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 Hertzian mechanics (1) represented a certain completion of the development of theoretical 

mechanics that sought to remove the concept of force from mechanics as a fundamental concept 

that was “not further explainable” and was endowed with unavoidable ambiguities due to its 

metaphysical connotations. Naturally, in such a “force-less” mechanics, in the interests of 

simplicity of expression, one would also not be able to do without its subsequent introduction when 

one employs it, e.g., in Hertzian mechanics, that would be by definition (2), so one might introduce 

it in the form of an arbitrarily-constructed auxiliary concept. 

 Such an ambition already existed before Hertz, namely, H. von Helmholtz, as well as the 

English physicists J. J. Thomson, and above all, W. Thomson (3). In contrast to his predecessors, 

who only occasionally advanced to a kinetic explanation for the forces (potential energy, 

respectively) in the context of classical mechanics, Hertz’s work is remarkable for the fact that it 

was the first time that someone sought to systematically construct force-less mechanics on the 

basis of only the three fundamental concepts of space, time, and mass. For Hertz (4), the reason 

for that was defined by the logical incompleteness in the “usual” presentations of it, namely, at its 

very foundations, and in connection with that, he cited the example of centrifugal force, in 

particular (5). Now, since there was also undoubtedly a misunderstanding on the part of Hertz (6) 

in just that cited case, one can agree with his critics, and even to this day, moreover. However, in 

any event, the ambition to eliminate those ambiguities was of prime importance to Hertz, and that 

explained why he concerned himself almost exclusively with the systematic foundation of a force-

less mechanics, i.e., with the “logical, or if one prefers philosophical, aspects of the subject” (7). 

 
 (1) Heinrich Hertz, Die Prinzipien der Mechanik, etc., Leipzig, 1894. This work will be cited as “H. M.” in what 

follows. 

 (2) H. M., Einleitung, pp. 33, line 7 from the bottom, et seq.  

 (3) For the literature, cf., Enz. d. math. Wiss., Bd. IV, I, Voss, Prinzipien der rationale Mechanik. 

 (4) H. M., Einleitung, pp. 6 to 10. 

 (5) H. M., Einleitung, pp. 6. 

 (6) Cf., an article by the author that will appear soon: “Einige Bemerkungen über die Grundlagen der Mechanik.” 

 (7) H. M., pp. XXVII. 
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However, its conception obviously offers great practical interest as a physical hypothesis that is 

possibly quite powerful, which also defined the main incentive for his forerunners to take that 

viewpoint in their own investigations. However, that is especially because neither Hertz himself 

nor anyone since then gave any sort of examples of how to use Hertz’s conception of things in any 

special cases (1). The examination of it that will be presented in what follows will attempt to fill 

that lacuna, at least in a preliminary way. 

 When one maintains the same general basic principles at all (2) and would like to eliminate the 

concept of force from mechanics, naturally, one cannot operate with constraints alone. From 

d’Alembert’s principle (3), the only motions that one would be able to explain in a “force-less” 

way would then be the ones for which the external forces would do no work, in language of 

ordinary mechanics. Rather, one is compelled to assume that there are “invisible” or “hidden” 

masses that would be “coupled” with the visible ones in some way, and everything is arranged in 

such a way that one would (in essence) arrive at the same differential equations for the motion of 

the visible masses that would result from the influence of empirically-defined forces in the usual 

conception of things. Now, it might seem (4) that such an introduction of hidden masses would 

indeed be a useful tool for making those differential equations more mechanically intuitive, but 

that it would be irrelevant to the facts themselves, since it would not change the differential 

equations, which is all that is really definitive for the nature of a given problem. Now, that is not, 

by any means, an accurate opinion, as will be shown. Namely, when we, with Hertz, take, e.g., a 

hidden cyclic motion as our basis, we will get an apparent potential energy for the visible mass 

only in the first approximation, and that will raise the very interesting question: What would a 

completely-rigorous implementation of Hertz’s picture imply? We will see that we can, in fact, 

infer conclusions from it that are more or less characteristic of the assumed mechanical picture, 

and perhaps they can also be expressed in such a form that they offer a handle on an experimental 

confirmation, say in terms of natural processes. They might then be the source of the discovery of 

new phenomena that were not known up to now. 

 In addition, examples of how one has to imagine such an “interposition of invisible masses” 

will be given in what follows, and indeed only ones that satisfy purely-formal mechanical 

requirements. Those examples, whose significance for the general investigation is not to be 

underestimated, due to their concrete and intuitive character, already allows one to see those 

noteworthy consequences, but they lack any physical interest. From a physical perspective, we 

would also increase the problem of somehow making it plausible that an explanation exists (and 

especially what form it would take) for the “rigid constraints” that are assumed to exist in the 

physical processes of nature. With such hypotheses that can also be assumed physically, one does 

not have to survey the domain of the mechanics of rigid bodies, but rather that of fluid bodies, in 

which one would have to start with “incompressible” (5) fluids that are equipped with special 

 
 (1) Cf., on this, the Vorwort by Helmholtz in H. M., pp. XXI.  

 (2) An apparent potential energy can also appear for relative motion; cf., esp., the “quadrantal pendulum” of 

Thomson and Tait, Treatise, 2nd ed., no. 322, and A. G. Webster, The dynamics of particles, etc., 2nd ed., pps. 195 

and 196.  

 (3) Assuming that we allow only “fixed” constraints, in the spirit of Hertz.  

 (4) Cf., H. M., pp. XXI.  

 (5) Naturally, in Hertzian mechanics, there are also no elastic bodies as original elements. Cf., on this, also H. M., 

pp. 41, row 11 from the top, as well as 12 and 13. 
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properties. The equations of constraint would be non-holonomic, and given by, e.g., the continuity 

equation or the analytical expression for just those special properties, respectively. 

 However, for the time being, we would like to restrict ourselves to holonomic coordinates and 

constraint equations in order to not be inhibited by all-too-many complications from the outset. 

The extension of the present investigation to the (as already suggested) more important case of 

non-holonomic constraint equations would not prove to be all too difficult, moreover, any less than 

Hertz himself indeed kept to that restriction in regard to the equations of coupling. By contrast, 

the further assumption that the constraint equations cannot include time explicitly, i.e., the 

constraint that is represented by them should be “fixed” will be made, in principle. In fact, Hertz 

was of the opinion that he would have to explain the “unallowed” connections (1) on the basis of 

the once-admitted elements of his mechanics (viz., space, time, mass, rigid scleronomic 

constraints, and the basic law) (2). We shall not address that question here, since the assumption of 

such constraint equations already seems to be an abstraction that is useful for mainly-practical 

purposes in ordinary mechanics but is not intrinsically based in real relationships. For us, only the 

attempt to explain forces will come under consideration, i.e., the chapter “Systems influenced by 

forces” (3), on the one hand, and “Cyclic motion, hidden cyclic motion, conservative systems” (4), 

on the other. Of those two cases (the actual difference between them will be given later), it is, in 

fact, the latter that we shall base the following discussion upon, i.e., so adiabatic cyclic systems 

(5), since we must indeed exclude external forces from consideration now. 

 Hertz’s book is still interesting, due to the proper, very clear, and elegant form of its 

presentation, which is rather obvious, insofar as he considered point-systems exclusively (6). We 

will make no use of that, but rather we shall appeal to the ordinary manner of expression in 

mechanics throughout, which is supported, above all, on the powerful tool of Lagrange equations 

of the second kind. 

 

 

Developing the fundamental representation in general  

 

 We imagine a point-system S with n “visible” mass-points m = m+1 = m+2 (  1 mod 3) and 

their rectangular coordinates x, in which v = 1, 2, …, 3n. They are bound by l constraint equations 

 (x1, x2, …, x3n) = 0,  = 1, 2, …, l (7). The system will then have 3n – l  r degrees of freedom, 

and we let p1, …, pr be r independent parameters that determine the “configuration” of the system, 

 
 (1) H. M., pp. 90, def. 3. The usual expression for this is: rheonomic equation of constraint.  

 (2) A “guided, constrained system.”  H. M., pp. 200 to 307. 

 (3) H. M., pp. 207 to 235. 

 (4) H. M., pp. 235 to 252, pp. 252, et seq. 

 (5) H. M., pp. 240, def. 560. 

 (6) I myself arrived at an entirely-similar (if not quite as systematically constructed) presentation independently of 

Hertz on the occasion of producing a different article (these Sitzungsberichte, 1910).  

 (7) Thus, the tacit assumption will be made (which is not essential for what follows) that S, as well as S, does not 

decompose into autonomous parts as a result of the constraints. The special case in which the “invisible” system S is 

coupled by two completely-separate systems with the same or different parameters cannot be considered in more detail 

for the time being. That was partially accomplished by Hertz by using the concept of isocyclic systems. Obviously, 

at least one x and one  must also appear in any coupling equations  (relative constraints). 
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with its r degrees of freedom, in an entirely unique way. We then refers to them as generalized 

coordinates. They are connected to the rectangular ones in some way: x = f (p1, …, pr). Obviously, 

when we then transform the functions , the equations  = 0 must be fulfilled for all values of 

p1, …, pr, i.e., identically (1). 

 Let S be a second system with the “invisible” point-like masses m = m+ = m+ and the 

rectangular coordinates x,  = 1, 2, …, 3k. Let the constraint equations be  (1, 2, …, 3k) = 0, 

 = 1, 2, …, s, so the number of degrees of freedom will be: 3k – s  , and generalized coordinates 

1, …,  (which are defined geometrically or analytically in some way) are defined by the 

transformation formulas:  = f (1, …, ). 

 Now, both systems shall be coupled to each other by i constraint equations, namely, the so-

called “coupling equations,” say: 

 

    (x1, …, x3n, 1, 2, …, 3k) =  (p1, …, pr, 1, …, ) = 0 ,  = 1, 2, …, i. 

 

 If i >  then we can determine the 1, …,  as functions of the p1, …, pr from  of those 

equations, and the remaining i –  equations would mean conditions on the parameters p alone, 

i.e., by the introduction of the invisible subsystem and the coupling equations, the number degrees 

of freedom in the total system 0  S + S would prove to be smaller than that of the visible one, 

which we can exclude (2). The case i =  would be admissible, but it would imply merely an 

increase in the masses in the visible system. Moreover, it will not be excluded in the following. 

We therefore let i <  and imagine that the i equations  = 0, which must include at least one 

parameter p and at least i different , have been solved for any i of the parameters, say, for the first 

i: 

1 = 1 (p1, …, pr, i+1, …),  …, i = i (p1, …, pr, i+1, …),   (1) 

 

in which the  are functions of some or all p and the remaining i+1, …,  . 

 Now, the r +  – i mutually-independent coordinates p1, …, pr, i+1, …,  are obviously 

generalized coordinates for the total system 0 with the number of degrees of freedom equal to 3n 

 
 (1) If one knows r such generalized coordinates p for a system of r degrees of freedom and introduces s new 

constraints then one can always regard r – s arbitrarily-chosen parameters p as also being generalized coordinates for 

the new case. That is because the newly-introduced constraint equations will generally define s of the original 

parameters as functions of the remaining ones. That also true, e.g., for rectangular coordinates. It is likewise clear that 

an arbitrary substitution with non-vanishing functional determinant and the same number of independent variables 

will again produce generalized coordinates when the original ones were such things. From the formula above, x = 

1
( ,f p


…, pr), at least one subdeterminant of degree r in the matrix of first differential quotients x / p must be non-

zero, moreover. 

 (2) An example of this would be the following one: Let the visible system be two mass-points that can move freely 

in a plane and are coupled to each other by a massless rod, while the invisible system is a fixed rigid body that can 

rotate about an axis that is normal to the plane. If one of the mass-points is constrained to always coincide with one 

and the same invisible mass during the motion then the visible system will lose one degree of freedom. Conversely, if 

the latter is the invisible system then the number of coupling equations, namely, i = 2, will be greater than the number 

r = 1 of degrees of freedom in the other, but smaller than the number  = 3 of degrees of freedom in the invisible ones. 

That case is also allowable in this article. 



Paulus – Extensions and examples of Hertzian mechanics. 5 

 

– l + 3k – s – i = r +  – i  r . That is because they satisfy its constraint equations identically: 

Relative to the  and , that is indeed an assumption, but in regard to the newly-added coupling 

equations, it will be an immediate consequence of the elimination process that was just applied. 

 The kinetic energy of the total system T is composed additively from those of S and S, i.e., T 

and T together: T = T + T. 

 In that expression: 

T = 2 21 1
11 12 2 rr ra p a p+ +  

and 

T = 2 21 1
11 12 2     + +  

 

are homogeneous quadratic functions in the p  ( 1 , …,  , respectively). The coefficients: 

 

  a11, …, arr (e.g., a11 = 

2
3

1 1

n x
m

p




 =

 
 

 
 , etc.) 

 

are functions of the p and the masses m , while the 11, …,  are functions of the  and m. 

Obviously, the  and   are no longer independent of the p and  p , due to the coupling. However, 

we can replace i of the  with functions of the remaining  – i   r of the  and p by means of 

equations (1), and in that way, T will go to: 

 

T = 2 2 2 21 1 1 1
11 1 11 12 2 2 2rr r rr ra p a p b p b p+ + + + +  

 + 2 21 1
11 1 1 11 12 2i r r ic p c p     + + + +  + + +r rra a , 

 

in which naturally the coefficients b, c, and a still include only the m, but they are now functions 

of the p and i+1, …,  . We can now also regard the part: 

 
2 21 1

11 1 11 1 12 2ib p c p  ++ +  + + rra  

 

as the kinetic energy T of S, when taken by itself, at least in a formal analytical way. In particular, 

the important property of any kinetic energy of a system that it is a positive-definite quadratic 

function in the generalized velocities for the domain of variables in question will certainly remain 

untouched under the transformation (1) above, and even when we regard arbitrarily-many of the 

newly-introduced coordinates as arbitrary constants. However, the p1, …, pr, i+1, …,  are no 

longer necessarily generalized coordinates, and indeed in general, they will no longer be well-

defined coordinates at all for the invisible system when it is presented by itself, since i can indeed 
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be smaller than the number of the parameters p that actually appear in equations (1) (1). If i is equal 

to that number then that would, however, generally be the case, and then after making an ultimate 

choice of the p1, …, rp  , 1r + , …,  as the coordinates for S in place of 1, …, r  , 1r + , …, , 

which would be possible according to (1), the coupling equations will read simply: 

 

  p p −  = 0 ,  = 1, 2, …, r , 0 < r   r , 

 

when we suggest that those p simultaneously mean parameters of S and S, respectively, by an 

overbar (2). 

 Now, it can happen that some or all of the i+1, …,  might no longer appear in the coefficients 

b, c, and a. We shall call such coordinates “cyclic,” in contrast to the remaining ones, for which 

we shall preserve the terminology of “parameters.” If all of them appear then we will have the 

general case of the system that is influenced by forces, which we would like to call “acyclic.” If 

all of then are missing then we will get the other case that Hertz considered before that we shall 

call “pure cyclic,” or more briefly “cyclic.” Along with them, we can also regard a “mixed cyclic” 

(3) case as the most-general one since it includes the other two as special cases. 

 We shall first consider a pure-cyclic system and denote the cyclic coordinates (i.e., i+1, i+2, 

…,  here) by p1, p2, …, pr . The coefficients b, c, a will be functions of only p1, …, pr, … then. 

We introduce the notations: 

 

 T1  2 21 1
11 1 12 1 22 2 rr rb p b p p b p + + +  , 

T2  11 1 1 12 1 2 21 2 1 r rc p c p c p c p +  + +  + + r rp p p p , 

 T3  2 21 1
11 1 12 1 22 2 r + + + rra p a p p a p , 

 

such that T = T1 + T2 + T3 . Obviously, T1 and T3 have an independent meaning: They represent 

the kinetic energy of the invisible system when the cyclic coordinates (the parameters, 

respectively) are kept constant and for that reason, they are positive-definite quadratic functions 

in the corresponding velocities of each “configuration” of the system that is allowable. 

 

 

 

 

 
 (1) Example: For a visible mass of finite extent that moves in a plane, the coordinates x, y of a point that is fixed 

in it, and a locating angle  with respect to the horizontal direction will be introduced as the “configuration 

coordinates.” We imagine that this angle is defined to be, in particular, the direction of a straight (or curved) slit in that 

mass in which a point whose coordinates are ,  relative to an axis-system that is fixed in the plane and belongs to a 

second invisible mass with the generalized coordinates , ,  is constrained to remain. If x, y are the coordinates of a 

point in that slit then the coupling equation can be written in the form: y –  = tan   (x – ) or  =  (x, y, , ). 

Here, the x, y,  would not at all define coordinates for the invisible system, when taken by itself. 

 (2) “Direct coupling,” H. M., pp. 207, nos. 450 to 454.  

 (3) This is somewhat more general than in Hertz, H. M., pp. 255, no. 602.  
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First approximation. 

 

 With Hertz, we shall now make the further assumption that the kinetic energy T can be 

assumed to be a homogeneous quadratic function of just the 1p , 2p , …, rp  to a sufficiently-high 

degree of approximation (1): T  T3, so T1 and T1 can be neglected in comparison to T3. Since the 

masses m appear only linearly in the coefficients b, c, and a, that assumption can always be made 

to agree with the fact that one assumes that the masses m are as small as possible, while the “cyclic 

intensities” 1p , 2p , …, rp  are sufficiently large, to an arbitrarily high degree of precision. 

 We now apply the Lagrange equations of the second kind to the total system 0 with the kinetic 

energy T = T + T3 and obtain the two groups of equations: 

 

d

dt p p

  
− 

  

T T
 = 0  (r eqs.),        (I) 

d

dt

  
− 

  p p

T T
 = 0  (r eqs.),                 (II) 

 

when we drop the superfluous indices. Since: 

 

T = T + T3, 
T

p
 = 3



T

p
  0, 3

p





T
  0, 

T

p
  0, 

it will then follow that: 

d T T

dt p p

  
− 

  
 = 3

p





T
           (I) 

d

dt

 
 

 

T

p
 = 0  or 





T

p
 = const.                   (II) 

 

 When the last r equations are written out in detail, they will read: 

 

11 1 12 2 1 1+ + + ra p a p a p  = C1 , 

21 1 22 2 2 1+ + + ra p a p a p  = C2 ,      (2) 

………………………………… 

1 1 2 2 1+ + +r r rra p a p a p  = Cr , 

in which: 

aki = aik . 

 

 
 (1) H. M., pps. 235 and 236, no. 549. No. 550 is also essential for what follows. 
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 If we let Aik denote the subdeterminants of the determinant A  | aik |, divided by that 

determinant A, then the solution to (2) will read: 

 

ip  = A1i  C1 + … + Ari  Cr . 

 

 The solution assumes that the determinant A does not vanish for the domain of variability for 

the variables p in question. However, that is excluded as the necessary condition for the quadratic 

function T3 to be positive-definite. 

 If we now introduce those expressions for the cyclic rates of change in the kinetic energy T3 

then T3 will take the form of a homogeneous quadratic function 
3T  in the constants Ci, i = 1, 2, 

…, r, with coefficients that are once more functions of the p1, …, pr. However, the dependency of 

the transformed function 
3T  on the parameters is different from the one that was at the basis for 

the differentiation in (I), and we will no longer have 3

p





T
 = 3

p





T
, since the Aik are also 

differentiated with respect to the p when we construct 3

p





T
. Rather, with the use of Euler’s theorem 

for homogeneous functions, we will get: 

 

3T  = 1
2

1

i

i i=





r T
p

p
 = 1

2

1

i i

i

C
=


r

p  = 1
2

1 1

ik i k

i k

C C
= =

 
r r

A ,             (3) 

and furthermore: 

 

3

p





T
 = 3 3

1

i

i ip p=

  
+ 

  

rT T p

p
 = 3

1

i
i

i

C
p p=

 
+ 

 

rT p

 = 3

1 1

ik
i k

i k

C C
p p= =

 
+

 
 
r rT A

 

= 3

1 1

ik
i k

i k

C C
p p= =

 
+

 

r rT A

 = 3 32
p p

 
+

 

T T
, 

so (1): 

3

p





T
 = − 3

p





T
. 

 

 The r equations (I) can then be written in the form: 

 

 
 (1) Formally, one will find this transformation, as well as the one that will be used later (pp. 22, et seq.) in Webster, 

The dynamics of particles, etc., 2nd ed., pp. 176, which was first used by Routh and Helmholtz, and for an entirely-

similar purpose by the latter, moreover. Our conception of it differs from his at a fundamental level, and his roughly 

overlaps with the “ignoration of coordinates” that was proposed by the Englishman W. Thomson, by the fundamental 

separation of visible and invisible masses. 
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d T T

dt p p

  
− 

  
 = − 3

p





T
. 

 

 The T in that is the kinetic energy of the visible system S, but 
3T  includes only constant 

quantities in addition to the parameters p. 

 With that, we have obtained the equations of motion for 0 in a form whose left-hand side 

coincides with the left-hand side of the Lagrange differential equations for the system S, as we see 

that they are the same equations that would be true for the free visible system S in the presence of 

a potential energy 
3T  in the ordinary conception of things. Initially, we cannot decide between the 

two pictures at all since the “invisible” system, along with the couplings, is not accessible to 

observation. 

 

 The next question to ask will be: Can every potential function in ordinary mechanics be 

explained in this “kinetic” way, or in other words, can a cyclic system that simulates each such 

function be constructed? We can answer that question in the affirmative for a very general class of 

functions, but with a certain restriction (1). However, as one sees immediately, it is not possible to 

determine the cyclic system uniquely. That is because we do not even know which constants in U 

= 
3T  should be regarded as constant momenta Ci, i.e., whether an empirical potential function is 

generated by a monocyclic or polycyclic system. However, that would be the only way that we 

could produce the function T3 , which now belongs to infinitely-many systems with the same 

approximate expression for their kinetic energy. We could proceed systematically with its 

determination only in special cases where more details about the possible cyclic systems would be 

given from the outset on physical grounds. If, on the one hand, the status of Hertz’s picture as a 

principle for research seems to be compromised by its all-too-pervasive arbitrariness and 

indeterminacy then, on the other hand, it is for just that reason that it enables one to subsume a 

good number of natural phenomena for which a basis for their explanation is lacking in ordinary 

mechanics. Nonetheless, it excludes cases from consideration that are allowable in ordinary 

mechanics, but do not correspond to any natural processes, and in an entirely well-defined way (2). 

 One can then make, e.g., the following remark: From our explanation of the potential function 

as the kinetic energy of hidden masses, it can assume also assume only positive values, including 

zero, while its sign remains otherwise completely arbitrary. This will also be verified in the 

examples in a remarkable way. 

 Before that, let us briefly treat an important special case in general, namely, that of the 

monocyclic system, i.e., one with a single cyclic coordinate p. To the same order of approximation 

as with polycycles, we have: 

 

 
 (1) Cf., on this, Hertz, Mech., pp. 44.  

 (2) Cf., H. M., pps. 2 to 3, 23, 42, and pp. 284, no. 602. See also pp. 21 of this treatise. In addition, the question 

remains open of the dynamical explanation for those forces that are indeed functions of the coordinates, but not the 

negative derivatives of a potential functions. 
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T = T + T3 = 2 2 21 1 1
11 12 2 2rr ra p a p+ + + ap , 

 

in which a is once more regarded as a function of the parameters p1, …, pr . In an entirely-

analogous way, we will obtain the r equations: 

 

d T T

dt p p

  
− 

  
 = 

3

p





T
 = 21

2 p






a
p , 

and in addition, an equation: 





T

p
  a p  = C , 

so 

p  = 
C

a
. 

 

 Upon substituting that in the previous one, it will follow that: 

 

d T T

dt p p

  
− 

  
 = 

2

2

1

2

C

p






a

a
 = − 

21

2

C

p

 
 

  a
, 

so 
21

2

C

a
 = 

3T , 

which can also be obtained directly: 

3T  = 
2

2

1

2

C
a
a

 = 
21

2

C

a
. 

 

 It can be useful in the applications to state that result in the form: The kinetic energy 21
2
ap  

corresponds to the apparent potential 
21

2

C

a
, and conversely. 

 For the examples, we shall initially assume only monocyclic systems for which the visible one 

is “one-parameter,” in addition, i.e., it depends upon only a single coordinate p. One can obtain 

any number of such things by the various models for a centrifugal regulator (1). If we select any 

one of them – say, the one in the accompanying diagram (Fig. 1) – then we can easily follow 

through the general line of reasoning. 

 
 (1) As I noticed only later, some examples of an entirely-similar nature that touch upon this principle were already 

given by Brill: Vorles. z. Einf. i. d. Mech. raumerf. Massen. Cf., moreover, Boltzmann, Vorles. über Maxwell’s Theorie 

d. Elekt., etc., Bd. I. 
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Figure 1. 

  

 The constraint equations of the visible system, which consists of the point-like mass m, are x 

= 0, y = 0, while z is a general coordinate. The invisible system has only one constraint equation: 
2 2 2 2x y z a+ + −  = 0. General coordinates are  and the angle of rotation  around the z-axis. The 

rods c establish the coupling between both systems, and since: 

 

h = b sin  

and 

h z = 
2 2 2 21

2
[( ) ][ ( ) ]b c z z b c+ − − − , 

 

the coupling equation will read: 

 
2 2 24 sinb z   = 

2 2 2 2[( ) ][ ( ) ]b c z z b c+ − − −  . 

 

 Corresponding to equations (1), that will imply  as a function of z :  = f (z) . 

 When we assume that the connecting rods a, b, c are massless, the expressions for the kinetic 

energies are (1): 

T = 21
2
m z  

for the visible system and: 

T = 
2 2 2 2 2sina a  + m m  

 

for the invisible one, and in T = T + T, the  would now have to be replaced by z : 

 

T = 
2 2 2 2

2 2 2 2 2 21
2 2 2

[( ) ][ ( ) ]
( )

4

b c z z b c
z a f z z a

b z


+ − − −
+   +   m m m  

 
 (1) The consideration of those masses will require no essential alterations, see pp. 33.  

O 
x 

b 
a 

 

h 
z 

c 
m m 

x 

m 

z 

c 
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 We see that  is a cyclic coordinate, as we can choose it to be large enough, while m is small 

enough that: 

T1 = 2 2 2( )a f z z m  

can be neglected. We will then have: 

 

T = T + T3 = 
2

2 2 2 2 2 21
2 2 2

1
[( ) ][ ( ) ]

2 2

a
m z b x z z b c

b z
+ + − − − 

m
 = 2 21 1

2 2
m z + a , 

in which: 

a  
2

2 2 2 2

2 2
[( ) ][ ( ) ]

2

a
b x z z b c

b z
+ − − −

m
 . 

 

 From what was said before, we can then obtain the potential energy in the form of: 

 

3T  = 
21

2

C

a

. 

 

It can assume only positive values, which would follow from the structure of the function a. 

 In order to have yet another example, we 

imagine two massive balls m that move along a 

smooth rod, and each of them is coupled to m 

by a massless inextensible string of length l 

(see Fig. 2). The cyclic subsystem shall again 

rotate around the z-axis, and m shall be 

constrained to remain along it. Here, as in all of 

the examples that will be discussed, friction is 

excluded. The constraint equations for the 

masses m are then: z = const. = l, when the z-

points positive upwards, and O is at a distance 

of l from A and defines the coordinate origin. 

The distance x from the balls to the axis and the angle of rotation  around the z-axis will serve as 

general coordinates. The constraint equations for m are once more x = 0, y = 0. z, when measured 

from O, is to be used as a general parameter, with no further discussion. The coupling that is 

defined by the string has the equation z = x. Now, one has: 

 

T = 21
2

m z , T = 
2 2 2x x +m m  = 

2 2 2z z + m m , 

 

so the visible potential energy will be: 

3T  = 
2

2

1

4

C

zm
 , 

z 

m 

O 

l 

Figure 2. 

m 

Z x 

m 

x = z 

  
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or the force that acts upon m in the positive z-direction will be: 

 

Z = − 
3

z





T
 = 

2

3

1 1

4

C

z


m
. 

 
 

 With a slight generalization, we will get (see Fig. 3): 

 

T = 21
2

m z , T = 2 2 2 21
2

2 ( sin )r r   + m , 

 

for fixed , with the coupling equation r = z, so: 

 

T = 2 2 2 2 21
2

sinmz z z  + + m m , 

or approximately: 

T = 2 2 2 21
2

sinmz z  + m . 

 

 If  were not fixed, but freely-varying, then the invisible system would have  = 3 degrees of 

freedom, and its kinetic energy reads: 

 

T = 2 2 2 2 2 21
2

2 ( sin )r r r   +  + m . 

 

 However, not all i+1, …,  (i.e.,  and  here) will be cyclic coordinates then (namely,  is 

not), and we would be dealing the mixed-cyclic case. 

 In the examples up to now, T3 had the form: 

 

z 

O 

Figure 3. 

m 

Z 

x 
m 

Coupling eq.: 

r = z 

r  
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T3 = 2 21
2

x m , 

 

when we denote the distance from m to the rotational axis by x in each case. However, that is also 

true in general since T3 does indeed mean the rigorous expression for the kinetic energy of the 

subsystem S for fixed parameters. Thus, we will also always have: 

 

3T  = 
2

2

1

2

C

xm
 = 0 2

1

x
  , 

 

in which 0 is an essentially-positive constant. 

 We can make advantageous use of that fact when we would now like to find, conversely, a 

monocyclic system for a given potential function U (z) in an arbitrary way, and indeed in this way. 

We set: 

U (z) = 0 2

1

x
  , 

 

and must now actually realize the connection between x and z that is established in that way by 

construction. Moreover, the constraint equations of S, or also the couplings, can still be given as 

arbitrary then. If we start from, e.g., a well-defined coupling then that would imply the adaptability 

of the construction to different potential functions U (z) due to the arbitrariness in the constraint 

equations that is left open at a suitable point in it. We shall try to determine, e.g., the curve Z = f 

(x) that lies in a meridian plane and to which the mass m is constrained in such a way that the given 

function U (z) will arise from 0 2

1

x
   by means of the coupling with the equation Z – Z0 + x – x0 = 

z (let Z0, x0 be the initial values that correspond to the value z = 0). 

 One can also drop the string and 

establish m directly on the sleeve. 

 x can be used as the general parameter 

for m. 

 If we solve the equation: 

 

0 2

1

x
   = U (z) 

 

for z, z = F (x), then the determination of 

Z as a function of x with the desired 

property will already follow from the 

coupling relation above. However, the 

reality of the curve Z = f (x) must clearly 

be proved here, and in order to do that, it 

z 

m 

O 

Z 

z 

Z = f (x) 

m x 

Figure 4. 
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is now essential to assume that U (z), as a kinetic energy, can assume only positive values, in 

addition to zero. Then and only then will it always give real values of x for real values of z as roots 

of the equation: 

0 2

1

x
   = U (z) , 

 

and even positive values, which likewise come under consideration. 

 Now, we still have to further show that a (positive or negative) real value of Z will be defined 

by the coupling equation for that associated pair of values (z, x). However, that is guaranteed by 

its form above. 

 We can just as well decide upon a suitable constraint equation once and for all and leave the 

appropriate form of coupling undetermined (see Fig. 5). 

 
 Supported by this general argument, which is related to a question that Hertz posed (1), one 

can also succeed in constructing a model for the important case of attraction that is inversely 

proportional to the square of the distance U (r) = −  / r + h [U (r) =  / r + h for repulsion],  > 0, 

with the center of attraction at the point r = 0 by determining a curve Z = f (x). In that way, it would 

once more be the case that one would need to have U (z)  0 since the otherwise-arbitrary addition 

of the here-necessary positive constant h would become essential once it is chosen to be fixed, and 

that would also imply a lower limit for the positive values of r. That will become especially clear 

when one would like to achieve an actual implementation along a somewhat-different path. In the 

equation: 

0 2

1

x
   = − h

r


+  , 

or 

2x r
h

 
 − 
 

 = 0 r
h


  , 

 

 / h and 0 / h must have the dimensions: 

 

 
 (1) H. M., pp. 44, row 20 from the top, et seq.  

Figure 5. 

m 

x 
 

m 
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h

 
 
 

 = cm, 0

h

 
 
 

 = cm2, 

 

which would also follow immediately from the meaning of the individual quantities. 

 

 We then set  / h = s, 0 / h = 
2l  and will then have: 

 
2 ( )x r s−  = 

2l   r 

or 

x = 
r

l
r s−

 = 
1

1

l
s

r
−

, 

 

in which we can only ascribe any meaning to the absolute value of the square root. As long as 

s r , s / r can be set equal to cos  : 

s

r
 = cos  , 

 

s 
 / 2 

m 

 
 / 2 

r 

Figure 6. 

(For attraction!) 
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and when  = / 2l , it will then follow that: 

x = 
1

sin / 2



 . 

 
 For repulsion, one has: 

r  s ,  
s

r
 = cos  , x = 

1

cos / 2



, 

with the same upper limit for r. 

 If one sets h = 0 here then the construction can be simplified considerably (Fig. 8). 

 In the case of attraction, as h decreases indefinitely, s, as well as r, will become infinitely large, 

and at the same time, , as well as x, which is the distance from m to the axis. 

 One can also make Hertz’s theorems on adiabatic cyclic systems (H. M., pp. 242) more 

intuitive with the examples that were given. We have generally only given such things for r = 1 

and r = 1. One can easily produce models for multiparametric or polycyclic systems by 

generalizing the second example on pp. 12. 

 If we attach several mutually-independent balls to each of the two rods, instead of just one of 

them, then all of those m will correspond to one and the same cyclic coordinate , while the various 

strings can be coupled by just as many independent parameters of the visible system. However, if 

we again let several such horizontal rods a rotate around the same axis b independently of each 

other then we will obtain just as many independent cyclic coordinates, and we can also combine 

both cases arbitrarily by a variety of couplings. 

m O 

 / 2 

 

 
 

m 

r 

r 

Figure 7. 

s 
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 If we now treat central motion in space (r = 3) then our given construction will already suffice 

for one-dimensional motion, moreover, when we merely cease to demand that the mass m must 

slide along the z-axis. The center of rotation is chosen most simply such that r = 0 for x = 0, e.g., 

by means of rolling. 

 

 

Rigorous formulation. 

 

 The potential energy of ordinary mechanics can then be explained in terms of the kinetic energy 

of hidden masses, as in the foregoing, but as we have likewise remarked at the time, only in the 

first approximation. Now, from the suggestions that were made in the introduction, it is just that 

fact that imparts a special interest to such an attempt at explanation, and above all, to the one that 

is the most developed, namely, Hertz’s mechanics. That is because it follows from that theory that, 

on the one hand, strictly speaking, there are no motions at all in Hertzian mechanics that can be 

represented in the usual way by a potential function. On the other hand, when we assert the 

Hertzian standpoint, so we regard such potential motions as merely approximation to reality, the 

question will arise: What would follow from a rigorous consideration? Such conclusions would 

need to have a new significance that would go beyond the scope of the “first picture,” and the next 

question would be: Do our experiments or observations given a reference point for those 

consequences in any way? 

 

 

 

 

 

 

0 

r 

For h = 0 

Figure 8. 

O 

r 

m 

 

O 

Figure 9. 

m 

m 
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Part One 

 

 In what follows, we shall then start from the rigorous expression for the kinetic energy T = T 

+ T, where in which T is equal to T = T1 + T2 + T3, in general. We shall initially assume that T2 

is identically zero, or in other words, that the cyclic coordinates should be orthogonal to the 

parameters. In that form, the assumption will also take on an immediate geometric meaning in 

special cases. We can then combine the terms T and T1 in the kinetic energy T that have the same 

p  pairwise and introduce the notation  = a + b . In that way, this case will be reduced to 

the previous one, in which it is not the kinetic energy T of the visible system that appears on the 

left-hand side of the Lagrange equations, as would otherwise be essential for our considerations, 

but the energy T + T1 . Therefore, its motion can actually result as if the kinetic energy T were 

increased by a certain amount T1. Since T1 is always present (cf., H. M., pp. 236, no. 550), and 

since it is a more-rigorous expression for the vis viva of S for fixed cyclic coordinates, it is also 

greater than zero, and for the parameter velocities that are accessible to observation, it would 

necessarily seem to be an increase in the mass in the observed increase in kinetic energy to 

someone whose knows nothing about the existence of the subsystem S, assuming that he has 

established the empirically-determined analytical formula for the forces (potential, respectively), 

which would give him no reason to leave the domain of applicability of the first picture (1). The 

further evaluation of that situation would depend very much upon the sort of influence that the 

observer would have on the process in question. If we assume that he can still detect the moving 

visible masses in some way (see footnote) by relying upon observations alone then he would 

already see from two exact determinations of them from the p  and the nature of the forces that he 

assumed the remarkable fact that he would obtain masses from the second one that were different 

from the masses that were obtained from first one. We can see that most simply with a one-

parameter system S with: 

T = 21
2
a p  and T1 = 21

2
b p . 

 

 a and b are generally functions of p and a, moreover, so that is a function that is known 

completely to the observer and whose non-geometric constants mean the masses or concepts that 

are derived from them, such as moments of inertia, etc. He can infer the magnitude of the vis viva 

of the visible system from the law of conservation of energy T + T1 + 
3T  = const., but since he is 

ignorant of the cyclic subsystem, he would incorrectly infer it to be T + T1, rather than just the 

amount T, which would seem to be correct from our standpoint. However, he would once more 

calculate the masses from that incorrect magnitude for the vis viva 21
2
( )a b p+   in precisely the 

 
 (1) We understand the term “ordinary mechanics” or the “first picture” to mean a theory of mechanics that 

recognizes space, time, mass, and force as its basic concepts, but does not define them. Newton’s fundamental law 

and d’Alembert’s principle (or something similar to it) are valid as actual facts of experience. We must, and will 

accordingly, actually determine force and mass in concrete cases without going into the details of the epistemological 

complexities of such an assumption, assuming they nonetheless make some tools available to us. In regard to mass, 

that is also true for Hertz’s mechanics. 
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same way that we would from the magnitude T, and that is why he would necessarily get a mass 

that depends upon the configuration of the system since b is a completely different function of the 

constants and the p. For multiparameter systems S, it must also generally prove to depend upon 

the velocity (1). 

 In that case, he would already arrive at a decision between rest masses and moving masses. It 

would impose itself upon him even more clearly when he is able to introduce external forces on 

the system S in such a way that it would be in equilibrium and at rest in a certain configuration. If 

we assert the standpoint that was given in the footnote on pp. 19, viz., that he can actually 

determine the forces that produce that equilibrium, then he would get precisely the values for them 

that would correspond to the right-hand sides of the Lagrange equations, i.e., the − 
3

p





T
. That is 

because if the total system 0 is in motion then from the customary conception of those equations 

for 0, namely: 

d T T

dt p p

  
− 

  
 = − 

31 1d

dt p p p

  
+ − 

   

TT T
, 

 

the right-hand sides will, however, represent the forces that are exerted upon the visible system S 

by its coupling with S. For the special case of rest under the influence of well-defined, newly-

added forces P, it will simply follow for them that: 

 

P = + 
3

p





T
, 

 
 (1) We can easily see that in the following example: Let: 

 
2 2 2 21 1 1 1

11 1 22 2 1 11 1 12 1 2 22 22 2 2 2
,T a p a p b p b p p b p= + = + +T , 

so 
2 21 1

1 11 1 12 1 2 22 22 2
T p b p p p + = + +T . 

 

Based upon the structure of T alone, that total amount for the vis viva will give: 

 

2 221 1
1 11 12 1 22 22 2

1

2
p

T b p p
p

 
 

+ = + + 
 

T , 

corresponding to the combination, or: 

2 211 1
11 1 22 12 22 2

2

2
p

p b p
p

 
 

= + + 
 

, 

or also: 

2 22 11 1
11 12 1 22 12 22 2

1 2

p p
b p b p

p p
 

   
= + + +   

   
 . 

 

These are masses that apparently depend upon the ratio of the velocities 
1 2

/p p . 
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since T, as well as T1, is equal to zero them. (Naturally, the p must first be replaced with the values 

that correspond to the selected “configuration” after the differentiation.) It will now occur to him 

that he has no grounds for assuming that there is any variation of the forces in the case of motion. 

However, since there are, in fact, other forces at work for that same “configuration,” when 

considered from our standpoint, the only way around that for him that still remains is the 

assumption that the mass varies with the configuration and the state of motion. 

 Furthermore, he must also be able to decide between “longitudinal” and “transverse” masses, 

as we can see immediately in the example of planar central motion. The kinetic energy T is: 

 

T = T + T1 + T3 = 2 2 2 2 21 1 1
2 2 2

( ) ( ) ( )m r r f r r r + +  +  m m , 

 

in which f (r) proves to vary according to the special type of subsystem S that is employed, while 

 (r) must satisfy the condition that: 

 
21

2 ( )

C

rm
 = − 

r


 + h = 

3T . 

 

 If we assume a circular motion, so r  = 0, then T1 will drop out, and the equations of motion 

will read: 

r = const., 2 3m r   = 0 , 

so 

  = 0 ,  = const., 

and 

− 
2m r  = − 

3

r





T
 = − 

2r


, 

or 

2m r  = 
2r


 . 

 

 That equation determines the centripetal acceleration, and that would give the “natural” mass 

m as the “transverse” mass. However, if one assumes that   = 0 for the total motion then it will 

follow that: 

T = 2 2 21 1 1
2 2 2

( ) ( )mr f r r r +   +  m m , 

 

and the energy equation will become: 

 

21
2
[ ( )]m f r r h

r


+  − +m  = const., 
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and if he considers just the coefficient of r  to be a mass then that would show that it depends upon 

the configuration by way of the increase m  f (r), and indeed, the “longitudinal” mass, which 

differs from the transverse one that was previously obtained. Here as well, he would assume that 

same force would be in effect for the second case that applied to the first case when the mass m is 

at a distance of r from the center of attraction. 

 It will follow from our argument with no further discussion that such a difference between the 

masses will, in fact, emerge clearly for large parameter velocities p . In fact, one would be inclined 

to adopt that conceptual picture mainly in phenomena in the electrical (optical, resp.) context, 

which take place with very large velocities. 

 If one ponders the fact that the modern theory of electricity is based upon equations to which 

Maxwell arrived by brilliantly drawing upon dynamical models (cf., on this, e.g., Boltzmann, 

Vorlesungen über Maxwell’s Theorie, etc.), as well as its great analogy with the hydrodynamical 

equations of vortex motion, then perhaps that might give expression to the hope that we have 

before us in the Hertzian picture the foundation for an explanation that would subsume a great 

many phenomena that might also possibly allow us to solve the “relativistic” problems of that 

domain, which are already very relevant to mechanics, in a natural way (1). 

 Yet another remark needs to be made. The law of conservation of energy is indeed true for the 

total system 0 in the form: 

T + T1 + 
3T  = const., 

 

but not for the sum of kinetic and potential energy T + 
3T  of the visible ones. It would then be 

apparently a non-conservative system, and indeed forever, strictly speaking (cf., also the examples) 

(2). 

 

 

Second Part. 

 

 Nonetheless, our previous considerations in regard to the apparent variability of masses are not 

meant to be understood to mean that they must always enter into every phenomenon. In fact, the 

effect of T1 can be cancelled by the appearance of T2 (
3), or at least weakened. Whether or not T2 

vanishes identically can not be decided from the outset, but its presence would be excluded by 

some special effects. 

 When we combine T + T1  L into a single homogeneous quadratic function of the p , the 

kinetic energy T will now become: 

 

T = L + T2 + T3 = 
2 2 2 21 1 1 1

11 1 11 1 1 1 11 12 2 2 2rr r rp p c p c p + + + + + + + +r r rr rp p a p a p . 

 

 
 (1) See also Helmholtz’s Foreword to H. M., pp. XXII, last paragraph.  

 (2) Cf., H. M., nos. 664 and 665.  

 (3) Cf., on this, the footnote on pp. 28.  
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 Lagrange’s equations would then read: 

 

d

dt p p

  
− 

  

T T
 = 0 

and 

d

dt 

 
 
  p

T
  

2 3( )d

dt 

  +
 
  

T T

p
 = 0 , 

or 





p

T
 = 

2 3( )



+


T T

p
 = C .     (4) 

 

 When the last one is written out in detail, it will read: 

 

11 1 12 2 1+ + + r ra p a p a p  = 1 11 1 21 2 1( )r rC c p c p c p− + + +   C1 – S1 , 

………………………………………………………………………… 

1 1 2 2+ + +r r rr ra p a p a p  = 1 1 2 2( )r rC c p c p c p− + + +r r r r   Cr – Sr . 

 

  Solving those equations will yield: 

 

1p  = 11 1 1 12 2 2 1( ) ( ) ( )C S C S C S− + − + + −r r rA A A  , 

……………………………………………………….., 

rp = 1 1 1 2 2 2( ) ( ) ( )C S C S C S− + − + + −r r rr r rA A A  , 

 

in which the Aik have the same meaning as before. 

 If we now reintroduce the expressions for the p  into the kinetic energy T then it will become 

a function of the velocities 1p , …, rp , and the constant “generalized momenta” C1, …, Cr . It will 

be a homogeneous quadratic function of all those variables, but not of the C or the p  when taken 

by themselves, since products like C p   would appear. We shall denote the transform of the 

function T by T, and we will then have: 

 

1 1 1( , , , , , , , , )r rp p p p rp pT   1 1 1( , , , , , , , , )r rp p p p
rp pT  (5) 

identically. 

 However, on the same grounds as before, / p T  is not equal to, say, / p T ; similarly, 

/ p T  is different from / p T . From the rules of differentiation, we will find that we have: 

 

 
p





T
 = 

1p p



  =

 
+ 

  

r p

p

T T
,   = 1, 2, …, r 
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and (1) 

 
p





T
 = 

1p p



  =

 
+ 

  

r p

p

T T
,   = 1, 2, …, r. 

 Now, from equation (4), one has: 

 





 p

T
 = C , 

so: 

 
p





T
 = 

1

C
p p




 =


+

 

r pT

 

and 

 
p





T
 = 

1

C
p p




 =


+

 

r pT

, 

 

or upon rearranging that so the differentiation is outside of the summation sign: 

 

p





T
 = 

1

C
p

 
 =

  
 − 

  

r

pT            (6) 

and 

p





T
 = 

1

C
p

 
 =

  
 − 

  

r

pT  .           (7) 

 

 If we then replace T with the function: 

 

  
1

C 
 =

 − 
r

pT , 

 

which Helmholtz called the kinetic potential (up to sign), then the Lagrange equations for 0 will 

read: 

 
d

dt p p 

  
−    

 = 0 ,  r = 1, 2, …, r . 

 

 The function T already includes only constants in addition to the p and p . In order to also put 

 into such a form, we shall now construct all of the / p T  and /  pT  in the equations that 

were written down originally: 

 
 (1) In this article, we shall formally follow the presentation in A. G. Webster, The dynamics of particles, etc., pps. 

176-179, as well as pps. 182 to 184. However, the interpretation of it is entirely different. Cf., footnote pp. 8. 

Everything up to now is also true for non-cyclic coordinates i+1, …, r, moreover. 
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1



 p

T
 = 11 1 1 11 1 21 2 1r rc p c p c p+ + + + + +r ra p a p  = C1 , 

  
2



 p

T
 = 21 1 2 12 1 22 2 2r rc p c p c p+ + + + + +r ra p a p  = C2 , 

  …………………………………………………………….. 

  


 rp

T
 = 1 1 1 1 2 2 r rc p c p c p+ + + + + +r rr r r r ra p a p  = Cr , 

  
1p





T
 = 11 1 12 2 1 11 1 12 2 1r rc c c p p p  + + + + + + +r rp p p , 

  
2p





T
 = 21 1 22 2 2 21 1 22 2 2r rc c c p p p  + + + + + + +r rp p p , 

  ………………………………………………………………... 

  
rp





T
 = 1 1 2 2 1 1 2 2r r r r r rr rc c c p p p  + + + + + + +r rp p p . 

 

 Now, from Euler’s theorem, one has: 

 

2T = 
3

1 1

r r

p p C
p

 
 = =


+ 


 

T
. 

 

 For the first sum, when we recall our previous notation, namely: 

 

S  1 1 2 2 r rc p c p c p  + + + ,  = 1, 2, …, r,    (8) 

 

the last r rows and the first r columns will initially yield: 

 

1

S 
 =


r

p , 

 

and from the last r of the remaining columns will yield 2 L, such that: 

 

2 T = 
1

2 ( )C S  
 =

+ +
r

L p . 

 

 We shall now address the quadratic functions S and C : 
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S  1
2

1 1

S S  
 = =

 
r r

A              (9) 

and 

  C  1
2

1 1

C C  
 = =

 
r r

A  = 
3T   [pp. 8, equation (3)]. 

 

 Our previous equations for the p , pp. 23, can then be written: 

 

p  = 
C S

C S 

 
−

 
 

and furthermore: 

2 T = 
1

2 ( )
C S

C S
C S

 
  =

  
+ + − 

  

r

L  . 

 

 From Euler’s theorem, since C and S are homogeneous function of degree two, we will again 

have: 

1

C
C

C


 =





r

 = 2 C 

and 

1

S
S

S


 =





r

 = 2 S , 

such that: 

2 T = 
1 1

2 2 2
C S

C S S C
C S

 
  = =

 
+ − + −

 
 
r r

L  . 

 However, we have: 

 

1

C
S

C


 =





r

 = 
1 1

S C  
 = =

 
r r

A  = 
1 1

C S  
 = =

 
r r

A  = 
1

S
C

S


 =





r

. 

 

The sums in the last expression for T that was written out will cancel then, and what will remain 

is: 

T = L – S + C = T + T1 – S + C ,    (10) 

 

and the kinetic potential  will become: 

 

  T − 
1

C 
 =


r

p  = L – S + C – 
1

C S
C

C S


  =

  
− 

  

r

 

or 
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 = L – S + C – 
1

S
C

S


 =





r

= T + T1 – S – C + ,      (11) 

when one sets: 

  
1

S
C

S


 =





r

. 

 

 With that, we have achieved our next goal and can even make the following important remarks 

about that: First of all, when we form the Lagrange equations of motion, we must indeed regard 

the function  as then expression for the vis viva and on the other hand use T in the energy 

equation [cf., also the identity (5), as well as equations (6) and (7)]. However, we can also see 

immediately that , which includes the p  only linearly, will make no contribution to the energy 

of motion when we note that the Lagrange equations for 0: 

 

d

dt p p 

  
−    

 = 0 

can also be written: 

( ) ( )
d C

S S
dt p p p  

   
− − − +     

L L  = − 
d

dt p p 

 
+

 
          (12) 

 

since the p  do not occur at all in C. If we then multiply by dp and sum over  = 1, …, r then we 

will get derivatives of a homogeneous function L – S + C = T on the left-hand side (cf., e.g., 

Webster, Dynamics, pp. 125), while the right-hand side is zero. That is because if we introduce 

the notations: 

g  c1 A1 + c2 A2 + … + cr Ar  

and 

1

C g 
 =


r

  G  

then we can write  in the form: 

 

 = 1 1 2 2 r rG p G p G p +  + +  , 

 

and it follows for the right-hand side of (12) that: 

 

− 
d

dt p p 

 
+

 
 = − 

1 1

r r
i

i i

i ii

G G
p p

p p



= =

 
 + 

 
   = 

1

r
i

i

i i

GG
p

p p



=

 
−     

  . 

 

 The coefficient of p  in that equation is: 
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G G

p p

 

 

 
−

 
 = 0 . 

 The coefficient of ip  is: 

i

i

GG

p p






−

 
 

 

and that of p  in the equation that corresponds to the thi  parameter pi is: 

 

i

i

G G

p p





 
−

 
, 

 

which is equal and opposite to the previous one. If we write dp = p dt   instead then we will see 

immediately that the summation must give zero. 

 The phrase gyroscopic term is often used for the terms that appear in . That expression was 

chosen by Thomson and Tait (Treatise, pp. 393) because it will also appear in  when a rotating 

rigid body defines the subsystem. As is known, H. von Helmholtz had inferred some far-reaching 

conclusions from that. 

 For one-parameter systems,  will again drop out of the Lagrange equations (12) entirely. 

 The second remark refer to the homogeneous quadratic function S that enters into both 

formulas (10) and (11) and is certainly positive-semidefinite (1): From (9), it is positive-definite in 

the S, but it can never become indefinite under a transformation like (8), and semidefinite in the 

p . When T2 appears at all, it would then, in fact, counteract the effect of T1 . 

 It should be further remarked that some interesting conclusions can be inferred from the first 

of equations in the set on pp. 25 in their applications. 

 As an example, we initially consider a one-parameter system, and we will easily obtain such a 

thing by altering one of the previous examples. In Fig. 10, the xy-plane is folded over into the xz-

plane, i.e., the reference plane. g is a rod that is constrained to be fixed along the rotational axis 

and along which m can slide, while O A m is once more a length of string that runs horizontally. 

We need to have the connection between the coordinates x, y of m relative to the system x, y, z that 

is fixed in space and the general parameters s, , and we will find them most simply by imagining 

a rectangular system ,  that is fixed in the rod g, so it will participate in the rotation. 

 

 (1) In fact, it can vanish without all p


 being zero since one can have C = 0. By contrast, the function T1 – S is 

also still positive-definite because it arises from T by transformation of the original variables 
1

p , …, 
r

p , 
1
p , …, ,

r
p

(corresponding to equations on pp. 23 above, to which one must add the identities p


 = p


,  = 1, …, r, such that 

the determinant of the substitution will also be non-zero) to the new ones 
1

p , …, 
r

p , C1, …, Cr , when we set the last 

ones C1, …, Cr equal to zero since we regard then as variables for the moment. On this, cf., the remark about non-

conservative systems on pp. 22. 
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 Now, one has: 

 

T = 2 21
2

( )x y+m ,      x =  cos  –  sin  ,      y =  cos  –  sin  . 

 

Upon differentiating the last two equations with respect to time, it will follow that: 

 

T = 2 2 2 2 21
2

[ 2( ) ( ) ]       + + −  + + m  . 

 

 
 However,  = b,  = s, so: 

T = 2 2 2 21
2

[ 2 ( ) ]s bs s b + + +m  , 

 

and since T = 21
2
ms , one will ultimately have: 

 

T = 2 2 2 2 21 1 1
2 2 2

( )s s bs s b + + + + m m m m . 

 

s 

m 

O  for s = 0 

Figure 10. 

g 

 

x  

Z 

O 

 

b 

s = const. 
g 

m 

s 

A 
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 T2 does, in fact, appear here, and a glance at Fig. 10 will show that  is not orthogonal to s 

here, i.e., when m moves at constant s (constant , respectively). Thus, the two directions of motion 

will subtend an angle that is different from 90o. 

 It will follow from an easy calculation that: 

 

a11 = 
2 2( )s b+m  , A11 = 

2 2

1

( )s b+m
 , C = 

2

1

2 2

1

2 ( )

C

s b+m
, 

 

S1 = 11c s , c11 = m b , S1 = b sm , 

 

S = 21
11 12

SA  = 
2 2

2 2

1

2

b s

s b+

m
,  = C1 A11 S1 = 12 2

b s
C

s b


+
, 

 

 T = 
22 2

2 2 11 1
2 2 2 2 2 2

1 1

2 2 ( )

Cb s
m s s

s b s b
+ − −

+ +

m
m

m
, 

 

  = 
22 2

2 2 1 11 1
2 2 2 2 2 2 2 2

1 1

2 2 ( )

C bC sb s
ms s

s b s b s b


+ − − +

+ + +

m
m

m
. 

 

 We easily verify that: 

d

dt s s

  
− 

  
 = 0 . 

 

 In order to have a two-parameter example in which  also appears in equations (12), we 

consider two rigid bodies K1 and K2, of which, K1 can rotate around a horizontal axis o1, but K2, 

along with K1, is once more coupled by an articulated link with an axis o2 that is normal to the 

previous one. Let a third body K3 be rotatable around an axis o3 that is fixed in K2 and once more 

normal to o2, and which should give us the “invisible” system, while K1 and K2 define the visible 

one. We then address the expression for the kinetic energy T. We then introduce the angles  and 

 as the general coordinates of the system S:  is the angle of rotation around o1, while  is the 

angle of inclination of a distinguished direction s that is fixed in the body K2 with respect to a plane 

that is normal to o1: That line shall run through the center of mass of K2 and a point on the axis o2 

that is normal to it. If we then likewise consider the total system 0 then  and  can also be 

employed as parameters for K3, to which the angle of rotation  around o3 can be added. 

 The vis viva T1 of K1 can be written down immediately: 

 

T1 = 21
12

O  , 
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in which O1 is the moment of inertial of K1 with respect to o1 . In order to find T2 from K2, we next 

use the theorem of König: T2 = energy of translation of the center of mass S2 of K2 + energy of 

rotation of K2 around the instantaneous axis of rotation around it. We find, e.g., from the kinematics 

of relative motion, that the former is: 
2 2 2 21

2 22
( )M l s +  , 

 

in which l is the distance from the point of intersection of s with o2 to o1, and s2 is the distance 

from the center of mass S2 to o2 . In addition, l shall be normal to o2 and o1 . 

 That will likewise be the formula for the center of mass energy of K3 when we just take the 

distance s3 from the center of mass S3 from K3 to o2 in place of s2, and take the mass M3 instead of 

M2, assuming that the rotational axis o3 coincides with the direction s : 

 
2 2 2 21

3 32
( )M l s +   . 

 

 In regard to the rotational energy, we would similarly like to calculate that of K3 : 

 

R3 = 21
3 32

J  . 

 

 The J3 in that means the moment of inertia of K3 about the instantaneous rotational axis through 

the center of mass, and 3 is the angular velocity around it. In order to get a moment of inertia that 

does not depend upon the motion, we introduce a fixed coordinate system x, y, z in the body K3 

whose axes shall be the principal axes of inertia at the center of mass (1). It is then known that: 

 

R3 = 2 2 21
3 3 3 3 3 32

( )x y zL M N   +  +  . 

 

 L3, M3, N3 are now constant moments of inertia for the axes x, y, z, and x3, y3, z3 are the 

angular velocities around them. We still need to have the connection between the x3, etc., and the 

 ,  ,  . One sees from a vectorial combination of the angular velocities that  has the 

components:  ,  ,   with respect to o1, o2, o3 . Now, if x, as the principal axis of inertia for K3, 

as well as K2, falls along the axis o3, and  already measures the angle between the y-axis and o2, 

then  ,  ,    will give the following components relative to x, y, z : 

 

sin 0

0 cos sin cos

0 cos cos sin

x

y

z

  

  

    

    −

 

 
 (1) This is assumed merely for the same of simplicity. If the coordinate axes x, y, z that are established in what 

follows are not principal axes of inertia then the mixed products of x3, y3, z3 will appear in R3 . The expressions 

for them will not change in that way. 
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such that: 

 x3 = sin  + , 

 y3 = cos sin cos    + , 

 z3 = cos cos sin    − . 

 Therefore, one will have: 

 

R3 = 2 2 21
3 3 32

[ ( sin ) ( cos sin cos ) ( cos cos sin ) ]L M N            + + + + − . 

 

 We will then get R2 from that when change the index on L, M, N to 2 and set   = 0 and  = 0, 

i.e., o2 shall be the principal axis of inertia for K2 (otherwise, we would have to introduce an angle 

 = 1): 

R2 = 2 2 2 2 21
3 3 32

[ sin cos ]L M N    + + . 

 Thus: 

T = 2 2 2 2 2 2 2 2 21 1 1
1 2 2 3 32 2 2

( ) ( )O M l s M l s     + + + +  

+ 2 2 2 2 21
2 2 22

[ sin cos ]L M N     +  +   

 + 2 2 21
3 3 32

[ 2 sin sinL L L     +  +   

 + 2 2 2 2 2

3 3 3cos sin 2 cos sin cosM M M         +  +   

 + 2 2 2 2 2

3 3 3cos cos 2 cos sin cos sin ]N N N          −  +   . 

 

 We shall assume that M3 = N3 . The terms in the last bracketed expression with 2 2cos    will 

then collectively give 2 2

3 cosN   , the ones with 
2  will give 2

3M  , and the one with 

cos sin cos      will drop out. 

 We write out clearly and in detail: 

 

T = 
2 2 2 2 2 21 1 1 1 1 1

1 2 2 2 2 2 22 2 2 2 2 2
sin cosO M l L N M s M      + + +  + +     , 

 

 T1 = 
2 2 2 2 2 21 1 1 1 1

3 3 3 3 2 32 2 2 2 2
sin cosM l L N M s M      + +  + +     , 

 

 T2 = 3 sinL   , 

 

 T3 = 21
32

L  . 

 

 It then follows in succession from this that (1): 

 

 (1) The independence of the function 
3

T  = C from the p expresses a more general fact here. A rigorous examination 

must also show that a non-constant potential function cannot be created from a structure composed of tops unless such 

a thing is already present anyway due to the remaining connections. 
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 a11 = L3 , A11 = 
3

1

L
, 

3T  = C = 
2

1

3

1 1

2
C

L
 = const., 

 

S1 = 3 sinL   , S = 
2 2 2

3

3

1 1
sin

2
L

L
    = 2 2

3

1
sin

2
L   , 

 

  = C1 A11 S1 = 1 sinC   , 

 

 T = T + T1 − 
2

2 2 1
3

3

1 1
sin

2 2

C
L

L
  + , 

 

  = T + T1 − 
2

2 2 1
3 1

3

1 1
sin sin

2 2

C
L C

L
    + +  . 

 

 The potential function C, as a constant, merely changes the amount of energy, but has no effect 

on the motion of the visible system. The right-hand sides of equations (12) are: 

 

− 
d

dt  

  
+ 

  
 = − 

1 cosC   , 

− 
d

dt  

  
+ 

  
 = + 1 cosC   . 

 

 The first group of equations on pp. 25 will become: 

 







T
 = 3 3sinL L   +   = C1 

here. 

 There will then exist an interaction between   and   (effect of the ship gyro!), which will 

also be present when   = 0. Such a thing will be lacking only when one simultaneously has   = 

0 and  = 0. For that special case, cf., A. Föppl, Vorles. über techn. Mechanik, Bd. VI, 1910, pp. 

210, et seq. 

 Moreover, our example would give us an opportunity to ascertain the resistance to deviation 

for  = const. on the basis of my method of determining the constraint forces from the Lagrange 

equations of the second kind (see footnote 6, pp. 3) 

 If the body K2 were already counted as an invisible one then we would once more have an 

example of the mixed-cyclic case before us. 

 

 In conclusion, we would like to briefly consider the first example on pp. 10 of the mass of the 

connecting rods and also allow, in a somewhat more general way, a rotation of the body K3 that 
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consists of the rod a and m around a. Now, if  is the rotation angle of the latter, and the center of 

mass of K3 remains at rest in that way, then one will get a rotational energy of the following form, 

which proves to have the same structure as the kinetic energy T of m before: 

 

R3 = 2 2 2 2 2 21
2
[ sin ( cos 2 cos )]L M N       +  + + +  

 = ( )2 2 2 2 21 1 1 1
2 2 2 2

sin cos cosL M N N N       + +  +  + . 

 

 The L, M, N in that are constant moments of inertia, and one assumes that L = M. 

  can again be replaced with z here by means of the coupling equation  = f (z). One will 

obtain an entirely-similar expression for the rod b, except that  will be replaced with the angle  

that can, however, be likewise expressed in terms of z. 

 The system is one-parameter, but bi-cyclic ( and  are cyclic coordinates). 

 If only K3 were regarded as the invisible system, e.g., as a built-in top, then we would have 

two parameters, namely,  or z and , and we could then discuss the gyroscopic term in equations 

(12) (the connection between   and   that is established by the first group of equations on pp. 

25, respectively). 

 

 

General systems that are influenced by forces. 

 

(Acyclic and mixed-cyclic case) 

 

 We shall restrict ourselves to merely stating the problem. We again have T = T + T. Now, one 

has a general expression for T in terms of 1 , …,  r , namely: 

 

T  2 21 1
11 12 2

    + + rr r , 

 

in which the ik are functions of the 1, …, t . However, we can also use equations (1) to express 

T in the form: 

 

T = 2 2 2 21 1 1 1
11 1 11 1 1 11 12 2 2 2rr r i r r ib p b p c p c p   − −+ + + + + + + +r r rr ra a  . 

 

 The coefficients b, c, and a are now functions of the p and i−1, …, t . 

 When T is taken to have the second form, the Lagrange equations of motion will be: 

 

d T T

dt p p

  
− 

  
 = − 

d

dt p p

  
+ 

  

T T
 

and 
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d

dt   

  
−    

T T
 = 0 ,  = i + 1, …, r. 

 

 We can imagine that we can determine the p and i−1, …, t as functions of time from those r 

+ r equations. In any event, those expressions are substituted in the first group of the equations 

above, and they can then be discussed. 

 As far as the forces that S exerts up S are concerned (i.e., kinetostatics), when we have solved 

the problem of motion for 0, we can determine them from the first group: 

 

d T T

dt p p 

  
−    

 = P , 

 

in which the P are the generalized force components. That is, in essence, the same idea that is at 

the basis for my method of 1910 (see footnote 6, pp. 3). It is even a special case of the one that 

was applied here. Namely, in that article, we assume that a single coupling equation defined the 

single new coordinate , not as a function of the ones that were present already p1, …, pr, but as a 

constant, whereas here, in addition to the larger number of allowable new coordinates, that number 

can also be still greater than the number of coupling equations, the 1, …, i are regarded as 

completely general as functions of the p and the i+1, …, r by means of (1). 

 It should be further noted that one could also base T upon the first form and employ the 

coupling equations (1) with that. Naturally, one would then have to use undetermined multipliers. 

 

___________ 

 

 

Appendix. 

 

 It should be pointed out that Hertz’s mechanics needs to be extended for only those potential 

functions C that depend upon just the coordinates essentially, in such a way that the total energy 

will not be set equal to T + C, but to T + T1 – S + C. However, it might be the case that more 

general potential functions already correspond to the total part T1 – S + C, or the forces that are 

derived from them by the formula: 

 

− 1 1( ) ( )S Sd C d

dt p p p dt p p

 −  −     
+ − − +

    

T T
, 

 

respectively. According to our previous considerations, it will follow from this that an actual 

distinction between rest masses, moving masses, etc. can once more go away, and even in ordinary 

mechanics, when one assumes a suitable force law. From the usual standpoint, the appearance of 
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such a distinction would then serve as a hint that the force law or potential function should be 

corrected. 

 Let us examine Weber’s fundamental law of electrodynamics as an example of that, and indeed 

initially in the form of the potential: V = 21 2

2

1
1

e e
r

r a

 
− 

 
 , in which e1 should be at rest, which 

agrees with T1 – S + C only partially since S = − 21 2

2

1e e
r

a r
 , C = 1 2e e

r
, while nothing in it would 

correspond to T1. However, it is interesting that one will get exactly the Weber expression from 

this by using the formula that was given above, cf., also Enz. d. math. Wiss., Bd. V, art. 21, pp. 49. 

 However, in regard to the aforementioned distinction between masses, that shows that when 

one assumes the validity of that law and an erroneous application of Coulomb’s law along the same 

lines as on pp. 21, one must, in fact, obtain different apparent longitudinal and transversal masses. 

 Furthermore, the assertion on pp. 5, that the transformed quadratic function T is positive-

definite is correct under the general assumptions only in the sense that it can assume only positive 

values, including zero (i.e., it is positive semi-definite). That would also correct the remark that 

was made on the footnote on pp. 28, in which T was assumed to be positive-definite. The 

determinant A (pp. 8) can then be equal to zero for some special configurations, in general. Here, 

the considerations in this article require a certain extension since otherwise the assumptions would 

have to be somewhat more restricted (e.g., the number r of parameters p that actually appear in 

(1) on pp. 4 should be equal to i, and the functional determinant of the 1, …, i with respect to 

the p1, …, pi should be non-zero). 

 Finally, it should also be added that one can convince oneself of the fact that was expressed in 

the footnote on pp. 32 in the following way: C means the vis viva of the top for fixed parameters. 

Therefore, C can only be the rotational energy itself. However, as such, it will depend upon only 

the angular velocity, but it will be entirely independent of the special configuration of the total 

system, i.e., it will be independent of the parameters. 

 

 

___________ 

 


