On a simple method for establishing the principle of virtual velocities (${ }^{1}$)

By C. Neumann

Translated by D. H. Delphenich

n mass-points $m_{1}\left(x_{1}, y_{1}, z_{1}\right), m_{2}\left(x_{2}, y_{2}, z_{2}\right), \ldots, m_{n}\left(x_{n}, y_{n}, z_{n}\right)$ that are subject to the condition:

$$
\begin{equation*}
f\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n}\right)=0 \tag{1}
\end{equation*}
$$

might be in equilibrium under the influence of any sort of unknown forces $P_{1}, P_{2}, \ldots, P_{n}$. The properties and formulas that this assumption of equilibrium implies for those unknown forces shall be developed.

The equilibrium that exists will obviously not be perturbed when one adds any sort of new restrictions to the condition (1) [rather, by contrast, it will only be further strengthened in the event that such an expression is allowed]. Thus, e.g., that equilibrium will persist when one fixes the (n $-1)$ points $m_{2}, m_{3}, \ldots, m_{n}$, so one considers their coordinates to be unvarying, by which the motion of the point m_{1} will be restricted to that well-defined surface Ω that is represented by equation (1) [when those coordinates are thought of as unvarying]. However, the original state of affairs will then be reduced by the fact that the point m_{1} that displaces on Ω is found to be in equilibrium under the influence of the force P_{1}. It follows from this that the force P_{1} must be normal to the surface Ω, so its components X_{1}, Y_{1}, Z_{1} must possess the following form:

$$
\begin{aligned}
X_{1} & =\lambda_{1} \frac{\partial f}{\partial x_{1}}, \\
Y_{1} & =\lambda_{1} \frac{\partial f}{\partial y_{1}}, \\
Z_{1} & =\lambda_{1} \frac{\partial f}{\partial z_{1}},
\end{aligned}
$$

in which λ_{1} represents a still-unknown factor.

[^0]Obviously, analogous statements will be true for the remaining forces $P_{2}, P_{3}, \ldots, P_{n}$ (their components $X_{2}, Y_{2}, Z_{2}, X_{3}, Y_{3}, Z_{3}, \ldots, X_{n}, Y_{n}, Z_{n}$, respectively), such that one will arrive at the following $3 n$ formulas:

$$
\begin{align*}
X_{h} & =\lambda_{h} \frac{\partial f}{\partial x_{h}}, \\
Y_{h} & =\lambda_{h} \frac{\partial f}{\partial y_{h}}, \tag{2}\\
Z_{h} & =\lambda_{h} \frac{\partial f}{\partial z_{h}},
\end{align*}
$$

in which $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ represent still-unknown factors.
Once the directions of the unknown forces $P_{1}, P_{2}, \ldots, P_{n}$ have been determined from formulas (2), one must further deal with investigating their intensities, or (what amounts to the same thing) with investigating the unknown factors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. In order to go deeper into that, we revert to the original situation, which mean that the points $m_{1}, m_{2}, \ldots, m_{n}$ that are subject to the condition (1) are in equilibrium under the influence of the forces $P_{1}, P_{2}, \ldots, P_{n}$. That equilibrium will persist when one spatially fixes the $(n-2)$ points $m_{3}, m_{4}, \ldots, m_{n}$, but restricts the motion of the two points m_{1} and m_{2} to two fixed rectilinear tracks, moreover, which might be parallel, and whose common direction cosines might be denoted by α, β, γ. Therefore, as a consequence of the condition (1), the points m_{1} and m_{2} can move along those tracks only in such a way that their simultaneouslytraversed path-elements δs_{1} and δs_{2} will relate to each other as follows:

$$
\left(\frac{\partial f}{\partial x_{1}} \alpha+\frac{\partial f}{\partial y_{1}} \beta+\frac{\partial f}{\partial z_{1}} \gamma\right) \delta s_{1}+\left(\frac{\partial f}{\partial x_{2}} \alpha+\frac{\partial f}{\partial y_{2}} \beta+\frac{\partial f}{\partial z_{2}} \gamma\right) \delta s_{2}=0
$$

and those simultaneous path-elements $\delta s_{1}, \delta s_{2}$ will then be equal to each other as soon as one subjects the α, β, γ to the relation:

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x_{1}} \alpha+\frac{\partial f}{\partial y_{1}} \beta+\frac{\partial f}{\partial z_{1}} \gamma\right)+\left(\frac{\partial f}{\partial x_{2}} \alpha+\frac{\partial f}{\partial y_{2}} \beta+\frac{\partial f}{\partial z_{2}} \gamma\right)=0 . \tag{3}
\end{equation*}
$$

Having established that, the points m_{1} and m_{2} can then be displaced along their parallel tracks G_{1} and G_{2} by only equal amounts, so they can move only in such a way that their mutual distance remains constant. Consequently, that mobility of the two points will suffer no obstruction or restriction in the event that one couples the two points with each other by a rigid line L.

However, if one imagines implementing such a thing then that will now reduce the original situation by the fact that the rigid line L, whose endpoints m_{1} and m_{2} can displace along the fixed parallel tracks G_{1} and G_{2}, will be in equilibrium under the influence of forces P_{1} and P_{2} that are applied to their endpoints. It follows immediately from this that the sum of those components of P_{1} and P_{2} that correspond to the tracks must be equal to zero. One will then get the formula:

$$
P_{1} \cos \left(P_{1}, G_{1}\right)+P_{2} \cos \left(P_{2}, G_{2}\right)=0 .
$$

However, that formula can also be written:

$$
\left(X_{1} \alpha+Y_{1} \beta+Z_{1} \gamma\right)+\left(X_{2} \alpha+Y_{2} \beta+Z_{2} \gamma\right)=0,
$$

or when one recalls (2), also as:

$$
\lambda_{1}\left(\frac{\partial f}{\partial x_{1}} \alpha+\frac{\partial f}{\partial y_{1}} \beta+\frac{\partial f}{\partial z_{1}} \gamma\right)+\lambda_{2}\left(\frac{\partial f}{\partial x_{2}} \alpha+\frac{\partial f}{\partial y_{2}} \beta+\frac{\partial f}{\partial z_{2}} \gamma\right)=0,
$$

or, since α, β, γ are subject to the relation (3), also as:

$$
\lambda_{1}=\lambda_{2} .
$$

Analogously, one will obviously get $\lambda_{1}=\lambda_{3}$, and furthermore, $\lambda_{1}=\lambda_{3}$, etc., so in general:

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda_{3}=\ldots=\lambda_{n} . \tag{4}
\end{equation*}
$$

However, if one denotes the common value of those n quantities briefly by λ (with no index) then one will arrive at the following result, based upon formulas (2):

Theorem:

If n mass-points $m_{h}\left(x_{h}, y_{h}, z_{h}\right)$, which are subject to a given condition:

$$
f\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{h}, y_{h}, z_{h}\right)=0
$$

are found to be in equilibrium under the influence of any forces $F_{h}\left(X_{h}, Y_{h}, Z_{h}\right)$ then those forces must necessarily possess values of the following form:

$$
\begin{align*}
X_{h} & =\lambda \frac{\partial f}{\partial x_{h}} \\
Y_{h} & =\lambda \frac{\partial f}{\partial y_{h}}, \quad h=1,2,3, \ldots, n, \tag{5}\\
Z_{h} & =\lambda \frac{\partial f}{\partial z_{h}},
\end{align*}
$$

in which λ represents an unknown factor.
In so doing, it should be added that this unknown factor λ does not need to have a well-defined value, but rather, it can possess any arbitrary value.

In order to show the validity of the last assertion, we will obviously need to show only that any of the forces $P_{1}, P_{2}, \ldots, P_{n}$ (e.g., P_{1}) can have arbitrary strength.

To that end, we would like to $f i x$ the $(n-1)$ points $m_{2}, m_{3}, \ldots, m_{n}$ once more, such that only the point m_{1} can still be displaced along the (previously-discussed) surface Ω. Obviously, that point m_{1} will then be in equilibrium under the influence of an arbitrarily-strong force P_{1} in the event that it is normal to the surface Ω. However, if we now imagine one such normal force P_{1} of arbitrary strength actually acts upon m_{1}, and we denote the forces that are required to fix the ($n-$ 1) points $m_{2}, m_{3}, \ldots, m_{n}$ by $P_{2}, P_{3}, \ldots, P_{n}$, resp., then we will have n forces in total that will keep the point-system in equilibrium when taken together, and the strength of the first of them (namely, P_{1}) can be chosen arbitrarily. Q.E.D.

However, we shall not go further into the question of how we must ultimately proceed in order to arrive the principle of virtual displacements from theorem (5).

Remark. - Should one have reservations about the fact that when one introduces the fixed parallel tracks G_{1}, G_{2}, the mutual distance between the two points m_{1}, m_{2} remains constant under the motion that takes place only in the first instant, then one can easily avoid that aspect of the situation by replacing those tracks G_{1}, G_{2} with two fixed curves C_{1}, C_{2}. Those curves C_{1}, C_{2} can then be easily established in such a way that the points m_{1}, m_{2} that displace along them and are subject to the condition (1), moreover, will possess a mutual distance that remains perpetually constant.

First theorem:

If three points m_{1}, m_{2}, m_{3} are subject to the condition that the area of the triangle that they define should remain constant, and if those points are found to be in equilibrium under the influence of any forces P_{1}, P_{2}, P_{3} then P_{1}, P_{2}, P_{3} will lie in the plane of the aforementioned triangle, as well as being perpendicular to the opposite sides of the triangle and being proportional to the lengths of those sides.

Second theorem:

If four points $m_{1}, m_{2}, m_{3}, m_{4}$ are subject to the condition that the volume of the tetrahedron that they define shall remain constant, and if those points are found to be in equilibrium under the influence of any forces $P_{1}, P_{2}, P_{3}, P_{4}$ then $P_{1}, P_{2}, P_{3}, P_{4}$ will be perpendicular to the opposite faces of the tetrahedron and be proportional to the areas of those sides.

Leipzig, 15 January 1886.

[^0]: (${ }^{1}$) Presented and submitted for printing at the session on 8 March 1886.

