero. One will then get the formula: 
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P1 cos (P1, G1) + P2 cos (P2, G2) = 0 . 

 

However, that formula can also be written: 

 

(X1  + Y1  + Z1 ) + (X2  + Y2  + Z2 ) = 0 , 

 

or when one recalls (2), also as: 

 

1 2

1 1 1 2 2 2

f f f f f f

x y z x y z
       

        
+ + + + +   

        
 = 0 , 

 

or, since , ,  are subject to the relation (3), also as: 

 

1 = 2 . 

 

 Analogously, one will obviously get 1 = 3, and furthermore, 1 = 3, etc., so in general: 

 

(4)    1 = 2 = 3 = … = n . 

 

However, if one denotes the common value of those n quantities briefly by  (with no index) then 

one will arrive at the following result, based upon formulas (2): 

 

 Theorem: 

 

 If n mass-points mh (xh, yh, zh), which are subject to a given condition: 

 

f (x1, y1, z1, x2, y2, z2 , …, xh, yh, zh) = 0 , 

 

are found to be in equilibrium under the influence of any forces Fh (Xh, Yh, Zh) then  those forces 

must necessarily possess values of the following form: 

 

Xh = 
h

f

x





, 

(5)  Yh = 
h

f

y

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
,  h = 1, 2, 3, …, n, 

Zh = 
h

f

z





, 

in which  represents an unknown factor. 

 In so doing, it should be added that this unknown factor  does not need to have a well-defined 

value, but rather, it can possess any arbitrary value. 
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 In order to show the validity of the last assertion, we will obviously need to show only that any 

of the forces P1, P2, …, Pn (e.g., P1) can have arbitrary strength. 

 To that end, we would like to fix the (n – 1) points m2, m3, …, mn once more, such that only the 

point m1 can still be displaced along the (previously-discussed) surface . Obviously, that point 

m1 will then be in equilibrium under the influence of an arbitrarily-strong force P1 in the event 

that it is normal to the surface . However, if we now imagine one such normal force P1 of 

arbitrary strength actually acts upon m1, and we denote the forces that are required to fix the (n – 

1) points m2, m3, …, mn by P2, P3, …, Pn, resp., then we will have n forces in total that will keep 

the point-system in equilibrium when taken together, and the strength of the first of them (namely, 

P1) can be chosen arbitrarily. Q.E.D. 

 

 However, we shall not go further into the question of how we must ultimately proceed in order 

to arrive the principle of virtual displacements from theorem (5). 

 
 Remark. – Should one have reservations about the fact that when one introduces the fixed parallel tracks G1, G2, 

the mutual distance between the two points m1, m2 remains constant under the motion that takes place only in the first 

instant, then one can easily avoid that aspect of the situation by replacing those tracks G1, G2 with two fixed curves 

C1, C2. Those curves C1, C2 can then be easily established in such a way that the points m1, m2 that displace along them 

and are subject to the condition (1), moreover, will possess a mutual distance that remains perpetually constant. 

 

 First theorem: 

 

 If three points m1, m2, m3 are subject to the condition that the area of the triangle that they 

define should remain constant, and if those points are found to be in equilibrium under the 

influence of any forces P1, P2, P3 then P1, P2, P3 will lie in the plane of the aforementioned triangle, 

as well as being perpendicular to the opposite sides of the triangle and being proportional to the 

lengths of those sides. 

 

 Second theorem: 

 

 If four points m1, m2, m3, m4 are subject to the condition that the volume of the tetrahedron that 

they define shall remain constant, and if those points are found to be in equilibrium under the 

influence of any forces P1, P2, P3, P4 then P1, P2, P3, P4 will be perpendicular to the opposite faces 

of the tetrahedron and be proportional to the areas of those sides. 

 

 Leipzig, 15 January 1886. 
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