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On the for mulation of the laws of nature
with five homogeneous coor dinates.

Part I1: The Dirac equation for the matter waves

By W. Pauli’

§ 1. Introduction- § 2. Construction of the metric tengpy from 5 matricesr, . — § 3. Coordinate s
and Stransformations- 8 4. Covariant differentiation of spinors.8 5. Connection between projective
and affine spinors. Statement of the wave equati@6. Variational principle and field equations.

8§ 1.Introduction

The search for a suitable form for the Dirac equaitioterms of a wave function that
depends upon five homogeneous variables seems, upon setliegrasiy more serious
criticisms, to be the corresponding search for thesital equations of gravitational and
electromagnetic fields. Even when we thus ignorefdbesuch methods are, in general,
notoriously “formal” — without definitively resolving theuestion of whether this
judgment is correct, we can nevertheless predict, hinllsight, that the method will
bring about dogical unification of the foundations of natural law — we must stress that,
from a physical standpoint, the physical foundationshef@irac theory are completely
dubious. They lead to the extension of those laws fadacopposite states of negative
energy for matter waves! The following investigatioralsltherefore not achieve the
objective of giving new support for the validity of therd@ wave equation, but rather to
show that the unification of gravitational and electagmetic fields by means of
projective differential geometry with five homogeneoosrdinates is @eneral method
whose consequences reach from classical field physasjimntum theory. Perhaps it is
not incorrect to hope that the method will prove tcabgeneral framework for physical
laws, as well as a future, physically meaningful improvanueé the foundations of the
Dirac theory.

The applicability of the method of five coordinates lte Dirac wave equation rests
upon the fact that it is also related to the group diagonal linear transformations of
five variable quantitie® with four components that likewise transform linearly by these
transformations (i.e., that a four-rowed representatibthe five-dimensional rotation
group exists). If one specializes the orthogonal tcansdtions of the coordinates to a
subgroup that fixeX® (viz., the Lorentz group) then these quantities transjost as the
Dirac ones do.

We establish this fact in the following (88 2 and § 3) umdied way by considering
the matrix equations:

) (auav+ avay) =0 ?1 (mn=1to 5),

" Translated by D.H. Delphenich.
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which were first presented by Tetrode in the analogousdonensional case, and then
construct the general relativistic extension of thea®matrix equations. IT is, however,
essential now that there afiee four-rowed matricesy, that satisfy the relations (I).
When the determinant gf,, is non-null, which may be assumed, the 16 matrices:

1, au, aum=3(auav —avay)

define a basis for a hypercomplex number system. Itviismportant properties: first,
it possesses orand only one representation by four-rowed matrices, up to equivalence
(i.e., up to a similarity transformation and a possibhange of sigam, = + S‘la,,S).

Thus, if a second system of matriceexists that satisfies the same relations (l) as the
ay then there is a matri such thata), = + SlayS. The second property is that the 15

relations (1) may not be satisfied by matrices wittsléhan four rows, so the four-rowed
representation is thus irreducible. Therefore, it baninferred that any matrix that
commutes with all five matrices, (it suffices that this is true for four of the maésg is

a multiple of the identity matrix.
From this, it further follows that a matri exists such that:
Aay
is Hermitian, where eithek itself oriA is likewise Hermitian®). This gives rise to the
construction of vectors:
a, =¥ a,¥,

that possess real components. (We shall always emgadgoordinates here.)
The transformation law fo¥ is coupled to that o, , namely:

a,=S'a,S  A=S'As W=S'y,

Under thesestransformations, there is, in particular, an asged 10-parameter group
SDs), with the property that for any coordinate transfaiores:

X'/I — a..,lljxv ,
that leavey,, invariant, which can be referred toratations, anS exists inDs such that:

a,=Sa,S', A=S'AS=A,
a, =S'a,S=ala, .

1 A matrix a with the elementa,, is calledHermitian whenay is the complex conjugate af; (ay =a:s).

It is calledsymmetric whenay = a5 , andskew-symmetric (or anti-symmetric) whenagy = — as. The
Hermitian conjugate matrix @will be denoted by, and it is defined by' =a; .
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It then transforms as a covariant vectsp for fixed a,:

a,=W* Ag, ¥
with:
W=s'y,

Thus, in the special case of rotations, the mutually inttbgr& S-transformations are
connected with the coordinate transformations.

The argument against this way of thinking is often brodgftth that it is unnatural
top introduce a transformation law for teby rotations whose coefficients depend upon
which numerical values the, are allowed to have. On the contrary, we would tike
put forth the statement here that this state seenise toompletely natural when we
introduce the idea of a four-dimensiosgiln space. This then rests on the fact that when
one is given the position of an electron there awe pmssible states that are characterized
by four linearly independer¥’) (o= 1 ... 4):

Ywo=o,

only whenc, = 0 . Just as arbitrary systems of reference are gedrin the four-
dimensional spacetime continuum, so are arbitraresysbdf reference permitted in spin
space, and they can, moreover, vary arbitrarily frormtpto point in the spacetime
continuum. The methodical contradiction to the van Waerden spinor calculus that
follows from this statement will be mentioned in § 3.

The method of basing the spinors of five-dimensional sytee projective spinors
that are independent of the five homogeneous coordinags,) that is given here is
different from the one that presently exists in therdture. Recently, W. Pauli and J.
Solomon }) have established the existence of such spinors, atittheir help, sought to
bring the Dirac equation into accord with the Einsteiny®dfastatement of field theory.
Here, however, the results will only be slightly uedf in a formal sense, and the

“Beingrof3en” hZ (that are associated with Fock and Weyl), which furtieengicate the

formulas, will not be explicitly introduced anywhere.

In the present article, this is avoided, and indeed thaadesf Schrodinger?) and
Bargmann ) (with its use of ordinary inhomogeneous coordinates), wtécries over to
our own case with no further assumptions (8 4). In pdaticone first finds the general
introduction in Bargmann’s work of the Hermitian matriatthve denote by here, and
the general covariance of the equations under arbi&&ngnsformations is first achieved
there.

1 W. Pauli and J. Solomon, Journ. de Phys3(@)932), 452, 582.
2 E. Schrodinger, Berl. Ber. (1932), 105.
3 V. Bargmann, Berl. Ber. (1932), 346.
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Independently of Pauli and Solomon, Schouten and van Dafjzhave examined
the problem of spinors and the Dirac equation, and inde¢d the use of five
homogeneous coordinates. The calculus of and the foandati projective spinors in
this work can be accurately described as hard to understandoa-intuitive, since we
will always use properties of the matrices that arg walid in a special reference system
in spin space, although they are inessential for ¢salts and tend to complicate one’s
intuitive grasp of them.

By contrast, we have adopted the form of the Dirac egpstihat was used by these
authors in 8 5 of the present article. The projectpreas W will thus be set equal to:

Y=yF,

in which ¢ is an ordinary (inhomogeneous affine) spinor Bnd a real scalar of degree
1. In order to satisfy the requirement of the realikyhe Lagrange function in a simple
way the degree of homogeneitpf W must be assumed to be pure imaginary. (In the

case of a symmetrl‘cfw, which we assign particular values, as was discussearinl,

the dimensionless numblkebecomes:

>lo
8|~
X

if @ means the charge of the partidieis Planck’s constant divided byz2and« is the
Einstein gravitational constant.)

In 8 6, we will seek to link the classical fieldetiry of the vacuum (which
corresponds to the absence of ponderable masshangkeg to the Dirac theory of matter
wave fields by adding the associated Lagrange immetogether. In order to distinguish
from the previous treatments of the same probleynBauli-Solomon and Schouten-van
Dantzig (Schouten, resp.), we succeed here in priagea formally unified expression
for the symmetric projectof,,, which combines the energy-momentum tengprand

the current vectov, § 10 eq. (71). For this, the assumption of Unareetryl’jw of seems
to particularly prove it worth. Additional termsp@ear in both tensors that are

proportional talk (which was also the case for Pauli-Solomon, buth wdifferent
numerical factors), which are also non-vanishingha absence of gravitational fields
(special relativity theory). However, due to iteadliness, this expansion of the theory
that was developed by Dirac can hardly be conforbyeexperiment.

The latter theory does not apply directly to rgalitut only after quantization of the
wave fields, which the transition to configuratgpace brings with it. However, we shall
not take this further step here, which inevitaldgds back to the well-known unsolved
problem of the self-energy of matter waves.

Also missing from the path that has ultimately bebosen here in the following is
the combining of matter wave fields with classitields (viz., the gravitational and

! This first came about for a special choice of sigreafor the metric: J.A. Schouten and D. van Dantzig,
Z. f. Phys.78 (1932), 639, which contains older literature. Moreovann AMath. (2)34 (1933), 271.
Later, after hearing of the work Pauli-Solomon, theggal case: J.A. Schouten, Z. f. PI86(1933), 129,
405.



W. Pauli. On the formulation of the laws of Naturte, & 5

electromagnetic fields), which, in all of the previous tiey was “only foreign and
logically arbitrary by way of a plus sign.” This seetm$e connected with the fact in the
previous theories (including the one that is developed hikeeptomistic nature of the
electric charge was not rigorously present in the fouodsti

§ 2. Congtruction of themetric tensor g, from five matrices a,

0
The Dirac theory makes use of the existence of four-fowed matriceg, () that
satisfy the relations:

00 00
1) %(J/iyk'*'ykyi):dk’

and which can be, moreover, chosen to be Hermitidall of the matrices used in the
sequel are assumed to be four-rowed then the followimdgfmental theorems are valid:

0
Theorem 1. If four other (four-rowed), not necessarily Hermitian, matrices y, satisfy

the same relations (1) then there is a matrix S (with non-vanishing determinant) such that
one has:

(2 Vk S_lyk

Theorem 2. If Cisa (four-rowed) matrix that commutes with all four matrices then C
isa multiple of the identity matrix.

The first theorem rests upon the fact that all reprtesiens of degree 4 of the
hypercomplex number system that is defined by (1) are mutaglyvalent, and the
second theorem rests upon the fact that all of thegeesentations of degree 4 are
irreducible f).

If one defines the matrix:
0 0 0 0 O

Vs=W V2 VsV,

0 0
theny, is, like they, , Hermitian, and it satisfies the relations:

0 0 0 0
VsVitviVs =0
0 2
)" =l

(in which I denotes the identity matrix). There are thus, inltdtee four-rowed

0
matrices/, (and usually no more than five such matrices) thatfgahie relations:

! Once, again, the Latin indices range from 1 to 4 and Gneek from 1 to 5.
2 For the proof of this, cf. B. L. van der Waerd&nuppentheoretische Methoden in der quantentheorie,
Berlin, 1932. Cf., in particular, pp. 55.
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0 O

0 0
(3) sV VotV V)= .

The 16 linearly independent matrices:

0 0 O

0 0 0
I,yﬂ, and y[,uv]E%(y,uyv_yvy,u)

define the basis for a hypercomplex number system.
We generalize this result by first allowing also non+Hiean metrices and then
corresponding real coordinates that replagevith:

0 " 0
(4) 9"'=9,,= € dw,

in which the sigre, =+ 1 is determined by the signature of the metric. Ous has:

0 0 0 0 0
(5) sauavtavau)=9,,= € w.

0
If e, is negative then one obtains a solution of (5) in teshtkey, of (3) by multiplying
by i, and conversely. We next prove that it follows fr(@nthat the product of the five

0
matricesr,, is given by:
0
(6) a,0,0,0,0,=%n ,

in which the sigm =+ 1 is defined by:
0
(7) n=eeee e=Det||g, |

0
Since this matrix product commutes with all of ¢he according to (5), it is therefore,

from theorem 2, a multiple of the identity matrix daiurthermore, according to (5) one
likewise has that the square of the matrix product is dqual
We can now give the generalizations of Theorem 1 amor 2he case of the five

0
matricesaﬂ )

0 0
Theorem la. If thea , satisfy the relations (3) and if a, are five other matrices that

satisfy the same relations (5) then there is a matrix S with a non-vanishing determinant
such that either:

0’ _ 1 0
(2a) a,=S"a,S
or:
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0'_ 1 0
(2b) a,=-S"a,sS.

This follows immediately from the application of tAdeorem 1 to the first four

0
matrices, and then an application of (6). In the cddeur matricegr, one can likewise
deduce that:

0 1 0
a,=+Sa,s,

and also (by another choice $fwhich we describe as replaciBgvith %) that:
0

] —10
a=—-2"a.z2,

0
whereas in the case of five matrices as follows from (6), only one of the two
equations (2apr (2b) can be satisfied. The (just used) generalizatiorhebrem 2 for

0
five matricesy, is trivial and says:

Theorem 2a. If C is a four-rowed matrix that commutes with four of the five

0
matricesa , then it also commutes with the fifth and is a multiple of the identity matrix.

0
We can now pass from the special valggsof the metric tensor to the genegal,
by remarking that through a choice of certain fixed ceeffficientdh’, , by means of:

0
— h#
a=ha,,

any solution to (5) produces a solution of:
(8) %(a,uav + avay) = 0w,

and conversely, any solution of (8) produces a solutiofboby means of the inverse
transformation:

0
— h
a,=ha,.

However, we must naturally assume that the quadratia: for

guv X XY
can be converted into the form:
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0 0 0 0 )
g, X*X"=>"g,(X")

v

through a continuous change of coordinates, hat,the functional determinant:

oxX*
0
0X"

is positive, so, in particular, it is non-null. d#n this, e.g., reflections of an odd number
of coordinates are excluded. The determinant:

g=Det |lgw |[#0

0
is non-vanishing and has the same sjpgas theg ,. We now remark that by raising the
indices of thex,, one can define the matrices:

(9) a'=g"ay,
which satisfy the relations:

(82) Ha'a’+a'd) =g,
8b) i(d“a, + ad')=0L.

We can now convert all of the theorems for the addbe relations (5) into one for
the case of the relations (8). In placeatr, as a, as one has the anti-symmetric object:

21
(10) Of12345] =a ZP: €0,0,,9,0,,9,,,

in which P is a permutation that always takes 1, 2, 3, 4t the mutually unequal

numeralsia, Lo, s, W, s, andgp = + 1 or—1, according to whethd? is even or odd; the
sum is over all permutatios Then, in place of (6), one has:

(11) Of12345] = £4/Q :i\/’7\/| gl

We now have the following general theorem, whicbampletely analogous to Theorems
la and 2a:

Theorem 1b. If the a, satisfy relations (8) and if a; are five other matrices that

satisfy the same relations (8) then there is a matrix S with a non-vanishing determinant
such that either:
(12a) a,=S'a,S
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or:
(12b) a,=-S'a,S,

and indeed one has the former or the latter equationdingdo whether:

(23057~ F012345]
or
2305~ ~Of12345]
Furthermore:
Theorem 2b. If a matrix C commutes with four of the matrices a;, that satisfy
relations (8) then it also commutes with the fifth matrix a,, and equals a multiple of the
identity matrix.

Since we have expressly not assumed the Hermiticitheodr,, we would now like
to examine the Hermitian conjugatq*,sof the a,. As one immediately infers from (8),

due to the reality of thg,,, they satisfy, just as in eq. (8):

(8%1) Lala) +a)a)) =gu.

Furthermore, one ha$)(due to (11):

(13) 0[12345]= (67[12345])Jr = NAQi12345).

in which 77 is the sign of the determinant@f Thus, it follows from Theorem 1b that:

Theorem 3. If the a, satisfy relations (8) then there is a matrix A with a non-
vanishing determinant such that:

(14) al=nAa,A*.

This matrix A will play a fundamental role in the sequé).( Next, it follows from
Theorem 2b thaA is uniquely determined by eq. (4) up to a multiple of the ident
matrix, i.e., a numerical factor. The determinantheftatrixA:

(15) a= DetA,

can thus be normalized arbitrarily, except that it matyvanish.

! One observes that 1234554321 is an even permutation.

2 It was first introduced by V. Bargmann, Berl. Ber. (1932), 3dfhough by making use of a special
solution of (8). — In the work of W. Pauli and J. Soten{loc. cit.) certain relations linking a, A a, and
A a, A a,were replaced for the matricésa, , which, however, represents an unnecessary reduction in
generality.
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By going over to the Hermitian matrix, it follows fro(14) that:

(141) au=n Al AT,
hence:
a,=nA Y Aa, AMHAT,
or:
a, A"T'A=AA"q), .
From Theorem 2b one thus has tASf'A is a multiple of the identity matrix, i.e.:
AT=cA.
It then follows only from the fact tha@ = ¢ A" = ¢* c A, thatc* ¢ = 1. Furthermore, we
would like to normalizeA so that:
(16) A'=nA,
which then makefa,, Hermitian:

(17) Qa,) =Aa, .

In fact, one has:
(Aay)' =aA"=ha!A=Aa, AA=Aq, .

By means of the normalization (16), the valador the determinant oA that was

introduced in (15) is real:
(151) a=a'.

§ 3. Coordinate transformations and Stransfor mations.
We shall now consider the group of coordinate transfoomstti
(18) X" =al X"
that leave the values of tigg, in the invariant form:
guv X XY
unchanged. Th& must then satisfy the conditions:
(29) 9,0858,, = Qu -

If we now set:
(20a) at=ala’,
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(20b) aja,=ay,
then it follows from (19) that:

La*a” +a”a*)=1(d" a'+a’ &*) =¢",
%(0';10':/ +0'|'/0';1) :%(0'/1 avtay a,u) =0uw -

From Theorem 1b, it then follows that:

Theorem 4. If the coefficientsa’, satisfy the condition (19) of the invariance of the
Ouv then thereisa matrix Ssuch that:

(21a) S'a,S=a"a",
(21b) a“S'a,S=a,.

In these expressions, the + sign applies, since we assundeterminant of tlag

(which, from (19), is necessarily + 1 or — 1) to be etpa 1; hence, we are considering
proper rotations.
From (21),S is, however, only defined up to a multiplicative numari@actor. We
can fix it by the requirement that:
DetS=1,

and thatS must continuously transform into the identity matiixen the rotation/, goes

to the identity matrix.
With this assignmen§ gives us the association:

(a}y) - S,

which is a four-rowed representation of the rotation grfaupfive-dimensional space.
The two consecutive transformationa’)(), (&) correspond to a multiplication of the

associated matriceSandS . We denote the totality of all these spe&ahatrices by

Ds(gu)-
We shall call a four-component quant#ythat transforms under rotations according
to the rule:

Y=>"'S W,

or, in matrix form:
(22) Y=y,

a W-spinor (in five-space). We shall call a four-component qugrbit that transforms
according to the rule:

(22a) =) S,
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or, in matrix form:
(23) ' = dSH,

a ®-spinor. Thus, we must regat as a column matrix and® as a row matrix. One
then defines a scalar:

(23) a=oy
and a five-vector:
(23a) a'=o0d'V,

and this is the case under:
1. fixeda” and spinor transformations of the W,
2. fixed®, W and vector transformations of thé€ .

This double covariance property of the vectatis essential for physical applications.
The components of the five-vectaf that is thus defined, like the scakrare not
generally real. In order to obtain a real five-vectwe remark that from Theorem 3 a

matrix A exists such that:
Aay

is Hermitian. NowAa!, is Hermitian, just a®\a, is, since the coefficients in (21a)
u u
are real. One then has:
nAa,At=al,
nAa,A*=a),
r Ia-1l _of-1 ot oF — F-1 1 A-1 o
nASa,S A~ = a, S=nS Aa,A"S,
A'SAS a)=a, A'SAS,

hence, from Theorem 2b, one has:
SAS=cA.

Since the determinant &is equal to one, it follows thaf = 1, and since must vary
continuously with the coefficientg,, andc = 1 forS=1, it generally follows that = 1,

SO.
(24) STAS=A.

for all Sin Ds(g.). Due to the fact that:

W=y g
it follows that:
(25) WA= STA= (W*A) ST
hence:

Y*rA=0O

is a®-spinor. The scalar:
(26) a=WY*AY
is now real, and the five-vector:
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(26a) a'=wY*Ad WY
has real components, sind@” is Hermitian. The matriA thus plays an essential role
in insuring that one can construct real scalars and rgefrtum the spinof.

We would now like give the solution for the mat8xhat satisfies eq. (21) when one
is concerned with infinitesimal transformations (18ne®hus has:

(18) XH =Xt +g1 XY,

in whiche&? is regarded as small to first order. The condi{ib®) takes on the form:
900l * 9= 0,

or, with the usual definition of the lowering oflices:

@a9) Ew="— Ep -

From the Ansatz:
S=1+T,

in whichT is of first order, the equation to be solved, (21akes the form:

aT-Ta'=¢cta",
or:
a,T-Ta,=g,a,

If we then set:
T=g,pT?,

in which, in order to agree with9 ), we set:
-I—aﬁ - — -I—aﬁ’
and sum ovetrr andSindependently, then, due to the fact that:

& @’ =%€,,(050" -o5a),
one has:
(21) a, T-Ta,=1(55a° -d5a”).
A solution of this equation is:

T%=3(a"d’ - a”) =1d" .
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One then has, with the hindsight of (8b):

Yoy d”dP-a"da,))=(a,d"+d" a,)d’ - 1d” (a, P+ P a,)

— X0 ~B _ X8 0
=0,0" -9,a

Hence, we finally have:

(27) S=l+1g5d?M,
with:
(28) A =1(d"dP-d" .

It must be remarked that what the general solutiof2tdimplies is that, from
Theorem 2Db, it differs from any particular solution bg aadditional term:

CP=|.

The particular solution that thus obtained is uelguetermined by the demand that the
trace ofS— | must vanish (since, as one easily shows, thisiesfor the trace oft®?).
However, this means that for the first order teimghe &,5 that are included in De®
remain unchanged and equal to one (due to the gnapgerty, this follows rigorously, in
general), which contradicts our previously assuowdlition.

We must therefore prove that the matremains fixed under the subgroup of the
rotations that leavi® fixed, which thus corresponds to the rotationfoof-dimensional

space. Sinceaf)> =g> and Tr@’) = 0, @ has the eigenvalues\/ﬁ 9%, -Jg%,

-{g% . Since, from (21)S commutes withe"” in this caseS decomposes into two sub-

matrices, as long as" takes the diagonal form; the four-component qtiasti¥
decompose then decompose into two-component orastridmsform like the four-
component ones. This decomposition is at the hafsthe van der Waerden spinor
calculus, in which, moreover, the matricgsare further specialized)( In the case of
five-dimensional rotations, there exists the pabsiof four-component quantities that
decompose into two two-component quantities.

The spinor calculus seems entirely natural whervaskes to go beyond the possible
representations of the rotation group to one wberdoes not have to consider relations
of the form (1) [(5) and (8), resp.] . For thisseéems natural to us to use the relations (8)
as a starting point, which corresponds to Diracigival Ansatz. From this standpoint, it
iS a consequence that the numerical realizatictheimatrixS that is determined by the
transformation law fo depends upon the numerical realization of the io&sty, .

We refer to a choice of numerical realization & thatricesa,, — which agrees with
relations (8) — as eeference system in (four-dimensional) spin space. As a consequence,
in any physical theory, one must require that tle§ not only covariant under an
arbitrary coordinate transformation in spacetimengaogeneous transformation of the

! The general covariant form of the Dirac wave equatioani ordinary four-dimensional continuum is
treated in this manner by B. L. van der Waerden andféldnBerl. Ber. (1933), 380.
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five coordinatesX¥, resp.), but alsahat they are covariant under arbitrary [but
consistent with (8)] transformations of the reference system of the spin space. This
demand stands in methodological contradiction to tighe van der Waerden spinor
calculus, which is based upon a specialization of tleeeece system in spin space.

The most general transformation of the referencéesysn spin space, which we
shall also refer to as &htransformation, is given by:

(29) a,=S'a,S,
and:
(30) W=g'y, D' = PS.
Then, just like the,,, the scalar:
a=oy
and the vector:
=0V

remain invariant undes-transformations. [On this formal basis, the transiation law

for ® and¥ will be changed from (22), (22a) in thawill be replaced b ™.] One sees,
furthermore, that the transformation law:

A=S'AS
satisfies the demand that the statements:

al=nAa, A",
Al=nA
Aaqy, is Hermitian,
W*A is ad-spinor,

remain unchanged (i.e., they are also valid for the gatiguantities). For all of these
statements, theéependence of the matrix Son the X* then remains arbitrary. When tKé
are regarded as homogeneous coordinates, it seems to beeral gmnsequence of
assuming tha& is homogeneous of null degree that the degree of homibgehe& and
W remains invariant undé&-transformation (30).

Next, theStransformation and (homogeneous) transformationkeof4 appear to be
completely independent of each other. From what wagepr earlier, there thus exists,
as is also necessary for physical reasons, a conmebgbnveen special coordinate
transformations and specigtransformations, namely, the rotationsXth-space and the
Stransformation ofDs (Y). When we replace thg in (30) with the matrix that is

associated with the inverse rotatdfi = a“ X", the earlier result can be formulated in
the following way: To any rotation of the coordinate space there is a unique associated

! Thus, no coupling of the rotations at different spacetpmints exists whatsoever, in contrast to the
prior Einsteinian idea of teleparallelism.
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Stransformation in Ds, in such a way that the am remain invariant under a simultaneous
application of the rotation and the Stransformation. This result is, moreover, physically
necessary, since for a givep, (e.g., in special relativity theory) there is no cooatie
system that is distinguished by a particular choicthetr, ).

A further property of theStransformations irDs is obtained by equating (24) and
(31): Thematrix A remainsinvariant under Stransformation in Ds. The matrixA can be
regarded as a sort iindamental tensor for spin space, since it has analogous properties
under Stransformations to those of tlwg, under coordinate transformations. (For a
further analogy, cf., the following paragraphs.) From ,(16¢ number of independent

real elements oA is equal to 2= 16, compared to th22£6= 15 independent components

of theg,y.

It must be remarked, as an appendix, that, along with thixr#a there is a matriB in spin space
that is analogous t8, and likewise remains invariant undetransformation irDs; however, it plays no
role in physical applications. One obtains it wioaie considers the transposed (“flipped”) matrLEﬂesin
which the rows and columns have been switched, instethe dlermitian conjugate;s;. Therefore, they
likewise satisfy the relations:
(8%)

Since:

N~
Q|

(@,a,+a,a,)=9u.

Ap12345) = (Qf12345) = Qf12345]

there follows the existence of a matB»such that:
(14%) @,=Ba, B,

(but this time, without the sign). B is determined up to a numerical factor by this equatioh that:
(15%) b = DetB

still remains arbitrary. From (14*), it follows (amgbusly to the situation wittA before) that
B™'B commutes with they, , so:
B=cB.

One shows, with no further assumptions, tiat 1, henceg =+ 1, i.e.:
B=+B. or B=-B;
in the former caseB is symmetric and in the latter, it is skew-symmetriic order to distinguish between

these two possibilities, one must examine them mosely €).
From (14%), it follows that:

hence, with:
—1
au =35 (aua,—a, ay),

! The work of T. Levi-Civita, Berl. Ber. (1933), 340 resilusively on the absence of this result, and is,
for that reason, physically unacceptable. Moreoueladks a prescription for the construction of real
vectors.

2 For the communication of this argument, as well ascthrdial permission to publish it here, | wish to
thank Herrn Haantjes, Delft.



W. Pauli. On the formulation of the laws of Naturte, & 17

since:
a.,~—3@,a,-a,a,),
&y =~ Bayum B,
and with:
B=tB, (Bay,,)=0,,,B= F Baju -

We now prove that th& a;,,; cannot be skew-symmetric. Since the 10 matrimgg are linearly
independent (i.e., from the fact tré{t! a,,y = 0, with ordinary numberd*’ , it must follow thaic = 0)

the same is true for the 10 matridgs;,,; . However, there are only six linearly independent skew-
symmetric four-rowed matrices, compared to 10 linearfependent symmetric four-rowed matrices.
Hence, the Bay, must be symmetric matrices, i.e., one hasthe lower sign:

(Ba[yv]) =+ B a’[/“/] :
SO:
(16%) B=-B.

The matrix Bisskew. The six matrices:
B, Bay,

define a basis for all skew four-rowed matrices, andL.thmatrices:
Baym

define a basis for all symmetric four-rowed matrices.
Since arSin Ds gives us that:
Ba,=BS'a,S

is skew, just aBay, is, it follows from an analogous argument to the poé@R4) that:
(24%) SBS=B

for all Sin Ds.
The general transformation law BunderS-transformations is:

(31%) B'=SBS
so:

B'a,=SBS(S'a,9 =SBa, S
is skew, just aBay is.

8 4. Covariant differentiation of spinors.

From the relations:
H(auav+ aya,) =0,
one obtains, by differentiation:

N aaﬂa vy 09 00, 0a, \_99,
) GRRRE G GRS ) G B ) G
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Since:

that the equations:

are satisfied. This is equivalent to the statemeitttigamatrices:
a,=au+ &Yy

AX »
(one can understand tg2to be, e.g.,sd;(S

along a curve ) satisfy, up to and including

terms of first order i’ the equations:
(a0, +a,0,)=guw
with unchanged),,. Hence, from Theorem 1, there is a:
S=1+&N,,
such that, up to this order of magnitude, one has:
a,=S"a,S.
Hence {):

Yuo==Npau+ auy\,
and it follows that:

_Oa, _,
(32a) a/,;p=axp—Fﬂpag+/\pa,,—a,,/\p:0.
By the use of:

v _ag,uv U OV v OU —
gu;p_axp-f-rgpg +rgpg _01
one further deduces that:
U
(32b) a ,=d" a, :6L+F”a”+xa'”—a'”/\ =0.
p 1 p X ”? ap o

! This conclusion can be found in E. Schrédinger, Bert. BE932), 105, in particular, § 2. oy,
corresponds to Schrodinger's 5 .
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Equations (32a) or (32b) can be regarded as the definitfoms. @ (a“. ,, resp.) and
N, . HoweverA, is not uniquely determined by this definition, but (from Tieso2b)
only up to a multiple of the identity matrix as an adgditterm. As a result of this,
regardless of the validity of (32a) and (32b), one caimé¢le vector field:

(33) Tr(\o) =Fp

arbitrarily.  In order to normalize it, we examine tlhehavior of A, under S
transformations, wher®can be depend upon tKE arbitrarily. With the fact that:

a,=S*a,S
one finds that:

a =Stqg s—ﬂ—r”a' +AN'a -a'N =0
we Hip= X~ o P witp T

[and similarly for (32b)], when one sets:

o 1 -1 65
(34) Ap—SApS+S X
In this, we have made use of the fact that:
oSt , 0S
- S=st )
0Xx” 0X”

The transformation (34) is equivalent to the staterttettthe operator:

(34a) Dpsa;zp +A,,
transforms according to the rule:
(34b) 0,=S'0,S.
Furthermore, due to the fact that:
DetS= Tr(S’l 0S j -9 DetS
oX”* ) oX”

it follows that TrA, transforms according to the rule:

1  9(DetS) 0
=F,+——(log DetS .
DetX” 09X P axp( g DetS

(35) F'=F,+
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For that reason, it seems natural toFjx

OF  OF
36 Fop=—2%¢-——P~=0,
(36) 79X P aXe
or

oF
36a =,
(362) e

for an appropriate choice &f. From (35), this normalization remains invariant Eely
under Stransformations, since, by the validity of (36a) trensformation formula (35)
assumes the simple form:

(35a) F'=F + log detS.

Condition (36) is therefore equivalent to the demantifp@an be made to vanish for an
appropriateéStransformation.

Another possibility is that one might set tRg, field, which is invariant unde®
transformations, proportional to the fielg,, that was defined in Part |, eq. (36). This
would be more analogous to the method that was followeSchyodinger of setting,
proportional to the four-potential. By this method, heere the identification of the new
Foo field with the oldX,. field (up to a numerical proportionality factor) is mwbitrary.
We shall therefore temporarily adopt the normalizationdition (36).

We can now define the covariant derivatives of then@agi¥ and ® when we
demand that the covariant derivative obeys the produetof ordinary differentiation
and that the scalar:

a=oVy
and the vector:
au=oa,¥
obey the ordinary rules:
a = oa
3 P X P
and:
a, _,

a/,;p:axp— s
One finds, by means of (32), that:

au;p= P pau¥ +oa, W,

that:
0P

(37a) cb;psaxp—cp/\p
ov

(37b) Vo DAY

UnderS-transformations one easily finds, from (34), that:
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P =d.,S, Y =Sy,

We would now like to determine the covariant derivatiféhe Hermitian matrixA
by the requirement that:
(W*A). p= (W p)": pA+W*A

and, on the other hand, as a result of the fact¥hatis a®-spinor, this is given by way
of:

N (WA
One then finds that:
0A
(38) A;p:ax—p (AN, + NOA),

if is the matrix that is Hermitian conjugate/tg, and under af-transformation, one has:
—of
AL=S'A,S.

We now obtain an important fact abdut, when we observe that, according to (14), one
has:

alA=nAa,.
One easily conforms that this implies:
a;TIAp +(ay;p)TA =nApau+tAay;,),

when one substitutes far,. , by way of (32). Sincer,. , :a;;p: 0, it further follows
that:
aiA,=nApay,
hence:
Aa,A7A,=A,a,.

From Theorem 2, it then follows from this that:
(39 A,=a,A,

in which the ordinary numerical vectay is invariant undeG-transformations, as usual.
We can determina, when we take the trace AF'A, , and observe that:

Tr(A‘l 0A j: 1 oa

axX? ) aax’’
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whena is the determinant oA that was introduced in (15). From (33) and (38), this
yields:

(40) dloga

ox?”

—(F,+F))=4a,

(since the trace of the four-rowed identity matrix¥)s Since, by the definition &, the
necessarily real determinaat still remains arbitrary, we can fix it by normalizatj
when we, as follows from (39), demand that:

(41) a,=0, henceA ,=0.

This possible when and only when thg, field is pure imaginary, since it generally
follows from (40) that:

. 0a, da
40 ~(F,+F))= Sty
(403) (Fo*Fo) [axp ax"j

When theF ,, field vanishes everywhere, from (39a), one can set:
(41a) loga=F +F*,

in order to satisfy (41b). The vanishing of the covaraantvative ofA is a property oA

that is analogous to the vanishing of the covariant derevaf g, .
Completely analogous to the situation with the maiixone can proceed with the skew maBithat
was defined by (14*) in order to compute the covariant deratitis given by:

_ 0B _ n
(38%) B;,,—axp (BAp+/\pB) ,
which then satisfies:

B,=SB,B,

[cf., (13%)], and¥Bis also a®-spinor with regard to its covariant derivative. Analogtmshe situation
with A, one finds thaB™ B, commutes with all of they, ; thus:

(39%) B, =hb,B,

in which b, is a numerical vector that is invariant un@dransformations. By taking the traceB B. ,,
one finds, whei is the determinant @& that was introduced in (15%), that:

* dlogb _
(40%) -2F,=4b,,
PG P
and thus:
(40a%) ~2F,=4 %% b, |
0X7 oX”*

Thus, if one wishes that:
(41%) b, =0, B, =0,

one must necessarily have:
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Fos=0.
One may consider this to be an argument for the prdyisteted demand. One can then set:

(41a*) logb=2F.

8 5. Connection between projective and affine spinors.
Statement of the wave equation.

Before we state the wave equation, we must first descthe relationship between
the projective spinors that are associated with the Hbmogeneous coordinaté$ and
the affine spinorgy that are associated with the inhomogeneous coordidats well as

R
the relationship between matricdg (A, , resp.) that are associated with their parallel
translation. If we define:
(42) k= Vi Qu, ao=X"ay,

then it follows from (8) and eq. (7), (15), (18) in Part |

(43a) 1 (ai ak + ok o) = Qi
(43b) aco+aac=0
(43c) a’ = €,

and just a®\ay, is Hermitian, so ar@ax andAa .

R
Just as one has,, which satisfies eq. (37a), there is also a Riemamnxjarwhich
satisfies the analogous equation:

aa m R R
(44) ak;|Ea—x'|‘—{kl}am+/\, a.—a,N\=0.

As we already mentioned above, we can now demand Shaiust always be
homogeneous of null degree, so the degreeYofdoes not change unde$
transformations; one will then have thaj, and A, are of degree — 1, moreover.
Therefore, we must further demand tRanust be homogeneous of null degrer( [cf.,
(33), 36a)]:

oF
Fo=Tr(A\p) :6)(_” :

soF, can be made to vanish by &transformation with a® that is homogeneous of null
degree. One then has:
(45) XHFE, =Tr(A\y) =Tr(A\g) = 0.

L If F were the logarithm of a homogeneous function of aritdegree therF, would always be
homogeneous of degree — 1.
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R
Thus, Tr(A,) and Tr{\,) can be simultaneously made to vanish thg same S
transformation, and, from (35), one has:

(46) THA) =2 Tr(A,) |

R
According to (40), (41) one can also assume #hhas null degree, sA = A. We can
now compute:

R R
(47) Na=¥? A = A=A, = A,

Then, from (32a) and (44), it follows, by means of eq. (Bt I, and the use of the

general™;,, which were characterized by ét.) , Part I, § 7:
u u F u u 3 U
N\, a=a"N,))=(N,a" -a” Ny,
Jda, q
48 +e| —2-—X_a" | X*
= ERiye
reay D X[ e D X X} a” =0,

By multiplying Withyf,"k , It then follows that:

(48a) DNy —dD,= —saogxp“—s—gxpx,“a'.

A, is thus uniquely determined since g = 0 . If one recalls (43) then one finds,
through a similar argument to the one used fostheation of(21), that:

(49) A,= _‘9% X 0,0 —s% X, Xa',

in which:

d=1(dd+dd.

For what follows, we point out an expression tlaibfvs from (49):
(50) A, :gzq—z_p X, a,a .

On the other hand, by multiplying (48) B/, one obtains:
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oa,
)

(48b) +Afk—mﬁp—%x a’=0,

po

from which, it follows, by means of (49), that:

R 60'0 R R
(50a) ao;ksyﬂ\k a,—a,\,=0.

25

In order to further connect with the presentationhef Dirac theory, we describe, in
the case of special relativity, the connection betwé&ennmatricesay, ap and the five

Hermitian matrices of the Dirac theory, which satigfe relations:

1 0 0 0 0
E(ypyv+y|/ yﬂ): 5/“/1
00 0 0 O

VivoaVsVaVs=1.

This connection is essentially different in the casest 1 ands = -1 ().

In the case of =+ 1, since:

0 0 0 0
01=0,,=043=+ 1, 0,=-1,
the a,, satisfy the equations:

These equations are satisfied by the matrices:

_0 0 _0 0 _0 0 _0 _0 0
WeVis WeVos WeVas WWss WWsVys
and one can set:

_0
A=y,
sSo one has:

0 0 0 0 O 0
[Aa,, Aa,] =V, Vo Va— 1, V],

=@ Ay

1 On the other hand, the previously-introduced sjgis inessential, since inverting the sign of @)

would simply multiply the matrices,, andA byi .



W. Pauli. On the formulation of the laws of Naturte, & 26

0 0
turns into the Dirac current vector. The special smiubf A anda, ,a, that is assumed

can then always be arrived at by an approp@datansformation.
Things are different in the case ©f -1, since, one then has:

0
whereas the remaining relations for n@emain the same. In this case:

) 00 00 00 0 0 o0
(ak’ao):(_ly5y11_|y5y21_|y5y3'|y51_y5y4)’
0
A=y,

is a solution for the, such that one has:

0 0 O 0O 0 O 0 0 O 0o 0 O

0 0
(Aak’Aao):(_i Va ysyl’_i y4y5y21_i y4y5y3i }/41/5'*'}/9,

and, on the other hand:

00 0 0 0 _ _
iAaya, =1, Vo Va1, IAa,a,=-1Y,.

Thus, in this case:
=Y Aaac

turns into the Dirac current vector.
With these preparations, we can proceed with the stateamehdiscussion of the
wave equation. It reads lik&{

0) (W, +kXY)=0.

We shall likewise present reality conditions for tegyree of homogeneityof W and the
coefficientk .
Explicitly writing out (I) gives:

, oV
(l) a’”(ax—#+/\ﬂw+kxﬂl+’j=o

or.

! The plus sign that appears in this equation, perhaps somiéngiaally, can be avoided if one sets the
F,o field that is defined by (36) not equal to zero, but propoalidoX,,. However, the definition fo¥. ,
that was chosen in the text seems more convenietitda@omputations.
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R _
(" a (_aa; +A, W KX wj qs P X, .0 w=0.

We can further transform this equation by extendimgnull degree homogeneous spinor
y by setting:
(51) W=y F,

in whichF is a real scalar that is homogeneous of degree 1.
From(1") , it then follows that:

(52) a* (:}?’ +A wj +kay +la* = ! :)I(:# W+e 2q8_ P X a,a™y=0.
Now, one has:
1 oF
(53) Eaxr — e =y,
since:
y OF .
OXH ’
it then follows that:
of,
yﬂ*yﬂ[ % j
SO:
of,  of,
M=o T

Thus, the in (53) is identical with the vectdrthat was defined in eq. (41), Part |, which
is related to the potentiadg; by way of eq. (46), Part | :

(|,46) fi:rﬁcbi,
C
From (53), it finally follows that:
R —
&) a* (%H\kw—dfkwj +(k+el)ayy +e 2q8 Py aay=0.

Further discussion of the equation will depend upbether we sef =+ 1 ore=—1.
Above all, we are interested in the case&ef+ 1, since choosing=+ 1 andp=q=1
leads to a symmetri€ jw. In this case, we arrive at the fact that, frayr (1), resp.], it

must follow that {):

! We denote the determinantgyf byg and the determinant gf,, byg .
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(54) axﬂ(f gW*Ad“ W) =0
and:
(54a) %(@wAaﬂw):o.

Upon multiplying(1™) by ¢ A on the left (the conjugate equation §#¥ A on the right,

resp.), since:
A" AT =A &
and (cf., 38):

R R
A;ks%—(A/\kw\lA):o,
X

hence, recalling (44), we have:

[a - O (o @ Ad @)=+ 1) (@ Ad @) + (et 1 +k + (g Ao )
=0.
In this, we have made essential use of the fatt tha
Aad'=-Aa ™,
to make the additional term disappear. Thus, (84@lid when:
(55) | is imaginary andk is imaginary .

We then obtain agreement with the Dirac equatiprniouan additional term that we shall
discuss later when we set:

ie cl
56 | =+——==
(56) ek r
and:

imc ie c 1
57 k=——-——F==.
7) h hekr
Then, withp =g = 1,(I") assumes the form:

o .

(58) ak(:ﬁ AP -— kwj_'—‘w’*LiF aad™y =0.

One easily sees that (54) is therefore also valisla Lagrange function, we can use:

(59) Lm_Re@2 W Aa, W, +kW* Aa W)
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or also:
(59a) Lm=

Re ZT{l/l Aoy, —%[/l “AXY D, —71/,* Aayy +gT F Aaoa[k”l/’j ,

in which the notation Re is understood to mean thetehl part is taken.
From (35), (53), the gauge transformations:

. oF
ch‘ q)k +y

are identical with th&-transformations, for which:

ie _e

W=e y, S=er [J.

Here, we shall briefly mention the casesof — 1. We first multiply the wave equatigif) by a and
obtain:

R —
”"”k(%*Akwﬂfkjﬂk—l)w—ms P xpaty=o0,

and deduce that it must follow that:

%(@W‘Aaoa}‘t//)=0.
X

If we introduceA=/; A into this expression theh is Hermitian and\ ao o, as well asAa™, is skew-
symmetric. We thus obtain:

%(@w*ﬂaoakw) +(1+1) (@ Aa,a') 4(1-1) € k-K] ¢ M+2qT"°w Aaly X,
=0.

From this, one next infers that the additional term e significant and must be made to vanish by the
assumption that:

(55) =p.
Thus, | is, moreover, purely imaginary, and one must set:

(56) hek r

which means thdt—1 is real and one must deequal to:

(57) k=me_le c 1

h o heK T

The Lagrange function becomes:
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L, = Rez? W %A, W, —kW iAW)

(51) . .
=Re 2?[4; NA@,a'y, —i'é—iw *iAa oy [, —%w* MJ.

This case was originally considered by Schouten and vatriDaand is noteworthy for the fact that the
additional term vanishes there. We therefore regaratéisis as singular and not very natural.

§ 6. Variational principle and field equations
The principle of deriving the field equations from a vaoiail principle is the same
as the one that was used in Part I. We must now corttienieagrange function for the
vacuum (i.e., the absence of matter):
LY =p
[cf., Part |, eq. (38)] with the Lagrange function cditber:

LY.
We must require that:

(60) 3| (L‘V) +C—K2 L<m>j\/§ dx® ... dx® =0,

when thedy,, satisfy the additional condition:
(61) N X X'=0.

If one has, in general:
(62) 5j L™ Jg dx® ... dx® = j T,/g dg” dx® ... dx®),

in which T, = Ty, is symmetric, then, from Part | (79) and (72), the fietphations
become:

—_ K —_
in which we have set:
(63a) K =KX X, T=TuXX".
With:
(63b) Tik = yaVi T, Tioy= VaX" T,
AV ©) i 2

and corresponding expressions Ko, eq. (Il) splits into:

K
(l1a) Kik = 7 Tik
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K
(11b) Kio) = =z Ti(o) -

Analogous to eq. (73) and (76a,b) in Part I, one has tloavioh identities:

(64) T.,=0,
which splits into:

(64a) T =X, T =0,
(64b) T'E‘(O);k =0.

Here, the= is intended to mean that the equations in question dice when the field
equations (58) are assumed to be valid, but not, howegeation (l1). Then, they only
vanish under variation of the coordinate system and arnti@uali variation of the
matricesa, andA,, that corresponds to an infinitesin&transformation.

The projectoiT,, combines the energy-momentum tenkpeand the current vector:

N
(65) V :r?TJO).
Jeo o
The factonr? is justified by the fact that from I, eq. (84c) [(98sp.], one has:
_ VK i
K= g P

and the field equation (llIb), with the introductioh(65), takes on the form:

or: _ _
(65&) Flk; k= \f .

In the sequel, we would like pursue only the caﬁeaosymmetrid‘j, which

V!

correspondstp=qgq=1,6=+ 1, and =2 [cf., Part I, eq. (86)]. One then has, from
(59):

(59) L = Re S (Wr A g, W, , + kW A ap W),
|

In order to construct th&,, from the prescription (62), it is permissible ®same that
the wave equation:

or.
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R
AW - )+ K+D) a@y+Xaad y=0
is valid for the variation. Since an infinitesin®&transformation of they, then produces
no change in the action integral, one may replaceahationsdg,, with any expressions
that satisfy the relations:
idd"ad"+a’ o) =&" .
The simplest solution of this equation is:
(66) o' =ia, &,
which we shall use in what follows. It then followet:

(66a) 806 = —2 (a0 X + 8y Xo) O

By a somewhat tedious calculation, the variatiorb®) @ives rise to a term:
hc
Re 2—(W* Aag" A, W)
[

that originates in the variation &f, . The expressiod®, must be determined in such a
way that the relations (32a) or (32b) remain valid undervdmgation when (65) is
substituted for théa”. One has, in turn:
v
%+ r,a,9" +2a, a’+(\,a,-a,N, )o0g"”
== 2(5’\[)0#— O‘u 5/\p) f

and by considering the fact that:

_ 00g”
oX”

0=&", +o(r., 9% +I,,9%),

we finally have that:
51\,00#_ a 5/\,0 :%(gﬂgd_;p - gVJd"gp) ay.

From this, one finds that:
(67) N = 4(0,,d7,-09,,d%,) d*.

In this, we have set [cf., (33)]:
Tr(o\,) =F,=0.
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One sees that, from (36a) and (54), the variation:

00F
o, =
P ax”

of F, makes no contribution to the variation of the actriegral.
We now compute:

ReiW* A\, W =RetW* A" Py ?(95 0 0~ 90 )
d#*l =1 (o o + o dM + o o)

is an anti-symmetric linear combination of the prodwdtshree matricesr then one
finds, by a transformation and the use of the fact that:

g’=1(a"a"+a" a")
that:
(68) o P = d#P% + (P of — g ) .

Upon taking the real part, the contribution frone of the @ matrices vanishes, sinéer’
is Hermitian:
ReiW* A oW =0,
and what remains is:
(69) RelW AN W=RelW AW @, a7, -9,d",).

When one now assumes thgt is symmetric inp, ¢ (p = q = 1) (which was not

used up till now), and only in this case, the expressiorskiasj since, as one seg¥””
is anti-symmetric inzand o, butd is symmetric. In this case, one thus has:

(70) REW* AN,W=0.

The computation of ,, on the basis of (62), and using (65) and (66), now becomes
simples, and one obtains:

|

This expression combines the energy-momentum télysand the current vectdr g =
Vi into a single entity . In order to split the projector,, into Ty and Ty (the
scalafl does not enter into the physical statement) one mudtitsixs

! This unification was not achieved in the earlier wofkW. Pauli and J. Solomon, loc. cit., since
homogeneous coordinates were not used there.
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R
qJ;y:FI[y;ﬂ([//;i—|fi)+|xyl//+Ay¢/],
=y o+ X, qo.

A, is defined by (47), (49).

(72a) Re W* A akl, v4 :%i—lz/f* A 44 oY Xf“,
(72b) ReW* A ai (A X)W = —%i—lt/f* A ajiky ¢ x4
and:

(72c) ReW* Aagd, yiW=0.

In this, we have made use of a formula farapg that is analogous to (62). By
substituting:

(56) j=lecl

one finds, in this way, that:

Tic =%Reﬁ¢' *A|:ak (‘;ﬁ_i—eq)iwj'*'ai (Jk_i_eq)k‘/’ﬂ
(73) [ hc hc
hcl
g_c_w Nay R +ag,a Ry,
v =Tho)
(74) J;r ]
=She( =Ky Aay =gty AayX, +Re gy Aafy, I 1

The last expression can be essentially simplifigd abtransformation. If one
multiplies the wave equation (58) on the lefitlyf A ap @ and takes the real part then
this yields:

111 o0 * Ay i . K
2I\/_6X \/_(lﬂ Aa,a l//)+Re l// Aﬂo(lﬂk If )9

(75)
—%a+mw*AMw—%w*AmW¢xH:Q
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which then makes:

LE _hc i _Ehc 1 0 |k]
&rv I|¢/*Ad¢/ J_akf(WAaa[
or.
(76) V= ewAdw—lJ_hC L 9 5w Aad®y

4CI\/_6X

Since the extra term has an identically vanishivgrdence, the relation that is required
by (64b) follows from (54a)

(64b) = \/1_6*(5 ov

The field equation (lIb) now assumes the form:

(77) jaafF =y Ad'y - iJc_h‘C}a‘i JT W Add g

The extra term in (73) [(77), resp.] representgw@ation of the present theory from

the Dirac theory. Since this term is, however, pprtional to/2« , it can hardly
contradict the physical experiments (be empiricdynonstrable, resp.). From the extra
term in (77), it can be inferred that electricafigutral masses with a resulting spin
moment (a resulting linear momentum will not sudjianust possess a small magnetic
moment (which, is possibly not without interest esgibly in regard to the problem of
geomagnetism).

As was emphasized in the introduction, the fieldagmpns that were presented in this
paragraph must be subjected to second quantizatluioh the transition to configuration
space brings with it, in order to describe thermtéons of charged particles. It is well
known, however, that the problem of the infinitdéf-emergy of the particle still remains
unsolved.

The more provisional character of five-dimensiofioai of the Dirac theory that was
developed here, compared to the contents of fast, pvhich related only to the purely
classical theory, finds its expression in the taett the Lagrange function of matter was
simply added to that of the vacuum, without anyidabconnection existing between
them. In contrast to the coupling of the electrgnetic and gravitational fields, a direct
logical connection of the matter wave fields witte tfields that are described by the
formulation of the theory that was developed hexe ot be attained.
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