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§ 1.  Introduction  

 
It is well known that Kaluza and Klein have succeeded in formulating field laws of 

gravitation and electricity (at least, in the absence of charges and ponderable masses) in a 
unified way, and, in addition, presenting the law of motion for a charged mass point as a 
geodetic line in the five-dimensional continuum.  This achievement of putting the 
foundations of physics on a geometrical footing stands in stark contrast with the 
following shortcomings, which keep many theoreticians from accepting the idea of a fifth 
dimension: 

1.  It must be formulated in such a way that the component gµν of the five-
dimensional metric tensors shall not depend upon the fifth coordinate x5, i.e., they shall 
be functions of only the first four coordinates.  By means of this additional condition - the 
so-called cylinder condition – disturbs the general covariance of the theory, and the fifth 
coordinates appears to be an artificial appendage that must ultimately disappear.  The first 
ten components of gµν, namely, gik with i, k = 1, …, 4, can be identified with the ordinary 
metric tensor, and the four extra gi5 (i = 1, …, 4) components can be identified with the 
electromagnetic potentials (up to a numerical factor). 

2.  Since a physical interpretation of the component g00 can be attained, one must 
arbitrarily set  g00 = 1, which represents a new non-invariant condition.  This reduces the 
number of equations for the gµν from 15, which is expressed by the vanishing of the 
contracted curvature tensor, to the correct number, 14, namely, the 10 equations for the 
gik (i, k = 1, …4) and the 4 Maxwell equations.  (There then exist 5 differential identities 
between them.) 

An essential advance was then made by Einstein and Mayer. 1)  In this theory, the 
introduction of a fifth coordinate was completely absent, along with any cylinder 

                                                
 † Translated by D.H. Delphenich. 
 1)  A. Einstein and W. Mayer, Berl. Ber. (1931, pp. 541. 
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condition; rather, every point of the four-dimensional continuum was associated with a 
five-dimensional vector space.  A particular relationship between these vectors is then 
posed axiomatically, in the form of their parallel displacement and how it relates to the 
ordinary Riemannian parallel displacement of the ordinary vectors of the parallel 
displacement.  The electromagnetic potentials are completely absent from this theory, but 
only the field strengths. 

This theory also has certain formal imperfections that were not present in the Kaluza-
Klein formulation, but appeared for the first time in it, namely: 

1.  The field equations can not be derived from a variational principle.  From this, 
one infers that such field equations that satisfy important differential identities (which a 
variational principle automatically guarantees) seem a bit artificial, which is also 
expressed in the form of the field equations. 1) 

2.  The first system of Maxwell equations (which is equivalent to the possibility of 
deriving the field strengths from potentials) does not follow from the assumed structure 
of space in this theory, but must be postulated explicitly (in which it can generally be 
connected with the curvature). 

These imperfections are not very momentous in themselves, but one would not like 
to renounce the advantages that were already present in the Klein-Kaluza theory. 

Here, we now introduce another way of presenting the Klein-Kaluza theory, namely, 
the projective way.  In this presentation, the continuum is regarded as four-dimensional, 
but, as in projective geometry, five homogeneous coordinates (which will be denoted by 
Xµ, µ = 1, …, 5) will be introduced; i.e., all coordinates that differ by the same factor 
belong to the same point of the continuum.  All tensors (or, as one prefers to say in this 
case: “projectors”) must then be homogeneous functions (of various differing degrees) of 
the coordinates.  This way of regarding things was first applied to physics by Veblen and 
Hoffmann 2), and indeed, to the interpretation of the Klein-Kaluza theory.  However, 
these authors choose a formulation that, as a consequence of an unnecessary 
specialization of the coordinate system, distinguishes the fifth coordinate in a manner that 
is completely similar to the usual one that Klein-Kaluza introduced by the cylinder 
condition, and that therefore did not enter into the latter theory in an essential way. 

The advance made by van Dantzig 3) was to thoroughly examine projectors with 
homogeneous coordinates, along with their covariant differentiation by means of the 
three-index symbolsν

λµΓ , geodetic lines, and the invariant form: 

 
gµν X

µ Xν 
 
of the metric that was introduced with the fundamental tensor gµν  = gνµ .  Finally, 
Schouten and van Dantzig 4) gave a formulation to field theory with the help of this 
general projective differential geometry (here, we will next discuss only the classical part 

                                                
 1)  Cf., the transition from Pιp to Uιp in loc. cit, § 5, eq. (41). 
 2)  O. Veblen and B. Hoffmann, Phys. Rev. 36, pp. 810, 1931.  Summary by O. Veblen. 
Relativitätstheorie. Berlin, 1933.  Further literature is contain therein.  
 3)  D. van Dantzig, Math. Ann. 106. pp. 400. 1932. – Confer the geodetic lines, in particular; Amst. Proc. 
35.  pp. 524 and 534.  1932. 
 4)  J.A. Schouten and D. van Dantzig, Zeitschr. f. Phys. 78.  pp. 639. 1932; furthermore, Ann. Math. (3) 
34.  pp. 271. 1933.  Citations to the earlier works can be found in these works. 
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that corresponds to the absence of material particles) that combines all of the advantages 
of Klein-Kaluza and Einstein-Mayer, while avoiding all of the disadvantages.  The 
circumstance that all projectors depend homogeneously on the coordinates renders any 
particular cylinder condition superfluous.  Furthermore, the condition g55 = 1 of the 
Klein-Kaluza theory appears here in the invariant form: 
 

gµν X
µ Xν = ±1 , 

 
and can be stated as a normalization of the gµν .  The establishment of this condition by 
the variation: 

δ gµν X
µ Xν  = 0 

 
further reduces the number of field equations in a natural way to their correct number.  
The scalar curvature appears in the action integral as a Lagrangian function and is then 
varies with the gµν .  Finally, one does not need to introduce the electromagnetic 
potentials themselves into the theory, but they can be replaced (up to a numerical factor) 
by: 

Xµ = gµν Xν. 
 

The validity of the first system of Maxwell equations is then self-evident. 
We shall preserve these essential results of Schouten and van Dantzig here.  

Therefore, as far as the three-index symbolsν
λµΓ are concerned, we take the position that 

the symmetry requirement: 
ν
λµΓ = ν

µλΓ  

 
(which is satisfied for Klein-Kaluza and Veblen-Hoffmann) is the most natural one for 
these quantities.  Together with the requirement that the covariant derivatives of the gµν, 
it then leads to the usual expression: 
 

ν
λµΓ =

1

2

g g g
g

X X X
ρλ µρ λµνρ
µ ν ρ

∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

. 

 
More generally, Schouten and van Dantzig introduced asymmetric ν

λµΓ .  Since this 

increases the number of possible mathematical invariants without any benefit to the 
physical interpretation (the particular grounds for another specialization of the 
general ν

λµΓ that Schouten and van Dantzig maintained do not seem valid to us), we shall 

forego this gratuitous generalization here and mention it only incidentally (cf., the 
Appendix). 

The connection between projectors and ordinary tensors in inhomogeneous 
coordinates has a far-reaching formal analogy with the connection between tensors on 
five-spaces and those on the four-spaces of Einstein-Mayer.  In the form presented in § 4 
and § 6, this analogy is particular obvious. 

We must apologize for the fact that the classical part of the theory will be 
represented so comprehensively, although it deviates from the work of Schouten and van 
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Dantzig in several essential points.  On the one hand, this is done in order to have a 
certain foundation following section, and, on the other hand, in order to make 
understandable those specialized facts that are familiar from general relativity, but not the 
extended one that is discussed here. 

 
§ 2.  Definition of tensors with homogeneous coordinates 

 
 The description of an n-dimensional continuum by n + 1 homogeneous coordinates 

X1, …, Xn+1 can naturally permit only such transformations that make the new coordinates 
X µ′  homogeneous functions of the first degree of the old coordinates Xµ . 1)  That is: 

 
X µ′  = fν (X1, …, Xn+1) 

must satisfy: 
fν (ρX1, …, ρXn+1) = ρ fν (X1, …, Xn+1) , 

 
in which ρ is an arbitrary function of the Xµ .  According to the Euler homogeneity 
condition, this requirement is equivalent to: 
 

(1)    
X

X
X

ν
µ

µ

′∂
∂

= X ν′  . 

 
In order for us to now proceed to the definition of vectors, we next define a 

contravariant vector aν (a covariant vector bν, resp.) by the transformation laws: 
 

(2)    a ν′ =
X

a
X

ν
µ

µ

′∂
∂

 

(3)    bν′  =
X

b
X

µ

µν
∂

′∂
, 

such that: 
(4)    aν bν =a bµ

µ′ ′  = c 

is a scalar. 
For this reason, vector fields and scalar fields that are defined by homogeneous 

coordinates will be subjected to a further requirement that specifies, not their behavior 
under coordinate transformations, but their dependence on the coordinates in a fixed 
system of reference.  Namely, we will allow only those fields whose components are 
homogeneous functions of the coordinates.  This requirement is invariant under the 
homogeneous coordinate transformations (1) that are considered here, and, from this, the 
degree of the homogeneous functions that represent the field components remains 
invariant, since the coordinate transformations are homogeneous of first degree. 

For the sake of later applications, the components of a contravariant vector are 
always homogeneous of degree +1, those of a covariant vector are of degree −1, and 

                                                
 1)  Here, and in the sequel, Greek indices shall always range from 1 to n + 1, and Latin ones, from 1 to n .  
Later, corresponding to the four-dimensional spacetime continuum, we shall set n = 4, n + 1 = 5 . 
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scalars are of degree 0.  From (4), this convention is usually in harmony with the 
construction of scalars by contraction.  The following are then valid: 

 

(2a)    
a

X
X

ν
µ

µ
∂
∂

= aν 

(3a)    
b

X
X

µ ν
µ

∂
∂

= − bν
  

(4a)    
c

X
X

µ
µ

∂
∂

= 0 . 

 
It is a characteristic situation in the theory of homogeneous coordinates that these 

coordinates Xν themselves (not their differentials) define a (contravariant) vector field.  
Then, according to (1), they satisfy, in fact, the necessary conditions (2) for a 
contravariant vector field [whereas relations (2a) are obviously satisfied identically].  By 
contrast, the differentials dXν may not be used as a vector field, since they are not 
homogeneous functions of first degree in the coordinates. 

We can now easily generalize the definition of vector fields and scalar fields to 
arbitrary tensor fields.  A general mixed tensor: 

 
T µν

ρσ
⋅

⋅ ⋅ ⋅ ⋅  

satisfies the transformation law: 
 

(5)   T µν
ρσ

⋅
⋅ ⋅ ⋅ ⋅′ =

X X

X X

µ ν

µ ν

′ ′∂ ∂⋅
∂ ∂

. . . 
X X

X X

ρ σ

ρ σ
∂ ∂⋅

′ ′∂ ∂
. . . T µν

ρσ
⋅

⋅ ⋅ ⋅ ⋅ . 

 
Furthermore, it will be assumed that the components of the tensor field T µν

ρσ
⋅

⋅ ⋅ ⋅ ⋅  are 

homogeneous functions of the Xν, and also of degree r, which is equal to the difference 
between the number of upper and lower indices of T µν

ρσ
⋅

⋅ ⋅ ⋅ ⋅ .  One then has: 

 

(5a)    a

a

T
X

X

µν
ρσ

⋅
⋅ ⋅ ⋅ ⋅∂

∂
= rT µν

ρσ
⋅

⋅ ⋅ ⋅ ⋅ . 

 
It should be remarked that the volume element: 
 

dX1 dX2 … dXn+1 
 

(as opposed to the differentials dXν themselves) can possibly vanish.  If it is multiplied by 
the transformation: 
(6)    X µ′  = ρ Xµ , 
 
in which r is an arbitrary homogeneous function of null degree of the Xν, such that: 
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(6a)    X
X

ν
ν

ρ∂
∂

= 0 , 

and similarly for ρn+1. 
Proof:  The assertion is equivalent to the statement that under the transformation (6) the determinant: 
 

D (ρ) = X

X

µ

ν

′∂
∂

 = X
X

µ µ
ν ν

ρρδ ⋅
∂+

∂
 

 
has the value ρn+1, or the statement that: 

f (ρ) = 1

1
nρ + D (ρ) = 1

X
X

µ µ
ν ν

ρδ
ρ⋅

∂+
∂

 

has the value 1 . 
In order to prove this, we consider: 

f (t) ≡ f (ρt ) = 1
X

X
µ µ
ν ν

ρδ
ρ⋅

∂+
∂

 

 
to be a function of t.  This function has the following properties: 
 
  a)  f (0) = 1 ,  f (1) = f (ρ) 
  b)  (0)f ′ = 0 . 

One then has: 

(0)f ′  =
0

1 1
lim 1
t

tX
t X

µ µ
ν ν

ρδ
ρ⋅→

 ∂+ − ∂ 
=

1
X

X
ν

ν
ρ

ρ
∂

∂
, 

which vanishes, from (6a); 
 
  c)  f (t1 + t2 ) = f (t1) f(t2), 
 
which follows directly from the definition of f (t) and the multiplication laws for determinants.  From this, 
it further follows that: 

( )f t′ = f(t) (0)f ′ , 

hence, from (b): 
( )f t′  = 0 , f(t) = const. = f(0) = 1 . 

Thus: 
D (ρ) = ρn+1  f(1) = ρn+1    Q.E.D. 

 
The possibility of defining a meaningful volume element from homogeneous 

coordinates is important for the physical applications, since it allows one to define 
variational principles. 

 
§ 3.  Metric.  Connection with inhomogeneous coordinates. 
Decomposition of homogeneous tensors into affine parts. 

 
We introduce a metric tensor gµν in our space that satisfies the usual symmetry 

condition gµν = gνµ and distinguishes the quadratic form: 
 

gµν X
µ Xν = F . 
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Corresponding to our convention, gµν is homogeneous of degree −2 and the scalar F is 
homogeneous of null degree.  Physics gives us a specialization of this Ansatz, in which 
the scalar F is set equal to a constant.  This constant can then be normalized to +1 or −1, 
such that we can set: 
(7)    gµν X

µ Xν = ε (ε = +1   or −1). 
 
One can also express this in such a way that only the quotients gµν /F, in which F = 
gµνX

µXν, shall enter into the equations thus defined.  This specialization is analogous to 
the convention that g55 = 1 in the Klein-Kaluza theory.  This specialization may seem 
arbitrary from a geometrical standpoint, but it is, in any event, an advantage of the use of 
homogeneous coordinates that the specialization can be formulated in an invariant way.  
The metric tensor can therefore be used to raise or lower tensor indices in an invariant 
manner. 

For physical applications, it is essential for us to possess a method for deriving the 
ordinary tensors in n inhomogeneous coordinates xk from the homogeneous tensors in the 
n + 1 homogeneous coordinates Xν, such that the xk are arbitrary homogeneous functions 
of null degree of the Xν: 
(8)    xk = f k (X1, …, Xn+1) . 
The derivatives: 

k
νγ ⋅ =

kx

Xν
∂
∂

 

satisfy the homogeneity condition: 
 

(9)    k
νγ ⋅ Xν =

kx

Xν
∂
∂

Xν  = 0, 

 
and transform under arbitrary point transformations of the xk like a contravariant vector, 
and like a covariant vector under homogeneous transformation of the Xν, in which (9) 
remains invariant throughout. 

Thus, the k
νγ ⋅  can be used to, first, associate every covariant vector ak with a 

covariant vectoraν according to: 

 
 (10)    aν = k

νγ ⋅ ak , 

in which, from (9): 
(10a)    aν Xν = 0 

 
(which is expressed by the overbar on a), and, second, to associate every contravariant 
vector aν with a contravariant vector ak according to: 
 
(11)    ak = k

νγ ⋅  aν , 

 
in which all vectors of the form ρ Xν will be associated with the null vector.  We can 
arrange that the quotient Xν /Xν+1 can be expressed in terms of the xk uniquely.  The n 
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relations (9) are then the only dependencies that exist between the k
νγ ⋅ , and we have that 

the only solution of the equation: 
k

νγ ⋅ vν = 0 

of the specified form is: 
vν = ρ Xν. 

 
Any special aν covariant vector that satisfies the relation (10a), namely: 

 
aν Xν = 0 

 
can then also be uniquely associated with a vector ak that satisfies (10).  Namely, if one 
sets: 

al =
k

νγ ⋅ aν , 

then one must have: 
(12)     k

νγ ⋅
l

νγ ⋅  = k
lδ ⋅ . 

 
From the statements above, the new coefficientsl

νγ ⋅  are uniquely determined by these 

equations precisely, up to an additional term Xν ρl, according to: 
 

l
νγ ⋅ = l

νγ ⋅ + Xν ρl , 

 
which, from (10a), actually annuls the vectoraν .  Furthermore, according to (12), the 

vector ak is, by way of: 
aν = k

νγ ⋅ ak 

 
associated with a set of vectors of the form: 
 

aν + Xν (al ρl ) 
 
that all satisfy equation (11). 

Up till now, the matrix gµν was not used in the coefficientsl
νγ ⋅  and k

νγ ⋅ at all.  Now, 

we can make the definition of thel
νγ ⋅  unique by associating the sameaν , for which one 

has: 
(13a)    aν Xν ≡ aν Xµ gµν = 0 , 

 
with all vectors of the form aν + ρ Xν, with aν fixed and ρ arbitrary.  If we 
correspondingly establish thel

νγ ⋅ uniquely by the condition that enters into (12): 

 
(12a)    l

νγ ⋅ Xν ≡ l
νγ ⋅ Xµ gµν = 0 , 
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then we obtain the unique association ofaν with ak according to: 
 
(13)    aν = k

νγ ⋅ ak  ( aν Xν = 0 ) 

 
and the unique association of al with aν according to: 
 
(14)    al = k

νγ ⋅  aν , 

 
in which Xν is associated with the null vector. 

From (11), (14), and the fact that aµ = gµν aν, and consideration of (12a), it follows 
that: 

al = ( l
µγ ⋅ k

νγ ⋅ gµν ) a
k . 

 
If one then demands that when aµ = gµν aν  the associated vectors aµ , al must satisfy the 
metric relation: 

al = glk a
k , 

 
 then it follows that the metric tensor in inhomogeneous coordinates is: 
 
(15)     glk = l

µγ ⋅ k
νγ ⋅ gµν . 

We now compute the sums: 
d µ

ν⋅  = k
µγ ⋅

k
νγ ⋅ , 

 
which defines a mixed tensor of rank two in the space of Xν.  Next, from (12), we have: 
 

k
νγ ⋅ d µ

ν⋅ = k
µγ ⋅ ,  k

µγ ⋅ d µ
ν⋅ = k

νγ ⋅ , 

hence: 

k
νγ ⋅ ( d µ

ν⋅ − µ
νδ ⋅ ) = 0 , k

µγ ⋅ ( d µ
ν⋅ − µ

νδ ⋅ ) = 0 , 

hence: 
 d µ

ν⋅ = µ
νδ ⋅ + Xµ ρν , ρν k

νγ ⋅ = 0 , ρν  = ρ Xν , 

 d µ
ν⋅ = µ

νδ ⋅ + ρ Xµ Xν , 

 d µ
ν⋅ Xν = 0 , Xµ + ρ Xµ ε = 0 , ρ  = −ε , 

 
according (7).  Thus, finally, one has: 
 
(16)   d µ

ν⋅  = k
µγ ⋅

k
νγ ⋅  = µ

νδ ⋅  − ε Xµ Xν . 

The vector: 
a µ = d µ

ν⋅ aν 

satisfies the equations: 
a µ Xµ = 0 , a µ k

µγ ⋅ = aµ k
µγ ⋅ = ak , 
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hence, we have: 
(17a)    a µ = d µ

ν⋅ aν = k
µγ ⋅ ak , 

and likewise: 
(17b)    aµ = d µ

ν⋅ aν = k
νγ ⋅ ak . 

 
Finally, from (15), and the fact that: 

gik
i

µγ ⋅ k
νγ ⋅ = gµν , 

it follows that: 
gµν = d ρ

µ⋅ dσ
ν⋅ gρσ  = ( ρ

µδ ⋅  − ε Xρ Xµ ) (
σ
νδ ⋅  − ε Xσ Xν ) gρσ , 

or: 
gµν = gµν − ε Xµ Xν , 

(18)   gµν =gµν + ε Xµ Xν  = gik + ε Xµ Xν  . 

 
One further confirms by way of: 
 
(18a)   gµν = gµν + ε Xµ Xν

  = gik i
µγ ⋅ k

νγ ⋅ + ε Xµ Xν  . 

the relation: 
gµρ gµσ =d ρ

σ⋅ + ε Xρ Xσ  =
ρ
σδ ⋅ . 

 
We now have the means to characterize each tensor uniquely by affine parts.  Thus, 

if aν is uniquely determined by means of thek
νγ ⋅ and k

νγ ⋅ through ak = aµ Xν and a = aν Xν 

then we have: 
(19a)   aν = k

νγ ⋅ ak + ε aXν = aν + ε aXν = dν
ρ⋅ aρ + ε aXν , 

 
just as aν is determined through ak = k

νγ ⋅ aν and a = aν X
ν, according to: 

 
(19b)   aν =

k
νγ ⋅ ak + ε aXν = aν + ε aXν = d ρ

ν
⋅ aρ + ε aXν

 . 

 
Likewise, a tensor Tµν of the second rank is characterized by the four affine quantities: 
 

i
µγ ⋅ k

νγ ⋅ Tµν = Tik , i
µγ ⋅ Xν Tµν = Ti(0) , Xµ Tµν  = T(0)i , 

and: 
Xµ Xν Tµν  = T(0)(0) . 

 
For a symmetric tensor Tµν , Tik is symmetric, and the vectors Ti(0) and T(0)i are identical; it 
is thus characterized by the a symmetric tensor, a vector and a scalar in inhomogeneous 
coordinates.  For the fundamental tensor gµν, the vector gi(0) vanishes, in particular, 
according to (12a).  If Tµν is skew-symmetric then the scalar T(0)(0) is equal to null. 
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In general, a tensor with N indices gives rise to 2N affine tensors, between which 
certain linear dependencies can exist when the original tensor possesses a symmetry 
property. 

We add a remark about the possibility of defining a vector that satisfies one of these 
requirements from the differentials dXµ, which do themselves satisfy the homogeneity 
condition, according to: 
(20)    dX µ  = d µ

ν⋅ dXν = dXν − ε Xµ (Xν  dXν ) 

 
In fact, by replacing Xµ with ρ Xµ, one has: 
 

dX µ′ = d µ
ν⋅ d(ρ Xν ) = d µ

ν⋅ (ρ dXν  + Xν dρ)  = ρ d µ
ν⋅ dXν  = ρ dX µ , 

 
since Xν will be annulled by d µ

ν⋅ .  Moreover, one has: 

 

(20a)    dXν k
νγ ⋅  = dXν

kx

Xν
∂
∂

= dXν 
kx

Xν
∂
∂

= dxk , 

hence: 
(20b)    dX µ = k

µγ ⋅ dxk . 

 
A curve xk = fk (r) will be represented in homogeneous coordinates in the form: 
 

(21)   Xν = ρ Fν (r) = ρ k
νγ ⋅  f k (r) , 

 
in which ρ is an arbitrary homogeneous function of null degree in the Xν .  Then, one has: 
 

(21a)   
dX

d

ν

r
= ρ 

dF

d

ν

r
= ρ k

νγ ⋅

kdf

d r
, 

 
whereas dXν /dr has no simple meaning.  1) 
 
 

§ 4.  Covariant differentiation by means of the three-index symbol ν
λµΓ . 

 
As usual, the covariant differential calculus will be introduced by means of aνλµΓ -

field, for which one demands that: 
 

(22a)    ;aν
µ =

a
a

X

ν
σ λ
λµµ

∂ + Γ
∂

 

                                                
 1)  The developments that were given here are largely analogous to the work of Einstein and Mayer that 
was cited in § 2.  The quantity that was denoted byµ

ν⋅Σ in that work is denoted byd µ
ν⋅ in ours, and 

furthermore, our coordinates Xµ play the same role as the vector Aµ of Einstein-Mayer. 
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(22b)    bν ; µ  =
b

b
X

λν
µν λµ

∂ − Γ
∂

. 

 
The second equation follows from the first one by the requirement that: 
 

(aν bν ); µ ≡ aν
; µ  bν + aν bν ; µ  = 

( )a b

X

ν
ν

µ
∂

∂
. 

 
The differential calculus is extended in a well-known way for arbitrary mixed tensors by 
the demand that for two tensors A . . and B . the product rule of ordinary differentiation is 
still valid: 

(A . . B . ); ρ = A . .
 ; ρ  B

 .  + B .
 ; ρ  A

 . . . 
This then yields: 

A . .
 ; ρ  = ( )

A

X ρ

⋅ ⋅∂ +
∂ ∑ ⋯ , 

 
in which the sum has exactly as many summands as the tensor has indices, and indeed: 
 an upper index A .µ corresponds to a summand +νλρΓ A .µ , 

 a lower index A ..
µ corresponds to a summand − λ

νρΓ A ..
λ . 

 
Since aν

; µ is a tensor when aν is a vector (from which, the tensor character of bν;µ and 
general ;A ρ

⋅ ⋅
⋅ follows), the ν

λµΓ must obey the transformation laws: 

 

(23)   ν
λµ′Γ =

2X X X X X

X X XX X X

λ µ ν ν ρ
ν
λµµ ν ρλ λ µ

′ ′∂ ∂ ∂ ∂ ∂Γ +
′′ ′ ′∂ ∂ ∂∂ ∂ ∂

. 

 
The last term disturbs the tensor character of theν

λµΓ .  Since the homogeneity requirement 

for the ;A ρ
⋅ ⋅
⋅ follows from the one for theA ⋅ ⋅

⋅ , the ν
λµΓ must be homogeneous of degree −1, 

as the general demands.  From (23), it follows that part of ν
λµΓ  that is skew-symmetric in 

the indices λ, µ, which is therefore determined by: 
 

(24)     S ν
λµ
⋅ ⋅ =

1
( )

2
ν ν
λµ µλΓ − Γ , 

is a tensor. 
Further tensors (projectors, resp.) νµ

⋅Π andQ ν
µ
⋅ are defined by: 

 
(25a)     Xµ aν

; µ = ν
µ
⋅Π aµ , 

(25b)     Xν bµ ; ν = − ν
µ
⋅Π bν , 

 
(the latter relation follows from the first one due to the fact that: 
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Xν (aµ  bµ ); ν = 0 ) 
and by: 
(26)     Xν

 ; µ = Q ν
µ
⋅ . 

 
From the definition (22a) ((22b), resp.) of aν

; µ (bν ; µ , resp.), it follows that: 
 
(27)    ν

µ
⋅Π = Xν ν λ

µ µλδ ⋅ + Γ , 

(28)    Q ν
µ
⋅ = Xν ν λ

µ λµδ ⋅ + Γ , 

hence: 

(29)    
1

2
( ν

µ
⋅Π −Q ν

µ
⋅ ) =S ν

λµ
⋅ ⋅ Xλ . 

 
A link between the ν

λµΓ and the metric will be given here by the condition: 

 

(I)   gµν ; ρ = 
g

g g
X

µν λ λ
µρ λν νρ µλρ

∂
− Γ − Γ

∂
= 0 . 

From this, and the fact that: 
 
(30)   gλ

µν λρΓ = ,µν ρΓ , λ
µνΓ = gλρ Γµν, ρ , 

(30a)   S gλ
µν λρ
⋅ ⋅ = Sµν, ρ , S λ

µν
⋅ ⋅ = gλρ Sµν, ρ , 

 
(1) implies the following relation: 
 

(31)  ,µν ρΓ =
1

2

g g g

X X X
µρ νρ µν
ν µ ρ

∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

+ (Sµν, ρ + Sµρ, ν  + Sνρ, µ ) . 

 
A link between the metric and theλµνΓ and the l

νγ ⋅ (and the l
νγ ⋅ ) is then produced by the 

following requirement: 
When: 

aν Xν = 0,  hence aν = k
νγ ⋅  ak , 

one must have: 
(II)    l

ργ ⋅ ;
k aν

ν ργ ⋅  = ak
; l , 

 

in which ak
; l is defined in the normal way in terms of the Christoffel symbols

l

nm

 
 
 

, 

according to: 

ak
; l =

k
m

l

ka
a

lmx

 ∂ −  ∂  
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k

lm

 
 
 

=
k

ml

 
 
 

=
1

2
kn nm nl lm

l m n

g g g
g

x x x

∂ ∂ ∂ + − ∂ ∂ ∂ 
. 

 
We can formulate the requirement (II) in a different way when we define a covariant 
derivative ;k

ν
ργ ⋅ according: 

(32)    ;k
ν

ργ ⋅ ≡ k m
k l

l

kmX

ν
ν λ ν
λρ ρρ

γ
γ γ γ⋅ ⋅

⋅ ⋅

∂  
+ Γ −  ∂  

. 

This implies the product rule: 
( k

νγ ⋅ ak); ρ = k
νγ ⋅ ak

; l 
l

νγ ⋅ + ;k
ν

ργ ⋅ ak 

bk;ρ = ( k
νγ ⋅ bν); ρ = ;k

ν
ργ ⋅ bν + k

νγ ⋅ bν ; ρ  . 

 
Likewise, it follows that: 

(32a)   ;
k

ν ργ ⋅  =
k

k m ll

kmX
λν
νρ λ ρ νρ

γ γ γ γ
⋅

⋅ ⋅ ⋅ ∂ + Γ −  ∂  
, 

   ;
ka ρ  = ( k

νγ ⋅ aν); ρ = ;
k

ν ργ ⋅ aν + k
νγ ⋅

;aν
ρ , 

       ( k
νγ ⋅ bk ); ρ  = k

νγ ⋅ bk; l 
l

ργ ⋅ + ;
k

ν ργ ⋅ bk . 

 
Thus, (II) is equivalent to: 
(II )′     l

ργ ⋅
k

νγ ⋅
;m

ν
ργ ⋅ = 0 

or: 
(II )′′     l

ργ ⋅ k
νγ ⋅ ;

k
ν ργ ⋅ = 0 . 

 
By antisymmetrization in the ν and λ, it then follows from the latter equation that: 
 
(33)    l

ργ ⋅ k
νγ ⋅

m
λγ ⋅ S λ

νρ
⋅ ⋅ = 0 , 

 
i.e., the affine part of S λ

νρ
⋅ ⋅ must vanish.  However, S λ

νρ
⋅ ⋅ is then already determined by 

Xν S λ
νρ
⋅ ⋅ and Xλ S λ

νρ
⋅ ⋅ , which can be expressed by way ofνµ

⋅Π andQ ν
µ
⋅ for a given gµν and its 

derivatives. 1) 
From (25), (26), it now follows that: 

                                                
 1)  The Πµν and Qµν  (with the indices lowered by means of the gµν  ) yield only the conditions: 
 

Πµν  = − Πνµ  , 
Xν Qµν  = Xν Q ν

µ
⋅ = 0 , 

[the latter follows from (7)] and: 
ν

µ
⋅Π  Xµ = Q ν

µ
⋅ Xµ  ( = Xµ  Xν

; µ ) . 

Otherwise, Πµν and Qµν  are arbitrary. 
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(34)  
; ; ; ,

;

( ) ( , )

,k k l l k
k l l l lk

a a aX a X a a d a

a
a a X a X Q a aQ

X

ν ν ν ν ν ν µ
ρ ρ ρ ν µ

ν ν ρ ν ν
ρ ρ ρ ρρ

ε

γ γ ε ε γ ε⋅ ⋅ ⋅
⋅ ⋅ ⋅

 = + = =

 ∂ = + Π + − +  ∂ 

 

and likewise: 

(34a)  bν; ρ = ;
k k l l k

l k l k l l k

b
b X b X Q b bQ

X
ρ ρ

ν ν ν ρ ρνργ γ ε γ ε γ ε⋅ ⋅ ⋅ ⋅ ⋅
⋅

∂ − Π + − + ∂ 
. 

 
In addition, the gµν determine theν

λµΓ uniquely by way of the fields Πµν and Qµν . 
Obviously, our requirements are still much too general to be useful to physics.  The 

simplest case that comes into consideration is the one for which: 
 

(III)    Sµν,ρ = 0 , 
 
i.e., in which the λ

µνΓ  are assumed to be symmetric in µ and ν, as one does in Riemannian 

geometry.  This assumption seems to be the most natural to us.  We would like discuss 
the more general case that Schouten examined later on as an appendix (§ 7). 

If we accept the severe restriction (III) then one has, in particular: 
 

(31 )′    Γµν, ρ = Γνµ, ρ =
1

2

g g g

X X X
µρ νρ µν
ν µ ρ

∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

. 

One then has: 

Γλµ, ν X
λ =

1

2

g gg

X X X
µν λµλν

λ µ ν

∂ ∂ ∂+ − ∂ ∂ ∂ 
Xλ . 

 
Due to the homogeneity condition, one further has: 
 

Xλ 
g

X
µν

λ

∂
∂

= − 2gµν , 

hence, due to the fact that: 
(28 )′     Πµν = gµν + Γµλ, ν X

λ , 

(29 )′     Qµν = gµν + Γλµ, ν Xλ , 
one has, in our case: 

(35)   Qµν = Πµν =
1

2

gg

X X
λµλν

µ ν

∂ ∂ − ∂ ∂ 
 Xλ . 

 
If, for the sake of what follows, we introduce the fundamental skew-symmetric tensor: 
 

(36)   Xµν =
XX

X X
µν

µ ν

∂∂ −
∂ ∂

=
gg

X X
λµλν

µ ν

∂ ∂ − ∂ ∂ 
 Xλ , 

then we have: 
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(35a)    Qµν = Πµν = 
1

2
Xµν = − 1

2
Xνµ . 

Furthermore, we have: 
 

  Xµν X
ν = − Xλ Xν 

g

X
µλ
ν

∂
∂

+ Xλ Xν 
g

X
νλ

µ
∂
∂

,  

   = − 2 Xλ gµλ +
X µ
∂

∂
(Xλ Xν gλν ) + 2 Xλ gµλ , 

hence, due to (7): 
(37)     Xµν X

ν = 0 . 
 
If we then define the skew-symmetric tensor: 
 
(38)    Xik = i k

µ νγ γ⋅ ⋅ Xµν  = − Xki , 

then one has, conversely: 
(38a)    Xµν = i k

µ νγ γ⋅ ⋅ Xik . 

 
According to (36), Xµν  also satisfies the relations: 
 

(36a)    
X X X

X X X
µν ρµ νρ
ρ ν µ

∂ ∂ ∂
+ +

∂ ∂ ∂
 = 0 . 

 
From (18), in which we have used (37), we can infer the following: 
 

(39)    ik il kl
l k i

X X X

X X X

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0 . 

 
In order to simply the notation, we would like assert that if three indices are enclosed 
within brackets in an expression then what that means is that these indices will be 
cyclically permuted and added together in the expression.  One then writes, e.g., (36a) 
and (39) as: 

[ , , ]

X

X
µν
ρ

µ ν ρ

∂
∂

= 0,  
[ , ]

ik
l

ik l

X

X

∂
∂

 = 0, resp. 

 
Now, it follows from (38a) and (36a) that: 
 

0 =
[ , , ]

( )i k
ikX

X
µ ν

ρ
µ ν ρ

γ γ⋅ ⋅∂
∂

=
[ , , ] [ , , ]

( )1

2

i k k i
i k l ik

ik l

X
X

X x
µ ν µ ν

µ ν ρρ
µ ν ρ µ ν ρ

γ γ γ γ
γ γ γ

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅∂ − ∂⋅ +

∂ ∂
. 

 

We have substituted
l

l x

Xρ ργ ⋅ ∂=
∂

in the latter expression.  Now, however, one has: 
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 i k k i
µ ν µ νγ γ γ γ⋅ ⋅ ⋅ ⋅−   =

i k k ix x x x

X X X Xµ ν µ ν
∂ ∂ ∂ ∂−

∂ ∂ ∂ ∂
 

    =
k k

i ix x
x x

X X X Xµ ν ν µ

   ∂ ∂ ∂ ∂−   ∂ ∂ ∂ ∂   
, 

and it follows that: 

[ , , ]( )i k k i

X µ ν µ ν µ ν ρρ γ γ γ γ⋅ ⋅ ⋅ ⋅∂ −
∂

= 0 . 

Thus, one has: 

[ , , ]

i k l ik
l

X

xµ ν ρ
µ ν ρ

γ γ γ⋅ ⋅ ⋅ ∂
∂

=
[ , , ]

i k l ik
l

i k l

X

xµ ν ργ γ γ⋅ ⋅ ⋅ ∂
∂

= 0 , 

 
from which, one immediately infers that: 
 

[ , , ]

ik
l

i k l

X

x

∂
∂

= 0 , 

i.e., one infers the validity of (39). 
There thus exists a covariant vector fi such that: 
 

(40)    Xik = k i
l k

f f

x x

∂ ∂−
∂ ∂

. 

 
From (36), (38a), and (40), it follows that: 
 

i k i kk i
i k

XX f f

X x X x
µν

µ ν µ νµ νγ γ γ γ⋅ ⋅ ⋅ ⋅∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ 
= 0 , 

or: 

i k i kk i
i k

XX f f

X x X x
µν

µ ν µ νµ νγ γ γ γ⋅ ⋅ ⋅ ⋅∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ 
= 0 , 

and, since: 
2kk kx

X x X X
µν

µ ν µ ν

γγ ⋅⋅ ∂∂ ∂= =
∂ ∂ ∂ ∂

 

one has: 

( ) ( )X f X f
X Xν ν µ µµ ν
∂ ∂− − −

∂ ∂
= 0 , 

in which we have set: 
(41)    fν =

k
νγ ⋅ fk , (fν X

ν = 0) . 

 
From this, it ultimately follows that: 
 

(42)   Xµ = fµ + ε 1 F

F X µ
∂

∂
= fµ + ε log F

X µ
∂

∂
, 
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in which the sign ε is included, from which: 
 

(42a)     Xµ 
F

X µ
∂

∂
= F , 

 
hence, F is homogeneous of first degree. 

Our metric is then exactly as general that it is (for a given k
νγ ⋅ ) characterized by gik 

and the skew-symmetric tensor Xik that satisfies (39).  One is tempted to identify the 
latter, up to a proportionality factor, with the tensor Fik = − Fki for the electromagnetic 
field strength.  If κ is the Einstein gravitation constant then: 

 

(43)     fik = 
c

κ
Fik 

 
has the dimensions of length, such that we can set: 
 

(44)    Xik = r fik = r 
c

κ
Fik , 

 
in which r is a real dimensionless numerical factor.  With: 
 

Fµν Xν = 0 , 
(44) may be extended to: 

(44a)    Xµν = r fµν = r 
c

κ
Fµν . 

 
It is satisfying that with this geometrical meaning for the electromagnetic field strength, 
the first system of Maxwell equation is automatically satisfied. 

As for the potential ϕk, which is defined by: 
 

(45)  Fik = k i
i kx x

∂Φ ∂Φ−
∂ ∂

, fik = k i
i kx x

ϕ ϕ∂ ∂−
∂ ∂

, ϕk =
c

κ Φk , 

 
from (40), it can be identified with fi, up to the factor 1/r: 
 

(46)     fi = r ϕi = r
c

κ Φi , 

hence, with: 
(47)    νϕ = i

νγ ⋅ ϕi , νϕ Xν = 0 

(45a)    fµν =
X X

µν
µ ν

ϕϕ ∂∂ −
∂ ∂
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(46a)    fν = r νϕ = r
c ν
κ Φ . 

 
fν , like νϕ , is defined only up to an additive gradient.  As Schouten has remarked, the 

theory can, however, be formulated in such a way thatfν and νϕ do not appear explicitly, 

but the well-defined vector Xν always appears in place of the ill-defined vector fν . 
 
 

§ 5.  Parallel displacement of vectors.  Geodetic lines. 
 

One can define the parallel displacement of a vector aν (bν, resp.) along a curve with 
the help of the modified coordinate differentials that were defined by (20), (20b): 

 
dX µ  =d µ

ν⋅ dXν = µ
νγ ⋅ dxk , 

namely: 

(48)  

( ); ;

; ; ,

k
k

k
k k

a dX a dx a

a
dx a

X

ν µ ν µ ν
µ µ

ν
µ µ ν λ

λµµ

δ γ

γ γ

⋅
 = =

  ∂= + Γ  ∂ 

 

or: 

(48a)  
( ); ;

; ; ,

k
k

k
k k

b dX b dx b

b
dx b

X

µ µ
ν ν µ ν µ

µ µ λν
νµ λµ

δ γ

γ γ

⋅
 = =

 ∂ = − Γ  ∂ 

 

 
resp.  From (34), one can also write this as: 
 

(49)  δaν =( );
l

k k ka a Qµ µ ν
µγ ε γ ⋅

⋅ ⋅+ dxk + ε da Xν , 

(49a)  δbν =( );
l

l k kb b Qµ
ν µνγ ε γ⋅

⋅+ dxk + ε db Xν , 

 
resp., upon introducing the Riemannian parallel displacement: 
 

R
laδ  = al

; k dxk ,  
R

lbδ  = bl ; k dxk , 

 
and substitution of Xν Q

ν
µ
⋅ = XνQµν = 0: 

 

(50)  δaν =
R

l l k
l ka aQ dxνγ δ ε ⋅

⋅
 + 
 

dxk + ε da Xν , 

(50a)  δbν =
R

l k
l klb bQ dxνγ δ ε⋅  + 

 
dxk + ε db Xν . 
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We now define geodetic lines by saying that the vector aν is parallel displaced along them 
in the direction associated with: 
 

(51)    
kdx

dτ
= k

νγ ⋅ aν = ak , 

 
and postulate that the vector aν does not change under this motion.  We shall then have: 
 

(52)    
a

d

νδ
τ

=
dX

d

µ

τ
aν

; µ = 0 , 

 
when (51) is true.  The latter is equivalent with: 
 

(51a)    aν = k
νγ ⋅

kdx

dτ
= ε a Xν , 

  
such that from (50) the requirement (52) decomposes into: 
 

R

d

δ
τ

kdx

dτ
+ ε a 

k
l

k

dx
Q

dτ
⋅ = 0 

or: 

(53)   
2

2

l m nld x dx dx

mnd d dτ τ τ
 

+  
 

= − ε a 
k

l
k

dx
Q

dτ
⋅  

and: 

(54)    
da

dτ
= 0 , a = const. 

 
If we now introduce the heretofore unused relation (35) ((35a), resp.) and take account of 
(44) then we have: 
 

(53a)  
2

2

l m nld x dx dx

mnd d dτ τ τ
 

+  
 

= − ε a 
m

l
m

dx
Q

dτ
⋅ =

1

2

m
l
m

dx
ar F

c d

κε
τ⋅  

 
From the skew-symmetry of Fik, it follows from this that: 
 

    gik

idx

dτ

kdx

dτ
= const., 

such that we can normalize to: 

(55)    gik

idx

dτ

kdx

dτ
= −1 . 
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(The negative sign corresponds to the timelike character of the curve.)  Comparing this 
with the world lines of charged mass points shows that they corresponds quite neatly with 
the generalized geodetic lines that we consider here, when we set the arbitrary integration 
constant a to: 

(56)    ε a =
2c e

r mcκ
 

 
in which e and m mean the charge and mass of the mass point.  If we introduce the 
impulse vector: 

(57)  pµ = m gµν a
ν = aµ = k

µγ ⋅ m gkl 

ldx

dτ
+

2c e

r mcκ
Xµ  

then one has: 

(58)    
p

d
µδ

τ
= 0 . 

 
We further remark that in many works the geodetic lines that satisfy (51) are defined 

by: 

aµ aν
; µ = 

k

k

dx
aX

d
µ µγ ε

τ⋅
 

+ 
 

aν
; µ =

a

d

νδ
τ

+ ε a Xµ aν
; µ = 0 

 
instead of by (52), since that seems less natural to us. 

Furthermore, from (42) and (46a), the vector pµ that is given by (57) differs by a 
gradient from: 

k
µγ ⋅ m gkl 

ldx

dτ
+ 2

e

c µΦ  

 
and not, as one might perhaps expect, from: 
 

k
µγ ⋅ m gkl 

ldx

dτ
+ 

e

c µΦ . 

 
We shall come back to this later (§ 7). 
 
 

§ 6.  Curvature  
 

When ν
λµΓ is symmetric in λ, µ, as we would like to assume here, the curvature 

tensorPµ
νρσ⋅ is defined by: 

(59)     ; ;aµ
ρ σ − ; ;aµ

σ ρ = Pµ
νρσ⋅ aν . 

Since: 
 (aµ bµ ); ρ ; σ  − (aµ bµ ); σ ; ρ 
   = (aµ

; ρ ; σ  − aµ
; ρ ; σ ) bµ − aµ (bµ ; ρ ; σ  − bµ ; ρ ; ρ ) = 0 , 
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it follows that: 
(59a)    bµ ; ρ ; σ  − bµ ; σ ; ρ  = − Pν

µρσ⋅ bν . 

 
The definition ofPµ

νρσ⋅ is skew-symmetric in ρ, σ, and carrying out the calculations yields: 

 

(60)    Pµ
νρσ⋅ =

X X

µ µ
νρ τ µ µ τν

νρ τρ τρ νσσ ρ

∂Γ ∂Γ− + Γ Γ − Γ Γ
∂ ∂

. 

 
We would now like to express thePµ

νρσ⋅ in terms of the corresponding Riemann 

tensor i
klmR⋅ .  In order to do this, it is more convenient to compute the expression bk ; ρ ; σ  − 

bk ; ρ ; σ  by using the fact that: 
 

(59 )′     ; ; ; ;

R R

k l m k m lb b− = − bi
i
klmR⋅ . 

Since: 

bk ; ρ  ≡ ;

R
l

k lbργ ⋅ , 

it follows: 

bk ; ρ ; σ  = ; ; ;;

R R
l m l

k l m k lb bρ σ ρ σγ γ γ⋅ ⋅ ⋅+ , 

 
and since, from (32a), the symmetry of;

l
ρ σγ ⋅ in ρ and σ follows from that of the ν

λµΓ , we 

obtain, from(59 )′ : 

(61)    bµ ; ρ ; σ  − bµ ; σ ; ρ  = − l m i
klmRρ σγ γ⋅ ⋅

⋅ bi . 

 
On the other hand, from the fact that: 

bk = k
µγ ⋅ bµ , 

bk; ρ = ;k
µ

ργ ⋅ bµ + k
µγ ⋅ bµ ; ρ , 

one has: 
bµ ; ρ ; σ  − bµ ; σ ; ρ  = ( ; ;k

µ
ρ σγ ⋅ − ; ;k

µ
σ ργ ⋅ ) bµ + k

µγ ⋅ ( bµ ; ρ ; σ  − bµ ; σ ; ρ ) . 

 
Taking into account (61) and (59a), it follows: 
 
(62)    k

µγ ⋅ Pν
µρσ⋅ − l m i

l klmRµ
ρ σγ γ γ⋅ ⋅

⋅ ⋅ = ; ;k
µ

ρ σγ ⋅ − ; ;k
µ

σ ργ ⋅ . 

 
On the other hand, from (59), one has: 
 

Xµ
; ρ ; σ  − Xµ

; σ ; ρ  = Pµ
νρσ⋅ Xν , 

hence, from (36) and (35a): 

(63)    Pµ
νρσ⋅ Xν = ; ;

1
( )

2
X Xµ µ

ρ σ σ ρ
⋅ ⋅− . 
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We can now compute the right-hand side of (62), if we know ;k
µ

ργ ⋅ .  From(II )′ , 

however, ;k
µ

ργ ⋅ is determined if we know: 

Xµ ;k
µ

ργ ⋅  

and: 
Xρ ;k

µ
ργ ⋅ . 

However, one has: 

Xµ ;k
µ

ργ ⋅ = − k
µγ ⋅ Xµ ; ρ = − 

1

2 k
µγ ⋅ Xρµ 

and: 

Xρ 
;k

µ
ργ ⋅ = kP µ ρ

ρ γ⋅
⋅ =

1

2 k Xρ µ
ργ ⋅

⋅ , 

so one has: 

(64)    ;k
µ

ργ ⋅ = ( )
2 kX X X Xµ µ ν

ρ ν ρν
ε γ⋅

⋅− , 

and it likewise follows that: 

(64a)    ;
k

µ ργ ⋅ =
1

( )
2

kX X X Xν ν
ρ µ µ ρ νγ⋅ ⋅

⋅− + . 

 
From this, one further finds that: 
 

(65) 
{

}

; ; ; ;

1
4

; ; ; ;2 2

1
4

( 2 )

( ) ( )

( ) .

k k

k X X X X X X

X X X X X X X

X X X X X X

µ µ
ρ σ σ ρ

ν µ µ µ
ρσ ν ρ σν σ ρν

µ µ µε ε
ρ ν σ σ ν ρ ρν σ σν ρ

µ τ
ν ρ στ σ ρτ

γ γ
γ ε

⋅ ⋅

⋅ ⋅ ⋅
⋅

⋅ ⋅

⋅

 −


= − + −


+ − − −
 + −

 

 
From (62), (63), and (65), a brief calculation finally gives the ultimate formula for the 
curvature tensor: 
 

(66) 

{ }
}

2

; ;2

; ; ; ;2

1
4

( 2 )

( )

( ) ( )

( )( ) .

k l m i
i klmP R

X X X X X X

X X X X

X X X X X X

X X X X X X X X

µ µ
νρσ ν ρ σ

µ µ µε
ρσ ν ρ σν σ ρν

µ µε
ρ ν σ σ ν ρ

µ µ µε
ρν σ σν ρ ν ρ σ σ ρ

µ τ µν
ρ στ σ ρτ ν ν

γ γ γ γ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅

 =
 = − + −
 + −

 − − − −

 + − −

 

 
Of particular interest to physics is the contracted curvature tensor: 
 

Pνσ = Pµ
νρσ⋅ , 
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which is symmetric in ν and σ in the case of a symmetricνλµΓ that satisfies (I).  By the use 

of: 

  Xα Xµν;α = − ρ
µ
⋅Π Xρν − ρ

ν
⋅Π Xµρ  = − 1

( )
2

X X X Xρ ρ
µ ρν ν µρ
⋅ ⋅−  

   = − 1
( )

2
X X X Xρ ρ

µ ρν µ νρ
⋅ ⋅+ = 0 , 

we get: 

(67) 

; ;

2
1

( ) .
2 4

i k
ikP P R X X

X X X X X X X X

α
µν νµ µ ν µ να

α α ρσ
µ ν α ν µ α µ ν ρα

εγ γ

ε

⋅ ⋅ ⋅

⋅ ⋅

 = = +

 − + +


 

 
We thus extract from this: 
 

(67a)  P; k = i k
µ νγ γ⋅ ⋅ Pµν = Rik +

2
r

i krX X
ε ⋅ , 

(67b)  Pi(0) = i
µγ ⋅ Xν Pµν = − ;

1

2
r

i kX ⋅ , 

Furthermore: 

(68)  P = gµν Pµν = R +
4

ε
Xρσ Xρσ , 

(69)  P = Pµν X
µ Xν = − 1

4
Xρσ Xρσ . 

 
 

§ 7.  The form of the laws of Nature. – Variational principle. 
 

For physics, the ultimate goal for the application of the theory of the group of 
homogeneous coordinate transformations and its covariant structure is to derive the laws 
of gravitational fields and electromagnetic fields in a unified way.  Thus, in the classical 
part of the theory, we restrict ourselves to the case of the absence of charge and mass.  In 
order to reduce the number of field laws, we next propose the notion of actual tensors 
(projectors).  This notion is such, that it is constructed only from the gµν and the λ

µνΓ , as 

well as the derivatives of theλ
µνΓ , without the explicit inclusion of the Xν and the k

νγ ⋅ or 

the k
νγ ⋅ , and also without anything explicitly entering into theλ

µνΓ but the derivatives of 

the gµν . 
The simplest form of the laws of Nature would then be the one that simply expresses 

the vanishing of an actual projector.  However, one thus always obtains one equation too 
many, and it is thus necessary to cast the field laws in the following modified form:  One 
must have: 
(70)    Kµν  = F Xµ Xν , 
 



W. Pauli.  On the formulation of the laws of Nature, etc. I                                 25 

in which Kµν is an actual tensor, and indeed a symmetric tensor of the second rank, 
whereas F is a yet-to-be-determined scalar, hence, a homogeneous function of null degree 
in the Xλ .  From (70), one immediately finds that: 
 
(71)    F =  Kµν X

µ Xν  ≡ K , 
such that we can write: 
(72)    Kµν  = K Xµ Xν . 
 
Upon multiplying by Xµ and Xν and then performing the associated contractions, one 
derives an identity, and now (72) includes only 14 independent equations instead of 15.  
The necessity of this identity is most closely connected with the relation (7) for the gµν .  
In order to satisfy the general covariance and to allow for sufficient generality in the 
solution of the gµν-field, (72) must satisfy five further differential identities that we can 
pose, by analogy with general relativity theory, in the form: 
 
(73)    ;K ν

µ ν
⋅ ≡ 0 . 

 
This is permissible, because: 
 

( K Xµ Xν ); ν = 
K

X ν
∂
∂

Xν Xµ + K Xµ ;ν X
ν + K Xµ Xν

; ν = 0 , 

 
since the individual terms all vanish. 

We now decompose eq. (72) and the identities (73) into corresponding equations for 
the inhomogeneous tensors.  With the fact that: 

 
(74)    Kik = i k

µ νγ γ⋅ ⋅ Kµν , Ki(0) = i
µγ ⋅ Xν Kµν , 

(72) becomes: 
(75a)    Kik = 0 , 
(75b)    Ki(0) = 0 . 
 
Since (71) and (74) means the same thing as: 
 
(74a)  Kµν  = i k

µ νγ γ⋅ ⋅ Kik + ε i
µγ ⋅ Ki(0) Xν + ε Xµ Ki(0)

i
νγ ⋅ +  K Xµ Xν

 , 

 
then it follows that: 
 
 ;K ν

µ ν
⋅ = i

µγ ⋅
;

k
i kK ⋅ + Xµ (0);

k
kK ⋅ + ( ;

i
k

ν
µ νγ γ⋅

⋅ + ;
i

k
ν

µ νγ γ⋅
⋅ ) k

iK ⋅   

  + ε Xν ;
i

µ νγ ⋅ Ki(0) + ε Xµ Ki(0) ;k
ν

νγ ⋅ + e Xµ , (0)
k

kK νγ⋅ ⋅ . 

 
From (64), one has: 
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  ;k
µ

ργ ⋅ = ( )
2 kX X X Xµ µ ν

ρ ν ρν
ε γ⋅

⋅− , 

  ;
k

µ ργ ⋅ = ( )
2

kX X X Xν ν
ρ µ µ ρ ν

ε γ⋅ ⋅
⋅− − . 

Thus, one has: 

;
k i

i kK ν
µ νγ γ⋅ ⋅

⋅ =
2

i k
k iX X Kν ρ

µ ρ ν
ε γ γ⋅ ⋅

⋅ ⋅ =
2

i k
k iX X Kµ

ε ⋅
⋅ = 0 , 

   ;k
ν

νγ ⋅ = 0 , Xν ;
i

µ νγ ⋅  =
1

2
iX ν

µ νγ⋅ ⋅− , 

and it follows that: 
 
(75)  ;K ν

µ ν
⋅ = ; (0) (0);( )i k k k

i k ik kK X K X Kµ µγ ε ε⋅ ⋅
⋅ ⋅− + . 

 
Thus, (73) splits into two identities: 
 
(76a)   ; (0)

k k
i k ikK X Kε⋅

⋅− ≡ 0 , 

(76b)   (0);
k

kK ⋅ ≡ 0 . 

 
In the case of the presence of matter, as we shall see part II, these identities lead to the 
theorem of the conservation of energy, impulse, and charge, which are summarized in 
one tensor equation in the homogeneous coordinates. 

It is now worth pointing out that one obtains equations of the form (72) with the 
identities (73) when one starts with a variational principle: 

 

(77)    δ · L | |g  dX(1) … dX(5) = 0 

 
with the supplementary condition: 
 
(78)   δ(gµν X

µ Xν ) = δgµν Xµ Xν  = 0 , 
 
in which L refers to an actual scalar and |g| refers to the absolute value of the determinant 

of the gµν .  As usual, the variations of the gµν  and the
g

X
µν
α

∂
∂

 shall vanish on the boundary. 

Next, if one lets: 
 

(79)  δ · L | |g  dX(1) … dX(5) ≡  ± K δgµν | |g  dX(1) … dX(5) , 

 
without regard for the supplementary condition, then from the fact that: 
 

Xµ Xν δgµν = − Xµ Xν δgµν
 , 

 
the field equations read like: 
(70)    Kµν = F Xµ Xν , 
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in which F is a yet-to-be-determined Lagrange multiplier, which would have been 
previously introduced into (70); furthermore, Kµν is an actual tensor when L is an actual 
scalar.  Finally, Kµν also satisfies the identities (73), as one knows, in which one performs 
the variations of the gµν

  under an infinitesimal coordinate transformation: 
 

X ν′  = Xν + ε ξν , 
from which: 

δgµν
  = e g g g

X X X

µ ν ρ
ρν µρ µν

ρ ρ ρ
ξ ξ ξ ∂ ∂ ∂+ − ∂ ∂ ∂ 

 

 
and the variation of the action integral vanishes identically. 

We further remark that from (18a) for fixed coordinates Xn and under the assumption 
that the supplementary condition (78) is valid, one has: 

 
(80)   δgµν

  = 2ik ik
i k i kg gµ ν µ νγ γ δ γ δγ⋅ ⋅ ⋅ ⋅+  . 

 
If one also fixes the coordinates xk then one has, moreover: 
 

(81a)    i
µδγ ⋅ = 

ix

X µδ  ∂
 ∂ 

= 0 , 

hence, from the fact that: 
i

k
ν

νγ γ⋅
⋅ = i

kδ ⋅ ,  k
νγ ⋅ Xν = 0 , 

i
k

ν
νγ δγ⋅

⋅ = 0 ,  Xν k
νδγ ⋅  = − k

νγ ⋅ δXν , 

(81b)    k
νδγ ⋅ = − ε Xν ( k

ργ ⋅ δXρ ) , 

 
it follows, from the validity of (78), on account of (74), that: 
 

(82) δ · L | |g  dX(1) … dX(5)  = ± { Kik – 2ε (0)
k

kK ργ⋅ ⋅ δXρ } | |g  dX(1) … dX(5) . 

 
We still have to establish the scalar L and thus, the Kµν .  If we demand that L shall 

include no derivatives of theλ
µνΓ higher than the first ones, then L is uniquely identified 

with the curvature scalar. 
 

(83)   L = P . 
 
Therefore, by means of the contracted curvature tensor Pµν that is defined by (67), one 
has: 

(84)    Kµν = Pµν −
1

2
gµν P , 
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in analogy with the relativistic theory of gravitation.  Independently of the variational 
principle, this Kµν is the only actual tensor that includes no derivatives of the λ

µνΓ that are 

higher than the first ones, and also satisfies the identities (73).  One thus has: 
 

(84a)   Kik = Rik −
1

2
gikR +

1

2 4
k rs

i kr ik rsX X g X X
ε ⋅ − 
 

 

(84b)    Ki(0) = − 1

2 ;
k

i kK ⋅ . 

 
If we equate this with the field equations from the combined Einstein theory of 
gravitation and Maxwell theory of electrodynamics, which in the present case of non-
existent charge and matter, read like: 
 

(85a)   Rik −
1

2
gikR + 2

1

4
k rs

i kr ik rsF F g F F
c

κ ⋅ − 
 

 = 0 

and: 
(85b)     ;

k
i kF ⋅  = 0 , 

 
then we see that get agreement between these equations when the number r that was 
introduced in (44) according to: 

Xik = r fik = r
c

κ
Fik , 

satisfies the equation: 

(86)     
2

2

rε
= 1 . 

 
Since r is real, it likewise follows from this that: 
 
(86a)     ε = + 1 , 
(86b)     r = 2± . 
 
We further remark that (84a) can then also be written as: 
 

(84c)    (0)
iK ⋅ = − 1

r c

κ
Fik

; k . 

 
The determination of e and r can also come about by the requirement, which is equivalent 
to (85a), that the expression: 

    L = P = R + 
4

ε
Xrs X

rs 

be identical with the ordinary form: 
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(87)    L = R +
2

1

2c

κ
Frs F

rs. 

 
We have achieved our goal.  The second system of Maxwell equations and the 

gravitational equations melt together into a single system that is directly connected with 
the curvature.  The first system of Maxwell equations [eq. (39)] follows directly from the 
assumed structure of space.  Furthermore, the law of motion for a charged mass point can 
be interpreted as the generalized equation for geodetic lines. 

With this, we can close part one, but for the sake of completeness, we would like to 
refer to a generalization of the Ansatz for theλ

µνΓ that is due to Schouten and van Dantzig. 

 
 

Appendix:  Generalization of the Ansatz for the λ
µνΓ . 

 
Schouten and van Dantzig have shown that the most general Ansatz for the λ

µνΓ  

whose consequences are in harmony with physics is: 
In place of (III) and (35), use the postulate: 
 

(III )′    ν
µ
⋅Π =

1

2
p X ν

µ
⋅ , Q ν

µ
⋅ =

1

2
q X ν

µ
⋅ ,  

 
in which p and q are numerical coefficients.  From (29), one further has: 
 

(88)    S ν
µλ
⋅ ⋅ Xλ =

1

4
(p – q) X ν

µ
⋅ . 

 
Therefore, from (29 )′ and (36), we infer from (31) that: 
 

Qµν = q
1

2
Xµν =

1

2
Xµν + (Sλµ,ν + Sλν,µ + Sµν,λ ) X

λ 

or: 

(q – 1)
1

2
Xµν = − 1

4
(p – q)(Xµν + Xνµ ) + Sµν,λ X

λ , 

hence: 

(89)    Sµν,λ X
λ = (q − 1)

1

2
Xµν . 

 
From(II )′ and (32a), it then follows that: 
 
(90)    Sµν,λ m n l

µ ν λγ γ γ⋅ ⋅ ⋅ = 0 , 

hence: 

(91)  Sµν,λ = ε 
1

4
(p − q) (Xν Xµλ – M Xνλ ) + ε (q – 1)

1

2
Xλ Xµν . 
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 For the geodetic lines, it further follows that: 
 

a

d

νδ
τ

=
k

k

dx
aX

d d
ν νδ γ ε

τ τ⋅
 

+ 
 

 = 0, a = const. 

and: 

  
2

2

l m nld x dx dx

mnd d dτ τ τ
 

+  
 

= − ε a
k

l
k

dx
Q

dτ
⋅  

   = ε a
m

l
m

dx
Q

dτ⋅ =
1

2
ε a q r 

m
l
m

dx
F

c d

κ
τ⋅ , 

hence: 

(92)    ε a =
2c e

rq mcκ
 

and with: 

(93)   pµ = 
2l

k
kl

dx e c
m g X

d m rqµ µγ
τ κ

⋅ + ⋅  

(94)    
d

δ
τ

pµ = 0 . 

Consequently: 

(95)   
2 1l

k
kl

dx e F
mg

d q c F Xµ µ µδ γ
τ

⋅ ∂+ Φ + ∂ 
= 0 , 

 
for a certain choice of F . Schouten posed the particular requirement that Φµ shall appear 
in this expression with the coefficient 1, which also entails that: 
 

q = 2 . 
 
However, we would like do without this completely, since such a demand seems to us to 
be in no way imperative. 

One can define the curvature tensorPµ
νρσ⋅ by way of (60) when one preserves the 

order of the indices in theλ
µνΓ .  By a lengthy calculation, one then finds for the curvature 

tensor, instead of (68), the expression: 
 

(96)   P = R +
4

ε
(q2 + 2p − 2pq) Xρσ Xρσ . 

 
On the basis of the variational principle: 
 

δ · P | |g  dX(1) … dX(5) = 0 , 

 
with the supplementary condition: 

δ (gµν Xµ Xν ) = 0 , 
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one finds the field equations: 
Kik = 0 , Ki(0) = 0 , 

 
and, in place of (84a) and (84b), the following expressions appear: 
 

(97a)  Kik = Rik +
1

2
gik R + 

4

ε
(q2 + 2p − 2pq)?

1

4
rs

i kr ik rsX X g X Xν⋅ − 
 

 

and: 

(97b)  Ki(0) = − 1

2
(q2 + 2p − 2pq) ;

k
i kX ⋅ . 

 
The latter follows from (82); one should observe that (84) is no longer valid.  (96) implies 
the following condition: 

(98)    
2

2

rε
(q2 + 2p − 2pq) = 1 , 

 
fro which one infers that ε has the same sign as (q2 + 2p − 2pq).  From (98), one can also 
write (97b) as: 

(99)    Ki(0) = ;

1 k
i kF

r c

κε ⋅ . 

 
As a critique of the generalized Znsatz for theλ

µνΓ , it must be remarked that the 

curvature scalar in this case is not the only actual scalar, since: 
 

J = gµν S Sσ ρ
µρ νσ
⋅ ⋅ ⋅ ⋅  

 
can also come into consideration, which agrees with: 
 

Xρσ Xρσ , 
 
up to a generally non-vanishing numerical factor.  An arbitrary Lagrangian function can 
be represented as a linear combination of J and P.  For that reason, we would like to 
propose that the original AnsatzS λ

µν
⋅ ⋅ = 0 is the most natural one.  On the other hand, the 

Einstein-Mayer theory can be characterized by p = 0, since only aµ 
; k = k

νγ ⋅ aµ 
; ν  applies to 

it. 
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