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I. Introduction. 

 

 1. Historical overview and literature. – After Newton had proposed the fundamental laws of 

mechanics, the ambition of mathematicians and physicists was then to find a fruitful expression 

for the laws of mechanics and a summary of them in terms of so-called principles. The goal of that 

initiative was two-fold: First of all, one wished to raise those principles to the status of axioms, so 

to replace and extend the Newtonian axioms. In a certain sense, they should summarize all of 

mechanics in the smallest-possible number of laws. Secondly, however, the original Newtonian 

laws proved to be unwieldy and partly unsatisfactory in some of the more complicated cases, such 

as auxiliary conditions, etc., and one would then have to find rules that would allow one to derive 

the equations of motion in each case simply and uniquely. 

 The first, more-logical, problem was already treated in the previous chapter, and for that 

reason, it will be touched upon only when it becomes necessary to show its connection. By 

contrast, here it will be the question of exhibiting the equations of motion that takes the foreground. 

In that way, one will simultaneously gain an important viewpoint for their integration. 

 The principles of mechanics can be divided into two main groups, namely, differential 

principles and integral principles. The former is the oldest one. The principle of virtual 

displacements has already been used by Stevin, Galilei, and in particular, Johann Bernoulli, et 

al., in some simple cases, and was employed by Lagrange more generally as a basis for statics. 

The transition to dynamics was the contribution of d’Alembert, who also gave his name to the 

well-known principle, while once more, its systematic implementation was mainly carried out by 

Lagrange. One must further thank Gauss for the principle of least constraint, which represented 

the most far-reaching differential principle, while an intermediate formulation was found by 

Jourdain in recent years. 

 The development of the integral principles ran parallel to that. The first of them to appear 

historically was the one that is ordinarily named after Maupertuis, although it was first formulated 

mathematically by Euler, namely, the principle of least action. The greatest advance on it was 

achieved by Hamilton and Jacobi, who we also have to thank for the systematic theory of the 

integration of mechanical equations. One of the very interesting attempts took the form of Hertz’s 

mechanics, which sought to get by without the concept of force. Hertz was likewise the first to 

systematically address the non-holonomic systems. In general, he still did not succeed in 

completely clarifying the questions that were connected with them, which was first achieved by 

Hölder. 

 We shall refer to Enzyklopädie article of Voss (1) for the literature concerned with the older 

work. Here, we shall generally cite only the more recent literature (i.e., since 1900). Boltzmann 

(2) has written a thorough textbook, and there is also a brief modern presentation by Schaefer (3). 

Naturally, along with them, the principles are treated, more or less, in all textbooks on mechanics 

 
 (1) A. Voss, Enzykl. d. Math. Wiss., Bd. IV, Art. 1, pp. 1.  

 (2) L. Boltzmann, Vorlesungen über die Prinzipe der Mechanik, Bd. I and II, Leipzig, 1897 and 1904. 

 (3) Cl. Schaefer, Die Prinzipe der Dynamik, Leipzig, 1919.  
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(1). For the history of mechanics, one must cite, above all, the book by Mach (2), as well as the 

one by Haas (3). 

 

 

 2. General overview. – In the following presentation, much weight will be given to, on the 

one hand, addressing all of the cases that occur in practice, i.e., giving instructions on how to 

exhibit the equations of motion. On the other hand, the connections between the known principles 

shall be clarified, i.e., we will show the extent to which they relate to each other or include new 

assumptions, respectively. Naturally, one cannot “prove” a principle, but one can only either show 

directly that it produces the equations of motion that are known to be correct from experiments or 

that it leads back to another one. It would also become unnecessary then for one to discuss all of 

the special cases in detail. Rather, it would suffice to do that in the most convenient forms and 

otherwise only refer to their possibility. 

 Those principles should probably be distinguished from the general laws of mechanics that are 

often misleadingly referred to as principles, such as the laws of energy, center of mass, and areas. 

However, they can be derived from the fundamental equations and are therefore consequences of 

them, while the converse is not true. It is only upon extending them to the full scope of physics 

that they will take on the status of principles. 

 The two main branches, viz., differential and integral principles, also correspond to essentially 

two separate domains of application. The mechanics of the differential principles, whose main 

points were developed by Lagrange (4), with its various types of constraint conditions and the 

introduction and calculation of reaction forces, is the instrument that was given to engineering 

mechanics. By contrast, the mechanics of the integral principles, which is mainly connected with 

the names of Hamilton (5) and Jacobi (6), is the method that is best-suited to the treatment of free 

mass-points, and therefore astronomy and the mechanics of atoms, so to modern physics. In fact, 

the recent development of theoretical physics is very closely linked with Hamiltonian mechanics, 

in the macroscopic context of the theory of relativity, as well as in the microscopic world of 

quantum theory. That is why we shall discuss it thoroughly in the next chapter (of this Handbuch). 

 Even though currently it is the goal of theoretical physics to reduce all of mechanics to atomic 

phenomena, naturally, that path is unsuited to the applications in engineering, so it will become 

necessary to further develop each branch of mechanics independently. However, in and of itself, 

that reduction can be regarded as having been resolved in an apparently satisfactory way as of now, 

 
 (1) Here, we shall cite only the ones that are appropriate to our special topics: For general mechanics: P. Appell, 

Traité de mécanique rationelle, 3rd ed., t. 1-V, Paris, 1911-1926. E. T. Whittaker, Analytical Dynamics, 2nd ed., 

Cambridge, 1917, also in German translation by F. and K. Mittelsten-Scheidt, Berlin, 1924. Moreover, for the 

differential principles, there is also C. H. Müller and G. Prange, Allgemeine Mechanik, Hannover, 1923. 

 (2) E. Mach, Die Mechanik in ihrer Entwicklungen, 7th ed., Leipzig, 1912. 

 (3) A. E. Haas, Die Grundgleichungen der Mechanik auf Grund ihrere geschichtlichen Entwicklung, Leipzig, 

1914. 

 (4) J. L. Lagrange, Mécanique analytique, Paris, 1811-15.  

 (5) W. R. Hamilton, Phil. Trans. (1834), pp. 307, and ibid. (1835), pp. 95. For his optical investigations: Trans. 

Irish Acad. 15 (1828), pp. 69; ibid. 16 (1830), pp. 93. 

 (6) C. G. J. Jacobi, cf., esp., Vorlesungen über Dynamik, held from 1842-1843, edited by A. Clebsch, 2nd ed., 

Berlin, 1884.  
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and indeed for the theory of elasticity, by the theory of crystal lattices (1), and for hydrodynamics, 

by the kinetic theory of gases (2). 

 In what follows, we shall restrict ourselves to the mechanics of discrete mass-points. The 

mechanics of rigid bodies can always be derived from that by the introduction of auxiliary 

conditions, i.e., constraints that are characterized by the properties of the rigid bodies. By contrast, 

as was shown in the previous chapter, the transition to the mechanics of deformable continua is 

much more complicated and requires one to add some new axioms. What one usually refers to as 

the general theory of mechanics is therefore the mechanics of mass-points and rigid bodies, to 

which we shall restrict ourselves here. 

 For the sake of symmetry and simplicity of notation, unless stated to the contrary, in what 

follows, the coordinates of the individual mass-points shall be numbered consecutively, so for 

instance, the x, y, z coordinates of the first mass-point shall be denoted by x1, x2, x3, those of the 

second by x4, x5, x6, etc. The generalized force components Xi and the masses mi shall be treated 

likewise. Naturally, for the latter, one always has m3n = m3n+1 = m3n+2 . Unless stated to the contrary, 

we shall imagine that the Xi are independent of the velocities ix . For the sake of intuition, we will 

also use a configuration space of coordinates whose dimension is equal to the number of degrees 

of freedom f. When summing over all coordinates, we shall use i, k, or l as summation indices. 

 

 

II. – Differential principles. 

 

a) Statics. 

 

 3. The principle of virtual displacements for free systems. – If we have a system of 

completely-free mass-points then the conditions for equilibrium, so the ones under which all mass-

points will remain at rest under the influence of forces, will read: 

 

Xi = 0   (i = 1, …, l).   (1) 

 

Those f equations can be formally combined into a single one when one multiplies each of them 

by entirely arbitrary quantities  xi, sums over all coordinates, and demands that: 

 

i i

i

X x  = 0 .            (2) 

 

The demand that the expression on the left-hand side should vanish for all arbitrary values of  xi 

represents the principle of virtual displacements (3), and it is obviously completely equivalent to 

 
 (1) See M. Born, Atomtheorie des festen Zustandes (Dynamik der Krystallgitter), Leipzig, 1923; also in Enzykl. d. 

Math. Wiss., Bd. V, art. 25, pp. 3.  

 (2) L. Boltzmann, Vorlesungen über Gastheorie; D. Hilbert, Math. Ann. 72 (1912), pp. 562. D. Enskog, 

Kinetische Theorie der Vorgänge in mäßig verdünnten Gasen, Diss. Uppsala, 1917; J. H. Jeans, The Dynamical 

Theory of Gases, 4th ed., Cambridge, 1925; German translation by R. Fürth, Braunschweig, 1926. 

 (3) For the meaning of the term “virtual,” see no. 5.  
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the system of equations (1) for free mass-points since one can, e.g., take all  xi, except for  x1, to 

be zero and then conclude from X1  x1 = 0 that X1 = 0 due to the arbitrariness of X1 . 

 Initially, that is a purely-formal result. However, one can also regard the  xi as infinitesimal 

displacements of the thi  coordinate. i i

i

X x  will also represent the work done by the force when 

it imparts that displacement on the mass-point then. Equation (2) will then be referred to as the 

principle of virtual work, and it can be expressed as follows: 

 

 A system of free mass-points is in equilibrium if and only if the work done under any arbitrary 

infinitesimal displacement vanishes. 

 

 The formulation is still completely meaningless at this point. However, it will prove to be 

convenient when the degrees of freedom in the system are subject to any sort of constraints. 

 

 

 4. Holonomic, non-holonomic, scleronomic, and rheonomic constraints. – The 

considerations of the previous number were valid only for free mass-points. (1) and (2) were 

completely equivalent at the time. However, constraints are often prescribed between the 

coordinates. Such constraints can have various forms: 

 

 1. The constraints include only the coordinates of the points, so they have the form: 

 

r (x1, …, xf) = 0   (r = 1, …, g).   (1) 

 

Let the number of constraints be g. This simplest, so-called holonomic, form for the equations of 

constraint is realized by all types of rigid constraints and all motions on completely-smooth strings 

and surfaces. Furthermore, the constraints (1) do not contain time t explicitly, so one calls then 

scleronomic. 

 

 2. The constraints also include derivatives of the coordinates with respect to time explicitly, 

so they have the form: 

1
1, , ; , , r

r f

dx dx
x x

dt dt


 
 
 

 = 0 .        (2) 

 

Hertz called them non-holonomic. That type includes, e.g., motions that arise from rolling without 

slipping, or restricting the motion of a blade to a surface (e.g., ice skating). In almost all cases that 

occur in practice, the constraints are linear in the derivatives, so they will have the form: 

 

1( , , , )ir f i r

i

a x x t dx a dt+  = 0  (r = 1, …, g).  (3) 

 

Naturally, they differ from the constraints (1) only when those differential expressions are not 

integrable, i.e., they cannot be reduced to finite equations of constraint by any process of 
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integration. In order for that to be true, it is necessary (but not always sufficient) that one must 

have: 

  ir

k

a

x




  kr

i

a

x




, ira

t




  r

i

a

x




, resp., 

 

for at least one pair of coefficients. 

 

 3. The constraints can also include time explicitly. An example of that type is motion on a 

moving surface. Boltzmann called them rheonomic. They can be holonomic, as well as non-

holonomic. The most general case is then that of the non-holonomic-rheonomic constraint 

equations. An example of that would be rolling on a moving surface. 

 

 4. The last possibility that remains is the one in which inequalities exist, e.g., when the 

degrees of freedom of a mass-point are restricted by an impermeable surface in space. Inequalities 

can also be non-holonomic-rheonomic, so they can be put into the form: 

 

ir i r

i

a dx a dt+   0 

 

in all of the cases that come under consideration. 

 

 

 5. The principle of virtual displacements for constrained systems. – In order exhibit the 

conditions for equilibrium when such constraint equations exist, we now require an additional 

axiom. For free mass-points, the equilibrium conditions can be derived from the requirement that 

the work done under an arbitrary infinitesimal displacement should vanish. However, arbitrary 

infinitesimal displacements are no longer possible now since the degrees of freedom in the system 

are restricted by constraints. The obvious generalization of the principle is to now demand that the 

work done should vanish only under all infinitesimal displacements that are compatible with the 

equations of constraint since all other displacements are excluded from the outset. Naturally, that 

implies a hypothesis that can only be confirmed by experiment. 

 The displacements that are restricted in that way are distinguished from the most general 

displacements by referring to them as virtual (i.e., possible) displacements. For example, when a 

point is constrained by a surface, the virtual displacements will be the ones under which it will 

remain on that surface. 

 In order to obtain the analytical expression for the principle, we initially restrict ourselves to 

the finite, holonomic constraint equations (1) in no. 4. If we always write the infinitesimal 

displacements with a , as in no. 3, in order to distinguish them from the differential symbols d 

and , which is an abbreviation that shall be established throughout this article, then the virtual 

displacements  xi for the constraint equations (1) in no. 4 will be subject to the conditions: 

 

r (x1 +  x1, …, xr +  xr) = 0 , 

 



6 Nordheim – The Principles of Dynamics. 
 

which says just that the varied configuration will also satisfy the equations of constraint. Since the 

displacements should also be infinitesimal, when one develops that into a Taylor series and 

truncates it after the first term, while recalling (1) in no. 4, one will have: 

 

r
i

i i

x
x







  = 0   (r = 1, …, g).  (1) 

 

The demand that the displacements should be infinitesimal is essentially that those equations 

should be linear in the  xi . 

 That must be combined with the demand of the principle of virtual displacements: 

 

i i

i

X x  = 0 ,     (2) 

 

in which the left-hand side again represents the work done under such a displacement. 

 Equations (1) and (2) can be combined into one equation with the use of undetermined 

multipliers r that are usually called Lagrange factors since one multiplies each of equations (1) 

by r and adds them to (2). One will then get: 

 

r
i r i

i r i

X x
x


 

 
+ 

 
   = 0 .             (3) 

 

Of the components of the virtual displacements  xi in that, precisely (f – g) of them can be chosen 

arbitrarily, while the rest of them can be determined by the auxiliary condition (1). One now 

imagines that the multipliers r have been chosen in such a manner that the components of just the 

last g factors vanish. Naturally, it is irrelevant how one chooses them. (f – g) terms will then remain 

in (3) that are now multiplied by completely arbitrary displacements. Therefore, all of their 

coefficients must vanish by themselves. The artifice of the Lagrange factors then allows one to 

infer consequences from equations (3) in the same way as when the  xi are completely arbitrary, 

and one will obtain the f = 3n equations: 

r
i r

r i

X
x





+


  = 0            (4) 

 

as the equilibrium conditions. Together with the g constraint equations (1), they will suffice to 

determine the 3n + g unknowns xi, r, so they will establish equilibrium completely. 

 Now, it is easy to see from the argument that led up to equations (4) how one must proceed 

when one has non-holonomic and rheonomic constraint equations. For non-holonomic-rheonomic 

constraints, a relationship between the components of the virtual displacements that is analogous 

to (1) is already included in equations (2.a) of no. 4 (in which one temporarily sets ar  0), namely: 
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ir i

i

a x  = 0 ,         (5) 

 

and equations (4) will obviously be true when takes the corresponding coefficients air in place of 

r / xi . h holonomic constraints can also enter into that, such that we will get: 

 

r
i s ir r

r s i

X a
x


 


+ +


   = 0    (4.a) 

 

as the most-general form of the equilibrium conditions. They represent f equations, and together 

with the g + h constraint equations, they will suffice to determine the f + g + h unknowns xi, r, s. 

Naturally, the system of equations (4.a) will have many solutions, i.e., several equilibrium 

configurations will exist. 

 If time appears explicitly in the equations of constraint (viz., the rheonomic case) then one will 

get the equilibrium conditions from the argument that the system must be in equilibrium under the 

influence of all forces and constraints. That is, if we replace t with any numerical value then 

equations (4) [(4.a), resp.] must be satisfied. That means that we can employ our principle formally 

unchanged when we treat time as a constant parameter. However, in so doing, we should observe 

the following point: Time will also be varied for a true displacement that might result in the time 

interval dt. The true displacements will then satisfy constraints of the forms: 

 

r r
i

i i

dx dt
x t

  
+

 
  = 0 

or 

ir i r

i

a dx a dt+  = 0 , 

 

resp. Therefore, they will not belong to the virtual displacements that arise by dropping the term 

in dt, so for holonomic constraints, they will satisfy equations (1), while for non-holonomic 

constraints, they will satisfy the corresponding ones (1.a). The supporting surfaces that move in a 

given way in the rheonomic case can then be regarded as being at rest at any particular moment 

for the virtual displacements. We can base that convention, which initially seems very hard to 

understand, upon the fact that one derives the rheonomic case from the scleronomic one by passing 

to the limit when one lets the mass of the supporting surface go to infinity. The reaction of the 

motion of the system in question to the supporting body will then, in fact, vanish, and a constraint 

between them that was originally scleronomic will go to a rheonomic one on the system by itself 

(1). 

 With that, the principle of virtual displacements is exhibited in its greatest-possible generality. 

It will break down only for non-holonomic auxiliary conditions, which cannot be put into the 

Pfaffian form (2.a) of no. 4. 

 

 
 (1) See E. Delassus, Darboux Bull. (3) 45 (1921), pp. 231.  
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 6. The meaning of the Lagrange factors. – One can obviously imagine that the equations of 

constraint that the mechanical system is subject to are replaced with suitable forces, namely, the 

so-called “guiding forces” or “constraint forces,” which are arranged to be precisely such that when 

they are in effect, the free motion of the system will coincide with constrained motion of the 

system. Conversely, from the axiom of action and reaction, the forces of constraint must be equal 

and opposite to the action of the forces that the mass-points exert upon their constraints. Naturally, 

the determination of the reaction forces has great importance for engineering, even though it is not 

necessary for one to calculate the actual motion. 

 One will see that this introduction of guiding forces is always possible immediately when one 

compares equations (1) in no. 1 for free motions and equations (4) [(4.a), resp.] in no. 5 for 

constrained ones. The latter will go to the former when one regards the expressions: 

 

Zi = r
r ir s

r s i

a
x


 


+


        (1) 

 

as forces that correspond to the desired guiding forces that were introduced just now. The 

equilibrium conditions will then say that the impressed forces (as one refers to the external forces) 

should be equal and opposite to the guiding forces. 

 In the case of a mass-point that is constrained to a surface, so there is a constraint of the form 

 (x, y, z) = 0, it is very simple to make the constraint force more intuitive. The components here 

are proportional to the direction cosines to the normal to the surface, as one will see when it is 

represented by: 

22 2

, ,
x y z

x y z

  

  

  

  

      
+ +    

      

 . 

 

The constraint force is then perpendicular to the guiding surface. In the general case, the constraints 

(1) [(1.a), resp.] of no. 5 say that the constraint forces can do no work under virtual displacements. 

Naturally, one can also elevate that theorem to an axiom and then derive equations (3), (4) in no. 

5 from it. 

 

 

 7. Inequalities as auxiliary conditions. – We must now consider the case in which one or 

more inequalities: 

 (xi, t)  0       (1) 

 

are prescribed, in addition to the usual auxiliary conditions (1). We shall preserve the definition of 

a virtual displacement for them, as well, namely, that they represent small displacements  xi of 

 
 (1) A thorough discussion of inequalities in kinetics, as well, is given by E. Delassus, Ann. sci. Ec. Norm. Sup. (3) 

34 (1917), pp. 95. 
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the coordinates that are compatible with the constraints. When inequalities of the form (1) exist, 

they will also be subject to inequalities of the form: 

 

ir i

i

a x   0       (1.a) 

 

then. In the holonomic case, we will again have: 

 

air = r

ix




,      (1.b) 

 

but we can also admit non-holonomic constraints (1.a) that can therefore not be represented in the 

integrated form (1). A special characteristic of inequalities is that in general the opposite of a virtual 

displacement, which arises by inverting the signs of the  xi, is not admissible for them. 

 The extension of the principle of virtual displacements to these cases was achieved by Fourier. 

Obviously, one can no longer postulate the vanishing of virtual work now. 

 We can divide the virtual displacements into two groups: In the first group, we have the ones 

for which the equality sign in (1.a) is valid everywhere, and we refer to them as equality 

displacements. In the second group, we have inequality displacements, to which the < sign applies. 

Now, it is initially clear that a configuration of the system can be an equilibrium configuration 

when it is already one under equality displacements since the admissibility of inequality 

displacements indeed means the lifting of a restriction on the degrees of freedom. We now assume 

that we have found an equilibrium configuration for all equality displacements, so we will have: 

 

i iX x  = 0 

 

for them. However, if we add the inequality displacements, and thus extend the scope of the virtual 

displacements, then from (1.a), we can certainly find ones for which: 

 

i iX x   0 . 

 

Now one can easily see that the sum of all the virtual works done under all of the motions that 

actually occur must be > 0. Namely, each mass-point will follow the resultant of the forces that act 

upon it in those motions. If we then take the displacements to have those directions then the Xi and 

 xi will always have the same sign, and 
i iX x  will always be positive for those displacements. 

None of the virtual displacements for which the sum of the virtual works is < 0 can correspond to 

a motion that actually occurs, but probably the displacements for which the work proves to be 

positive. Obviously, one must include that state of affairs in the calculations in such a way that one 

no longer takes the inequality sign in the principle of virtual displacements, but the  sign, so one 

demands that: 

i iX x   0 .      (2) 
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Naturally, that Ansatz is yet another hypothesis that cannot be proved, but only verified. 

 Based upon (2), as before, one can write the conditions for equilibrium with the help of the 

Lagrange factors in the form: 

i r ir

r

X a+   = 0 . 

 

In that way, the factors r that belong to the inequalities will be subject to the single restriction that 

they must be < 0, since: 

i i

i

X x  = − r ir i

r i

a x    

 

would certainly be negative then as a result of equations (1.a). 

 

b) Kinetics. 

 

 8. D’Alembert’s principle. – We now move on to kinetics, so the simple equations of motion 

(1) in no. 3 will no longer be valid for a system of mass-points, but in their place, we will have the 

Newtonian equations of motion: 

i i iX m x−  = 0   (i = 1, …, f).  (1) 

 

As Jacob Bernoulli once pointed out, and d’Alembert then exploited systematically in his 

mechanics, they can then be treated in an entirely analogous manner to the equilibrium equations 

when one also regards the quantities i im x  as forces, namely, the so-called inertial forces. The 

inertial forces will then be in equilibrium with the impressed forces. 

 We initially combine equations (1) into a single relation with the help of arbitrary 

displacements  xi, as we did in statics: 

 

( )i i i i

i

X m x x−  = 0 .     (2) 

 

That formulation, which is again identical to (1), goes back to Lagrange. If we now introduce 

auxiliary conditions, which can have all of the forms in no. 4, then d’Alembert’s principle 

postulates that equation (2) will preserve its validity when the  xi fulfill the same constraints that 

they would in statics. One can again replace that axiom with the demand that the guiding forces 

must do no work, or also with the following one, which reduces to statics by an analogous argument 

that is due to d’Alembert. 

 For a free system under the combined action of the impressed forces Xi and certain guiding 

forces Zi, the accelerations that actually occur would enter in. Those guiding forces are determined 

by: 

i i iX m x−  = Zi ,          (3) 
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in which ix  are the accelerations that actually occur. The forces of reaction Zi are now neutralized 

by the constraints. The forces Zi must then yield equilibrium by themselves at each moment when 

one considers the constraints. For that reason, one also refers to them as lost forces. From the 

principle of virtual displacements, one will then have: 

 

i i

i

Z x  = 0 ,        (4) 

 

which is identical to (2), from (1). The dynamical problem has been reduced to a problem in statics 

then. D’Alembert’s principle can then be expressed as follows: 

 

 A system of mass-points moves under the influence of arbitrary forces and constraints in such 

a way that it will always keep the lost forces in equilibrium. They will then do no work. 

 

  Here, we would like to follow the general terminology and always refer to formula (2) as 

d’Alembert’s principle. 

 Naturally, the argument that was laid out above includes an essentially new assumption, and 

one cannot refer to that reduction as a proof of d’Alembert’s principle from the principle of virtual 

displacements. 

 One will then get the equations of motion from (2) precisely as one did in no. 5. They read: 

 

s
i i i r ir s

r s i

X m x a
x


 


− + +


   = 0 .    (5) 

 

They are the so-called Lagrange equations of the first kind, which are also valid for non-

holonomic-rheonomic constraints. It should be pointed out once more that time is not varied here, 

even in the rheonomic case, since one treats an equilibrium problem at each moment. 

 The guiding forces themselves will again be: 

 

Zi = s
r ir s

r s i

a
x


 


+


  ,     (6) 

 

and they will fulfill the relation (4), as they must, which one will see immediately with the help of 

the auxiliary conditions (1) and (1.a) in no. 5. 

 If inequalities are again present then the equality sign in (2) can no longer be satisfied. In the 

spirit of no. 7, in its place, one must demand that: 

 

( )i i i i

i

X m x x−   0 .     (7) 
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That condition will not always determine the motion uniquely. We shall return to it later in the 

context of Gauss’s principle (1). 

 

 

 9. Generalized coordinates. The Lagrange equations of the second kind – Naturally, the 

constant attention that has to be given to auxiliary conditions is very inconvenient in many 

problems. Using the Lagrange process, one then seeks to eliminate the auxiliary conditions by 

introducing suitable new parameters and then exhibit the equations in terms of the independent 

parameters. Likewise, it is often only natural to introduce other coordinates, e.g., polar coordinates, 

and even for free systems. 

 For holonomic constraints, regardless of whether they are scleronomic or rheonomic, that will 

encounter no difficulties. Namely, if g such constraints exist then a corresponding number of 

coordinates can be eliminated with their help, and the system can now be described by f = 3n – g 

independent parameters qk that are now completely free. They are called the generalized Lagrange 

coordinates, and the number of them f is called the degrees of freedom in the system. One calls the 

derivatives of qk with respect to time: 

kdq

dt
 = kq  

the generalized velocity components. 

 By contrast, if the system is non-holonomic then there will exist h relations between the 

differentials, in addition, i.e., at any moment, the motion cannot have all of the directions in the 

configuration space of the qk, but it will be restricted to (f – h)-dimensional manifold, while the 

system itself can assume an f-parameter manifold of configurations. 

 Our problem is now to obtain the equations of motion in terms of generalized coordinates. That 

will be initially accomplished with holonomic systems. From what was said, the coordinates of the 

system points can be expressed with the help of generalized configuration parameters and time 

here: 

xi = xi (q1, …, qf, t)  (i = 1, …, 3n).  (1) 

 

We shall assume that those equations determine the xi uniquely in terms of the qk. From 

d’Alembert’s principle, the equations of motion: 

 

i im x  = Xi + Zi   (i = 1, …, 3n),  (2) 

 

in which Xi are the impressed forces and Zi are the still-unknown constraint forces. If we multiply 

those equations in succession by /i kx q   and sum over all coordinates then that will give: 

 

i
i i

i k

x
m x

q




 = ( ) i

i i

i k

x
X Z

q


+


 .    (3) 

 
 (1) For d’Alembert’s principle, cf., G. Hamel, Zeit. techn. Phys. 3 (1922), pp. 181; E. Delassus, C. R. Acad. Sci. 

156 (1913), pp. 205. See also Chap. 1, no. 24, of this volume of the Handbuch. 



II. – Differential principles. 13 
 

However, one has the following identities between the xi and ix : 

 

,

,

i i
i k

i k

i i

k k

x x
x q

q t

x x

q q

  
= +   


  =

  


     (4.a) 

so 

2 2

2 2

.
2 2

i i i
i i

k k k

i i i
i i s

sk k s k

i i

k k

x x xd
x x

q q dt q

x x xd
x x q

dt q q q q t

x xd

dt q q

   
= =  

    


      
= − +    

        


       = −    
       

   (4.b) 

Now: 
21

2 i im x  = T       (5) 

 

is the kinetic energy of the system. Naturally, it can also be represented as a function of qk, kq , and 

t, and in fact, from (4.a), it will once more be a quadratic function of the kq  that is homogeneous 

in them when the constraints do not depend upon time explicitly. In the other case, T will 

decompose into T0 + T1 + T2, where Ts is a function of degree s in the kq . 

 Equations (3) will then go to: 

 

k k

d T T

dt q q

  
− 

  
 = ( ) i

i i

i k

x
X Z

q


+


   (k = 1, …, f).  (3.a) 

 

The right-hand side of this has been brought into a form in which the xi no longer appear. If we 

carry out a motion under which the coordinate qk goes to qk +  qk , so it belongs to the virtual 

displacements, with our previous terminology, then the xi will go to: 

 

i
i k

k

x
x q

q



+


, 

 

and the work done by all of the forces that are applied to the system under such a displacement 

will be equal to: 

( ) i
i i k

i k

x
X Z q

q



+


 . 
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Now, d’Alembert’s principle says precisely that the work done by constraint forces should vanish 

under all virtual displacements, i.e., one must also have: 

 

i i

i

Z x  = i
i k

i k

x
Z q

q





  

 

for them, and therefore due to the arbitrariness in  qk, one must also have: 

 

i
i

i k

x
Z

q




  = 0 . 

 

The right-hand side of (3.a) will then reduce to: 

 

i
i

i k

x
X

q




  = Qk .     (6) 

 

However, since we know the applied external forces as functions of xi and possibly t, the Qk will 

be known functions of qk and t by means of (1), and one refers to them as generalized force 

components or force components in the direction of qk . However, it should be emphasized that the 

Qk do not necessarily have the dimensions of forces, namely, that will be the case only when the 

qk have the dimension of a length. However, the product Qk  qk will always have the dimension 

of work. 

 We finally obtain the ultimate form of the equations of motion in general coordinates in the 

form of the so-called Lagrange equations of the second kind: 

 

k k

d T T

dt q q

  
− 

  
 = Qk  (k = 1, …, f).         (7) 

 

The constraint equations and the reaction forces have been eliminated from them. The latter, which 

are very important in engineering (support stresses and material stresses), can be determined when 

one uses either the equations of the first kind or intermediate form by initially introducing one or 

more parameters in such a way that when they are set equal to constants, they will produce the 

corresponding constraint equation precisely. One might introduce, e.g., polar coordinates, for a 

rotation around an axis and then fix the radius. One can once more determine the reaction forces 

after later recalling those constraints, as one does with the Lagrange equations of the first form (1) 

(On this subject, cf., also no. 12.) 

 In the event that the external forces have a potential U (xi), so one has: 

 

 
 (1) See, e.g., F. Paulus, Wiener Ber. 119 (1910), pp. 1669.  
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Xi = − 1 3( , , )n

i

U x x

x




, 

one will get: 

Qk = i
i

i k

x
X

q




  = − i

i i k

xU

x q



 
  = − 

1( , , )f

k

U q q

q




 

 

by means of (1). In the event that U is independent of the velocities, one can put (7) into the simpler 

form (which was already exhibited by Euler): 

 

k k

d L L

dt q q

  
− 

  
 = 0 ,          (8) 

in which: 

L = T – U              (9) 

 

is the so-called kinetic potential or the Lagrangian function, and is a known function qk, kq , and 

t. 

 

 

 10. Systems with forces that depend upon velocity. – It can happen that forces that depend 

upon the velocities act upon a system. Examples of that type of force are forces of friction, which 

we will treat in no. 14. However, there can also be forces that depend upon velocities and for which 

the simple form of the Lagrange equations will still be preserved. 

 Namely, if Qk has the form: 

Qk = − 
k k

U d U

q dt q

  
+  

  
,     (1) 

 

in which U is a given function of the qk and kq , then that will be the case because one will have: 

 

k k

d T T

dt q q

  
− 

  
 = − 

k k

U d U

q dt q

  
+  

  
 , 

 

and with the definition of the kinetic potential: 

 

L = T – U , 

we come back to the form (8) in no. 9. 
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 A very important example of that is the motion of an electrically-charged particle, e.g., an 

electron under the influence of arbitrary electric and magnetic forces (1). If H is the magnetic field 

strength vector, E is the electric field strength vector, − e is the charge of the electron, and v is the 

velocity vector then the force K will be: 

K = − 
e

c
[v H] – e E ,            (2) 

 

in vector notation. That so-called Lorentz force can be derived from the generalized potential: 

 

U = − 
e

c
A v – e  = 

x y zx y z e+ + −A A A ,   (3) 

 

in which A and  are the vector and scalar potential of the electromagnetic field, from which one 

can always (so, e.g., even for light waves) determine the field from: 

 

1
grad ,

rot .

c t


 
= − − 

 
= 

A
E

H A

               (4) 

 

One easily confirms the validity of the Ansatz (3), as follows: With the prescription (1), one gets 

the force components as: 

 

 X = 
k k

d U U

dt q q

  
− 

  
 = xde e

e
c dt c x x

 
− +

 

A Av
 

= 
yx x x x x ze e

x y z x y z e
c x y z t c x x z x

        
+ + + − + + +  

          

AA A A A A A
 

 = − 
y x x xze e

y z e
c x y z x c t x

       
− − − − +    

        

A A A AA
, 

 

and therefore, from (4), one will have: 

X = − 
e

c
[v H]x – Ex , 

 

which agrees with (2). If one would like to consider the variation of mass according to the theory 

of relativity then the: 

 
 (1) See, e.g., J. Frenkel, Lehrbuch der Elektrodynamik, Berlin, 1926, Chap. 10, pp. 317, et seq. For the general 

conditions for the existence of a kinetic potential, see H. von Helmholtz, Crelles Journal für Math. 100 (1896), pp. pp. 

137; A. Mayer, Leipziger, Ber. 74 (1898); A. Hirsch, Math. Ann. 50 (1898), pp. 429. 
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T = 2 2 21
( )

2
x y z

m
+ +  = 21

2m
v  

 

in the Lagrangian function will be replaced with the relativistic expression (1): 

 

2
2

0 2
1 1

v
m c

c

 
− − 

 
 

 . 

 

The complete Lagrangian function for an electron will then read: 

 

L = 
2

2

0 2
1 1

v e
m c ec

c c

 
− − + − 

 
 

Av  .         (5) 

 

 Another example of that type of force is defined by the older elementary law of 

electrodynamics that was due to Weber. In it, the generalized potential between two particles at a 

distance of r from each other is: 

U = 
2

2

1
1

r

r c

 
+ 

 
 , 

and the corresponding force is: 

Xr = 
2

2 2

1 2
1

r r r

r c

 −
− 

 
 . 

 

 

 11. Generalized impulse. Cyclic coordinates. Law of energy. – One calls the quantities: 

 

pk = 
k

L

q




      (1) 

 

the generalized impulses that belong to the coordinates qk. (In fact, e.g., for rectangular 

coordinates, if one has: 

T = 21
2 i i

i

m x , 

 

and therefore when the potential V does not depend upon velocity: 

 

pk = 
k

L

x




 = i im x  

 

 
 (1) See Chap. 10, no. 4, of this volume of the Handbuch. 
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will be the thi  component.) They play a very important role in all of mechanics. The Lagrange 

equations, in the form: 

kdq

dt
= k

k

T
Q

q


+


, 

 

then say that the temporal change in each impulse component is equal to the change in the kinetic 

energy with respect to the associated position coordinate plus the force that is exerted upon it. 

 That will immediately imply some integrals of the Lagrange equations in some very important 

cases. 

 We initially assume that the system has a kinetic potential L, so the Lagrange equation will 

have the form (8) in no. 9. Now, if some of the coordinates qk – e.g., qr – do not appear in L, but 

only their derivatives, then one calls those coordinates cyclic. The corresponding Lagrange 

equations reduce to: 

r

d L

dt q

 
 

 
 = 0      (3) 

for them, so: 

r

L

q




 = const. = r ,       (2.a) 

 

in which the r are integration constants. In (2.a), we already have intermediate integrals of the 

equations of motion. 

 The impulses that belong to cyclic coordinates are constant then. Special cases of the law are, 

e.g., the laws of impulse and areas (see Chap. 7 and 8). 

 It can often be the case that time t does not appear explicitly in L. In that case, one can likewise 

always give an integral of the equations of motion because one will then have: 

 

dL

dt
 = k k

k kk k

L L
q q

q q

 
+

 
   = k k

k kk k

L d L
q q

q dt q

 
+

 
   = k

k k

d L
q

dt q

 
 

 
 . 

 

That will give: 

k

k k

d L
q L

dt q

 
− 

 
  = 0 , 

so 

k

k k

L
q L

q


−


  = const. = E 

 

will be an integral of the Lagrange equations. That integral will be the energy integral when T is a 

homogeneous quadratic function of the velocities, and the potential energy does not depend upon 

the velocities because in that case, from Euler’s theorem on homogeneous functions: 
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k

k k

T
q

q




  = 2T , 

so 

E = k

k k

T
q

q




  − T + U = 2T – T + U = T + U . 

 

 One can always reduce the number of parameters with the help of such integrals. We shall refer 

to Part III for that topic, in which that question is discussed from a general viewpoint. 

 

 

 12. Adding auxiliary conditions to the Lagrange equations of the second kind (1). – The 

methods of no. 9 will break down for non-holonomic conditions, and one must then proceed with 

the auxiliary conditions separately. For holonomic equations of constant, it can also prove to be 

useful to eliminate only some of the auxiliary conditions by introducing suitable coordinates but 

preserve the other ones. Now let the qk no longer be free coordinates then, but ones that are subject 

to auxiliary conditions that might take the general non-holonomic form: 

 

rk k r

k

a dq a dt+  = 0 

or 

rk k r

k

a q a+  = 0  (r = 1, …, g),    (1) 

in which one will have: 

ark = r

kq




, ar = r

t




 

in the holonomic case. 

 Naturally, the ark and ar are assumed to be functions of the qk and t. We once more imagine that 

the constraints have been replaced with forces of constraint Zk that will enter into the right-hand 

sides of equations (7) in no. 9. Now, we know from d’Alembert’s principle that those forces of 

constraint will do no work under virtual displacements. The work that they do: 

 

 A = k k

k

Z q  

 

must then vanish for all displacements that satisfy the constraints: 

 

rk k

k

a q  = 0 . 

 

However, it will again follow from this that: 

 
 (1) N. M. Ferrers, Quart. J. Math. 12 (1871), pp. 1. Also C. Neumann, Leipziger Ber. 40 (1888), pp. 22; A. 

Verkandt, Monatsber. Math. Phys. 4  (1892), pp. 31. 
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  Zk = k rk

k

a   (r = 1, …, g), 

 

in which r once more represent Lagrange factors. The equations of motion will then read: 

 

k k

d T T

dt q q

  
− 

  
 = Qk + k rk

k

a .    (2) 

 

Along with the auxiliary conditions (1), there will always be exactly f + g equations then for the f 

+ g quantities qk, k . However, it is not possible to reduce the number of independent parameters 

in the unvaried form of the Lagrange equations with the help of non-holonomic auxiliary 

conditions. That can be first achieved with method that will be given in the next subsection. 

 

 

 13. The extended Lagrange equations of the second kind for quasi-coordinates. – From 

time to time, it is preferable to replace the velocity components kq  in the Lagrange equations with 

linear combinations of them that we would like to denote by 


, and we define them by the 

equations: 




 = rk k

k

q   ( = 1, …, f),    (1) 

in which the rk can be functions of the qk and t. Initially, the number of 


 shall be equal to the 

number of kq  themselves in that, such that our considerations shall initially relate to only 

holonomic coordinates since the qk are supposed to be ordinary coordinates. In analogy to (1), we 

denote the linear combinations of the differentials by: 

 

  = rk k

k

q  .     (1.a) 

 

If the Pfaffian expressions (1.a) are integrable, so perhaps the following integrability conditions 

exist: 

k

iq




 = 

i

kq




,      (2) 

 

then they will define true coordinates  as functions of the qk . However, that is not possible in 

the other case, and one will then call the d the differentials of quasi-coordinates. For that reason, 

we shall employ the asterisk notation for d / dt in order to emphasize the fact that we are not 

dealing with a true derivative. 

 One employs such quasi-coordinates in, e.g., the Euler equations of the mechanics of rigid 

bodies, in which one describes the motion of the system in terms of the components of the angular 
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velocities around three axes that are fixed in the body, namely, the principal axes of inertia, which 

are connected with non-integrable linear combinations of the time derivatives of the Euler angles. 

 In order to arrive at the equations of motion in terms of such quasi-coordinates, we proceed as 

follows. By inverting equations (1) (we assume that this is possible, so we are excluding the 

singular cases in which the determinant of the rk vanishes), we will get: 

 

kq  = k

k

  


 ,        (3) 

in which 

k k

k

    = 
0 for

1 for .

 

 




=
    (4) 

 

We multiply the Lagrange equations (7) of no. 9 by k in succession and sum over k : 

 

k

k k k

d T T

dt q q


    
−  

    
  = k k

k

Q  =  .          (5) 

 

Obviously, the  in that is the generalized force component “in the direction of ,” i.e., the work 

done by the external forces under a displacement will be equal to   only when   0, while 

the work done by a general displacement will be: 

 

 


  

 

since k k

k

Q q  is the work done by external forces under an arbitrary displacement, and therefore 

k k

k

Q     will be the work done by the external forces under a displacement for which all of 

the  vanish, with the exception of  . 

 We can express T as a function of the qk and 


, instead of kq , with the help of (3), and we 

would like to denote that function by T in order to distinguish the two. We will then have: 

 

 
k

T

q




 = 

kq



















T
 = 

k














T
 

and 

k

T

q




 = 

k kq q














 
+

 


T T
 = l

l

k k

q
q q











 
+

 


T T
, 

so 
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  = k k

k k k

d T

dt q
 



 




  
    −       

 
T

 

 = 
,

k
k k

k k k

dd T

dt dt q


 


 


 

 
 

 
    + −

     

 
T T

 

 = 
, ,

k l
k k k

k l kl k k

d
q

dt q q q

 
 


 

 
 

 
 

 
      + − −          

 
T T T

. 

Now, the quantities: 

 = 
,

l k
k l

k l k lq q

 
 

 
 

  
− 

  
     (6) 

 

are independent of the motion of the system and depend upon only the relations between the 

differentials of the quasi-coordinates and those of the true coordinates. If the  were true 

coordinates then one would have: 

k

k kq







T
 = k

k k

q

q 



 


T
 = 







T
.      (7) 

 

We shall preserve that relationship for quasi-coordinates as well in order to simplify the notation. 

With that, we finally get the general form of the Lagrange equations, which was first derived by 

Boltzmann (1) and Hamel (2): 

,

d

dt
 

  
 

 
 



 

 
    + −

     


T T T

 =  .        (8) 

 

 If the  are themselves true coordinates then the quantities  will all be zero from the 

integrability conditions (2). Equations (7) will then reduce to the usual Lagrange equations, as they 

must. 

 With that, we can also consider non-holonomic auxiliary conditions with no difficulty now. 

Namely, let the original coordinates qk (k = 1, …, f) be subject to g non-holonomic constraints: 

 

sk k

k

a q  = 0  (s = 1, …, g)   (9) 

 

 
 (1) L. Boltzmann, Wiener Ber. 111 (1902), pp. 1603; also in Werke, Bd. III, 1904, pp. 682.  

 (2) G. Hamel, Zeit. Phys. u. Phys. 15 (1904), pp. 1; cf., also Math. Ann. 59 (1905), pp. 416; there, one will also 

find a group-theoretic interpretation of the supplementary terms; cf., also ibidem 92 (1924), pp. 33. 
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so we take the f−g,k, …, fk  in (1) (i.e., the coefficients of the last g equations) to be equal to ask 

precisely. Thus: 

f g


−  = sk k

k

a q  , f−g = sk k

k

a q ,    (10) 

 

while the remaining ones can be chosen arbitrarily, with the single restriction that the determinant 

of all k must be non-zero. 

 We now perform the same procedure as before, except that we take equations (2) of no 12 

instead of equations (7) in no. 9. Precisely the terms that are endowed with Lagrange factors will 

then drop out of the first f – g of equations (5) by means of the relations (4). When one recalls the 

auxiliary conditions: 

  


 = 0  (r = f – g, …, f),         (11) 

 

the last g of them will define precisely g relations for determining the g . However, they will no 

longer be of any interest to us since obviously the remaining equations, together with (11), will 

already suffice to determine the motion of the system. With that, we have achieved our goal. 

Equations (8) are also true for non-holonomic systems then, and we can at least reduce the number 

of velocity components by means of the non-holonomic constraints. 

 Even more generally, we can also take expressions of the form: 

 




 = k k

k

q  +  

 

in place of (1), which would be necessary, e.g., for non-holonomic-rheonomic systems. In that 

case, we formally introduce qk+1 = t as a new coordinate, which means that we must naturally set 

1kq +  = 1. We must then take: 

  


  = k k

k

q  +  

  1


+   = 1kq +  = 1 

 

as the equations of transformation. The argument above can then be adapted, word-for-word, 

except that everywhere that we sum over the coordinates, another term must be added to the 

summation that belongs to the new time coordinate. The form (8) of the equations of motion will 

then remain the same now and will thus subsume all of the cases that might come under 

consideration. 

 

 

  14. Forces of friction and collisions. – As an appendix, let us briefly discuss the modifications 

that must be made to the Lagrange equations when forces of a more general type act upon the 

system, such as forces of friction and collisions. 
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 It will be assumed that the forces of friction are proportional to the velocities of their points of 

application. The equations of motion in Cartesian coordinates will then take the form: 

 

i im x  = − i ik x  + Xi + Zi , 

 

in which the ki are functions of only the xi . Naturally, the energy that is dissipated by the forces of 

resistance under an arbitrary displacement  xi is equal to minus the work done by the forces of 

friction, so: 

 E = i i i

i

k x x .         (1) 

 

 We shall now go over to the generalized coordinates by multiplying each of the equations of 

motion by xi / qk and summing over all coordinates. In that way, we will get: 

 

k

k k

d T T
Q

dt q q

  
− − 

  
 = − i

i i

i k

x
k x

q




 . 

 

The right-hand side can be regarded as the derivatives of a single function since we have: 

 

i

k

x

q




= i

k

x

q




 

from equation (4.a) in no. 9, so: 

 

i
i i

i k

x
k x

q




  = i

i i

i k

x
k x

q




  = 

k

F

q




, 

in which: 

F = 21
2 i ik x                 (2) 

 

is the so-called Rayleigh scattering function. From (1), it measures the decrease in the system 

energy over time that results from the forces of friction. The equations of motion will then take the 

form: 

k k k

d T T F

dt q q q

   
− + 

   
 = Qk .     (3) 

 

 A suitable form can also be given to the Lagrange equations for collision forces, so for the 

effects of instantaneous impulses. If we denote all coordinates and velocities before the impact 
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with the index 0, and the ones after the impact with no index then the equations before the impact 

will be (1): 
0( )i i im x x−  = Si + Zi 

 

in Cartesian coordinates, in which the Si are components of the external impulse relative to the thi  

coordinate, and the Zi are once more the constraint reactions. With the process in no. 9, we will 

again get: 

0( ) i
i i i

i k

x
m x x

q


−


  = i

i

i k

x
S

q




  = Pk , 

 

since the terms with the reaction impulses must vanish, from d’Alembert’s theorem. The impulse 

components Pk in the directions of the coordinates qk are assumed to be known in that. One again 

converts the left-hand side as follows: One has: 

 

i
i

k

x
x

q




 = 

21
( )

2

i
i

k

x
x

q




,  

0 i
i

k

x
x

q




 = 

0 2

0

1
( )

2

i
i

i

x
x

q




, 

 

in which the qk (
0

iq , resp.) are the generalized velocity components before and after the impact. 

One can then put the equations of motion into the form:  

 
0

k k

T T

q q

  
−  

  
 = Pk .           (4) 

 

As opposed to the usual Lagrange differential equations, those are finite equations for determining 

the kq  as functions of the 0

iq . If one introduces the generalized impulse pk (see no. 11) then (4) 

will go to: 
0

k kp p−  = Pk ,      (5) 

 

i.e., the difference between the impulses before and after the impact is equal to impulse that the 

impact exerts. 

 

 

 15. Gauss’s principle of least constraint. – Now that we have discussed d’Alembert’s 

principle and the Lagrange equations of the first and second kind that we get from it for all cases 

of practical importance, we shall turn to the remaining differential principles. Among them, 

Gauss’s principle of least constraint assumes an especially-distinguished position due to its 

simplicity and multifaceted utility. One arrives at it by the following argument: 

 
 (1) Naturally, they are derived from the general equations by passing to the limit. On this, cf., e.g., J. Tzènoff, 

Math. Ann. 92 (1924), pp. 42. The case of the sudden introduction or removal of constraints is also treated there. See 

also Beghin and Rousseau, J. de math. (5) 9 (1903), pp. 21.  
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 For a system of free mass-points, the expression: 

 

Z = 

2

i
i i

i i

X
m x

m

 
− 

 
              (1) 

 

will vanish as a result of Newton’s equations of motion. If constraints of any sort exist then (1) can 

no longer be continually zero, but it must naturally be a function of the trajectory. Now Gauss 

demanded that this expression should be as small as possible for the actual motion, since it cannot 

vanish, i.e., Z shall be a minimum for the actual motion. That demand represents the principle of 

least constraint since one refers to the quantity Z as the constraint, following the lead of Gauss. 

In fact, /i i ix X m−  is a sort of measure for the effect of the external constraints on the thi  

coordinate. 

 One sees that as follows: Consider the system at two successive time-points t and t + dt, once 

under the influence of all auxiliary conditions, and then under the same initial conditions, but as a 

free system with no constraints that is still acted upon by the external forces. 

 In the second case, for a free system, the image point in the configuration space of xi will go 

from the initial point A with the coordinates xi to the point B with the coordinates: 

 

2

2

i
i i

i

X
x x dt dt

m
+ + , 

 

since the acceleration in the infinitesimal time interval dt can be regarded as constant, and indeed 

it will be equal to Xi / mi , from Newton’s equations (1) in no. 8. 

 The segments AB and AC will then have the following components: 

 

(AB)i = 
2

2

i
i

i

X
x dt dt

m
+ , 

  (AC)i = 2

2

i
i

x
x dt dt+ . 

 

The segment BC, so the deviation of the path of the system that is produced by the constraints in 

comparison to the free motion, will then have the components: 

 

(BC)i = 21

2 2

i
i

i

X
x dt

m

 
− 

 
.           (2) 

 

The larger that is, the greater the deviation from the free motion will be. Now, Gauss was led by 

the analogy to the principle of least squares in the theory of errors to suppose that the sum of the 

squares of those deviations would assume a value for the actual motion that is as small as possible. 
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 However, a complication exists in that. When we have m mass-points with different masses, 

those deviations will obviously not be equivalent, since it is easier to impart a well-defined 

displacement upon a smaller mass that it is with a larger one. Now, in order to compare the 

segments, they must be assigned statistical weighting factors that will compensate for the differing 

masses, in the spirit of the theory of error. 

 One will obtain those factors by means of a continuity argument. If they are all initially equal 

to the masses then obviously the individual components (2) of the constraint will have the same 

character. Now let the ratios of the masses be rational, i.e., the mi are whole-number multiples of 

a unit mass. One then imagines replacing each mass-point mi with mi mass-points of unit mass, but 

between which constraints exist, in such a way that they can always be found at the same location. 

In that way, the system will be extended to i

i

m  points. However, at the same time, i

i

m − n 

constraints will be added to them. Similarly, let mi external forces be uniformly applied to the 

elementary points. The new system will obviously be equivalent to the old one then and must also 

perform the same motions. If one now forms the sum of the squares of the constraints for the new 

system then they will now have the same character for the elementary masses, and the sum of their 

squares will have a well-defined meaning. The constraints in the elementary masses that belong to 

the same mass-point of the system will all be equal now as a result of the constraining conditions. 

Since the number of them is now mi in each case, one will get the constraint on the total system by 

multiplying the square of each (BC)i by the corresponding mass and then summing over all 

coordinates. One will then arrive at precisely the expression (1) for the constraint. It is therefore 

established for rational ratios and must naturally have the same form in general, as well, on the 

grounds of continuity. 

 Naturally, that whole argument is purely heuristic and not a rigorous proof, which one could 

not carry out, anyway. 

 Just as for any extremal principle, one must also specify the manifold of comparison states in 

which the extremum is to be sought for Gauss’s principle. Now, since Z is a function of the 

accelerations ix , one must take the states that are being compared to be all motions that have the 

same position coordinates and velocity components at a given moment but can assume all values 

of the acceleration that are compatible with the constraints. Naturally, one must put that into a 

corresponding form that includes the second derivatives. 

 If the auxiliary conditions have the general non-holonomic form: 

 

( , , )r i ix x t  = 0        (3) 

 

then upon differentiating that with respect to time: 

 

i  = r r r
i i

i ii i

x x
x x t

    
+ +

  
   = 0 .        (4) 

 

From the rules of differential calculus, one will then get the condition for the relative minimum of 

Z when one introduces undetermined multipliers 2 r : 
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2i r i

ri

Z
x

 
  

+ 
  

  = i r
i i r

ri i

X
x m

m x




  
− + 

 
  = 0 .   (5) 

 

However, when the auxiliary conditions have the specialized form that is linear in the ix : 

 

r   
ir i ra x a+  = 0 ,            (6) 

 

they will be nothing but the well-known Lagrange equations of the first kind. Gauss’s principle 

will then be completely equivalent to d’Alembert’s for this case then. However, we see that, above 

and beyond that, it also allows one to treat the general form of the auxiliary conditions (2) of no. 

4. We correspondingly express Gauss’s principle as follows: 

 

 A system of mass-points moves in such a way that the constraint (1) will be a minimum at any 

moment in comparison to all states of motion with the same position and velocity, but with all 

possible accelerations that fulfill the constraint (3) [(4), resp.]. 

 

 

 16. Uniqueness of the principle. Singular cases. – With the help of Gauss’s principle, one 

can also easily resolve the question that we still have yet to touch upon, namely, the question of 

whether the principle actually determines the motion uniquely (1). 

 Namely, except for some singular exceptional cases, the constraint will assume a minimum at 

only one location. The fact that it even possesses a minimum at all follows from its positive-

definite character. 

 Now let ix  = 
i  be the location of a minimum, i.e., let: 

 

( )i iZ x +  > ( )iZ   

 

for all sufficiently-small ix  that are chosen in such a way that the quantities 
i ix +  themselves 

will satisfy the constraint equations (4) in no. 15. However, that means that the increase ix  in the 

accelerations that is given by equations (4) and (6) of no. 15 must satisfy the equations: 

 

ir i

i

a x = 0 ,       (1) 

 

which play an analogous role to the conditions (1) [(1.a), resp.] in no. 5 on the virtual displacements 

 xi. Now, if there is a second location for the minimum with the value ix  = i  such that the 
i , as 

well as the i , fulfill the constraints (4) of no. 15 then the differences iu  = 
i  − i  must satisfy 

the constraint that: 

 
 (1) For this subsection, cf., P. Staeckel, Sitzungsber. Heidelberger Akad., Abt. A (1919), Abh. 11.  
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ir i

i

a u  = 0 .      (1.a) 

 Now, from (1) of no. 15, one has: 

 

( )i iZ x +  = ( ) ( ) 2 ( )i i i i i i i

i i

Z m x m X x   + + −   .   (2) 

 

Thus, for a minimum, it is necessary that one must have: 

 

( )i i i i

i

m X x −  = 0 . 

 

 However, from (1.a), we must also have: 

 

( )i i i i

i

m X u −  = 0 .             (3) 

 

If we now set ix  equal to iu  in (2) then it will follow that ( )iZ   is greater than ( )iZ  , with no 

equality. However, we can likewise prove that conversely ( )iZ   > ( )iZ  . The assumption that 

there is more than one minimum would then lead to a contradiction. Uniqueness in the case of 

auxiliary conditions that take the form of inequalities was proved in a similar way by Zermelo (1). 

Since Gauss’s principle is equivalent to d’Alembert’s, uniqueness can also be proved for the latter. 

Even the proof that Jacobi gave in his Dynamik can be produced on the basis of d’Alembert’s 

principle with the help of determinants, although the proof is somewhat more involved. 

 Up to now, we have excluded singular exceptional cases. Let all of the auxiliary condition be 

brought into the form: 

ir i r

i

a x a+  = 0 

 

uniformly. We shall then call the configuration of the system regular when at least one of the g-

rowed determinants in the coefficients matrix of the air, ar is non-zero. For a single auxiliary 

condition, not all of the quantities air, ar should vanish simultaneously then. D’Alembert’s principle 

would break down in the other cases since the simple relation: 

 

ir i

i

a x  = 0 

 

would no longer exist for the virtual displacements then. In order to explain that, we shall consider 

the following simple example that was given by Staeckel: 

 A point of mass 1 is constrained to move on the surface of a cone: 

 

 
 (1) E. Zermelo, Göttinger Nachr. (1899), pp. 306.  
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2 2

1 2x x+  = 2

3x  . 

That condition will imply the equations: 

 

  1 1 2 2 3 3x x x x x x+ −  = 0 , 

2 2 2

1 1 2 2 3 3 1 2 3x x x x x x x x x+ − + + −  = 0 , 

 

and the virtual displacements will be subject to the equations: 

 

1 1 2 2 3 3x x x x x x  + −  = 0 .     (4) 

 

Now let the mass-point be found to be at rest at the vertex of the cone at time t. Equation (4) for 

the virtual displacements will break down at that singular position. Rather, by their definition, 

namely, that they represent the motions that the mass-point can perform when it is in a position 

that is compatible with the constraints, they will be determined by: 

 
2 2 2

1 2 3x x x  + −  = 0          (4.a) 

 

now. The analogous relation for the acceleration components at that point will be true: 

 
2 2 2

1 2 3x x x+ −  = 0          (5) 

 

since the mass-point can obviously remain on the surface of the cone only when the acceleration 

vector itself lies on that surface to begin with. 

 D’Alembert’s principle will clearly break down here since the condition for virtual 

displacements (4.a) is no longer linear. By contrast, the principle of least constraint will make it 

possible to determine the motion. It then requires one to find the minimum of Z under the auxiliary 

condition (5), which is a soluble problem. In general, the motion is no longer determined uniquely 

now since it is double-valued, as one can easily confirm. Namely, if one lays a plane through the 

axis of the cone and places the force vector at the vertex of the cone then the motion will result 

along one of the two lines of intersection of the plane with the surface of the cone, and the 

calculation will also break down when the direction of the force is exactly parallel to the axis of 

the cone. In any event, one will see that only Gauss’s principle is applicable at the singular 

locations. Naturally, one cannot prove its validity in that case either, but one must take it to be an 

axiom that it is even possible at all to subject such assumptions to any analytical treatment. 

However, a deeper discussion of the singular cases would lie beyond the scope of this presentation 

(1). 

 

 

 
 (1) For that topic, cf., Chap. 1, nos. 33 and 34, of this volume of the Handbuch.  
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 17. Hertz’s principle of the straightest path. – We can also interpret the expression for the 

constraint (1) in no. 15 geometrically when we restrict ourselves to force-free motion. Namely, we 

initially take a single mass-point with the coordinates x, y, z. Under the influence of any sort of 

holonomic or non-holonomic constraint equations, but no impressed forces, the path that it 

describes will be a space curve that we can describe in terms of the arc-length s as its parameter. 

In this case, from known laws of kinematics, the total acceleration can be decomposed into the 

tangential and normal accelerations: 

 

2r  = 2 2 2x y z+ +  = 

2 42

2 2

1d s ds

dt dt 

   
+   

  
, 

 

in which ds / dt = v is the speed of the mass-point, and  is radius of curvature of the path: 

 

2

1


 = 

2 2 2
2 2 2

2 2 2

d x d y d z

dt dt dt

     
+ +     

     
. 

 

The constraint will then take the form: 

 

Z = 

2 42

2 2

1d s ds
m

dt dt 

    
+    

    

 .    (1) 

 

If we now drop the external forces from the equations of motion (5) in no. 8, with our current 

abbreviation, multiply them by x , y , z , resp., and add them then from the constraints (1) and 

(1.a) in no. 5 for the virtual displacements in a scleronomic system, we will get: 

 

x x y y z z+ +  = 21
( )

2

d
s

dt
 = 0 . 

 

The tangential velocity s  will then be constant for force-free, scleronomic systems, and therefore 

the velocity of the path, as well. Naturally, that also follows from the law of energy since the total 

energy consists of only kinetic energy. The constraint will then reduce to: 

 

Z = 
4

2

v
m


 + const., 
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and the principle of least constraint will now say that the constant factor is naturally irrelevant 

since the curvature 1 /  of the path is a minimum for the actual motion. With that, we have Hertz’s 

principle of the straightest path (1): 

 

 A force-free mass-point that is under the influence of constraints will move with constant 

velocity along those trajectories that have the smallest curvature and are allowed by the 

constraints. 

 

 The constraint requires that the point must move on a certain surface, so its trajectory must 

then be a geodetic line. 

 If we now have several mass-points then Hertz defined the curvature  of the trajectory of the 

system by: 

2

1


 = 

2
2

2

i
i

i

d x
m

ds

 
 
 

 ,      (2) 

 

with the generalized definition of s : 

 

 2s  = 2

i i

i

m x .      (3) 

 

Naturally, for one mass-point, the expression (2) will go to the usual curvature of the trajectory, 

except for the factor m. If we introduce t as a variable here then we will have: 

 
2

2

id x

ds
 = ixd

ds s

 
 
 

 = 
1 ixd

s dt s

 
 
 

 = 
3

i is x s x

s

−
, 

so 

2

1


 = 

2
2 2

4 6 6

1 2
i i i i i i i

i i i

s s s
m x m x m x x

s s s
+ −   , 

 

or when we observe (3): 

2

1


 = 

2
2

4 4

1
i i

i

s
m x

s s
− .     (4) 

 

For force-free motion, we will again have that s  = v is constant, so s  = 0, and Gauss’s principle 

for force-free motion will again go to the principle of least curvature, due to (4), so it has now been 

established for an arbitrary force-free system. Ordinarily, one employs Hertz’s principle in an 

integrated form, which we will discuss in no. 26 in the context of the remaining integral principles. 

 
 (1) H. Hertz, Ges. Werke, Bd. III: Die Prinzipien der Mechanik, Leipzig, 1892; See also A. Brill, Vorlesungen zur 

Einführung in die Mechanik raumerfüllender Massen, Leipzig, 1909; F. Paulus, Wiener Ber. (II.a) 125 (1916), pp. 

835. 
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 The starting point for Hertz’s mechanics was his ambition to eliminate the concept of force 

from mechanics completely, and in particular, forces at a distance, which he felt had been 

introduced into the laws of nature artificially. That was the starting point that he gave to his 

principle, whereas, in contrast to Hertz, Boltzmann’s ambition was to banish the constraints and 

replace them with suitable molecular forces. 

 In order to develop Hertzian mechanics further, one also addresses the problem of arriving at 

the general mechanical equations in the presence of, e.g., gravitational forces, by a corresponding 

combination of constraints (the introduction of ideal masses, resp.). That goal was probably still 

not achieved satisfactorily by Hertz. Nonetheless, his idea was really very deep, and in a certain 

sense, it was realized by the theory of gravitation in the form of the theory of relativity, in which 

the trajectory of a body that is small enough that it does not affect the gravitational field itself 

essentially will represent a geodetic line, but generally in a more general non-Euclidian space-time 

geometry. 

 

 

 18. Jourdain’s principle. – In order to make the relationship and connection between Gauss’s 

principle and that of d’Alembert emerge clearly, let the variation of the acceleration in the former 

one be actually performed. We then impart a small increase ix  to the components of the 

acceleration, while the coordinates and velocities remain unchanged, so we should have  xi = ix  

= 0. (One also calls that variation a Gaussian variation.) If we then perform it in (1) in no. 15 then 

according to the principle of least constraint, Z should not change. We must then have (see also no. 

16): 

( )i i i i

i

m x X x−  = 0     (1) 

 

for all arbitrary values of the ix  that are compatible with the equations of motion. Now, equation 

(1) has a completely similar form to d’Alembert’s principle in no. 8, except that the variations of 

the accelerations ix  appear in place of the displacements  xi . However, since both of them are 

arbitrary quantities, except for the constraint equations, we can apply precisely the same reasoning 

to (1) that we did to d’Alembert’s principle, which will naturally lead to the same result then since 

the auxiliary conditions will also take on a corresponding form, namely: 

 

r
i

i i

x
x







  = 0 , or ri i

i

a x  = 0 , resp., 

 

since only the ix  are in fact varied under the Gaussian variation. The two principles are then seen 

to be completely equivalent again. Obviously, differences between them can occur only for 

singular configurations when the virtual displacements no longer satisfy simple linear constraints, 

as was explained in no. 16. 

 A comparison of d’Alembert’s principle (2) in no. 8 and Gauss’s principle in the form (1) will 

show immediately that there must be yet a third form for the general differential principle of 
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dynamics when we vary the velocities ix  to i ix x+ , but leave the coordinates unvaried, so we 

choose  xi = 0. The corresponding differential principle must obviously read: 

 

( )i i i i

i

m x X x−  = 0            (2) 

 

then. Jourdain (1) had pointed out that form and derived the general Lagrange equations in the 

form that they took in no. 12 from d’Alembert’s, Gauss’s, and his own principle in the same way. 

That principle is obviously just as useful for auxiliary conditions that are nonlinear (in the 

velocities). 

 According to Leitinger (2), one will see the connection between the three principles very easily 

when one differentiates the expression for d’Alembert’s principle: 

 

i i i

i

m x x  = i i

i

X x  

with respect to time. That will give: 

 

i i
i i i i

i i

dx d x
m x m x

dt dt


 +   = i i

i i

i i

dX d x
x X

dt dt


 +  . 

 

If one then takes  xi = 0 after the differentiation, and one sets the freely-chosen quantities equal 

to: 

id x

dt


 = ix  

 

then one will get Jourdain’s principle precisely, in which one chooses the comparison states to be 

just the ones with the same position, but varied velocities. One will get Gauss’s formula (1) in 

precisely the same way by repeated differentiation, in which the comparison states are the ones 

that arise by varying the acceleration while fixing  xi and ix . Naturally, one can arrive at even 

more differential principles by further differentiation, but they have no practical value. 

 

 

 19. Appell’s equations of motion. – Just as one will arrive at the Lagrange equations of the 

second kind upon starting from d’Alembert’s principle with the use of generalized coordinates, 

one can also get there from Gauss’s and Jourdain’s principle. The most-general process of that type 

can now be performed quite uniformly on the three principles. In that way, one will come to a new 

and very remarkable form for the dynamical equations that was first exhibited by Gibbs (3) and 

 
 (1) Ph. E. B. Jourdain, Quart. J. 39 (1908), pp. 251.  

 (2) R. Leitinger, Wiener Ber. (II.a) 122 (1913), pp. 635; see also A. Wassmuth, ibidem 128 (1919), pp. 365.  

 (3) J. W. Gibbs, Am. J. Math. 2 (1879), pp. 49.  
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Appell (1). It has the advantage over the Lagrange equations that is also useful with non-holonomic 

systems and coordinates, whereas the more complicated formulas in no. 13 must be introduced 

with the former. 

 We start from d’Alembert’s principle in the form: 

 

i i i

i

m x x  = i i

i

X x .     (1) 

 

We now introduce the general Lagrange parameters qk, which can be quasi-coordinates in their 

general form, as well as non-holonomic-rheonomic. Now let them be coupled with the xi by the 

differential formulas: 

dxi = ik k i

k

dq dt + ,                (2) 

 

which do not need to be integrable. Naturally, in the holonomic case, one would arrive at them by 

differentiating the relations: 

xi = xi (qk, t) . 

 

In the non-holonomic case, we must write , instead of  qk, with the notations of no. 13, in 

which the i are functions of any type of position parameters. The virtual displacements of the xi 

are coupled with the qk by: 

 xi = ik k

k

q          (3) 

 

since the last term in dt in equations (2) must drop out in each case from our definition of virtual 

displacement. One will get the corresponding relation between the accelerations upon 

differentiating (2) with respect to time: 

 

ix  = 
2

2

id x

dt
 = ik i

ik k k

k

d d
q q

dt dt

 


 
+ + 

 
 .              (4) 

 

Naturally, in the holonomic case, one will have: 

 

ikd

dt


 = ik ik

l

l l

q
q t

  
+

 
 . 

 

If one introduces the new variables into (1) with the help of (2), (3), and (4) then that equation will 

go to the differential relation: 

 k k

k

P q  = k k

k

Q q .     (5) 

 
 (1) P. Appell, C. R. Acad. Sci. Paris 317 (1899), pp. 317; See also his most-recent presentation in Mémorial des 

Sciences mathematiques, t. I, Paris, 1925. Numerous citations to the further literature are also given there. 
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Pk and Qk are initially just abbreviations for the coefficients of  qk on the left-hand (right-hand, 

resp.) side. From the discussion in no. 9 (no. 13, resp.), the Qk will then be the general force 

components in the directions of qk . 

 Since the  qk are completely free [we assume that the constraint equations can be eliminated 

entirely with the help of (2)], the general equations of motion that follow from d’Alembert’s 

principle will read: 

Pk = Qk   (k = 1, …, f) .          (6) 

 

 Since each kq  occurs in in only one term, it will now follow from (4) that: 

 

i

k

x

q




 = ik . 

Therefore, one will have: 

Pk = i i ik

i

m x   = i
i i

i k

x
m x

q




 . 

 

If we finally introduce the expression: 

S = 21
2 ii

i

m x       (7) 

then we will have: 

Pk = 
k

S

q




, 

 

and we will then get the equations of motion in the Appell form from (6): 

 

k

S

q




 = Qk  (k = 1, …, f).   (8) 

 

From their derivation, they will also be true for quasi-coordinates, and can then be written: 

 

S






 =  ,               (8.a) 

 

with the notations of no. 13. One calls the quantity S the Appell function, or also the energy of 

acceleration. It has the same form as kinetic energy in rectangular coordinates, except that 

accelerations will appear in place of velocities. 

 If the constraint equation ik k

k

q   = 0 has still not been eliminated then it can be added once 

more with undetermined multipliers. The equations of motion will then read: 
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k

S

q




 = Qk + k ik

k

  .                (9) 

 

 The derivation that was just given can obviously be linked precisely with that of Jourdain’s or 

Gauss’s principle since when one looks at the respective manifolds of comparison states, one will 

see that: 

ix  = ik k

k

q   

for the Jourdain variations and: 

ix  = ik k

k

q   

for the Gaussian ones. 

 The various forms of the equations of motion will obviously come about when one gives 

various forms to the Pk (
1). Formally, the Appell form is decidedly the simplest and most reasonable 

one. It generally has the disadvantage that the second derivatives appear in it explicitly, so the 

calculations with the Appell function in arbitrary coordinates can become correspondingly 

inconvenient. 

 By contrast, the Lagrange equations are distinguished by just the fact that when one exhibits 

them, the kinetic energy, which depends upon only the first derivatives, must be known as a 

function of the new parameters and velocities. Its form is less transparent in the non-holonomic 

case (nos. 12 and 13). Which form of the equations is more convenient will then depend upon the 

special circumstances. For example, the derivation of the Euler equations for the motion is 

significantly simpler when one uses the Appell equations than it is when one uses the more-general 

Lagrange equations (2). 

 The connection between the Appell equations and Gauss’s principle, in its original form [(1), 

no. 15], is also very simple. If we introduce the expression: 

 
1
2
Z  = S − k k

k

Q q          (10) 

 

then from (8), the equations of motion will become simply: 

 

k

Z

q




 = 0 . 

 

That says: Z   is an extremum with respect to the variations of the accelerations, just like the 

constraint in no. 15. 

 In fact, the expression (10) differs from the constraint only by a term that is free of the second 

derivatives, so by a term that is irrelevant to the extremum, since from (4), one has: 

 

 
 (1) For some of the mixed forms, cf., G. Hamel, Math. Ann. 92 (1924), pp. 33.  

 (2) See, e.g., Clemens Schaefer, Die Prinzipe der Dynamik, pps. 37 and 75. 
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k k

k

Q q  = ( , )i i i i

i

X x x x+   , 

so 

Z   = 2 k k

k

S Q q
 

− 
 

  = 2 2 2i i i i

i i

m x X x− −    = Z +  , 

 

in which  and  no longer depend upon ix . One must then regard Z   as the expression for the 

constraint in arbitrary coordinates.  

 

 

 20. True and varied motion. – The differential principles that were discussed here all require 

that a variation of the existing state of motion must be performed at a certain moment. That is not 

as intuitive in the case of d’Alembert’s principle especially since the variation in that case has 

nothing to do with the actual course of motion. Rather, one reinterprets the state of the system 

artificially as being in a state of equilibrium, such that the question cannot even arise of what sort 

of meaning that the variation might have in regard to the further course of motion. Gauss’s 

principle of least constraint seems most natural from that standpoint. It imposes certain 

accelerations upon the system at each moment that are given by just the constraint. The true 

motions are then selected from all possible accelerations, and the system will then proceed along 

the path that was affected in that way. 

 In order to gain a greater degree of intuition about d’Alembert’s principle, we must summarize 

the virtual displacements for the total time evolution of the motion in some way. That will happen 

naturally when one imagines that a virtual displacement has been performed at each time-point, in 

the spirit of d’Alembert’s principle. In and of itself, that displacement must satisfy only the 

constraint equations, but it does not have to be connected in any other way. However, one can 

choose it in a special way that will make it a continuous and sufficiently-differentiable function of 

time: 

   xi =  xi (t)  or  qk =  qk (t)  in generalized coordinates, resp. 

 

In that way, every point of the true trajectory will be associated with a neighboring point in such a 

way that from our assumption, all of the neighboring points will lie along a smooth curve. The true 

path will then be associated with a varied one point-wise. Since time is not varied under virtual 

displacements, with our previous convention, we will also get a time scale for the neighboring path 

such that its points will always correspond at equal times, and one can then compare the varied 

and true paths. That is also the starting point for the different variational principles. 

 The meaning of this introduction of a continuously-varied path lies in the fact that under that 

assumption, the relation: 

( )k

d
q

dt
  = kdq

dt
  = kq      (1) 

 

will exist for the true coordinates, which is proved directly. That says: The change in  qk during 

the time interval dt is equal to the difference between the velocities along the true and neighboring 
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paths. Naturally, those two quantities would not be connected at all without the assumption of 

continuity, but now we can reason as follows: Let qk (t) be the motion along the true path, while 
(1) ( )kq t  is the motion along the varied one. Hence, from the definition of , we will have  qk = 

(1)

k kq q−  with no further discussion, so: 

 

( )k

d
q

dt
  = 

(1)

k kdq dq

dt dt
−  = (1)

k kq q− . 

 

Moreover, by definition, we have: 

kq  = kdq

dt


 
 
 

 = (1)

k kq q− , 

 

from which (1) will follow immediately. 

 That commutation relation is therefore trivial for true coordinates, but it will by no means be 

true for quasi-coordinates, which must always be observed in calculations with such things. One 

will get the corresponding relations as follows: Let the connection between the true and quasi-

coordinates be given by: 




 = k k

k

q  ,   = k k

k

q   , 

kq  = k 


 


  ,  qk = k 


   , 

 

as in no. 13. We will then restrict ourselves to scleronomic systems, for the sake of simplicity. 

Hence, let the k and k be independent of t. With that, we then define: 

 

( )
d

dt
  = 

kk
k k

k k

dd q
q

dt dt






 +  , 

   


 = k k
k k

k k

dq dq

dt dt
   +  . 

  

Now, since the symbols d / dt and  commute for true coordinates, that will give: 

 

( )
d

dt
   



−  = ( )
k

k k k

k

d
q q

dt






 −  . 

Now: 

k  = 
k

l

k l

q
q




  , k = 

k

l

k l

q
q







 , 

so 
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( )
d

dt
   



−  = 
, ,

k k

k l k l

k l k ll l

q q q q
q q

  
 

 
−

 
   = 

,

k l

k l

k l l k

q q
q q

  


  
− 

  
 . 

 

However, the term in brackets is just the integrability conditions on the coefficients k, so they 

will, in fact, vanish only for holonomic coordinates. If we also introduce the 


,   themselves 

on the right-hand side now then with the relations (6) in no. 13, that will give the commutation 

conditions for non-holonomic coordinates: 

 

, , ,

,

( )

( ) .

k l

k l

k l l k

k l

d

dt q q

d

dt

 

     
 

     
 

 
      

     

 



  
= + −  

   

= −







   (2) 

 

 We now ask whether the varied motion satisfies the equations constraint at each moment, i.e., 

whether it represents a kinematically-possible motion.  

 That is by no means obvious, and a fundamental difference between holonomic and non-

holonomic systems again exists here. In order to examine that question, we shall impose the 

condition that the varied path should satisfy the equations of constraint. The virtual displacements 

will satisfy equations (1.a) of no. 5 since time is indeed not varied (we once more confine ourselves 

to scleronomic systems), so: 

r = kr k

k

a q  = 0 ,             (3) 

which will possess the form: 

r = r
k

k k

q
q







  = 0 

 

for holonomic constraints. Naturally, the qk in that must be true coordinates. One will initially get 

from (3) that: 

 

( )
d

dt
  = 

kr k

k

d
a q

dt


 
 
 
  = kr l

k kr k

k l kl

a dq d
q a q

q dt dt
 

 
+ 

 
   = 0 .  (4) 

 

That is just the condition for the virtual displacements to obey the constraint equations. 

 Now, if the varied motion is also supposed to satisfy the constraint equations in the course of 

motion then that would have to mean that for the varied coordinates qk +  qk, the increase d (qk + 

 qk) during the time interval dt should satisfy the constraint equations, so when one switches the 

indices k and l : 

( )
( ) l l

lr k k

l

d q q
a q q

dt




+
+  = 0 , 
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and therefore, with a Taylor development and consideration given to (3), one will have: 

 

lr l
k lr l

k l lk

a dq d
q a q

q dt dt
 

 
+ 

 
    = 0 .    (5) 

 

Upon subtracting that from (4), one will get: 

 

,

kr lr l
k

l k l k

a a dq
q

q q dt


  
− 

  
  = 0 .      (6) 

 

since the second summations obviously cancel. Due to the arbitrariness in the  qi, that relation 

can be fulfilled only when the term in parentheses vanishes by itself (1). That shows that the varied 

paths are indeed kinematically possible for holonomic systems, but by no means for non-

holonomic ones. 

 One can easily make that result more intuitive with an example. If one lets a blade glide on a 

plane then the non-holonomic auxiliary condition that it cannot slide laterally will imply that 

direction of the blade must always coincide with the direction of the tangent to the trajectory. One 

will then get the neighboring curve when one moves forward along each tangent by a segment that 

varies continuously with the arc-length along the curve and then combines those points. Obviously, 

the tangents to the neighboring curve cannot coincide with the directions of the blade. 

 

 

 21. The Lagrange central equation. – One can put d’Alembert’s principle into a form that no 

longer includes the second derivatives with the help of the previous consideration, and which is 

therefore frequently convenient for the applications. One writes it in the form: 

 

i i

i

X x  = i i i

i

m x x  . 

 

Now, as has already been said many times, one has: 

 

i ix x  = ( ) ( )i i i i

d d
x x x x

dt dt
 −  . 

 

With the commutation relations (1) of no. 20, one has: 

 

 

 (1) That conclusion is not entirely rigorous since the qk satisfy the conditions (3), and the  
k

q  satisfy the 

corresponding one 
kr k

k

a q  = 0, but one can still follow through the proof that (6) will actually vanish only for 

holonomic constraints by considering just those restrictions. 
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( )i

d
x

dt
  = idx

dt
  = ix  , 

so one will get: 

i ix x  = ( )i i i i

d
x x x x

dt
 −  = 21

2
( ) ( )i i i

d
x x x

dt
 − .        (1) 

 

If one substitutes that in d’Alembert’s principle then that will give: 

 

21
2

( )i i i i

i i

X x m x +   = 
i i i

i

d
m x x

dt


 
 
 
  .   (2) 

 

The second term is nothing but the variation of the kinetic energy T, and we then get the so-called 

Lagrange central equation: 

i i

i

T X x +   = 
i i i

i

d
m x x

dt


 
 
 
        (3) 

 

as the new form of d’Alembert’s principle. Here, we can introduce more-general (holonomic) 

coordinates: The expression: 

i i

i

X x  = k k

k

Q q  

 

is again the work done by the virtual displacement  qk . We can also denote it symbolically by A 

then. With the help of the transformation formulas that take xi to the generalized coordinates: 

 

xi = xi (qk, t) , 

so: 

ix  = i i
k

k k

x x
q

q t

 
+

 
  = ik k i

k

q + , 

    xi = ik k

k

q  , 

 

we can easily confirm the identity: 

 

i i i

i

m x x  = k

k k

T
q

q





  = k k

k

p q  , 

 

and the Lagrange central equation will then become: 

 

 T +  A = k k

k

d
p q

dt


 
 
 
  .     (4) 
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 The term in parentheses on the right-hand side is composed from the impulse components pk 

and the virtual displacements in the same way as the virtual work is composed of the force vector 

and the  qk . Equation (4) then expresses the idea that the sum of the variations of the kinetic 

energy and the work done by the external forces is equal to change in the virtual impulse-work per 

unit time. 

 That result is linked essentially with the commutability of d / dt and . Formula (4) will also 

break down for general variations and quasi-coordinates, for which that is not true. An extension 

to that case was given by Hamel (1). 

 

 

III. – Integral principles. 

 

 22. Hamilton’s principle. – The defining characteristic of the principles that were considered 

up to now is that the variations of the system were always examined at a certain moment. 

Accordingly, they do not give a property of the true motion that distinguishes it from the 

neighboring motions, but they only allow one to arrive at differential equations for the motion with 

their help. However, one can also ask what the properties of the true path as a whole might be, and 

one will then arrive at integral principles. 

 As in no. 20, we imagine that we are comparing the true path to neighboring paths. If we assign 

all possible values to the increases  qk then we will get a whole family of comparison paths, and 

the problem becomes that of finding special properties for the true paths. Naturally, one can no 

longer demand that this can be achieved by an ordinary minimal principle like Gauss’s principle, 

but rather such a result can come about only when we impose some condition on a function of the 

entire trajectory, which is itself again a function of the coordinates and time, so a function of a 

function. The calculus of variations will enter in place of the differential calculus accordingly. 

 The most important, and most useful, principle is Hamilton’s principle, which we would like 

to focus on in its simplest form for conservative holonomic systems in order to clarify the general 

character and advantages of integral principles for them. 

 It reads: 

 

 Let T be the kinetic energy and let U be potential energy of the system, so L = T – U is the 

kinetic potential, which is a function of any sort of Lagrange coordinates qk, its time derivatives 

kq , and time t. One will then have: 

 
2

1

( , , )

t

k k

t

L q q t dt  = extremum     (1) 

 

for the motion that actually occurs, in which the integral is taken between two given configurations 

of the system at well-defined times, so: 

 

 
 (1) G. Hamel, Math. Ann. 59 (1904), pp. 416.  



44 Nordheim – The Principles of Dynamics. 
 

qk (t1) = (1)

kq   and  qk (t2) = (2)

kq           (2) 

 

are given values, and all paths in the field of competition that emerge from the true path by a 

variation in the sense of no. 20 are allowable. 

 

The  qk must then be continuous functions of time that satisfy the auxiliary conditions. However, 

they must also vanish at the limits of the integral. 

 From the rules of the calculus of variations (1), one will get the necessary condition for the 

occurrence of an extremum in the form of the Lagrange differential equations: 

 

k k

d L L

dt q q

  
− 

  
 = 0  (k = 1, …, f).         (3) 

 

A direct derivation of then will also be given in no. 27. 

 One can also admit holonomic auxiliary conditions of the form: 

 

  r (qk, t) = 0   (r = 1, …, g). 

 

As is known, one will then get the differential equations when one adds the auxiliary conditions 

with undetermined multipliers – r to the integrand in (1), so one then looks for the extremum of: 

 
2

1

( )

t

r r

rt

L dt −   

 

and regards the r as new variables whose derivatives do not, however, appear. One will then get 

the differential equations: 

r
r

rk k k

d L L

dt q q q




   
− + 

   
  = 0 .    (3.a) 

 

Now, equations (3) [(3.a), resp.] are just the Lagrange equations of the second kind in no. 9 [no. 

12, resp.]. With that, the identity of Hamilton’s principle, in its simplest form, with d’Alembert’s 

principle is verified. 

 From the form of (1), one sees the great significance of integral principles and the advance that 

was achieved by them. They include nothing that relates to the coordinates in any way. Energy, 

and therefore the kinetic potential, are mechanical quantities whose meanings are independent of 

how they are described in terms of special coordinates, so naturally the integral over the trajectory 

will be like that, as well. The statement of Hamilton’s principle is therefore independent of the 

coordinate system, and its recalculation in any other coordinates will become very convenient with 

 
 (1) See this Handbuch, v. III.  
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its help. Since it includes only the first derivatives of the coordinates, calculating with it will be 

simpler than with the differential equations themselves, which include second derivatives. 

 That is also the reason why one always looks for the field equations of the theory of relativity, 

if not all of the foundations of modern physics, in the form of variational principles: One will 

always get a formulation of them that is independent of the special choice of representation. The 

variational principles can be likewise extended to continuous media. 

 One can also get Hamilton’s principle from a direct conversion of d’Alembert’s principle (and 

that is generally the usual way of doing that). In order to do that, one starts from Lagrange’s central 

equation (4) in no. 21: 

 T +  A = 
k

k

d T
q

dt q


 
 

 
  . 

 

The form of the right-hand side suggests an integration over time: 

 

2

1

( )

t

t

T A dt +  = 

2

1

t t

k

k t t

T
q

q


=

=

 
 

 
 . 

 

If we now demand that the displacements  qk must vanish at the limits of integration, i.e., that all 

of the comparison curves must go through the same starting and ending points, then the right-hand 

side will drop out, and we will get: 

 
2

1

( )

t

t

T A dt +  = 
2

1

( )

t

k k

t

T Q q dt +   = 0 .    (4) 

 

However, that is nothing but a generalization of Hamilton’s principle (1). Namely, if the system 

has a potential then we will have: 

 

 A = 
k kQ q  = − k

k k

U
q

q





  = −  U , 

 

and as a result, since one can switch the order of variation and integration in this case: 

 
2

1

( )

t

t

T U dt −  = 
2

1

( )

t

t

T U dt −  = 
2

1

t

t

L dt   = 0 , 

 

which is identical to (1). Equations (4) then represent an extension of Hamilton’s principle to forces 

that do not possess potentials. The character of a variation principle is generally lost in that way. 

Nevertheless, one can obtain the equations of motion from it by formal processes, and indeed in 

the general form of no. 13. We shall return to that concept in no. 27. 
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 23. The variation of time. – It is possible to give Hamilton’s principle the form of a true 

variational principle only in the case where a kinetic potential exists, which is certainly quite 

important, but it still does not possess the generality in its applications that the differential 

principles possess. We have already seen the direction that we must pursue in order to make that 

generalization in the form of equation (4) of no. 22. We must go beyond the scope of the calculus 

of variations, properly speaking, and apply more-general variations and processes of integration 

to the formulas of d’Alembert’s principle or also other differential principles. 

 Up to now, we have not varied time, i.e., we have allowed points of the varied paths and the 

true path to correspond only when they belong to the same time t. The virtual displacements were 

then defined in such a way that they were always performed while time was held constant. We 

shall now drop that restriction and consider displacements that we shall denote by xi, qk, t, to 

distinguish them, which will then associate the space-time point qk, t on the true path with the point 

qk + qk, t + t. However, in that way, the qk, t shall again be continuous functions of time, such 

that the set of all varied points will define a continuous varied path. That means that the 

neighboring paths cannot be traversed with a definite time scale that is coupled with the true path 

in the spirit of virtual displacements, but with an arbitrary time scale. Naturally, the domain of the 

allowable functions qk (t) will be extended considerably in that way. 

 We therefore assume that the -process means a true variation, i.e., in general coordinates, 

between which no sort of constraints exist, the most-general -operation is applied to a function  

(qk, t): 

 = k

k k

q t
q t

  
 + 

 
 ,     (1) 

 

in which the qk, t are completely arbitrary, except for the fact that they should vary continuously 

over time, in the spirit of no. 20. Naturally, that process also makes good sense for quasi-

coordinates. When they are also chosen in such a way that no other sort of constraints exist between 

them, the -process will once more mean the changes in the relevant quantities when all 

differentials of the quasi-coordinates and time t are assigned arbitrary increases , t. Similarly, 

the function  itself does not need to be representable in integrable form either, such as, e.g., the 

virtual work done by non-conservative forces. The expressions Qk will then appear in place of the 

 / qk, which do not need to satisfy the integrability conditions: 

 

k

l

Q

q




 = l

k

Q

q




. 

 

 In other coordinates between which constraint equations still exist (e.g., in rectangular 

coordinates), the qk, t will no longer be completely arbitrary either, but they must fulfill the 

conditions [e.g., in the general non-holonomic constraints (2.a) of no. 4]: 

 

ik i

i

a q  + ar t = 0 . 
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 Along with the -variation, we also consider the original -variation and the advance of the 

system itself along its path. After a time dt, it will arrive at xi + ix dt  (in generalized coordinates, 

qk + kq dt  resp.). Therefore, the corresponding values of qk will also change, such that the 

expressions: 

k

d
q

dt
 , 

d
t

dt
 ,  kdq

dt
  = kq  

 

will also have a well-defined meaning. 

 We can now couple any -process with a certain -process by constructing a -process from it 

by combining it with a d-process. That would be necessary when we wish to employ d’Alembert’s 

principle since it is valid only for the -processes. Along with (1), we have: 

 

 = k

k k

q
q







 ,     (2) 

d

dt


 = k

k k

q
q t

  
+

 
       (3) 

 

as the definitions of the d and -processes. Thus, the operation: 

 

t  −   = ( )k k

k k

q q t
q


 − 


  =     (4) 

is a virtual displacement, with: 

 

qk = k kq q t −   or  xi = i ix x t −  , resp.  (5) 

 

 That -displacement has the simple geometric meaning that it is the projection of  onto a 

plane t = const. in the general configuration space of qk, t. Namely, if one moves forward along the 

true path by t and then performs the -process then one will arrive at just the point: 

 

( )k k k kq q t q q t+  + +  , 

 

and since the last term can be neglected for being of order two, that is just the point qk + qk. The 

 qk are the variations at constant time that correspond to the qk then. It emerges from that 

argument that the manifold of allowable paths in -space will not be enlarged by the introduction 

of time variation, although the rate of variation (Durchlaufungsgeschwindigskeit), which was 

previously established by the true path through the coupling  t = 0, will be changed now. 

 A special property of the -variation is that its commutability with differentiation with respect 

to time for holonomic coordinates, as well, is no longer true. Namely, we have, from (5), that: 
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k

d
q

dt
  = ( )k k

d
q q t

dt
 −   = k k k

d d t
q q t q

dt dt


 −  −  . 

 

Now, from (4), one will have, with  = kq , that: 

 

kq  = k kq q t +  , 

 

and since d and  commute, we will get the following commutation relation for d and : 

 

kdq

dt
  = kq  = k k

d d t
q q

dt dt


 − ,      (6) 

so we will also have: 

ix  = i i

d d t
x x

dt dt


 −       (6.a) 

in rectangular coordinates. 

 One can also associate any -displacement with a -displacement in a different way, e.g., by 

the definition: 

ix   = i
i

x
x t

t




 −  ,     (7) 

 

in which xi is thought of as a function of the generalized configuration parameters qk and t. Due to 

the fact that: 

xi = i i
k

k k

x x
q t

q t

 
 + 

 
 , so  

ix   = i
k

k k

x
q

q





 , 

 

   will be a virtual displacement, with 
kq  = qk , but from (1) and (2),  and    cannot 

simultaneously represent true variations, which would probably give priority to the definition (5) 

that was employed here. Naturally, one can also operate further with (7) or any other definition of 

the virtual displacements and go on to what will be done in the next subsection by converting 

d’Alembert’s expression into a general integral principle, as long as one always observes the proper 

limit conditions. Thus, Hölder (1) employed the association (7) in his ground-breaking work, while 

(5) was introduced by Voss (2). We have discussed that point so thoroughly here because many 

misconceptions about it seem to exist in the literature (3). 

 

 

 
 (1) O. Hölder, Göttinger Nachr. (1896), pp. 122.  

 (2) A. Voss, Göttinger Nachr. (1900), pp. 322. 

 (3) See, in particular, the discussion between M. Rethy [Math. Ann. 58 (1905), pp. 169 and ibid. 64 (1906), pp. 

156] and Ph. E. B. Jourdain [ibidem, 62, pp, 413 and 65 (1904), pp. 513]. The latter paper gave the complete 

explanation; cf., also H. Brell, Wiener Ber. (II.a) 122 (1913), pp. 122. 
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 24. General transformation of d’Alembert’s principle. – With the help of the general -

process and integration over the time, we shall now look for a conversion of d’Alembert’s principle 

into an integral formula that is as general as possible. That will then allow us, on the one hand, to 

derive the integral principle from d’Alembert’s principle, and on the other, to clarify the connection 

between the two. In order to do that, we first apply the -process to the kinetic energy: 

 

T = 21
2 i i

i

m x . 

From formula (6.a) of no. 23, we will have: 

 

T = 21
2 i i

i

m x  = i i i

i

m x x  = 2i
i i i i

i i

d x d t
m x m x

dt dt

 
−   

 

for the true coordinates xi, so: 

T + 2
d t

T
dt


 = i

i i

i

d x
m x

dt


 .    (1) 

Now: 

i
i

d x
x

dt


 = ( )i i i i

d
x x x x

dt
 −  , 

and therefore: 

− i i i

i

m x x  = T + 2 i i i

d t d
T m x x

dt dt


−  .       (2) 

 

Moreover, from (5) in no. 23, we have: 

 

.

i i i i i i i i i

i i i

i i i

i

m x x m x x m x x t

dT
m x x t

dt





 = + 


= + 


  


   (3) 

 

 However, we must still free ourselves of our reference to the special choice of rectangular 

coordinates. 

 We will get a conversion of 
i i im x x  into general coordinates by returning to the explicit 

form of the kinetic energy. In completely-free coordinates, which can be quasi-coordinates and 

rheonomic, as well, let: 

ix  = ik k i

k

q + , 

so, from our definition: 

xi = ik k i

k

q t  +  , 
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in which the qk, t are completely free. Moreover, we will then have: 

 
2

, , ,

2 1 0

2 2

2 2 2 ,

i ik il k l i ik il k i i

i j k i k i

T m q q m q m

T T T

     = + +


= + + 

  
   (4) 

 

which will reduce to a homogeneous function of degree two for scleronomic systems, i.e., i = 0. 

Upon substituting those expressions, we will easily verify the identity: 

 

i i i

i

m x x  = 2 ( )k k

k k

T
T t q q t

q


 +  − 


  = 2 k

k k

T
T t q

q



 +


  .  (5) 

 

From (2), (3), and (5), we will finally have: 

 

− 2i i i k

i k k

d T
m x x T t q

dt q


 
 +  + 

 
   = 2

d t dT
T T t

dt dt


 + +   

 

then. If we add the work done by the external forces under the virtual displacement  qk to both 

side of that, namely: 

i i

i

X x  = k k

k

Q q  =  A , 

 

and integrate over time between the limits t1 and t2 then we will get the following general (so it is 

also true for non-holonomic-rheonomic systems) identity: 

 

2

1

2

t

t

d t dT
T T t A dt

dt dt


 
 + +  + 

 
  = 

22

1

( ) 2

i

t tt

i i i i k

i k kt t t

T
X m x x dt T t q

q
 

=

=

  
− +  +   

   
  ,     (6) 

 

which can be called the master formula for all integral principles. 

 Under the integral on the right-hand side, one finds the expression (2) in no. 8 for d’Alembert’s 

principle precisely, so it will vanish for all motions, and one will then get a statement that is 

equivalent to d’Alembert’s principle in: 
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1 1
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2 2

2 ( ) .

t tt

k

k kt t t

t t

k k

k k t t

d t dT T
T T t A dt T t q
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T
T t q q t

q
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=

=

=

=

   
 + +  + =  +   

    


  
=  +  −   

  





 (7) 
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As will be shown in the next subsection, by specializing that, one will get a series of properties of 

mechanical trajectories that serve to characterize them uniquely in comparison to certain families 

of neighboring paths and would then be suitable as principles of dynamics. 

 Naturally, we can also convert the expression for d’Alembert’s principle with the methods that 

were used for the differential principles themselves. We learned about the general form in 

generalized coordinates in equation (8) of no. 19, such that we can also write it: 

 

2

( )

i

t

i i i i

it

X m x x dt
 

− 
 
  = 

2

i

t

k k

k kt

S
Q q dt

q


   
−  

   
 . 

 

Brell (1) achieved that form by direct calculation. On the other hand, we can also start from the 

Lagrange equations of the second kind in the best form for them [(2) in no. 12]. They are equivalent 

to the identity: 

( )i i i i

i

m x X x− = 
r rk k k

k rk k

d T T
a Q q

dt q q
 

    
− − −  

    
   . 

 

The term with the multipliers will drop out as a result of the auxiliary condition: 

 

rk k

k

a q  = 0 , 

and that will give the identity: 
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m x X x dt
 

− 
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t
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d T T
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

     
− −   

     
    (8) 

 

when the qk are true coordinates, and even in the non-holonomic case. Upon substituting (8) in (6), 

one will get an integral conversion of the Lagrange equations of the second kind that was first 

exhibited by Voss. 

 

 

 25. General form of Hamilton’s principle and the principle of least action (2). – With those 

preliminaries, we shall now go on to exhibit the integral principle itself. If we choose the 

displacements qk, t [ qk, resp.] in (7) of no. 24 in such a way that the terms on the right-hand 

side that are free of the integral sign vanish at the limits of integration then we will get the most-

general principle of least action: 

 

 
 (1) H. Brell, Wiener Ber. (II.a) 122 (1913), pp. 933. 

 (2) In addition to the fundamental articles that were cited in no. 23, see al H. Brell and E. Schenkl, Verh. d. D. 

Phys. Ges. 15 (1913), pp. 1082 and ibid. 16 (1914), pp. 479. 
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d t dT
T T t A dt

dt dt


 
 + +  + 

 
  = 0 ,        (1) 

 

which was first exhibited by Voss, and in which the allowable motions must only satisfy the 

boundary conditions: 
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2 ( )

t t

k k

k k t t

T
T t q q t

q

=

=

 
 +  −  

 
  = 0 .     (2) 

 

Their validity will be guaranteed, e.g., when all qk, t vanish for t = t1 and t = t2, so all comparison 

trajectories will go through the same starting and ending points at the same time. 

 If we now write the left-hand side of equation (7) in no. 24 in the form: 
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t

t

d t dT
T T t A dt

dt dt


 
 + +  + 
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T t A dt T t
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
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=

 
 −  + +  

 
  

 

then the integrated term 2T will drop out in comparison to corresponding one on the right-hand 

side of that equation, and when we consider the fact that: 

 

dT
T t

dt
 −   =  T , 

 

which follows from (4) in no. 23, we will get: 
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T A dt +  = 
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t t

k

k k t t

T
q

q


=

=

 
 

 
 .    (3) 

 

However, that is Hamilton’s principle in its most-general form, which is then completely identical 

to the principle (7) in no. 24. The integral will vanish under the limit conditions: 

 
2

1

t t

k

k k t t

T
q

q


=

=

 
 

 
 = 0 ,           (4) 

 

so, e.g., for (1)

kq  = 0, (2)

kq  = 0, i.e., when all curves go through the starting and ending points. It 

is very remarkable that the variation of time drops out automatically here, so its introduction would 

not really imply any generalization. Naturally, that is based upon the fact that time is not varied in 

d’Alembert’s principle. 

 However, we will obtain an essentially new form when we narrow down the field of the paths 

that are allowed to compete by demanding that: 
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 A =  T = 
dT

T t
dt

 −            (5) 

 

at each moment. That means that energy should remain constant under the transition to the 

neighboring path since the change in the energy is indeed equal to the difference between the 

kinetic energy and the work done under that displacement. That is not to say that the energy should 

remain constant during the entire motion, so the law of energy would apply, but only that the true 

path is always associated with neighboring paths that have corresponding energies at each point, 

so the law of energy applies to only the transitional motions. If we express the work A in equation 

(7) of no. 24 in terms of T by means of the aforementioned transition conditions (5) then we will 

get simply: 

2

1

2

t

t
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T T dt

dt
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 + 

 
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k k

k k t t

T
T t q q t

q

=

=

 
 +  −  

 
 .   (6) 

 

We can write the left-hand side symbolically: 
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t

t

d t
T T dt

dt

 
 + 

 
  = 

2

1

2

t

t

T dt  ,    (6.a) 

 

in which the symbol  is supposed to mean the difference between the integrals over the true and 

varied trajectories. In fact, from no. 23, we will have: 

 

T dt   = ( , )k kT q q t t dt T dt+  +  −   = T dt  , 

 

i.e., when we consider the auxiliary condition (5), the -variation of the integral of the kinetic 

energy will likewise vanish with the limit condition (2). 

 Since the integral of the kinetic energy is referred to as the action, we will then have the most-

general form of the Euler-Maupertuis principle of least action, which is just as applicable to non-

holonomic-rheonomic systems. it reads: 

 

 The integral of the kinetic energy assumes an extremal value for the true motion in comparison 

to all -variations of the trajectory (see no. 23) that satisfy the condition (5) for every point of the 

path and the boundary conditions (2) at the endpoints. 

 

 In general, the principle is usually only stated in the scleronomic case since it will then simplify 

considerably. Namely, if T is a homogeneous quadratic function of the velocities. T0 and T1 will 

then drop out, and from Euler’s theorem on homogeneous functions: 

 

2 T = k

k k

T
q

q




 , 
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the boundary condition (2) will become simply: 

 
2

1

t t

k

k k t t

T
q

q

=

=

 
 

 
  = 0 ,          (7) 

 

i.e., no boundary condition is imposed upon t at all, while (7) will certainly be fulfilled when one 

demands that (1)

kq  = 0 , (2)

kq  = 0. The comparison curves are then the ones that lead from the 

starting point qk = (1)

kq  to the end point qk = (2)

kq  at any time. The principle of least action was first 

proved rigorously by Helmholtz (1) in that form. Thus, the variation of time by the -variation in 

Hamilton’s principle is essential to the principle of least action in that form. 

 The calculation of the time integral over the kinetic energy as the action finds its justification 

in the fact that it can represented as an integral of the impulse. Namely, let sn be the arc-length 

along the path of the thn  mass-point and its velocity, so: 

 

  vn = nds

dt
, 

and one will have: 

T dt  = n
n n

n

ds
m v dt

dt
  = n n n

n

m v ds  = n n

n

p ds . 

 

 Let it be remarked as an aside that one can attempt to perform corresponding conversions of 

Jourdain’s and Gauss’s principles, as in no. 24. One would then arrive at new integral principles in 

which it would correspondingly not be the coordinates, but the velocities (accelerations, resp.) that 

are varied, which is naturally not as intuitive as when one considers the varied path as a whole. 

Schenkl (2) took a step in that direction when he derived the principle that is analogous to 

Hamilton’s: 
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t

t

d T d A
dt

dt dt




 
− 

 
  = 0 

 

from Gauss’s principle, in which the symbol  now refers to the Gaussian variation of the 

accelerations for fixed configurations and velocities. 

 

 

 26. The Jacobi principle and Hertz’s principle. – One can now go further and assume that 

the law of energy is also valid for the true path, which means that one must naturally restrict oneself 

to conservative systems. One will then have the energy integral: 

 

 
 (1) H. von Helmholtz, Ber. Berlin Akad. (1887), pp. 225. 

 (2) E. Schenkl, Wiener Ber. (II.a) 122 (1913), pp. 721. 
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T + U = const. = E. 

 

One can eliminate time from equation (6) in no. 25 with its help, in such a way that a function of 

the trajectory will now be under the integral sign. The kinetic energy is once more assumed to be 

a homogeneous quadratic function of the velocities: 

 

2 T = 
,

k l
kl

k l

dq dq

dt dt
  .          (1) 

Thus: 

2dt  = 
1

2
kl k ldq dq

T
 . 

 

If we use that in the energy equation T = E – U, and substitute that in equation (6) in no. 25 then 

we will get the Jacobi form of the principle of least action: 

 
2

1

t

kl k l

t

E U dq dq −   = 0 .         (2) 

 

For practical use, it is convenient to introduce a new parameter  over which we integrate. We can 

then write: 
2

1

t

k l
kl

t

dq dq
E U d

d d
 

 
 −   = 0 .            (3) 

 

 One then takes the fixed starting and ending points of the path to be the limits of integration 

and assumes that the variations of the coordinates must vanish at them. Since time does not appear 

at all, one will get only the trajectory itself from Jacobi’s principle, which once more represents a 

true variational principle, while the time evolution of the motion will then be determined by energy 

equation. If one denotes the derivative with respect to  by a prime and the integrand by 

( , , )k kF q q  : 

F = 
,

kl k l

k l

E U q q  −       (4) 

 

then from the rules of the calculus of variations, the equations of the trajectory will become: 

 

k k

d F F

d q q

  
− 

  
 = 0 .              (5) 

 

 One easily arrives at an integral form of Hertz’s principle of the straightest path from Jacobi’s 

principle. Namely, if one chooses the parameter to be the arc-length that was defined in no. 17 [cf., 

(1) of no. 17, equation (3)]: 
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ds = 
,

kl k l

k l

dq dq  

 then (3) will go to: 
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1

( )

t

t

E U ds −  = 0 .            (6) 

 

In particular, if no external forces are present then one will have: 

 

U = 0,  E = const., 

and (6) will reduce to: 
2

1

t

t

ds   = 0 , 

 

i.e., the length of the path between the starting and ending point is an extremum for the true path, 

just as it can also be shown that it is even a minimum for sufficiently-small distances. Naturally, 

in so doing, the extremum is to be sought among all trajectories that are compatible with the 

auxiliary kinematical conditions, e.g., for a mass-point constrained to a surface, that would be all 

curves that lie on the surface. In that way, we will come back to Hertz’s principle of the straightest 

path since from known principles of geometry, the shortest lines are just the geodetic lines, which 

simultaneously have the property that they are curves of least curvature, so they are straightest 

lines in the spirit of Hertz. 

 

 

 27. Deriving the equations of motion from Hamilton’s principle. – Now that we have also 

shown that, in general, the integral principles are equivalent to d’Alembert’s principle and must 

then be compatible with the equations of motion, all that remains is for us to take the opposite step, 

namely, to derive the equations of motion once more from the integral principles for the most-

general case and only then make them truly fruitful. In so doing, we shall restrict ourselves to 

Hamilton’s principle as the simplest and most-general. 

 That problem was solved before in no. 22 in the case where a kinetic potential exists by 

appealing to the rules of the calculus of variations, but not under more-general assumptions. In its 

most-general form [(3), no. 25], the principle reads: 
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The expression for  A is then known to be regarded as: 

 

 A = k k

k

Q q  . 
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One then addresses the problem of finding a corresponding form for  T, namely, a homogeneous 

linear expression k k

k

P q  in the  qk from which one can infer conclusions about the degree of 

arbitrariness in the  qk . 

 One initially has: 

 T = k k

k kk k
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q q

q q
 
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+
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so 
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Now, if we have a holonomic system then the first term can be converted by partial integration 

since the operations  and d / dt will commute in that case. One will then get: 
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If we substitute that in (2) then the terms that are free of the integral sign will drop out without any 

sort of restrictions being imposed upon the  qk at the limits of integration, and we will get: 
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  = 0 .          (4) 

 

Now, since the  qk are completely-arbitrary quantities, and that relation will also be true for an 

arbitrary choice of integration interval, the term in square brackets must vanish by itself, so: 

 

k

k k

d T T
Q

dt q q

  
− − 
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 = 0 .     (5) 

 

However, those are the Lagrange equations of the second kind. 

 That argument will not suffice for non-holonomic constraints since one must still consider the 

auxiliary conditions. Therefore, the qk will no longer be coordinates, but one imposes the auxiliary 

kinematical conditions upon them that: 

 

rk k r

k

a q a+ = 0 ,            (6) 

 

so the virtual displacements  qk will be subject to the constraints that: 
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rk k

k

a q = 0 .                    (7) 

 

Naturally, those constraints can also be holonomic, so the differential forms (6) will be integrable, 

but they do not have to be. However, the qk should be true coordinates in all cases. (4) will still be 

correct, except that the  qk will no longer be free, and one can therefore no longer infer (5) from 

(4), but only that: 

k k

k k k

T d T
Q q

q dt q


   
− +  

   
  = 0 .         (8) 

 

One can now consider the auxiliary conditions (6.a) by multiplying them by the undetermined 

factors r in the known way, adding that to (7), and then treating the  qk as free. Therefore, in 

place of (7), one will have: 

 

k r rk k

k rk k

d T T
Q a q

dt q q
 
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   
   = 0 , 

 

with which (4) will also be fulfilled since from (6.a) the -terms will mutually cancel each other. 

Now, it will then follow from the reasoning in no. 5 that one will have the Lagrange equations with 

the auxiliary conditions (2) of no. 12: 
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dt q q


  
− − + 
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to which one must add the kinematical constraint (6) on the kq , from which one will then get 

sufficiently-many equations for determining the r, as well. 

 The essential aspect of this argument is the fact that one can first make use of the auxiliary 

conditions after the variation. That is based upon what was established in no. 20, namely, that the 

neighboring curves for non-holonomic systems cannot satisfy the auxiliary conditions in their own 

right, so they will not represent kinematically-possible paths. By contrast, if one includes the 

auxiliary conditions as one did before in the calculus of variations then one would restrict the field 

of competition for paths in a way that is not allowable, and Hamilton’s principle would no longer 

be valid since it would imply the false equations: 
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as one easily sees. 
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 One can also introduce the quasi-coordinates in no. 13 into Hamilton’s principle directly (1), 

although in so doing one must observe only that variation and differentiation will no longer 

commute for them. Let them be coupled with the true coordinates by the non-integrable relations 

(see no. 13): 

dqk = k

k

d   , so  qk = k

k

    . 

 

In Hamilton’s principle, one will have: 

 

 A =  


  . 

 

Moreover, when we once more denote the kinetic energy as a function of 


 by T, we will have: 
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in which we generally introduce: 
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T
 = k

k kq







T
 

 

as only a symbolic abbreviation since the  themselves have no meaning. The expression for 

Hamilton’s principle will then be precisely as in (2): 
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In order to convert the first term, we now appeal to the commutation relation (2) of no. 20: 
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We will then have: 
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The first term on the right-hand side can be converted by partial integration again and will imply 

that: 

 
 (1) Cl. Schaefer, Phys. Zeit. 19 (1918), pp. 406.  
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If we substitute everything in (8) then upon combining all terms with the same   and making a 

corresponding re-indexing of the summation sign, we will finally get: 
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and therefore since the term in square brackets must again vanish by itself due to the arbitrariness 

in the   , and from the definition (6) in no. 13, we will have  = −  , we will get the 

Lagrange equations of second kind (8) in no. 13: 
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  = 0 . 

 

With that, the equations of motion are derived completely from Hamilton’s principle. 

 Naturally, one can also go through that derivation in the opposite direction and then conclude 

the Lagrange equations from Hamilton’s principle directly. 

 

_________ 

 


