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Inertial and gravitational mass in relativistic medhanics
By Gunnar Nordstrgm

Translated by D. H. Delphenich

In several recent works in the field of relativistiechanics, the concept of the mass
of the body has played a very subordinate role. rEason is easy to understand: As
Laue () and Herglotz () have shown, one can construct the mechanics of deden
bodies completely without introducing the concept ofrtink mass anywhere. The
concept of mass is therefore not absolutely necedsargnechanics, and on the other
hand, that concept is also not sufficient to repres#innertial phenomena for matter
when one considers bodies that are subject to arbélasyic stresses.

The question of the mass of matter is, however, o$iderable importance for the
theory of relativity, especially for the evaluationtbé manner by which the theory of
gravitation should be inserted into the theory of relgti The inertia and the weight of
matter must, in any event, have a close relationshipatth other, and it would be
simplest for one to address that essential propertyaloylating the mass that is based
upon the two phenomena. One would seek to justify swdneept of mass whether or
not one knows that there are also inertial phenornmettee theory of relativity that do not
lead back to a mass in any way. In such cases, one attsiate with a special quantity
of motion (viz., impulse) that does not depend upon thes wihe body, but, e.g., on the
state of elastic stress itself.

In the present article, | would like to treat theatiistic mechanics of deformable
bodies in such a way that the possibility of a genastification for a concept of mass
will emerge clearly. In it, | will also examine tih@fluence of the conduction of heat on
mechanical processes. In conclusion, | will considevigitgon when | also ascribe the
inertial mass to weight.

8§ 1. The foundations of the relativistic mechanics of deforable bodies.

We consider a body in an arbitrary state of motiad atress. In addition to the
elastic forces, a spatially-distributed ponderomotived®® of arbitrary source might act

upon the body.R is a four-vector that will be referred to as the &wral” ponderomotive
force per unit volume or as the “external” moving force st rest volume¥.

t Laue, Das RelativitatsprinzipBraunschweig, 1911, VII; Ann. Phys. (LeipzRf (1911), 524.

O M.
() G. Herglotz, Ann. Phys. (LeipzigB6 (1911), 493.
() H. Minkowski, Gétt. Nachr. (1908), pp. 107 and 108; cf., also equatioran(B]9) below.
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For Laue (%), there is a symmetric four-dimensional tenfavhose components give
the stresses, as well as the mechanical impulse angyehensity. Thus, we can write
the equations of motion of the body in the followiognh:

_oT, 0T, T, T
+

XZ + Xu

* 9x ody 9z Odu’
or, 0T, O0T_ 0T
+ +—E+ X
Y ox o9y 9z Ou
_oT, 0T, aT, oT,
+ + + ,
* 9x 9y 9z O0u
oT, 0T, oT, . 4T

ﬁ = ux + + uz + uu

“ ox o9y 09z du’

(1)

X, ¥, Z u=1c tare the four coordinates; the speed of liglghould be a universal
constant.

We would like to ascribe a certamst-mass densityte every space-time point in the
matter. That quantity should be a four-dimensional schila we shall leave it otherwise
completely undetermined until later, such that we cas lthe concept of mass freely at
our disposal. One determines the usual mass deaditym the rest density by the
equation:

(2) V= u\/l—n—z,
c

in which v means the (three-dimensional) velocity of thmtpoonsidered. For the sake
of simplicity, we set:

e
"
olo

and then have:
v=1-¢° .

We now regard the four-dimensional ten3aais the sum of two such tensors, when
we set:

T,=p,+ VB’
TUU: pUU+V%5’
Txyz P,y + V‘B;By,

3)

() M. Laue, Das Relativitatsprinzippp. 149.
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in which 8 means the four-dimensional motion vector. As isvkmoit is connected to
the velocityv by the equations:

(4) %X: X gy waaey %u:

We call the four-dimensional tenspthat is introduced by equation (4) thlastic stress
tensor LikeT, it is symmetric, s@x, = pyx, €tc. One can call the second partial tensor of
T thematerialtensor.

We set:

ﬁe:_apxx_apxy_apxz_apxu
X ox ody 0z odu’

(5)

and call the vectaof® theelasticponderomotive force. Our equations of motion (1) now
read:

0 0 0 0
R AR =B +—VBB +—VvB —v%
ox oy 0z Bt ®
R +ﬁe:aiv%% +aiv% +aiv%;8 + 2 v%ﬁu
X y
X R +ﬁe—iv%z‘3 9, VB B +iv‘B +i\,%?3
L0 Ox oy au v
£, +ﬁe:iv%% +iv%% +iv‘BuﬁB iv%z
0x oy 0z

In order to see the meaning of the right-hand sidezomeert it. We letlv denote the
volume of a material particle in the body anddef denote its rest volume, so:

@) dvo=
1-¢°

If we further letr mean the proper time:

(8) dr=dty1-¢°

then one will get:
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(©) LvpzeLvm s +2ve®,+ L v s, L vm, dy)
0X ay 0z ou dy, dr

= ii 'UUX dv
dV dt [1—q2

with the use of a known formuld)( One will get corresponding equations by permuti
the indexx with 'y, z, u. If one introduces the expressions that are footwl(6) then one
will get the equations of motion in a form thasimilar to then ones for a material point.

As is known, the first three equations of motiapress the law of impulse, while the
fourth one expresses the law of energy. In ordestuidy the first law more closely, we
set:

i i i
(10) gxe =~ Py gye -7 pyu J gze === P>
c C c

and call the three-dimensional vectSithe elastic impulse densityThe vector with the
components:

i
gx" =—-—VB B , etc.
C

that is defined in a similar way from the materi@hsor shall be referred to as the
material impulse densityOne finds:

(11) gn= K2
1-¢°

We further introduce theelative stresses(f) by the following equations:

i
txx = pxx+E PP

i
(12) txy = pxy+E P.p y

etc.

or, from (10):

ot

in which ¢ is an arbitrary function dof, y, z t, and the integration on the left-hand side refers wel&
defined part of the matter. The vector-analytic symiolthis article are the ones that are explained in
Abraham, Theorie der ElektrizitgtBd. I; they will always refer tthree-dimensionabectors.

(® M. Abraham, “Zur Elektrodynamik bewegten Kérper,” Rend. Circ. MateRalermo (1909),
equation (10)M. Laue, loc. cit., pp. 151.

. e SR P
) dtf¢dv J{dlv¢n+ }dv,
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txx = pxx_ginx’
(12a) txy = pxy_gin y?
etc.

The relative stresses define an asymmetric, tieensional tensor. As is obvious,
these stresses are calculated in a manner thiailarsto the way that the pressure on a
moving surface is calculated in electrodynamidsshbuld be further remarked that one
will get the same relative stresses when one writés place ofp, in (12), so the second
(viz., material) tensor into which we have spliwill give zero relative stresses. For that
reason, the relative stresses that were defineegbgtion (12) will be identical with the
ones that vohaue introduced lpc. cit)).

We can now convert the expressions for the spetimponents af®. From (10) and

(12a), we get:

ot
(13) ﬁxe:—{atxx 4 +atx2}—{igfnx+igfn +igfnz+§tg f},

ox 0dy 0z 9 X oy * ¥ az

and corresponding expressions ff and£;” .

We multiply equation (13) bglv and integrate over a (three-dimensional) spatat
is filled with mass. The integral of the expressin the first bracket can be converted
into a surface integral by means@dusss theorem. When we then apply the formula in
the footnote on pp. 4 to the last bracketed expresa/e will get:

e d e
(14) [ Rfdv == it di+t,0f, + 1,0}~ [g’dv

Here,djx , dfy , df, are the components of a surface element of thedawy surface of the
domain considered ; df is regarded as a vector whose direction is thahefexternal

normal. The symbal / dt denotes the temporal change in a bounded pahneahttter.
Corresponding expressions are true for the remgugpatial axis directions, and we
see that the elastic force is determined, in grthe relative elastic stresses that act as
surface forces and in part, by the change in tastielimpulse.
We can now write the first of the equations of imotusing (6), (9), and (14) in the
following integral form:

(15) J. ﬁx dV_'[{tXX d](x+ txy dfy+ txz d}z _%Igex dt'[\/ﬁ V= %ngm dv.

This equation and the two analogous ones for thar@ng spatial axis direction express
the law of impulse for a bounded part of the matter
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The asymmetry of the relative stress tensor meaaisthe elastic forces generally
exert an rotational moment on any part of the bdyly Erom the theory of elasticity, the
rotational moment that acts upon a unit volume aroundeatdin that is parallel to the
axis:

tyz - txy = Uy gze - UZ gye .
As a result, one then has:
(16) n=[ogq

for the rotational moment per unit volume, when expressed vector-analytically. That

rotational moment must always appear when the elagpialse density has a component
that is perpendicular to the velocity. The rotatlomament is then also necessary for
maintaining a uniform translational motion of the atadly-stressed body. As is known,
in this, one finds an essential differential betweassital and relativistic mechanics
whose basis will emerge clearly when one presentireof surfaces’). However, we
would not like to go into that here.

Whereas the first three of the equations of motigess the law of impulse, the last
of those equations expresses the law of energy. We set

(17) G =c?g°
2

(18) Gm:CZQm: C/'IU ,

J1-¢°
SO
(17a) S =-icpu, etc.,
(18a) S"=—-ic VBB, etc.,
and furthermore:
(19) Y°=-pu,

2
(20) yh=-vp2=_H_
1-¢°

From (5), there is then an expressionifoR,° that reads:
21) icﬁue:divee+aa—¢t’,

when written vector-analytically. We can now wiitee last of the equations of motion
(6), when multiplied by 4¢ as:

() M. Laue, loc. cit, pp. 168.
() M. Laue, Ann. Phys. (LeipzigB5 (1911), pp. 536.
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(22) —-ic Ry =div (Ge+6"')+%(¢/e+¢/m).

That is the energy equation. We see that the kectband&™ express thelastic
(material resp.)energy currenfand that the quantitieg ® and /™ are the corresponding
energy densities.The quantity- i ¢ K, gives the energy supplied per unit volume and
time by the external forc&. The meaning of the right-hand side can be recognizid wi

no further discussion. Upon integrating it over an eabjtspace and applyin@ausss
theorem, one will get the law of energy, when exprefsed fixed spatial region in the
spatial reference system §, z) that is employed.

8 2. Approximate examination of the elastic state quantities

In order to arrive at a clear presentation of tlested quantities, we transform the
stress tensop to rest at the space-time point considered. The comp®ié the tensor
then give the matrix:

Pe Py P O

0 0 0
(23) pyx pyy pyZ O .
P Py P O
0 0 0 p

In the case of rest, the state of elastic streghinhen give no energy current, and also
no impulse ).

We remark incidentally that the usual laws of the thed elasticity will be valid in
the case of rest. We can then relate the six $stéss componentp.), p,, ... to the
deformation quantities at rest).( However, we would not like to go further into that
topic.

One easily sees tha,. must be a four-dimensional scalar. One has:

_Czpu?J:pxx%xz-l'pyy%yz-l'pzz%zz-l'pu %u2+ szy%x %y-l' zg(z%x %Z-I- reny

so the right-hand side is invariant under Lorentz tansdtions, and nine of the ten
terms will vanish under the transformation to rest, Whigll then give one the identity
_Cz puo - _ CZ puo

Furthermore, from (19) and (20):
(24) W=-pl +cv

() If heat conduction is present then its influence uritle action of the external forg@ must be

calculated. Cf.infra, § 5.
() Cf.,G. Herglotz, loc. cit.
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is therest energy densitgf matter, which is also a four-dimensional scalamcé&v is
undetermined, for the moment, one can now define thatiguansuch a way thap? =

0. For that reason, we would not like to make any susimgstion until later.
Upon transforming to rest, one will also see thedigliof the following system of
equations:

PoB,+ PyB,+ PB + PB & BB
B+ PyB+ pB F pB = PP,
PB,+pP B, PBAPBFPB .
P.B,* P,B,+ P8 + p.B = BB

(25)

c
I =

We get expressions for the components of theielasergy current and the impulse
density from the first three of these equationansly, by employing equations (4), we
will find that:

=i C Pux = = Py Ox * Pxx bx + Py by + Pz bz,
SO
S0 =C’g =~ Ll P PP S P,
(26) Gy =C'g, == PLoy+ Pyt PP F P .
S;=c'g,/=-pp,+PYFPY FPY.,

We can also express these vector componentsms tef the relative stresses when
we eliminatep by means of (12a). We will get:

(26a) Gy (1 =) = — p,0x + tux b + by 0y + tx, 07,

and correspondingly for the two remaining composent
One gets the expression:

(27) Ye==putae
from the last equation (25).

8 3. The changes in mass and rest energy.

In order to obtain the law for the variation ofseawe multiply equations (6) 99,
By, B, By, in succession, and add them. In that way, wervbshat:

0 0 0 0
B {—VBZ+—VB B +— VBB +— VB
X{ax oy Y oz B ou ;B“}

=B’ iv%x+iv%y+iv‘32+i VB
0X oy 0z Jdu
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2 2 2 2
+2v %Xa%x +9B B, +9B, %, +9B, B, , etc.
ox Yooy 0z ou

Since we further have:
(28) B+B+B2+B2=-¢

from the foundations of the theory of relativity, wel get:
B (R FR)+B (R FR)+B (R FR)+B (R F+R)

29
(29) =-¢’ iv%x+iv‘3 +iv%z+i VB ¢
ox ay ’ o0z ou

That equation gives the variation of mass in timenduy, is the rest volume of a
material particle [cf., equation (9)]:

(30) iV‘B +iv% +iv% +i VB = ii(v dwo),
0x oy 0z Ju dr, dr

in whichv dup = i du is the mass of the particle.
If the sum of the external and elastic forcesrieagonal to the motion vect® then

the mass of the matter will be unchanging in ting,otherwise, it will not.

We would like to present a formula for the eladsbece, and to that end, we
differentiate equations (25) with respectXoy, z, u, and add them. After a simple
conversion and observing (5), we will then get:

BR+B RA+DB R +B R
0B 0B 0B, 0B,

= X + y +
Pix Ox pyy ay Pz, 9z * Py du
(31) 0B, 0B, {a% L 9%B, }
+ X 4 + + + + +
*y{ oy ox [T Pe1Taz Tax ) TP TRt

0 oy .0
= p2B, +— — PB +— poB
{ ox PuBxt 5 PuB ,*+ = P, P }

When (29) is subtracted from (31), and one obse{®4), that will yield:
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9wy + Sy + S wp + 9wy
ox oy ¥ oz au

=B, /,+B, R/, +B,8,+B "}
(32) OB OB OB

0
—_ _X+ y + z + u
P ox Py ay Paz 0z Pu ou

0B, 0B 0B, 08B
+ X+ L+ X+ ——20+ + + +
pxy { ay aX } pxz{ a 7 a X } pXL{} pi} F{}x {}zu

This equation expresses the law of energy for a reswvalime that moves with the
matter, as opposed to equation (22), which refers to a ahitme that is fixed in the
spatial reference system employed. Equation (32) is lebehp symmetric relative ta,

Yy, z, u; one will easily find that it actually expresses the bf energy upon transforming
to rest.

8 4. Definition of the inertial mass.

Up to now, we have considered the rest mass densibg @ completely arbitrary
function of the four coordinates of the space-time poinhatter. We would now like to
remove that indeterminacy, and for that reason, wd sbat direct our attention to the
various possibilities for doing that.

In equation (24):

W=- p3u+ C2 v,

the rest energy¥ is a well-defined quantity; however, the quantitigls andv are freely

at our disposal. We demand pf, that it must be zero when no elastic stresses ajipea

the body considered; the tengoshall represent the state of elastic stress, andtbaly
one. Hence, if we transform to rest (matrix 23) thérof the spatial components pf

shall be zero, and therefong’, shall also be zero. However, that can be achieved in

different ways.

When one considers only bodies in which an omnidwaati normal pressure is
present, one can easily define the rest density such a way that (when no heat
conduction is present) the total inertia of the body @l determined by its mass. In
order to do that, one needs only to $pt (

0 0 - L0 — 40
pxx_ pyy - pzz - puu’

0 =pJ=pPo=pP,=-.

in the matrix (23), s@ will then be determined by (24).

() G. Nordstrgm, Phys. Zeit12(1911), pp. 854M. Laue, Das Relativitatsprinzippp. 151.
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The stress tens@rwill then degenerate into a scalar, and the elasiulse density
g° will be equal to zero independently of the motion.

As far as | can see, that is why that way of lookiigmass cannot be casually
extended to the general case in which (relative) tarajesttesses also appear in the
body. It seems to me that the simplest and mo$tnaiae definition in the general case
is to set:

(33) cv=Wy,

The rest mass density will then be set to somethingoptiopal to the rest energy
density. From (24), one will then have:

(34) Pe =0,

and several of our previous equations will be simplifieday.t

Naturally, the factual content of relativistic mechanil not be touched upon by
that at all, namely, how we define the inertial ma€air definition will first take on a
more than formal definition later when we also dsegravity to the inertial mass in § 6.

If we now establish the concept of mass by the defimi{33) then we will have to
remark that an impulsg® will appear in any moving and elastically-stressed bbdy i
determined, not by the mass of the body, but by the statlastic stress. From (26) and
(26a), we get:

e 1
Oy :?(pxxnx-i_ pX)p y+ P.p )

-1
c’(1-q%)

(35)
(Lo, ttp, +t.p ) etc.

That impulse will also appear when an omnidirectiomainal pressure is present in
the body considered. In that cagecan be derived from apparentinertial mass that is

added to the one that is defined the equation (33).

8 5. Influence of heat conduction.

All of the equations that were presented will alsovhkd when heat condition is
present in the bodies in question, so the influence dfdeauction can be ascribes to a

ponderomotive forc&" that appears in the heat conduction field, which is eefthat is
counted along with the external forc& The energetic components of the heat
conduction forceR" are the ones that play the essential role. Likep@atideromotive
forces, from our basic assumptiors) shall also be derived from a symmetric, four-
dimensional tensor. We denote the heat conductionrtéysv, so we will have:
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@) ] e

in which, one has, e.g.:
qu = Wuz y etC

In the case of rest, the tensowill give the following matrix:

0 0 0 W,
0 0 0 w
(37) .
0 0 0 w,
W W w0,

So in the rest state, the total spatial stresskdevgiven by the tensqr (matrix 23), and
the total energy density of matter will be given®y= ¢ v. The real components of
must then be zero in the rest case.

If we consider the conduction of heat then we \dlve three four-dimensional
tensors that relate to the matter: viz., the heatlaction, elastic, and material tensors. In
the case of rest, all three of them can be sumexiizthe following common matrix:

Po Py Pn| W,
P Py P | W,

(38) o, | W,

Since we have hit upon the convention (33), tleodgosition of the total tensor into
three parts is unique.
We can introduce a four-vect® by the system of equations:

Wxx%x-i_wx;B y+ WxéB z+ Wx% u:_QU X

B9) ) s
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As we would like to show, that vector is referrecatotherest heat current.The law of
energy for the heat conduction will indeed be expresséd dquation (21)] by the
equation:

e |ow, 0w, dw, dw,,
ICR, =—1IC + + + :
ox ody 0z O0u

and for the case of rest, one will get from (39) that:

iCWSu:_QUXO’
icw,=-207,
iCW(z)u:_QUZO’

0=-27,

from which, the stated interpretation for the ve@dwill emerge.
One also sees from the last equations that the fatongJ is orthogonal to the
motion vector®, such that:

(40) wx%x'l'wy%y'l'wz%z'l'wu%uzo,

so the left-hand side of this will be invariant under Inbzeéransformations and will equal
zero when it is transformed to rest.

The tensomw can be expressed as a “tensor produdtof the two four-vectorQy
and®B. As one finds upon transforming to rest, one will hdn&efollowing expressions:

WXX :C_ZZQBX%X’
WUU :C_ZZQBU%U’
(41) 1
W, —?{Qﬂx%ﬁﬁny% &+
1
W, :?{wx%u-*-wu% >}'
etc.
for the components aof.
Naturally, one has:
(42) Y == W,

() W. Voigt, Gétt. Nachr. (1904), pp. 500.
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for the energy density/" and the energy curre@” of the heat conduction field. These
guantities can also be expressed in terms of the v88toMWe initially find from (40)

that:
(44) -1cWy=Wo,

in which the scalar product of two three-dimensional asescts on the right-hand side.
From (41), we further get:

(42a) W' = —F——Wo,
Ccy1—q
W= 1 {QU +12(an)},
(43a) 1-a’ :
__w ¢
1-¢° 2

Naturally, the energy curre@" corresponds to the impulse density:

g" :iz v
C

We can write the last of equations (36), when muédigpbyic, as:
(45) ic R'=dive" + %

which can be introduced into the energy equation (22). \Wieis the only “external”
force that is present, one must naturally et £" in all equations of the previous
paragraphs, and in particular, one must&et R " in (22).

We would like to exhibit a few formulas f&". If we introduce the expressions (41)
into the system of equations (36) then, after a simpieersion {), we will get:

() If ¢is an arbitrary function of four coordinates then oileimdeed have:
d 0 0 0 0
l: %xl"' %yl'F %zl*' %ul_
dr 0x oy 0z ou
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o020 [0, 0, 0w, ow,
X dr ox dy 94z Adu
0B
(46) B Qﬂxa%x+ﬁﬁ y+w26%z+wu6%u
ox Yooy 0z ou
_gp [0, 0B, 0B, 0B,]
“l'ox ady 0z 0du

and corresponding expressions for the remaining compoaats If we multiply these
expressions b8, By, ‘B,, By, resp., and add them then, upon observing (40) and (28),
we will further get:

B A +B AT+B R+B R

47
47) | _ow, oW, 0w, 0w, 1 m]Xd%an d%y+md%2+mud%“ |
ox o0y 9z odu @ a a

This formula allows one to consider heat condurcioformulas (29) and (32)

8 6. Gravitation.

The treatment of gravitational phenomena from skendpoint of the theory of
relativity has been attempted from several anglesparticular, the theories @&instein
(*) andAbraham (%) should be mentioned. However, in those two tiespthe speed of
light was not constant, but depended upon the tgtavnal field, and that situation would
demand at least a completely radical change ificinedations of the theory of relativity
up to now.

However, as | have shown in another pla)e dne can keep the constancy of the
speed of light by alteringbraham’s theory and develop a theory that is compatilté w
the theory of relativity in its form up to now. r8e | would like to generalize that theory
at some point, its foundations might be recalleche

| introduce a gravitational potenti®l and set:

9°d 0°®d 0P 9D
+ + + =

48 =gV
(48) x> 9oy 07 ou g

in which | have employed rational units. Heveis the rest density of matter that is
defined by equation (33). The gravitational pasdr® and the quantitg are also four-
dimensional scalars; we cglthegravitational factor.

t Einstein, Ann. Phys. (Leipzig35 (1911), pp. 898.

A A
() M. Abraham, Phys. Zeit13(1912), 1.
() G. Nordstrgm, Phys. Zeit13(1912), 1126.
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The gravitational field exerts forces on the matdyaadies that are found in it. | set:

0P 0P 0P od
49 R¥=—gv—, AI=—-gv—, RS=—gv—, R =—gVv—
(49) g gvax v =9 ay gvaz v gvau

for the ponderomotive gravitational for&8 per unit volume.
Equations (48) and (49), along with the principle of thestancy ot:

(50) ¢ = universal constant,

give the complete foundations for my theory of grawtat Those equations also
determine the rational units @f andg. | initially regard the gravitational factgras a
universal constant. However, | remark here that notpmegents me from taking to
depend upon the internal state of the matter, giraxcurs only as a factor of

The basic equations (48), (49), (50) demand that the maasnaditerial particle
depend upon the gravitational potential at the same pémnbrder to obtain the law of
that dependency, we conveniently consider the motion ofss ipoint of mass in an
arbitrary gravitational field. No other forces than gravan can act on the mass point.
We can then write the equations of motion of the mas# psifollows [cf., equation (6)
and (9)]:
0P ds dm
— = m_x+%x_,
0x dr dr

0P d®B, dm
-gm—=m—-=+B, —,
oy dr Ydr

oo dB dm
— = m_z-{-%z_,
0z ar ar
oo dB dm
— = m—++B, —.
ou dr dr

(51)

We multiply the equations BBy , By , B, B, , in succession, and add them. Upon

observing (28), since:
do _ 0P 0P 0P 0P

—=B,—+B —+B,—+B —,
dr 0x oy 0z Jdu
d _ 2 dm
-gm—=-¢" —,
dr dr
or

mdr c®dr’

If g is taken to be constant then integration will give:

(53) m=m, €/,
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and that equation will give the dependency of the mass tingogravitational potential.
From (52), the equations of motion of a mass-point dao be written in the
following form:

g ox dr & “ o
§20 0%, g, 0o
oy dr & Y dr
200, g, do
o0z dr ¢ o
ob d»B g do

— _:_U+_% —_—
g ou dr & ' o

o® = d%x +g% E

(54)

in which the mass drops out of the equations of motion.
The variability of the mass has its basis in the fhat the gravitational forc&® is

not orthogonal to the motion vect® (cf., pp. 9). If we multiply equations (49) B,
By, B, By, and add them then we will get:

(55) %Xﬁi+%yﬁ9y+%zﬁgz+%uﬁ%=—gvi—c:.

We can introduce that expression into equation (29)hervariation of mass; naturally,
the gravitationak® belongs to the “external” forcg.

The gravitational force&? is derived from a symmetric, four-dimensional terSdsy
way of:

56) ] e

One gets equations of that form when one introducesxression (48) fog vinto (49)
and then performs a conversion. One also finds thewfmlg expressions') for the
tensor components then:

() Abraham obtained precisely the same expression in his afortioned theoryM. Abraham, loc.
cit., pp. 3.
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SRR

) {(—j[—j(j _____ (—j}

Those quantities give the fictitious gravitational stess(pressure stresses, measured
positively), as well as the impulse density, energyendr and energy density in a
gravitational field. One has:

GI=c?gi=-ic Gy, etc.

X

for the energy currer@® and the impulse density, and:
[//g == Guu
for the energy density 9, and thus, from (57):

(58) GY=c%’= —‘Z—T 0o,

(59) {(D 7+ [aafj }

in vector-analytic notation. One sees tigdtis always positive.
The last of equations (56), when multipliedibynow reads:

g
(60) icRI=dive? + 66—4‘: ,

which is an expression that expresses the law efggnfor the gravitational field.
Naturally, one hask’ = 0 for regions outside of the material body. Eipm (60)
combines with equation (22) for regions insidehaf body.
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Equation (48) can indeed be regarded as a four-dimen$lorsslonequation, and its
integration can be performed accordingly. (However, the form of equation (48) also
shows that one can calculabefrom the known formula for the retarded potential. Whe
one considers the possibility tigatan be variable, one will have:

1 rdxdydz
P, Yo 2 )= =~ [ (9, CONSL
(61)
-1 dXdydz(gﬂ\/ 1—q2) + const.
4 r X, ¥,z t
in which
r=\/(><—><0)2+(y— o) +(z- 2)?,
(61a) r
t=t,——.
C

The integration extends over three-dimensional space.

§ 7. Falling motion.

We would next like to present an equation for the mobd a mass-point in an
arbitrarystatic gravitational field. We have two remarks to make abloait t-irst of all,
the fact that our theory does not admit any true diketimasses, since from (61), one
would have® = - « at such a point, and therefore, from (53), the magtefpoint
would be zero. A “mass point” must always have a sedatension then. Secondly, it
should be remarked that in order for the field to liarded as static, the particle that
moves in the field must be arranged such that its oefd fis vanishingly weak in
comparison to the external field, even in the immediatinity of the particle.

Indeed, one will have:

AL
ot
in the static field.

We multiply the first three of equations (54) d@y vy, v, , resp., and add them. We
then get -g v [0® on the left-hand side. We further have, in general:

d’B 1 dvo, o do
= +

62 X = X X etc.;
(62) dr 1—q2 dt cz(l—qz)2 dt
hence:
dsB d%y dsB 1 do
o “+p +o .

= b—.
“dr Y dr  *dr  (1-¢°)° dt

() M. Abraham, Phys. Zeit13 (1912), pp. 5A. Sommerfeld Ann. Phys. (LeipzigB3 (1910), pp.
665.
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Since we further have:

in our case, we will get:

1
-goddP=——FS0—+
g (1-¢°)* dt g 1-g°
and ultimately:
1 do
63 —go P = b—.
(63) g 1-¢q°> dt

We would now like to assume, in particular, thae tgravitational field is
homogeneous and parallel to thaxis, so:

0P 6(D GCD fo[0)
—— = const., =0,

0z X 6y ou
and examine the motion of a mass-point in thatl fiélhe third of equations (54) gives:

o _ 1 dnx+ o do v oo

X X

9z 1-¢* dt  c(1-¢°)° dt gcz(l—qz)a_z'

If we observe (63) then we will find that the lasb terms cancel each other, and we will
get:
do,

dt

0P
=-(1 —CIZ) g o7
z
The first of equations (54) gives:

X

= U_
1-¢° dt  c®(1-q%)* dt gCz(l—qz)('iz

1 dvo, o do oo, 0P
+ +g—22 —

in a similar way. The last two terms also canagiehone will then havedvy / dt = 0.
Since the same thing must be truedoy / dt, we will get the equations of motion:

de:_ 1- n_ ga;o
dt ¢

dUX :d_U

X —

dt  dt

(64)

for a mass-point in a homogeneous gravitationdd.fie
These equations state the following:
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The component of the motion that is perpendicular to the field directionifigrm.
The acceleration of falling will get smaller as the velocity d¢gtger, but independently
of the direction of the velocity. A body that is thrown in a horaaditection will fall
slower than one that falls vertically with no initial velocity.

One also sees that a rotating body must fall sloth@n a non-rotating one.
Naturally, for attainable rotational velocities, thdfetence is much too small to be
accessible to observation.

That result raises the question of whether the méaecaotions of a falling body will
have any influence on the acceleration of falling. AtvRry least, one cannot reject the
possibility that this is the case. One must then fydde theory of gravitation simply by
considering the gravitational factgr not to be constant, but as something that depends
upon the molecular motion of the body. For that aeasve have left that possibility
open in the foregoing development. In connection widt, let us suggest that the mass
density of a body also depends upon the molecular mosoos that the rest energy
density, which determinesby equation (33), will be influences by those motions.

Nonetheless, the questions in the theory of gravitdtiah are connected with the
atomic structure of matter lie beyond the scope ofdttisle.

Helsingfors, January 1913.
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