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INTRODUCTION 

 

 1. – If one is given a system of Lagrange equations: 

 

(A)    
i i

d T T

dt q q

  
− 

  
 = Qi ,  idq

dt
 = iq   (i = 1, 2, …, k) , 
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in which the Qi depend upon neither velocity nor time, and in which T, which is a quadratic form 

in the iq , is also independent of t : 

  2T  
ij i jA q q    

2

2

ds

dt
  (Aij  Aji), 

 

then one can demand to know if there exist other systems that are analogous (Ai) that define the 

same motion as (A). The question thus-posed is highly restricted, but it will acquire a different 

significance if one subjects the system (Ai) to only the condition that the trajectories of (A) and 

(Ai) must coincide then the motion along those trajectories will differ from one system to another, 

in general. In other words, the problem consists of defining the systems: 

 

(A1)  1 1

1 i i

T Td

dt q q

  
− 

  
 = 1( , , )i kQ q q  , 

1

idq

dt
 = iq   (i = 1, 2, …, k) , 

in which: 

2T1  
ij i jA q q     

2

1

2

1

ds

dt
 , 

 

that define the same relations between the qi as (A). Two such systems (A) and (A1) will be called 

correspondents. 

 

 

 2. – That problem is attached to a problem that appears to be more general and demands some 

explanations if it is to be posed clearly. The change of variables: 

 

(1)    q1 = 1 (r1, r2, …, rk) ,  …, qk = k (r1, r2, …, rk) ,  

 

from which one infers, inversely, that: 

 

(2)    r1 = 1 (q1, q2, …, qk) , …, rk = k (q1, q2, …, qk) , 

 

transforms 
2ds  into an expression of the same nature 

2d : 

 
2d   

1 2( , , , )ij k i jA d d       
1 2( , , , )ij k i jB r r r dr dr , 

 

and the system (A) into a system: 

 

(B)   
i i

d

dt r r

   
− 

  
 = 1 1( , , , )i kR r r r  , idr

dt
 = ir   (i = 1, 2, …, k) , 

in which: 
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2  
2

2

d

dt


, Ri  Q1 (1, 2, …, k)

1

ir




+ … + Qk (1, 2, …, k)

k

ir




. 

 

 We say that the expressions 2ds  and 2d , and similarly the systems (A) and (B), are 

homologous (1) and admit the transformation (1) as a transformation of passage. In particular, if 
2ds  and 2d [or (A) and (B)] coincide when one sets qi = ri (i = 1, 2, …, k) then the transformation 

(1) will be a transformation of 
2ds  [or the system (A)] into itself. 

 A transformation (1) will make one and only one homologue correspond to a given 2ds  [or to 

a system (A)]. Conversely, there exists only one transformation of passage between two 

homologous expressions 2ds  and 2d  [or between two homologous systems (A) and (B)], unless 
2ds  [or (A)] admits transformations into itself. Indeed, upon combining one transformation of 

passage with an arbitrary transformation of 
2ds [or (A)] into itself, one will get a new 

transformation of passage, and one will get all of them in that way. Those transformations of 
2ds  

[or (A)] into itself always define a group, which will be continuous if it depends upon arbitrary 

constants and discontinuous otherwise. (One easily shows that it cannot depend upon arbitrary 

functions.) Therefore, it is never difficult to recognize when two given expressions 2ds  and 2d  

[or two given systems (A) and (B)] are homologous or to determine the transformations of passage 

in the case where the group of transformations of 
2ds  into itself is discontinuous, and especially 

when it reduces to the identity transformation. However, in the case where that group is continuous, 

the transformations of passage depend upon differential equations. From Lie’s theories, the whole 

problem comes down to determining the transformations of 
2ds  [or (A)] into itself, and that study 

will come down to the integration of a complete linear system. 

 Finally, observe that if (A) and (B) are homologous then the same thing will be true a fortiori 

for 
2ds  and 

2d , but the converse is obviously not true. In particular, a transformation qi = i of 
2ds  into itself will preserve (A) only if one has: 

 

1( , , )
j

j k

i i

Q
r


 




   Qi (r1, …, rk) for i = 1, 2, …, k. 

 

 More generally, let (A) and (B) be two homologous systems: If 
2ds  and 

2d  admit several 

transformations of passage then those transformations qi = i will be of two types according to 

whether they do or do not satisfy the conditions: 

 

Ri  Q1 (1, 2, …, k)
1

ir




+ … + Qk (1, 2, …, k)

k

ir




  (i = 1, 2, …, k) . 

 

 (1) If the two ds2 that one compares include the same letters, such as ds2 and 
2

1
ds , then 

2

1
ds  will be called 

homologous to ds2 if it coincides with one of the homologues to ds2, such as d2, in which one has set ri = qi (i = 1, 2, 

…, k). Similarly, (A) and (A1) will be called homologous if (A) coincides with one of the systems (B) when one sets ri 

= qi and t = t1 . 
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Only the former ones transform (A) into (B). 

 

 

 3. – Having said that, we look for all of the systems (B1): 

 

(B1)   1 1

1 i i

d

dt r r

   
− 

  
 = 1 1( , , , )i kR r r r  , idr

dt
 = ir   (i = 1, 2, …, k) , 

in which: 

2  
1 2( , , , )ij k i jB r r r r r     

2

1

2

1

d

dt


, 

 

such that the trajectories of (B1) are deduced from those of (A) by a change of variables (1), qi = 

i . The inverse change of variables (2) transforms (B1) into one (A1) that corresponds to (A), so 

the systems (B1) in question will be composed of homologues of (A) and homologues of all of its 

correspondents. The only difficulty then consists of determining the correspondents (A1) and (A). 

 Among those systems (B1), it is remarkable that there are two of them for which 2

1ds  will agree 

with 
2ds  when one sets qi = ri  (i = 1, 2, …, k). If such a system (B1) does exist then the motion 

defined by (A) will enjoy an important property: One can replace the forces Qi in (A) with some 

other forces, namely, with forces 1 1( , , , )i kR r r r  such that new trajectories are deduced from the 

former ones by changing the qi into i (q1, …, qk). In the particular case where the Qi and the iR  

are identical [i.e., where (A) and (B1) coincide when one sets qi = ri , t = t1], the transformation qi 

= i will transform the set of trajectories of (A) into itself.  On the other hand, it is clear that the 

inverse transformation (2) will make (B1) become a correspondent (A1) to (A) whose 2

1ds  is 

homologous to 
2ds . With that, we pose the following two problems: 

 

 I. Determine the substitutions (1) qi = i that transform the set of trajectories of A into itself. 

 

 II. Determine the systems of forces 1 1( , , , )i kR q q q  such that when one substitutes them for 

Qi in (A), the new trajectories will be deduced from the former ones by changing the qi into i (q1, 

…, qk). 

 

 In order to solve the first problem, one must calculate all of the correspondents (A1) to (A) that 

are, at the same time, its homologues. The desired transformations are composed of all 

transformation that take (A) to each system (A1). In particular, they include the transformation of 

(A) into itself. 

 In order to solve the second problem, one must calculate all of the correspondents (A1) to (A) 

for which the 2

1ds  is homologous to 
2ds . All of the transformations of passage that exist between 

2ds  and each 2

1ds , namely, qi = i, define the desired systems of forces iR   , namely: 
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iR   = Q1 (1, 2, …, k)
1

ir




+ … + Qk (1, 2, …, k)

k

ir




  (i = 1, 2, …, k) . 

 

 In particular, they include the transformations of 2ds  into itself. 

 

 

 4. – The foregoing will suffice to show the interest that is attached to the study of 

corresponding systems. The present treatise is devoted to proving some general properties of those 

systems. In another work, I will develop the main applications of those properties, and especially 

the solutions to problems I and II in the case of two or three parameters. 

 If one agrees to represent a system (A) by the symbol 
2

2
, i

ds
Q

dt

 
 
 

, or rather 
2

2
,

ds
U

dt

 
 
 

, when the 

Qi are derived from a potential U, then the main results that I have obtained can be summarized as 

follows: 

 In the first place, an arbitrary system 
2

2
, i

ds
Q

dt

 
 
 

 will always admit an infinitude of 

correspondents, namely, the systems 
2

2

1

, i

ds
C cQ

dt

 
 
 

, where C and c are two constants. One can 

pass from the system (A) to one of its correspondents (A1) by the transformation: 1dt

dt
 = 

C

c
 (1). 

When all of the forces Qi are zero, one passes from (A) to (A1) by setting dt1 / dt = c, where c 

denotes an arbitrary constant. In what follows, I will often say that 
2ds  and 

2C ds  are two similar 

2ds , and likewise that the systems of forces Qi and c Qi are two similar systems of forces, or rather 

that 
2ds  and 

2C ds  (and likewise the systems Qi and C Qi) are not distinct. 

 An arbitrary system (A) does not admit other correspondents, in general. If it does admit one, 

say 
2

1

2

1

, i

ds
Q

dt

 
 

 
, then it will admit an infinitude of them, namely 

2

1

2

1

, i

ds
C cQ

dt

 
 

 
. We say that those 

correspondents are not distinct from the former. 

 In the second place, assume that the Qi are derived from a potential. As Darboux pointed out, 

the system 
2

2
, i

ds
Q

dt

 
 
 

 will admit an infinitude of correspondents 
2

1

2

1

( ) , ,
ds U

U
dt U

 
 

 

 +
+ 

+ 
 in 

which , , ,  are constants that are subject to the single condition that  –   0. The 

correspondence between (A) and one such system (A1) enjoys a remarkable property: Group the 

trajectories of (A) into a natural congruence, by which I mean a congruence that satisfies the 

condition that T – U = h, where h is a well-defined constant, and compare the natural congruences 

of (A) and (A1). One will find that any natural congruence of (A) will coincide with a natural 

 
 (1) These are well-known properties that were pointed out a long time ago by Bertrand in his work on similitude 

in mechanics and from which Appell inferred an interpretation of imaginary time by setting C / c = − 1. 
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congruence of (A1), for which the values of h and h1 will correspond to each other by the relation 

h = 1

1

h

h

 

 

+

+
. That property is characteristic of the Darboux transformation. One passes from (A) 

to (A1) by the transformation: 

 
2

1( )dt  −  = 2 2 2( ) [ ( )]U ds dt U    + − +  . 

 

 The systems (A1) coincide with the ones that I have indicated to begin with for  = 0. An 

arbitrary system 
2

2
,

ds
U

dt

 
 
 

 does not admit other correspondents, in general. We shall give the 

name of ordinary correspondents to (A) to all of those systems (A1). 

 

 

 5. – I have now arrived at the systems (A) that possess correspondents that are distinct from 

those ordinary correspondents. Here, we agree to study the case in which there are forces and the 

case where all of the Qi are zero separately. 

 

 FIRST CASE. – All of the coefficient Qi are zero in (A). The same thing will necessarily be 

true for any corresponding system (A1) then. One finds that one then comes down to the study of 

pairs of corresponding 
2ds when one calls two 

2ds  correspondents when their geodesics coincide. 

For k = 2, that is Dini’s problem, and the theorem that was proved by that geometer proves to be a 

special case of the following one: 

 

 Let 
2ds and 2

1ds  be two corresponding 
2ds (i.e., non-similar ones), and let  and 1 be their 

discriminants (relative to the dqi). The expression: 

 
2

21
1

2

1

k ds

ds

+ 
 

 
 

 

is a first integral of the geodesics. The expressions: 

 
2

21
1

2

1

k ds

dt

+ 
 

 
,  

2
21

2

1 1

k ds

dt

+ 
 

 
 

 

are then the quadratic integrals of the two systems: 

 
2

2
, 0i

ds
Q

dt

 
= 

 
  and  

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 , 
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respectively. Moreover, one passes from one system to the other by the transformation: 

 

(1)  
1

1 k

dt

+

 = 1

1

1
1

k

dt
C

+

, 

 

in which C denotes an arbitrarily-chosen number (or even, if one prefers, an arbitrary first integral 

of the geodesics). A 2ds  cannot admit the (non-similar) correspondent 2

1ds  without the system 

2

2
, 0i

ds
Q

dt

 
= 

 
 admitting at least one quadratic integral that is distinct from that of vis viva (1). 

 The study of the particular case in which the forces are zero implies some important 

consequences for the general case, notably, these: IF 
2ds  AND 2

1ds  ARE CORRESPONDENTS 

THEN: 

 

 1. For any system of forces Qi , one can find forces iQ  such that the two systems 
2

2
, i

ds
Q

dt

 
 
 

 

and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 are correspondents, and one can then pass from one system to the other by a 

transformation of the form (1), in which C is a well-defined number. 

 

 2. Two arbitrary correspondents 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 are included in the preceding 

ones, i.e., one can pass from one to the other by a transformation (1). 

 

 I. If one can pass from one system 
2

2
, i

ds
Q

dt

 
 
 

 to a system 
2

1

2

1

, i

ds
Q

dt

 
 

 
  for which the Qi are 

GIVEN by a change of variables such that: 

 

 

 (1) That integral will agree with that of vis viva only when 
2

1
ds   C ds2 . Moreover, it can happen that ds2 admits 

a correspondent and that the system 
2

2
, 0i

ds
Q

dt

 
= 

 

 possesses only one quadratic integral besides the vis viva integral, 

as is shown by the example of the pair of correspondents: 

 

ds2  
2 2 2

1 2 1 2 3
, )( )( q dq dq dqq + +  

and 

2

1
ds  = 

2 2 2

1 2 1 2 3
, )( )( q dq dq cdqq + + , 

in which c is an arbitrary number. 
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1dt

dt
 =  (q1, q2, …, qk) 

 

then 2ds  and 2

1ds  will be correspondents, and the preceding results will apply. 

 

 II. If two systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 correspond for TWO distinct systems of 

associated forces, say, Qi  and  iQ , on the one hand, and (Qi) and ( )iQ  , on the other, then ds2 and 

2

1ds  will also correspond, and as a result, the system 
2

2
, i

ds
Q

dt

 
 
 

 will admit correspondents of the 

form 
2

1

2

1

, i

ds
Q

dt

 
 

 
 FOR ANY Qi . 

 

 However, the last proposition supposes that k > 2. For k = 2, one knows only that the number 

 of (distinct) associated systems of forces Qi , iQ  cannot exceed 3 (ds2 and 2

1ds  being given) 

without the geodesics of ds2 and 2

1ds  coinciding (so  will then be infinite). If n = 3 then ds2 will 

be the ds2 of a surface of constant curvature (and similarly for 2

1ds ). 

 

 SECOND CASE. – The forces Qi of (A) are not all zero. One proves that one can pass from 

the system (A) to a corresponding system (A1) by a well-defined change of variables of the form: 

 
2

1

2

dt

dt
 = 

2
2

1 2 2
( , , , )k

d
q q q V

dt




 
− 

 
 = 

2 ( – V) , 

 

if the equality  – V = const. is verified for any motion of (A), which demands that  – V is either a 

quadratic integral of (A) or an absolute constant. One will then be led to distinguish several 

possible hypotheses: 

 

 I. ( – V) reduces to an absolute constant: dt1 / dt = . That is the case that was treated before 

in which ds2 and 2

1ds  are CORRESPONDENTS. The system 
2

2
, 0i

ds
Q

dt

 
= 

 
 will admit a quadratic 

integral. 

 

 II. There exists a force function U, and  – V coincides with T – (U + a) . The two systems 
2

2

1
( ) ,

ds
U a

dt U a

 
+  + 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
, the first of which is an ordinary correspondent of (A), are, 
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at the same time, correspondents to (U + a) ds2 and 2

1ds . It will then enjoy the properties that were 

indicated above: The system: 
2

2
( ) , 0i

ds
U a Q

dt

 
+ =  

 

 

admits a quadratic integral. As for the system: 

 
2

1

2

1

, i

ds
Q

dt

 
 

 
 , 

 

it will admit a quadratic integral not only when one annuls the iQ , but for the given iQ . 

 

 III. (General hypothesis). – The equality  – V = const. defines an integral of (A) that is distinct 

from that of vis viva. The systems (A) and (A1) then admit a quadratic integral. It is convenient to 

point out two particular cases under that hypothesis: The case in which U1 exists and the geodesics 

of ds2 coincide with natural congruence T1 – U1 = a1 of (A1) [this is the hypothesis II when one 

permutes (A) and (A1)], and the case in which U and U1 exist and the two natural congruences T 

– U = a and T1 – U1 = a1 of (A) and (A1), resp., coincide. In one case and the other, the Darboux 

transformation will permit one to return to the hypothesis I in which the geodesics of ds2 and 2

1ds  

coincide, and as a result, to apply the conclusions that were stated in regard to the first case. 

 

 

 6. – The properties that I just enumerated are necessary, but not sufficient, conditions for a 

system (A) to admit ordinary correspondents: They are sufficient for only k = 2. However, those 

properties permit one to effortlessly form sufficient conditions upon singularly simplifying them, 

and among those conditions, they represent the most important ones, since they are the ones that 

exhibit the essential character of the systems (A) under study. Among the consequences that they 

imply, I shall cite these: 

 Let 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 be two non-ordinary corresponding systems: 

 

 1. One never has 2

1ds  =  (q1, …, qk) ds2 . 

 

 2. If Qi and iQ  are derived from potentials U and U1, resp., then there will not generally exist 

a natural congruence T – U = a for (A) that coincides with a natural congruence T1 – U1 = a for 

(A1), and there will NEVER exist more than one. 

 

[Among the natural congruences, we include the congruence of geodesics that correspond to a (or 

a1) = .] 
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 However, here is another consequence that is even more important: 

 

 The search for correspondents (A1) to a given system (A), and in particular the search for 

groups of transformations for the trajectories of (A), never imply the integration of complete linear 

systems. 

 

 Finally, any integral of (A) that is algebraic and entire (or rational) in 1q , …, kq  corresponds 

to an analogous integral of the same degree of (A1) (
1). 

 

 That applies to the linear integrals, in particular: Therefore, from a theorem of Lie, it will result 

that two corresponding ds2 will possess the same number of infinitesimal transformations into 

themselves. That remark and the theorems that were established above on the correspondences that 

preserve geodesics immediately imply all of the propositions that were known already in regard to 

the correspondence between planar motions and motions on a surface of constant curvature, and 

analogous propositions are thus found to be established for an arbitrary number of parameters. 

 

 

 7. – We now return to the problems that I posed at the beginning of this introduction: 

 

 First of all, the necessary and sufficient conditions for the motion that is defined by (A) to be 

defined by another system (A1) are obviously the following ones: 

 

 1. (A) and (A1) must be correspondents at the same time as ds2 and 2

1ds . 

 2.  and 1 must be identical (up to a constant factor). 

 

 As for the systems B1 (see pp. 4) whose trajectories are deduced from those of (A) by a 

transformation qi = i (r1, r2, …, rk), their properties result immediately from the properties of the 

system (A1). I shall confine myself to explicitly pointing out this now-obvious theorem: 

 

 In every case, one can pass from (A) to (B1) by a change of variables: 

 

qi = i (r1, r2, …, rk),  1dt

dt
 =  (q1, q2, …, qk) [ – V] (i = 1, 2, …, k) , 

 

in which the expression  – V defines a quadratic integral of (A) unless it reduces to a constant. 

 

In the last case, the substitution qi = i will transform the two geodesic congruences into each 

other. Conversely, if the geodesics of (A) and (B1) correspond under the transformation qi = i 

then one will have: 

 
 (1) This theorem is hardly obvious but results from the particular form of the relation that exist between dt and dt1.  
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1dt

dt
 =  (q1, q2, …, qk) , 

 

and there will exist systems (B1) whose vis viva is 2 2

1 1/d dt  FOR ANY Qi in (A). 

 

 In particular, if one knows a transformation qi = i of the geodesics of ds2 into themselves then 

for any system of forces Qi of (A), one can calculate the forces iR   such that the trajectories of the 

system 
2

2

1

, i

ds
R

dt

 
 

 
 reduce to the trajectories of (A) by changing qi into i (q1, q2, …, qk) . For 

example, take the most general homographic transformation that preserves the geodesics of ds2  
2 2 2

1 2 3dq dq dq+ + . For any system of forces Qi, one can associate forces iR   such that the trajectories 

of 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

2

1

, i

ds
R

dt

 
 

 
 can be deduced from each other by a given homographic 

transformation. One will recover Appell’s well-known results upon applying the general 

correspondence formulas that were established in this article to that particular case. 

 Finally, I shall say a few words about a problem that is quite analogous to the search for 

correspondents and is concerned with the systems (A) for which the forces are derived from a 

potential U. One knows that each natural congruence of trajectories T – U = a coincides with the 

geodesics of (U + a) ds2. One can investigate whether 2ds   (U + a) ds2 admits a (non-similar) 

correspondent ds2 for any a, namely, 2

1ds . It is clear that this investigation will revert completely 

to the study of pairs of corresponding ds2. However, what analogy might exist between the 2

1ds  

and the correspondents (A1) and (A)? First of all, one effortlessly sees that if 
2ds  possesses a 

correspondent 2

1ds  (for any a) then the system (A) will always possess an infinitude of distinct 

correspondents that depend upon an arbitrary constant: Moreover, the converse is not true. 

However, the precise question that is of interest to us is the following one: Can one of the systems 
2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 (where 2

1ds  depends upon a) be attached to a certain system 
2

1
12

1

,
ds

U
dt

 
 
 

 that is 

independent of a in the same way that [
2ds , Qi = 0] is attached to (A)? That amounts to demanding 

to know whether (A) can admit non-ordinary correspondents 
2

1
12

1

,
ds

U
dt

 
 
 

 such that any natural 

congruence of (A) will be a natural congruence of (A1). We have said that this is never true. The 

search for corresponding systems to (A) and that of the ds2 that correspond to (U + a) ds2 always 

constitute two distinct problems then. 

 

 

 8. – I shall conclude this introduction with a brief historical overview of the prior research. It 

was the work of Appell on homographies in mechanics that led me to study the general questions 

that are treated in this article. In two publications in the American Journal (1889-1890), Appell 
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showed that any planar motion (or in ordinary space) can be made to correspond to another planar 

(or spatial) motion that is produced by some other forces (those forces always being independent 

of velocity) with the aid of an arbitrary homographic transformation, and he gave some remarkable 

applications of that principle to the theory of central forces. At the end of the first paper, Appell, 

following Goursat, posed the more general problem: If one is given two ds2, namely, ds2 and 2

1ds , 

then for every system of forces Qi , do there exist forces iR   such that one can pass from the system  

2

2
, i

ds
Q

dt

 
 
 

 to the system 
2

1

2

1

, i

ds
R

dt

 
 

 
 by changing the qi into i (q1, q2, …, qk) and dt into  (q1, q2, 

…, qk) ? He indicated, in that regard, that the following proposition seemed reasonable (which he 

proved in the case of homography): If the substitution qi = i , dt1 =  dt transforms the system 
2

2
, i

ds
Q

dt

 
 
 

 into a system
2

1

2

1

, i

ds
R

dt

 
 

 
 for arbitrary forces Qi (ds2 and 2

1ds  being given) then it will 

make the geodesics of ds2 correspond to those of 2

1ds . That proposition, which was verified by 

Dautheville for k = 2, was proved, along with its converse, by Appell himself in a note in the 

Bulletin de la Société mathématique (15 March 1892). In a note that appeared almost 

simultaneously in the Comptes rendus de l‘Académie des Sciences (12 April 1892) (1), I have 

summarized the main results that were contained in that paper, which are results that refer to the 

preceding proposition, in particular, but completed them, as one saw above (no. 5, pp. 6-8). One 

of the most important complements consists of the fact that if the two geodesic congruences of ds2 

and 2

1ds  are transformed into each other by a change of variables qi then one can always pass 

from the system 
2

2
, 0i

ds
Q

dt

 
= 

 
 to the system 

2

1

2

1

, 0i

ds
R

dt

 
 = 

 
 by changing the qi into i (q1, q2, …, 

qk)  and dt into  dt1 . For example, from that, it will suffice to know that any surface of constant 

curvature can be represented geodesically on the plane in order for one to be assured that any 

planar motion [where the forces Q1 (q1, q2), Q2 (q1, q2) are arbitrary] can be made to correspond to 

a motion on a surface of constant curvature. 

 The question that I have posed naturally led me to generalize Dini’s problem, which coincides 

with the search for correspondents in the particular case where k = 2 and the forces are zero. 

Liouville had previously published two notes on that problem: In the first one (Comptes rendus, 6 

April 1891), he determined all ds2 with two or three parameters such that the motion that is defined 

by the system 
2

2
, 0i

ds
Q

dt

 
= 

 
 could also be defined by another system 

2

1

2
, 0i

ds
Q

dt

 
 = 

 
 and that, 

moreover, the discriminants  and 1 of ds2 and 2

1ds , resp., would be identical (2). In the second 

one (Comptes rendus, 16 December 1891), which was devoted to quadratic integrals, Liouville 

 
 (1) See also the Comptes rendus of 16 May, 13 June, 10 October, 7 November, 21 November 1892 and 2 January 

1893. 

 (2) From the foregoing, this second condition is pointless, since it is always a consequence of the first one (no. 7, 

pp. 10). The ds2 that Liouville calculated are therefore the only ds2 with three parameters such that the motion along 

their geodesics coincides with another analogous motion. 
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observed that if, for k = 2, the cases in which the system 
2

2
, 0i

ds
Q

dt

 
= 

 
 admits a quadratic integral 

are also the ones for which Dini’s problem has solutions then for k > 2, the same thing will no 

longer be true, and he announced some later work on the question. After my publication on 11 

April 1892, that author made known (loc. cit., 25 April 1892) (1) the results that he had obtained 

by a very different method from my own. That method, which is based upon the sufficient 

conditions for two ds2 to be corresponding, exhibits the very remarkable fact that a ds2 cannot 

possess one correspondent without possessing an infinitude of them of the form: 

 

2

1ds   
1 2 2 2 2 2

1 2 1

2

k k

k kC d C d C d d   



− −

− −+ + + +
, 

 

in which C is an arbitrary constant that depends upon . It results from this that there will exist (k 

– 1) quadratic integrals (in addition to the vis viva integral) for the system 
2

2
, 0i

ds
Q

dt

 
= 

 
. 

Nonetheless, it remains to be seen whether those integrals are distinct. An example that was cited 

above (see the note on page 7) shows that they can reduce to just one. 

 Liouville’s method obviously applies to the study of the case in which 
2ds   (U + h) ds2 admits 

correspondents for any h. However, as I have said, that study is always distinct from the study of 

the correspondents of 
2

2
,

ds
U

dt

 
 
 

, and one cannot deduce any property of the latter systems from it. 

Therefore, Liouville’s work and my own meet up only in the case where all of the forces are zero. 

It would nonetheless be legitimate to appeal to Liouville’s results that concern the corresponding 

ds2 in order to study the case in which the systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 correspond with 

preservation of the geodesics, as well as the case that reduces to it under the Darboux 

transformation. However, even when I was treating those particular cases, I exclusively appealed 

to the method that I presented at the time of my first communication in that work and the 

applications that followed it. 

 Before passing on to the proof of the theorems that were enumerated above, I shall immediately 

indicate a notation that has been useful for me: I must frequently take the derivatives of the same 

variables q1, q2, …, qk with respect to the two different variables t and t1, or with respect to one of 

them, say, q1. I shall invariably represent the derivative dqi / dt by iq , the derivative dqi / dt1 by 

( )iq , and the derivative dqi / dq1 by 
( )iq ; from that, 

(1)q  will be equal to unity. 

 

__________ 

 

 

 
 (1) See also the Comptes rendus on 23 May, 12 September, 31 October and 14 November 1892. 
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CHAPTER I 

 

General properties of trajectory equations. 

______ 

 

 

I. -  NUMBER OF CONSTANTS UPON WHICH THE TRAJECTORIES DEPEND. 

 

 1. – I shall first establish some very simple properties of the differential equations that the 

trajectories depend upon. 

 A system of Lagrange equations: 

 

(A)   
i i

d T T

dt q q

  
− 

  
 = Qi (q1, q2, …, qk) ,  idq

dt
 = iq  (i = 1, 2, …, k) , 

 

in which: 

2T  
1 1( , , , )ij k i jA q q q q q    

2

2

ds

dt
  (Aij  Aji) 

 

defines (2k – 1) of the variables q1, q2, …, qk, 1q , 2q , …, kq  as functions of one of them and (2k 

– 1) arbitrary constants. For example, those constants permit one to give arbitrary values to q1, q2, 

…, qk, 1q , 2q , …, kq  for q1 = 0

1q . The functions q2, q3, …, qk of q1 that are defined by (A) then 

satisfy a differential system whose order n can neither exceed 2k – 1 nor, on the other hand, become 

less than 2k – 2, because the functions q2, q3, …, qk, 
2

1

dq

dq
 = 2

1

q

q




, …, 

1

kdq

dq
 = 

1

kq

q




 can take on arbitrary 

values for 0

1q  (1). 

 There exist systems (A) for which n effectively reduces to 2k – 2: They are the ones in which 

all of the coefficients Qi are zero. The trajectories of (A) are then the geodesics of ds2 of T, and 

those geodesics will depend upon (2k – 2) arbitrary constants. Moreover, it is easy to form the 

differential equations of the geodesics in this case. Indeed, suppose that the system (A) is solved 

for the iq  , which is always possible since the discriminant  of T is non-zero. We obtain the five 

equations: 
2

2

id q

dt
 = Pi (q1, q2, …, qk, 1q , 2q , …, )kq  (i = 1, 2, …, k), 

 

in which Pi is a quadratic form with respect to the iq . Upon supposing that the differentials are 

taken with respect to an auxiliary variable  = g (t), those equations can be further written: 

 
 (1) It is well-known that it follows from this that (A) cannot admit a first integral of the form  (q1, q2, …, qk) = 

const. It is nonetheless implicit that the discriminant  of T is not identically zero. 
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2

2 2

i t i t
d q dq d   +  = Pi (q1, q2, …, qk, 1q , 2q , …, 2)k tq    = 2

i t , 

 

so, upon eliminating 2

1
t

t

d 




 from those two relations: 

 

(1)     2 2

i j i jd q dq dq d q−  = i dqj – j dqi . 

 

If one sets  = q1 , for example, then one will have (k – 1) second-order equation to solve for 
2

2

2

1

,
d q

dq

, …, 
2

2

1

kd q

dq
. Moreover, those equations are given explicitly by the least-action principle.  

 

 

 2. – I would now like to show that, when that case is overlooked, the trajectories will depend 

upon (2k – 1) arbitrary constants (1). Indeed, one infers from equations (A), as above, that: 

 
2

2

id q

dt
 = 1 2 1 2( , , , , , , , ) i

i k kP q q q q q q


   +


 . 

 

i denotes what  will become when one replaces the terms in the ith column with Q1, Q2, …, Qk , 

and as a result: 

2

2 2

i t i t
d q dq d   +  = 2

2i
i t

d


  +


 = 
2 2i

t i dt



 

  +  
 , 

so finally: 

(2)    

2 22

2 1 1 2 2 1 1 2

2 1 1 2

2 2

( )

( )
.

j i i j j i j i

j i j i

d q dq d q dq dq dqdt

dq dq

d q dq d q dq dq dq

dq dq

 

 

 − −  − 
=

 −


− −  −  =
 −

 

 

If one takes q1 to be the independent variable, in particular, then one will have: 

 

(3)  
2

12

1 1

i i
i

d q dq

dq dq

 
+  −  

 
 = 1

2

1 1

1i idq

dq dq

dt

  
− 

    
 
 

, 

in which: 

 
 (1) This supposes that k > 1. For k = 1, one can no longer speak of relations between the qi .  
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i  2
1 2

1 1

, , , ,1, , , k
i k

dqdq
P q q q

dq dq

 
 
 

 . 

 

 From the equality (3), q2, q3, …, qk, and 2

1

dq

dq
, …, 

1

kdq

dq
 have received arbitrary values for q1 = 

0

1q , so one can once more choose 0

1q  in such a fashion as to give 
2

2

1

id q

dq
 an arbitrary value, at least 

as long as the binomial i − 2
1

1

dq

dq
  is not zero. In order for the functions q2, …, qk of q1 to depend 

upon only 2k – 2 constants, it is only necessary that the conditions: 

 

(4)      1

1q




 = 2

2q




 = … = k

kq




 

 

should be verified identically. The i do not contain the velocities, which can be true only if all of 

the i , and as a result, all of the Qi, are zero (1). 

 

 

 3. – In the case where the Qi are not all zero, here is how one can define the differential 

equations of the trajectories. Let 1  0. One first writes down the (2k – 2) equations: 

 

(5)     

2

2 2
1 22

1 1

2
2 1

1

d q dq

dq dq

dq

dq
 

+  − 

−

 = 

2

12

1 1

1

1

i i
i

i
i

d q dq

dq dq

dq

dq
 

+  − 

−

  (i = 3, …, k) . 

On the other hand, if one sets: 

 

   i  
2

12

1 1

i i
i

d q dq

dq dq
+  −  , i  1

1

1 i
i

dq

dq
 

 
− 

  
  (i = 2, 3, …, k) 

 

then one can infer from the equality: 

2

1dq

dt

 
 
 

 = 

2
2 1

1

2

2 2
1 22

1 1

dq

dq

d q dq

dq dq

 −

 
+  −  

 

 = 2

2




 

that: 

 
 (1) When the forces Qi depend upon velocities, it will suffice (in order that  = 2k – 2) that the i should satisfy 

the conditions (4). 
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2

1

2
2

d q

dt
 = 2

1 2

d

dq




 , 

 

and upon replacing 
2

1

2

d q

dt
 with its value 

2

1 1
1

dq

dt

 
 + 

 
  2 1

1

2

 


 +


, one will get: 

 

(6)     2

1

log
d

dq
 + 2 1 = 1 2

2

1 2

log 2
d

dq

 



−


, 

 

which is an equation of the form: 

(6)      2 2

1 2

d M

dq
 


+  = 0 , 

 

in which M is a polynomial in the derivatives. 

 By definition, one then defines a system of the form: 

 

  
(2)q  = 

2 1 2 (2) (3) ( ) (2)( , , , , , , , , )k kf q q q q q q q    , 

  
( )iq  = 

1 2 (2) (3) ( ) (2)( , , , , , , , , )i k kf q q q q q q q      (i = 3, 4, …, k), 

upon setting: 

( )iq  = 
1

idq

dq
, 

( )iq  = 
2

2

1

id q

dq
, 

( )iq  = 
3

3

1

id q

dq
, 

 

which can be made more symmetric, but that is irrelevant to our purposes. 

 I immediately point out that the geodesics of 
2ds  belong to the trajectories, no matter what the 

forces Qi are. Indeed, the equations: 

 

2  
2

2 2
1 22

1 1

d q dq

dq dq
+  −   = 0 , …, k  

2

12

1 1

k k
k

d q dq

dq dq
+  −   = 0 , 

 

which define the geodesics, imply the relations (5), (6). The equality (3) shows us, moreover, that 

1q  is infinite at an arbitrary point of those trajectories: In other words, the geodesics form a (2k – 

2)-parameter congruence of trajectories, namely, the congruence that is obtained by imposing the 

condition that 11/ q  = 0 (or 1 / T0 = 0, if T0 denotes the initial semi-vis viva) on the initial constants. 

That condition will be realized all along the trajectory. Furthermore, that is a proposition that we 

will have to establish in a very different manner. 

 I must now insist upon some characteristic differences that separate the case in which the forces 

are zero from the general case. 
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II. – SYSTEMS IN WHICH ALL OF THE COEFFICIENTS Qi ARE ZERO. 

 

 4. – We have said that if all of the forces are zero then the trajectories will depend upon (2k – 

2) constants, and from the principle of least action, it can be defined by the system: 

 

()    
1 (2) 2

d f f

dq q q

  
−    

 = 0 , …, 
1 (2) 2

d f f

dq q q

  
−    

 = 0 , 

upon setting: 

(2)q  = 2

1

dq

dq
, …, 

( )kq  = 
1

kdq

dq
, 

and 

f = 1 2 (2) ( )( , , , ,1, , , )k kT q q q q q   . 

 

 Now assume that one has integrated those equations and that, as a result, one knows q2, q3, …, 

qk as a function of q1 and (2k – 2) arbitrary constants a1, a2, …, a2k−2 . How does one determine t ? 

From the vis viva theorem: 

dt = h dt = h  (f)  dq1 , 

 

in which h is a new constant, and (f) is the function of q1 that is obtained from f by replacing q2, 

q3, …, qk and 
(2)q , …, 

( )kq  as functions of q1 and the constants. It is legitimate to write: 

 

h = g (a1, a2, …, a2k−2, h0) , 

and since, on the one hand: 

ai = 
1 2 (2) ( )[ , , , , , , ]i k kF q q q q q   

  = 0 0 0 0 0

1 2 (2) ( )[ , , , , , , ]i k kF q q q q q   

 

is a first integral of the geodesics, one will see that dt verifies the equation: 

 

()     dt = 
1 2 (2) ( ) 0 1[ , , , , , , , ]k kG q q q q q h f dq   , 

 

in which G represents an arbitrary first integral of the geodesics that depends upon an arbitrary 

parameter h0 . 

 Conversely, assume that a relation: 

 

()     dt = 
1 2 (2) ( ) 0 1[ , , , , , , , ]k kH q q q q q h dq   , 

 

are compatible with (). I intend that to mean that the function t (q1) that is defined by () when 

one replaces the qi and 
( )iq  in H as functions of q1 verifies the equations of motion. One must have 

(from that substitution): 
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H = h f , 

 

in which h is constant for the same geodesic (and that will be true for any geodesic one considers). 

Hence, H / f is a first integral of the geodesic. 

 If one is given a system (A) without forces Qi then one will see that the system (A) will not be 

altered when one replaces dt with G dt, where G is either a constant or an arbitrary first integral of 

the geodesic. 

 

 

 5. – From a remark by Darboux, the systems (A) in which the forces are derived from a 

potential U reduce to systems (A) without forces. That results from the principle of least action: 

The equations: 

(a)    
1 ( ) ( )i i

d f f

dq q q

  
−    

 = 0 , 
1

idq

dq
 = 

( )iq  (i = 2, 3, …, k) , 

in which: 

f = 1 2 (2) ( )( ) ( , , , ,1, , , )k kU h T q q q q q + , 

 

define both the geodesics of 2

1ds  = 
2( )U h ds+  and the trajectories of (A) that correspond to the 

value h of the vis viva constant. However, one must indeed observe that the motion along the 

trajectories that are defined by (A): 

 

(A)    
i i

d T T

dt q q

  
− 

  
 = 

i

U

q




, idq

dt
 = 

( )iq  (i = 1, 2, …, k) 

 

differs from the motion that is defined by (A1): 

 

(A1)   1 1

( )i i

T Td

dt q q

  
− 

  
 = 0 ,  idq

dt
 = ( )iq  (i = 1, 2, …, k) , 

in which: 

T1  
2

2

1

( )
ds

U h
dt

+  = 
2

1

2

1

ds

dt
. 

 Indeed, from (A), one has: 

2dt  = 
2ds

U h+
, 

and from (A1): 
2

1dt  = 
2( )U h ds + , 
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in which  denotes a new arbitrary constant [or an arbitrary first integral of (a)]. One will then go 

from the first motion to the second one by changing 2dt  into 
2

1

2( )

dt

U h +
, where  is an arbitrary 

constant. 

 With that, introduce canonical variables into (A) and (A1): Let pi = 
i

T

q




 and ip  = 1

( )i

T

q




 = 

( )
( ) i

i

i

q
U h p

q


+


. Along each trajectory, one will have: 

pi = 
ip  , 

in which  is a constant. 

 Upon letting T   and 1T   denote what T and T1 will become when one replaces the iq  and ( )iq  

as functions of pi and ip , respectively, from (A) one will have: 

 

T   = U + h , 

and from (A1): 

1T   =  (U + h) . 

 

 Any first integral of (A1), which one can always suppose to be homogeneous in 1p , …, ip , 

namely: 

1 1 2 1 2( , , , , , , , , , )k kF q q q p p p h    = C , 

 

corresponds to an integral of (A): 

 

F1 (q1, q1, …, qk, p1, p1, …, pk, h) = F1 [q1, q1, …, qk, p1, p1, …, pk, ( )]T U −  = C . 

 

Conversely, any first integral of (A): 

 

F (q1, q1, …, qk, p1, p1, …, pk) = C 

 

can be made homogeneous by the substitution of 
i

U h
p

T

+


 for pi, and the expression F1 (q1, q1, 

…, qk, p1, p1, …, pk, h) that one will obtain, in which one replaces the pi with ip , will be a first 

integral of (A1). 

 In particular, when (A) admits an integral that is algebraic and entire with respect to the 

velocities, namely, Pm + Pm−2 + Pm−4 + … = C, the system (A1) will admit an analogous integral of 

the same degree, namely, Pm + 
2

2 42( )
m m

T T
P P

U h U h
− −

 
+ +

+ +
… = C, in which pi are replaced with 
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the ip  (1). Conversely, if (A1) admits an integral of that form for any h then (A) will admit an entire 

integral of degree m. However, one poses the question here: Does any entire algebraic integral of 

(A1) that exists for any h necessarily have that form? For example, when A1 admits a quadratic 

integral for any h, can that integral can always be written: 

 

P2 + 0

T
P

U h



+
 = C , 

 

in which P2 and P0 are independent of h ? The answer is affirmative, but it is hardly obvious that 

this must be true. I shall confine myself here to pointing out that proposition, which is 

indispensable for us, but not developing the proof, which is delicate. 

 Some analogous remarks apply to rational integrals. 

 

 

III. – SYSTEMS IN WHICH THE FORCES ARE NOT ZERO. 

 

 6. – When the coefficients Qi of a system (A) (in which k is much greater than 1) are non-zero, 

once the differential equations of the trajectories have been integrated, dt / dq1 will be given as a 

function of q1 by any one of the equalities (see pp. 15-16): 

 

(2)     
2

2

1

1 dt

dq
 = 

2

12

1 1

1

1

i i
i

i
i

d q dq

dq dq

dq

dq
 

+  − 

−

 = i

i




 , 

 

in which q2, q3, …, qk are expressed as functions of q1 and (2k – 1) arbitrary constants. 

 One might remark in passing that those equalities lead one to distinguish two classes  and  

of the real trajectories  of (A) according to whether the common sign of the expressions i / i 

(which is that of T) is positive or negative, resp., along one of those trajectories: The motion is real 

only along the former, while it is imaginary along the latter. 

 The trajectories will not be modified if one replaces the Qi in (A) with forces 
iQ   c Qi , and 

one passes from the first system to the second one by changing t into c t  + a, i.e., changing dt 

into c t dt, which is a transformation that is unique, from (2), at the moment when the forces Qi 

are non-zero. 

 
 (1) We remark that although this essentially supposes that one has introduced the canonical variables, if one keeps 

the variables qi and their differentials then a quadratic integral of (A), namely, 
2 2

d V dt −  = 
2

Cdt , will correspond 

to the integral of (A1): 

2 2 2

( )
( )

V
d ds

U h
U h 

 
− 

+ 
+  = 

2

1
C dt  . 
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 If c is positive then the real motions will remain real. If c is negative then the real trajectories 

 of the first system will become the trajectories  of the second, and vice versa. The particular 

transformations t = i t1 and t = − t1 give rise to some well-known remarks about the case in which 

one changes the sense of either all forces or all velocities without changing their direction or 

magnitude. 

 It is important to observe that the forces 
iQ  = c Qi are the only ones that will generate the 

same trajectories when they are substituted for the forces Qi in (A). Indeed, consider the differential 

equations of the trajectories: 

(5)      2

2




 = 3

3




 = … = k

k




, 

 

(6)     
1

d

dq
log 2 + 2 1 = 

1

d

dq
log 2 − 1 2

2

2 


, 

in which (1): 

i = 
2

12

1 1

i i
i

d q dq

dq dq
+  −  , i = 1

1

1 i
i

dq

dq
 

 
− 

  
. 

 

The (k – 2) equations (5) have the form: 

(5)     
2

2

1

id q

dq
 = 

22

2 1

2
21

2 1

1

i
i

i

dq

d q dq
L

dqdq

dq

 

 

−

 +

−

 (i = 3, 4, …, k) , 

 

in which Li contain only the first derivatives, and equation (6) can be written: 

 

(6)     
3

2

3

1

d q

dq
 = L2 = 2 1 2

1

log
d

L
dq

  +  , 

 

in which 2L  is defined with the aid of the coefficients of T and the ratios i / 1 . 

 Now suppose that one replaces the Qi with forces 
iQ : In order for the trajectories to remain 

the same, it is necessary that the left-hand sides of (5) and (6) should not be altered. One must 

then have: 

2

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

−

−

  

2

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

 −

 −

  (i = 3, 4, …, k), 

 
 (1) It is appropriate to observe that the ci are defined with the aid of only the coefficients of T without involving 

the Qi .  
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i.e.: 

1

1




  2

2




, …, = k

k




, 

and on the other hand [from (6)]: 

1

d

dq
log 1  1

1

log
d

dq
 , 

or rather: 

1q




log 1  1

1

log
q







, …, 
kq




log 1  1log

kq






, 

and as a result: 

1   = c 1 , 

 

in which c is a constant. One will then arrive at the conditions: 

 

1   = c 1 , 2   = c 2 , …, k   = c k , 

 

from which, one immediately deduces that: 

 

  1Q  = c Q1 , 2Q  = c Q2 , …, 
kQ  = c Qk .  Q. E. D. 

 

 More generally, the system (A1): 

 

(A1)   1 1

1 i i

T Td

dt q q

  
− 

  
 = 

iQ ,  idq

dt
 = iq  (i = 1, 2, …, k), 

in which: 

T = 
2

1

2

1

ds

dt
  

2

2

1

ds
C

dt
, 

iQ  = c Qi , 

 

defines the same trajectories as (A): From the preceding, those systems constitute the only 

correspondents to (A) for which 2

1ds  differs from 
2ds  only by a constant factor. 

 I add that one passes from (A) to (A1) by the transformation: 

 

dt = 
1

c
dt

C
. 

 

That transformation is determined completely, which is the opposite of what happens in the case 

where the forces are zero. As one knows, in the latter case, one has dt / dt1 = , where  denotes 

an arbitrary constant or an arbitrary first integral of the geodesics. 
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 7. – If one is given a system (A), in which T is a well-defined vis viva, then the trajectories that 

correspond to a system of arbitrary forces Qi (q1, q2, …, qk) include a common (2k – 2)-parameter 

congruence, namely, the geodesics of 2ds . Do there exist other (2k – 2)-parameter congruences 

that belong to the trajectories for any forces Qi ? It is easy to see that the answer is no in the 

following manner: Such a congruence must verify equations (5) and (6), no matter what the Qi are, 

and as a result, it must verify equation (7), which is obtained by subtracting the two equations (6) 

that relate to the forces Qi and 
iQ , respectively. If one observes that the i depend upon only T 

and only the i vary with the forces then one will see that equation (7) can be written: 

 

2 2 1 1

1 2 2 2

2
d

L
dq

   

  

 
− − 

   
 = 0 , 

 

when one suppresses the factor 2 = 0 that gives the geodesics, or rather: 

 

(7)  

2

2 2 2 2 2 2 2 2
1 22

2 21 1 1 1 1 1 1 1 1 1

1 1

2 2 2 2 1

1 1 1 1 1 1

1
3 2 2

.

d q dq dq dqd d

dq dq dq dq dq dq

dq dq d

dq dq dq

   

     

 

  

  

      
+  −  = − − −            − 


      + − −   

    

 

 

 If one now replaces the 
iQ  with some other forces 

iQ  then one will get a new equation (7), 

and upon subtracting the corresponding sides of those two equations, one will get a relation in 

which only the first derivatives appear, and which will not reduce to an identity when the Qi, iQ ,

iQ   are taken arbitrarily. On the other hand, the trajectories considered satisfy equations (5): 

Therefore, they can only depend upon at most (2k – 3) constants. 

 However, one can go further when the number k of parameters exceeds 2 and show that if one 

replaces the forces Qi in a system (A) with some other forces 
iQ  then there can exist no (2k – 2)-

parameter congruence of trajectories that is common to the first and second motion besides the 

geodesics. 

 Of course, that supposes that one does not have 
iQ  = c Qi (i = 1, 2, …, k), where c is a constant, 

since all of the trajectories would coincide then. 

 In order to prove that proposition, assume that there exists one such congruence and represent 

its defining equations by: 

 
2

2

1

id q

dq
 = 2

1 2

1 1

, , , , , , k
i k

dqdq
f q q q

dq dq

 
 
 

 (i = 2, 3, …, k). 

 

From (5), one must have: 
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2
2 1 2

1

2
2 1

1

dq
f

dq

dq

dq
 

+  − 

−

  

1

1

1

1

i
i i

i
i

dq
f

dq

dq

dq
 

+  − 

−

 (i = 2, 3, …, k), 

 

in which at least one of the numerators in those ratios (say, the first one 2) is not identically zero, 

because otherwise the congruence would be that of the geodesics. One infers from this that: 

 

1

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

−

−

  

1

1

2
2 1 2

1

i
i i

dq
f

dq

dq
f

dq

+  − 

+  − 

. 

One will similarly have: 

1

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

 −

 −

  

1

1

2
2 1 2

1

i
i i

dq
f

dq

dq
f

dq

+  − 

+  − 

, 

so 

  

1

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

 −

 −

  

1

1

2
2 1

1

i
i

dq

dq

dq

dq

 

 

−

−

 (i = 2, 3, …, k), 

which demands that: 

1

1




 = 2

2




 = … = k

k




. 

 

 On the other hand, if that were true then equation (6) could be written (for the forces Qi): 

 
3

2

3

1

d q

dq
 = 2 1 2

1

log
d

L
dq

  +  , 

and for the forces 
iQ : 

3

2

3

1

d q

dq
 = 2 1 2

1

log
d

L
dq

  +  , 

 

in which 2L  is the same in both cases because, from a previous remark, neither T nor the ratios 

1/i   will change. As a result (2 being non-zero), the equality: 
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1 1

1 1

log log
d d

dq dq
 −  = 0 , 

 

which does not involve the second derivatives, must be verified identically, i.e., one will have: 

 

1   = c 1 , 

 

in which c is a constant, which will imply that: 

 

i   = c i  and  
iQ  = c Qi  (i = 1, 2, …, k). 

 

 The theorem is thus proved. 

 

 One sees that the argument supposes essentially that k > 2. For k = 2, the theorem is no longer 

exact. For example, the two systems of Lagrange equations: 

 

(A)      

2

2

2

2

0,

,

d x

dt

d y
g

dt


=


 =


 

and 

(A)     

2
3/2

2

2

2

,

,

d x
k y

dt

d y
k

dt

−
=


 =


 

 

in which g, k, k  are constants that correspond to the same vis viva T = 2 21
2
( )x y +  and distinct 

forces Q1 = 0, Q2 = g on the one hand, and 1Q  = 
3/2k y−

, 2Q  = k , on the other, which do not 

satisfy the conditions that 1Q  = c Q1 , 2Q  = c Q2 . The trajectories of (A) and (A) nonetheless 

comprise a common two-parameter congruence, besides the geodesics, namely, the parabolas: 

 

y = (a x + b)2, 

 

in which a and b are two arbitrary constants. However, the preceding argument shows that there 

cannot exist more than one (2k – 2)  2-parameter congruence that is common to the two systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

2
, i

ds
Q

dt

 
 

 
 (besides the geodesics). 
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IV. – ORDINARY CORRESPONDENTS TO A SYSTEM (A). 

 

 8. – The preceding considerations will be of great use to us in our study of corresponding 

systems. Right now, we shall see that they exhibit certain correspondents that are attached to any 

system. If one is given an arbitrary system (A) then the system: 

 

(A1)   1 1

1 ( )i i

T Td

dt q q

  
− 

  
 = 

iQ  , 
1

idq

dt
 = ( )iq   (i = 1, 2, …, k), 

in which: 

T1 = 
2

2

1

ds
C

dt
 ,  

iQ  = c Qi , 

 

will define the same trajectories as (A). There exist no other correspondents where 2

1ds  differs 

from 
2ds  for T by only a constant. One passes from the first motion to the motion (A1) by the 

change of variables 
1

dt

dt
 = 

c

C
, which is completely determined. Nonetheless, in the case where 

the forces are zero, the most general transformation that allows one to pass from (A) to (A1) has 

the form 
1

dt

dt
 = , where  denotes, if desired, an arbitrary constant or an arbitrary first integral of 

the geodesics. 

 Since two correspondents to the same system correspond to each other, one sees that the 

existence of one arbitrary correspondent (A1) to (A) implies the existence of an infinitude of other 

correspondents, namely, the ones that one deduces from the first (A1) upon multiplying T1 and the 

iQ  by two constant factors C and c. 

 

 

 9. – In a later chapter, we will see that a system (A) that is taken at random will admit no other 

correspondents, in general. However, now suppose that the forces Qi are derived from a potential 

U. The trajectories of (A) for the value h of the vis viva constant coincide with the geodesics of 

2ds  = (U + h) 
2ds . With that, consider the system (A1), in which T1  ( U + ) 

2

2

1

ds

dt
 , and in 

which the 
iQ  are derived from the potential U   = 

U

U

 

 

+

+
 (with the condition that   –    0). 

The trajectories of (A1) for the value h1 of the vis viva constant coincide with the geodesics of: 

 
2

1ds  = [ U +  + h1 ( U + )] 
2ds . 

 

 The trajectories of (A) for a given value of h coincide with the trajectories of (A1) for which 

the constant h1 verifies the equality: 
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h = 1

1

h

h

 

 

+

+
 or h1 = 

h

h

 

 

−

−
. 

 

 The systems (A) and (A1) are then correspondents, and each natural family h = h0 of trajectories 

of (A) coincides with a natural family h1 = 0

1h  of (A1). On the other hand, one has: 

 

2ds  = (U + h) 2dt  = 1

1

h
U

h

 

 

 +
+ 

+ 
 

and 

( U + )
2ds  = 2

1 1

U
h dt

U

 

 

 +
+ 

+ 
 ,  

from which one infers that: 

 

(a)    ( – ) 2

1dt = ( U + )2 2 2[ ( ) ]ds U dt  − +  . 

 

 That transformation (a), which permits one to pass from (A) to (A1), is unique, moreover. 

Indeed, in (A) and in (A1), one can express 
2

2

2

1

d q

dq
 as a function of q1, q2, …, qk, 

2

1

dq

dq
, …, 

1

kdq

dq
,

,kdq

dt
and upon equating those two values of 

2

2

2

1

d q

dq
, one will get a well-defined relation between 

q1, q2, …, qk, dq1, dq2, …, dqk, dt and dt1 (
1). That unique relation must then coincide with the one 

that we just obtained, which is quite easy to verify when we do the calculation. 

 Those new correspondents (A1) coincide with the first ones for  = 0. 

 Since it is legitimate to add a constant to a force function, for   0, one can always suppose 

that U   of the form U   =  /  U. The equation (a) will then become: 

 

( )a     

2

1dt

dt

 
 
 

 = 
2 2

2

2

a ds
U U

dt

 
− 

 
 = 

2
2a

U h


, 

or rather: 
2

2

1

dt

dt
 = 

2

2 2

1

1 ds
U

U dt U




 

 
− 

 
 = 1

2

h

U
 . 

 

 Those equalities show that the expressions 11 dt

U dt

 
 
 

 and 
1

dt
U

dt
 are integrals of (A) and (A1), 

namely, the two vis viva integrals. 

 
 (1) We shall return to this point at the beginning of Chapter Three, moreover.  
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 Any first integral of (A) corresponds to a first integral of (A1) that is obtained by replacing dt 

as a function of dt1 using ( )a . An entire (or rational) algebraic integral corresponds to an 

analogous integral of the same degree. For example, an integral of degree two of (A), say: 

 
2 2d V dt −  = 

2k dt , 

will correspond to the integral of (A1): 

 
22

2 1

2 2

V dtV ds
d

U U





− +  = 

21

2

k h
dt

U
, 

i.e.: 
22

2 2 1

2 2

V dtV ds
U d

U U






 
− + 

 
 = 2

1 1k dt . 

 

 That transformation was pointed out by Darboux. It is clear that the correspondents (A1) that 

are deduced from (A) by that transformation coincide with the ones that one deduces from any of 

the transforms (A1). 

 A system (A) with a potential that is taken at random will not admit other correspondents, in 

general. That results from the general study of the corresponding systems (A), (A1), in which (A1) 

is not one of the ordinary correspondents 
2

2

1

, i

ds
C cQ

dt

 
 
 

 or 
2

2

1

( ) ,
ds U

U
dt U

 
 

 

 +
+ 

+ 
 of (A). 

 

___________ 

 

 

CHAPTER II. 

 

Corresponding systems in which all forces are zero. 

_______ 

 

 

I. – PROOF OF A GENERAL PROPERTY OF THOSE SYSTEMS. 

 

 1. – Let (A) and (A1) be two corresponding systems: If all of the forces Qi are zero in (A) then 

they will also be zero in (A1). Indeed, the trajectories of (A) depend upon only (2k – 2) parameters, 

so the same thing will be true for the trajectories of (A1), and from a theorem in Chapter One, all 

of the forces in (A1) must be zero. 

 We shall first study the correspondence between two systems (A) and (A1) without forces then. 

The fundamental theorem that we shall prove is the following one: 
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 If a system (A) is without forces, namely 
2

2
, 0i

ds
Q

dt

 
= 

 
, possesses a correspondent (A1) that is 

distinct from the ordinary correspondents 
2

2

1

, 0i

ds
C Q

dt

 
 = 

 
 then it will admit a quadratic integral 

(in addition to that of vis viva). 

 

 That can also be stated as: 

 

 If the geodesics of the two (non-similar) ds2 coincide then they will admit a rational integral 

of degree two. 

 

 Two such ds2 will be called correspondents. 

 If k is equal to 2 then that theorem will coincide with that of Dini. 

 

 

 2. – In order to prove that proposition, I will appeal to the following: 

 

 Let a system of equations be given: 

 

(1)     
i i

d f f

dq q q

  
− 

  
 = 0 ,  idq

dq
 = iq   (i = 1, 2, …, k), 

 

in which f is an arbitrary of q, q1, q2, …, qk, 1q , …, kq  subject to only the condition that the system 

(1) must be soluble for the 2 2/id q dq , in other words, that the Hessian d of f relative to the variable 

iq , namely: 

d = 

2 2 2

2

1 1 2 1

2 2 2

2

1 2 2 2

2 2

2

1

k

k

k k

f f f

q q q q q

f f f

q q q q q

f f

q q q

  

        

  

        

 

    

 , 

 

is not identically zero: That Hessian is a last multiplier of (2). 

 

 Indeed, reduce the system (1) to the canonical form with the aid of the change of variables: 
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pi = 
i

f

q




 (i = 1, 2, …, k), 

 

from which, one infers, inversely, that: 

iq  = 
i

f

p




, 

upon setting: 

f1 (q, q1, q2, …, qk , p1, p2, …, pk)  1 1 k kp q p q f + + − . 

 

 The new equations admit unity as a multiplier. In other words, if one knows (2k – 1) first 

integrals of the system (1), namely: 

 

(2)    j (q, q1, q2, …, qk , p1, p2, …, pk) = cj  [j = 1, 2, …, (2k – 1)], 

 

when one infers p1, p2, …, pk, q, q1, q2, …, qk−2 as functions of qk−1 and qk from those integral, for 

example, the expression: 

 

1 1
1

1

1
k k

k k

f f
dq dq

p p
−

−

  
− 

  
  1 1

1
( )k k k kq dq q dq


− −

 −  

 

is an exact total differential.  denotes the functional determinant 1 2 2 1

1 2 2 1 2

( , , , )
.

( , , , , , , , )

k

k k

D

D q q q p p p

   −

−

 

On the other hand, if one supposes that the integrals j are expressed with the aid of the iq  then 

one will have: 

 1 = 1 2 2 1

1 2 2 1 2

( , , , )

( , , , , , , , )

k

k k

D

D q q q q q q

   −

−
  

 

  1 2 2 1 1 2 2 1 2

1 2 2 1 2 1 2 2 1 2

( , , , ) ( , , , , , , , )

( , , , , , , , ) ( , , , , , , , )

k k k

k k k k

D D q q q p p p

D q q q p p p D q q q q q q

   − −

− −
  

 

  1 2

1 2

( , , , )

( , , , )

k

k

D p p p

D q q q  
    d . 

 

 Therefore, the expression: 

1 1( )k k k k

d
q dq q dq


− −

 −  

 

is an exact differential [if one takes into account the 2k – 1 relations (2)]. The Hessian d is a 

multiplier of (1). 

 In particular, if q does not enter into f then d will be multiplier of the system: 
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1

1

dq

q
 = 2

2

dq

q
 = … = k

k

dq

q
 = 1

1

f
d

q

f

q









 = … = k

k

f
d

q

f

q









. 

 Apply that lemma to a system (A) without forces: 

 

(A)     
i i

d T T

dt q q

 
−

 
 = 0 ,  idq

dt
 = iq   (i = 1, 2, …, k), 

 

upon taking q = t. One sees that the discriminant  of T is a multiplier of the system: 

 

1

1

dq

q
 = 2

2

dq

q
 = … = k

k

dq

q
 = 1

1

T
d

q

T

q









 = … = k

k

T
d

q

T

q









. 

 

 Now assume that one knows (2k – 3) first integral of the geodesics, i.e., (2k – 3) integrals of 

(A) that are homogeneous and of degree zero with respect to the iq , namely (upon setting 
(2)q  = 

2 1/q q   = 2 1/dq dq , …, 
( )kq  = 1/kq q   = 1/kdq dq ): 

 

(3)   
1 2 (2) (3) ( )[ , , , , , , , ]j k kq q q q q q     = cj  [j = 1, 2, …, (2k – 3)]. 

 

 One combines those integrals with that of vis viva: 

 

(4)     T  2

1 1 (2) ( )[ , , , , , ]k kq q q q q    = h . 

 

 If one infers q3, q4, …, qk, (2)q , …, 
( )kq  as functions of q1, q2 from (3) then the expression: 

 

(4)      1
2 (2) 1[ ]

q
dq q dq




−  , 

 

in which one replaces 1q  with its value that is inferred from (4) is an exact differential. Here, one 

has: 

 1  = 1 2 2 3

3 4 1 2

( , , , , )

( , , , , , , , )

k

k k

D T

D q q q q q q

   −

  
 

 

= 
2

3 4 1 (2) ( )1 1 2 2 3

3 4 1 (2) ( ) 3 4 1 2

[ , , , , , , , ]( , , , , )

[ , , , , , , , ] ( , , , , , , , )

k kk

k k k k

D q q q q q qD q

D q q q q q q D q q q q q q

    −
  

     
 . 
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 However, upon observing that 
( )iq  = 1/iq q  , one will find immediately that: 

 

3 4 1 (2) ( )

3 4 1 2

[ , , , , , , , ]

( , , , , , , , )

k k

k k

D q q q q q q

D q q q q q q

  

  
  

(2) (3) ( )

2 1

[ , , , ]

( , , , )

k

k

D q q q

D q q q

  

  
 = 

1

1

1
kq −

 . 

 

On the other hand, since , 1, 2, …, 2k−3 do not depend upon 1q , but only on 
( )iq , one will 

have: 
2

1 1 2 2 3

3 4 1 (2) ( )

( , , , , )

[ , , , , , , , ]

k

k k

D q

D q q q q q q

    −


  
  1 2 2 3

1

3 4 1 (2) ( )

( , , , )
2

[ , , , , , , , ]

k

k k

D
q

D q q q q q q

  
 −

  
 

 

   12 q   , 

and as a result: 

1  
2

1

2
kq

 
−




. 

 

 Replace 1 with that value in the expression (4) and set 1q  = /h  . By definition, one sees 

that the expression: 

2 (2) 11

2

1
[ ]

k
dq q dq




+


−


 

 

will be an exact differential when one replaces q2, …, qk, (2)q , …, 
( )kq  with q1, q2 using (3).   

denotes the functional determinant of the j with respect to the variables q3, …, qk, (2)q , …, 
( )kq . 

 That amounts to saying that if one then writes the differential equations of the geodesics: 

 

(5)     dq1 = 2

(2)

dq

q
 = … = 

( )

k

k

dq

q
 = 

(2)

2

dq




 = … = 

( )k

k

dq




 

 

then those equations will admit the expression: 

1

2

k


+


 

for a last multiplier. 

 The proof of the theorem that I have in mind is then achieved. Indeed, suppose that (A) and 

(A1) are two corresponding systems (without forces), in other words, that the geodesics of (A) and 

(A1) coincide. Equations (5) will be the same for the two systems, and they will both admit the 

two multipliers: 
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1

2

k


+


,  1

1

2
1

k


+


. 

 The quotient 

1

2
1

1

1 2

k

k





+

+




 is then a first integral of (5), and since that integral can be written: 

2

1
1

1

k 



+ 
 

 
 = const., 

 

one sees that the geodesics will admit a rational integral of degree two. As for the system (A) 

itself, if one takes the vis viva integral T  2

1q   = h into account then one will find that it possesses 

a quadratic integral: 

(6)      

2

1
2

1

1

k

ds
+ 

 
 

 = 2C dt . 

 

 Can that integral coincide with that of vis viva? In order for that to be true, it is necessary and 

sufficient that 

2

1
2

1

1

k

ds
+ 

 
 

 = 
2C ds . That first demands 2

1ds  must be equal to 
2ds , and (since 1 

/  is equal to 
k ) that 

2

1 k
−

+ , moreover, and as a result  must be a constant. Therefore, if (A1) is 

not an ordinary correspondent of (A) then the integral (6) is always distinct from that of vis viva. 

The theorem that I stated is then proved completely. Observe that the preceding argument shows 

us that ds2 and  ds2 cannot be correspondents unless  is a constant. Otherwise,   = const. 

would be a first integral of the geodesics. 

 Similarly, (A1) possesses the integral: 

 
2

1
21

k

ds
+ 

 
 

 = 2

1 1C dt . 

 

 

 3. – Before proceeding, I shall insist upon one of the results that was obtained just now. We 

have said that the differential equations (5) of the geodesics admit the expression 
1

2/
k


+

  for a 

multiplier. Now, one knows an explicit form for those equations, namely, the following one: 
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(1)     dq1 = 2

(2)

dq

q
 = … = 

( )

k

k

dq

q
 = 

(2)

2

f
d

q

f

q










 = … = 
( )k

k

f
d

q

f

q










, 

 

in which f is equal to  . Conversely, any system (1), in which f is the square root of a second-

degree polynomial  in 
(2)q , …, 

( )kq , can be regarded as defining the trajectories of a system (A) 

without forces, namely, the system for which: 

 

T  2 2
1 1 2

1 1

, , , , , , k
k

qq
q f q q q

q q

 
  

  
 . 

 

We then arrive at this theorem: 

 

 Any system (1), in which f is the square root of a second-degree polynomial t in 
(2)q , …, 

( )kq  

admits 
1

2/
k


+

  as a last multiplier, where  denotes the discriminant of 1
2
 , when it is made 

homogeneous. 

 

 I shall rapidly indicate another proof of that theorem that consists of generalizing the solution 

that Darboux gave to Dini’s problem. From the lemma that I established before, the Hessian d of 

f relative to the variables 
(2)q , 

(3)q , …, 
( )kq  is a multiplier of (1). Since f    here, one will 

have: 

d  

2
2 2

2

(2) (2) (2) ( ) (2) ( )

2

(2) (3) (2) (3)3( 1)

2

2 2

2

(2) ( ) (2) ( ) ( )

1 1

2 4 2 4

1
1

2 4

1

2 4 2

k k

k

k k k

q q q q q q

q q q q

q q q q q

      

   



     

−

        
 − −                     

   
−         

    
−           

2

( )

1

4 kq

  
 −      

  13( 1)

2

1
k

d


−

, 

 

in which d1 is a polynomial of degree at most 2 (k – 1) with respect to 
( )iq . For k = 2, one will find 

immediately that d1  

2
2

2

(2) (2)q q

 


  
−      

   . For k = 3, d1    . More generally, a transformation 
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with a very painful determinant will show that d1  ( 2)k − . It follows from this that 
1

2/
k


+

  is a 

multiplier of (1). 

 Conversely, since we have established by our first method that 
1

2/
k


+

  is a multiplier of (1), 

we can conclude that d1  ( 2)k − . First of all, the fraction: 

 

D  

1

2

k

d 
+




  1

2k

d

 −
 , 

 

in which the two terms are polynomials with respect to the 
( )iq  and the coefficients Aij of , is an 

absolute constant C (viz., independent of the 
( )iq  and the Aij): In other words, it will define a first 

integral of (1), and the geodesics of an arbitrary ds2 in k variables will admit an integral that is 

algebraic and rational with respect to the 
( )iq , which is obviously absurd (1). Therefore, d1  

( 2)kC  − . Upon taking a particular ds2 – say, ds2 = 2 2 2

1 2 kdq dq dq+ + +  − one will see immediately 

that C = 1. 

 

 

 4. – I add that the preceding results are capable of being extended to more general equations 

that are provided by the calculus of variations. If two systems (1), where f is arbitrary, define the 

same relations between the qi then the ratio of the Hessians d and d   of f and f  , resp., (relative 

to the variables 
(2)q , 

(3)q , …, 
( )kq ) will be a first integral of (1). 

 In particular, when f and f   are rational (or algebraic) in 
(2)q , …, 

( )kq , equations (1) will admit 

a first integral that is rational (or algebraic) with respect to the 
( )iq . 

 If f is the nth root of a polynomial  of degree n in 
(2)q , 

(3)q , …, 
( )kq  then one will have: 

 

d  
11

( 1) 2

1

k
n

d


 

− − 
 

 

= 

2
2 2

2

(2) (2) (2) ( ) (2) ( )

1
( 1) 2

2 2

2

(2) ( ) (2) ( ) ( )

1 1 1 1
1 1

1

1 1 1 1
1 1

k k

k
n

k k k

n q n q n q q n q q

n q q n q q n q n

    
 


   

 

 
− − 

 

            − − − −                          

       
− − − −   

             

2

( )kq

  
      

 , 

 

 
 (1) Moreover, it would be quite easy to prove that last point rigorously.  
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and upon letting  denote the Hessian of the homogeneous form: 

 

T  32
1 1 2

1 1 1

1
, , , , , , ,

( 1)

n k
k

q qq
q q q q

n n q q q


  
  

  −  
 , 

one will find that: 

d1 = 1 2( 1)k kn − −−  . 

 

 represents what  will become when one sets 1q  = 1, iq  = 
( )iq . It follows from this that 

( 1) 1

/
k n

n
− +

   d will be a multiplier of (1). 

 In order to prove the last propositions, one can follow the same path as in the case where T has 

degree two. Upon appealing to the equations: 

 

(1)   
i i

d T T

dt q q

  
− 

  
 = 0 ,  idq

dt
 = iq   (i = 1, 2, …, k) , 

 

which define the same relations between the qi as (1), one will first establish, with no change in 

the argument, that 
( 1) 1

/
k n

n
− +

  is a multiplier of (1), and then that it must coincide with d. That 

will give the value of d1 . 

 In particular, if two systems such as (1), where T and T1 have the same degree n, correspond, 

say, T = 
n

n

ds

dt
 , T1 = 1

1

n

n

ds

dt
 , then the equality: 

( 1) 1

1

1

k nds − + 
 

 
 = 

( 1) 1k nC dt − +
 

 

will provide a first integral of (1)(1). 

 

 

 

 

 
 (1) If T and T1 have degrees n and n1, resp., then the equality will have the form: 

 
1

1

( 1) 1

( ) 1

1

k n

n n

i

ds
q

dt

− +

−   
  

  
 = C , 

 

in which i has any of the values 1, 2, …, k. One will necessarily have 
i

q  = 
1i

c q , i.e., qi = ci q1 + 
i

c , in which the c, 

c  are constants, and the same conclusion applies to the trajectories of the second system. Disregarding that special 

case, the two systems cannot correspond to each other unless n is equal to n1 . 
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II. – PASSING FROM A SYSTEM (A) WITHOUT FORCES TO ITS CORRESPONDENT. 

CONSEQUENCE. 

 

 5. – When all of the coefficients Qi are zero for a system (A), the equality: 

 

dt = C ds , 

 

in which C denotes either a number or a first integral of the geodesics, defines a motion of (A) on 

each geodesic. Conversely, any equality: 

 

dt = 2
1 2

1 1

, , , , , , k
k

dqdq
f q q q ds

dq dq

 
 
 

 

 

that defines a motion of (A) on an arbitrary geodesic will have the preceding form. 

 Let us apply that remark to the two corresponding systems (A) and (A1) with no forces. We 

will have: 

dt = C ds , dt1 = C1 ds1 , 

so 

(a)  
1

dt

dt
 = 

1

ds
c

ds
, 

 

in which c  C / C1 represents a number or a first integral of the geodesics. One then deduces a 

motion that is defined by (A1) from an arbitrary motion that is defined by (A) by changing dt into 

dt1 using (a). Moreover, any equality: 

 

1

dt

dt
 = 2

1 2

1 1

, , , , , , k
k

dqdq
f q q q

dq dq

 
 
 

 

 

that transforms the motions of (A) and (A1) into each other will be a transformation (a). 

 However, we saw above that the expression: 

 
1

1
1

1

k ds

ds

+ 
 

 
 

 

is a first integral of the geodesics. If one replaces C with that expression in (a) then that will give: 

 

(b)  
1

1k

dt

+

 = 1

1

1
1
k

dt

+

. 
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We will then arrive at this conclusion: 

 

 One can pass from the system (A) to the system (A1) by the transformation (b). That 

transformation is not the only one. The most general one is obtained by setting: 

 

1

1k

dt

+

 = 1

1

1
1
k

dt
C

+

, 

 

in which C represents a constant or a first integral of the geodesics. 

 

 That proposition plays a fundamental role in the theory of correspondents. We shall now 

deduce some immediate consequences from it. 

 

 

 6. – One of the more important ones is the following: 

 

 Let two systems (A) and (A1) be: 

 

(A)   
i i

d T T

dt q q

  
− 

  
 = Qi (q1, q2, …, qk) ,  idq

dt
 = iq  (i = 1, 2, …, k), 

and 

(A1)  1

1 ( )i i

Td T

dt q q

  
− 

   

 = iQ (q1, q2, …, qk) , 
1

idq

dt
 = ( )iq  (i = 1, 2, …, k). 

 

 If the geodesics of T and T1 coincide then any system of forces Qi of (A) can be associated with 

a system of forces iQ  such that (A) and (A1) are correspondents (1). 

 

 Indeed, suppose that the equations (A) are solved for 
2

2

id q

dt
. We will have: 

 

(a)  
2

2

id q

dt
 = Pi + i


 = Pi + i , 

 

in which Pi denotes a quadratic form in the iq  that depends upon only T, and the i depend upon 

the forces Qi and coefficients Aij of T. One will similarly have that: 

 

 
 (1) One can also prove that theorem by appealing to the differential equations of the trajectories.  
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(a1) 
2

2

1

id q

dt
 = 

1

i
iP


+


 = i iP  + , 

for (A1). 

 We know that when all of the forces are zero, and as a result, the i, i  , one can pass from (a) 

to (a1) by the change of variable: 

1

1

1
1
k

dt

+

 = 
1

1k

dt
C

+

, 

 

in which C is a constant, which can be written: 

 

dt1 =  (q1, q2, …, qk) dt . 

 

 If we perform a change of variables then that will give: 

 

idq

dt
 = 1

1

idq dt

dt dt
 = 

1

idq

dt
 , 

2

2

id q

dt
 = 

2
2

2

1 1 1

i id q dq d

dt dt dt


 +  . 

 

Equations (a) become: 

(b)  
2

2

1

id q

dt
 = 

2

1

( ) logi i
i

dq d
P

dt dt





− + , 

 

in which (Pi) represents Pi when one replaces idq

dt
 with 

1

idq

dt
. Since equations (b) and (a1) coincide 

when the i , i   are zero, one will have: 

 

1

1 1 1 1

log log
( ) i k

i

k

dq dqdq
P

dt dt q dt q

   
− + + 

  
  iP   . 

 

 In order for them to coincide even when the i , i   are not zero, it will then be necessary and 

sufficient that: 

  
2

i


 = i    (i = 1, 2, …, k), 

which can also be written: 

 
2

1k
i +  = 

2

2 1
1
k

iC  +  (i = 1, 2, …, k). 

The theorem is thus proved. 

 It is easy to deduce the explicit relations that define the iQ  as functions of the Qi from those 

relations. 
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 Let ij (or 
1

ij ) represent the minor of  (or 1, resp.) relative to the element Aij (or 
ijA , resp.). 

One will have: 

i = 
1 2

1 2

i i ki

kQ Q Q
  

+ + +
  

 , 

and as a result (as one knows): 

Qi = A1i 1 + A2i 2 + … + Aki k . 

 

 We then write down the equalities: 

iQ  = 
1

k

ij j

j

A 
=

  , 
j   = 

2

1
2

1

k

jC 
+ 

 
 

,  j = 
1

1 k
jl

l

l

Q
=




  . 

That will give: 

(c)   
2

1
1
k

iQ+   = 
2

1 1 2 21

1

( )i i ik kk

k

C
Q Q Q  

−

+

+ + +



  (i = 1, 2, …, k), 

 

in which ij denotes the determinant that is obtained by replacing the jth column in  with the ith 

column in 1 (ij is generally distinct from ji , here). 

 

 

 7. Remarks. – That theorem can be completed by several remarks. Upon varying the constant 
2C , as should be obvious from the outset, we will get an infinitude of systems iQ  that are all 

deduced from each other by multiplying the Q  by a constant factor. However, it is important to 

observe that if the Qi are given then those forces iQ  will be the only ones for which (A) and (A1) 

are correspondents. Indeed, if the Qi are given then the trajectories of (A), and as a result, those of 

(A1), will be well-defined. Now we saw in the previous chapter that one cannot change the forces 

iQ  in a system (A1) without changing the trajectories unless the new forces ( )iQ  differ from the 

first ones by only the same constant factor. 

 Moreover, in the present case, one passes from the system (A) to the system (A1) [in which the 

iQ  satisfy the conditions (c)] by the transformation: 

 

(d)       1

1

1k

dt

+

 = 
1

1k

dt
C

+

, 

 

in which C denotes a well-defined number when the Qi, iQ  are given. Here again, it is important 

to observe that this transformation is unique. In other words, there exists no other change of 

variables: 

(e)  1dt

dt
 = 2

1 2

1 1

, , , , , , k
k

dqdq
f q q q

dq dq

 
 
 
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that will transform one of the given systems (A) and (A1) into each other. If one recalls the equality 

that was established in the first chapter (see pp. 21) then the equality that results from (A): 

 
2

2 1 2

2

1 1

dqdt

dq dq

  
− 

  
 = 

2

2 2
1 22

1 1

d q dq

dq dq
+  −   

will become obvious. 

 If one writes the analogous equality that relates to (A1) and equates the two values of 
2

2

2

1

d q

dq

[which coincide since (A) and (A1) are correspondents] then one will find that dt and dt1 are coupled 

by a relation of the form (e) (1): 

 

 1dt

dt
 = 2

2

1 1

, , , , , k
k

dqdq
q q

dq dq


 
 
 

 . 

 

 That is what we would like to establish. The ratio dt1 / dt is perfectly determined as a function 

of q1, q2, …, qk, 1q , 2q , …, kq  then, and the preceding equality must coincide with (d). 

 Those remarks permit us to state the following corollaries: 

 

 Let (A) and (A1) be two given corresponding systems in which the forces are not zero: If the 

geodesics of T and T1 coincide then one can pass from (A) to (A1) by the unique transformation: 

 

(d)       1

1

1
1

k

dt

+

 = 
1

1 k

dt
C

+

, 

in which C is a well-defined number. 

 

 The forces iQ  are then coupled to the forces Qi by the conditions (c). 

 Conversely, if one can pass from a given system (A) to another corresponding one (A1) by a 

transformation: 

dt1 =  (q1, …, qk) dt , 

 

then the geodesics of T and T1 will coincide, and one will have: 

 

 = 

1

1
1

k

C
+ 

 
 

. 

 

 Indeed, refer to the calculation that was developed in no. 6. By hypothesis, equations (b) and 

(a1) coincide for given Qi, iQ , and therefore for given i, i  . That can happen only when the terms 

 
 (1) On that subject, see the beginning of the third chapter,  
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in the left-hand sides of (b) and (a1) that are homogeneous of degree two in the dqi / dq1 and the 

terms that are independent of those variables are respectively identical. However, upon identifying 

the second-degree terms, one will define precisely the necessary and sufficient conditions for the 

geodesics of T and T1 to coincide. On the other hand, since the geodesics coincide,  will 

necessarily have the indicated form. Moreover, (A) will admit a correspondent with vis viva T1, 

not only for the given forces Qi, but for arbitrary forces. 

 

 

 8. – We finally prove this converse to the first proposition: 

 

 If ds2 and 2

1ds  are given then one can associate arbitrary forces Qi with forces iQ  such that 

the two systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 are correspondents and the geodesics of ds2 and  2

1ds

will coincide. 

 

 Indeed, we know that the geodesics of 2

1ds  belong to the trajectories of (A1) for any iQ , and 

therefore they will belong to the trajectories of (A) for any Qi . 

 Now, for a system (A), besides the geodesics of ds2, there exists no (2k – 2)-parameter 

congruence of trajectories that is independent of the forces Qi . The geodesics of ds2 then overlap 

with those of 2

1ds . 

 However, one can go further: When two systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
  are correspondents, 

the same thing will be true for the two systems  
2

2
, i

ds
cQ

dt

 
 
 

 and 
2

1

2

1

, i

ds
c Q

dt

 
  

 
, where c and c  

denote two constants. However, assume that the systems (A) and (A1) will again be correspondents 

when one replaces the Qi with certain forces that are distinct from the first, namely (Qi), and the 

iQ  with ( )iQ  (1). The geodesics of 2

1ds  belong to the trajectories of the two systems 
2

2
, i

ds
Q

dt

 
 
 

 

and 
2

2
, ( )i

ds
Q

dt

 
 
 

. However, we have shown in the first chapter that for k > 2, there exists no (2k – 

2)-parameter congruence of trajectories that is common to two such systems except for the 

geodesics of ds2. We thus arrive at this conclusion: 

 

 

 (1) If the systems of forces Qi and (Qi) are distinct then the systems 
i

Q  and ( )
i

Q  will also be so, because otherwise 

the trajectories of (A1), and as a result, those of (A), would not be modified by the change of forces, and one would 

have: 

(Qi) = c Qi . 
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 If two corresponding systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 remain correspondents when one 

replaces the forces Qi and iQ  with certain forces (Qi) and ( )iQ  that are distinct from the first then 

the geodesics of ds2 will coincide with those of  2

1ds . As a result, all of the preceding propositions 

will apply to the correspondence in question. 

 

 Of course, the last proof supposes that k > 2, because for k = 2, the lemma that it is based upon 

will break down. 

 We shall return to this point in Chapter Three, in which we shall recover all of the results that 

we just obtained by a different method. 

 

 

III. – CONDITIONS FOR A SYSTEM (A) WITHOUT FORCES TO ADMIT A 

CORRESPONDENT. REMARK ON THE SYSTEMS (A) FOR WHICH THE FORCES ARE 

DERIVED FROM A POTENTIAL. 

 

 9. – We just saw that if a system (A) without forces possesses a (non-ordinary) correspondent 

then it will necessarily admit a quadratic integral that is distinct from that of vis viva. For k = 2, 

that condition is sufficient, as is well-known, and one will deduce a correspondent (A1) from (A) 

from any quadratic integral. 

 For k > 2, it is easy to define systems that possess correspondents and admit only one quadratic 

integral besides the vis viva integral. For example, the ds2 : 

 

ds2 = 2 2 2

1 2 1 2 3( , )( )q q dq dq dq + +  , 

 

in which  is arbitrary, is a correspondent to 2

1ds : 

 
2

1ds  = 2 2 2

1 2 1 2 3( , )( )q q dq dq C dq + +  , 

 

in which C is a number. On the other hand, the system (A) or 
2

2
, 0i

ds
Q

dt

 
= 

 
 admits only one 

quadratic integral: 
2 2 2

1 2 1 2 3( , )( )q q dq dq C dq + +  = 
2c dt , 

 

which is an integral that can be written: 

dq3 = c dt , 

in particular. 

 However, in general, the condition that there exists a quadratic integral does not suffice for 

(A) to admit a correspondent. One easily assures oneself of that upon considering, for example, 

the ds2 that Jacobi encountered in the theory of elliptic coordinates: 
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ds2 = 2

1 1

( ) ( )

( ) ( )

k k
i i i

i

i ii i

q F q
dq

F q f q



= =

  
 

 
   , 

in which one has set: 

  F = (u – q1) (u – q2) … (u – qk) , 

  f  = (u – a1) (u – a2) … (u – ak) , 

 

and in which i denotes an arbitrary function of qi . That system 
2

2
, 0i

ds
Q

dt

 
= 

 
 admits a complete 

system of quadratic integrals and possesses no correspondents (besides ordinary correspondents). 

 On the subject of sufficient conditions for a system (A) to admit non-ordinary correspondents, 

I will make the following observations: Consider a system of (k – 1) second-order differential 

equations in q1, q2, …, qk . In order for such a system to be regarded as defining geodesics, it is 

necessary that: 

 

 1. There exists a function 1 2 2( , , , , , , )k kf q q q q q   such that the system: 

 

(1)    
1 ( )i i

d f f

dq q q

 
−

 
 = 0 ,  

1

idq

dq
 = 

( )iq  (i = 1, 2, …, k) 

 

agrees with the given system. 

 

 2. f is the square root of a second-degree polynomial  in 
(2)q , …, 

( )kq . 

 

In order for the ds2 that is defined by  to admit correspondents, it is necessary that: 

 

 3. There exists at least two such functions f =   and f1 = 1  that are distinct. 

 

 The first condition is always fulfilled for k = 2, but for k > 2, it is no longer true. Those 

conditions, which are sufficient moreover, imply the existence of a quadratic integral of the system 
2

2
, 0i

ds
Q

dt

 
= 

 
, but the converse is not true. 

 How does one define those sufficient conditions explicitly? One of the simplest means consists 

of appealing to the theorem that was established above: 

 

 In order for the systems 
2

2
, 0i

ds
Q

dt

 
= 

 
 and 

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
  to be correspondents, it is necessary 

and sufficient that one can pass from one system to the other by changing dt into  (q1, …, qk) dt1. 
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 One forms the desired sufficient conditions very elegantly upon expressing the fact that this is 

true, which are conditions that obviously involve the expressions aij = 
log

ijA

 


, which I will study 

in another article (1). 

 I shall add only that it is easy to form a ds2 that possesses correspondents: In particular, if one 

knows a transformation of the geodesics of ds2 into themselves then that transformation will 

generate a correspondent 2

1ds  to ds2 that is, at the same time, one of its homologues. Hence, the 

ds2 of the form 
2

1

k

i

i

dq
=

  admit an infinitude of correspondents 2

1ds  that one deduces with the aid of 

the most general homographic transformation in k variables. 

 When one has such a form ds2, any system 
2

2
, i

ds
Q

dt

 
 
 

 will admit correspondents of the form 

2

1

2

1

, i

ds
Q

dt

 
 

 
. Observe that there exist systems (A) that possess non-ordinary correspondents and 

which admit no quadratic integral. The system 
2

2
, 0i

ds
Q

dt

 
= 

 
 will necessarily possess one such 

integral (in addition to that of vis viva). One sees that with the correspondents: 

 

(A)    ds2 = 2 2 2

1 2 1 2 3( , )[ ]q q dq dq dq + +   (Q1, Q2, Q3), 

 

and 

 

(A1) ds2 = 2 2 2

1 2 1 2 3( , )[ ]q q dq dq C dq + +  (Q1, Q2, C Q3), (C  1), 

 

in which Q1, Q2, Q3 are taken arbitrarily, which are correspondents that define not only the same 

trajectories, but also the same motion, because one has: 

 

1dt

dt
 = 1 

here. 

 Furthermore, observe that if the forces Qi are derived from a potential U then the same thing 

will not be true for the iQ , in general, as the same example will show when one sets Qi  U / qi, 

in which U is an arbitrary function of qi . Nonetheless, the latter situation can present itself, as one 

sees when one take U to be a function of the form: 

 

U =  (q1, q2) +  (q3) . 

 

 
 (1) On that subject, see the note that was cited before by R. Liouville (Comptes rendus, May 1892).  
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 It is fitting to remark that in the latter example, a natural congruence of trajectories h = a of 

(A) will never coincide with a natural congruence of trajectories h1 = a1 of (A1) (h and h1 denote 

the two constants of the vis viva integrals). Indeed, one will have both: 

 

  2 2 2 2

1 2 1 2 3( , )[ ] [ ]q q dq dq dq dt  + + − +  = 2a dt  

and 

  2 2 2 2

1 2 1 2 3( , )[ ] [ ]q q dq dq C dq C dt  + + − +  = 2

1a dt  

 

for such a congruence, and those two conditions must coincide, which is impossible, no matter 

how one chooses a and a1. Later on, we shall show that this is true in general. 

 

 

 10. – I will conclude this study of systems in which the forces are zero by addressing the 

problem that was treated in which chapter, which is a problem that concerns the case in which the 

forces Qi in (A) are not zero, but are derived from a potential U. One knows that for each value of 

the constant h = T – U, the trajectories of (A) coincide with the geodesics of 2ds  = (U + h) ds2. 

One can pose the following question: 

 

 Under what conditions does the system 
2

2
( ) , 0i

ds
U h Q

dt

 
+ = 

 
 admit a non-ordinary 

correspondent 
2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 for any constant h? 

 

 It is clear that this question gets back to what was treated in this chapter and that all of the 

properties that were proved in regard to corresponding ds2 will apply here to the pair (U + h) ds2 

and 2

1ds , where 2

1ds  depends upon h. In particular, the system 
2

2
( ) , 0i

ds
U h Q

dt

 
+ = 

 
 must admit a 

quadratic integral for any h. From a theorem that I stated above without giving its proof, it will 

follow that the system 
2

2
, i

ds
Q

dt

 
 
 

 must also admit a quadratic integral. 

 What relations exist between that problem and the search for correspondents to the system 
2

2
,

ds
U

dt

 
 
 

? First of all, if the geodesics of 
2ds   (U + h) ds2 and 2

1ds  coincide for an arbitrarily-

chosen h then any system 
2

2
( ) , i

ds
U h Q

dt

 
+ 

 
, in particular, the system: 

 
2

2

1
( ) ,

ds
U h

dt U h

 
+ 

+ 
, 
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will admit correspondents of the form 
2

1

2

1

, i

ds
Q

dt

 
 

 
. The system 

2

2
,

ds
U

dt

 
 
 

 will then admit an 

infinitude of distinct correspondents that depend upon an arbitrary constant (1). In a system (A) or
2

2
,

ds
U

dt

 
 
 

, the expression 2ds   (U + h) ds2 cannot admit a correspondent 2

1ds  without (A) 

admitting an infinitude of distinct correspondents. However, the converse is not true. For example, 

the system 
2

2
,

ds
U

dt

 
 
 

, in which: 

ds2  2 2 2

1 2 1 2 3( , )[ ]q q dq dq dq + +  

 

and U is an arbitrary function of the qi, possesses an infinitude of correspondents without 2ds   

(U + h) ds2 admitting a correspondent ds2 (for any value of h). 

 However, can it happen that the search for a correspondent to the system (A) or 
2

2
,

ds
U

dt

 
 
 

 

coincides with the search for a correspondent (for arbitrary h) of the system 
2

2
( ) , 0 ?i

ds
U h Q

dt

 
+ =  

 More precisely, can it happen that a correspondent 
2

1

2

1

, 0i

ds
Q

dt

 
= 

 
 to the 

latter system, in which 2

1ds  depends upon h, is attached to a system 
2

1

2

1

,
ds

U
dt

 
 
 

 in the same way 

that 
2

1

2

1

, 0i

ds
Q

dt

 
= 

 
 as is attached to (A)? In order for that to be true, it is necessary and sufficient 

that 2

1ds  must have the form 2

1ds   (U1 + h1)
2

1ds , in which h1 denotes a certain function of h that 

U1 and 2

1ds  no longer depend upon. If one still desires, it is necessary that there should exist a 

correspondent 
2

1

2

1

,
ds

U
dt

 
 
 

 of (A) such that every congruence h = a of (A) will coincide with a 

congruence h1 = a1 of (A1). That condition is fulfilled under the Darboux transformation, but one 

will then have 2

1ds  = 
2C ds . In the next chapter, I will show that it is never fulfilled for two 

correspondents that are not ordinary. In other words, the natural congruences are never preserved. 

 

 (1) If there exists a correspondent 
2

1
ds  to (U + h) ds2 for a well-defined value of h then the system 

2

2
,

ds
U

dt

 
 
 

 will 

admit (non-distinct) correspondents of the form 

2

2
,

t

ds
C cQ

dt


 
 
 

, where 
2

1
ds  no longer depends upon an arbitrary 

constant. 
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Therefore, the search for a correspondent to 
2

2
,

ds
U

dt

 
 
 

 and the search for a correspondent to

2

2
( ) , 0i

ds
U h Q

dt

 
+ = 

 
  are always two distinct problems. 

 

 

CHAPTER III 

 

Corresponding systems in which all forces are non-zero. 

 

I. – PROOF OF A GENERAL PROPERTY OF THOSE SYSTEMS. 

 

 1. – Let (A) and (A1) be two corresponding systems: If the forces Qi of (A) are not all zero then 

the forces 
iQ  of (A1) will not all be zero either. Having recalled that, suppose that (A) admits a 

correspondent (A1) that is distinct from its ordinary correspondents (1). We shall show that (A) then 

enjoys several properties, one of the most important ones being this: At least one of the systems 

(A) and (A1), in which annuls the forces, possesses a quadratic integral. 

 In order to prove that proposition, I shall appeal to the following lemma: 

 

 If the systems (A) and (A1), in which the forces are not all zero, are correspondents then one 

can pass from one to the other by a change of variables of the form: 

 
2dt  = 2 2

1 2 1( , , , )kd q q q dt + , 

 

in which 
2d  represents a quadratic form in dq1, …, dqk whose coefficients depend upon q1, …, 

qk . 

 

 First of all, observe that since the Qi are not all zero, the function t (q1) that is defined by (A) 

will be determined along each trajectory (up to an additive constant) by the equality: 

 

(1)  

2

1

dt

dq

 
 
 

 = 
( ) 1 ( )

1 ( )

i i i

i i

q q

q 

 +  − 

−
, 

 

upon setting i = i / , 
( )iq  = dqi / dq1 , ( )iq  = 2 2

1/id q dq  (see Chapter I, pp. 21) Along the same 

trajectory, from (A1), one will have: 

 

 

 (1) As we know, the ordinary correspondents of (A) are the systems 

2

2

1

,
i

ds
C cQ

dt

 
 
 

 and 
2

2
1

( ) ,
ds

U
Udt

U
 

 

  
 +
 +
 

+
 (if 

the Qi are derived from a potential U). 
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(2)  

2

1

1

dt

dq

 
 
 

 = 
( ) 1 ( )

1 ( )

i i i

i i

q q

q 

   +  − 

  −
. 

 

If one eliminates 2 2

1/id q dq  from (1) and (2) then one will get a relation of the form: 

 
2

1dt

dt

 
 
 

 = 1 2 1 2( , , , , , , , )k kf q q q q q q    i
i

dq
q

dt

 
 = 

 
 

 

that permits one to pass from (A1) to (A). Arbitrary initial values of the qi, iq  correspond to a 

trajectory along which 

2

1

1

dt

dq

 
 
 

, 

2

1

dt

dq

 
 
 

, and as a result, 

2

1dt

dt

 
 
 

 are well-defined functions of q1 . 

Therefore, f and f   coincide for the initial value of the qi, iq  , and since those values are arbitrary, 

f and f   will be identical. 

 Having said that, form that relation explicitly from (1) and (2): It will be: 

 

(3)    

2

1dt

dt

 
 
 

 = 

2

1 ( ) 1 1 1 ( )

1 ( )

[ ( ) ( )] ( )i i i i i

i i

q q q

q

 

 

    −  −  −  −  + −

  −
 , 

 

which can also be written as: 

 

(4)   2 2

1 1 1 1 1( ) ( )i i i idt dq dq dt dq dq    − − −  = 1 1 1( ) ( )i i idq dq  −  −  −   , 

 

in which the ,  denote quadratic forms in dq1, dq2, …, dqk . 

 Since the relation (3) is unique, it must remain the same when one successively gives the values 

2, 3, …, k to the index i. Now, the numerator on the right-hand side is a polynomial in 1q , 
(2)q , … 

( )kq ; the denominator includes only 
( )iq . In order for that function to not change when one sets i = 

2, 3, …, k, it is then necessary that its denominator 
1 ( )( )i iq   −  should divide its numerator, and 

as a result, it should divide the two parts: 

 

 
( ) 1 1[ ( ) ( )]i i iq   − −  −  and 

1 ( )i iq  −  

 

separately. Consequently, one will then have: 

 

1

1






  2

2






  …  k

k






 , 
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and on the other hand, once the division by 
1 ( )( )i iq   −  has been performed, the relation (3) will 

take the form: 

 

(5)      2 2

1 1 1dt dt  −  = 2d     Q. E. D. 

 

 However, the proof supposes that k > 2. Here is how one can proceed for k = 2. Write the 

differential equation of the trajectories: 

 

(6)     1

1

log 2
d

dq
 +   = 1

1

2
log

d

dq

 



− , 

upon setting: 

  
2 1 (2)q  − ,   

(2) 1 (2) 2q q + −  . 

 

Since the forces are not zero, at least one of the coefficients 1, 2 is non-zero, and we can always 

assume that it is 1 ; otherwise, we could permute q1 and q2 . Under those conditions, equation (6) 

can be written: 

 

 (2) 1 (2) 2

1

( )
d

q q
dq

 +  −   

= 

2
(2) 1 (2) 2

1 1

1 1
21

(2)

1

3

2 log

d
q q

dqd

dq
q




 





  
 − −  +  +  

  −  + +
 

− 
  

 , 

or rather: 

(7)     
(2)q = 

(2) (2) 1 (2) 2

2
(2)

1

3 4 ( )q q q V
W

q




  − −  −  +
+

−

 = S , 

 

in which V and W represent polynomials, the first of which is in 
(2)q , while the second is in 

(2)q  

and 
(2)q , and the coefficients depend upon q1, q2 . The fraction that appears in the right-hand side 

of (7) is irreducible, moreover. In other words, 2
(2)

1

q




 
− 

 
 does not divide the numerator, because 

in order to do that, it must divide the coefficient of 2

(2)q , which is – 3. Now express the idea that 

equation (7), which relates to (A1), namely, 
(2)q  = S  , coincides with the preceding one or that S 

 S  . One first finds that 1   cannot be zero, since otherwise S   would be a polynomial with 
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respect to the derivatives. Moreover, S   and S must become infinite for the same value of 
(2)q , so 

2

1




 2

1








. Finally, the difference: 

(2) 1 2 (2) 1 2

2
(2)

1

4 [( ) ( )] ( )
( )

q q V V
W W

q




    +  −  −  −  − −
− −

−

 

 

must be identically zero. The fraction that appears in that difference then reduces to a polynomial 

(with respect to the derivatives), i.e., its numerator is divisible by its denominator 2
(2)

1

q



− , which 

demands that the binomial 2
(2)

1

q




 
− 

 
 must divide both ( )V V −  and 

1 2 (2) 1 2[( ) ( )].q   − −  −

One will then have indeed: 

2

1




 2

1








 and 2 2

1 1 1dt dt −  = 2d  , 

and even for k = 2. 

 

 

 2. – We shall now show that the expression: 

 
3

1

1

k

i

i

dt

dt





+
  
 

  
 

is a first integral of (A). 

 Indeed, we saw in Chapter II that  is a multiplier of the system (A): 

 

(A)      dt = 1

1

dq

q
 = 2

2

dq

q
 = … 

 

In other words, when one knows (2k – 2) integrals of (A) that are independent of t, namely: 

 

1 2 1 2( , , , , , , , )j k kq q q q q q     = Cj  [j = 1, 2, …, (k – 2)], 

 

if one infers 3 1 2, , , , , ,k kq q q q q    as functions of q1, q2 then the expression: 

 

1 2 (2) 1( )q dq q dq



 −  
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is an exact differential.  represents the functional determinant 
1 2 (2 2)

3 4 1 2

( , , , )

( , , , , , , )

k

k

D

D q q q q q

   −

  
. 

 Perform a first change of variables by setting 1q  = 1q , 2q  = 
(2) 1q q  , …, kq  = 

( ) 1kq q  . The 

functions j will become functions j of q1, …, qk, 1q , 
(2)q , …, 

( )kq , and one will have: 

 

  
3 4 1 (2) ( )1 2 2 2

3 4 1 (2) ( ) 3 4 1 2

( , , , , , , , )( , , , )

( , , , , , , , ) ( , , , , , , , )

k kk

k k k k

D q q q q q qD

D q q q q q q D q q q q q q

   −
  


     

 

 

= 
(2) ( )

2

( , , )

( , , )

k

k

D q q

D q q

 

 
  

( 1)

1

kq


−




 . 

Then make the change of variable: 

 

(2) 1 (2) 2q q + −  = 2 1 (2) 2

1

1
( )q

q
  −


 . 

 

The functions j become functions j of q1, q2, …, qk, 1q , 
(2)q , …, 

( )kq , and one will have: 

 

   
3 (2) (2) ( )1 2 2 2

3 (2) (2) ( ) 3 1 2

( , , , , , , )( , , , )

( , , , , , , ) ( , , , , , , )

k kk

k k k k

D q q q q qD

D q q q q q D q q q q q

   −
  


     

 

 

 
(2)

1

q

q






 = − 

2 1 (2)

2

1

2 ( )q

q

   −


 . 

By definition, one has: 

− 1
2
  = 

2 1 (2)

2

1

( )
k

q

q

  
+

 −


. 

 The expression: 
2

1

2 1 (2)[ ]

kq

q 

+

−
 , 

in which 1q  is defined by the equality: 

(8)      2

1q  = 
2 1 (2)

(2) 1 (2) 2

q

q q

  −

 +  − 
, 

 

is then a multiplier for the differential equations () of the trajectory: 

 

()    dq1 = 2

(2)

dq

q
 = … = 

( )

k

k

dq

q
 = 2

(2)

dq

q




 = 

(2)

2

dq

f


 = 

(3)

3

dq

f


 = … = 

( )k

k

dq

f


. 
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 If (A) and (A1) are correspondents then the two expressions: 

 

2

1

2 1 (2)[ ]

k
dq

dt

q 

+

 
 

 

−
 and 

2

1

1

2 1 (2)[ ]

k

dq

dt

q 

+

 
 

 

  −
 

 

will be two multipliers of the same equations (). 

 Since one has, on the one hand: 

1

1






  2

2






  …  k

k






   , 

the equality: 

(9)      

2

1

1

k
dt

dt


+
  

 
  

 = const. 

 

will define a first integral of (). In (9), dt1 / dt represents the ratio of the quantities 1dq

dt
 and 1

1

dq

dt
 

when it is expressed as a function of 
(2)q , 

(3)q , …, 
( )kq  (and the qi). The equality (9), in which the 

same ratio is expressed as a function of 1q , 2q , …, kq  (and the qi), will then define a first integral 

of (A). 

 Now, we have: 

2

1dt

dt

 
 
 

 = 

2

2
1

1 1

d

dt




 
+

 
 , 

 

so the first integral (9) of (A) will then be: 

 
2

2

3 2
1 1

1 1 1 1

k

d

dt


 

  

+

 
  

+  
    

 
 

  t – V = const., 

 

in which t denotes a quadratic form in 1q , 2q , …, kq  (whose coefficients depend upon qi), and V 

is a simple function of the qi . 

 The results that we just obtained are thus summarized as: 

 

 When two systems (A) and (A1) (in which the forces are not zero) are correspondents, the 

coefficients 1, 2, …, k , and 1  , 2  , …, k   are necessarily proportional, and one can pass 

from (A) to (A1) by a unique transformation of the form: 
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2 2

1 1 1dt dt  −  = 2d . 

The integral: 

(a)     

2
223

1 1

1 1 1 1

k dtd 

  

+   
+   

    
 = 2C dt  

 

is a first integral of (A), and the equality: 

 

(a)     

2
223

1 1 1 1

1 1 1

k dtd 

  

+   
+   

   
 = 2C dt  

is a first integral of (A1). 

 

 Nevertheless, observe that the preceding argument shows only that the left-hand side of (a) 

will remain constant for any motion of (A). It is therefore not impossible a priori that the left-hand 

side reduces to an absolute constant [in which case, the equality (a) will no longer represent a first 

integral of (A)], but it cannot reduce to a simple function of the qi without being a constant. In 

other words, equations (A) will admit a first integral that is independent of the velocities. Hence, 

if the left-hand side of (a) is not a constant then it will be a second-degree integral of (A). Having 

made those remarks, we shall list the different cases that can present themselves. 

 

 

 3. HYPOTHESIS I. – The left-hand side of (a) is an absolute constant. 

 

 In this case, the relation between dt and dt1 has the form: 

 

1dt

dt
 = 

1

3
1 1

0

1

k

C




+ 
 

 
 =  (q1, q2, …, qk) , 

 

in which C0 is a certain number. The correspondence is then of the type that was studied in Chapter 

II, and all of the properties that were proved in Section II of that Chapter will apply. In particular, 

the geodesics of ds2 and 2

1ds  will coincide. 

 Conversely, if the ratio dt1 / dt is a function  of qi then the left-hand side of (a) will be an 

absolute constant, and  will have the value: 

 

(b)      

1

3
1 1

0

1

k

C




+ 
 

 
. 

 Moreover, since one has: 
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d  0  and  
2

1

2

dt

dt
 = 1

1



 
 ,  

 

in this case, the value of 2  must coincide with 1 1/   , which will immediately give: 

 

1

1



 
 = 

1
2( 3)

1
11

0

k
k

kC
+

+
+

 
 

 
, 

and as a result: 

1dt

dt
 = 

1
3

1
11

0

k
k

kC
+

+
+

 
 

 
. 

 

 Those equalities agree quite well with the ones that were obtained in Chapter II (see pp. 40). 

 Indeed, we saw that if we can pass from (A) to (A1) by a change of variables dt1 / dt =  (q1, q2, 

…, qk) then we will necessarily have: 

 

(b)    1

1

1
1
k

dt

+

 =  
1

1k

C dt

+

  and  
2

1k

i +  = 
2

2 1
1
k

iC  +  , 

which are equalities that will be no different from the preceding ones when one sets C0 = 
1

2

k

kC
+

+ . 

 In the case that we are studying, the equality (a) will not provide an integral of (A). However, 

we already know that the system (A), in which one annuls the forces Qi, possesses a quadratic 

integral that is distinct from the vis viva. 

 

 HYPOTHESIS II. – The quadratic integral that is defined by (a) coincides with that of vis viva. 

(This case can present itself only when the Qi are derived from a potential U.) 

 

 In this case, the relation between dt and dt1 has the form: 

 

2

1dt  = 

2

3
2 2 21 1
0

1

[ ( ) ]
k

C ds U a dt




+ 
− + 

 
 = 

2 2[ ( ) ]ds U a dt − + . 

 

 Introduce the Darboux transformation and replace (A) with the corresponding system (A): 

 

(A)  
i i

d T T

dt q q

   
− 

   
 = 

i

U

q




,  idq

dt
= iq  (i = 1, 2, …, k), 

in which: 

T    
2

2
( )

ds
U a

dt
+


  

2

2

ds

dt




, U    

1

U a+
 . 
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We know the relation between dt and dt  (see Chapter I, Section IV, pp. 28), namely: 

 
2dt  = 2 2 2( ) [ ( ) ]U a ds U a dt+ − +  . 

 

 The systems (A) and (A1) will then be two corresponding systems such that one can pass from 

one to the other by the change of variables: 

 
2

1

2

dt

dt
 = 

2

2( )U a



+
 = 2

1 2( , , , )kq q q  . 

 

 We then return to the correspondence that was studied in Chapter II: The geodesics of 2ds   

and  ds2 coincide. Moreover, we know that: 

 

  

1

1
1

k

C
+ 

  
  

1

1
1

( )

k

k
C

U a

+ 
 

 + 
, 

 

and thus we know a simpler value for  : 

   (U + a)  

1

1
1( ) kU a

C
+  +

 
 

. 

 

 One likewise sees that 

2

1

2
1

1( )

k
i

kU a

 +

+
+

− 

+

 is equal to 
2

2 1
1
k

iC  +  , which can be further written as: 

i

i



 
 = − 

1
2 3 1

2 1

2

( )k kU a
C

+ +  +
 

 
. 

 

 The first value of  coincides with the second one for C0 = 

1

3

k

kC
+

+ . 

 We have assumed that (A1) is not an ordinary correspondent of (A). Under those conditions, 
2ds  will not agree with 2

1C ds  (C is a number). In other words, one will also have U = c U1 , i.e., 

at the same time: 

2

1ds  = 2U a
ds

C

+
, U1 = 

1

( )c U a+
, 

 

and (A1) is deduced from (A) by a Darboux transformation. 
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 The systems 
2

2
( ) , 0i

ds
U a Q

dt

 
+ =  

 and 
2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
, respectively, thus admit a quadratic 

integral that is distinct from vis viva.  

 

 HYPOTHESIS III. – The quadratic integral (a) is distinct from that of vis viva. 

 

 That hypothesis (which is the most general) is always realized when the left-hand side of (a) 

does not reduce to a constant, since the forces Qi are not derived from a potential. 

 Let: 
2

1

2

1 dt

dt

 
 
 

   – V = const. 

 

be that integral. From a well-known theorem,  = const. is an integral of the motion without forces. 

One cannot have    (q1, q2, …, qk) T, because  = const. will be an integral of the geodesics of 

T. Moreover, one does not have   C T, since otherwise the integral (a) would be that of vis viva 

(1). The only case in which 
2d  is equal to  ds2 in the equality: 

 

2

1dt  = 
2

21

1 1

d
dt



 
−

 
 

then corresponds to hypothesis II, in which: 

2

1dt  = 
2 2 2[ ( ) ]ds U a dt − +  ,  with   

1

1
1( ) kU a

C
+ + 

  
. 

 For the same reason, the only case in which 
2d  is equal to: 

 

1 (q1, q2, …, qk)
2

1ds  

 

is the one in which the 
iQ  are derived from a potential U1, so one has: 

2dt  = 2 2 2

1 1 1 1 1[ ( ) ]ds U a dt − +  , 1 = 

1

1
1 1

1

( ) kU a
C

+  +
  

 
, 

i.e.: 

2

1dt  = 
2

2

1 2

1 1 1

1

( )

dt
ds

U a 

 
− 

+  
 . 

 

 

 (1) Indeed, one will have: 
i

i

V
dq

q





  i i

Q dqC  . The Qi will then admit the potential U = V / C, and the integral 

(a) can be written C (T – U) = const. 
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 In the latter case, upon replacing the system (A1) with the system 1( )A : 

 

1( )A     1 1

1 i i

T Td

dt q q

   
− 

   
= 1

i

U

q




, iq  = 

1

idq

dt
, 

in which: 

1T   = 
2

1
1 1 2

1

( )
ds

U a
dt

+


 = 
2

1

2

1

ds

dt




  and 1U   = 

1 1

1

U a+
, 

 

one will come back to hypothesis I. One passes from (A) to 1( )A  by the transformation: 

 
2

2

1

dt

dt
 = 

2

1

2

1 1( )U a



+
 . 

 

 We finally point out one last particular case, which is the one in which the forces Qi and iQ  

are derived from potentials U and U1 so the relation between dt and dt1 has the form: 

 
2

2 1
1

1 1

ds
dt

U a
−

+
 = 

2
2 2

1 2( , , , )k

ds
q q q dt

U a


 
− 

+ 
 . 

 

 Upon replacing (A) with the system 
1 1

1
,T
U a

 
 

+ 
, in which T   = 

2

2
( )

ds
U a

dt
+


, and replacing 

(A1) with the system 1

1 1

1
,T
U a

 
 

+ 
, in which 1T   = 

2

1
1 1 2

1

( )
ds

U a
dt

+


, one will get back to the first 

hypothesis. The geodesics of T   and 1T   coincide, and the two new systems transform into each 

other by the change of variables 1dt

dt




 = 

1

1
1 1 1( )

( )

k k

k

U a

U a

+  +
 

 + 
 . As for the function , it will necessarily 

have the form: 

  

1 1

2 3
1 1

0

1 1 1

kU a
C

U a





+   +
   

+    
  

1 11

2 11
1

1 1

kk U a
C

U a

 
+ 

+ +   + 
  

 +   
, 

and one will have: 
2

1

2
1

1( )

k
i

kU a

 +

+
+



+

 = 

2

2 1

2
1

1
1 1( )

k
i

k

C

U a

 +

+
+



+

 (i = 1, 2, …, k), 

 

moreover, in which the number C0 is equal to 

1

3

k

kC
+

+ . 
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 4. – It would be appropriate to complete those remarks with some converses. Under hypothesis 

II, the system (A) will possess a force function U, and the geodesics of 2

1ds  will coincide with a 

natural congruence h = a of (A). Conversely, if the Qi are derived from a potential U and the 

natural congruence h = a of (A) coincides with the geodesics of 2

1ds  then one will necessarily find 

oneself under hypothesis II. Indeed, the system (A1) and the system (A), in which T    
2 2( ) /U a ds dt+ , U  = 1 / (U + a) are two correspondents whose geodesics coincide. One then 

passes from one to the other by a transformation such that 2 2

1 /dt dt  =  (q1, …, qk), and since, on 

the other hand, 2dt  = 2 2( )[ ( ) ]U a ds U a dt+ − + , the relation between 2dt  and 2

1dt  will indeed 

have the form: 
2

1dt  = 
2 2 2ds dt + , 

which is true only under hypothesis II. 

 The same observation will apply to the case in which the forces Q  are derived from a potential 

U1, the geodesics of ds2 will coincide with a natural congruence h1 = a1 of (A1). Indeed, it will 

suffice to permute (A) and (A1) in order to return to the preceding case. Finally, pass to the latter 

particular case that I indicated in hypothesis III. In that case, (A) and (A1) will possess force 

functions U and U1, and a natural congruence h = a of (A) will coincide with a natural congruence 

h1 = a1 of (A1). Conversely, if that condition is fulfilled then the systems 
2

2

1
( ) ,

ds
U a

dt U a

 
+  + 

 and 

2

1 1 2

1 1 1

1
( ) ,

ds
U a

dt U a

 
+ 

 + 
 will be two correspondents whose geodesics coincide. One will then have 

a relation such as 1dt  =  (q1, …, qk) dt  between dt  and 1dt , and as a result, a relation such as: 

 
2

2 1
1

1 1

ds
dt

U a

 
− 

+ 
 = 

2
2 2 ds

dt
U a


 

− 
+ 

 

 

between dt1 and dt. That is, in fact, the relation that characterizes the particular case in question. 

 

 

 5. – Before summarizing the results that were just obtained, I shall infer some further 

consequence of the form of the relation that exists between dt and dt1. I shall then write that relation 

as: 

(m)     

2

1dt

dt

 
 
 

= 
2

2

2

d
V

dt




 
− 

 
 ,  = 

1

3
1 1

1

k



+ 
 

 
, 

so the equality: 

(n)       
2

2

d
V

dt


−  = c 
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will define a first integral of (A). Any first integral of (A1), say: 

 

1 2
1 2

1 1 1

, , , , , , , k
k

dqdq dq
f q q q

dt dt dt

 
 
 

 = C , 

 

corresponds to a first integral of (A) that one calculates by replacing dt1 as a function of dt in f 

using formula (m). However, it is remarkable that any entire algebraic integral of (A1) corresponds 

to an integral of (A) that is entire, algebraic, and of the same degree. That is obvious in the case 

where the geodesics of T and T1 coincide, i.e., in which dt1 / dt reduces to a simple function of the 

qi . It will then suffice to prove that in the general case. 

 Let n

nds  denote a homogeneous form of degree n in dq1, dq2, …, dqk . The integral considered 

in (A) will have the form: 

 
2 2

1 2 1 0

n n n

n nds dt ds dt s−

−+ + +  = 
1

nC dt   (if n is even), 

and: 
2 2 1

1 2 1 1

n n n

n nds dt ds dt s− −

−+ + +  = 
1

nC dt   (if n is odd). 

 

Replace the powers of 2

1dt  with the powers of 
2 2 2( )d V dt  −  in the left-hand side and replace 

1

ndt  with 
/2n n ndt c  in the right-hand side. One will then obtain an integral of (A) that is entire 

and of degree n. 

 The same remark and the same proof apply to the rational integrals. 

 In particular, if (A1) possesses a linear integral, say: 

 

i ia dq  = C dt1 , 

then (A) will admit the integral (1): 

1
i ia dq


  = C dt . 

 

If (A1) possess a quadratic integral, say 2 2

1dS W dt−  = 2

1C dt , then (A) will admit the integral: 

 
2

2 2

2

dS
W d W V dt


− +  = 

2C dt . 

 

 Apply the last remark to the case in which the forces in one of the corresponding systems (A) 

and (A1) are defined from a potential. For example, let U1 be the force function for 
iQ . In the first 

place, if the geodesics of T and T1 coincide then (A) will admit the quadratic integral: 

 

 
 (1) Since any linear integral defines an infinitesimal transformation of the system (A), two corresponding systems 

(A) and (A1) (in particular, two corresponding ds2) will admit the same number of infinitesimal transformations. 
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2

1
2 2

1 1

1

( )
k

ds U dt
+ 

− 
 

 = 2

1h dt . 

 

If the Qi also admit a potential then (A) and (A1) will each admit a quadratic integral other than the 

vis viva. 

 In the general case, the vis viva integral of (A1) will give the following integral for (A): 

 

(p)     
2

2 21
1 12

ds
U d U V dt


− +  = 2

1h dt . 

 

It is important to see that this integral is distinct from the quadratic integral (a) and that of vis viva 

of (A) (when the latter exists). In order to discuss that point, we first place ourselves under the 

hypothesis in which the Qi are not derived from a potential. In order for the integral (p) to coincide 

with the integral (a), it is necessary and sufficient that one should have: 

 
2

2 21
12
( )

ds
U d V dt


− −   2 2 2

1 1( )a d V dt b dt − −  

 

(in which a1 and b1 are two certain constants), or rather, from (m): 

 
2 2 2 2

1 1 1 1 1( )ds dt U a b dt− + +  = 0 , 

 

which is an equality of the form: 

2

1dt  = 
2

21

1

ds
dt

U a
+

+
, 

 

which characterizes hypothesis II, in which the geodesics of ds2 coincide with a natural congruence 

h1 = a1 of (A1). 

 Now suppose that (A) possesses a force function U. Under what conditions will the integral 

(p) reduce to a combination of the integral (a) and that of vis viva? It is necessary and sufficient 

that one should have: 

 
2

2 21
12
( )

ds
U d V dt


− −   2 2 2 2 2

1 1 1( ) ( )a d V dt b ds U dt c dt − − − +  

 

(in which a1, b1, c1 are certain numbers), i.e.: 

 

2
2 1
1

1 1

ds
dt

U a
−

+
 = − 

2
2 21 1

1 1 1

b c
ds U dt

U a b

   
− −  

+   
 , 
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which is an equality of the form: 
2

2 1
1

1 1

ds
dt

U a
−

+
 = − 

2
2 2 ds

dt
U a


 

− 
+ 

 

 

that characterizes the particular case in which a natural congruence h = a of (A) and a natural 

congruence h1 = a1 of (A1) coincide.  

 Except for those two cases, the integral (p) will be distinct from the integral (a) and that of vis 

viva. 

 

 

 6. – We are now in a position to state the following conclusions: 

 

 When two systems (A) and (A1), in which the forces are not all zero, correspond (1), one can 

always pass from one to the other by a unique transformation of the form: 

 
2

1

2

dt

dt
 = 

2
2

1 2
( , , )k

d
q q V

dt




 
− 

 
 , 

 

in which the parentheses define a quadratic integral of (A), at least when it they do not reduce to 

a constant. 

 

 However, there are several cases to be distinguished: 

 

 1. The geodesics of ds2 and 2

1ds  coincide. This is the case in which dt1 =  (q1, …, qk) dt. 

Equations ( )A  and 1( )A , which are deduced from (A) and (A1) upon annulling the forces, admit a 

quadratic integral without the same thing being necessarily true for (A) and (A1). When the force 

in one of the systems, namely (A1), is derived from a potential, (A) will admit a quadratic integral. 

When there exists a force function in the two systems, each of them will admit a second quadratic 

integral in addition to the vis viva integral. 

 

 2. At least one of the two systems, say A1, admits a potential, and a natural congruence h1 = 

a1 for (A1) coincides with the geodesics of ds2. 

 

 One will get back to the first case by replacing (A1) with the system: 

 
2

1
1 1 2

1 1 1

1
( ) ,

ds
U a

dt U a

 
+ 

 + 
 

 

 
 (1) It is clear that one can permute (A) and (A1) in these statements, since (A) and (A1) play a symmetric role.  
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with the aid of a Darboux transformation. The system (A) admits a quadratic integral that is distinct 

from that of vis viva. The system: 
2

1
1 1 2

1

( ) , 0i

ds
U a Q

dt

 
+ = 

 
 

 

will also admit a quadratic integral. Finally, if (A) possesses a potential then (A1) itself will admit 

a quadratic integral that is distinct from that of vis viva. 

 

 3. The forces on (A) and (A1) are derived from potentials U and U1, resp., and two natural 

congruences h = a, h1 = a1 of (A) and (A1), resp., coincide. One will get back to the first case with 

the aid of a double Darboux transformation. The two systems (A) and (A1) possess a second 

quadratic integral, along with that of vis viva. 

 

 4. (General case). None of the preceding particular hypotheses are verified. The two systems 

(A) and (A1) have quadratic integrals that are distinct from that of vis viva. If the forces of (A1) 

are derived from a potential then (A) will admit two distinct quadratic integrals. There also exists 

a force function for (A), so the two systems will admit three distinct quadratic integrals, 

respectively, when one includes the vis viva. 

 

 By definition, the first three cases come down to the case in which there is a correspondence 

with preservation of the geodesics. All of the results that were obtained in Chapter II then apply to 

those two cases. On the contrary, the fourth one is completely distinct from the one that was treated 

in Chapter II. 

 

 

II. – COROLLARIES TO THE PRECEDING THEOREMS. 

 

 7. – I would like to complete the preceding results with some important remarks. 

 

 We have said that if one of the corresponding systems (A) and (A1) admits a force function then 

the same thing will not be true for the second one, in general. However, let us accept the hypothesis 

in which U and U1 exist simultaneously. 

 We know (see Chapter I, pp. 28) that every natural congruence h = a of (A) (in particular, the 

congruence of geodesics h = ) coincides with a natural congruence h1 = a1 of (A1). As we shall 

see, that transformation is the only one that enjoys that property. In other words, if (A1) is not an 

ordinary correspondent of (A) then an arbitrary natural congruence h = a of (A) will not coincide 

with a natural congruence of (A1), but in fact with a congruence that is obtained by taking a (2k− 

3)-parameter congruence in each congruence h1 = a1. One can even go further and show that there 

exists no natural congruence h = a of (A) that coincides with a natural congruence of (A1), in 

general, and there never exist more than one. 

 First of all, if a congruence h = a exists then one will necessarily find oneself in one of the first 

three cases that were listed above, and one can always place oneself in the first case, which is the 
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one in which the two natural congruences that coincide are geodesic congruences, h = , h1 = , 

by appealing to the Darboux transformation. I say that there cannot exist a second congruence h = 

a that coincides with a congruence h1 = a1 unless (A1) is not an ordinary correspondent of (A). 

 Indeed, if that were the case then one would need to have, at the same time: 

 

1dt

dt
 =  (q1, q2, …, qk) 

and 
2

2 1
1

1 1

ds
dt

U a
−

+
 = 

2
2 2 ds

dt
U a


 

− 
+ 

 , 

 

which are equalities that demand the conditions: 

 

2   
2 , 

2

1

1 1

ds

U a+
 = 

2
2 ds

U a


+
 

 if they are to be compatible. 

 However, as we have seen, if two corresponding ds2 have the form ds2 and 
2 2ds  then   

will necessarily be a constant, and the two corresponding systems will be two ordinary 

correspondents. The proposition is thus proved. 

 By definition, in the first three cases of no. 6, there exists one and only one natural congruence 

h = a of (A) that is also a natural congruence of (A1). It does not exist in the general case (1). 

 With that, we return to the problem that consists of recognizing whether 
2ds   (U + h) ds2 

admits a (non-similar) correspondent: 

 
2

1ds   
1 2( , , , , )ij k i jA q q q h dq dq  

for each value of h. 

 Is it possible that the system 
2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 is attached to a system (A1) that is independent of 

h in the same way that the system 
2

2
, 0i

ds
Q

dt

 
= 

 
 is attached to (A)? In other words, can 2

1ds  have 

the form 2

1 1 1( )U h ds+ , where h1 is a certain function of h that does not depend upon U1, 
2

1ds ? That 

will never be true, because otherwise the systems 
2

2
,

ds
U

dt

 
 
 

 and 
2

1
12

1

,
ds

U
dt

 
 
 

 would be two non-

ordinary correspondents, and any natural congruence of the one would be a natural congruence of 

 
 (1) I shall insist upon this point, which derives its importance from the theory of groups of transformations of 

trajectories and which gave rise to a discussion between Liouville and myself. Liouville thought that he had proved 

that for k > 2, every natural congruence of (A) is always a natural congruence of (A1) (see Comptes rendus, 31 October 

1892). In reality, the preceding considerations show that this it never true. 
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the other. The search for 2

1ds  is then completely distinct from the search for correspondents to 

(A). 

 

 

 8. – In this chapter, we built upon some propositions that were obtained previously, and in 

particular this one: 

 

 In order for two systems (A) and (A1) to be correspondents with preservation of the geodesics, 

it is necessary and sufficient that one can pass from (A) to (A1) with the aid of the transformation: 

 

1dt

dt
 =  (q1, q2, …, qk) . 

 

 It is quite easy to prove that proposition by appealing to the relation that exists in any case 

between dt and dt1 when (A) and (A1) are two correspondents for which the forces are not zero. 

That relation can be written: 
2 2

1

2 2

1 1

dt dt
M

dq dq
−  = 

2

2

1

d

dq


 . 

 

 We know that the geodesics of ds2 define a (2k – 2)-parameter congruence of trajectories of 

(A) that satisfies the condition that dt / dq1 = 0 (or that 
2

2 2
1 22

1 1

d q dq

dq dq
+  −   = 0). In order for the 

geodesics of ds2 and 2

1ds  to coincide, it is therefore necessary and sufficient that the conditions 

1

1

dt

dq
 = 0 and 

1

dt

dq
 = 0 are equivalent. Since one has: 

2 2

1

2 2

1 1

dt d

dq dq

 
−  = 0  

 

for 
1

dt

dq
 = 0, it is necessary and sufficient that 

2

2

1

d

dq


 should be identically zero, and as a result, 

that 

2

1dt

dt

 
 
 

 = M (q1, q2, …, qk). We will then know (see no. 3 of this Chapter, pp. 55) that M  

2

1
2 1
0

k

C
+ 

 
 

. Q. E. D. 

 

 That will permit us to recover the theorem that was proved in the first chapter and to which we 

have often had recourse: If the systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

2

1

, i

ds
C Q

dt

 
 

 
  are correspondents then one 
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will necessarily have 1Q  = c Q1, …, kQ  = c Qk . Indeed, the geodesics of ds2 and C ds2 will 

coincide, so one will have: 

1dt

dt
 = 

1

1
1

0

k

C
+ 

 
 

 = 1
0

k

kC C + , 

and on the other hand: 
2

1k
i +  = 

2

2 1
0 1

k
iC  + , 

so 

i = 
2

2 1
0

k

k
i C C + , 

and since: 

i = ij j

j

a Q  and i   = 
1

ij j

j

a Q
C

 , 

one will find that: 

  iQ  = 
1

2 1
0

1
ik

k

Q

C C
−

+

 , iQ  = c Qi , 

 

and if one replaces C0 with a function of C and c in dt1 / dt then: 

 

1dt

dt
 = 

C

c
 . 

 

 Those are, in fact, the results that were obtained before. 

 

 

 9. – We likewise proved in Chapter II that two systems 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 cannot be 

correspondents for two distinct systems of associated forces, say, Qi and iQ , on the other hand, 

and (Qi) and ( )iQ , on the other, without the geodesics of ds2 and 2

1ds  coinciding (at least, when k 

exceeds 2). 

 Here is a new proof of that theorem that gives us, at the same time, some results for k = 2. 

 Assume that the geodesics ds2 and 2

1ds  do not coincide. For the systems 
2

2
, i

ds
Q

dt

 
 
 

 and 

2

1

2

1

, i

ds
Q

dt

 
 

 
 , we have the relation (see pp. 50): 

 

(1)   2 2

1 1 1 1 1( ) ( )i i i idt dq dq dt dq dq    − − −  = 1 1 1( ) ( )i i idq dq  −  −  −    Si , 
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in which the  are quadratic forms in dq1, dq2, …, dqk that depend upon only ds2 and 2

1ds . We 

know, moreover, that one necessarily has: 

i

i



 
 = 1

1



 
 , 

 

that the right-hand side Si of (1) is divisible by: 

 

(i dq1 – 1 dqi) , 

 

and that the quotient, namely 2d , is the same for all i. Similarly, one has from 
2

2
, ( )i

ds
Q

dt

 
 
 

 and 

2

1

2

1

, ( )i

ds
Q

dt

 
 

 
 that: 

 
2 2

1 1 1 1 1( ) ( )i i i idt dq dq dt dq dq    − − −  = 1 1 1( ) ( )i i idq dq  −  −  −  , 

 

and analogous remarks will apply to that equality. 

 Having recalled that, I shall now say that if k exceeds 2 then one will necessarily have: 

 

  1

1




 = i

i




   (i = 1, 2, …, k). 

 

 Indeed, let 1

1




  2

2




. At least one of those ratios will be different from 3

3




, say, 1

1




. The 

binomial (2 dq1 – 1 dq2) divides S2 [viz., the right-hand side of (1) for i = 2], and since it is prime 

for (2 dq1 – 1 dq2), it must divide 
2d . For the same reason, (3 dq1 – 1 dq3) also divides 

2d . 

One must then have: 

 

S2 = M (q1, …, qk) (2 dq1 – 1 dq2) (2 dq1 – 1 dq2) (3 dq1 – 1 dq3) , 

 

and similarly: 

S2 = N (q1, …, qk) (2 dq1 – 1 dq2) (2 dq1 – 1 dq2) (3 dq1 – 1 dq3) . 

 

 That double equality is possible only if 3

1




 = 3

1




, which is contrary to the hypothesis.  One 

will then have: 

1

1




  2

2




  …  k

k




. 

 On the other hand, the expression: 
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2
2

3
1 1

1 1

k dt

dt





+   
   

   
 

 

is a first integral of (A), so the expression: 

 
2

3
1 2

1 1 2
1 1 2

1

k S

dq dq



 




+ 
 

    − 
 

  

2
23

1

1 1 1

k d 

 

+  
 

 
 

 

is an integral of the system 
2

2
, 0i

ds
Q

dt

 
= 

 
. The same thing is true for the expression: 

2
23

1

1 1 1

k d 

 

+  
 

 
. 

That is possible only if one has: 
2

3
1

1 1

1 k

 

+ 
 

  
  

2

3
1

1 1

kC 

 

+ 
 
 

. 

 

 Upon permuting the systems (A) and (A1), one will likewise find that: 

 
2

3
1

1 1

1 k

 

+ 
 

  
  

2

3
1

1 1

kC 

 

+ 
 

  
, 

 

and one infers from those two equalities that: 

 

1 = c 1 , 1   = 1c    . 

 Finally, since: 

i = ij j

j

a Q   and i = ( )ij j

j

a Q , 

one will have by definition: 

 

1

1

( )Q

Q
 = 2

2

( )Q

Q
 = … = 

( )k

k

Q

Q
 = c , 1

1

( )Q

Q




 = 2

2

( )Q

Q




 = … = 

( )k

k

Q

Q




 = c . 

 

The systems of forces (Qi) and ( )iQ  are not distinct from the systems Qi and iQ .  Q.E.D. 
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 The last part of the proof persists when k = 2. As a result, when 1

1




 = 2

2




 the common value 

of those two ratios is necessarily a constant. However, one can no longer establish, as before, that 

those ratios are identical. The argument that was employed shows only that: 

 

S2  M (E dq1 + F dq2) (2 dq1 – 1 dq2) (2 dq1 – 1 dq2) . 

 

Thus, the system 
2

2
, 0i

ds
Q

dt

 
= 

 
 necessarily admits two distinct quadratic integrals, in addition to 

that of vis viva, namely, two integrals of the form: 

 

 (E dq1 + F dq2) (1 dq2 – 2 dq1) = 2C dt  

and 

 (E dq1 + F dq2) (1 dq2 – 2 dq1) = 2C dt . 

 

Similarly, the system 
2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 admits two integrals of the same form. It follows from this 

that the systems 
2

2
, 0i

ds
Q

dt

 
= 

 
 and 

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 cannot correspond for more than three systems 

of distinct forces. If three such systems exist, say, Qi and iQ , (Qi) and ( )iQ , [(Qi)] and [( )]iQ , then 

the systems  
2

2
, 0i

ds
Q

dt

 
= 

 
 and 

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 will admit three distinct linear integrals, 

respectively, and as a result, ds2 and 2

1ds  will be the ds2 for a surface of constant curvature. I shall 

conclude my discussion of the particular case of two parameters here, since its study presents no 

further difficulties and will be developed completely in another article. 

 

 

 10. – As the last corollary to the general theorem, we shall finally prove this important 

proposition: 

 

 Let 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
Q

dt

 
 

 
 be two non-ordinary correspondents. It is impossible for the 

condition 2

1ds    (q1, …, qk) ds2 to be fulfilled. 

 

 First of all, observe that this condition is realized for the ordinary correspondents because one 

will then have either 2

1ds   C ds2 or 2

1ds   C (U + h) ds2, in which U denotes the potential for Qi . 

The theorem says that those correspondents are the only ones that enjoy that property. 
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 That will be obvious when the geodesics coincide, as we have remarked before, because  (q1, 

q2, …, qk) = const. must be an integral of the geodesics, and as a result, will reduce to a constant. 

Here is a proof that embraces all of the other cases. 

 Assume that 2

1ds  is equal to  ds2, and write out one of equations (A) and one of equations 

(A1): 

(A)      

2

2
1

k
j

ij i

j

d q
A N

dt=

+  = Qi  (i = 1, 2, …, k) 

and 

(A1) 

2

2
1 1

( )
( )

( )

k
j

ij i

j i i

d q T d
A N T

dt q dt q

 

=

 
+ + −

 
  = iQ




 . 

 

 represents log , and (T) is what T will become when one replaces iq  with ( )iq   dqi / dt1 . It 

follows from this that if one lets aij denote the minor of  relative to the element Aij and divides by 

 then one will have: 
2

2

1

jd q

dt
 = 

1 11

( )
( ) ( )

( )

k k

i ij ij i

j ji i

d T
P a T a

dt q q

 


= =

 
− + +

 
  . 

 

However, from the equalities pi = / iT q  , one will have precisely: 

 

iq  = ij j

j

a p , thus  iq   
ij

j j

T
a

q




 , 

 

in such a way that upon setting Bi = 
ij

j j

a
q




 , one can write: 

 
2

2

1

jd q

dt
 = 

1

( ) ( ) ( )i i i i

d
P q T B

dt


 − + +  . 

 

 The relation between dt and dt1 here is then: 

 

 2 2

2 1 1 2 1 2 1 1 2( ) ( )dt dq dq dt dq dq    − − −  

 

= (1 – 1 + d dq1 – B1 ds2) dq2 − (2 – 2 + d dq2 – B2 ds2) dq1 

  = ds2 (B2 dq1 – B1 dq2) . 
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 The binomial (2 dq1 – 1 dq2) must divide the right-hand side (1). It cannot divide ds2 (when 

k is greater than 2) because its discriminant is not zero. The relation between dt1 and dt then has 

the form: 
2

1dt  = 2 2( )M ds V dt− , 

 

which characterizes hypothesis II, in which the geodesics of (U + a) ds2 and those of 2

1ds  coincide, 

where U denotes the force function of (A), which necessarily exists then, and a is a certain finite 

constant. 

 Upon permuting the two systems, one will likewise see that the geodesics of ds2 coincide with 

the geodesics of (U1 + a1) 
2

1ds , where U1 denote the force function of (A), which necessarily exists, 

and a1 is a certain finite number. That double circumstance (from the theorem of no. 7) can present 

itself only under the Darboux transformation.  Q.E.D. 

 

 For the two-parameter systems, it is not impossible that 2 dq1 – 1 dq2 might divide ds2. I 

observe only that the ds2 will then be necessarily the ds2 of an imaginary surface. One sees 

immediately that ds2 (and 2

1ds ) are two of Lie’s ds2, because if one reduces those ds2 to the form 

1 2dq dq  then the system will possess a quadratic integral such as dq1 (m dq1 + n dq2) = 2C dt , 

which characterize Lie’s ds2. I shall confine myself to those indications in the case of two 

parameters, which is very easy to treat directly and which I shall discuss in a later article. 

 

 

III. – SUFFICIENT CONDITIONS FOR A SYSTEM (A) TO ADMIT CORRESPONDENTS. 

GENERAL EQUATIONS FROM THE CALCULUS OF VARIATIONS. 

 

 11. – From the preceding, when a system (A) or 
2

2
, i

ds
Q

dt

 
 
 

 possesses a non-ordinary 

correspondent 
2

1

2

1

, i

ds
Q

dt

 
 

 
, the two systems 

2

2
, 0i

ds
Q

dt

 
= 

 
 and 

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
, respectively, admit a 

quadratic integral. Nonetheless, in certain cases, one must substitute the system 
2

2
( ) , 0i

ds
U a Q

dt

 
+ =  

 in the statement of one of those systems – the first one, for example. The 

existence of a quadratic integral for 
2

2
, 0i

ds
Q

dt

 
= 

 
, or even 

2

2
, i

ds
Q

dt

 
 
 

, is not a sufficient condition 

for (A) to possess a correspondent, moreover. That is why the system (A), which Jacobi 

encountered, in which ds2 is equal to 2

1

( )

( )

k
i

i

i i

F q
dq

f q=


  (see Chap. II, pp. 45) and U = 

( )

( )

i i

i

q

F q




 , 

 

 (1) If the right-hand side is identically zero then one will have 
2

1
dt  = 

2 2
dt , and the geodesics will coincide.  
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admits a complete system of quadratic integrals without possessing non-ordinary correspondents, 

in general. 

 In order to form sufficient conditions, one procedure consists of expressing the idea that one 

can pass from (A) to (A1) by a transformation of the form: 

 
2

1dt  = 2 2d wdt − . 

 

 Those conditions take a form that is much more complicated than in the case of zero forces. 

However, one can simplify them considerably by immediately taking into account the necessary 

conditions that are already known: 

 

 1. 1

1






  1 1( ) idq −   . 

 

 2. The expression 1 1 1( ) ( )i i idq dq  −  −  −   is divisible by 1

1

i dq



 – dqi , and the quotient  

is independent of i . 

 

 3. 

2
23

21 1

1 1 1 1

k d
dt

 

  

+    −
+   

    
 is an integral of (A), and 

2
23

21 1 1
1

1 1 1

k d
dt

 

  

+   
+   

   
 is an 

integral of (A1). 

 

 In order for there to be a correspondence that preserves geodesics, it is necessary that 
2d   

0, i.e., that one must have: 

1 1 1( ) ( )i i idq dq  −  −  −    0 , 

 

which are new conditions that must be added to the preceding ones. However, one can demand to 

know whether those conditions are not necessarily consequences of the former ones. In other 

words, whether the correspondence with preservation of geodesics (or at least, of a natural 

congruence) is not the only one possible. That is not the case, and in order to assure oneself of that 

by a simple means, one can construct an example. I shall cite only the following one: The two 

systems: 

[T, U] and [T1, U1], 

in which: 

T = 

2 2 2
dx dy dz

dt dt dt

     
+ +     

     
,  U = g z , 

and in which: 
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T1  

2 2 22
2

4 2

1 1 1 1

1 4
1 2 4

dx z dx dy dx dy z dy dz
y x y

x dt x dt dt dt dt x dt dt

       
+ + + − + +       

        

 , 

U1 = 
2

g z

x
 

 

are correspondents. Their trajectories are parabolas with their axes parallel to Oz. No natural 

congruence h = a of (A) is a natural congruence h1 = a1 of the second system. Observe that those 

two systems are, at the same time, homologous. One passes from one to the other by changing x 

into 1 / x, y into y / x, z into 2/z x , and setting t = t1 . That change of variables will transform 

parabolic trajectories into themselves. 

 If one then forms the sufficient conditions that I just indicated for (A) to admit a correspondent, 

the systems that correspond to those conditions will include the ones that satisfy the conditions 

that the geodesics (or natural congruence) are preserved, moreover, as special systems. On the 

other hand, it is very easy to find correspondent ds2 as a result of the systems (A) that admit 

correspondents that have the same geodesics. Finally, one effortlessly deduces correspondents that 

possess a common natural congruence from those systems. The four cases that we have listed in 

no. 6 can indeed present themselves then. 

 

 

 12. – I shall return to the sufficient conditions in question elsewhere. I shall conclude these 

generalities by remarking that they can be extended to arbitrary equations that are provided by 

the calculus of variations. Consider a function: 

 

1 2 1 2( , , , , , , , )k kf q q q q q q    

 

that is subject to only the condition that its Hessian relative to the iq  is not zero, and write the 

equations: 

()    
i i

d f f

dt q q

 
−

 
 = Qi (q1, q2, …, qk) , 

idq

dt
 = iq  (i = 1, 2, …, k). 

 

 If a second analogous system (1) defines the same trajectories then one can pass from (1) to 

() by a transformation: 

1dt

dt
 = 1 2 1 2( , , , , , , , )k kq q q q q q    , 

 

so one can deduce a first integral of () [and (1)], in general. In the case where that integral 

reduces to an absolute constant, one will, in general, know an integral of the system () when one 

has annulled the Qi . When f is homogeneous in 1q , 2q , …, kq , and of degree m (m  0 and 1), the 

analogy with the Lagrange equations will be almost complete: It is then appropriate to further 
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distinguish two cases according to whether all of the Qi, iQ  are or are not zero. The latter case 

decomposes into four other ones, according to the classification of no. 6. 

 

 

IV. – GENERAL CONSEQUENCES AND PARTICULAR APPLICATIONS OF THE 

PRECEDING THEOREMS. 

 

 13. – I shall confine myself here to briefly indicating some of the most important consequences 

of the theorems that I just established, and also some applications that will show the ease by which 

they follow from those generalities. 

 First of all, we know that a non-ordinary correspondent (A1) to (A) is attached to a certain 

quadratic integral of either (A) or one of the systems 
2

2
, 0i

ds
Q

dt

 
= 

 
 or 

2

2
( ) , 0i

ds
U a Q

dt

 
+ = 

 
. Once 

that integral is known, the calculation of the correspondent (A1) will offer no further difficulty. 

Now, under the most favorable hypothesis, the determination of the quadratic integrals of (A) will 

depend upon a complete linear differential system. The determination of the correspondents of a 

given system (A) will never require the integration of a linear equation then. 

 In particular, if one would like to solve the problems I and II in the Introduction then one must 

distinguish those two of the 2

1ds  that are homologues of ds2 and calculate the transformations of 

passage from ds2 to 2

1ds . That search introduces only linear equations, moreover. In particular, 

the calculation of the transformations qi = i (r1, …, rk) that present the trajectories of a given 

system will never demand the integration of a complete linear system. 

 

 

 14. – We shall now insist upon the particular problem that was stated at the beginning of the 

Introduction: If a system (A) is given then does there exist a system (A1) that defines the same 

motion? In order for that to be true, it is necessary and sufficient that there should exist a relation 

of the form dt1 / dt = 0 between dt and dt1. If the forces Qi, iQ  are zero then in order for the two 

motions to coincide, it is therefore necessary and sufficient that (A) and (A1) should be two 

correspondents for which   C 1, where C is a constant. If the forces Qi, iQ  are not all zero then 

it is necessary and sufficient that (A) and (A1) should be two correspondents whose geodesics 

coincide and are such that   C 1, moreover. One will then have i = i   and dt1 / dt = 1 for one 

of the systems 1[ , ]iT cQ . 

 It follows from this that in order to find all of the desired systems (A1), one must determine all 

of the ds2, say dS2, that have the same geodesics and the same discriminant as ds2. Any system of 

forces Qi will correspond to a system of forces iQ  (and only one) such that the two motions that 

are defined by 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

1

2

1

, i

ds
C Q

dt

 
 

 
 will coincide. (C is an arbitrarily-chosen number.) 



Painlevé – On the transformation of the equations of dynamics. 76 

 

 One easily sees that the ds2 of the surfaces of constant curvature will admit such correspondents 
2

1ds , and that the same thing will be true for the ds2 of the surface of constant curvature in (k + 1)-

dimensional space. For k = 2, there exist no other ds2 that enjoy that property, but for k > 2, that is 

no longer true. Liouville (1) has determined all of the ds2 in three variables such that the motion 

that is defined by 
2

2
, 0i

ds
Q

dt

 
= 

 
 can also be defined by a second system 

2

1

2

1

, 0i

ds
Q

dt

 
 = 

 
 and are 

such that the discriminants  and 1 of ds2 and 2

1ds , resp., are identical, moreover. From the 

preceding, the latter condition is useless and will revert to the former. The ds2 that Liouville 

determined thus constitute all of the ds2 in three variables such that the motion that is defined by a 

system 
2

2
, i

ds
Q

dt

 
 
 

 can also be defined by another system 
2

1

2

1

, i

ds
Q

dt

 
 

 
 that is distinct from the first 

one. 

 

 

 15. – We also return to problem II in the Introduction: “If one is given the system (A) or 
2

2
, i

ds
Q

dt

 
 
 

 then determine the forces iR   such that if one substitutes them for the Qi, the new 

trajectories will be deduced from the first one by changing qi into i (q1, q2, …, qk).” The 

trajectories of 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

2

1

, i

ds
R

dt

 
 

 
 include a common congruence, namely, the geodesics of 

ds2. Two cases must be distinguished according to whether that congruence does or does not 

transform into itself when one changes qi into i (q1, q2, …, qk). We shall deal with only the former 

case. 

 The transformation qi = i and its inverse will then replace ds2 with two homologous ds2, say 

2ds  and 2

1ds (2), whose geodesics coincide with those of ds2. As a result, any system 
2

2
, i

ds
Q

dt

 
 
 

 

will possess a correspondent of the form 
2

1

2

1

, i

ds
Q

dt

 
 

 
. The homologue that is deduced from that 

correspondent by changing the qi into i (q1, q2, …, qk) has the form 
2

2

1

, i

ds
R

dt

 
 

 
, and the forces iR   

will be appropriate to the problem. 

 

 
 (1)  See the Comptes rendus, April 1891. 

 (2) 
2

1
ds  can coincide with ds2, moreover. 
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 Therefore, if the geodesics of ds2 admit a transformation qi = i into themselves then any system 

of forces Qi will correspond to forces iR   such that the trajectories that are defined by 
2

2

1

, i

ds
R

dt

 
 

 
 

are deduced from the trajectories that are defined by 
2

2
, i

ds
Q

dt

 
 
 

 by changing qi into i (q1, q2, …, 

qk). 

 

 

 16. – Regardless of whether the geodesics are or are not preserved, is it possible that the 

transformation qi = i might be conformal, I would like to say that it changes ds2 into  (q1, q2, …, 

qk) ds2 ? If that were true then the inverse of that transformation would replace the system 
2

2

1

, i

ds
R

dt

 
 

 
 with a correspondent to A, say 

2

1

2

1

, i

ds
Q

dt

 
 

 
, in which 2

1ds    ds2. It would then be 

necessary that one should have either 2

1ds  = C ds2 and iQ  = c Qi or rather 2

1ds  = (a U + b) ds2 and 

U1 = C / (a U + b). One thus determines all of the ds2 from the form C ds2 or the form 
2( )aU b ds+  

(when U exists), which are homologues of ds2, and all of the transformations of passage qi = i . If 

one takes iR   = 
1

1

( , , )
k

j

j k

j i

C Q
q


 

=




  for the first case, and if one changes the qi into i (q1, q2, 

…, qk) in C / (a U + ) for the second one then one will get forces iR   or a force function U   such 

that the trajectories of 
2

2

1

, i

ds
R

dt

 
 

 
 or 

2

2

1

,
ds

U
dt

 
 

 
 are deduced from those of the first by a conformal 

transformation. 

 For example, let ds2 = 
2 2dx dy+ . In addition to the common transformation that is defined by 

the equality x + i y = (A + i B) (x1  i y1) + C + i D, there will exist other conformal transformations 

that make the trajectories of 
2

2
, i

ds
Q

dt

 
 
 

 pass to the trajectories of 
2

2

1

, i

ds
R

dt

 
 

 
 if U exists and satisfies 

the condition 
2 2

2 2

log logU U

x y

 
+

 
  0 . Then set: 

− 1
2

log U + i V = 1log
df

dz
 + A + i B , 

 

in which f1 represents an analytic function of z = x + i y. The equality z1 = f1 (z) defines two 

functions x =  (x1, y1), y =  (x1, y1) . Let U   be what the expression C / U will become when one 

changes x and y in it into  (x, y) and  (x, y), resp. The trajectories of the system 
2

2

1

,
ds

U
dt

 
 

 
 are 



Painlevé – On the transformation of the equations of dynamics. 78 

 

deduced from those of the system by changing x and y into  (x, y) and  (x, y), resp. That is a 

theorem of Goursat (1). 

 

 

 17. – An application of some of the preceding remarks will allow one to effortlessly recover 

all of the results that were obtained by the various authors that dealt with the particular 

corresponding systems. For example, the geodesics of ds2  2 2dx dy+  admit the group of 

homographic transformations in two variables. From the theorem in no. 15, each system of forces 

Qi will correspond to forces iR   such that the trajectories of 
2

2
, i

ds
Q

dt

 
 
 

 and 
2

2

1

, i

ds
R

dt

 
 

 
 are deduced 

from each other by an arbitrary homographic transformation that was given in advance. The 

formulas of passage result immediately from the formulas that were established in Chapter II (pp. 

40) on the correspondences that preserve geodesics. One will then recover the well-known results 

of Appell. 

 It is clear that the same conclusions will apply to the ds2 in two variables whose geodesics 

admit the most general homographic transformation. What are those ds2 ? Since their geodesics 

are straight lines A q1 + B q2 + C = 0, those ds2 will be correspondents to 
2 2dx dy+ , and as a result 

will possess three infinitesimal transformations into themselves (see Chap. III, Section V, pp. 61): 

From a theorem of Lie, those are the ds2 of surfaces of constant curvature. On the other hand, one 

sees immediately on the sphere and the pseudosphere that any surface of constant curvature is 

geodesically representable on the plane. It results from that single remark (Chap. II, Section VI, 

pp. 39) that any motion on a surface of constant curvature corresponds to a planar motion, and 

that the surfaces of constant curvature are the only ones that enjoy that property. One knows of the 

work of Paul Serret, Appell, and Dautheville on that question. 

 All of those remarks can be repeated without modification for the ds2 that have the form 
2 2

1 kdx dx+ +  and the ds2 of the surfaces of constant curvature in (k + 1)-dimensional spaces. 

 However, the generalities that were developed in this article include many other applications 

that are entirely new. That is how they permit one to completely explain the question of 

correspondents for k = 2 by forming all of the types [with the help of some recent work of Kœnigs 

(2)], and as a result, to determine the groups of transformations of the trajectories. The latter study 

can be performed by a direct procedure, moreover. In a later article, at the same time that I will 

return to the sufficient conditions for there to exist correspondents, I will treat the most important 

applications in detail, and especially the ones that are concerned with systems with two and three 

parameters. 

 

__________ 

 

 
 (1) See the Comptes rendus (April 1889) and the note by Darboux that followed that of Goursat.  

 (2) See the Annales de la Faculté des Sciences de Toulouse (1893).  


