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 1. General problem statement. – In the previous chapter, the principles of mechanics were 

presented and discussed in their most-general form, as well as the equations of motion that arise 

from them. Therefore, the most natural question to ask next would be how one might actually carry 

out the integration of those equations, and in particular whether one cannot infer some essential 

conclusions from their character as differential equations of mechanics. In fact, that is the case, to 

a large extent, at least for problems for which a kinetic potential exists (cf., Chap. 2, no. 10). 
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 In order to do that, the main ideas of the theory of integration of Jacobi (1) and Hamilton (2) 

will be developed systematically. It has great significance, on the one hand, for celestial mechanics, 

and on the other, for that of the atom since neither constraints nor non-conservative forces exist 

for either of them, as least as long as one ignores tidal forces or radiation reactions, resp. 

 The structure of that theory is described in three steps: First of all, one tries to obtain the 

simplest-possible form for the differential equations. That leads to the canonical equations of 

mechanics. Secondly, one can ask about the general laws of the transformations of those 

differential equations that preserve their form. That leads to canonical transformations and the 

theory of their most-important invariants. Thirdly, the actual theory of integration of the system of 

canonical equations is presented, which consists of exhibiting and integrating the Hamiltonian 

partial differential equation. 

 The restriction to systems with a kinetic potential that was introduced before is the same one 

that makes Hamilton’s principle into a true variational principle. Therefore, an application of the 

methods of the calculus of variations will lead to a great simplification, and the deeper meaning of 

the peculiar Hamilton-Jacobi integration procedure will also be revealed by it, which we shall 

return to in the conclusion (3). 

 Above all, the book by Whittaker (4) should be cited as a modern reference. Jacobi (5) gave 

the first systematic development that also had fundamental significance in his famous lecture on 

dynamics. Many important connections with it, especially in regard to the theory of canonical 

transformations, are also included in Lie’s (6) investigations. 

 Our starting point is Hamilton’s principle. We shall then assume that a kinetic potential exists 

(cf., Chap. 2, no. 10), which is a function of the coordinates and velocities ( , , )k kL q q t  that is 

supposed to satisfy the equations of the system of Hamilton’s principle (see Chap. 2, no. 22): 

 
2

1

( , , )

t

k k

t

L q q t dt  = extremum.     (1) 

 

According to the rules of the calculus of variations, they read: 

 

k k

d L L

dt q q

  
− 

  
 = 0  (k = 1, 2, …, f). (2) 

 

L can have the most-general form in it, so it can also include time t, and it likewise allows forces 

that depend upon velocities in the sense of Chap. 2, no. 10. For example, for an isolated electron 

 
 (1) G. C. Jacobi, Vorlesungen über Dynamik, Werke Supplementband, 2nd ed., Berlin, 1888.  

 (2) W. A. Hamilton, Brit. Assn. Rep., 1834, pp. 513; Phil. Trans. (1835), pp. 95.  

 (3) The following presentation is connected, in many respects, and in particular, the employment of the calculus of 

variations, with the one that one of us (Nordheim) heard about in Hilbert’s lectures. At this point, we would also like 

to warmly thank Herrn Geh.-Rat Hilbert for his kind permission to use them.  

 (4) E. T. A. Whittaker, Analytical Mechanics, 2nd ed., Cambridge, 1917. German translation by F. and K. 

Mittelstein-Scheid, Berlin, Springer, 1924. 

 (5) See rem. 1 on pp. 1.  

 (6) S. Lie, Theorie de Transformationsgruppen, Bd. I-III, Leipzig, 1888-1890, in particular, Bd. II.  
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in the most-general case, i.e., when one considers the theory of relativity and the influence of 

arbitrary electric and magnetic fields that arise from potentials  and A, the Lagrangian will be: 

 

L = 
2

2

0 2
1 1

e
m c e

c c


 
− − + − 

 
 

v
Av .    (3) 

 

 One calls the expression on the left in (2) the variational derivative of L with respect to qk. We 

would like to denote it with the abbreviation [ ]
kqL : 

 

[ ]
kqL  

k k

d L L

dt q q

  
− 

  
.          (4) 

 

 

 2. Reduction of the problem to canonical form. – We shall now take the first step and look 

for the new and simpler form for the variational problem. In formula (1) of no. 1, L was a function 

of the qk, kq , and possibly t. Obviously, one will get a problem that is simpler, in a certain sense, 

if one can eliminate the derivatives kq . To that end, we simply introduce the kq  as new variables 

that are to be varied independently by setting: 

 

kq  − kk = 0 .      (1) 

The variational problem will then read: 

 
2

1

( , , )

t

k k

t

L q k t dt  = extremum,     (2) 

 

which will generally mean that equations (1) must now be added as an auxiliary condition. We will 

now have a variational problem with 2f unknowns and f auxiliary conditions. 

 The latter can be treated in the known way by the method of Lagrange factors (1). One 

multiplies them by the still-undetermined factors k and treats the absolute variational problem 

that now has 3f unknowns: 
2

1

{ ( )}

t

k k k

kt

L q k dt+ −  = extremum.    (3) 

 

 
 (1) Naturally, in the present problem, the neighboring curves must also satisfy the auxiliary conditions (1). One 

must them make use of that fact before the variation, as opposed to the situation with ordinary non-holonomic auxiliary 

conditions, for which the neighboring curves do not satisfy the auxiliary conditions, as was shown in Chap. 2, no. 20 

and 27.  
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Here, one can determine the k from the demand that the variational derivatives with respect to the 

new variables kl must vanish: 

( )

l

k k k

k k

L q k
 

+ − 
 

  = 0 . 

 

Since the 
kk  do not, in fact, appear in the bracketed expression, those equations will reduce to: 

 

l

l

L

k



−


 = 0 ,  l = 

l

L

k




. 

 

The l are thus determined by that. One can substitute their values and then obtain a free variational 

problem with 2f undetermined functions: 

 
2

1

{ ( , , ) ( )}

t

k k k k

k lt

L
L q k t q k dt

k


+ −


  = extremum.   (4) 

 

In that way, the extremum is to be chosen from all functions qk (t) and kk (t), but the kk need not be 

subject to any boundary conditions since their derivatives do not enter into the integral, nor does 

(1) of no. 1 include any conditions on the kq . One can see that the requirement (4) is actually 

completely equivalent to (1) in no. 1 as follows: The conditions for the desired functions read: 

 

 ( )

k

k k

k k q

L
L q k

k

 
+ − 

 
  = 0 , 

 

 ( )

k

k k

k k k

L
L q k

k

 
+ − 

 
 = − ( )k k

kk k

L
L q k

k k

  
+ − 

  
  = −

2

2
( )k k

k

L
q k

k


−


 = 0 . 

 

The second of them says nothing besides the fact that one must have kq  = kk, except for the singular 

cases where 2 2/ kL k   = 0, which were excluded here. If we substitute that into the first equation 

then we will return to the original form (1) of no. 1. 

 That proof of equivalence is necessary since (3) [(4), resp.] by itself does not by any means 

coincide with (1) of no. 1. That is because in (1) of no. 1, one seeks the extremum from among all 

quantities that arise when one substitutes all arbitrary functions qk (t) in L. In that way, the kq  are 

naturally determined, as well. By contrast, the kk are still taken to be arbitrary functions. The 

domain from which the extremum must sought will be much larger correspondingly. In fact, it can 

also be shown that in the event that the arbitrary trajectory makes the integral (1) of no. 1 into a 

true minimum, that cannot at all be the case for (4), but only that the integral assumes a saddle 

value then in such a way that it is initially made a maximum relative to the kk (t) for a fixed, but 
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arbitrarily-chosen qk (t), and it is only after that determination that the qk (t) are chosen in such a 

way that the integral will become a minimum relative to all of its variations. That was shown by 

Hilbert in his lectures. 

 However, for the purposes of mechanics, the character of an extremum, i.e., whether it is a 

maximum, minimum, or (as it is here) a saddle value, is entirely irrelevant. The only thing that 

matters is whether the variational derivatives are identical for the various forms that the variational 

problem can take, and therefore the curves that make the integral an extremum, which are just the 

desired trajectories. That is why we shall not go into the details of that here, but only remark that 

for a sufficiently-small neighborhood of the true motion, Hamilton’s integral (2) will become a 

true minimum (1). 

 We will address the form (4) later on. Here, we shall first take yet another step further by 

introducing the generalized impulses (see Chap. 2, no. 2): 

 

pk = 
( , )l l

k

L q k

k




 = 

( , )l l

k

L q q

q




     (5) 

 

as new unknowns in place of the kk. The kk will become functions of pk, qk, and possibly t by means 

of (5), and (4) will take the form: 

 
2

1

( , , )

t

k k k k

kt

p q L p q t dt
 

− 
 
  = extremum,          (6) 

in which: 

 H = − L + k

k k

L
k

k




   − L + k

k k

L
q

q




         (7) 

 

means the so-called Hamiltonian function. The kk in H are thought of as being expressed in terms 

of pk, qk, and t. Now, equation (6) has the simplest form that an absolute variational problem can 

assume since only the derivatives of a series of variables appear, and they appear only linearly and 

while multiplied by the other variables themselves. That is why they are also called canonical. One 

also calls the qk and pk canonical variables accordingly, and in particular, the pk are the canonically-

conjugate impulses to the qk . Naturally, the proof that (4) is equivalent to (6) is no longer necessary 

here since (6) emerges from (4) by a direct transformation. 

 Moreover, one can easily return to the variables kk ( kq , resp.), pk from the variables pk, qk . In 

order to do that, one partially differentiates H with respect to pk : 

 

k

H

p




 = 

l l

lk

L k p
p

  
− + 

  
  = − l l

l k

l lk k k

k kL
p k

k p p

 
+ +

  
  = kk .  (8.a) 

 

It further follows from this that: 

 
 (1) See, e.g., the book by Whittaker, Analytische Dynamik, pp. 265, that cited in rem. (1) on page 2.  
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,

.

k k k

k k k

k

k k

H
H L k p L p

p

H
L H p

p

 
= − + = − +  


 = − +

 

 


   (8.b) 

 

The transition from L to H will then have the same form as the inverse transition from H to L. One 

refers to it as the Legendre transformation, and it plays a role in many other branches of 

mathematics and physics. For example, in thermodynamics, it mediates the transition between the 

various thermodynamic potentials. 

 The differential equations of the variational problem, i.e., the equations of motion of the 

system, will take an especially simple form in the new variables. They will then read: 

 

k

l l

l p

p q H
 

− 
 
 = 0 , 

k

l l

l q

p q H
 

− 
 
 = 0 , 

 

and as one sees immediately, they will reduce to: 

 

,

.

k

k

k

k

dq H

dt p

dp H

dt q

 
=  


 = −

 

     (9) 

 

Those are the so-called canonical equations of mechanics, which define the starting point for most 

investigations of higher dynamics. Instead of the second-order system of f Lagrange differential 

equations (2) for the qk that was discussed in no. 1, they define a first-order system of 2f differential 

equations for the qk and pk . However, their derivation is completely equivalent to the former. 

 One can also perform the transformation of the differential equations of a mechanical system 

into canonical form when not all of the auxiliary conditions have been eliminated, but some of 

them are carried separately. If those auxiliary conditions are: 

 

r (qk, t) = 0 

 

then the corresponding Hamiltonian equations will read: 
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,

.

k

k

r
k r

rk k

H
q

p

H
p

q q




 
=  


 = − +

  


    (10) 

 

If the constraints have the non-holonomic form: 

 

rk k

r

a q  = 0 

 

then the second row will be replaced with: 

 

kp  = − r rk

rk

H
a

q



+


 .    (10.a) 

 

However, the use of those equations would hardly be advantageous since they have lost their 

symmetry (1). 

 We now ask what the mechanical meaning of the quantity H might be. If the kinetic energy T 

is a homogeneous quadratic function of the kq , as in the rule, then from Euler’s theorem for 

homogeneous functions: 

T = 1
2 k

k k

T
q

q




 .     (11) 

 

Since one must have L = T – U, by assumption, one will then have: 

 

k kp q  = k

k k

L
q

q




  = k

k k

T
q

q




  = 2 T , 

 

in the event that the potential energy V does not depend upon velocities. Therefore, under the stated 

assumptions: 

H = − L + k k

k

p q  = − T + U + 2T = T + U              (12) 

 

will be the total energy in the system. 

 The recipe for exhibiting the canonical equations is then conceptually simple. One needs only 

to know the energy as a function of the coordinates and impulse in order to be able to write them 

down directly. From (12), one must generally observe that this simple mechanical meaning of H 

is true only under the assumption that (11) is true. For other cases, e.g., when things are referred 

 
 (1) On this, see T. Pöschl, C. R. Acad. Sci. Paris 156 (1913), pp. 1829; S. Dautheville, Bull. Soc. Math. France 37 

(1909), pp. 120. 
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to a rotating coordinate system, H is no longer the energy by any means, and one must return to 

equation (7) in order to determine the Hamiltonian function (1). 

 One will get a first integral of the equations of motion directly when the Hamiltonian function 

does not include time explicitly. If one multiplies the canonical equations (9) by kq  ( kp , resp.) 

then it will follow that: 

dH

dt
 = k k

k kk k

H H
p q

p q

 
+

 
   = k k k k

k k

q p p q−   = 0 .  (13) 

 

H = const. = W 

 

is then an integral of the canonical equations. In the simplest case that was mentioned above, that 

would be nothing but the law of energy. 

 Furthermore, if the Hamiltonian function does not include a coordinate (e.g., q1) explicitly then 

it will follow immediately that: 

1p  = − 
1

H

q




= 0 , p1 = const.    (14) 

 

We will once more have an integral of the canonical equations then. For example, the law of areas 

p = const. for Keplerian motion will follow in that way, and its Hamiltonian function is written: 

 

H = 
2 2

2

1 1

2
rp p

m r r


 
+ − 

 
       (11) 

 

in plane polar coordinates r, . It is probably based upon that example, in which  has the meaning 

of the azimuth in the orbital plane, that one calls coordinates that the Hamiltonian function does 

not depend upon cyclic variables. That case will always occur when the energy does not depend 

upon the incidental value of one coordinate, such as, e.g., when it does not change under a 

translation or rotation of the entire system. In that way, one would get, e.g., the law of the center 

of gravity and the law of areas for free systems with no further analysis. We shall come back to 

that idea from a more general standpoint in nos. 9 and 11. (Cf., also no. 11 of the foregoing Chap. 

2.) 

 

 

 3. Canonical transformations. – We now move on to our second question and examine what 

sort of transformations can be performed on the variables that will preserve the canonical form of 

the equations of motion. 

 We then seek the substitutions: 

 
 (1) For the Hamiltonian function and the theory of integration in relativistic mechanics, see Chap. 10 of this volume 

of the Handbuch. Furthermore, see J. Frenkel, Lehrbuch der Elektrodynamik, Chap. 10, pp. 330, et seq., Berlin, 1926. 
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( , , ) ,

( , , )

i i k k

i i k k

q q Q P t

p p Q P t

= 


= 
         (1) 

 

that will take the variational problem [(6), no. 2] into an equivalent one with a new Hamiltonian 

function K : 
2

1

( , , )

t

k k k k

kt

P Q K P Q t dt
 

− 
 
 = extremum.    (2) 

 

We will not actually succeed in making the two integrals identical to each other in that way, but 

only in making them assume their extrema simultaneously, i.e., if the integral (6) in no. 6 assumes 

its extremal value for the functions qk (t), pk (t) then the integral (2) shall do the same thing for the 

functions Qk (t), Pk (t) that emerge from qk and pk under the inverse substitution to (1). 

 That will be guaranteed if and only if the two integrands differ by merely the complete 

derivative with respect to t of an otherwise-arbitrary function  (Qk, Pk, t). The integral will be 

independent of the path for such a thing, and it will give a constant value that will in no way affect 

the occurrence of an extremum for all cases in which the integration limits are fixed. The condition 

that the Qk and Pk must fulfill: 

 

k k

k

p q H−  = ( , , )k k

k

d
P Q K P Q t

dt


− + .    (3) 

 

 Naturally, that condition must also be true for all non-mechanical, varied integration paths in 

p, q, t-space. Now, since no kinematical constraints are supposed to exist between the qk, one can 

also write (3) more clearly in the form: 

k k

k

p q H t −   = k k

k

P Q K t −  +  ,            (4) 

 

which is a condition that must be fulfilled for a completely-arbitrary choice of the differentials qk, 

Qk, t. In that way,  will be explained by: 

 

 = k k

k kk k

Q P t
Q P t

  
 +  + 

  
  , 

 

but the Pk in that are always fixed by the qk, Qk, t since (for a well-defined t) obviously the 

2f relations: 

qk = k k k
k k

k kk k

q q q
Q P t

Q P t

  
 +  + 

  
  , 

pk = k k k
k k

k kk k

p p p
Q P t

Q P t

  
 +  + 

  
   
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must always exist for the 4f differentials qk, pk, Qk, Pk . Naturally, we must assume that the 

functional determinant of the transformation (1) is not equal to zero here. 

 In order to arrive at actual conditions for the transformation equations (1) from (4), we 

introduce qk in place of the Pk in  by imagining that we have solved the relations: 

 

qk = qk (Pi, Qi, t) 

for the Pk : 

Pk = Pk (qi, pi, t) . 

 

We assume that this solution is possible. In that way,  will go to a function V (qk, Qk, t). From 

(4), one will then have: 

 

( , , )k k k k

k

p q H p q t t −   = ( , , ) ( , , )k k k k k k

k

P Q K P Q t t V q Q t −  +  ,  (4.a) 

with: 

V = k k

k kk k

V V V
q Q t

q Q t

  
 +  + 

  
  . 

 

In order for equation (4.a) to be fulfilled identically, we must set the factors of qk, Qk, At on 

both sides equal to each other: 

,

,

.

k

k

k

k

V
p

q

V
P

Q

V
K H

t

 
= 


 

= − 
 


= + 

 

     (5) 

 

 Since one can generally calculate the qk as functions of the Pk, Qk from the equations in the 

second row, and then calculate the pk in the first row from them, equations (5) will always give a 

canonical transformation for an arbitrary choice of the function V (qk, Qk, t), and in that way, the 

third row will yield the new Hamiltonian K. The function V is called the generator of the 

transformation. The new canonical equations read: 

 

kdP

dt
 = − 

k

K

Q




, kdQ

dt
 = 

k

K

P




,  K = H + 

V

t




. 

 

In particular, if V does not include time explicitly then one will have simply: 

 

K = H . 
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 It is very remarkable that the canonical transformations are independent of the special nature 

of mechanical problems. The property of a transformation that it is canonical then does not depend 

at all upon the nature of the problem in question but is peculiar to the transformation itself. 

 We have preferred to use the variables qk, Qk in the generator V. We would just as well have 

taken any f of the variables qk, pk and any f of the Qk, Pk . The general result can then be expressed 

as follows (1): Let V (xk, Xk, t) be an arbitrary function of the 2f + 1 variables xk, Xk, t, such that the 

xk (k = 1, …, f) are any functions of the variables qk, pk, and the Xk are any functions of the Qk, Pk:  

 

,

,

k

k

k

k

V
y

x

V
Y

X

V
K H

t

 
=  


 

= 
 


= + 

 

      (6) 

 

will then be a canonical transformation. Therefore, yk will be conjugate to xk and Yk will be 

conjugate to Xk, and the upper sign will be valid when one differentiates with respect to a 

coordinate, while the lower sign will be valid when one differentiates with respect to an impulse. 

One often needs the canonical transformation in the form, e.g.: 

 

( , , ) ,

,

.

k k

k

k

k

k

V V q P t

V
p

q

V
Q

X




= 


= + 
 


= + 

 

            (5.a) 

 

 Each transformation of the configuration coordinates alone: 

 

qk = qk (Ql, t) , 

 

which is referred to as a point transformation since it will take each point in configuration space 

of the qk to another such thing, is also canonical. One only needs to take the transformation function 

to be: 

V = − ( )k l kq Q p ,          (7) 

and from (6), one will have: 

 
 (1) See M. Born, Vorlesungen über Atommechanik, Berlin, 1925, pp. 35. Cf., in addition, the detailed exposition 

in the following Chap. 4, no. 3, of this volume of the Handbuch.  
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qk = − 
k

V

p




 = qk (Ql) . 

 

The identity transformation is obtained from: 

 

V = − k k

k

Q p .     (8) 

 

 Above and beyond that, the theory of canonical transformations allows one to introduce more 

general dynamical coordinates in such an exceptionally free manner that their choice can mostly 

be suited to each problem precisely. Naturally, the character of the variables Qk, Pk as configuration 

and impulse coordinates will be lost for the general transformations (6). It is only when taken all 

together that they will give a picture of the configuration and state of motion of the system in 

question. Due to their mathematical relationship to the contact transformations of geometry, those 

transformations will frequently be given the name of contact transformations. 

 One can also perform canonical transformation that fulfill certain auxiliary conditions when 

the latter can be brought into the form of a relationship between the old and new coordinates: 

 

r (qk, Qk, t) = 0 .     (9) 

 

That can be added to the identity (4) by simply introducing Lagrange multipliers r , and one will 

then get the equations that determine the corresponding canonical transformations: 

 

,

,

,

r
k r

rk k

r
k r

rk k

r
r

r

V
P

q Q

V
p

q q

V
K H

t t







 
= +  




= − − 
  


= + + 

  







           (10) 

 

and together with the relations (9), they suffice precisely to determine the quantities qk, pk, r as 

functions of the Qk, Pk. One specialization of that is, e.g., the existence of an auxiliary condition: 

 

 (qk, t) = 0 

for the original coordinates. 

 Ultimately, one must also be able to multiply the left-hand side of (3) by a constant factor  

without affecting the property of the transformation that it is canonical. That will lead to, e.g., 

transformations of the type: 

Pk = pk , Qk =  qk , K =  H            (11) 
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that will be used many times. By contrast, the general form of the contact transformation that is 

customary in geometry, where  is an arbitrary function of the variables, is inapplicable here. 

 As was said before, the canonical transformations are independent of the choice of special 

Hamiltonian function. Therefore, if one wishes to have only the conditions for the transformation 

of the pk, qk into the Pk, Qk themselves then one can restrict oneself to the variations with t = 0 in 

(4), i.e., treat t like a constant parameter. If we characterize those variations by a  to distinguish 

them, then we can write the conditions for canonical transformations in the form: 

 

k k

k

p q  = ( , , )k k k k

k

P Q P Q t +  ,           (12) 

 

in which no mention of the special nature of the mechanical problem is found at all. The variations 

 and  are then described by (1): 

 

( , , ) ,

( , , ) ,

k k k k

k kk k

k k k k

k kk k

F F F
F p q t q p t

q p t

F F
F p q t q p

q p
  

   
 =  +  +     


  = +

  

 

 
  (13) 

 

respectively. Equation (12) will then have the same degree of generality as (4) in terms of 

characterizing the transformation, and one needs only the latter form in order to determine the new 

Hamiltonian function. Naturally, one can also introduce the q into  in place of the P beforehand 

and obtain the explicit equations of transformation (5) with the help of the function V (qk, Qk, t). 

 With the introduction of canonical transformations, the most important step has already been 

taken in regard to the theory of integration of the mechanical equations that will be presented in 

nos. 12, et seq. Knowledge of what is contained in nos. 4 to 11, namely, the further exposition of 

the properties of canonical transformations, is not necessarily required for an understanding of it. 

They can therefore be skipped over in an initial study of the topic.  

 

 

 4. Introducing time as a canonical variable. – One can arrive at a symmetric form for the 

general variational principle of mechanics by starting from the canonical variational problem when 

one strips time of its special role. Formally, one can initially eliminate the Hamiltonian function 

( , , )H p q t  that still remains in the integral in equation (6) or no. 2 by adding an auxiliary condition 

and requiring that: 

k k

k

p q W dt
 

− 
 
  = extremum, 

 

 
 (1) The symbols  and  are chosen by analogy with the general and virtual displacements in Chap. 2, no. 23. The 

difference between them is merely that now the pk will also be varied since they also appear as variables in the 

variational problem. 
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under the auxiliary condition that: 

W = ( , , )H p q t . 

 

If we now introduce a new parameter  in place of t, so t = t (), e.g., the arc-length along the 

trajectory or the proper time in the theory of relativity, then we will get the form: 

 

k
k

k

dq dt
p W d

d d


 

 
− 

 
  = extremum,    (2) 

with 

W = H (p, q, t) 

 

as the auxiliary condition. That form is closely related to introducing t itself as a new canonical 

variable q that is conjugate to the impulse p = − W, and in that way, we will get the completely-

symmetric form: 

( )k kp q d + pq  = extremum,     (3) 

while one will also have: 

F (pk, qk, p, q) = H + p = H = W = 0 .    (4) 

 

The prime in that characterizes the derivative with respect to . The mechanical system is no longer 

characterized by a function then, namely, the Hamiltonian function, but by an equation, namely: 

 

F (pk, qk, p, q) = H = W = 0          (4) 

 

between the 2l + 2 canonical variables and impulses. That form of the variational problem can also 

be adapted to, e.g., the theory of relativity. In general, an arbitrary function F (p, q, W, t) = 0 can 

enter in place of F  H – W, but it can always be forced to take the canonical form (4) by solving 

it for W. 

 With the multiplier prescription of no. 2, the general equations of motion will become: 

 

, ,

, ,

k

k

k

k

dq F dt F F

d p d W

dp F d dW F

d q d d t

  
 

 
  

   
= + = + = −    


  = − = − = −

  

p

p
        (5) 

 

and for the canonical form F = H – W, since: 

 

dt

d
= −

F

W





= −

( )H W

W


 −


 =  , 

 

they will reduce to the ordinary canonical equations: 
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( ) ( )
, ,

( )
, .

k

k k

k

k k

dq d H W H dW d H W H

d dt p p d dt t t

dp d H W H dt

d dt q q d

 

 




 

 −   −  
= = = =     


 −  = − = − =

  

       (6) 

 

 One can also generalize the canonical transformations in such a way that they subsume time. 

In order to do that, the necessary and sufficient condition is obviously that the differential form: 

 

k k

k

p p t +  p , 

 

in which the variables pk, qk, p, t are coupled by the auxiliary condition: 

 

H + p = 0 ,              (7) 

should go to the differential form: 

k kP Q T +  +  P , 

 

whose variables are coupled by the corresponding auxiliary condition: 

 

K + P = 0 . 

 

That will imply any arbitrary canonical transformation of the 2f + 2 variables qk, pk, t, p into Qk, 

Pk, T, P, which is therefore generated by an arbitrary function ( , , , )k kV q Q t T . In so doing, the 

function K must be determined in such a way that one performs the transformation in equation (7) 

and solves the relation thus-obtained for P, and thus finds: 

 

P = − K (Qk, Pk, T) . 

 

 Should t in particular not be transformed, i.e., t goes to T, then V 
 will have the form: 

 

V 
 = P t + V (qk, Qk, t) , 

 

since from equation (6) in no. 3, one will have: 

 

T = 
V 

P
= t , p = − W = 

V

t




 = P + 

V

t




, 

i.e.: 
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− P = K (Qk, Pk, t) = W + 
V

t




 = H + 

V

t




. 

 

Naturally, one comes back to the formula in no. 3. 

 

 

 5. Integral invariants. – Just like with every transformation, the question of invariants also 

has great importance for canonical transformations, i.e., the question of what functions will not 

change their values under the transformation. One can give a whole series of such invariants for 

all canonical transformations. We shall first discuss the integral invariants that Poincaré (1) was 

the first to consider. 

 When the integral: 

J1 = k k

k

dp dq        (1) 

 

is extended over an arbitrary two-dimensional region of the 2f-dimensional phase space of pk and 

qk, it will be is an invariant of a canonical transformation. In order to prove that, we represent that 

two-dimensional region in such a way that we shall give pk and qk as functions of two parameters 

u and v. In it, we will have: 

J1 = 

k k

k k k

p q

u u
du dv

p q

v v

 

 

 

 

 .     (2) 

 

We assume that the canonical transformation has the form: 

 

( , , )
,

( , , )
,

k k
k

k

k k
k

k

V q P t
p

q

V q P t
Q

P

 
=  


 =

 

           (3) 

 

and introduce the pk as functions qk, Pk, in J1 by means of equations in the first row, whereby the 

value of t is fixed in (3), so t can be treated as a constant parameter. One will then have: 

 

k k

k k k

p q

u u

p q

v v

 

 

 

 

  = 

2

2

l k

l k l

k l k

l k l

P qV

q P u u

P qV

q P v v

 

   

 

   






 = 
2

,

l k

k l l kk l

P q

V u u

P qq P

v v

 

  

  

 

  . 

 
 (1) H. Poincaré, Les méthodes nouvelles de la mécanique céleste, t. III, Chap. 22/23, Paris, 1899. The proof is in 

E. Brody, Zeit. Phys. 6 (1921), pp. 224. 
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By switching the indices, that will give: 

2

,

k l

l k k ll k

P q

V u u

P qq P

v v

 

  

  

 

  . 

 

If we now take the qk, Pk to the Qk, Pk with the help of the second row of equations (3) then that 

will give: 
2

2

k l

l k l

k k l

l k l

P qV

u P q u

Q qV

v P q v

 

   

 

   






 = 
,

k l

l k k l

P Q

u u

P Q

v v

 

 

 

 

  , 

 

which also proves the invariance of the integral (1). 

 One can prove the invariance of: 

 

J2 = 
,

k l k l

k l

dp dp dq dq        (5) 

and in general, that of: 

Jn = 
1 1

1

2

, ,
n n

n

n

k k k k

k k

dp dp dq dq         (6) 

 

analogously. The last integral in this sequence is the volume of the phase space of pk and qk : 

 

Jf = 
2

1 1

f

f fdp dp dq dq  ,             (7) 

 

so that is also an invariant under canonical transformations. In that way, it is also shown, at the 

same time, that the functional determinant of a canonical transformation is equal to 1. 

 As will be shown later (no. 9), the time variation of the coordinates and impulses of a 

mechanical system can also be regarded as a canonical transformation of it. Therefore, all 

invariants of canonical transformations are also invariants of motion. That is understood to mean 

that the points of the corresponding 2n-dimensional region in phase space are to be thought of as 

the image points of a corresponding manifold of the same mechanical system with a somewhat-

different initial configuration. Under the motion of that system, the original domain of values p, q 

over which one must integrate will be taken to a different one that will have the same value, 

according to our theorems. Therefore, the worldlines of that system in p, q, t-space will define a 

tube of constant cross-section. For Jf, that is Liouville’s theorem, which is fundamental to 

statistical mechanics. 

 The integral invariants (1) and (6) to (7) are called absolute since no sort of assumptions about 

the domain of integration is made in them. They can be converted into relative ones with the help 
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of Stokes’s theorem, i.e., integral invariants that are extended over closed domains of integration 

whose order (i.e., whose number of integrations) is lower. For example, the invariance of the 

integral that is performed over a closed curve in p, q-space (that must lie on a plane t = const. in p, 

q, t-space): 

J1 = k k

k

p dq         (8) 

will enter in place of (1). 

 Moreover, as will be shown in no. 6, it will follow conversely from the existence of the integral 

invariant (8) [(2), resp.] for a system of transformation equations: 

 

( , , ) ,

( , , )

l l k k

l l k k

q q Q P t

p p Q P t

= 


= 
         (9) 

 

that they can be brought into the form of equation (6) in no. 6, so the transformation that one 

employs will be canonical. 

 If one chooses the domain of integration in (1) to be the parallelogram that is spanned by two 

infinitesimal vectors in pq-space whose components are dqk, dpk (qk, pk, resp.) then one will have 

the invariance of the bilinear covariant: 

 

( )k k k k

k

p dq dp q −      (10) 

 

that belongs to the differential form k k

k

p dq . From what was said before, its invariance is also 

sufficient for the transformation to be canonical in nature. Moreover, from what we remarked in 

regard to equation (3), the invariance of (10) will be true only when either V is independent of time 

or the two small vectors, along with their images in P, Q, t-space, lie on the planes t = const., i.e., 

when they are -variations, in the sense of no. 3. On the other hand, it is not (10) that is invariant, 

but the covariant: 

( )k k k k

k

p dq dp q −   − (H dt – dH t),    (11) 

 

which belongs to the differential form.  

 

 

 6. The conditions for canonical transformations, when expressed in terms of the Lagrange 

and the Poisson-Jacobi bracket symbols. – One refers to the expressions that appeared in (4) of 

no. 5: 
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[ , ] k k k k

k

k k

k k k

q p p q
u v

u v u v

p q

u u

p q

v v

     
= −  

     
 


  = −
 


  





   (1) 

 

as Lagrange brackets. As we showed at the time, they are invariant under canonical 

transformations. In no. 5, u and v were understood to mean the values of the coordinates that belong 

to the parameters of a two-dimensional section of pq-space. Naturally, the coordinate values 

themselves can also serve as such things. That will lead to the equations: 

 

[ , ] [ , ] 0,

0 for
[ , ]

1 for .

i k i k

i k ik

p p q q

i k
q p

i k


= = 


 
= =  = 

    (2) 

Invariance means that the equations: 

 

[ , ] [ , ] 0,

[ , ]

i k i k

i k ik

P P Q Q

Q P 

= = 


= 
      (3) 

 

will also be valid as long are the transformation (p, q) → (P, Q) is canonical. Conversely, equations 

(3) will, in turn, suffice to ensure the canonical character of the transformation, as we will soon 

show. They are then the characteristic differential equations that the p, q must satisfy as functions 

of P, Q in order for the transformation to be canonical. The proof is obtained as follows: 

 When equations (3) are written out in detail, they will read: 

 

  [Qk, Pj] = l l l l

l k j k j

q p p q

Q P Q P

    
−      

  = jk , 

  [Qk, Qj] = l l l l

l k j k j

q p p q

Q Q Q Q

    
−      

  =  , 

  [Pk, Pj] = l l l l

l k j k j

q p p q

P P P P

    
−      

  =  . 

They can be rewritten as follows: 

 

 l l
l k l

l lj k k j

q q
p P p

P Q Q P

    
− −           

    = 0 , 
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l l
l k l j

l lj k k j

q q
p P p P

Q Q Q Q

    
− − −          

   = 0 , 

  l
l

lj k

q
p

P P

 
 

  
  − l

l

lk j

q
p

P P

 
    
  = 0 . 

 

However, those equations mean that a function  (Qk, Pk, t) exists for which: 

 

l
l k

l k

q
p P

Q


−


 = 

kQ




 

and 

l
l

l k

q
p

P




  = 

kP




. 

 

If one now defines the -variation of : 

 

   = k k

k kk k

Q P
Q P

 
 

+
 

   

= 
, ,

l
l k l k k k

k l k l kk k

q
p Q p P P Q

Q P
  

 
+ −

 
   , 

 

and considers the fact that: 

ql = l l
k k

k kk k

q q
Q P

Q P
 

 
+

 
   

then one will get: 

  = l l k k

l k

p q P Q −  . 

 

Therefore, the transformation formulas: 

 

qk = qk (Ql, Pl, t) , pk = pk (Ql, Pl, t)           (4) 

 

will obey the relation (12) in no. 3: 

 

k k

k

p q  = k k

k

P Q +   (P, Q, t) . 

 

In other words, the transformation (4) is canonical. 

 With that, the statement that was made before in the context of [(8), no. 5] that the existence 

of the invariant [(8), no. 5] or [(2), no. 2] is sufficient to ensure the canonical character of the 

transformation (4) can now be justified since that invariant has equations (3) as a consequence. 



L. Nordheim and E. Fues – Hamilton-Jacobi Theory. 21 

 

 The Lagrange brackets are closely related to what are called Poisson or Jacobi symbols: 

 

(u, v) = 
k k k k k

u v u v

q p p q

    
− 

    
  .    (5) 

 

The connection between the two of them consists of the fact that for any 2f independent functions 

u1, …, u2f, the following equations will be true for pk, qk : 

 
2

1

( , )[ , ]
f

l r l r

l

u u u u
=

  = rs .         (6) 

 

One confirms immediately by direct calculation that when one considers the fact that the sums: 

 
2

1

f

t

t t

u y

x u=

 

 
  

 

will be non-zero and equal to unity only when x and y mean the same quantity from the pk, qk. 

 Equations (3) and (6) will imply the further necessary and sufficient condition for 

characterizing a canonical transformation in the form of the system: 

 

(Pi, Pk) = (Qi, Qk) = 0 , (Qi, Pk) = ik    (7) 

 

when one takes the ui to be the Pk and Qk themselves. They represent the differential equations that 

the new variables P, Q must fulfill as functions of the original p, q (so the inversion formula for 

the transformation) in order for them to be canonical. Equations (7) mean the same thing as the 

invariance of the special bracket symbols in question. However, the invariance of the Poisson 

bracket (u, v) for any two functions u and v of the qk, pk can also be proved from the invariance of 

[u, v] with the help of (6) 

 

 

 7. Further properties of the bracket symbols. The theorems of Poisson and Lagrange. – 

In recent times, the Poisson brackets have taken on a special significance as a result of their 

adaptation to quantum mechanics (1). Some further rules of calculation and theorems that relate to 

them might find a place here then. 

 From the definition [(5), no. 6], one initially has the identities: 

 

 
 (1) Cf., especially the work of P. A. M. Dirac in the Proc. Roy. Soc. London (A) 109 (1925), pp. 642; ibid. 110 

(1926), pp. 561; ibid. 111 (1926), pps. 281, 405.  
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( , ) 0, ( , ) ( , ),

( , ) ( , ) , ( , ) ( , ).j j j j

j j

u u u v v u

u u
u p p u q u u q

q p

= = − 


  = = − = = −
  

       (1) 

 

Moreover, one has: 

(u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0   (2) 

 

identically. Namely, the left-hand side is obviously linear and homogeneous in the second 

derivatives of u, v, w. We shall now combine only the terms that include the second derivatives of 

u. The first term in (2) certainly includes only first derivatives. From (1), the second and third ones 

can be written in the form: 

 

(v, (w, u)) + (w, (u, v)) = (v, (w, u)) − (w, (v, u)) . 

 

If we introduce the differential operators: 

 

D1 (f) = (v, f) ,  D2 (f) = (w, f) 

 

then the terms that might contain the second derivatives can be combined into the form: 

 

(D1 D2 – D2 D1) u . 

 

However, such a combination of two linear differential operators will never include second 

derivatives. Namely, if one has, say: 

 

D1 = k

k kx





 , D2 = k

k kx





 , 

then one will have: 

D1 D2 = 
2

, ,

l
k l k

k l k lk l k lx x x x


  

 
+

   
  , 

D2 D1 = 
2

, ,

l
k l k

k l k lk l k lx x x x


  

 
+

   
  . 

Therefore: 

D1 D2 – D2 D1 = l l
k k

l k k k lx x x

 
 

    
−  

    
   

 

is also an operator that contains only first derivatives. As a result, no terms at all with second 

derivatives of u can enter into (2), and since the same thing must be true for v and w, the entire 

expression must vanish identically. Eq. (2) is the so-called Jacobi identity. 

 As a result of (1), it is possible to give the canonical equations of motion [cf., (9), no. 2]: 
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kp  = − 
k

H

q




, kq  = 

k

H

p




,     (3) 

the form: 

kp  = (pk, H) , kq  = (qk, H) ,     (4) 

 

which is a reasonable adaptation of the one that is employed in quantum mechanics. 

 If one considers (3) then one will further see that for every integral F (q, p) = a of the motion 

that does not include time t explicitly, one will have: 

 

(F, H) = 0 .               (5) 

 

That theorem means only that the gradient of the hypersurface F (q, p) = a in 2f-dimensional pq-

space will be perpendicular to the phase trajectory element: 

 

  dqk = kq dt  =    
k

H
dt

p




, 

  dpk = kp dt  = −
k

H
dt

q




, 

 

so the element lies completely in the surface. 

 Finally, we shall derive a noteworthy and important theorem of Poisson whose full significance 

was first known to Jacobi, in general. It allows one to find new integrals of the mechanical 

equations in some cases. It says: If F = const. and G = const. are two time-independent integrals 

of the canonical equations (3) then their Poisson bracket will be: 

 

(F, G) = 
k k k k k

F G F G

q p p q

    
− 

    
  = const.    (6) 

 

Equation (6) will then be an integral again. 

 The proof follows immediately from (2) when one considers the ffact that from (5), one will 

have: 

(H, F) = 0  and (H, G) = 0 . 

Namely, that will give: 

(H, (F, G)) = 0 ,     (7) 

 

i.e., (F, G) = const. is an integral of the canonical equations. 

 Naturally, one will not always get new integrals by that process since there is only a restricted 

number of them at all, but rather one will often get only a trivial one or one that is a function of 

the first two F, G. 

 There is also an analogue of theorem (6) for the Lagrange brackets. If we employ the theorem 

that was mentioned before and will be established later that the change in coordinates of a 
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mechanical system in the course of its motion can be regarded as the evolution of a canonical 

transformation then one get Lagrange’s theorem from the invariance of the brackets. It says that 

for any two-dimensional family of solutions of the canonical equations: 

 

qj = qj (a, b, t) , pj = pj (a, b, t) , 

 

in which a and b are arbitrary integral constants, the corresponding Lagrange bracket will satisfy: 

 

[a, b] = const. 

 

for all time, i.e., along the whole mechanical trajectory. 

 All of the theorems above can be easily generalized to systems (integrals, resp.) that include 

time explicitly when one regards time as a canonical variable, as in no. 4. As a definition of the 

Poisson brackets (which will now be written with curly brackets, in order to distinguish them), one 

will then have: 

{ , } ( , )

( , ) .

u v u v
u v u v

t W W t

u v u v
u v

t t

    
= − +     


   

= + −
    p p

         (9) 

 

One can also extend the Lagrange brackets correspondingly. The considerations of this section and 

no. 6 can then be adapted, word-for-word, except that one must replace H with H – W (H + p) 

everywhere. 

 Thus, the form (4) of the canonical equations now corresponds to: 

 

( )
{ , ( )} ,

( )
{ , ( )} ,

{ , ( )} 1

( )
{ , ( )} .

k k

k k

k k

k k

H W H
p p H W

q q

H W H
q q H W

p p

t t H W

H W H
W W H W

t t

 −  
= − = − = −  


 −  

= − = = 
  


= − =


 − 

= − = = 
  

  (10) 

 

It follows from them that for arbitrary functions F (pk, qk, W, t): 

 

F  = k k

k k k

F F F F
q p W

q p t W

    
+ + + 

    
  = {F, (H – W)} .        (11) 

 

Every integral of the equations of motion will then fulfill the condition that is analogous to (5): 
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{F, (H – W)} = 0 ,     (12) 

which will reduce to: 

{F, H} + 
F

t




= 0     (13) 

 

for integrals that are independent of W. Now, Poisson’s theorem says that when F = const. and G 

= const., one will also have that: 

{F, H} = const.     (14) 

 

is an integral of the canonical equations (10). The simple form (6) will follow from equation (14) 

only when F and G are both independent of W. Therefore, the restriction to time-independent 

integrals is not essential for (6) to be true. 

 

 

 8. Continuous transformation groups. – The question of what sort of meaning that the 

integrals of the canonical equations would have for the variational problem can be treated in a very 

elegant way with the help of the theory of transformation groups. In order to do that, we must first 

preface a few theorems about them. 

 We subject the mechanical system to a transformation of the form (1): 

 

( )

1

( )

1

( , , ) ( , ) ,

( , , ) ( , ).

n n

k k l l k k l l

n

n n

k k l l k k l l

n

P P p q p p p q

Q Q p q q q p q

 

 



=



=


= = + 



= = +





   (1) 

 

Thus, this transformation includes another parameter that will allow one to develop it in a power 

series, and it will go to the identity transformation when  = 0. If  is very small then we will have 

a transformation in the neighborhood of the identity. One then calls it an infinitesimal 

transformation. For every value of , we will have a certain transformation. A whole family of 

transformations is then determined by (1). 

 We would now like to demand that those transformations should define a group, i.e., that when 

two of the transformations with any values 1, 2 are performed in succession, that will again yield 

a transformation of the family. Lie (2) has shown that on the basis of that requirement, the linear 

terms in the development (1), which we would like to denote by pk, qk, will also determine all of 

the following terms, and therefore they will be characteristic of the transformation by themselves. 

Only a group would belong to a theorem about such terms. Proving that would take us too far 

afield. We restrict ourselves to merely specifying the transformations, so to showing how we will 

get the higher-order terms from the first-order ones. 

 
 (1) It is entirely irrelevant in this whether one regards the pk, qk or the Pk, Qk are the original variables. For the sake 

of the more-convenient application in no. 9, we shall write it in the form above that corresponds to the solution of a 

transformation pk = pk (P, Q), qk = qk (P, Q). 

 (2) S. Lie, Theorie der Transformationsgruppen, Bd. I, Leipzig, 1888, pp. 51, et seq. 
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 One constructs the following differential operator with the help of the pk, qk: 

 

D = k k

k kk kp q

 
+

 
 p q ,     (2) 

 

which one refers to as the generating symbol of the group. Therefore, D is also given by pk, qk. 

Now, there are three different ways of defining the transformations that form the group, which will 

naturally lead to identical results. 

 

 a) One defines the series: 

 

2 21
2

0

2 21
2

0

[ ] ,
!

[ ] .
!

n
n

k k k k k k

n

n
n

k k k k k k

n

P p p D p D p D p
n

Q q q D q D q D q
n


 


 



=



=


=  + + + = 



=  + + + =






  (3) 

 

The nD  in them are operators that arise by an n-fold application of D. We introduce the symbol: 

 

[F] = 
0 !

n
n

n

D F
n



=

 ,     (4) 

 

here, to abbreviate. The series (3) can therefore be determined by only differentiations and 

multiplications with the help of the pk, qk then, and will also become convergent for sufficiently-

small , as is easy to show. Moreover, we obviously have that for an arbitrary function F (pk, qk): 

 

F (Pk, Qk) = F ([pk], [qk]) = [F (pk, qk)] .            (5) 

 

We also see from the representation (3) that the general transformation (1) can be constructed by 

continually repeating the linear (infinitesimal) transformation: 

 

Pk = pk +  pk , Qk = qk +  qk . 

 

 b) One defines the partial differential equation for the function F of the 2f + 1 variables pk, qk, 

 : 

F






 = D F = k k

k kk k

F F

p q

 
+

 
 p q ,           (6) 

 

and seeks those integrals F (pk, qk, ) that go to the variables pk, qk themselves for  = 0. The 2f 

integrals Pk (, pl, ql), Qk (, pl, ql), thus-determined will again be precisely the desired 
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transformation functions. One sees that this definition coincides with the first one from the 

definition (4), from which, it follows that: 

  D [F] = 1

0 !

n
n

n

D F
n


+

=

 , 

  [ ]F





 = 1

0 !

n
n

n

D F
n


+

=

  

 

for any function [F]. Any function [F] will then satisfy the differential equation (6) in its own right. 

Therefore, the functions Pk (pl, ql), Qk (pl, ql) that are defined in both ways must also coincide for 

 = 0, which will establish them uniquely, together with the differential equation (6). 

 

 c) The functions that represent the transformation are also the solutions of the system of 2f 

ordinary differential equations: 

( , ) ,

( , ) ,

k
k l l

k
k l l

dP
P Q

d

dQ
P Q

d






= 


=


p

q

     (7) 

 

which assume the values pk, qk for  = 0. In that way, the new variables are thought of as being 

introduced into the right-hand sides by means of (3), while the old variables appear as integration 

constants of the system (7). One also sees that this definition agrees with the first one, and therefore 

the second one, as well, with the help of the series developments in (3) and the definitions (2), (4), 

and (5) because one will have, in succession, e.g.: 

 

kdP

d
 = 

[ ]kd p

d
 = [D pk] = [pk] = pk ([pl], [ql]) = pk (pl, ql) . 

 

 A connection between the different transformation of the group is likewise much simpler to 

show with the help of the representation (2). Namely, if f1, f2, …, ff are solutions of a linear, 

homogeneous, partial differential equation like (6) then it is known that an arbitrary function F (f1, 

…, ff) will also be so. Now, since, e.g., if 
1

[ ]kp  =
is a solution of (6) then the same thing will be 

true for 
1 2

[[ ] ]kp   =
, and since [pk]0 is the identity transformation, one will have 

20[[ ] ]kp  = 
1

[ ] .kp   

However, the solution 
1 2

[ ]kp  +
 also has the same property that it will be equal to 

2
[ ]kp   for 1 = 

0, but since there is only one solution of the partial differential equation that is equal to for 
2

[ ]kp   

for 1 = 0, one must have: 

1 2
[[ ] ]kp   = 

1 2
[ ]kp  +

, 
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i.e., when the transformations with the parameters 1 and 2 are performed in succession, that will 

give the transformation with the parameter 1 + 2. With that, it is proved that our transformations 

actually define a group. 

 

 If one now considers a function f (pk, qk) and applies the transformation (3) to it then it will go 

to: 

f (Pk, Qk) = [f (pk, qk)] = 
0

( , )
!

n
n

k k

n

D f p q
n



=

 . 

 

If f goes to itself in that way then one would call such a function an invariant of the group. In order 

for that to be true, it is obviously necessary and sufficient that one must have: 

 

D f (pk, qk) = 0 

 

identically in the pk, qk since all higher powers in the power series will vanish then, and only the 

zeroth-order term, i.e., the identity operator, will remain. The invariants of the group will then 

satisfy the partial differential equation: 

 

D f = k k

k kk k

f f

p q

 
+

 
 p q  = 0 .    (8) 

 

 

 9. The meaning of the integrals for canonical equations. – Following that preliminary 

excursion, we shall now return to mechanics and ask when such a transformation group is 

canonical, so it includes only canonical transformations. For the sake of simplicity, we restrict 

ourselves to the case in which the independent variable t does not appear in the Hamiltonian 

function. Otherwise, as in no. 4, t must be likewise treated as a canonical variable and transform 

it, as well. 

 The condition for canonical transformations was equation [(12), no. 3]: 

 

k k

k

p q  = 
k kP Q +  ,    (1) 

 

in which the operation  was defined by: 

 

 f (pk qk) = k k

k kk k

f f
p q

p q
 

 
+

 
  . 

 

If we introduce the developments [(3), no. 8] into this then when we recall equation [(2), no. 8], 

that will give: 
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k k

k

p q  = 
0

( ) ( )
2! 2!

n n
n

k k k k k k n

k n

p D q D
 

      


=

+ + + + + + +  p p q q , (2) 

 

in which  is also expanded into a power series in  : 

 

 = 
0

n

n

n




=

 . 

 

In order for the relation (2) to be fulfilled identically, all powers of  must have the same 

coefficients on both sides of it. One must then have 0 = 0 to begin with. The linear terms yield: 

 

k k k k

k k

q p + p q  =  1      (3) 

 

identically in pk, qk . If one has chosen pk, qk in such a way that this relation is fulfilled then a 

corresponding repeated application of the operator D to the first relation will give the higher 

powers, and one will easily see that equation (2) will be fulfilled in general when one sets: 

 

 = 
2 3

2

1 1 2
2! 3!

D D
 

  +  +  +  

 If we now introduce the function: 

 

−  (pk, qk) = 1 − k k

k

p q , 

so 

  −    =  1 − k k k k

k k

p p − q q , 

in place of 1 then (3) will go to the condition: 

 

k k k k

k k

q p − p q  = −  .    (4) 

 

It is fulfilled identically in the pk, qk if and only if: 

 

pk = − 
kq




,  qk = + 

kp




. 

 

 (pk, qk) can be chosen quite arbitrarily, and one will then get the most-general group of canonical 

transformations by means of the operator: 
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D = 
k kk k k kp q q p

   
−

   
  ,       (5) 

 

so by equations (2) and (3) of no. 8, the transformation formulas themselves will be given by: 

 
2

2

,
2!

2!

k k

k k

k k

k k

P p D
q q

Q q D
p p







 
= − + − 

  


  = + + −
  

           (6) 

 

From the results of no. 9, those transformation functions are simultaneously the solutions of the 

partial differential equation: 

F






 = D F      (7) 

 

that go to pk, qk, respectively, for  = 0. Moreover, they will be the solutions of the system of 

differential equations: 

kdP

d
 = − 

kQ




, kdQ

d
 = 

kP




           (8) 

 

that assume the values pk, qk for  = 0. In agreement with no. 3, the canonical group depends upon 

a single arbitrary function, namely , which will be referred to as the generating function of the 

group. 

 Naturally, the Hamiltonian function for a mechanical problem will generally go to another 

function by means of the canonical group. We now ask (and this is the essential gist of the 

following investigation) whether there are also groups that take the problem to itself, i.e., ones for 

which H is invariant under them. From equation [(8), no. 8], in order to do that, it is necessary for 

H to satisfy the partial differential equation: 

 

D H  
k k k k k

H H

q p p q

    
− 

    
   (, H) = 0 ,   (9) 

 

in which (, H) means the Poisson bracket (cf., no. 6). 

 Therefore, if we would like to determine the transformation groups for a given Hamiltonian 

function H under which it will be invariant then we must only look for the corresponding functions 

 that satisfy the partial differential equation (9). They will then be the generating functions of the 

group. There will then be just as many canonical transformations of the problem to itself as there 

are integrals of that differential equation. 

 From [(5), no. 7], equation (9) means that  is an integral of the equations of motion. We have 

thus arrived at the fundamental theorem that the generating functions of those canonical 
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transformation groups that leave H invariant will be integrals of the canonical equations. 

Conversely, every such integral will obviously generate a group of canonical transformations that 

take the problem to itself. Knowing the transformation groups of the system is then equivalent to 

knowing the integrals. 

 As one sees from (8), the formulas that determine a transformation group have precisely the 

form of canonical equations. Conversely, they can also be interpreted as a canonical 

transformation then for which t plays the role of the parameter  and H itself defines the generating 

function. That transformation associates every system of values (0)

kp , (0)

kq  at a certain time t0 with 

the system of values ( ) ,t

kp  ( )t

kq  in which the mechanical system will be found after evolving with 

the motion from the initial state (0)

kp , (0)

kq , t0 over a length of time t – t0 . One can regard the course 

of the motion of the mechanical system as development of a canonical transformation, We have 

already employed that theorem in nos. 5 and 7. 

 The simplest special case is that of cyclic coordinates (cf., Chap. 2, no. 11). If, say, q1 is cyclic, 

so it does not appear into the Hamiltonian function, then: 

 

  q1 = Q1 +  ,      ql = Ql ,      pk = Pk       (l = 2, …, f), (k = 1, …, f) 

 

will be a transformation of the system into itself, while: 

 

p1 = const. 

 

will be the corresponding integral of the canonical equations. 

 With the help of the general theory of transformation groups, one will also see the meaning of 

the ten general integrals of the system of free mass-points (1) with no further analysis since for that 

system, they are just the displacements, Galilean transformations, and rotations of the system into 

itself that do not change the energy. They correspond precisely to the laws of center of mass, 

impulse, and area. The law of energy itself corresponds to the transformation T = t + const., which 

also takes the system to itself, but also includes time. 

 For example, let xn, yn, zn be the x, y, z-coordinates of the 
thn  mass-point, so the first group of 

transformations will read: 

xn = Xn + n , 
nxp  = 

nxP , 

yn = Yn + n , 
nyp  = 

nyP , 

zn = Zn , 
nzp  = 

nzP . 

 

It means a simple displacement of the system in the x-direction. From (5) and (6), the 

corresponding symbol of the group: 

 

 
 (1) See Chap. 7, no. 24 of this volume of the Handbuch. One might also cf., F. Engel, “Über die zehn allgemeinen 

Integrale der klassischen Mechanik,” Göttinger Nachr. (1916) and (1917). 
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 = 
nx

n

p , D = 
n nx




 . 

 

The corresponding integral then reads: 

nx

n

p = const. 

 

However, that is the first center of mass integral. One likewise finds the other two: 

 

ny

n

p = const., 
nz

n

p = const. 

 

The second group of center of mass integrals: 

 

n n

n

p x  = 
nx

n

t p + const. 

 

includes time explicitly. For that reason, in order to treat them, the previous considerations must 

be extended to transformations that include time. 

 The law of areas belongs to the group of rotations: 

 

   Xn =  xn  cos  + yn sin  , 

   Yn = − xn  sin  + yn cos  , 

  
nxP =   cos sin

n nx yp p + , 

  
nyP = − sin cos

n nx yp p + . 

 

As one easily verifies by developing in , the corresponding symbol is: 

 

D = 
n n

n n

n n x y

n n n y x

y x p p
x y p p

    
− + − 

     
 . 

It belongs to the integral: 

 = ( )
n ny n x n

n

p x p y−  = const., 

 

and that is the area integral for the z-axis. Corresponding results are true for the x and y axes. 

 

 

 10. Reducing the order with the help of known integrals. – The canonical transformations 

also put us into a position to take advantage of any possible prior knowledge of integrals of the 

canonical equations in order to bring down the order of the system of differential equations. For 

example, in very many cases, the energy integral will exist, as well as the center of mass and area 
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integrals. In the three-body problem, one reduces the order of the system from 18 to 6 with the 

help of those integrals (1). In general, one can eliminate a canonical pair with the help of a known 

integral, so one will reduce the number of variables by two each time. 

 Therefore, let an integral be known: 

 

G (pk, qk) = const. = g . 

 

The problem is then to succeed in making a pair – e.g., P1, Q1 – drop out of the Hamiltonian 

integral: 
2

1

( )

t

k k

kt

P Q K dt−  = extremum 

 

by transforming to suitable new variables. That will obviously not be achieved when one demands 

that the new variable must be: 

P1 = G (pk, qk) = g .         (1) 

 

That is because P1 would be constant then, so 
1P  = 0 would be precisely an integral of the 

transformed problem, and since: 

1P  = − 
1

K

Q




 = 0 , 

1Q  = 
1

K

P




 

 

Q1 would then have to drop out of K, while P1 would no longer play the role of a constant 

parameter. The variables Ql, Pl (l = 2, …, f) would then define a canonical system with the 

Hamiltonian function K. 

 Now, from equation [(5), no. 3], in order for (1) to be true, the transformation function V that 

is supposed to generate the desired canonical transformation shall satisfy the condition: 

 

P1 = − 
1

V

Q




 = 

1

, k

V
G q

q

 
 

 
 .     (2) 

 

That is a partial differential equation that possesses corresponding integrals, and that will show the 

possibility of making the reduction. One can even proceed with that reduction without actually 

needing to look for a solution to the partial differential equation. If one has, in fact, first determined 

V according to (2) then Q1 will drop out of K automatically under the corresponding canonical 

transformation. For the purpose of that transformation, one can then assign any arbitrary value to 

Q1, and in particular, the value zero, and one must arrive at the correct function. Therefore, one 

does not at all need to know how the function V depends upon Q1 beforehand. Rather, it is sufficient 

to possess its values V (qk, 0, Q2, …, Qf) for Q1 = 0. However, that is entirely arbitrary since from 

 
 (1) Cf., Chap. 7, nos. 24, 27, and 28 of this volume of the Handbuch.  
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the existence theory for partial differential equations, one can always give an integral of (2) that 

will go to an arbitrarily-given function V (qk, Q2, …, Qf) when Q1 = 0. 

 We can then proceed as follows: We take a function V (qk, Q2, …, Qf) of 2f – 1 variables q1, …, 

qf, Q2, …, Qf, and possibly t that is arbitrary, except for a restriction that shall be given shortly, and 

then express the pk as functions of the qk and Qk by means of the equations: 

 

pk = 
k

V

q




 = pk (q1, …, qf, Q2, …, Qf) .     (3) 

 

We substitute that value in the auxiliary condition (1) such that we will get: 

 

1

1

, , , , ,f

f

V V
G q q

q q

  
    

 = G (q1, …, qf, Q2, …, Qf) = g = P1 .   (4) 

 

We shall take that equation in place of P1 = V / Q1 , which is permissible, from the consideration 

of limits above. If we now set: 

 

Pl = −
l

V

Q




 = Pl (q1, …, qf, Q2, …, Qf) (l = 2, …, f)  (5) 

 

then (3), (4), and (5) collectively define the formulas for the transformation of the p, q into P, Q. 

In that way, V is subject to only the restriction that equations (3) and (4) must be soluble for the qk. 

The new Hamiltonian function will then be: 

 

K = H + 
V

t




, 

 

as usual, and will not include the variable Q1, but P1 = g, which is considered to be a constant 

parameter. 

 The simplest special case is again that of cyclic coordinates. If, say, q1 is cyclic then it will not 

appear in L, and therefore not in H, either, while 1q  (p1, resp.) probably will. The integral will then 

be: 

1

L

q




= p1 = const. = c , 

 

and the canonical problem will already have the form that we seek. We can then simply suppress 

p1 and q1, such that we will arrive at the variational problem: 

 

  ( , , )

B

l l l

lA

p q K p q c dt
 

− 
 
  = extremum (l = 2, …, f), 
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in which we have set H (p1, pl, ql) = K (c, pl, ql). The entire process in this section then means just 

that one can make a variable cyclic with the help of an integral. 

 

 

 11. The connection between the various integral principles. – The argument that was just 

presented also allows one to clarify the connection between the different integral principles in a 

very instructive way when one regards the energy equation as an auxiliary condition. Those 

considerations, which borrow very heavily from the previous chapter, shall be justified here, since 

this is the first point at which the necessary mathematical tools have been available. 

 First of all, we must get back to the Hamiltonian variational problem from the canonical one. 

We therefore assume that we have eliminated the auxiliary conditions in the latter by introducing 

cyclic variables, as in the previous section, and we now apply the Legendre transformation in 

equation (8.b) of no. 2. In that way, the new Lagrangian function (let q1 be cyclic) will be: 

 

  L  = l

l l

K
p K

p


−


   (l = 2, …, l). 

On the other hand, one had: 

 

L = 1

1

l

l l

H H
p p H

p p

 
+ −

 
   1l

l l

K
p c q K

p


+ −


 . 

One will then have: 

L  = L − 1c q , 

 

and the variational problem will next take the form: 

 

 ( , )

B

l l l

A

L q q c q dt−  = extremum.           (1) 

 

The quantity q1 in this, which does not itself appear at all, in contrast to the other coordinates, is 

no longer subject to any boundary conditions, and therefore 1q  will be a completely-arbitrary 

function. For that reason, the problem can be regarded as one that no longer includes one unknown 

1q  whose derivative will not appear and whose corresponding Lagrange equation will then read: 

 

1

L
c

q


−


 = 0 ,      (2) 

 

while the remaining Lagrange equations will not change, so they will give the same extremals. 

Since (2) must always be fulfilled, one can also require that relation as an auxiliary condition and 

then treat things just as one did in no. 2. Obviously, that will imply that (1) is equivalent to the 

relative minimum principle: 
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1

1

B

A

L
L q dt

q

 
− 

 
  = extremum    (3) 

 

with equation (2) as the auxiliary condition. 

 Finally, one can eliminate 1q  completely by solving (2) for 1q  and substituting that in (1). One 

will then, in fact, get a simple minimal principle again: 

 

( , , )

B

l l

A

F c p q dt  = extremum  (l = 2, …, f),  (3.a) 

 

but with one less desired function. 

 As was said before, we employ that argument in order to go from the Hamiltonian principle to 

the remaining integral principles by applying the law of energy to it. That process is generally 

valid for only conservative systems. In that case, t is itself cyclic since it does not appear in the 

kinetic potential. In order to be able to apply the method above, as before (no. 4), we must introduce 

a parametric representation that gives t the same status as the remaining variables. If we assume 

that all quantities are functions of an auxiliary parameter  : 

 

t = t () , qk = qk () , 

 

in such a way that l (1) = l1, l (2) = l2, and if we denote the derivative with respect to t by a prime 

then we will have: 

kq  = kq

t




, 

 

and therefore the kinetic energy T, which we assume to be a homogeneous quadratic function of 

the kq , will be: 

( )kT q  = 
2

1
( )kT q

t



. 

Hamilton’s principle will then go to: 

 
2

1

1
( ) ( )k kT q U q t d

t






 

 − 
 

  = extremum, 

 

in which the boundary condition that one requires is that the qk and t go to well-defined values (1)

kq  

and 
(1)t ( (2)

kq , 
(2)t , resp.) for  = 1 ( = 2, resp.). t is no longer distinguished now, and we can then 

apply the previous arguments. t enters in place of q1, and , in place of t, while: 
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L = 
1

T U t
t

−


. 

 

One integral of that variational problem will be: 

 

L

t




 = −

2

1
( )kT q U

t
 −


= − E ,     (4) 

 

so it is naturally the energy integral. With its help, one will get the form (1) for the equivalent to 

Hamilton’s principle, which reads: 

 
2

1

1
( )kT q U t E t d

t






 

  − + 
 

  = extremum    (5) 

 

here, in which the boundary values of t are no longer prescribed then. If we again reintroduce t as 

a variable then that will make: 

( )

B

A

T U E dt− +  = extremum.    (6) 

 

That is a new principle of mechanics that is equivalent to Hamilton’s that is probably still not 

known in the literature and shall be called Hilbert’s principle. It says: 

 

 A point system moves in such a way that of all motions that proceed with any temporal 

evolution from the initial location A with the coordinates qk = (1)

kq  to the endpoint B with the 

coordinates qk = (2)

kq , the motion that actually occurs will make the integral (6) an extremum, 

where E is the value of the total energy that is given at the starting point. 

 

 Naturally, the law of energy will follow from that principle since t does not appear explicitly 

in the integrand. However, it is not required as an auxiliary condition and accordingly stands in the 

middle between Hamilton’s principle and the principle of least action. 

 Since E is constant, one can also write (6) as: 

 

2 1( ) ( )

B

A

T U dt E t t− + −  = extremum, 

 

in which t2 – t1 is the still-unknown time that the system needs along its path. One will then get 

back to Hamilton’s principle when one gives the time t2 – t1 to the motion. 

 One will arrive at the principle of least action when one adds the law of energy T + U = E, 

which already follows from (6), as an auxiliary condition. One will then come to the form (3), 

which assumes the form: 
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2

B

A

T dt  = extremum,  while T + U = E, 

 

due to (4), which is precisely the principle of least action (see Chap. 2, no. 25). The extremum is 

sought from among all functions that go from the starting point to the endpoint in any length of 

time and satisfy the law of energy in so doing. 

 Finally, one can still eliminate t completely, so one will arrive at the form (3.a). In order to do 

that, one again employs the parametric representation appropriately. However, that is precisely the 

process that led to Jacobi’s principle in Chapter 2, no. 26, which can also be classified by this 

argument then. 

 

 

 12. The Hamilton-Jacobi partial differential equation. – We shall not turn to the theory of 

integration for the canonical equations of motion: 

 

H = H (qk, pk, t) , kq  = 
k

H

p




, kp  = − 

k

H

q




.   (1) 

 

We have encountered fragments of such a thing many times already (in nos. 2, 7, 9, and 10), but 

the most important piece is still missing: a systematic process that will be described in what 

follows. A thorough use of the canonical transformations will be made in it. 

 From [(5), no. 3], under a canonical transformation of the problem (1), the new Hamiltonian 

function will become: 

K = H + 
V

t




. 

 

We ask whether it is possible to arrange that the new Hamiltonian function K of the system will 

vanish by a suitable choice of the function V. The mechanical problem will then be transformed 

into an equilibrium problem, in a certain sense. We would like to denote the function that makes 

that possible by R to distinguish it from the other generators. 

 Now, R should be a function of the qk, Qk, and t, and one will have: 

 

pk = 
k

R

q




, Pk = −

k

R

Q




, K = H + 

R

t




.    (2) 

 

The condition that R must fulfill in order for K to vanish will then read: 

 

t




R (qk, Qk, t) + H (qk, Qk, t) = 0 , 

or from (2): 
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, ,k

k

R R
H q t

t q

  
+  

  
 = 0 .             (3) 

 

This is a first-order partial differential equation for R that was first found by Hamilton. It will 

arise when one replaces the pk in the Hamiltonian function H with the derivatives of R with respect 

to the corresponding qk . Since (3) must be true for all arbitrary values of the Qk, they will play the 

role of integration constants. 

 The meaning of the partial differential equation (3) lies in the following: We assume that we 

have found an integral of (3) that includes f arbitrary constants 1, …, f : 

 

R (q1, …, qf, 1, …, f, t) = 0 , 

 

so a function that satisfies the differential equation for all values of the integration constants. 

Naturally, that is not the most general solution of the partial differential equation, which must 

indeed include an arbitrary function, but only a so-called complete integral. We can then introduce 

those constants k as new variables Qk since R should indeed be a function of the old and new 

configuration parameters. The transformation formulas [(5), no. 3] will then yield: 

 

,

,

0,

k

k

k k

k

R
p

q

R
P

q

K



 
= 


 

= − = + 
 

=



         (4) 

 

in this case, and as a result of the third row in that, the new canonical equations will become 

simply: 

kdQ

dt
 = kd

dt


 = 0 , kdP

dt
 = kd

dt


 = 0 . 

 

Thus, the k, as well as the k, are constant quantities for the mechanical system that can be 

assigned arbitrary values. They are called the canonically-conjugate constants. With that, the 

integration of the differential equations of the mechanical problem is complete since equations (4) 

will imply the original coordinates of the system as functions of time and the 2f arbitrary constants 

k and k. 

 The integration of the canonical equations is then reduced to discovery of an integral of the 

partial differential equation (3) that includes f constants. Initially, it would seem that we have not 

achieved very much since partial differential equations are harder to treat than ordinary ones, as a 

rule. However, in mechanics, it is shown that the partial differential equation will assume 
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relatively-simple forms in many important cases such that its introduction would actually imply a 

significant advance (1). 

 Only one step still remains to be completed here: If the Hamiltonian function H does not 

include time explicitly then the differential equation (3) can be simplified somewhat. If we make 

the following Ansatz for R : 

R = S (qk, 1, …, f) – 1 t ,     (5) 

 

in which S should no longer depend upon t, and if we introduce that Ansatz into (3) then that will 

imply that: 

1 = ,k

k

S
H q

q

 
 

 
 = W ,            (6) 

 

from which time t has been eliminated. 1 will then become the energy constant, and as such, it 

will be denoted by W. Now, if we have found an integral S of the partial differential equation (6) 

that depends upon not only 1, but also f – 1 further independent constants, then the solutions of 

the equations of motion: 

pk = 
k

S

q




, l = − 

l

S






, t – 1 = 

1

S






  (l = 2, …, f).   (7) 

 

 Equations (3) and (6) are the simplest forms of the Hamiltonian partial differential equation, 

while formulas (4) and (7) include the solutions of the problem of motion in the most-transparent 

form. However, many variations of the process that was described will be applied in practice. Thus, 

in place of (3), one can also demand that the new Hamiltonian function K must be an arbitrary 

function of time f (t), instead of vanishing. In order to do that, one must take the solution of the 

differential equation: 

,k

k

T S
H q

t q

  
+  

  
 = f (t)          (8) 

 

to be the generator of the canonical transformation. R will then be coupled with T by the relation: 

 

R = T − ( )f t dt .          (9) 

For example, one can demand that: 

f (t) = const. = 1 .       (9.a) 

 

(When one is dealing with a small perturbation of an otherwise-closed system that comes from 

outside of it, that is closely related to saying that the total energy would be constant in the absence 

of that perturbation.) Equations (8) and (9) will then imply that: 

 

 
 (1) On this topic, see the following Chap. 4 on perturbation theory.  
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,k

k

T S
H q

t q

  
+  

  
 = 1 ,          (8.a) 

R = T – 1 t .       (9.a) 

  

In particular, if H does not depend upon t explicitly then one can assume that T is also independent 

of t and in that way, get back to (6) [(5), resp.]. 

 Moreover, in the case of a closed system, it is indeed simplest, but not always convenient, to 

choose the energy constant itself to be one of the integration constants of the complete integral S. 

On the grounds of normalization, in the theory of constrained periodic systems (cf., Chap. 4) and 

its applications to quantum theory, other integration constants will be chosen (we would like to 

call them Jk), in terms of which, the new Hamiltonian function will be written: 

 

1 = K (J1, …, Jf) .        (10) 

 

However, one can easily transform the variables k, k into the new constants Jk and their 

canonically-conjugate variables wk with one of the generators of the form V = 1( , , ) .k f k

k

J J   

Due to (10) and kw  = K / Jk = const., the latter are linear functions of time. 

 In all cases, the viewpoint that one must take in order to exhibit the Hamiltonian partial 

differential equation must remain that one must transform to new variables that represent a family 

of constants of the motion whose conjugate family does not occur in K then. In other words: One 

seeks a generator of a canonical transformation to cyclic variables, and that search will lead one to 

just the Hamiltonian partial differential equation. As an aside, it should be remarked that the form 

(1) of the Hamiltonian differential equation corresponds completely to the form (6), at least 

formally, when one treats time as also being a canonical variable, as one did in no. 4. 

 

 

 13. The simplest cases of integration. – The solution of the problem of motion [(1), no. 2] 

has now been reduced to the integration of the partial differential equation [(3) or (6), no. 12]. It is 

a complete integral of it that is equipped with f integration constants k that one must seek. A 

process that will always lead to that goal cannot be given. Only two simple cases of the treatment 

that was given in [(6), no. 12] will be discussed here. 

 The first case that admits a simple integration will occur when all of the variables are cyclic, 

with the exception of one of them (q1). One will then know f – 1 first integrals: 

 

  pk = 
k

S

q




 = k  (k = 2, …, f) 

and find that: 

S = 
2

f

k k

k

q
=

 + S1 (q1, 1, 2, …, f) . 
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Since H is independent of the cyclic variables q2, …, qf, the differential equation [(6), no. 12] will 

reduce to an ordinary one: 

1
1 1

1

, , , , f

S
H q

q
 

 
 

 
 = W = 1 , 

 

from which, S1 can then be obtained by a quadrature. 

 The other case that admits a simple integration will occur when the variables pk, qk in the 

differential equation [(6), no. 12] can be separated. That means that with the Ansatz: 

 

S = 1( , , , )k k f

k

S q   , 

pk = 
k

S

q




 = 

( )k k

k

S q

q




 

 

(i.e., when S is regarded as a sum of functions that each depend upon just one of the coordinates 

qk), the differential equation [(6), no. 12] will decompose into f different differential equations for 

the Sk. In order to do that, it is necessary for every impulse pk in: 

 

H (p1, …, pf, q1, …, qf) = W 

 

to be expressible as a function of the associated coordinate qk alone, so that equation will split into 

f individual ones: 

Hk (pk, qk) = Ak (1, 2, …, f) . 

 

The f different differential equations for the Sk will then read: 

 

,k
k k

k

S
H q

q

 
 

 
 = Ak . 

 

That will allow one to calculate the Sk by mere quadratures. 

 According to Levi-Civita (1), the condition for H to be separable in the coordinates being used 

can be written: 

 
 (1) T. Levi-Civita, Math. Ann. 59 (1904), pp. 383; F. A. Dall’Aqua, ibidem, 66 (1908), pp. 398; H. Kneser, ibidem 

84 (1921), pp. 277.   
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2 2

2 2

0
j j

k j k j k

k j k j k

H H

q p

H H H

q q q p q

H H H

p q p p p

 

 

  

    

  

    

 = 0 for 
, 1,2, ,

.

j k f

j k

=



 

 

Of course, it is mostly the separability of the function H that one must consider. It depends upon 

the coordinate system and generally requires the introduction of special separation coordinates in 

order to achieve the desired splitting. In many cases, the separation system is distinguished 

physically by the boundary of the domain of the orbits. However, that is not always the case (1). In 

fact, Burgers has shown (2) that the separation system for the motion of an electrically-charged 

oscillator in a magnetic field can be introduced only by a contact transformation. 

 Some examples of integration by separation include, among others, any central motion [as can 

be seen from (15), no. 2], as well as the two-center problem, which is separable in elliptic 

coordinates with the two fixed centers as focal points, as Jacobi showed before (3). Moreover, 

Weinacht (4) succeeded in finding all systems that are separable by a point transformation for the 

case of a single mass-point in a conservative force field. The most-important result is that the most-

general configuration coordinates that come under consideration for the separation of variables in 

this case are those of the three-axis ellipsoid (including its degeneracies). The associated functions 

for the potential energy can also be given and are obvious generalization of the aforementioned 

cases. Moreover, every small oscillation of an arbitrarily-composed system about a stable 

equilibrium configuration will admit separation by the method of eigen-oscillations. For the 

motion of a rigid body, the separable cases are the most-general force-free top (possibly with a 

built-in flywheel) and the symmetric top in a gravitational field (5). 

 

 

 14. The independence theorem of the calculus of variations. The eikonal. – In order to 

conclude this section on Hamilton-Jacobi mechanics, we would like to try to give a glimpse of the 

deep lines of reasoning that guided the creators of that theory and which have led to a fundamental 

advancement of mechanics in recent times by the work of de Broglie, Schrödinger, et al. In order 

to actually understand the true essence of Hamilton-Jacobi theory, it is necessary to draw upon 

 
 (1) E. Fues, Zeit. Phys. 34 (1925), pp. 788.  

 (2) J. M. Burgers, Het Atoommodel van Rutherford-Bohr, Leiden, 1918.  

 (3) W. Pauli, Jr. gave a precise discussion and application to the 
2

H
+
-molecule in Ann. Phys. (Leipzig) 68 (1922), 

pp. 177 and K. F. Niessen, Diss. Utrecht, 1922. A special case of the separation into elliptical coordinates is defined 

by the treatment of the Stark effect in parabolic coordinates by Schwarzschild, Berl. Ber. (1916), pp. 348 and P. S. 

Epstein, Ann. Phys. (Leipzig) 30 (1916), pp. 489. 

 (4) J. Weinacht, Math. Ann. 91 (1924), pp. 279.  

 (5) Cf., G. Kolossoff, Math. Ann. 60 (1905), pp. 232; F. Reichs, Phys. Zeit. 19 (1918), pp. 394.; P. S. Epstein, 

Verh. d. D. Phys. Ges. 17 (1916), pp. 398; Phys. Zeit. 20 (1919), pp. 289; H. A. Kramers, Zeit. Phys. 13 (1923), pp. 

343.  
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some theorems of the calculus of variations again. In order to do that we start with the form (4) of 

no. 2 for the variational problem: 

 
2

1

( )

t

k k

k kt

L
L q k dt

k

 
+ − 

 
  = extremum.            (1) 

 

The integral has the simple form: 

J = 
2

1

t

k
k

kt

dq
A B dt

dt

 
+ 

 
       (2) 

here with: 

A = k

k k

L
L k

k


−


 , Bk = 

k

L

k




. 

 

The integrand is then a linear expression in the derivatives kq  of the qk . Along with it, the functions 

kk will appear, which are varied independently of the qk, but not their derivatives. That form recalls 

the complete derivative of a function  with respect to time: 

 

k

k

q
q t

 
+

 
 . 

 

That is closely related to the question of whether it is not possible to make the integral (2) 

independent of the path in qt-space by a special choice of the kk as functions of qk and t in such a 

way that the integral will take the same value for all possible functions qk (t), so it will degenerate 

from a function of a function, in the sense of the calculus of variations, to a pure function of the 

locations of the integration limits. The values of the kk then define a covering of qt-space in such 

a way that every point will be associated with a well-defined value of kk. One calls such a covering 

a field, and the question becomes that of whether there are coverings for which the integral (2) is 

independent of the path. A necessary and sufficient condition for that is that the Bk and A must take 

the form of partial derivatives of the function  (qk, t): 

 

A = 
t




, Bk = 

kq




. 

The integral: 

 

J = 
2

1

t

k k

kt

A B q dt
 

+ 
 

  = 
2
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q dt
t q

  
+ 

  
  = (2) (1)

2 1( , ) ( , )k kt q t q −  

 

will then become a pure function of the limits of integration in qt-space. In order for that to be true, 

the A and Bk must fulfill the integrability conditions: 
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
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l

B

q


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= l
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
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 The general answer to the question of how one must choose the k-field in order for those 

conditions to be satisfied is given by Hilbert’s independence theorem: 

 

 The integral (2) will become independent of path when one takes any system of intermediate 

integrals: 

kdq

dt
 = 

1( , , , )k fq q q t  

 

of the Lagrange differential equations: 

[ ]
kqL  = 0      (3) 

 

and chooses the kk to be equal to the corresponding kq  for each point q1, …, qf, t. 

 

 We shall prove that theorem here for only a system with a single degree of freedom, i.e., only 

one pair p, q [k, resp.]. Only a single integrability condition will exist then, namely: 

 

L
L k

q k

  
− 

  
 = 

L

t k

  
 

  
.      (5)[sic] 

 

If we perform the differentiations then we will get the condition for the independence of the 

integral (1) of a first-order partial differential equation for k (q, t) in the form of: 

 
2 2

2

L L k L k L L k
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q k q k q k q k q
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or 
2 2 2

2

L k k L L L
k k

k t q k q k t q

      
+ + + − 

        
 = 0 ,    (6) 

 

which is called the adjoint partial differential equation to the variational problem. Now, that 

differential equation (that it, its statement) will be fulfilled if and only if k (q, t) is an intermediate 

integral of the Lagrange differential equation: 

 

[L]q  
2 2 2

2

L L L L
q k q

q q q q t q

   
+ + −

     
= 0 .            (7) 

 

 If, if fact, q  = k (q, t) is such an integral of (7), i.e., (7) is fulfilled identically, if one replaces 

q with the general solution: 
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q = q (t, )      (8) 

 

of the differential equation q  = k (q, t) that still includes the constant  then one will have: 

 

q  = 
k k

q
t q

 
+

 
 

 

identically in t and . If we substitute that in (7): 

 
2 2 2
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L k k L L L
q q

q t q q q q t q

      
+ + + − 

        
 = 0 , 

 

and once more write k for q  then we will get a relation that formally seems to be precisely the 

adjoint partial differential equation (6), but initially represents an ordinary differential equation in 

t and  that must be fulfilled identically for all values of t and . However, if one introduces q in 

place of  by means of (8) then it must also be true identically in t and q, i.e., all intermediate 

integrals q  = k (q, t) of the Lagrange differential equation must nonetheless satisfy the adjoint 

partial differential equation, as well. 

 If, conversely, k (q, t) is a solution of the adjoint partial differential equation (6) and q (t) 

satisfies the equation q  = k (q, t) then we can substitute k / t + k  k / q = q , and when we 

again write q  for k, we can get back to the Lagrange differential equation, which proves our 

theorem completely. The theorem can be generalized for several degrees of freedom by reducing 

the problem to this special case (1). 

 The solutions to a variational problem, so the curves that satisfy the Lagrange differential 

equations, are ordinarily referred to as extremals. Thus, an independence field can always be 

exhibited with the help of an f-parameter family of extremals. In order to do that in the most-

general possible way, so to associate every system of values q1, …, qf, t with a system of values 

k1, …, kf and in so doing to fulfill the condition of the independence integral, one proceeds as 

follows: We choose any completely-arbitrary function F (qk, t) that will represent an f-dimensional 

hypersurface in the space of qk, t when it is set equal to zero: 

 

F (q1, …, qf, t) = 0 ,      (9) 

and initially determine the kk for all points of the surface from the demand that the integrand of the 

independence integral: 

( )k k

k k

L
L q k

k


+ −


  

 

must vanish for them. We will achieve that when we calculate the f quantities kk from the f 

equations: 

 
 (1) D. Hilbert, Math. Ann. 62 (1905), pp. 351.  
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respectively, since the integrand will then be equal to: 
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k k

F F
q

t q
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 
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dF
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, 

 

up to an irrelevant factor, so it will, in fact, vanish on the surface. We then let a curve qk = qk (t) 

start from each point of the surface whose direction factors kq  are equal to precisely the kk that 

were just determined and will satisfy the Lagrange differential equations (3) in its further 

evolution. That is always possible since we can indeed always find one such integral curve for an 

arbitrary second-order differential equation at a given point with a given direction. That means 

nothing besides the fact that we are taking precisely those integral curves that are transversal to 

the surface, which is a condition that is mostly identical to orthogonality in the usual sense. 

 Since the surface F = 0 is itself f-dimensional, we will then have determined an f-parameter 

family of curves that fill up precisely the f + 1-dimensional qt-space densely since in general 

precisely one curve will go through each point in space, except for possible singular points. We 

determine the values of the kk at an arbitrary point as simply the direction of the tangent to the 

extremal that goes through it, so we set: 

kk = kq . 

 

From the independence theorem, it is precisely that k-field that will turn the integral (2) into a pure 

function of position. 

 Now, we can see the meaning of the independence integral as follows: We imagine that all of 

the transversal surfaces have been drawn in the field, i.e., the surfaces F = const. that satisfy the 

conditions (10). When the integral J is extended between any two points of one such surface is 

obviously equal to zero. We now calculate it further for a path that leads from the starting point A 

of the actual motion to the endpoint B. Due to the independence of the path, we can choose that 

path as suitably as possible. We initially move forwards along the transversal surface on which the 

starting point lies up to the point C at which the extremal that also goes through the endpoint B 

meets the surface and then move further along that extremal. The first part AC makes no 

contribution to the integral. For the second part CB, we will have kk = kq  everywhere, and J will 

then reduce to ( , , )

B

k k

C

L q q t dt  since the kq = kk (t) will indeed be determine in precisely such a 

way that they satisfy the Lagrange differential equations. Thus, J is nothing but the extremal value 

of the integral in Hamilton’s principle between the two transversal surfaces that go through the 

starting and ending points. Since J vanishes for paths along those surfaces, they will also be 

surfaces of constant differences between the values of the Hamilton integral between 

corresponding points, i.e., points that lie on the same extremal. The quantity J, which is a function 

of the starting and ending points for a given extremal field, has great significance for many 
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branches of mathematics and physics, and is usually called the eikonal, with the terminology that 

is customary in optics. 

 Naturally, there is a wide variety of eikonals since they depend upon an arbitrary function, 

namely, the starting surface F = 0. Among all possible starting surfaces, there is a special one that 

degenerates to a point, namely, the starting point of the path of integration. One will also get a field 

that covers all of space from it when one takes all extremals that go through it as the generator of 

the field. The eikonal for a point that is reached from the starting point in the course of the motion 

is obviously equal to the extremal value of Hamilton’s integral itself when taken over the true 

trajectory. 

 

 

 15. Application to mechanics. The meaning of the Hamilton-Jacobi differential equation. 

– A partial differential equation for all possible eikonals can now be exhibited. The definition (2) 

in no. 14 implies immediately that the derivatives of J will be given by: 
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The right-hand sides are still functions of the kk, so of the chosen field. However, precisely the f 

quantities kk can be eliminated from those f + 1 relations, and what will remain then will be one 

condition between the derivatives of J, so a partial differential equation. That elimination can be 

carried out with no further analysis by using the Legendre transformation, so with a transition to 

canonical coordinates. Indeed, in (5) and (7), no. 2, we had set: 
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and upon eliminating pk from (1), we will then get: 
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J J
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t q
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as the partial differential equation for the eikonal. However, that is exactly the Hamilton-Jacobi 

differential equation (3) of no. 12. The interpretation of the integral of the Hamilton-Jacobi 

differential equation as the value of the Hamiltonian integral between the transversal surfaces of 

the field is revealed by that fundamental connection. 



L. Nordheim and E. Fues – Hamilton-Jacobi Theory. 49 

 

 The main theorem of no. 12 can be given a new derivation with the help of that result. We 

imagine that f parameters k are introduced into the defining equation [(9), no. 14] for the starting 

surface such that we will have, in total, an f-parameter family of surfaces, one of which is our 

starting surface. For every other surface in that family, there is likewise an independence field that 

is determined by our construction such that we will also have an f-parameter family of such fields. 

That is, we take our definition of the field to be a family of intermediate integrals of the Lagrange 

equations that already include f integration constants: 

 

kk = ( , , )k l lq q t . 

 

An eikonal will then belong to each system of values for the k, and the set of all those eikonals 

can obviously be combined into a single function J (k) that depends upon not only the starting 

and ending points, but also f parameters: 

 

J = ( , ( , , ), ) ( )

B

l l l l k k

k kA

L
L q k q t t q k dt

k


 
+ − 

 
 . 

 

However, along with J, its derivatives with respect to the parameters k must also be pure functions 

of position, and due to the fact that: 
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that will give simply: 
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The integral on the right-hand side will vanish for an advance along the integral curves themselves 

since one will indeed always have kq  = kk for them, i.e., the J / l represent functions of the qk 

and t that are themselves constant along the integral curves. Therefore, when they are set equal to 

constants – l : 

l

J






 = – l ,      (4) 

 

they must be themselves integrals of the Lagrange differential equations, which was to be proved. 

 One will likewise get an important mechanical theorem from the converse of that theorem. If 

one knows half of the integrals of a mechanical system then one can find the other half by mere 

quadratures. In fact, let f functions be known: 

 

1( , , , , , )l k k fq q t    = 0 ,  [
1( , , , , , )l k k fp q t    = 0 , resp.] 
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then one can find the kq  as functions of qk, t, and the first f integral constants f by solving them, 

so one can also find an f-parameter extremal field: 

 

kk = ( , , )k l lq q t   . 

 

If one substitutes those values in the integral (1) of no. 14 then from what was said before, the 

integrand will be a complete differential. The associated eikonal can then be calculated by 

quadratures and one will then have the remaining integrals of motion in (4). If one employs the 

canonical form of the differential equations (so one has not found the integrals in the form of the 

kq  as functions of the qk, t, and f, but the pk) then one will not need to first calculate the kq , but 

to transform the integral J into pk and qk directly by means of the Legendre transformation. With 

(5) and (7) of no. 2, one will find immediately that: 
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p q H dt
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By assumption: 

dJ = k k

k

p dq H dt−       (6) 

will be a complete differential. 

 From the theorem that was just proved, one has that, e.g., every mechanical problem with one 

degree of freedom will be soluble by quadratures when it possesses the energy integral, and every 

problem with two degrees of freedom will be soluble by quadratures when yet another integral is 

known, in addition to the energy integral. 

 There is also a simple meaning to the integral S of the Hamilton-Jacobi partial differential 

equation (6) of no. 12, when it was already integrated over time, for systems that do not include 

time explicitly. Namely, it is precisely the extremal value of the integral of the principle of least 

action, so the action function, and thus the integral of Jacobi’s principle, which is identical to it for 

conservative systems. Since we have assumed the law of energy, we have: 

 

2T = T – U + T + U = T – U + 1 , 

 

in which 1 is the energy constant. As a result, from (5) of no. 12, we will have: 

 

2

B

A

T dt  = 1( )

B

A

T U dt t− +  = J + 1 t = S ,    (7) 

 

i.e., S has the same relationship to the principle of least action in its Jacobi form that J has to 

Hamilton’s principle. 

 The considerations of this section show that the integration of a partial differential equation 

of the Hamilton-Jacobi form (which is no essential loss of generality) is equivalent to the 

integration of the corresponding canonical equations. It is nothing but Jacobi’s method of 
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integrating first-order partial differential equations, and the extremal curves of Hamilton’s 

principle, so the mechanical trajectories, represent the characteristics of the partial differential 

equation. In fact, when the canonical equations have been solved, so all extremals have been found, 

for every function F (qk, t) = 0, one can find a solution of the partial differential equation that will 

go to F for t = t1, qk = (1)

kq . However, as was said before, one mostly proceeds in the opposite 

direction by integrating the Lagrange or canonical equations with the help of the integrals of the 

partial differential equation (2). 

 That was the starting point that led Jacobi to his theory. The other discoverer of that 

connection, viz., Hamilton, started from the geometric meaning of the eikonal, which is, in fact, 

most remarkable. Namely, if we go from the representation of the eikonal in no. 14 (i.e., its 

description in qt-space) to a construction in f-dimensional q-space alone then we will get a system 

of moving eikonal surfaces J (qk, t) = c, and its extremals (path curves), which are general found 

in a state of flux, will be its trajectories. The latter will be fixed in the aforementioned case [viz., 

equation (7)] of a time-independent Hamiltonian function. From the fact that J = S – W1 t, the 

eikonal surfaces will then depart from the fixed surfaces S = const. in such a way that they will 

always come to cover a new S-surface again. The picture is that of the propagation of a wave, as 

one is probably accustomed to imagining it for optical processes. 

 If we take the starting surface F = 0 to be the generating surface of an optical process then the 

extremals will be the light rays in the sense of geometrical optics, and the advancing eikonal 

surfaces will be surfaces of equal phase, so a type of wave surface in the sense of Huygens’s 

principle. The principle of least action will then correspond precisely to Fermat’s principle of 

shortest light-path, when we assume that the index of refraction in q-space is proportional to the 

square root of the kinetic energy, which is equal to W – U, so it is also equal to a pure function of 

position. With that, the solution of the mechanical problem is reduced to the corresponding optical 

one. The Hamilton-Jacobi theory then corresponds to geometrical optics. Those considerations 

have recently become the foundation for the further development of quantum theorem by 

Schrödinger (1), which is based upon the idea that for the mechanics of atoms, the mechanics that 

is equivalent to ray optics will not suffice, but one must use an extension of it in the sense of true 

wave theory as a foundation (2). 

 

____________ 

 

 
 (1) E. Schrödinger, Abhandlungen zur Wellenmechanik, Leipzig, 1927.  

 (2) For a more detailed analysis of this connection, which can only be touched upon briefly here, see the article 

“Optik und Mechanik,” by A. Landé in Bd. XX of this Handbuch. 


