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 The main topic in theoretical mechanics is indeed defined by problems of the motion of 

constrained point-system, but it is precisely in the applications that the forces of constraint or 

reaction are often much more important (cf., Voss, Enzyklopädie d. mathem. Wiss., IV, 1, pp. 82, 

Stäckel, ibidem, pp. 476 and 477). 

 When we cast a brief glance to the methods for determining such forces of constraint up to 

now, that will show that, e.g., the application of the Lagrange equations of the first kind alone 

would probably lead to that goal in only certain exceptional cases. However, if one uses a second 

method and first determines the motion of the system from the Lagrange equations of the second 

kind, i.e., its finite equations of motion, then transforms them in order to obtain the rectangular 

acceleration components x , y , z  of each point, and only then employ the Lagrange equations of 

the first kind for the determination of the reaction forces, then that path will indeed be significantly 

simpler than the previous one, but will have the disadvantage that it requires a complicated 

transformation, as well as the fact that one cannot determine a certain reaction force independently 

of the other ones, but only along with all of the other ones (by way of the determinant!), such that 

it would be impossible to extend that method to continua with infinitely-many forces of constraint. 

Equations (6.a) and (8) will also produce l as functions of time, and not as functions of the 

coordinates, as one ordinarily requires in the applications. 

 A third method is most advantageous, namely, instead of the so-called “generalized” 

coordinates, one chooses other coordinates that no longer fulfill all of the condition equations 
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identically, but at least one of them will no longer fulfill them, namely, the one whose reaction 

force is to be determined. Moreover, the constraint equations in question will also lead to further 

calculations along with it, and as with the first method, only in generalized coordinates. 

 However, the practical value of this latter method will be very much compromised by the fact 

that one will not generally manage to get by with generalized coordinates, or even better, with 

coordinates that are best adapted to the problem and for which the Lagrange equations of the 

second kind will prove their true value, and other coordinates must be chosen. 

 That suggests a question that is very important for the practical applications, which is not, 

perhaps, also lacking in theoretical significance, namely, the question of whether it is therefore 

impossible to obtain an isolated, well-defined reaction force independently of the other ones from 

the Lagrange equations of the second kind “by adding a new parameter” and a “new assignment 

of the constant” in it. One would have then gained the advantage that one could also exploit the 

full use of those equations for the determination of the reaction force precisely when a skillful 

chose of coordinates for the Lagrange equations of the second kind would give the solution of the 

problem of motion. 

 The examination that I have made of that problem, which defines the content of the present 

work, has implied that this will actually happen under certain assumptions along a relatively-

simple path. 

 The course of that investigation will split into three parts of itself: 

 

 I. The mechanical-theoretical part, which includes the derivation and establishment of the 

fundamental relations [equations (17) and (18)]. 

 

 II. Discussion of the question: How can one base a method for the actual determination of 

constraint forces upon that? 

 

 III. Examples. 

 

 In addition, a fourth part was appended, namely, I.a, which will include the attempt at a 

geometric interpretation. 

 

 

Part I. 

 

Ansatz and assumptions. 
 

 n points with masses: 

 

m1 = m2 = m3 ,   m4 = m5 = m6 , …, m3n−2 = m3n−1 = m3n , 

 

and rectangular coordinates: 
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x1, x2, x3,   x4, x5, x6, …, x3n−2, x3n−1, x3n , 

 

resp., shall define a system, i.e., the set of all mutually-connected ones, when they are coupled by 

 (not by any means absolute) constraints: 

 

1 (x1, x2, …, x3n, t) = 0,      2 (x1, x2, …, x3n, t) = 0,      …,       (x1, x2, …, x3n, t) = 0, (1) 

 

which can include time explicitly but should be holonomic. The system is under the influence of 

certain explicit (internal and external) forces. The resultant of all forces on the first point has the 

components X1, X2, X3, the resultant that acts on the second point has components X4, X5, X6, etc., 

and the one that acts upon the last point has the components X3n−2, X3n−1, X 3n. 

 The number 3n –  of x’s gives the number of degrees of freedom of the system. Since we 

would like to employ the Lagrange equations of the second kind in their simplest form, we must 

next make: 

 

 Assumption 1: It is possible to describe the motion of the system with its s degrees of freedom 

by s variable parameters p1, p2, …, ps that fulfill all constraint equations identically (generalized 

coordinates) and are connected to the rectangular coordinates by the formulas: 

 

x1 = f1 (p1, p2, …, ps, t) , 

x2 = f2 (p1, p2, …, ps, t) ,            (2) 

……………………….. 

x3n = f3n (p1, p2, …, ps, t) . 

 

Actually, in order to apply the Lagrange equations, it is additionally necessary that the parameters 

p1, …, ps should be independent of each other, and in fact geometrically, as well as mechanically, 

in order for each of them to be varied arbitrarily without necessarily implying variations of the 

remaining ones. 

 We would like to derive a consequence from the assumption that the coordinates p1, p2, …, ps 

fulfill the constraint equations identically (characterize that assumption by a functional 

relationship, respectively): If one transforms the functions  in (1) by means of the formulas (2) 

then they will go to functions of the p1, p2, …, ps. If the p1, p2, …, ps are supposed to satisfy the 

constraint equations identically then when those functions, thus-transformed, are set equal to zero, 

they can be subject to no constraint, i.e., those equations must be fulfilled for every system of 

values p1, …, ps, or each of the transformed functions must be independent of p1, p2, …, ps. 

 Now, the necessary condition for that (for the complete independence of the functions  from 

the remaining p functions, it is also sufficient) is: 

 

i

hp




 = 

3

1

n
i

h

x

x p



 



=

 

 
  = 0, i = 1, 2, …, ; h = 1, 2, …, s. (3) 
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 Assumption 2: We would now like to exhibit the fact that after dropping the thl  constraint 

equation l = 0, the motion of the point system can be described correctly by the now-present s + 

1 degrees of freedom in terms of the s + 1 parameters p1, p2, …, ps, ps+l, where ps+l is added to the 

variables that are already present as a new variable coordinate. 

 

 Formulas (2.a) will now enter in place of formulas (2): 

 

x1 = g1 (p1, p2, …, ps, ps+l, t) , 

x2 = g2 (p1, p2, …, ps, ps+l, t) ,              (2.a) 

……………………………….. 

x3n = g3n (p1, p2, …, ps, ps+l, t) . 

 

Since we would also like to employ the Lagrange equations of the second kind in this case, we 

must assume that p1, p2, …, ps, ps+l are also mutually independent and that the constraint equations 

(1), including the 
thl  one, i.e., the constraint equations: 

 

1 (x1, x2, …, x3n, t) = 0, …, l−1 = 0, l+1 = 0, …,  = 0,  (1.a) 

 

are fulfilled identically. 

 If we transform them by means of (2.a) then, as above, that assumption will imply the 

condition: 

r

s lp



+




 = 

3

1

n
i

s l

x

x p



 



= +

 


 
  = 0, r = 1, 2, …, l – 1, l + 1, …, ,  (4) 

 

and indeed at any arbitrary location ps+l . 

 If we once more introduce l = 0 then we will have the original case of s degrees of freedom 

before us, but the motion will be described by s + 1 parameters p1, p2, …, ps+l now, in contrast to 

the previous case. 

 Therefore, if we also replace the x1, x2, …, x3n in: 

 

1 (x1, x2, …, x3n, t) = 0 

 

with the p1, p2, …, ps, ps+l by means of (2.a) then: 

 

l [g1 (p1, p2, …, ps+l, t), g2 (p1, p2, …, ps+l, t), …, g3n (p1, p2, …, ps+l, t)] = 0 

 

will represent the connection that necessarily exists between p1, p2, …, ps, ps+l as non-generalized 

coordinates. 

 

 Assumption 3: We assume that the function: 

 

l [g1 (p1, p2, …, ps+l, t), g2 (p1, p2, …, ps+l, t), …, g3n (p1, p2, …, ps+l, t)] 
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decomposes into two factors l (p1, …, ps, t) and l (ps+l, t), only one of which, namely, l, depends 

upon only ps+l . 

 

 Since p1, p2, …, ps are mutually-independent parameters, l (p1, p2, …, ps, t) cannot vanish, 

but rather (1): 

l (ps+l, t) = 0 

must be fulfilled. 

 It would then follow that the transformed condition: 

 

l (g1, g2, …, gs) = 0 

 

will be fulfilled by only the roots of the equation l (ps+l, t) = 0. 

 Let any one of them be denoted by s lp + : 

 

( )l s lp +  = 0 . 

 

 It is important to note that when Assumption 3 is fulfilled, upon further introducing the 

constraint l = 0, the case of s + 1 degrees of freedom will go to the case of s degrees of freedom 

completely. In particular, one can always assume that formulas (2.a) will again be identical to 

formulas (2) in that way. 

 If we further transform the function l in (1) by means of (2.a) in this case and compare it with 

the one that is transformed by means of (2) then they will differ by only the fact that ps+l is variable 

in the one case, but constant in the other, just like formulas (2.a) and (2). 

 It will therefore be clear that one must look for a suitable ps+l from among the constant 

quantities of the functions f in formulas (2). 

 The remaining assumptions, which are once more expressly emphasized, are: 

 

 1. holonomic constraint equations. 

 2. scleronomic and rheonomic, but likewise holonomic, coordinates. 

 3. generalized coordinates. 

 

The actual method of proof. 

 

 Under those assumptions, we can now derive a relation upon the basis of which we will be in 

a position to determine the reaction force Rl that corresponds to the constraint l = 0 from the 

Lagrange equations of the second kind directly. 

 

 

 

 
 (1) The case in which the transformed function is independent of ps+l cannot occur since otherwise it would follow 

that the original system already had s + 1 degrees of freedom.  
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I. True motion. 

 

 We shall first address the problem of the “motion” of the given point-system with the s degrees 

of freedom p1, p2, …, ps when we determine the equations of motion by integrating either: 

 

 a) the Lagrange equations of the first kind: 

 

1 1m x  = 1 2
1 1 2

1 1 1

X
x x x




 
  

 
+ + + +

  
, 

2 2m x  = 1 2
2 1 2

2 2 2

X
x x x




 
  

 
+ + + +

  
, 

……………………………………………….   (6.a) 

3 3n nm x  = 1 2
2 1 2

3 3 3

n

n n n

X
x x x




 
  

 
+ + + +

  
, 

or 

 b) the Lagrange equations of the second kind: 

 

1 1

d L L

dt p p

  
− 

  
 = P1, 

2 2

d L L

dt p p

  
− 

  
 = P2, 

……………………          (6) 

s s

d L L

dt p p

  
− 

  
 = Ps, 

namely: 

x1 = 1 (t), x2 = 2 (t),  …, x3n = 3n (t),    (7.a) 

or 

p1 = 1 (t), p2 = 2 (t),  …, ps = s (t),       (7) 

respectively. 

 Naturally, if those two systems of equations are supposed to describe the same motion then 

they must be arranged such that when the second one (7) is substituted in the formulas (2), that 

will produce the first one (7.a). 

 Since that motion will appear to be a special case of the one with s + 1 degrees of freedom, we 

would already like to add to (7) the condition that: 

 

ps+l = s lp +  = const., 

so 

p1 = 1 (t), p2 = 2 (t),  …, ps = s (t), ps+l = s lp +  = const.  (7) 
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 The Lagrange equations (6.a) are produced by the argument that each point must feel the effect 

of a force from each constraint, such that each constraint i, i = 1, 2, …,  will produce 3n 

components i

 ,  = 1, 2, …, 3n. From d’Alembert’s principle, they will be proportional to the 

derivatives i / x and the proportionality factor i will be the same for all , so: 

 

 i

  = i
i

x








,   = 1, 2, …, 3n. 

 The force of constraint: 

iR  = 

2 2 2

1 2

i i i
i

x x x  

  


+ +

       
 + +     

       
    (8) 

 

will act upon a point m = m+ = m+ as a result of the constraint I . 

 We cannot pose the problem of deriving the reaction force 
iR  that is defined by (8) directly 

from the Lagrange equations of the second kind from the outset, at least not in general (cf., Part 

II) since distinguishing the individual points by means of their coordinates is no longer possible 

with the so-called “system coordinates.” On the other hand, the remark that was made in the 

Introduction about calculating the reaction forces from the Lagrange equations of the first kind 

must extended by the fact that main difficulty naturally lies in the determination of the i. 

 We can then consider the problem that was posed to have been solved when we have succeeded 

in determining the i from the Lagrange equations of the second kind in a simple way. 

 As we have seen, the Lagrange equations of the first kind include the definition of the reaction 

forces, so to speak. They will thus serve as an important way of controlling the proof of the validity 

of equations (17) and (18) by direct transformation. 

 Let it be remarked in regard to the Lagrange equations of the second kind that the L in (6) is 

first defined in rectangular coordinates: 

L  
3

21
2

1

n

m x 
 =

 , 

 

and it can be thought of as being transformed into generalized coordinates by means of the 

formulas that emerge from (2) upon differentiating with respect to time: 

 

x  = 1 2

1 2

s

s

x x x x
p p p

p p p t

      
 +  + +  +

   
   = 1, 2, …, 3n.     (9) 

One will get: 
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22 2
3 3 3

2 2 21 1 1
1 22 2 2

1 1 11 2

3 3 3

1 2 1 3 1

1 1 11 2 1 2 1

1

1

n n n

s

s

n n n

s s

s s

x x x
L p m p m p m

p p p

x x x x x x
p p m p p m p p m

p p p p p p

x x
p m

p t

  
  

  

     
  

  

 


= = =

−

= = = −

      
= + + +     

       

     
+   +   + +  
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 
+   +

 

  

  

23 3 3

1
2

1 1 1

23 3 3

1 1
2 2

1 1 1 1 1 1

n n n

s

s

s s n s n n

h h

h hh h

x x x
p m m

p t t

x x x x x
p p m p m m

p p p t t
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 

  

    
   

   

= = =

= = = = = =









    
+   +      


     

=    +   +  
      

  

    

 (10) 

oe 

L = 1
2

1 1 1

s s s

h h h h

h h

a p p b p 



= = =

+ +  .     (10.a) 

 

 For the left-hand side of the Lagrange equations of the second kind (6), one will then get: 

 

1

1 1 1 1 1

1 1 1

, 1,2, , ,

,

.

s

h h

h

s s s s s
h hh h

h

h

s s s
h

h h h

L
a p b h s

p

a ab bd L
a p p p p p

dt p p p t t

a bL
p p p

p p p p

 


 

     
     

 

  
  



=

= = = = =

= = =


= + = 

 
     

= +   +  +  +  
      

  
=   +  +

    



   

 

     (11) 

 

 The right-hand side is known to be: 

 

Ph = 
3

1

n

h

x
X

p




 =




  .         (12) 

 

 

II. Imagined motion. 

 

 We now imagine the same system of n points. However, it is no longer subject to  constraints, 

but to  – 1 of them: 

 

1 = 0,      2 = 0,      …,      l−1 = 0,      l+1 = 0,      …,       = 0  (1.a) 

 

(in general, the points will no longer define a system; however, that will be entirely irrelevant in 

what follows), when we drop the 
thl  constraint l = 0. From assumption (2), we can describe the 

motion of the system with those s + 1 degrees of freedom in terms of p1, p2, …, ps, ps+l, and in 

particular, we can employ the Lagrange equations of the second kind: 
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1 1

d L L

dt p p

  
− 

  
 = P1 , 

2 2

d L L

dt p p

  
− 

  
 = P2 , 

…………………….         (13) 

s s

d L L

dt p p

  
− 

  
 = Ps , 

s l s l

d L L

dt p p+ +

  
− 

  
 = Ps+l . 

 

The vis viva is no longer the same as it was in I and will then be denoted by L . L  is defined from 

the same expression in rectangular coordinates as L, except that one uses the formulas that emerge 

from (2.a) upon differentiating with respect to time: 

 

x  = 1 2

1 2

s s l

s s l

x x x x x
p p p p

p p p p t

    
+

+

    
 +  + +  +  +

    
.   (9.a) 

 

 The quantities that appear here 
1

x

p




, …, 

s

x

p




 would generally be completely different from 

the ones with equation (9) that bear the same symbols. However, since the assumption (3) is also 

assumed to be applicable, the quantities 
1

x

p




, …, 

s

x

p




 will also differ from the ones in equations 

(9.a) and (9) by just the fact that ps+l is variable in one case, while constant in the other. In a certain 

sense, they are then equal to each other, and that would become rigorous when the constraint l = 

0 is reintroduced. The same thing will be likewise true of L, a, b, , etc., in equations (10.b), 

(11.a), (11.b). 

 Just as before, one derives from equation (9.a) that: 
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2 22
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2 2 21 1 1
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 
−

= = −
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   
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  
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= = =+ +
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p m p m p m m

p t p t p t t

      
   

   
+

= = = =+

       
 + +  +  +  

       
    , 
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or 

L = 21 1
2 2

1 1 1 1

s s s s

s l s l s l s l s l s la p p a p a p b p b p      
   

+ + + + + +

= = = =

+ + + +  +    = L +  ,     (10.b) 

 

in which: 

 = 21
2

1

s

s l s l s l s l s l s l s lp a p a p b p 


+ + + + + + +

=

 +  +   . 

 

 In regard to the left-hand sides of equations (13), we would like to distinguish between h = 1, 

2, …, s and s + l : 

 

 1. h : 

 

1 1

2

,

,

hs l s l

h h h h

s s
h h hs l

s l s l hs l s l s l

h h s l s l

hs l hs l
s l s l

s l

h h h

L L L
a p

p p p p

a b ad L d L
p p p a p p p

dt p dt p p p p

a a
p p

p t

L L

p p p



 
  

+ +

+
+ + + + +

= =+ +

+ +
+ +

+

   
= + = + 

   

      
= + + +  +   

       

 
+  + 

 

  
= +

  

 

21
2

1

.
s

s l s lhs l h
s l s l s l

h h h h

aa bL
p p p p

p p p p




+ ++
+ + +

=












  
= +   +  +      



 (11.a) 

 

 2. s + l : 
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1

1 1 1 1 1

2

,
s

s l s l s l s l

s l s l

s s s s s
s l s l s l

s l s l

s l s l

s l s l

s l s l s l s l s l

L
a p a p b

p p

a a ad L
a p p p p p p

dt p p p t

a
p a p p p

p

  


  

     
    





+ + + +

=+ +

+ + +

+ +

= = = = =+ +

+ +

+ + + + +

 
= =  +  +

 

   
=  +   +  +  

    

 
+  +  + 





   

1

1

1
2

1 1 1 1

21
2

,

.

s
s l s l s l s l

s l

s l

s
s l

s l s l s l

s s s s
s l

s l

s l s l s l s l

s l s l s l
s l s l

s l s l

a a
p

p t

b
p

t

L L

p p p

aa b
p p p p p

p p p p

a b
p p

p p






 

   
   



+ + + +

+

= +

+

=

+ + +

+

+

= = = =+ + + +

+ + +
+ +

+ +




+ 

 


+ 



  
= +

  

  
=   +  + +  

   

 
+  + 

 





  






















 (11.b) 

In (12), one has: 

hP  = 
3

1

n

h

x
X

p




 =





  = Ph ,     (12.a) 

s lP +
 = 

3

1

n

s l

x
X

p




 = +





 ,      (12.b) 

and naturally one can infer 
s l

x

p



+




 from (2.a). 

 The left-hand sides of each of first s of equations (13) then differ from the corresponding ones 

in (6) only by an additional term that appears additively. The right-hand sides of each of them 

remain unchanged in comparison to (6). The remark that was made in connection with equation 

(9.a) is also valid here. 

 

Comparing two motions and conclusion. 

 

 A certain motion will be defined by Lagrange’s equations (13) precisely as before, but it will 

not generally coincide with the latter since the finite equations of motion here look like: 

 

p1 = 1 (t) , p2 = 2 (t) , …, ps = s (t) , ps+l = s+l (t) .  (14) 

 

 However, we can regard (7) phoronomically as a special case of (14) since the specialized 

equations (14): 

p1 = 1 (t) , …, ps = s (t) , ps+l = s lp +  = const.  (14.a) 
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define the same motion as (7). 

 How does it look from a mechanical standpoint then? 

 As long one assumes that there are accelerating forces, it must be possible to alter the explicit 

forces by the addition of supplementary forces such that the point-system will describe the same 

motion under the influence of the new explicit forces for the s + 1 degrees of freedom of the 

imagined case II as it would under the effect of the original (explicit) forces with the s degrees of 

freedom of the actual motion I, and those supplementary forces must agree in magnitude and 

direction with the forces of reaction of the mechanical device that realizes the constraint l . 

 That conclusion (which can be extended to the case of equilibrium with no further discussion) 

is, as we see, essentially the same as the one that the Lagrange equations of the first kind implied, 

so the reaction forces that appear here are certainly essentially the same as the ones that were 

defined by (8). 

 However, as we have remarked before, we will not get 
lR [cf., (8)] here immediately, but we 

will get the l directly (and with that we come to our actual problem) in the following way: 

 We imagine that we have found those supplementary forces, and let 1, 2, …, s, s+l be their 

generalized components, i.e., when we denote the rectangular components of the supplementary 

from now on by 
1

l , 
2

l , …, 
3

l

n  (corresponding to the Xl): 

 

1 = 
3

1 1

n
l x

p







=




 ,    2 = 

3

1 2

n
l x

p







=




 ,    …,    s = 

3

1

n
l

s

x

p







=




 ,    s+l  = 

3

1

n
l

s l

x

p







= +




 .  (15) 

 

 When we add those generalized components, by assumption, the Lagrange equations: 

 

1 1

d L L

dt p p

  
− 

  
 = P1 + 1 , 

2 2

d L L

dt p p

  
− 

  
 = P2 + 2 , 

……………………………            (16) 

s s

d L L

dt p p

  
− 

  
 = Ps + s , 

s l s l

d L L

dt p p+ +

  
− 

  
 = Ps+l + s+l  

 

will then determine the same motion as that the Lagrange equations (6), namely, the motion (7) [or 

(14.a)]. 

 If we define the left-hand sides of equations (16) and (6) conversely by means of the functions 

(14.a) and their first and second derivatives and also introduce the coordinates on the right as 

functions of time, and possibly the velocities and accelerations that might appear in them, by means 

of (14.a) then it would be in the nature of the integral of a differential equation that every equation 
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(16) and every equation (6) would imply an identity with respect to time t. Now, since the left-

hand sides of equations (16) go to the left-hand sides of equations (6) [cf., (11.a)] by means of 

(14.a), it would follow from a comparison of the right-hand sides of those s equations that all 1, 

2, …, s must vanish. 

 This result, which is significant because it shows that it is just not possible to already determine 

the l from 1, …, s since they are all zero, can also be derived more simply from the argument 

that we indeed already know that 
1

l , 
2

l , …, 
3

l

n  are the components of the reaction forces 
lR . 

Therefore: 

  h = 
3

1

n
l

h

x

p







=




  = 

3

1

n
l

l

h

x

x p



 




=

 


 
  = l

l

hp








 = 0 for h = 1, 2, …, s, 

cf., (3). 

 However, the last equation (16) yields the generalized constraint force components: 

 

s+l  
3

1

n
l

s l

x

p







= +




 . 

 

 We can formulate that result as follows: 

 

 We will have: 

s+l = s l

s l s l

d L L
P

dt p p
+

+ +

  
− − 

  
    (17) 

 

when we substitute the values of p1, p2, …, ps, 1p , …, sp , 1p , …, sp  that correspond to the true 

motion [equation (7), (14.a),  respectively] in the right-hand side, while setting ps+l equal to s lp +  

and s lp +  = s lp +  = 0. [On this subject, cf., (11.b) and (12.b).] 

 

 Naturally, for the case of equilibrium, one will have to set 1p  = 2p  = … = sp  = 1p  = 2p  = … 

= sp  = 0 after the differentiation, while one substitutes those values 
o

1p , 
o

2p , …, 
o

sp  of  p1, p2, …, 

ps that correspond to the equilibrium configuration. 

 Now, how does s+l relate to l ? From the defining equations of s+l, that is equal to: 

 

s+l = 
3

1

n
l

s l

x

p







= +




  = 

3

1

n
l

l

s l

x

x p



 




= +

 

 
  

 

because, for the aforementioned reasons, this l

  is the same as the one in Lagrange’s equations of 

the first kind, so it is equal to: 

l

  = l
l

x








. 
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Therefore: 

s+l = l
l

s lp




+





,            (18.a) 

 

in which one must naturally likewise set ps+l = 
o

s lp +
 after the differentiation, but p1, p2, …, ps must 

be set equal to the expressions (14). It follows from (18.a) that: 

 

l = 
1

s l
l

s lp


+

+






.     (18) 

 In words: One obtains l from the s+l that is calculated from (17) upon dividing by l

s lp



+




. 

 Second proof: We would now like provide a direct analytical proof of the result that was just 

derived, and therefore likewise proved, by transforming it into the one that was proved before. 

 In order to do that, we shall employ the identity: 

 
3

1

( )
n

h

x
m x X

p


  

 =


−


  = h

h h

d L L
P

dt p p

  
− − 

  
,    (19) 

 

or the one that is equivalent to it, due to (12): 

 

3

1

n

h

x
m x

p


 

 =




  = 

h h

d L L

dt p p

  
− 

  
,    (19.a) 

 

which is true for all values of the p and x that are associated by way of (2), as well as their first 

and second derivatives with respect to time, even when those associated values are the integrals of 

those Lagrange differential equations. It should be remarked in regard to the proof of (19) or (19.a) 

that these identities can be confirmed by performing the differentiations in formulas (2) directly. 

One will find a second, simpler, proof in Boltzmann, Part II of Principe der Mechanik, pp. 41. 

 We shall now make a special use of that identity for the Case II and take the particular equation 

for the coordinate ps+l : 
3

1

( )
n

s l

x
m x X

p


  

 = +


−


  = s l

s l s l

d L L
P

dt p p
+

+ +

  
− − 

  
 

 

from the associated system of equations (13)  and only now consider equations (14.a) = (7) [(7.a), 

resp.], so, from (17), the right-hand side will be equal to s+l for those special values of p1, p2, …, 

ps, and their derivatives. On the left-hand side, all of the coordinates, velocities, and accelerations 

refer to the case of the motion I in any event. We can then think of that part as arising from the 

Lagrange equations of the first kind (6.a) and therefore set them equal to: 
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3

1

( )
n

s l

x
m x X

p


  

 = +


−


  = 

3 3 3
1

1

1 1 1

n n n
l

l

s l s l s l

x x x

x p x p x p

  


    

 
  

= = =+ + +

    
 + +  + + 

     
    

 = 1
1

l
l

s l s l s lp p p




 
  

+ + +

 
 + +  + + 
  

. 

 

 According to (4), all terms will vanish except for l
l

s lp




+





, such that we have once more 

confirmed that: 

s+l = l
l

s lp




+





, 

in which: 

s+l = s l

s l s l

d L L
P

dt p p
+

+ +

  
− − 

  
. 

 

 The derivation here also implies that the differential quotient l

s lp



+




 refers to the location .s lp +  

 

Concluding remark. 
 

 This would now be the place to prove that not all of the assumptions are necessary. In regard 

to the first and second ones, namely, holonomic constraint equations and coordinates, that cannot 

be decided with no further analysis since it is very debatable whether the individual analytical 

relations can be given the mechanical meaning that they now have at all, or at least the same simple 

one. The case of constraint inequalities has been likewise left uninvestigated. By contrast, the last 

assumption of generalized coordinates is certainly unnecessary since if  constraint equations exist 

between the s variable parameters p1, p2, …, ps, and the reaction force that acts on an arbitrary 

point m is to be determined from each of the  –  constraints, which are fulfilled identically by 

the p1, p2, …, ps, and then eliminated, then this case will not really be essentially different from 

that of generalized coordinates: We can just as well regard the reaction forces that originate in the 

constraints that expressly carried and which we assume to be known (we assume to have been 

already calculated, respectively) as explicit forces, like the ones that were given originally, and 

think of those reaction forces as being combined with the latter. That will explain the fact that all 

of the results that were derived before can also be extended to the present case with no further 

discussion. 

 I would now like to follow through a line of reasoning in connection with this rigorously-

followed path of the investigation up to now whose main results were (17) and (18) that will define 

an extension of it that is indeed unnecessary, but still worth mentioning. For me, it was additionally 

of great heuristic value and will provide us with relations that can simplify the actual calculation 

of a constraint force 
iR  considerably in some special cases. 
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 However, in regard to the “fictitious” geometric interpretation that was employed in it, it was 

proved right at the beginning that we could make use of only a picture in it, while the analytical 

relations will take on an actual meaning that is completely independent of whether that picture is 

admissible. 

 

Part I.a. 

 

Geometric interpretation. 

 

1. Fundamental, purely-geometric considerations. 

 

 We start from the formulas: 

x1 = f1 (p1, p2, …, ps, ps+l, t0) , 

x2 = f2 (p1, p2, …, ps, ps+l, t0) , 

………………………………              (2.a) 

x3n = f3n (p1, p2, …, ps, ps+l, t0) , 

 

in which we once more write f in place of the symbol g in order to suggest that those functions g 

will go to the functions f in formulas (2) with no further discussion upon reintroducing that 

constraint l = 0, and we assume only that the assumption 3 is fulfilled. We imagine a location 
o

1p

, 
o

2p , …, 
o

sp , 
o

s lp +
 that simultaneously corresponds to a value t0 . Naturally, we take the associated 

values of t0 and (p)0 for the true motion. 

 They belong to a system of values 1x , 2x , …, 3nx  that defines the same configuration of the 

point-system by way of formulas (2.a). All of the following considerations refer to such a location 

as the starting point, in which the coordinates are still variable, but time t will preserve the constant 

value t0. 

 We would like to think of a point P0 as being defined by that location: 

 

1(x , 2x , …, 3 )nx  = 
o

1( p , 
o

2p , …, 
o

sp , 
o

)s lp +
. 

 

 We can now regard the set of all systems of values of x1, x2, …, x3n for which a certain one of 

all the parameters p1, p2, …, ps, ps+l, say, ph, h = 1, …, s, s + l, remains constant by assuming that 

a function h of x1, x2, …, x3n is given for each h, such that when it is transformed by means of 

(2.a) and set equal to zero, only ph will be subject to a constraint: 

 

h (x1, x2, …, x3n) = h (ph) = 0 , h = 1, 2, …, s, s + l.    (20) 

 

 We have learned about one such function in the special case of the coordinate ps+l in l . Despite 

the fact that we are mainly interested in only that case, we would still like to develop the following 

more general one. 
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 We imagine that there are more such functions h (x1, x2, …, x3n) that will be equal to ph 

identically under the given transformation: 

 

h (x1, x2, …, x3n) = ph + ch ,  h = 1, 2, …, s, s + l , (21) 

 

in which the constant ch should only be independent of all p. 

 Any function h of ph will then seem to be obviously a function of h, and in addition the 

differential quotients: 

1

hp

x




, 

2

hp

x




, …, 

3

h

n

p

x




, 

 

which we would like to consider mainly at the location 1x , 2x , …, 3nx , can be defined in terms of 

the new functions. 

 We can now interpret h (x1, x2, …, x3n) = 0, which is equivalent to ph + ch = 0, as a type of 

“surface” and consistently interpret: 

 

1

1h

h

h

p

x W





, 

2

1h

h

h

p

x W





, …, 

3

1h

h

n h

p

x W





,   (22) 

when 

h

hW  = 

22

1 3

h h

n

p p

x x

   
+ +   

    
, 

 

as the direction cosines of their normal. The special surface: 

 

h (x1, x2, …, x3n)  
o

h hp p−  = 0 , 

 

which one derives from the general case for ch = − 
o

hp , goes through the location: 

 
o

1( p , …, 
o

sp , 
o

)s lp +
 = 1(x , 2x , …, 3 )nx , 

 

or as we can say, through the point P0, since 1x , 2x , …, 3nx  fulfill the equation h  = 0 according 

to (2.a) and (21). 

 If we leave all p and t = t0 constant in (2.a), while p is variable then those formulas will assume 

the simpler form: 

  x1 =   f1 (p) ,  = 1, 2, …, s, s + l, 

  x2 =   f2 (p) , 

……………               (23) 

  x3n = f3n (p) . 
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 We would likewise prefer to interpret (23), in which all coordinates x will generally vary when 

p varies, and therefore all points of the system will describe certain paths that are the parametric 

representation of a curve, as it were, and the differential quotients of those functions f: 

 

1 1

t

x

p W 







, 2 1

t

x

p W 







, …, 3 1n

t

x

p W 







,   (24) 

when 

iW   = 

2 2

31 nxx

p x 

   
+ +          

, 

 

will be the direction cosines of its normal. 

 According to the constant values of the remaining p, that curve will have a different position 

since the functional relationship (23) would then become a different one. If we denote the functions 

f for the special values of the remaining p : 

 
o

1p , 
o

2p , …, 
o

1
p−

, 
o

1
p+

, …, 
o

sp , 
o

1sp +
 

 

by f  then the curve that is defined by: 

  x1 =   
1 ( )f p , 

  x2 =   
2 ( )f p , 

……………..            (25) 

  x3n = 
3 ( )nf p , 

for p = 
o

p  will go through the location: 

 

 
o

1( p , …, 
o

sp , 
o

)s lp +
 = 1(x , 2x , …, 3 )nx , 

 

i.e., through the point P0, or in other words: (25) will yield the system of values 1x , 2x , …, 3nx  for 

p = 
o

p . 

 We would now like to relate the curve ( )f  that is defined by (25) with the surface h , and 

we must then distinguish between h   and h = . 

 We shall first assume that h = , and we have just found that for this case, the surface h  and 

the curve ( )f  will certainly have a point in common with each other, namely, P0. Since the surface 

h  is defined by: 
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o

h hp p−  = 0 , 

 

but ph is a variable parameter in the representation of the curve ( )f , so they will have that and 

only that point P0 in common with each other. If h   then it will be obvious that P0 will still be 

a common point of h  = 0 and ( )f . However, all points of the curve ( )f  will now lie upon the 

surface h  = 0, in addition, since h  = 0 means that ph = 
o

hp , and that is also assumed of all 

curves ( )f . [cf., Fig. 1] 

 
Figure 1. 

 

 Fig. 1 is drawn under the assumption that n = 1, i.e., a single point and ordinary three-

dimensional space (see Appendix 4). 

 We infer from the geometric picture that was developed up to now that the normal to h  = 0 

must also be perpendicular to all curves ( )f ,   h (their tangents at the point P0, respectively). 

Proceeding consistently, we will regard the expression: 

 

31

1 3

1 1 1 1h h n

h h

n t n n t

p p xx

x W p W x W p W 

 

        
  + +                    

 = cos (nh, t) , 

 

in which the differential quotients all refer to the location P0, as the cosine of an angle (nh, t), and 

we now have to show that: 

 

31

1 3

1 1 h h n

h

n t n

p p xx

W W x p x p

 

   
  + +       

 = 0 ,  h   .  (26) 

nh th 

 t 

nh 

t 

 

 

P0 

Surface: = 0 
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The expression in parentheses vanishes, as one will see when one differentiates the identity (21) 

with respect to p and in so doing observes that   h . 

 By contrast, one has that: 

cos (nh, t) = 31

1 3

1 1 h h n

h

n t n

p p xx

W W x p x p

 

   
  + +       

 = 
1 1

h

n tW W 
   (27) 

 

is generally non-zero. Namely, the expression in parentheses is equal to 1 here, which can be 

deduced by differentiating (21) with respect to ph. 

 

 

2. Orthogonality of a coordinate ph with respect to the remaining ones. 

 

 We say that the coordinate ph is orthogonal to the remaining ones when the tangent direction 

th coincides with the normal direction nh, when the proportion: 

 

1

hp

x




: 

2

hp

x




: … : 

3

h

n

p

x




 = 1x

p




: 2x

p




: … : 3nx

p




   (28) 

or 

hp

x




 = k 

x

p








,  = 1, 2, …, 3n  (28.a) 

exists. 

 It follows from (28.a) that: 

 

h

nW  = 

22

1 3

h h

n

p p

x x

   
+ +   

    
 = 

2 2

31 n

h h

xx
k

p p

   
 + +   

    
, 

so 
h

nW  = h

tk W . 

 

 On the other hand, the expression in parentheses in (27) is equal to: 

 
2( )h

tk W . 

 

 Thus, as we expected, when ph is orthogonal to the remaining p, we will have, in fact: 

 

cos (nh, t) = 
21 1

( )h

th h

t t

k W
k W W

  


 = 1 .   (29.a) 
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 We can also easily confirm another closely-related consequence analytically: Namely, along 

with nh, th must also be normal to all curves (their tangents at the point P0, respectively) when   

h, i.e., they must fulfill the equation: 

 

cos (th, t) = 3 31 11 1 n n

h

t t h h

x xx x

W W p p p p

 

   
  + +       

 = 0   h.     (29) 

We can easily prove that as follows: 

 From (28.a), the expression in parentheses is equal to: 

 

31

1 3

1 h h n

n

p p xx

k x p x p 

   
 + +       

 

 

and will then vanish on the same grounds as in (26). 

 Based upon that explanation, the coefficients of p p   in the expression for L [cf., (10)] can 

also be given a geometric interpretation: Namely, if one sets all masses: 

 

m1 = m2 = … = m3n = 1 

then one will have: 

 
3

1

n x x

p p

 

  =

 


 
  = cos (th, t)  

t tW W  .   (30) 

 

 At the same time, we infer from this that (30) will vanish when p or p is orthogonal to the 

remining ones, from (29). 

 

 

3. Forces. 

 

 We would like to follow through with that line of reasoning consistently for the force vectors 

and their components, as well. 

 We define a new concept of the reaction force of the constraint l by combining all components 
l

 . We define it by the expression: 

 

Rl = 

22 2

1 2 3

l l l
l

nx x x

  


      
 + + +     

       
    (31) 

 

and ascribe the 3n rectangular components to it: 
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1

l  = 
1

l
l

x








,      

2

l  = 
2

l
l

x








,      …,      
3

l

n  = 
3

l
l

nx








,   (32) 

 

or since (20) says that one has: 

l (x1, x2, …, x3n) = l (ps+l)     (33) 

 

for h = s + l, the components will be: 

 

1

l  = 
1

l s l
l

s l

p

p x


 +

+

 
 
 

,      
2

l  = 
2

l s l
l

s l

p

p x


 +

+

 
 
 

,      …,      
3

l

n  = 
3

l s l
l

s l n

p

p x


 +

+

 
 
 

.  (34) 

 

 We will regard the relation: 

 

1

l : 
2

l  : … : 
3

l

n  = 
1

l

x




 : 

2

l

x




 : … : 

3

l

nx




 = 

1

s lp

x

+


 : 

2

s lp

x

+


 : … : 

3

s l

n

p

x

+


  (35) 

 

as an analogous extension, or the one that is derived from it when one recalls (31), and is equivalent 

to it: 

22

1 3

22

1 3

, 1, 2, ,3

l
ll

l
l l

l

n

l s l
l

s l

l s l s l
l

s l n

s l

s l

n

x

R

x x

p

x x

p p

p x x

p

x
k n

W

 










 








+

+

+ +

+

+

+

 
 

=
   
 + +   

     


   
 

= 
    

  + +   
      




 
= =





   (36) 

 

as the analytical expression of the idea that the direction of Rl coincides with the direction of the 

normal ns+l to the surface l (ps+l) = 0 (the surface ps+l = 
o

s lp +
, respectively). [cf., (22) on this] 

 If we proceed similarly then we will arrive at the concept of the new explicit force: 

 

R = 
2 2 2

1 2 3nX X X+ + + ,     (37) 

 

with the 3n rectangular components: 
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X1, X2, …, X3n . 

 When the numbers: 

1X

R
, 2X

R
, …, 3nX

R
          (38) 

 

are interpreted as direction cosines, they will determine the direction r of R, and the expression: 

 

31 2

31 2

n

h h n h

h h h

t t t

xx x

p p X pX X

R W R W R W

 

  
 +  + +   = cos (r, th)   (39) 

 

will take the form of the cosine of the angle between the direction r and the tangent th to the curve 

( )hf , h = 1, 2, …, s, s + l. 

 
Figure 2. 

 

 It will then follow from this, when one recalls (12.b), that: 

 

Ph = 
3

1

n

h

x
X

p




 =




  = cos( , )h

t hR W r t  ,         (40) 

or 

h

h

t

P

W
 = R  cos (r, th) , 

and in particular, for h = s + l : 

s l

s l

t

P

W

+

+
 = R  cos (r, ts+l) .           (41) 

R  

P0 

r 

Rl 

ns+l ts+l 

 

 

Surface l = 0 (ps+l = , respectively) 
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 In words: 

 

 h

h

t

P

W
and in particular, s l

s l

t

P

W

+

+
 is, as it were, the component of R that falls along the direction t 

(and indeed th or ts+l, respectively) or the projection of R onto th (ts+l, respectively). 

  

 Since, from (20): 

h h

d L L

dt p p

  
− 

  
 = 

3

1

n

h

x
m x

p


 

 =





  

 

is always fulfilled, when we set all masses equal to 1 and define an acceleration G with the 

direction g by: 

G = 2 2 2

1 2 3nx x x+ + + , 

due to the fact that: 
3

1

n

h

x
x

p




 =





  = cos( , )h

t hG W g t ,    (42) 

 

the left-hand side of each Lagrange equation of the second kind, divided by h

tW , will take the form 

of the normal projection of an acceleration G onto the direction th . 

 If we then divide the Lagrange equation of the second kind: 

 

h h

d L L

dt p p

  
− 

  
 = Ph 

by h

tW  then the equation: 

G  cos (g, th) = R  cos (r, th)     (43) 

 

will follow from (40) and (42), in which all masses are set equal to 1. It includes a very remarkable 

mechanical-geometric meaning for the Lagrange equations of the second kind: 

 

 When all masses are set equal to 1, from (43), the Lagrange equations of the second kind will 

prove to say nothing but that the acceleration component in the direction of motion that belongs 

to the varying coordinate ph is equal to the force component that falls along that direction. 

 

 Since all developments can be interpreted in ordinary Euclidian space for n = 1, a result of true 

mechanical significance will have been achieved with equation (43) in the case of a single point 

(application to the “inclined plane,” etc.!). 

 Since it is always permissible to consider the reaction force Rl to be an explicit force, the 1, 

2, …, s, s+l in (16) must have a meaning that corresponds entirely to that of P1, P2, …, Ps, Ps+l, 
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namely, they represent the projections of Rh onto th, multiplied by h

tW . That is confirmed by the 

defining formulas (15) for the  : 

 

h = 
3

1

n

h

x

p







=





  = cos( , )h

l t hR W g t  . 

 

 Now, rl means the same direction as ns+l, i.e., Rl is normal to the surface ps+l = 
o

s lp +
, and 

therefore to all tangent direction t1, t2, …, ts, so from (26): 

 

1 = 2 = … = s = 0 , 

while: 

s+l = cos( , )s l

l t l s lR W r t+

+   0 , 

from (27). 

 With that, the quantities h, h = 1, 2, …, s, s + l will admit the mechanical-geometrical 

interpretation: 

 / h

h tW  can be regarded as the normal projection of Rl onto the tangent direction th, and 

therefore the announced attempt at a geometric interpretation, i.e., a consistent and natural 

extension of the geometric relationships that actually exist in the case of a single point to a system 

of n points, has been developed somewhat more thoroughly. It offers us an intuitive geometric 

picture, and for that reason, as was mentioned before in loc. cit., it will also have heuristic value. 

However, in regard to the examination that was carried out in Part I, it was restricted to the 

derivation of equation (18), and indeed the following must then be remarked: 

 Originally, we treated the relationship of the concept of Rl that is defined (31) to s+l and the 

discovery of the relevant relations: 

 

s+l = l

s l

n

R

W +
  (Rl = s l

s l nW +

+  , respectively),   (44) 

 

which one derives immediately from the equation that will exist: 

 

s+l = 
1 1s l

l n s l s l

t n

R W
W W

+

+ +
    

 

when one recalls (27), has contributed to the geometric picture that was just sketched out to an 

exceptional degree, although now since Rl is only a fictitious mechanical concept, it has only a 

somewhat loose connection with the main topic. 

 However, we do see that: 

 If Rl, as it was defined by (31), were to define a true mechanical concept then the relations (44) 

would take on a more proper (self-evident, respectively) meaning in comparison to equation (18) 
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since the quantities Rl have an immediate relationship to s+l, whereas they would otherwise indeed 

say that the same thing as (18), due to the fact that: 

 

Rl = 
s ll

l n

s l

W
p


 +

+


 


. 

 

 In the case that was assumed, the investigation into the orthogonality of a coordinate would 

also take on a true meaning since the equation that is implied by (27) and (29.a): 

 

s l

nW +  = 
1
s l

tW +
 ,         (45) 

 

or the one that follows from when one recalls (44): 

 

Rl = 
1

s l s l

tW
 + +

 ,         (46) 

 

respectively, in which 21
2
( )s l

tW +  will emerge from the coefficient of 2

s lp +
 in L  when one sets all 

masses equal to 1, namely, that Rl can be determined from s+l by means of a quantity s l

tW +  that is 

already given along with L  when ps+l is orthogonal to the remaining p. 

 

 

4. Appendix. 

 

 We now ask: When can we make use of the computational advantage that is included in 

formulas (44) and (46)? 

 The possibility of applying the simplification that is based upon formula (44) is, as we showed 

thoroughly in Part II, not connected with the fact that Rl is the concept that was defined by (31). 

Rather, in formula (46) (should we be able to make use of it), Rl means the ordinary concept of 

force 
lR , and we then address the question of the circumstances under which that would be the 

case. As would emerge from a glimpse at (31), that would apply to only two cases: 

 

 1. Only a single point is present. 

 

 2. The constraint l = 0 imposes a restriction upon on a single point m = m+1 = m+2, i.e., it 

is a so-called “absolute” constraint. 

 

 Since the case 1 is includes as a special case of 2, it would suffice to treat the latter in extenso: 

 By assumption, l has the form: 

l (x, x+1, x+2) = 0 . 

Thus, from (31): 
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Rl = 

2 2 2

1 2

l l l
l

x x x  

  


+ +

       
 + +     

       
 = 

lR . 

 Along with l : 

ps+l  s+l (x, x+1, x+2) 

 

likewise includes only the three -coordinates of the one point: l will then be a function of ps+l, 

and when it is otherwise set equal to zero, along with s+l, it would then restrict more than those 

three -coordinates. 

 We now have to include in the calculations the fact that with formula (46), we have indeed 

assumed that ps+l is orthogonal to the other parameters p1, p2, …, ps . When the definition of 

orthogonality that is given by (28) is applied to the case here, that will yield the condition: 

 

s lp

x

+


 : 

1

s lp

x

+

+




 : 

2

s lp

x

+

+




 = 

s l

x

p



+




: 1

s l

x

p

 +

+




: 2

s l

x

p

 +

+




 .   (47) 

 

 It has an immediate geometric meaning: Since ps+l occurs in only f, f+1, f+2, equations (23) 

will reduce to the three equations: 

 x = f (ps+l) , 

x+ = f+ (ps+l) ,      (48)  

x+ = f+ (ps+l) , 

 

and will then represent an actual curve, just as the equation: 

 

l (x, x+1, x+2) = 0 , 

or 
o

s l s lp p+ +−   s+l (x, x+1, x+2) = 0 

 

respectively, will define an actual surface. 

 Thus, there will also be an actual tangent ts+l and normal ns+l here, and the condition (47) will, 

in fact, mean that the tangent direction ts+l must coincide with the normal ns+l for each point on the 

surface l = 0 (s+l = 0, respectively). 

 We can then deduce a criterion for whether the coordinate ps+l is or is not orthogonal that is 

very useful in the applications. The condition: 

 

l (x, x+1, x+2) = 0 

 

defines the surface on which the associated point is constrained to remain as a result of this 
thl  

condition. However, (48) is the analytical expression for that space curve that gives us the path of 

the point m = m+1 = m+2 that would actually be described when the parameter ps+l varies. It 
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would then prove to be easy to decide whether the tangent to that curve did or did not coincide 

with the normal to the surface. 

 However, the most reliable and convenient characterization of that is included in the expression 

for L : Namely, if ps+l is orthogonal to the other p, and l is an “absolute” condition then no term 

of the form: 

 hs l s l ha p p+ + ,  h  s + l 

 

will enter into L since the coefficient ahs+l will generally have the form: 

 

  
3

1

n

h s l

x x
m

p p

 


 = +

 
 
 

 ,  h = 1, 2, …, s, 

 

and on grounds that were mentioned before in regard to (48), it will reduce to: 

 

1 1 2 2

h s l h s l h s l

x x x x x x
m

p p p p p p

     


+ + + +

+ + +

      
 +  +  

      
 . 

 

When one recalls (47) [(28.a), respectively], it will then be equal to zero: 

 
3

1

n

h s l

x x
m

p p

 


 = +

 
 
 

  = 
1 s l

h

p
m

K p


+
 


 = 0 , 

 

in which K means a proportionality factor that is inserted into (47) [cf., the concluding 

consequences of (29), or (26), respectively]. 

 On the other hand, the coefficient of 21
2 s lp +

 is equal to: 

 
2

3

1

n

s l

x
m

p




 = +

 
 

 
  = 

2 2 2

1 2

s l s l s l

x x x
m

p p p

  


+ +

+ + +

        
 + +     

         

 = 2( )s l

lm W

+ ,  (49) 

 

which is a fact that demands the special value of the formula that is true along with (46): 

 

lR  = Rl = 
1

s l s l

lW
 + +

 .      (50) 
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Part II. 

 

Development of a new method. 
 

 This method is based upon the use of relations (17) and (18) as a way of solving the following 

problem: 

 

 Let a constrained point-system be given that consists of n points with masses m , external 

forces X , k = 1, 2, …, 3n, etc. (cf., Ansatz, Part I). Determine the individual reaction force that 

acts upon the point m = m+ = m+ as a result of the constraint l . 

 

 It would already emerge from the introduction to Part I that the method to be explained is 

based, from the outset, upon the assumption that one has found the solution to the problem of 

motion with the help of the Lagrange equations of the second kind (6). 

 We must then distinguish between two types of assumptions: 

 

 a) Ones that necessarily bear upon the way that the problem of motion is presented (its 

solution, respectively), and in particular, by means of Lagrange’s equation of the second kind. 

 

 b) Ones that we have to make especially in regard to the application of the relations (17) and 

(18). 

 

 The exhibition and solution of the question of pure motion is resolved in the following way: 

 Suppose that one is given: 

 

[1] the masses m,  = 1, 2, …, 3n of all n points. 

[2] the forces X,  = 1, 2, …, 3n, and indeed as functions x and possibly their derivatives, 

as well as time t. 

[3] the equations of constraint l , l = 1, 2, …,  in rectangular coordinates. 

 

Now, if: 

 

[4] Assumption 1, pp. 3, is fulfilled, and one knows: 

[5] the transformation formulas (2) then one can transform L into generalized coordinates 

[equation (10)] derive the Lagrange equations of the second kind (6) by performing the 

required differentiations on the expression (10), from which one will obtain the finite 

equations of motion (7) [(14.a), respectively] by integration and considering 

[6] the initial conditions, which are likewise assumed to be given. 

 

 In connection with that, we now need to find the force of constraint 
lR  that originated in the 

constraint l = 0 and acts upon the point: 
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m = m+ = m+, 

but under the two assumptions that: 

 

[7] Assumptions 2 and 3 are fulfilled, and that one knows 

[8] formulas (2.a). 

 

 One exhibits the expression for L  in generalized coordinates, possibly by means of formulas 

(2.a), and derives s+l from it by performing the differentiations that are given by (17). One then 

differentiates the function l that is transformed by means of (2.a) with respect to ps+l and 

substitutes the constant value s lp +  for it after the differentiation. One will then find the l from 

(18), and indeed initially as functions of the coordinates ph, the velocities hp , the accelerations 

hp , and time t (h = 1, 2, …, s). 

 In order to obtain 
lR , one will only have to carry out the square root that appears in (8) by 

means of formulas (2) in terms of a function of the ph, h = 1, 2, …, s. 

  

 l, as well as 
lR , can be represented as functions of time alone by means of (7) [(14.a), 

respectively]. 

 As was mentioned before (pp. 2), the representation of l [ lR , respectively] as a function of 

the coordinates ph is much more important for the practical applications, as well as for theoretical 

purposes. That is because we will get a clearer picture of the functional variation of a reaction force 

lR  for a constrained point-system when we know that force, which is a function of the relevant 

configuration of that system, as a function of time. 

 If the arrangement defines the solution to the problem that was posed is useful only in practice 

then it will be, on the other hand, definitive of the practical value of the relevant methods. 

Therefore, it will point to a special advantage of the new method in that it is especially adapted to 

that case to an extraordinary extent. 

 Instead of the complete integration of the differential equations (6), i.e., instead of the finite 

equations of motion (7), we actually need to assume only a first integral of those differential 

equations. We can imagine that the accelerations are expressible in terms of the velocities by means 

of the differential equations themselves, and the velocities, and therefore also the accelerations are 

expressible in terms of the coordinates. As a result, s+l, along with l and 
lR , can be represented 

as functions of only the parameter ph. The time t that might possibly appear explicitly can be 

replaced with the best-suited coordinate by inverting one of the functions (7). Moreover, that 

explicit appearance of time t is, in fact, less important in the case of practical application than 

before when one is dealing with only the constraints l, l = 1, 2, …, . On the other hand, it will 

imply a complication that is in the very nature of the problem itself, because in order for time t to 

not occur explicitly in the result, it would be necessary that s+l would have to be free of it, and 

one therefore assumes scleronomic constraints, as well as pure forces of motion X . The first 

assumption is necessarily connected with the fact that time t is also missing from formulas (2), and 

therefore (2.a), as well. 
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 The situation will take an especially simple form when a force function exists. In that case, the 

principle of the conservation of energy in generalized coordinates will present itself as a first 

integral. That is because the expressions for the concepts of vis viva and force function that appear 

in it must already be defined by exhibiting the Lagrange equations (6): 

 

h

h

V
P

p

 
= − 

 
. 

 

 However, in most of the cases that occur in applications, many simplifications will present 

themselves, such as having direct knowledge of L, et al., such that the actual calculation will often 

proceed more simply than it does in general. Namely, that is true of the transformation of the l 

into generalized coordinates, which can ordinarily be done with no formulas (it is already achieved 

when one discovers a coordinate ps+l that corresponds to the assumptions, respectively). 

 One will get a far-reaching simplification of a general type when one knows how to invert 

formulas (2.a), i.e., the functions h, h = 1, 2, …, s, s + l in equation (21). In that case, we can 

make use of the formula: 

lR  = 

2 2 2

1 2

l s l s l s l
l

s l

p p p

p x x x  


 + + +

+ + +

        
  + +     
        

 

that corresponds to (44), or: 

lR  = 

2 2 2

1 2

s l s l s l
s l

p p p

x x x  

 + + +
+

+ +

       
 + +     

       
. 

 

Here, as well, in order to obtain a consistent representation for 
lR , one must either transform the 

square root expression into general coordinates ph or transform s+l into rectangular coordinates. 

 However, the most-direct determination of 
lR  will bring about the exceptional circumstances 

under which one can decide which assumption to apply to formula (50): 

 One must first see whether l is an “absolute” constraint, i.e., a restriction that is imposed upon 

only a single point. In the applicable case, one begins, as one does in general, with the construction 

of L  and determines from the way that it was constructed whether the coordinate is orthogonal in 

the way that was given on pps. 20 and 21 Then and only then will the formula by which one obtains 

lR  from s+l upon dividing by s l

tW +  be true, namely: 

 

lR  = 
1

s l s l

tW
 + +

 .     (50) 

 

However, one finds s l

tW +  from the expression for L  that is known already: Namely, if one sets the 

masses: 

m = m+ = m+ = 1 
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then 21
2
( )s l

tW +  will be the coefficient of 2

s lp +
 . 

 That case will become very important in a different context, and it offers some essential 

advantages. When a force function exists, it can happen that one can succeed in exhibiting the 

Lagrange equations (6) without appealing to rectangular coordinates on the basis of a geometric 

argument. Might one be given Land V directly in terms of generalized coordinates then nothing 

more would be required. Now, if that is likewise true of L  then a return to rectangular coordinates 

will obviously be no longer necessary in the calculation of 
lR  from equation (50). 

 I believe that I have then found a method that is, first of all, new (1), and secondly, considerably 

simpler than the one that has been used up to now, even in the most general case. With the 

simplifications that it admits in special cases, one will be in possession of its true meaning for the 

practical calculation of reaction forces and that might perhaps make it possible to solve some 

problems that were either insoluble or only by indirect means up to now. In particular, for systems 

with few degrees of freedom, but numerous constraint equations (so for continua, in particular), it 

will allow one to determine each reaction force individually, i.e., independently of the other, which 

can seem quite useful in practice. 

 

 

Part III. 

 

Examples. 
 

 First example: Two massive points m and m  are coupled with an inclined plane by an 

inextensible string. 

 

a) The brief solution in rectangular coordinates by the ordinary method by means of 

Lagrange’s equations of the first kind: 

 

 Coordinates: 

  m,   …, x,    z, 

m , …, x , z . 

 Explicit forces: 

  X   = 0,        Z   = m g , 

X   = 0 ,      Z   = m g . 

 Constraints: 

  1   z – x tan     = 0 , 

2  tanz x   −  = 0 , 

3  cos sin cos sinx z x z l      + + + −  = 0 . 

 
 (1) H. K. Hollefreund has also determined forces of constraint, among other things, in a similar manner, but only 

in some special examples, in a program lecture that was first made known to me after long after the completion of my 

work, “Die Elemente der Mechanik, etc.,” Berlin, 1903/6. 
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 The Lagrange equations of the first kind: 

 

  m x  = 31
1 3

x x


 


+

 
  = − 1 tan  + 3 cos  , 

  m z  = 31
1 3 m g

z z


 


+ +

 
  =  1 + 3 sin   + m g , 

  m x   = 31
1 3

x x


 


+

  
  = − 1 tan   + 3 cos  , 

  m z   = 31
1 3 m g

z z


 


+ +

  
 =  1 + 3 sin m g + , 

 

  1d

dt


 = tanz x −  = 0 , 

  2d

dt


 = tanz x   −  = 0 , 

3d

dt


 = cos sin cos sinx z x z      + + +  = 0 , 

and 

  
2

1

2

d

dt


 = tanz x −  = 0 , 

  
2

2

2

d

dt


 = tanz x   −  = 0 , 

  
2

3

2

d

dt


 = cos sin cos sinx z x z      + + +  = 0 . 

Therefore: 

  1 (1 + tan2 )   = − m g , 

2 (1 + tan2 ) = − m g , 

3 3 (sin sin )g
m m

 
 + + +


 = 0 , 

which makes: 

  1 = − m g cos2  , 

  2 = − 2cosm g   , 

3 = − 
(sin sin )mm g

m m

  +

+
 

Thus, from formula (8) (1): 

   1

1R   R1 = m g cos  , 

2

2R   R2 = − cosm g   , 

 
 (1) Cf., e.g., Budde, Mechanik, 1890, pp. 380. 
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1

3R  = − 
(sin sin )mm g

m m

  +

+
 = 2

3R  

 
Figure  3. 

 

b) Solution in general coordinates using the new method by means of Lagrange’s equations 

of the second kind. 

 

 Assumption 1, pp. 3, is fulfilled for the parameter q, which corresponds to the only degree of 

freedom in the system. Formulas (2) are then: 

 

   x  = q cos  , 

   z  = q sin  , 

x  = (l – q) cos  , 

  z  = (l – q) sin  . 

 

By means of them, or directly, one will find that: 

 

L = 2 21 1
2 2
m q m q +   = 21

2
( )m m q+  , 

 

and likewise, that the force function that exists here is: 

 

V = − m g q sin  − ( )sinm g l q  − . 

 

Thus, the Lagrange equations of the second kind (6) will be: 

 

L

q




 = ( )m m q+  , 

d L

dt q

 
 

 
 = ( )m m q+  , 

q 

 

m (x, z) 

z 

 

l – q 

O 

x 
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L

q




 = 0 , Pq = − 

V

q




 = ( sin sin )g m m  −  . 

Therefore: 

q  = ( sin sin )
g

m m
m m

  −
+

 . 

 

 The motion of the system is then found with that. 

 

1. Determining the reaction forces 1

3R  and 2

3R  that are exerted upon m and m  by the 

constraint 3. 

 

 Assumptions 2 and 3 are fulfilled relative to the parameter l. For example, l = const. is 

equivalent to 3 = 0. Formulas (2.a) will emerge from (2) when one thinks of l as variable. As a 

result of that, or directly, one will get: 

 

L  = 2 21 1
2 2

( )m q m l q +  −  = 2 21 1
2 2
( )m m q m l m l q  +  +  −  , 

 

V = − m g q sin  − ( )sinm g l q  − , 

 

which is naturally the same as before. Thus: 

 

L

l




 = m l m q  −  , 

d L

dt l

 
 

 
 = ( )m l q − ,  

L

l




 = 0 , 

 

Pl = − 
V

l




 = sinm g   . 

Thus, when one now sets l  = l  = 0 : 

 

s+l  l = − sinm q m g   − , 

 

so when one recalls the differential equation for q above: 

 

s+l  l = − (sin sin )
mm

g
m m

 


 +
+

. 

 

 The transform of 3 is obviously: 

 

l l−  = 0 , 

so: 
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3

l




 = 1 , 

so from equation (18): 

l = s+l , 

 

and corresponding to equation (8), one has moreover: 

 

2 2

1 3 3
3

1 2

3 3
2 2

2 3 3
3

(sin sin ) ,

.

(sin sin )

l l

l l

m m
R g

x z m m
R R

m m
R g

x z m m

 
   

 
   

    
=  + = = −  +      +    

=
    

=  + = = −  +        +    

 

 

 The assumptions on the parameter ps+l correspond to  here. In formulas (2), we must now 

think of q and  as variable. L  can also be exhibited directly here again: 

 

L  = 2 2 2 21 1
2 2

( )m q q m q  + +   = 2 2 2 21 1 1
2 2 2

m q m q m q  +  + . 

 

 V is the same as before. 

 

L






 = 2m q ,  

d L

dt 

 
 

 
 = 

2 2m q m q q +  , 

  
L






 = 0 , P = − 

V






 = m g q cos  . 

 If one now sets: 

  =   = 0 

then it will follow that: 

s+l =  = − m g q cos  . 

 

 The case of orthogonality is posed as an example here. For m = 1, one gets the coefficient of 
2  from L  as: 

21
2
( )lW  = 21

2
q , 

lW   = q , 

so from formula (50): 

1

1R  = 
1

lW
 

   = − m g cos  . 

 

 If one calculates with that as a test of the general method then that will yield the result: 

 

 = − m g q cos  , 
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 = 
1











, 

1 = z – x tan   = q (sin  – cos   tan  ) , 

1






 = q (cos  + sin  tan  ) , 

and when one sets a =  : 

1






 = 

cos

q


, 

and therefore: 

 = 
1











 = 
cos

cos

m g q

q





−
 = − m g cos2  , 

 

and thus, from equation (8), one will have: 

 

1

1R  = 

2 2

1 1
l

x z

 


    
 +   

    
 = − m g cos2  2tan 1 +  = − m g cos  , 

as before. 

 

 3. Determining 2

2R : 

 

 In place of , simply   will appear, while everything else is just as it was in 2. One has: 

 

L  = 2 2 2 21 1
2 2

[ ( ) ]m q m q l q  + +  − . 

Thus,   is also orthogonal: 

 

L






 = 

2( )m l q  − , 
d L

dt 

 
  

 = 
2( ) 2 ( )m l q m l q q    − − −  , 

L






 = 0 , 

 

P   = − 
V






 = ( )cosm g l q  − , 

so 

s+l     = − ( )cosm g l q  − . 

  

 L  implies that: 

lW
 = l − q , 

so once more, from formula (50): 



Paulus – Determining reaction forces from the Lagrange equations of the second kind. 38 
 

2

2R  = 
1

lW
 

  
  = − cosm g   . 

 

 Second example: Let F be a rigid, massive, planar surface with a center of mass S, total mass 

M, and moment of inertia K relative to the suspension point O  in the xz-plane of a rectangular 

coordinate system with its origin at O and lies vertically. The point O  has the coordinates x, z in 

this system, but it will be, in addition the coordinate origin of an axis-cross x , z  that is always 

parallel to the previous one, i.e., a system whose z -axis should always point vertically, no matter 

how O  displaces. S has the coordinates ,  in the latter. 

 

 Determine the reaction force R that acts upon the carrier of O  when F performs oscillations 

about the point O  in the xz-plane. 

 

 Here, it is irrelevant whether we regard the surface F as a continuum or a manifold of discrete 

points. In the latter case, we assume that there are n points with masses m1, m2, …, mn that should 

have the rectangular coordinates (x1, z1), (x2, z2), …, (xn, zn), resp., in the O-system. 

 
Figure 4. 

 

 All points of the system are coupled by relative constraints. In addition, the point O  is coupled 

by two absolute ones, because the condition that O  should be immobile can be represented 

analytically by only two constraints. The relative constraints are given by the rigidity of the 

surface. We need only to concern ourselves with the absolute constraints and choose them to be, 

most simply, x = const., z = const., such that it will read: 

 

1  x x−  = 0 , 2  z z−  = 0 , 

in rectangular coordinates. 
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 The constraint forces Rx = X, Rz = Z that originate in those constraints are likewise the 

rectangular components of the resultant R that one seeks, and which acts directly upon O , and 

only indirectly on the remaining points by means of the rigidity of the surface. 

 The quantities: 

  ( , )O m O S
   

and 

r  O m
  

 

(cf., Fig. 4) are constant as a result of the relative constraints, while: 

 

  ( , )O S Z   

 

is variable and corresponds to the single degree of freedom in the system. The assumption (1) is 

also fulfilled for this . Formulas (2) are obviously: 

 

sin ( ) ,
1,2, ,

cos ( ) ,

,

,

x x r
n

z z r

x x

z z

  

  

 


 

= + +  
= 

= + +   


= 
=



   (2) 

with the help of (2) or directly: 

 

L = 21
2

( )m r    = 2 21
2

m r    = 21
2

K , 

 

L






 = K  , 

d L

dt 

 
 

 
 = K  , 

L






 = 0 , 

 

P = 
z

m g 








  = − sin ( )m g r    +  = − g  M . 

 

 Therefore, the Lagrange equations of the second kind for the degree of freedom  will become: 

 

K   = − g  M .      (I) 

 Since: 

V = − m z  = −

const.

( )m z z g z M  − − = − g  M + const.,    (II) 

 

the energy principle will yield: 
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L + V = 21
2

K g M  −  = const. = c .          (III) 

 

 1. Determining Rx . 

 

 Clearly, Assumptions 2 and 3 are fulfilled for x. One will get formulas (2.a) from (2) when one 

also lets x be variables. It will yield: 

 

L = 2 21
2

( )m x z  +  = 2 21 1
2 2

x M x M K + + , 

 

L

x




 = x M M+ ,  

L

x




 = 0 , 

d L

dt x

 
 

 
 = x M M M   + + , 

or since: 

M  = − M  , 

one will have: 

d L

dt x

 
 

 
 = 

2x M M M   + − , 

Px = − 
V

x




 = 

x
X

x







  = 0 , 

such that: 

x = − 
2M M   − , 

 

or when one eliminates the accelerations by means of (I): 

 

x = − 
2

2 M
M g

K

 
  − . 

 

[x can also be represented as a function of  by means of (III)!] 

 Since: 

1

x




 = 1 , 1

z




 = 0 , 

from equation (18), one will have: 

x = x , 

and from (8): 

Rx = x = x = − 
2

2 M
M g

K
    − . 

 2. Determining Rz: 
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 After removing 2 = 0, z will fulfill the assumptions (2) and (3), and the same thing will be 

true for z here that was true for x before in regard to formulas (2.a). That will make L  equal to: 

 

L  = 2 21 1
2 2

z M K z M  + − , 

 

L

z




 = z M M − , 

d L

dt z

 
 

 
 = z M M M   − − . 

Now, one again has: 

M  = M  , 

so: 

d L

dt z

 
 

 
 = 

2z M M M   − − . 

 Since: 

L

z




 = 0 , Pz = 

z
m g

z








  = g M = − 

V

z




, 

 

it will ultimately follow that: 

z = − 
2M M g M   − − , 

 

or after eliminating the acceleration   by means of (I): 

 

z = − 
2

2 2M
g M g M

K
   − − . 

 Since one also has: 

2

x




 = 0 , 2

z




 = 1 , 

here, one will have: 

z = z 

and 

Rz = z = z = 
2

2 2M
g M g M

K
   − − , 

and ultimately: 
2R  = 2 2

x zR R+ . 

 

______________ 

 


