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On the formulation of the laws of Nature
with five homogeneous coordinates

Part I. classical theory
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8§ 1. Introduction

It is well known that Kaluza and Klein have succeedefbimulating field laws of
gravitation and electricity (at least, in the absesioeharges and ponderable masses) in a
unified way, and, in addition, presenting the law of mofior a charged mass point as a
geodetic line in the five-dimensional continuum. This eebment of putting the
foundations of physics on a geometrical footing standstark contrast with the
following shortcomings, which keep many theoreticiansnfaccepting the idea of a fifth
dimension:

1. It must be formulated in such a way that the compoggnof the five-
dimensional metric tensors shall not depend upon ttfe didordinatec, i.e., they shall
be functions of only the first four coordinates. By meairthis additional condition - the
so-calledcylinder condition — disturbs the general covariance of the theory, andifthe
coordinates appears to be an artificial appendage thatuttiosttely disappear. The first
ten components @, hamely,gi withi, k=1, ..., 4, can be identified with the ordinary
metric tensor, and the four extgg (i = 1, ..., 4) components can be identified with the
electromagnetic potentials (up to a numerical factor).

2. Since a physical interpretation of the compomggtcan be attained, one must
arbitrarily set goo = 1, which represents a new non-invariant condition. fddsices the
number of equations for thg,, from 15, which is expressed by the vanishing of the
contracted curvature tensor, to the correct numbemdmely, the 10 equations for the
gk (i, k=1, ...4) and the 4 Maxwell equations. (There then existf&ential identities
between them.)

An essential advance was then made by Einstein andrMayén this theory, the
introduction of a fifth coordinate was completely alisesong with any cylinder

" Translated by D.H. Delphenich.
) A. Einstein and W. Mayer, Berl. Ber. (1931, pp. 541.
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condition; rather, every point of the four-dimensiocahtinuum was associated with a
five-dimensional vector space. A particular relationstepMeen these vectors is then
posed axiomatically, in the form of their parallel dssgment and how it relates to the
ordinary Riemannian parallel displacement of the ordineegtors of the parallel
displacement. The electromagnetic potentials areptiely absent from this theory, but
only the field strengths.

This theory also has certain formal imperfections tere not present in the Kaluza-
Klein formulation, but appeared for the first time innamely:

1. The field equations can not be derived from a vanatiprinciple. From this,
one infers that such field equations that satisfy impod#ferential identities (which a
variational principle automatically guarantees) seem taabificial, which is also
expressed in the form of the field equatiois.

2. The first system of Maxwell equations (which is eqigintito the possibility of
deriving the field strengths from potentials) does not ¥olfoom the assumed structure
of space in this theory, but must be postulated expli¢itiywhich it can generally be
connected with the curvature).

These imperfections are not very momentous in theesebut one would not like
to renounce the advantages that were already predet iflein-Kaluza theory.

Here, we now introduce another way of presenting thenkdaluza theory, namely,
the projective way. In this presentation, the continuum is regardefd@sdimensional,
but, as in projective geometry, fil®mogeneous coordinates (which will be denoted by
XK, =1, ..., 5) will be introduced; i.e., all coordinatestttifer by the same factor
belong to the same point of the continuum. All tengorsas one prefers to say in this
case: “projectors”) must then be homogeneous functidngafmus differing degrees) of
the coordinates. This way of regarding things was firslieppo physics by Veblen and
Hoffmann ), and indeed, to the interpretation of the Klein-Kaltizeory. However,
these authors choose a formulation that, as a conssmuefh an unnecessary
specialization of the coordinate system, distinguishedifth coordinate in a manner that
is completely similar to the usual one that Klein-Kalumroduced by the cylinder
condition, and that therefore did not enter into ttktdheory in an essential way.

The advance made by van DantZjgwas to thoroughly examine projectors with
homogeneous coordinates, along with their covariant diffeation by means of the

three-index symbols) ,, geodetic lines, and the invariant form:
guv X XY

of the metric that was introduced with the fundamengalsorg,, = g,,. Finally,
Schouten and van Dantzfy gave a formulation to field theory with the help bfst
general projective differential geometry (here, we wdkt discuss only the classical part

1) Cf., the transition fronfP,, toU,, in loc. cit, 8 5, eq. (41).

% 0. Veblen and B. Hoffmann, Phys. Re$6, pp. 810, 1931. Summary by O. Veblen.
Relativitatstheorie. Berlin, 1933. Further literatigeontain therein.

% D. van Dantzig, Math. AnrL0G pp. 400. 1932. — Confer the geodetic lines, in particularstAProc.
35. pp. 524 and 534. 1932.

% J.A. Schouten and D. van Dantzig, Zeitschr. f. PRAgs.pp. 639. 1932; furthermore, Ann. Math. (3)
34. pp. 271. 1933. Citations to the earlier works cafoled in these works.
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that corresponds to the absence of material partitias)combines all of the advantages
of Klein-Kaluza and Einstein-Mayer, while avoiding af the disadvantages. The
circumstance that all projectors depend homogeneouslyeonabrdinates renders any
particular cylinder condition superfluous. Furthermotee tonditiongss = 1 of the
Klein-Kaluza theory appears here in the invariant form:

Qu XXV = %1,

and can be stated as a normalization ofghe The establishment of this condition by
the variation:
Ogu X'X" =0

further reduces the number of field equations in a naturaltedlgeir correct number.
The scalar curvature appears in the action integral ageahgian function and is then
varies with theg,, . Finally, one does not need to introduce the elecigoetic
potentials themselves into the theory, but they candaged (up to a numerical factor)
by:

Xy =g X"

The validity of the first system of Maxwell equatioeghen self-evident.
We shall preserve these essential results of Schouten and van Dantzig here.

Therefore, as far as the three-index symbb|sare concerned, we take the position that
the symmetry requirement:

vV v
r/l,u_r,u/i

(which is satisfied for Klein-Kaluza and Veblen-Hoffmangs the most natural one for
these quantities. Together with the requirement tleatdivariant derivatives of thg,,
it then leads to the usual expression:

v _1 Vo agp/]+agpp_ag/]p .
oX# oX" oX”*

More generally, Schouten and van Dantzig introduced asymafig, . Since this

increases the number of possible mathematical invariatk®w any benefit to the
physical interpretation (the particular grounds famother specialization of the

general’}  that Schouten and van Dantzig maintained do not seethtealis), we shall

forego this gratuitous generalization here and mentioanly incidentally (cf., the
Appendix).

The connection between projectors and ordinary tensordnhomogeneous
coordinates has a far-reaching formal analogy with thenection between tensors on
five-spaces and those on the four-spaces of EinsteintMdgehe form presented in 8 4
and 8§ 6, this analogy is particular obvious.

We must apologize for the fact that the classicalt mwdrthe theory will be
represented so comprehensively, although it deviates fremwahk of Schouten and van
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Dantzig in several essential points. On the one hdngl,ig done in order to have a
certain foundation following section, and, on the othemd, in order to make
understandable those specialized facts that are farfindiar general relativity, but not the
extended one that is discussed here.

8 2. Definition of tensors with homogeneous coordinates

The description of an-dimensional continuum by + 1 homogeneous coordinates
X, ..., X" can naturally permit only such transformations thakerthe new coordinates

X'* homogeneous functions of the first degree of the old caateiX” . ) That is:

X" = (XY L, XY
must satisfy:
(X, ..., X" = pf O, .., XY,

in which p is an arbitrary function of th&” . According to the Euler homogeneity
condition, this requirement is equivalent to:

X"

1 X#22_ =X
1) G

In order for us to now proceed to the definition of vest we next define a
contravariant vectoa” (a covariant vectdn,, resp.) by the transformation laws:

oxX"
2 a’= #
@) oX*

oOX*
3 ' =———D |,
( ) bl/ axrv H
such that:
(4) a’b,=a*b, =c
is a scalar.

For this reason, vector fields and scalar fields tmat defined by homogeneous
coordinates will be subjected to a further requiremertt gpacifies, not their behavior
under coordinate transformations, but their dependencéemcdordinates in a fixed
system of reference.Namely, we will allow only those fields whose components are
homogeneous functions of the coordinates. This requirement is invariant under the
homogeneous coordinate transformations (1) that aredewedi here, and, from this, the
degree of the homogeneous functions that representidlte domponents remains
invariant, since the coordinate transformations are lgemeous of first degree.

For the sake of later applicatiorthe components of a contravariant vector are
always homogeneous of degree +1, those of a covariant vector are of degree -1, and

) Here, and in the sequel, Greek indices shall alwaygerfrom 1t + 1, and Latin ones, from 1 to.
Later, corresponding to the four-dimensional spacetiontinuum, we shall set=4,n+1=5.
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scalars are of degree 0. From (4), this convention is usually in harmony witie t
construction of scalars by contraction. The follogvare then valid:

(2a) x# 98 _ o
X

(3a) xe 90—y,
X"

(4a) x# 9 _ o
X

It is a characteristic situation in the theory of hgeweous coordinates thiiese
coordinates X" themselves (not their differentials) define a (contravarianector field.
Then, according to (1), they satisfy, in fact, thecassary conditions (2) for a
contravariant vector field [whereas relations (2a)areously satisfied identically]. By
contrast, the differentialsX” may not be used as a vector field, since they are not
homogeneous functions of first degree in the coordinates.

We can now easily generalize the definition of vedteids and scalar fields to
arbitrary tensor fields. A general mixed tensor:

y7an
T O00poC

satisfies the transformation law:

- axX'" gx" oX”? _gX°
1 v — v
(5) T ﬂDDw&[_ axﬂ |:?ax|/ et axrp [gxrg et T%D@J['

Furthermore, it will be assumed that tbemponents of the tensor field T4 . are

homogeneous functions of the X", and also of degree r, which is equal to the difference

between the number of upper and lower indices of T#/_,,.. One then has:

y7an
(5a) xa—ai(mj"“: .

It should be remarked that the volume element:
dxl de dxn+1
(as opposed to the differentialX” themselves) can possibly vanish. If it is multipligd b
the transformation:

(6) X" =pXH,

in whichr is an arbitrary homogeneous function of null degred®X", such that:
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(62) x' 9P _g
G

and similarly ford™*.
Proof: The assertion is equivalent to the statement that whedransformation (6) the determinant:

X' dp
D = = po* + XH* L

has the valug/™*, or the statement that:

1
f()=—5D@=
0

10
5§+X“——€
p X

has the value 1.
In order to prove this, we consider:

10
f()=f(d)=|o" +x# =P
p X

to be a function of. This function has the following properties:

a)f(0)=1, f(1)=f (0
b) '(©)=0.
One then has:
£'(0) —lim 2 5§+tx#ia_p ql=xv1 a,ov’
t-0t paxv pax

which vanishes, from (6a);
c) f(ta+tz) =f(ty) f(ta),

which follows directly from the definition df(t) and the multiplication laws for determinants. From,this
it further follows that:

f'(t)=f(t) f'(0).
hence, from (b):
f'e)y =0, f(t) = const. f(0) = 1.
Thus:
D(=0" f1)=0"" Q.E.D.

The possibility of defining a meaningful volume mkent from homogeneous
coordinates is important for the physical apploasi, since it allows one to define
variational principles.

8 3. Metric. Connection with inhomogeneous coordinates.
Decomposition of homogeneous tensors into affine parts.

We introduce a metric tensa@y,, in our space that satisfies the usual symmetry
conditiong,y = gy, and distinguishes the quadratic form:

O X XV =F
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Corresponding to our conventiogy, iS homogeneous of degre€ and the scaldf is
homogeneous of null degree. Physics gives us a specalizdtthis Ansatz, in which
the scalafF is set equal to eonstant. This constant can then be normalized to +*1gr
such that we can set:

(7) guwX!'X'=g (6=+1 or -1).

One can also express this in such a way that only thaeqt®ty,,/F, in whichF =
guXX", shall enter into the equations thus defined. This siEtian is analogous to
the convention thaglss = 1 in the Klein-Kaluza theory. This specialization ns&gm
arbitrary from a geometrical standpoint, but it is, my @vent, an advantage of the use of
homogeneous coordinates that the specialization caorteilated in an invariant way.
The metric tensor can therefore be used to raisewmrltensor indices in an invariant
manner.

For physical applications, it is essential for us tospes a method for deriving the
ordinary tensors in inhomogeneous coordinatesfrom the homogeneous tensors in the
n + 1 homogeneous coordinaté$ such that the® are arbitrary homogeneous functions
of null degree of th&":

(8) =503, L XM
The derivatives:

Y= X«
) &
satisfy the homogeneity condition:
9) L
Y 0Xx" '

and transform under arbitrary point transformationshef* like a contravariant vector,
and like a covariant vector under homogeneous transfmrmaf the X", in which (9)
remains invariant throughout.

Thus, thgz™ can be used to, first, associate every covariantowves with a
covariant vectoa, according to:

(10) a,=y"a,
in which, from (9):
(10a) 3, X"'=0

(which is expressed by the overbar @n and, second, to associate every contravariant
vectora” with a contravariant vecta® according to:

(11) ak :yVEk a’,

in which all vectors of the forrm X" will be associated with the null vector. We can
arrange that the quotieit’ /X*** can be expressed in terms of ttieuniquely. Then
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relations (9) are then the only dependencies that leststeen thg*, and we have that

the only solution of the equation:
Kk, ,V

Y, v =0
of the specified form is:
v'=pX"
Any speciala, covariant vector that satisfies the relation (10aynely:
3, X"'=0
can then also be uniquely associated with a vexttnat satisfies (10). Namely, if one
sets:
a=y, 3,

then one must have:
(12) y¥ oy =0k,

From the statements above, the new coefficightare uniquely determined by these
equations precisely, up to an additional tethy, according to:

Va=ra*+X'p,

which, from (10a), actually annuls the vedpr Furthermore, according to (12), the
vectora® is, by way of:
a’ =y a

associated with a set of vectors of the form:
a’+X'@p)

that all satisfy equation (11).
Up till now, the matrixg,, was not used in the coefficiepts andy,*at all. Now,
we can make the definition of th unique by associating the sage for which one

has:
(13a) a,X'=a,X'guw=0,

with all vectors of the forma” + p X', with a” fixed and p arbitrary. If we
correspondingly establish tie uniquely by the condition that enters into (12):

(12a) VaXv=y Xguw=0,
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then we obtain the unique associatio@'ofith a“ according to:
(13) a’= p,ad  (a’X,=0)

and the unique associationafwith a, according to:

(14) a =y av,

in which X, is associated with the null vector.

From (11), (14), and the fact that = g,, @", and consideration of (12a), it follows
that:

a= (V4 ViOw)a.

If one then demands that whan=g,, a” the associated vectoas, a must satisfy the
metric relation:

a =gka*,

then it follows that the metric tensor in inhomogmuge coordinates is:

(15) Ok = Vﬁ ylékg,uv-
We now compute the sums:

di =v&r"
which defines a mixed tensor of rank two in the spac€ oiNext, from (12), we have:

Vi 45=V, Vi b=y,
hence:
Ve (d4-05)=0, y/(ds-04)=0,
hence:
di=dt +X* p,, o ve=0, p =pX’,
di =0k + p XX, ,
dtX'=0, X'+pXe=0, p =-&,

according (7). Thus, finally, one has:

(16) df =vh y," =04 —eX'Xy.
The vector:

satisfies the equations:
a"X,=0, a'yl=ayr=a",
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hence, we have:

(17a) a“=d-a’ =+,
and likewise:
(17b) a,=d4a,=y,d.

Finally, from (15), and the fact that:
Gy, Y, =0,
it follows that:
0. :déu dy, 9oo = (551 —eXPXy) (07, — €X7Xv) Qoo s
or:
O, = O — EXu Xy,
(18) Ouw =0, + EXuXv =0k + EXu Xy .

One further confirms by way of:

(18a) 9=, + XX =g )y eXu X
the relation:
g us=d’ + eXP Xy =07 .

We now have the means to characterize each tensor ynimuaffine parts. Thus,
if a” is uniquely determined by means of ggandy *througha® = & X, anda = a" X,
then we have:
(19a) a’ =y d+eax’=a’+ax’=d, @+ gaX’,

just asa, is determined through = )%, a, anda = a, X", according to:
(19b) a, =yra+¢eaX,=a+caX,= dPa,+ gax,.
Likewise, a tensof,, of the second rank is characterized by the four affinetdies:

Vi Vi Tw =Tk, yEX Ty =Tio) , XK Ty =Ty,
and:

XH XY Tyv = T(o)(o) .

For a symmetric tensdi,,, Ti is symmetric, and the vectoFge and Ty are identical; it
is thus characterized by the a symmetric tensor, @mvand a scalar in inhomogeneous

coordinates. For the fundamental tengpy, the vectorgio) vanishes, in particular,
according to (12a). [f,, is skew-symmetric then the scalag)) is equal to null.
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In general, a tensor witN indices gives rise to"2affine tensors, between which
certain linear dependencies can exist when the origimgbtepossesses a symmetry

property.
We add a remark about the possibility of defining a veittatr satisfies one of these

requirements from the differentiatb<, which do themselves satisfy the homogeneity
condition, according to:
(20) dX# = d# dX*=dX" - eX¥ (X, dX")
In fact, by replacing” with p X¥, one has:
dX'“=d* d(pX") = d* (pdX” +X"dp) =p d*dX’ =p dX*,

sinceX"” will be annulled byd* . Moreover, one has:

ox~ ox~

(20a) dX” y* = dXx” =dx" = dx,
X" X"

hence:

(20b) dX# =y~ dxt

A curvex = (r) will be represented in homogeneous coordinates irotine f
(21) X'=pF'(=pyi tM,
in which pis an arbitrary homogeneous function of null degrebeiX” . Then, one has:

dx" _ dF¥ _ df

21 _—
(21a) dr 'Odr 'OVEkdr

whereasiX” /dr has no simple meaningd)

§ 4. Covariant differentiation by means of the three-index symbaf’, .

As usual, the covariant differential calculus will inéroduced by means offg, -
field, for which one demands that:
ga’

(22&) al;/ﬂ:ax_ﬂ-*- F‘jﬂaﬂ

) The developments that were given here are largely gmadao the work of Einstein and Mayer that
was cited in 8 2. The quantity that was denoted*py that work is denoted hy/ in ours, and

furthermore, our coordinate€' play the same role as the vectdrof Einstein-Mayer.
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(22b) by —ﬂ—r” b

The second equation follows from the first one by gguirement that:

14 —_ 14 14 a aV
(@by),u=a’, by+aby;, :%-
The differential calculus is extended in a well-lmoway for arbitrary mixed tensors by
the demand that for two tensdks andB ' the product rule of ordinary differentiation is
still valid:
(A"B)p=A";p B +B";, A"
This then yields:

oA™
Ap axp'*'Z( ),

in which the sum has exactly as many summandseagtisor has indices, and indeed:
an upper indeA # corresponds to a summantﬂ‘j;r,A'”,

a lower indexA -, corresponds to a summand;), A", .

Sincea”. , is a tensor when, is a vector (from which, the tensor charactebgf and
generalé\”gpfollows), thel™,, must obey the transformation laws:

v OX? oX# oX'" _, axw 9°X”
(23) r/Tp_ % 77 v /l,u o A 1a "
oxX'" aX" oX oX” ax" X"
The last term disturbs the tensor character of fhe Since the homogeneity requirement
for theA"; follows from the one for tha", thel’, must be homogeneous of degree

as the general demands. From (23), it follows gaat of ), that is skew-symmetric in
the indicest, 1, which is therefore determined by:

(24) Sl (F =),

is a tensor.
Further tensors (projectors, respl)’ andQ,’ are defined by:

(25a) Xtal, =nYa,
(25b) X'by;v=-M"b,,

(the latter relation follows from the first one digethe fact that:
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X"(@ by).,=0)
and by:
(26) X u=Q) .

From the definition (22a) ((22b), resp.)af, (b,. ., resp.), it follows that:

(27) ny=g"+rv,x”",
(28) Q=0 +I}, X",
hence:
1
(29) E(r|5y—Q§”) =S," X'

A link between thé’, and the metric will be given here by the condition:

09,
(I) g/lV P~ a)(—lup_r/‘pg/iv _rvpgm O
From this, and the fact that:
(30) Avgﬂp:rwp, rjw: gxlp Mo
(30a) o 95 = Sw, o, S =9"Sw,,

(1) implies the following relation:

1(9g,, 09, 09,
(31) [ p= (axﬂf axfl _ axﬂf’ j+ (Sw.p* Supv + Sy ) -
A link between the metric and the,and the/,' (and the/y;) is then produced by the

following requirement:
When:

a’X,=0, hence a’= ¥, &,
one must have:

(In) vava, =

I
in which & | is defined in the normal way in terms of the Christoﬁgmbol{nm},

k aa k m
as =—r a
oxX Im

according to:
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k - k zigkn agnm_*_agnl _aglm

Im| [ml| 2 ox  ox™ ox" )
We can formulate the requirement (ll) in a diffarevay when we define a covariant
derivativey?,. ,according:

2SR B I (e
(32) yléllcp_a)(_p-i_r/ipl/tlk {km}yp VEII

This implies the product rule:
(Vad)io= v v+ Vi@
bio= (VD) p= VEk;pbv +yhbuip.

Likewise, it follows that:
0 I
(32a) Ve, = Yo +I 7 —{km}yf”yf,

ak;p =(y,a),,= VEk;paV"'VEk a’,,
W be)o = VS b Vo +y), b

Thus, (Il) is equivalent to:

(I’ Ve VS Vinp=0
or.
(" Vi Va ¥, ,=0.

By antisymmetrization in the and/, it then follows from the latter equation that:
(33) VaVa Vi S, =0,

i.e., the affine part ofS," must vanish. Howeverg,"is then already determined by

X’s, andX,S,", which can be expressed by waylgfandQ,’ for a giveng,, and its

derivatives?)
From (25), (26), it now follows that:

Y Therll,, andQ,, (with the indices lowered by means of ti)g) yield only the conditions:

rl,uv =_r|v;1 ,
X' Qu =Xy Q/?z 0,
[the latter follows from (7)] and:
H— ~WYH (= YH YV
ny Xf=Qr X (=X X y) .
Otherwise[1,, andQ,, are arbitrary.
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a’,=a, +e@x’), (a=X,a’, a’'=d" a")

(34) v ,( oa
a.,= V,[kyﬁalén '*"9xp|_llmkaI +eX (axp _V[:JﬂQlkakj+gaQDy!
and likewise:
ob
(34a) bu. o=y, vl —eXPy, XN + X, (6)(—” - y;“Q,Ekaj +£bQ,, .

In addition, theg,, determine th€’) uniquely by way of the fieldsl ,, andQy .

Obviously, our requirements are still much too generéetoaseful to physics. The
simplest case that comes into consideration is tedamwhich:

(1 Swp=0,

i.e., in which thé;, are assumed to be symmetrigimnd v, as one does in Riemannian

geometry. This assumption seems to be the most nabursl. We would like discuss
the more general case that Schouten examined lates am appendix (8 7).
If we accept the severe restriction (IIl) then oas,hn particular:

1[09,, 09, 09
3]: r V, :rv =— ﬂp+ e — ad .
(31) pop =t e 2{axv aXH“  9XP

One then has:

rﬂ,u, VXA :E ag/“/ + ag/h/ _ag/lp XA .
2 a)(/1 ax# axv

Due to the homogeneity condition, one further has:

09,

X axﬂa =~ 0w,
hence, due to the fact that:
(28) n,uv:g,uv"' r,u/l,vx/‘ )
(29) Quw=0w+T iy X )
one has, in our case:

1( 09 a9, A
35 Vv = I_I Vv =— AV _ H X .
(%) Quv =T 2(0x# aXVj

If, for the sake of what follows, we introduce thedamental skew-symmetric tensor:

oX 0
(36) K= e~ = Oy T | 1,
oxX# oXx" oxX# oXx"
then we have:
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1 1

Furthermore, we have:
X X! = = X 091y v O
ox" oX#
0
=-2X'gu +6X—ﬂ(X” X" ga) +2X" g,

hence, due to (7):
(37) XuwX'=0.

If we then define the skew-symmetric tensor:

(38) Xik =VaVa Xuw == X
then one has, conversely:
(383) va: V?,V,,D( Xik .

According to (36) X, also satisfies the relations:

(363) X, Xy Ky _
oX?  ax¥  oX*

From (18), in which we have used (37), we can infer tHeviaig:

0%, , 0%, , X,

39 .
(39) oxX'  axk oaX'

In order to simply the notation, we would like assést if three indices are enclosed
within brackets in an expression then what that mearbais these indices will be
cyclically permuted and added together in the expressiore tkan writes, e.g., (36a)
and (39) as:
6x_ﬂ" =0 axik
’ X' i

= =0, resp.
OX” tuv.p) P

Now, it follows from (38a) and (36a) that:

0wy X)) 10y - van)

0
0X?  fuva 2 ox” [, ]

. ox .
We have substltutqu :ax—pln the latter expression. Now, however, one has:
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_ox ox*  ox¢ ox
oxX* oxX" oX* oX"

0 Xiax" 0 ax"xi
XA XY ) ax’lax# )

ViV, =V v,

and it follows that:

(yJ/I/ _ypKl)[pr] O

axp
Thus, one has:
0X,, 0X,,
m,, k,, 0 m,, k,, 0 _O,
vovio Ve — X Lo =v. vy, PV

from which, one immediately infers that:

0X,
X ik
i.e., one infers the validity of (39).
There thus exists a covariant vedi@uch that:

:O’

of,  of
40 XI = —k [ .
(40) “Toax XK

From (36), (38a), and (40), it follows that:

X, i_(ax . afjo

oxXH  THTY ox ax” MY 9
or:
0X, —yn x Of X, 4 w O -0
OXH  THTV X laxy THTY oaxK ’
and, since:
ay® _dyr oK
oxX# oxY oXHoXV
one has:

0

0 _
a)(_ﬂ(xv - fV)_a>(_V(X,U_ fp)_ 0 ’

in which we have set:
(41) fu yv fi | f, X"=0).

From this, it ultimately follows that:

(42) X =t +e~ 97 _p 4 0l00F

17
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in which the sigre is included, from which:

oF
42a XH =F,
(422) X ”

henceF is homogeneous of first degree.
Our metric is then exactly as general that it is fagiverny *) characterized by

and the skew-symmetric tensj that satisfies (39). One is tempted to identify the
latter, up to a proportionality factor, with the tengqr= — Fi for the electromagnetic
field strength. Ifk is the Einstein gravitation constant then:

(43) fik: g Fik

has the dimensions of length, such that we can set:

NP

(44) Xik =rfix=r ~ Fik,

in whichr is a real dimensionless numerical factor. With:
F.X"=0,

NP

(44) may be extended to:

It is satisfying that with this geometrical meaning fog tectromagnetic field strength,
the first system of Maxwell equation is automaticabyisfied.
As for the potentiaP, which is defined by:

oD, D, op, 09 JK
45 Fik =—&——-, fix =—=F-—=",
(45) T Xk T oxe ““¢

from (40), it can be identified with, up to the factor 1/

(46) fi:r¢i:rgcbi,
hence, with:

(47) ?,=v,¢. @XxX'=0
(45a) f :%_%

X aXY
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NP

(46a) f_V:r¢V:r—KCTJV.
c

f,, like@,, is defined only up to an additive gradient. As Schoutenramarked, the
theory can, however, be formulated in such a way?ﬂ&rld@do not appear explicitly,
but the well-defined vectoxX, always appears in place of the ill-defined vetjor

8 5. Parallel displacement of vectors. Geodetic lines.

One can define the parallel displacement of a vext@,, resp.) along a curve with
the help of the modified coordinate differentials thatevdefined by (20), (20b):

dX# =d# dX”=y# dx*,

namely:
sa’ =dx*a’, = dx" (y4a’,)
(48) 0a’
= dx" [yp;k OXH + yﬂ;kr;ﬂaﬂ j’
or:
dh, =dX*“n,,, = dx* (y4h,,)
(48a) 9
= ka (Vu;k a;l,ﬂ - yﬂ;krl//]pb/i j’

resp. From (34), one can also write this as:

(49) &’ =(yha, +eayhQl )X + sdax”,
(49a) &, =(y)'b, +ebysQ,, ) + £db X,

resp., upon introducing the Riemannian parallel displacemen
R | ok R K
Joa =a.dx‘, oh =by.dx",
and substitution aX, Q,"= X"Qyy = 0:
R
(50) A&’ =y, (5&1‘ + £an“dx"j dX“ + edax”,

R
(50a) &, =y (mq +£bQ, dx"j X+ edb X, .
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We now definegeodetic lines by saying that the vecta is parallel displaced along them
in the direction associated with:

k
dX_Ekvk

51 —=y a =a,
(51) v

and postulate that the vectrdoes not change under this motion. We shall then have:

da’  dX#
= a’. =0,
dr dr

(52)

when (51) is true. The latter is equivalent with:

k
(51a) a’=y* o _ caXx’,
dr

such that from (50) the requirement (52) decomposes into:

R

i d_Xk+ £a D]d_xk: 0

dr dr “ dr
or:

d3x! I ] dx™ dx" 5 dx*

53 + =—cfa -
53) dr’ {mn} dr dr R
and:
(54) ? =0, a = const.

T

If we now introduce the heretofore unused relation (35) §(3B6ap.) and take account of
(44) then we have:

2l | m n m m
(53a) d>;+ B g X :EgarﬂFgde
dr mn| dr dr dr 2 c dr

From the skew-symmetry &y, it follows from this that:

g. d_XI d_Xk = const
“ar dr B
such that we can normalize to:
dx' dx*
(55) Ok— ——=-1

dr dr
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(The negative sign corresponds to the timelike charadtdre curve.) Comparing this
with the world lines of charged mass points shows that they corresponds quite neatly with
the generalized geodetic lines that we consider here, wheset the arbitrary integration
constan@ to:

(56) ca=———
KTIme

in which e andm mean the charge and mass of the mass point. lihis@duce the
impulse vector:

dk ¢ 2e
( ) p/l gll aﬂ yﬂ gk| dT \/; rme U
then one has:
o
(58) Pu_ g
dr

We further remark that in many works the geoddtied that satisfy (51) are defined
by:

k v

instead of by (52), since that seems less natoinas t
Furthermore, from (42) and (46a), the vegbprthat is given by (57) differs by a

gradient from:
|

dx e
y;kmgm E'*‘ ZECD‘U
and not, as one might perhaps expect, from:
X'  e-
y;kmgm E*‘ ECD‘U
We shall come back to this later (8 7).
§ 6. Curvature

Whenr™, /is symmetric inA, 4 as we would like to assume here, the curvature

tensoPy , is defined by:
(59) aﬂ;p;a B aﬂ;a;p = PD!l'IpU av ’
Since:

@'bu).pio — @' by) o p
=@\ po & po)by—a Oupio ~buipip) =0,
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it follows that:
(59a) Buipioc =Buioip=- PE/,UprV'

The definition ofP#

oo IS Skew-symmetric ip, ; and carrying out the calculations yields:

ory, ort
60 pu —__w_ v
(60) 79X 9X”

T U _[HT
+0, 0, =T,

We would now like to express tRg , in terms of the corresponding Riemann
tensoR,, . In order to do this, it is more convenient to comphéeexpressioby: »: o —
bx: . o by using the fact that:

R R )
(59) bk;l;m_bk;m;l == bi RIEkIm
Since:
R
bk;p Ey[?] b, ,
it follows:

R R
B p: o :V;E”Vc?“bk:':m’LVE;a Bt

and since, from (32a), the symmetrwﬂfgin p and o follows from that of thé”,, we
obtain, from(59):
(61) by;p;a—by;a;p:‘VEVE“Rﬁlmbi-
On the other hand, from the fact that:
b =yh by,

B o = Vo B+ Vi Bu; o,
one has:
Bu;pio =buioip = (Vﬁ;p;a_yﬁ;a;p) bu+ Vi (Buip;o =buia;p) -

Taking into account (61) and (59a), it follows:
(62) yﬁ@( ngwa_y;nyfnyﬁRiEklm: yéllk;p;a_yéllk;a;p'
On the other hand, from (59), one has:

Xpig = Xgip = Pho
hence, from (36) and (35a):
(63) P

Wpo

XV

—1 tu tu
XV —E(Xp;g —Xg;p .
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We can now compute the right-hand side of (62), if wewky; ,. From(ll),
however s, ,is determined if we know:
x/l yéllk;p
and:
X Y-
However, one has:

1
Xu y[lkp ~VaKu;p=~ Eyﬁxxpu

and:
xpyEkp_PEpka_Eka
SO one has:
P
(64) y&;p:E(prVE"—X”XpV)VEk,
and it likewise follows that:
(64a) yﬂp 2( X, X + X Xga)yv

From this, one further finds that:

yéllk;p;cf - yéllw;p
:;/Ek{ég(—zxpgxﬁwx@‘x -XFX,,)
Z(Xp v o0 xngﬂlp gxﬂ(xpva xm/;p)

FLXIXT (X, X = X, X )b

(65)

From (62), (63), and (65), a brief calculation fipayives the ultimate formula for the
curvature tensor:

&, 0 [0n

Ple =V Vo Vo ViR
=£(- 2xp[,xf*‘+x5"x - XX
(66) +HE(X X =X X

pva g’ p

—%{X"(X o~ X ,)—XV(Xp@;U—XEI;p}

pv,o ov;p

o)

F (X, X g = X X, )(XEXT = X, X))

g’ pr
Of particular interest to physics is the contraatedvature tensor:

Por=P%

Wpo
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which is symmetric irv and oin the case of a symmetfi¢, that satisfies (I). By the use
of:

1
X”va;a:—l'ljbxp,,— 1,7 Xy :_E(X;prpv _xvszﬂp)

— 1 p o —
__E(xﬂ X, t X, va)— 0,
we get:

&
P,UV:P = ;EﬂvakRk +Ex,umxva

(67) £ 1
L L
S X0+ XX )+ XX X g X

u’v oa

We thus extract from this:

(67a) Pic= VWi Puv=Rict S XX,
(67b) Pioy= VX! Py = —% X1,
Furthermore:

(68) P=¢g“P,=R +% X gy X,

(69) P=P,, XX’ = —% X X7

8 7. The form of the laws of Nature. — Variational principle.

For physics, the ultimate goal for the application lé theory of the group of
homogeneous coordinate transformations and its covatiargture is to derive the laws
of gravitational fields and electromagnetic fields inrafied way. Thus, in the classical
part of the theory, we restrict ourselves to the cdshe absence of charge and mass. In
order to reduce the number of field laws, we next propleselotion ofactual tensors

(projectors). This notion is such, that it is consted only from the,, and thd fw, as

well as the derivatives of tiid, , without the explicit inclusion of the X" and they}, or
they*, and also without anything explicitly entering into Iﬂj@but the derivatives of

theg,,.

The simplest form of the laws of Nature would therih@eone that simply expresses
the vanishing of an actual projector. However, one thuayswbtains one equation too
many, and it is thus necessary to cast the field lawsa following modified form: One
must have:

(70) Ku =F Xy Xy,
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in which K, is anactual tensor, and indeed symmetric tensor of the second rank,
wheread- is a yet-to-be-determined scalar, hence, a homogeneaifuof null degree
in theX? . From (70), one immediately finds that:

(71) F=KuX'X" =K,
such that we can write:
(72) K = KX, Xy .

Upon multiplying byX* and X" and then performing the associated contractions, one
derives an identity, and now (72) includes only 14 indepdnrelgumations instead of 15.
The necessity of this identity is most closely cone@atith the relation (7) for thgy, .

In order to satisfy the general covariance and to aftewsufficient generality in the
solution of thegy.~field, (72) must satisfy five further differential idérs that we can
pose, by analogy with general relativity theory, infthren:

(73) KY =0.

U

This is permissible, because:

(KX/IXV);V: %XVX#+KX/I;VXV+KX/1XV;V: 0,

since the individual terms all vanish.
We now decompose eq. (72) and the identities (73) integponding equations for
the inhomogeneous tensors. With the fact that:

(74) Kik = ViVa K, Kiy = V4 X" K
(72) becomes:

(758.) Kik=0,

(75b) Kioy=0 .

Since (71) and (74) means the same thing as:
(74a) Kuw = ¥, ¥, Kik + € Yt Kio) Xo + £X, Kiy 1, + K Xy Xy,
then it follows that:

K/?llW: y,lEﬂ KiEk;k+X/1 K;{O);k+ (y;Eﬂ;VA+yEV,D(;V)KiD(
+eX" y,, Kio) + € Xy Kio) Vi + € X, Ko Vi

From (64), one has:
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£
yﬁk;p:—(xvaul —X”XpV)VEk ,

Vo™ (X XK

Thus, one has:

V — 3 i —
| y,u VVEIK Epyvmyé)kKiEk_Exny(KiEk_o’
1
V=0, X'y, :—Exﬁyi“,
and it follows that:
(75) Kllm;IV:y;Eﬂ(Kim;k_gxikKIE(O))+£x,uKIE(O)k
Thus, (73) splits into two identities:

(76a) K™ =X K

=0,
(76b) E{O) =0.

In the case of the presence of matter, as we slalpae I, these identities lead to the
theorem of the conservation of energy, impulse, @malge, which are summarized in
one tensor equation in the homogeneous coordinates.

It is now worth pointing out that one obtains equatiohshe form (72) with the
identities (73) when one starts with a variational ppiec

(77) J-Lylg] dx® ... dx® =0

with the supplementary condition:

(78) Ay X X") = & X' X" =0,

in whichL refers to an actual scalar agfirefers to the absolute value of the determinant

0
of theg,, . As usual, the variations of tgg, and the(s(—": shall vanish on the boundary.

Next, if one lets:
(79) - Llgldx® .. .dXx®= +K &y g ] dXP ... dx®,
without regard for the supplementary condition, themfthe fact that:

X/IXV @/IV:_X/IXV @‘IV,

the field equations read like:
(70) Kuw=F X, Xy,
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in which F is a yet-to-be-determined Lagrange multiplier, which Mobave been
previously introduced into (70); furthermoi€,, is an actual tensor whénis an actual
scalar. FinallyK,, also satisfies the identities (73), as one knows, ichvbne performs
the variations of thg”" under an infinitesimal coordinate transformation:

X" =X'+e&,
from which:
v & 0&"  0¢&”
=g g? + g _ v
=l [g ax? 9 ax axe 9

and the variation of the action integral vanishes idahy.
We further remark that from (18a) for fixed coordinatesand under the assumption
that the supplementary condition (78) is valid, one has:

(80) G =yiyao9" +29" Vi -

If one also fixes the coordinatgsthen one has, moreover:

(81a) 5yj”= 5(:;((#}: 0,
hence, from the fact that:
Y, Vi= O, ViXv=0,
vy, =0, Xy O ==V, Xy,
(81b) Wh== X (Vi OXKo) |

it follows, from the validity of (78), on account of (74hat:
82) J-Llg] dX® ... dX® =+ {Ki— 26K} 15 Ko} g ] dX® ... dx®.

We still have to establish the scalaand thus, th&,, . If we demand thdt shall
include no derivatives of th‘ejwhigher than the first ones, thénis uniquely identified

with the curvature scalar.
(83) L=P.

Therefore, by means of the contracted curvature tegothat is defined by (67), one
has:

1
(84) K,uv = P,uv _E Quv P,
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in analogy with the relativistic theory of gravitatiorindependently of the variational
principle, thisK,, is the only actual tensor that includes no derivativetﬂeﬂfw that are

higher than the first ones, and also satisfies thatittks (73). One thus has:

1 £ 1 rs
(84a) Kik = Rik > gikR +E(Xiu(xkr ! O X (s X j
1
(84b) Ki(O) = _E Kiuk;k.

If we equate this with the field equations from tbembined Einstein theory of
gravitation and Maxwell theory of electrodynamieghich in the present case of non-
existent charge and matter, read like:

1 K 1 s _
(85a) Rik _E gikR +?(F| *Fy _Z Oy F Frsj =0
and:
(85h) F*, =0,

then we see that get agreement between these mwuathen the number that was
introduced in (44) according to:

Jk
Xik =1 fix =r— Fix,
c
satisfies the equation:

(86) =1,

Sincer is real, it likewise follows from this that:

(863) E=+1,
(86Db) r=+J2.

We further remark that (84a) can then also be evrifts:

(84c) Ko = —%% F L.

The determination cf andr can also come about by the requirement, which is edgmia
to (85a), that the expression:

L:P:R+%erxrs

be identical with the ordinary form:
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K1
(87) L=R +?§ Frs F™

We have achieved our goal. The second system of Maxegelhtions and the
gravitational equations melt together into a singleesysthat is directly connected with
the curvature. The first system of Maxwell equaticets [39)] follows directly from the
assumed structure of space. Furthermore, the law admiotr a charged mass point can
be interpreted as the generalized equation for geodsti. li

With this, we can close part one, but for the sakeoafpleteness, we would like to

refer to a generalization of the Ansatz forrﬂjgthat is due to Schouten and van Dantzig.

Appendix: Generalization of the Ansatz for thd‘jw.

Schouten and van Dantzig have shown that the most ajefmsatz for thé& jw

whose consequences are in harmony with physics is:
In place of (lll) and (35), use the postulate:

1 1
(”I) I_IEI'IDEXW, Ql?y:qaxw,
in whichp andqg are numerical coefficients. From (29), one furtes:
88 s xi=1 X
(88) w X = (P-a) X, .

Therefore, from(29 )and (36), we infer from (31) that:

1 1

Q/IV = qE x,uv ZE x,uv + (S/l,u,v + S/] VU + S,uv,/l ) X/‘

or:
1, _ 1 ;

(q- 1)5 X/IV - _Z (P _q)(x,uv + xv,u) + $1v,/1 X,

hence:
1

(89) SwaX'=(@q- 1)5 X

From(ll') and (32a), it then follows that:

(90) S,uv,/l VﬁnV&wV& =0,

hence:
1 1
(91) Sua =£Z(p—q) Xy Xun =M X ) +£(q— 1)§XA Xy -
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For the geodetic lines, it further follows that:

v k
iar :di(y&%ﬂaxvj =0, a=const.
r T
and:
d>x' [ 1 | dx™adx” _ n X
—+ =-&ald —
dr dr dr dr
:gaQ'm%—%saqr \CFF' ZXT
hence:
c 2 e
92 £a=———
(92) Jk rqme
and with:

d e c 2
(93) Pu= My, gy ——+———=0E=X

dr m+k rq *

o

94 —py=0.
(94) a7 Pu
Consequently:

X' 2e 1 oF
95 o v —+——P +=
(95) [y“ M a7 qc “ F ox*

J=o.

30

for a certain choice df . Schouten posed the particular requirementdhaghall appear
in this expression with the coefficient 1, whick@kntails that:

q=2.

However, we would like do without this completedynce such a demand seems to us to

be in no way imperative.

One can define the curvature tenBgy by way of (60) when one preserves the

order of the indices in th‘ejw. By a lengthy calculation, one then finds for tuevature

tensor, instead of (68), the expression:

(96) P=R +§(q2 + 2D~ 2p0) Xpo X .

On the basis of the variational principle:

5P lg|ldx®...dx®=0,

with the supplementary condition:
O(@uwXX")=0
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one finds the field equations:
Kik=0, Kio)=0,

and, in place of (84a) and (84b), the following expressippear:

(97a) Kik = Rk +% gk R+ %(q2 +2p- qu)?(ximxkr ‘% giersxrsj
and:

1
(97b) Ki) = 5 (@ + 2p - 2pg) XX, .

The latter follows from (82); one should observat tt84) is no longer valid. (96) implies
the following condition:

e,
(98) — (@ +2-2p0) =1,
fro which one infers that has the same sign ag ¢ 2p — 2pg). From (98), one can also
write (97b) as:
(99) Ki(O) :£%§ F Ek.k .

As a critique of the generalized Znsatz forrtf)ﬁ, it must be remarked that the
curvature scalar in this case is not the only dccalar, since:

J - g;IV SﬂDpBT O0p

ag
can also come into consideration, which agrees with
Xpo X7,

up to a generally non-vanishing numerical factdn arbitrary Lagrangian function can
be represented as a linear combinatiod ahd P. For that reason, we would like to

propose that the original Anszﬁg,EH = 0 is the most natural one. On the other harel, th

Einstein-Mayer theory can be characterizegby0, since onha”. =& &', , applies to
it.

Zurich, Physical Institute of the E.T.H.

(Received 15 July 1933)



