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FOREWORD. 
____ 

 
 

 For quite some time, it was Plücker’s goal to unite all of his research on the line 
structures that he introduced into geometry into one large work that could be published.  
Some previous papers (*) have been only partially reproduced in it, but for the most part, 
new and unpublished ideas were included in it.  He was not granted his wish of seeing his 
objective fulfilled completely, but the greater part of his intended work had been 
published completely and checked by him personally by the time of his death.  The 
esteemed publisher would not like to see the scientific public deprived of investigations 
of such profundity for any longer than is essential, and thus, whereas the continuation of 
the work should be accelerated as much as possible, here, only those parts whose 
publication were finalized under Plücker’s own supervision will appear.  It contains, 
along with the development of the general preliminary concepts, the theory of linear 
complexes, and then the beginnings of a comprehensive theory of second-degree 
complexes, which Plücker treated here for the first time (** ).  In the latter, he especially 
concerned himself with a class of remarkable surfaces of order 4 and class 4 that he 
called “complex surfaces,” and his methods afforded him essential assistance in his 
research into their representation in terms of intuitive models (†). 
 For the continuation of the work, only a small part of the manuscript has been carried 
out completely, in general; however, it is fortunate that Klein, who was, up to now, 
Plücker’s assistant in his physical lectures, which had already contributed to the 
dissemination of the work in many way, and who wished to make the spirit and 
methodology of the examinations his own, was put into a position of filling in the gaps in 
the manuscript in the spirit of Plücker through his verbal communications with the 
deceased.  One may then hope to see that everything is completed in a way that is as 
close as possible to the way that Plücker himself would have indeed wished and foreseen, 
if – as has often happened for quite some time – the anticipation of death imposes the 
apprehension that it would not be possible for him to complete work himself.  These 
continuations will be the subject of the further implementations of the theory of second-
order complexes in a way that is analogous to Plücker’s presentations on the theory of 
second-order surfaces.  Plücker’s methods will thus be preserved as faithfully as possible.  
It will be left to a younger generation to exploit and shape the rich abundance of thoughts 
that Plücker has generated in this, as in all of his geometric investigations, and in the 
sense of newer methods. 
 Thus, the scientific public will turn to the current book as the legacy of a great 
geometer, who, after his pioneering work in science in his younger years, again turned to 

                                                
 (*) Phil. Trans., (1865), pp. 725, translated in Liouv. Journal, series 2, v. XI; Proceedings of the Royal 
Soc. (1865); Les Mondes p. Moigno, Janvier, 1867, pp. 79; Annali di matematica, Ser. II, t, 1, pp. 160. 
 (** ) Battaglini made investigations of these complexes as a consequence of Plücker’s work on first-
degree complex (Atti della Reale Accademia di Napoli, vol. III).  A series of Plücker’s results are included 
in this paper.  Plücker found them by himself independently, moreover; his methods are completely 
different, and more geometric, than the newer algebraic methods that are employed by the Italian school. 
 (†) A large number of elegant models of this kind were constructed under Plücker’s instruction by the 
engineer Epken in Bonn. 
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geometry at the end of his life, and developed new ideas with youthful vitality, as he was 
still gifted in old age with a new and large range of disciplines, which owed so much to 
his prior activities. 
 The publisher’s wish, which made this project possible, namely, to give a true 
expression of his admiration for the deceased through his assistance in the publication, 
likewise afforded me the welcome opportunity to recognize graciously the usual liberality 
that the publisher has invested in the printing and endowment of the book. 
 
 
 Giessen, 8 June 1868. 
 
  A. Clebsch. 
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Introductory considerations. 
_____ 

 
§ 1. 

 
Coordinates of straight lines in space.  Ray and axis. 

 
 1.  We can regard lines from two different, but generally equivalent, viewpoints: 
 
 
 2. First, we can consider a line to be a geometric locus of points − that is, as being 
described by points; i.e., as a ray.  In this way of looking at lines, we can work with point 
coordinates x, y, z, and, in a well-known way, represent a line by the equations of its 
projections onto two of three coordinates planes XZ and YZ: 
 

,

,

x rz

y sz

ρ
σ

= +
= +

     (1) 

 
from which, the equation for the projection onto the third coordinate plane XY will follow 
immediately: 

ry – sx = (rσ – sρ).    (2) 
For the sake of brevity, we can set: 

rσ – sρ  ≡ η,     (3) 
and let: 

r, s, ρ, σ, η     (4) 
 

denote the five coordinates of a line that we consider to be a ray.  As a consequence of 
the relation (3) that exists between them, these five coordinates will come down to four 
constants that are required for the determination of the line. 
 For a line that goes through a given point (x′, y′, z′), one has: 
 
      x′ = rz′ + ρ, 
      y′ = sz′ + σ. 
From this, one gets: 

     r = 
x x

z z

′−
′−
,  s =

y y

z z

′−
′−

, 

     ρ = 
x z xz

z z

′ ′−
′−

,  s = 
yz y z

z z

′ ′−
′−

, 

η = 
xy x y

z z

′ ′−
′−

. 
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Instead of the five coordinates (4) for the line, we then take the following six, to which 
we temporarily give an arbitrary sign: 
 

( ), ( ), ( ),

( ), ( ), ( ).

x x y y z z

yz y z x z xz xy x y

′ ′ ′± − ± − ± − 
′ ′ ′ ′ ′ ′± − ± − ± − 

   (5) 

 
Once we divide any five of the six coordinates by the sixth one, we will obtain values that 
have a definite relationship to the representation of lines, and by means of which, we can 
construct them. – In this way, the coordinate system will become symmetric with respect 
to the three coordinate axes.  The condition equation: 
 

(x – x′) (yz′ – y′z) + (y – y′) (x′z – xz′) + (z – z′) (xy′ – x′y) = 0,   (6) 
 
exists between the six new equations, which is an identity in relation to x, y, z, x′, y′, z′. 
 When we consider x′, y′, z′, as well as x, y, z to be variable, a ray through two points 
(x, y, z) and (x′, y′, z′), both of which are assumed to be arbitrary, will be determined.  As 
a result of this arbitrariness, this assumption will reduce the six coordinates upon which 
the positions of two points depend to four, which will belong to the determination of a 
line. 
 
 
 3. Second, we consider a line to be enveloped by planes that rotate around it – viz., 
as an axis in which all enveloping lines intersect.  In order to represent a line in this 
second sense by means of equations, we must make use of plane coordinates.  If we take 
the following equation for the three constants that represent a plane in point coordinates: 
 

tx + uy + vz + 1 = 0     (7) 
 

to be the coordinates of the plane then that will mean that we are employing the 
reciprocal values, with opposite signs, of the segments that are cut out from the three 
coordinate axes by the plane.  The two equations: 
 

,

,

t pv

u qv

π
χ

= +
= +

      (8) 

 
when taken individually, represent two points in the two coordinate planes XY and YZ.  
We can say that the system of both equations represents the line that connects the two 
points: i.e., a ray.  The equation: 

pu – qt = (pχ – qπ),     (9) 
 

which derives from equations (8) when we eliminate the variable v, represents those 
points at which the third coordinate plane XY will be cut by the same line.  In a 
completely analogous way to how we previously regarded r, s, σ, ρ, η as the five 
coordinates of a ray, when we set, for the sake of brevity: 
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pχ – qπ ≡ ω,        (10) 
we can now take: 

p, q, π, χ, ω 
 
to be the five coordinates of the line that is considered to be an axis. 
 If we denote the coordinates of a given plane that goes through the axis by t′, u′, v′ 
then that will give: 
      t′ = pv′ + π, 
      u′ = qv′ + χ, 
and that will yield: 

     p = 
t t

v v

′−
′−
,  q = 

u u

v v

′−
′−
, 

     π = 
t v tv

v v

′ ′−
′−

,  χ = 
uv u v

v v

′ ′−
′−

, 

ω = 
tu t u

v v

′ ′−
′−

. 

 
Thus, we can also take the following six coordinates: 
 

( ), ( ), ( ),

( ), ( ), ( )

t t u u v v

uv u v t v tv tu t u

′ ′ ′± − ± − ± − 
′ ′ ′ ′ ′ ′± − ± − ± − 

   (12) 

 
for the determination of axes, instead of the previous five (11), if we temporarily leave 
the sign undetermined.  Once we divide any five of these six coordinates by the sixth one, 
we will obtain expressions that can serve for the construction of lines.  The following 
identity regarding t, u, v, t′, u′, v′ exists between the six new coordinates of an axis: 
 

(t – t′) (uv′ – u′v) + (u – u′) (t′v – tv′) + (v – v′) (tu′ – t′u) = 0. (13) 
 

If we regard t′, u′, v′, as well as t, u, v, as variables then a line – in the sense of an axis − 
will be determined by any two planes (t, u, v) and (t′, u′, v′) that intersect in it. 
 
 
 4. If the same line is first determined as a ray and then as an axis then any of the two 
points (x, y, z) and (x′, y′, z′) by which the ray is determined must lie in each of the planes 
(t, u, v) and (t′, u′, v′) that serve to determine the axis, or, what means the same thing, 
each of the two planes must go through each of the two points.  We will obtain the 
following four equations that correspond to them: 
 

1 0,

1 0,

1 0,

1 0,

tx uy vz

t x u y v z

tx uy vz

t x u y v z

+ + + = 
′ ′ ′+ + + = 
′ ′ ′+ + + = 
′ ′ ′ ′ ′ ′+ + + = 

    (14) 
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which include the condition that the ray that is determined by the six coordinates (5) must 
coincide with the axis that is determined by the six coordinates (12). 
 From the first and last pairs of equations in (14), it follows that: 
 
  (t – t′) x + (u – u′) y  + (v – v′) z  = 0, 
  (t – t′) x′ + (u – u′) y′ + (v – v′) z′ = 0, 
 
and from this, when we eliminate (v – v′) and (u – u′) from them: 
 
  − (x′z – xz′)(t – t′) + (yz′ – y′z)(u – u′) = 0, 
   (xy′ – x′z)(t – t′) + (yz′ – y′z)(v – v′) = 0. 
 
These equations may be solved as proportions, which are summarized in the following 
expressions: 

( ) : ( ) : ( )t t u u v v′ ′ ′− − − = (yz′ − y′z) : (x′z – xz′) : (xy′ – x′y).  (15) 
 

The second and fourth of equations (14) follows from the first and third ones: 
 
  (x – x′) t  + (y − y′) u + (z −  z′) v = 0, 
  (x – x′) t′ + (y − y′) u′ + (z −  z′) v′ = 0, 
 
and from this, when we eliminate (z −  z′) and (y − y′) from them: 
 
  − (t′v – tv′) (x – x′) + (uv′ – u′v) (y – y′) = 0, 
   (tu′ – t′v) (x – x′) + (uv′ – u′v) (z – z′) = 0. 
 
These equations may be solved as the following proportions: 
 

(x – x′) : (y − y′) : (z − z′) = (uv′ − u′v) : (t′v – tv) : (tu′ − t′u).  (16) 
 

If we finally eliminate x from, say, the first two equations in (14) and x′ from the last two 
then that will give: 
  (tu′ – t′u) y + (t′v – tv′) z + (t −  t′) = 0, 
  (tu′ – t′u) y′ + (t′v – tv′) z′ + (t −  t′) = 0, 
 
and if we then, in turn, perhaps eliminate (t′v – tv′) from these equations then that will 
give: 

(tu′ – t′u) (yz′ – y′z) = (t −  t′) (z − z′), 
from which: 

(tu′ – t′u) : (t −  t′) = (z − z′) : (yz′ – y′z).  (17) 
 

This new proportion links the expressions (15) and (16), and thus leads to the following 
general summary of equal ratios: 
 
 (x – x′) : (y − y′) : (z − z′) : (yz′ – y′z) : (x′z – xz′) : (xy′ – x′y) 
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 = (uv′ − u′v) : (t′v – tv) : (tu′ − t′u) : (t −  t′) : (u −  u′) : (v −  v′).  (18) 
 
 We would like to take the signs of the six coordinates, which remain undetermined, in 
such a way that they appear in the foregoing proportions.  This will be necessary for us 
later when we apply the same coordinates to the determination of forces and rotations (*).  
When we restrict ourselves to the consideration of forces here, this assumption will mean, 
in fact, that the six coordinates (5) are the three projections onto the coordinate axes and 
the three doubled rotational moments that relate to those same forces whose point of 
application is (x, y, z), and whose intensity equals the distance between the points (x, y, z) 
and (x′, y′, z′), and which is directed from the first point to the second one. 
 
 
 5. In the summary (18), the conditions are obtained by which a line (as a ray and an 
axis) will be represented in the double coordinate determination.  If we go back to the 
original five ray coordinates and the original five axial coordinates then (18) will be 
converted into: 

: : 1: : : (( ) )

: : (( ) ) : : : 1.

r s r s

p q p q

σ ρ σ ρ η
χ π χ π ω

− − ≡
= − − ≡

  (19) 

 
We retain the negative signs for σ and χ, since this is required for the symmetry of the 
coordinate determination that relates to OZ. 
 
 
 6. We can regard the proportions (19) as being derived from the proportions (18) by 
dividing the first terms in the one by (z – z′) and the last terms of the other by (v − v′).  
We can determine the two divisors in a way that is completely arbitrary and independent 
of each other.  We can then, in turn, multiply the first terms of the proportions (19) by an 
arbitrary quantity h and the last terms by an arbitrary quantity l, and we can take these 
quantities to be imaginary (confer the following number).  The five absolute coordinates 
will then be, on the one hand: 

r

h
, 

s

h
, − 

h

σ
, 

h

ρ
, 

h

η
,     (20) 

and, on the other hand: 

− 
l

χ
, 

l

π
, 

l

ω
, 

p

l
, 

q

l
.     (21) 

 
The equations of the three projections of the lines (1) and (2) will then be: 
 
      hx = rz + ρ, 
      hy = sz + σ, 

h(ry – sx) = (rσ – sρ) ≡ η.    (22) 
 

                                                
 (*) Cf., “Fundamental views regarding mechanics,” Phil. Transactions (1866), pp. 361, 369. 
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The equations of the three points at which the coordinate planes of the line are cut – viz., 
(8) and (9) – take on the form: 
      lt = pv + π, 
      lu = qv + χ, 

 l (pu – qt) = (pχ – qπ) ≡ ω.    (23) 
 
 
 7. A real line may be determined by two imaginary points, as well as two real ones.  
In order to also include this manner of determination, we would like to determine the two 
points (x, y, z) and (x′, y′, z′) in the following way: 
 

0 0
0 0

0 0
0 0

0 0
0 0

, ,

, ,

, ,

x x ix x x ix

y y iy y y iy

z z iz z z iz

′ = + = −
′= + = − 
′= + = − 

    (24) 

 

where we let i denote unity or 1− , according to whether the two points are real or 
imaginary, resp..  The six ray coordinates (5), when taken with the correct sign, will then 
become: 

0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

2 , 2 , 2 ,

2 ( ), 2 ( ), 2 ( ).

ix iy iz

i y z y z i x z x z i x y x y


− − − 

  (25) 

 
Since only the quotients of any two of their six coordinates come into consideration in the 
determination of a line, we can omit the real or imaginary factor 2i that appears in all of 
the foregoing expressions, and then obtain the following expressions for the six ray 
coordinates: 

x0,    y0,    z0,    (y0 z
0 – y0 z0),    (x

0
 z0 – x0 z

0),    (x0 y
0 – x0 y0).  (26) 

 
The determination of the line by means of the quantities x0, y0, z0 and x0, y0, z0 is therefore 
always real.  The x0, y0, z0 are the coordinates of the (always real) mean of the two real or 
imaginary points (x, y, z) and (x′, y′, z′) through which the line goes.  The distance from 

one point to another is 2 2 2
0 0 02i x y z+ + , and the cosines of the angles that the line to be 

determined makes with the coordinate axes OX, OY, OZ behave like x0 : y0 : z0, resp. 
 The considerations of the previous number are carried over immediately to the case in 
which we regard the line as an axis, instead of a ray, and thus determine it by planes.  If 
we set: 

0 0
0 0

0 0
0 0

0 0
0 0

, ,

, ,

,

t t it t t it

u u iu u u iu

v v iv v v iv

′ = + = −
′= + = − 
′= + = − 

    (27) 

 
then we will obtain the following for the new axis coordinates that correspond to the ray 
coordinates (26): 
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t0,    u0,    v0,    (u0 v
0 – u0 v0),    (t

0 v0 – t0 v
0),    (t0 u

0 – t0 u0). (28) 
 
 
 8. If the new coordinate determinations (26) and (28) are to relate to the same line 
then one must have: 

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

: : : ( ) : ( ) : ( )

( ): ( ) : ( ) : : : .

x y z y z y z x z x z x y x y

u v u v t v t v t u t u t u v

− − −
= − − −

    (29) 

 
 9. In the foregoing, we have determined lines by point-pairs and plane-pairs, and for 
them, we have taken conjugate imaginary points and planes, which leaves the coordinate 
determination real.  However, we can also bring imaginary lines under consideration by 
means of their imaginary coordinates, which we will not go into here. 
 

 10. We can finally give the six coordinates of a line − whether we consider it to be a 
ray or an axis − a general form if we determine the points and planes upon which its 
construction depends, not, as before, by three coordinates, but by four coordinates now, 
in the well-known way.  We would thus like to take the coordinates of the previous two 
points and planes to be: 
     x, y, z, τ, x′, y′, z′, τ′ 
     t, u, v, w, t′, u′, v′, w′, 
 
resp., which comes down to exchanging: 
 
     x, y, z,  x′, y′, z′ 
with 

     
x

τ
, 

y

τ
, 

z

τ
, 

x

τ
′
′
, 

y

τ
′
′
, 

z

τ
′
′
, 

resp., and 
     t, u, v,  t′, u′, v′, 
with 

     
t

w
, 

u

w
, 

v

w
, 

t

w

′
′
, 

u

w

′
′
, 

v

w

′
′
, 

 
resp., in the previous developments.  After this exchange, we will obtain the ray 
coordinates for the determination of the line: 
 

(xτ′ – x′τ),   (yτ′ – y′τ),   (zτ′ – z′τ),  (y z′ – y′z),    (x′ z – x z′),    (x y′ – x′y)    (30) 
 
and the axial coordinates: 
 

(uv′ − u′ v),    (t′ v – t v′ ),  (t u′ − t′ u),   (t w′ − t′ w),   (u w′ − u′ w),   (v w′ − v′ w),  (31) 
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where we have dropped the factor 1 / ττ′ from the first determination and the factor 1 / 
ww′ from the second. 
 For the sake of the geometric construction of the line that we considered to be a 
spatial element in the foregoing investigations, we must return from its coordinates to the 
four constants upon which it depends in any case.  For this, the new expressions for the 
coordinates offer a greater number of constants than are freely at our disposal, and herein 
lies their advantage over the coordinates (5) and (12), besides their greater degree of 
symmetry. 

 

Figure 1. 
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 11.  For greater ease of imagination, we would like to clearly summarize everything 
that relates to the construction of a line in the double coordinate determination. 
 We would like to take the following equations for the three projections of the line to 
be determined onto YZ, XZ, XY: 
 hy = sz + σ, 
 hx = rz + ρ, 

 ry – sx = 
h

η
. 

 
Let them be represented in the accompanying Figure 1 by the lines DE, FG, HI.  Let the 
equations of the three points at which this line cuts the coordinate planes be: 
 
 lu = qv + χ, 
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 lt = rz + π, 

 pu – qt =
l

ω
. 

 
The three points that lie on the three projections DE, FG, HI are A, B, C.  The coordinates 
of an arbitrary point M that lies in the line are: 
 

x = MP,  y = MQ, z = MR, 
 
and the three coordinates of an arbitrary plane TUV that goes through the line are: 
 

t = − 
1

OT
, u = − 

1

OU
, v = − 

1

OV
. 

 
We can determine the coordinates of the three points A, B, C in the double way: on the 
one hand, by its equations, and on the other hand, by the equations for the three 
projections DE, FG, HI, when we set the relevant point coordinates in them equal to zero.  
In this we way, we will come to: 
 

,

,

,

,

,

.

q
z IA OG

r
A

l
y GA OI

hr

p
z HB OE

sB
l

x EB OH
hs

lp
y FC OD

hC
lq

x DC OF
h

ρ
χ

η
χ

σ
π

η
π

σ
ω

ρ
ω

 = = = + = −  
 = = = − = +  
 = = = + = −  

 
 = = = − = −
 


 = = = − = + 
 
 = = = + = +
 

    (32) 

 
Likewise, we can determine the coordinates of the three projections DE, FG, HI, once, by 
their equations, and then when we set the relevant line coordinates equal to zero in the 
equations of the points A, B, C that lie on them, and thus obtain: 
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1
,

1
,

1
,

1
,

1
,

1
.

s
v

OE p
DE

h
u

OD lp

r
v

OG q
FG

h
t

OF lq

hr
u

OI l
HI

hs
t

OH t

π
σ

ω
σ

χ
ρ

ω
ρ

χ
η

π
η

 = − = + = − 
 

 = − = − = +  
 = − = + = − 

 
 
 = − = − = −
 


 = − = − = + 


 = − = + = +
 

     (33) 

 
From the foregoing summary, we shall derive just the following relations here: 
 

tan , tan ,

tan , tan .

s l r l
DEZ FGZ

h h
l l

AOZ BOZ
h q h p

π χ
ω ω

η η
ρ σ

+ = + = + = − = 

+ = − = + = − =


  (34) 

 
 

 12.  The coordinates of a point and the coordinates of a plane will change when the 
coordinate axes that mediate their geometric construction change their position and 
direction.  The old coordinates will be linear functions of the new ones, which include as 
constants those quantities by which the position of the new coordinate system is 
determined when compared to the old one.  The same thing will be true for the 
coordinates of the line, whether we consider it to be a ray or an axis. 
 We would like to begin with the ray coordinates, for which, we would like to take the 
six quantities: 

x – x′,    x – x′,    x – x′,    yx′ – y′z, x′z – xz′,    xy′ – x′y. 
 

After a parallel displacement of the coordinate axes, the first three coordinates will 
remain unchanged.  We denote the coordinates of the new origin by x0, y0, z0, and in order 
to distinguish the new coordinate values, we use bold-face script, which yields: 
 

0 0

0 0

0 0

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

yz y z y z z z y y

x z xz x z z z x x

xy x y x z z y x x

′ ′ ′ ′ ′ ′ − = − + − − −
′ ′ ′ ′ ′ ′− = − − − + − 
′ ′ ′ ′ ′ ′− = − + − − − 

yz y z

x z xz

xy x y

  (35) 

and from this: 
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0 0

0 0

0 0

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

yz y z y z

x z xz x z

xy x y x y

′ ′ ′ ′ ′ ′ − = − − − + −
′ ′ ′ ′ ′ ′− = − + − − − 
′ ′ ′ ′ ′ ′− = − − − + − 

yz y z z z y y

x z xz z z x x

xy x y y y x x

  (36) 

 
where (x – x′), (y – y′), (z – z′) are identical with (x – x′), (y − y′), (z – z′).  If we take r, s, 
σ, ρ, η to be the original coordinates and denote the new coordinates by r′, s′, σ′, ρ′, η′ 
then we will obtain: 
 

0 0

0 0

0 0

, ,

,

,

r r s s

y z s

x z r

x s y r

σ σ
ρ ρ
η η

′ ′= = 
′ ′= + − 
′ ′= + − 
′ ′ ′= − + 

    (37)  

 
immediately from the last equations. 
 
 
 13.  The transition from one coordinate system to another one in which the direction 
of the coordinate axis is different can be decomposed into three individual steps.  For 
example, in the simplest case, where a rectangular coordinate system XYZ assumes any 
other attitude X′Y′Z′ by rotation around the origin, we would like to first rotate the 
original coordinate system XYZ around the axis OZ in such a way that, after rotation, the 
coordinate plane XZ will go through the position of the new axis OZ′.  Second, after 
completing the rotation around OZ, we would like to rotate the coordinate system around 
the axis OY in its new attitude in such a way that the two axes OZ and OZ′ will coincide 
in the XZ-plane.  Third, all that remains is to rotate the system around OZ′ in such a way 
that both axes OX and OY, which were brought into the coordinate plane X′Y′ by the first 
two rotations, will coincide with OX′ and OY′.  The three angles of rotation, from which 
the attitude of the new axes are determined with respect to the old one, appear as 
constants in the relevant conversion formulas for the coordinates of the points, plane, and 
lines.  We would like to compute these angles once and for all in the sense that is 
appropriate to how things happen for rotational moments – i.e., from OX to OY, from OY 
to OZ, and from OZ to OX. 
 If OZ preserves its position, while the two axes OX and OY in the XY-plane rotate 
arbitrarily around OZ, and in their new positions OX′ and OY′ they define two angles α 
and α′ with OX in the original position, then we will obtain the following relations 
between the old point coordinates x, y, z and x′, y′, z′ and the new ones, which we would 
like to denote by x, y, z and x′, y′, z′: 
 
 x = x  cos α + y cos α′, 
 x′ = x′ cos α + y cos α′, 
 y = x  sinα + y sin α′, 
 y′ = x′  sinα + y′ sin α′, 
 z = z, z′ = z′, 
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and from this: 
( ) ( ) cos ( )cos ,

( ) ( )sin ( )sin ,

( ) ( ),

( ) ( )sin ( )sin ,

( ) ( )cos ( )cos ,

( ) ( )sin ,

x x

y y

z z

yz y z

x z xz

xy x y

α α
α α

α α
α α
ϑ

′ ′ ′ ′− = − + − 
′ ′ ′ ′− = − + − 

′ ′ − = −
′ ′ ′ ′ ′ ′ ′− = − − + − 
′ ′ ′ ′ ′ ′ ′− = − − −


′ ′ ′ ′− = − 

x x y y

x x y y

z z

x z xz yz y z

x z xz yz y z

xy x y

  (38) 

 
if, for the sake of brevity, we set: 

α – α′ ≡ ϑ. 
 
If we take the five coordinates r, s, σ, ρ, η and r′, s′, σ′, ρ′, η′ in place of the six ray 
coordinates in the two systems then we will immediately obtain the corresponding 
equations from the foregoing ones: 
 

cos cos ,

sin sin ,

sin sin ,

cos cos ,

sin .

r r s

s r s

α α
α α

σ σ α σ α
ρ ρ α σ α
η η ϑ

′ ′ ′= + 
′ ′ ′= + ′ ′ ′= + 
′ ′ ′= +


′= 

    (39) 

 
In particular, if the new axes OX′ and OY′ are also perpendicular to each other then that 
will make: 

cos cos ,

sin sin ,

sin sin ,

cos cos ,

.

r r s

s r s

α α
α α

σ σ α σ α
ρ ρ α σ α
η η

′ ′= − 
′ ′= + ′ ′= + 
′ ′= −


′= 

    (40) 

 
If, instead of rotating the two axes OX and OY, we rotate the two axes OX and OZ around 
O in their plane and let by γ and γ′ denote the angles that these axes make in their new 
positions OX and OY with OZ in the original position then we will obtain the following 
equations in order to express the six old ray coordinates in terms of the new ones by a 
mere change of notation in equations (38): 
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( ) ( )sin ( )sin ,

( ) ( ),

( ) ( )cos ( )cos ,

( ) ( ) cos ( )cos ,

( ) ( )sin ,

( ) ( )sin ( )sin ,

x x

y y

z z

yz y z

x z xz

xy x y

γ γ

γ γ
γ γ

ϑ
γ γ

′ ′ ′ ′− = − + − 
′ ′− = − 

′ ′ ′ ′ − = − + −
′ ′ ′ ′ ′ ′ ′− = − − − 
′ ′ ′ ′− = −


′ ′ ′ ′ ′ ′ ′− = − − + − 

x x z z

y y

x x z z

yz y z xy x y

x z xz

yz y z xy x y

  (41) 

 
where we have set: 

γ′ – γ ≡ ϑ′, 
 

for the sake of brevity.  From this, when we, in turn, go over to the five ray coordinates, 
we will get: 

sin sin
,

cos cos

,
cos cos

cos cos
,

cos cos

sin
,

cos cos

sin sin
,

cos cos

r
r

r

s
s

r

r

r

r

γ γ
γ γ

γ γ
σ γ η γσ

γ γ
ρ γρ

γ γ
σ γ η γη

γ γ

′ ′ + = ′ ′ +


′ = ′ ′ +


′ ′ ′ ′+ = ′ ′ + 
′ ′

= ′ ′ + 
′ ′ ′+= ′ ′ + 

    (42) 

from which, we will further have: 

s

ρ
= 

s

ρ ′
′

 sin ϑ′. 

 
In particular, if the new coordinate axes OX and OY are perpendicular to each other then 
the foregoing equations will be converted into the following ones: 
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cos sin
,

sin cos

,
sin cos

cos cos
,

cos cos

,
cos cos

sin sin
,

sin cos

.

r
r

r

s
s

r

r

r

r

s s

γ γ
γ γ

γ γ
σ γ η γσ

γ γ
ρρ
γ γ

σ γ η γη
γ γ

ρ ρ

′ + = ′− +


′ = ′− +


′ ′− = ′− + 
′ =
′− +
′ ′+ =
′− +
′ =
′ 

    (43) 

 
 If we rotate the axes OY and OZ around OX then we will obtain the corresponding 
conversion formulas immediately by a change of notation, not only for the case of six, 
but also for that of five coordinates, when we start with formulas (42), as far as the latter 
is concerned.  Thus, it would seem unnecessary to write down the new formulas.  
Meanwhile, it must be remarked that in this exchange the rotation of OZ to OY will thus 
be directed in the same sense as the angle whose trigonometric tangent was denoted by s 
in the basic equations (1).  Should this rotation be taken in the sense established above – 
i.e., in the sense of the rotational moment about OX – then that would likewise yield the 
reduction to it. 
 
 14.  We can also go directly from the five ray coordinates in the first system to the 
five ray coordinates in the second one.  Let r, s, ρ, σ, η be the coordinates of a line in the 
first coordinate system, so: 

,

,

x rz

y sz

ry sx

ρ
σ

η

= + 
= + 
− = 

     (44) 

 
are the equations of their projections.  If r, s, ρ′, σ′, η′ are the coordinates of that line in 
the second coordinate system then the equations of their three projections in this system 
will be: 

,

,

.

r

s

r s

ρ
σ

η

′ ′= + 
′ ′= + 
′ ′ ′− = 

x z

y z

y x

    (45) 

 
If the new coordinate axes are parallel to the old ones and carry the displacement x0, y0, z0 
along OX, OY, OZ, resp., then one will have: 
 

x = x – x0, y = y – y0, z = z – z0. 
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Hence, the last three equations will be converted into: 
 
 x = r′ z + (ρ′ + x0 – r′ z0), 
 y = s′ z + (σ′ + y0 – s′ z0), 
 r′ y − s′ x =   η′ + r′ y0 − s′ x0, 
 
and thus these equations will become identical to equations (44), which will yield, as in 
number 12 (37): 
 r = r′, s = s′, 
 ρ = ρ′ + x0  − r′ z0, 
 σ = σ′ + y0  − s′ z0, 
 η = η′ + r′ y0  − s′ x0. 
 
If, as in number 13, we rotate the axes OX and OY around O in their plane then when we 
set: 
 z = z, 
 x = x cos α  + y cos α′, 
 y = x sin α  + y sin α′ 
 
the first two equations in (44) will go to the following ones: 
 
 x cos α + y cos α′ = r z + ρ, 
 x sin α + y sin α′ = s z + σ. 
 
Starting from these equations, if we, in turn, set α′ – α = ϑ then that will yield: 
 

 x =  
sin cos

sin

r sα α
ϑ

′ ′−
 · z + 

sin cos

sin

ρ α σ α
ϑ

′ ′−
, 

 y = − 
sin cos

sin

r sα α
ϑ

−
· z −−−− 

sin cos

sin

ρ α σ α
ϑ

−
, 

 
which, when we make them identical to the first two of equations (45), will give the 
following relations: 
 r′ sin ϑ = r sin α′ − s cos α′, 
 − s′ sin ϑ = r sin α′ − s cos α′, 
 ρ′ sin ϑ = ρ sin α′ − σ cos α′, 
 − σ′ sin ϑ = ρ sin α′ − σ cos α′, 
 
and it will then follow, in agreement with the equations (39), that: 
 
 r = r′ sin α + s′ cos α′, 
 s = r′ sin α + s′ sin α′, 
 ρ = ρ′ cos α′ + σ′ cos α′, 
 σ = ρ′ sin α′ + σ′ cos α′, 
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and: 
η = η′ sin ϑ. 

 
Formulas (42) may be derived in the same way. 
 
 
 15.  As a consequence of the proportions (19), we can likewise derive the conversion 
formulas for the axial coordinates of a given line from the formulas that were developed 
for the conversion of ray coordinates for it.  If we denote the axial coordinates in the 
original system by: 

p, q, π, χ, ω, 
and in the new system by: 

p′, q′, π′, χ′, ω′, 
then: 

 p = − 
σ
η

, p′ = − 
σ
η

′
′
, 

 q =  
ρ
η

, q′ =  
ρ
η

′
′
, 

 π =  
s

η
, π′ =  

s

η
′
′
, 

 χ = − 
r

η
, χ′ = − 

r

η
′
′
, 

 ω =  
1

η
, ω′ =  

1

η ′
. 

 

If we then preserve the direction of the coordinate axes and put the origin at any point (x0, 
y0, z0) then equations (37) will give: 
 

p = 
0 0

0 01

p y z

x y

ω π
π χ

′ ′ ′− +
′ ′− −

,      

q =
0 0

0 01

q x z

x y

ω χ
π χ

′ ′ ′+ +
′ ′− −

,         

π = 0 01 x y

π
π χ

′
′ ′− −

,          (46) 

χ = 0 01 x y

χ
π χ

′
′ ′− −

,      

ω = 0 01 x y

ω
π χ

′
′ ′− −

.      
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If the axes OX and OY are rotated in their plane in such a way that in their new position 
they define the angles α and α′, resp., with OX in the original position then equations 
(39) will give: 

p =
sin sin

sin

p qα α
ϑ

′ ′ ′−
,      

q =
cos cos

sin

q pα α
ϑ

′ ′ ′−
,        

π =
sin sin

sin

π α χ α
ϑ

′ ′ ′−
,         (47) 

χ =
cos cos

sin

χ α π α
ϑ

′ ′ ′−
,     

ω =
sin

ω
ϑ
′

.       

 
If we finally rotate OX and OZ around O in their plane then, if we preserve the previous 
notations, equations (42) will give: 

p =
cos cos

sin sin

p

p

γ γ
γ γ

′ ′−
′ ′− +

,      

q =
sin

sin sin

q

p

ϑ
γ γ

′ ′
′ ′− +

,         

π =
sin sinp

π
γ γ

′
′ ′− +

,      

χ =
sin sin

sin sinp

χ γ ω γ
γ γ

′ ′ −
′ ′− +

,      

ω =
sin sinp

ω
γ γ

′
′ ′− +

.  

 
 

§  2. 
 

On complexes and congruences in general. 
 

 16.  If: 
 
 (x – x′) : (y – y′) : (y – y′) : (yz′ − y′z) : (x′z − xy′) : (xy′ − x′y) 
 = (uv – u′v) : (t′v – tv′) : (tu′ – t′u) : (t − t′) : (u − u′) : (v − v′) 
 
then the ray coordinates: 
 
 (x – x′) : (y – y′) : (y – y′) : (yz′ − y′z) : (x′z − xy′) : (xy′ − x′y) 
 
and the axial coordinates: 
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 (uv – u′v) : (t′v – tv′) : (tu′ – t′u) : (t − t′) : (u − u′) : (v − v′) 
 
will belong to the same line.  As a result, the same lines will also satisfy the following 
two equations in their ray and axial coordinates: 
 

F[(x – x′) : (y – y′) : (y – y′) : (yz′ − y′z) : (x′z − xy′) : (xy′ − x′y)] ≡ Ωn = 0,  (1) 
F[(uv – u′v) : (t′v – tv′) : (tu′ – t′u)  : (t − t′)  : (u − u′)  : (v − v′)] ≡ Φn = 0,  (2) 

 
if F denotes the same homogeneous function of the current six coordinates.  We say that 
the totality of all lines whose coordinates satisfy such homogeneous equations defines a 
complex.  We distinguish complexes by their degrees n, which we take to be the degrees 
of their equations.  Any line of the complex can be regarded as a ray or axis; thus, the 
second type will necessitate that a line complex be represented by equations of the same 
degrees: 

Ωn = 0,  Φn = 0, 
 
which follow from each other immediately in a reciprocal way. 
 
 
 17.  In equation (1), which might be homogeneous of degree n, in general, the lines of 
the complex are determined by any two of their points (x, y, z) and (x′, y′, z′).  If we 
consider one of these points (x′, y′, z′) to be given then equation (1) – when we regard x′, 
y′, z′ as constants, but x, y, z as variable, as before − will henceforth represent only such 
lines that go through the given point and will thus define an nth-order conic surface that 
has its vertex at the this point. 
 
 
 18.  Equation (2), which we, in turn, would like to take to be the general 
homogeneous equation of degree n, will determine the lines of those complexes by way 
of any two planes (t, u, v) and (t′, u′, v′) that intersect in them.  If we consider one of 
these planes (t′, u′, v′) to be given then equation (2), which represented the complex up to 
now, will henceforth represent – when we consider t′, u′, v′ to be constant, but t, u, v to be 
variable now – only the lines of the complex that lie inside of the given plane, and thus 
envelop a curve of class n in it. 
 
 
 19.  In the previous two numbers, we have proved the following theorem: 
 
 For a complex of degree n, the lines that go through a given point of space define a 
conic surface of order n. 
 
 For a complex of degree n, the lines that lie in a given plane that is drawn through 
space envelop a curve of class n. 
 
 These two theorems each include the general geometric definition of a line complex 
of degree n.  Either of the two theorems is a necessary consequence of the other one. 
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 We can thus group the lines of a complex together in a double way: Once, in such a 
way that they define conic surfaces and each point of space is the vertex of such a conic 
surface, and then, in such a way that they envelop curves and each plane through space 
includes such a curve.  The degree of the complex is the order of the conic surface, as 
well as the class of a plane curve.  Therefore, a line complex of degree n will also be 
regarded as a complex of nth-order conic surfaces and as a complex of plane curves of 
class n. 
 
 
 20.  The lines of two given complexes that coincide define a congruence.  Their 
coordinates simultaneously satisfy the equations of both complexes, which we, by the 
application of five ray coordinates, would like to represent by the general equations: 
 

Ωm = 0, Ωn = 0,     (3) 
 

and by the application of five axis coordinates, in the form: 
 

Φm = 0, Φn = 0,     (3) 
 
where m and n denote the degree of the two complexes. 
 mn lines of a congruence go through each point of space, which are the lines of 
intersection of two cones of order m and n, resp.  mn lines of the congruence lie in each 
plane drawn through space, which are the common tangents to two curves of class m and 
n, resp. 
 The lines of a congruence belong to infinitely many complexes, which, when we 
denote an undetermined coefficient by µ, will all be represented by either the equation: 
 

Ωm + µ · Ωn = 0    (5) 
or by the equation: 

Φm + µ · Φn = 0.    (6) 
 
We say that all such complexes define a two-parameter group of complexes.  Each of the 
latter equations that represent such a group is the symbol of a congruence and, in a 
certain sense, the equation itself. 
 
 
 21.  Congruences are classified by the number of their lines that go through a given 
point, or which lie in a given plane.  This number is, in the foregoing: 
 

mn ≡ k. 
 

All complexes that belong to a given congruence are, in general, of equal degree.  
However, when the degrees of these complexes do not conform to the general case, one 
can find one of them whose degree is lower.  This will take place in the case of equations 
(5) and (6), in which, when m > n the degree of the complex will be m, in general, but for 
special case in which m becomes infinitely large, it will reduce to n. 
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 The congruences in which the number of lines that go through a given point or lie in a 
given plane − which amounts to k − define as many types of coordinates as the number of 
ways that the number k can be decomposed into factors m and n; thus, when k is a prime 
number there will be only one of them.  Therefore, we denote the type of a congruence by 
the symbol: 

[m, n].      (7) 
 
 

 22.  The ray or axial coordinates of those lines that simultaneously belong to three 
complexes will simultaneously satisfy the corresponding equations for the three 
complexes, which we would like to represent by either: 
 

Ωm = 0, Ωn = 0,  Ωg = 0,    (8) 
or by: 

Φm = 0, Φn = 0,  gΦ = 0.    (9) 

 
They will thus be subject to three conditions.  Since a line is determined by its five 
coordinates, it will follow that each of these coordinates is a function of the other three, 
or − what amounts to the same thing − each of the coordinates is a function of a variable 
that is assumed to arbitrary.  Having later developments in mind, we take that variable to 
be time, such that the foregoing can be expressed by saying that the line in question will 
generate a surface when we let time vary continuously.  We would like to call such a 
surface that is generated by the motion of a line – ignoring the trivial case of skew 
surfaces – a ray surface or an axial surface, and when we consider these expressions to 
be synonymous such a surface will also refer to a ruled surface. 
 
 The coincident lines of three complexes define a ray or axial surface. 
 
 A ray or axial surface simultaneously belongs to all complexes that are represented by 
each of the two equations: 

Ωm + µ Ωn + µ′ Ωg = 0,     (10) 
Φm + µ Φn + µ′ Φg = 0,     (10) 

 
when µ and µ′ mean undetermined coefficients; it belongs to each congruence that is 
determined by any two of these complexes.  We say that all of the complexes that belong 
to a given ray surface define a three-parameter group of complexes that is represented by 
the foregoing two equations. 
 If we consider the Φm , Φn , Φg to be functions of the five ray coordinates r, s, ρ, σ, η 
then we will obtain the equation of the ray surface in point coordinates x, y, z when 
eliminate the five ray coordinates from the three equations (8) and the following three 
equations: 
 η = rσ – sρ, 
 x = r z + ρ, 
 y = s z – σ. 
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The resultant equation in x, y, z is of degree 2mng, in general. 
 If we consider the Φm , Φn , Φg to be functions of the five axis coordinates p, q, π, χ, ω 
then we will obtain the equation of the axial surface in plane coordinates t, u, v when we 
eliminate the five ray coordinates from the three equations (9) and the following three 
equations: 
 ω = pχ – qπ, 
  t = p z + π, 
 u = q v + χ. 
 
The resulting equation will be of degree 2mng, in general. 
 
 A ray or axial surface is of equal order and class, in general. 
 
 Ray surfaces of a given order and class may be arranged into different coordinate 
types.  These types are obtained from the degree of the complex that determines the 
surface.  If we denote the order and class of the surface by 2λ then the number of such 
types will be equal to the number of possible decompositions of λ into three factors.  If 
we take m, n, g to be any such functions then we can denote the type of the surface more 
precisely by the symbol: 

[m, n, g]. 
 
 

 23.  Four complexes have only a finite number of lines in common.  If the degree of 
the four complexes is m, n, g, h then this number will amount to: 
 

2mngh, 
 

which will follow immediately when we determine the five coordinate values from the 
four equations of the complex and either the equation: 
 

η = rσ – sρ 
or: 

ω = pχ – qπ, 
resp. 
 
 
 24.  Plane curves are determined by either their points or their tangents.  Two such 
curves have a certain number of intersection points and common tangents.  If we go from 
the two dimensions of the plane to the three dimensions of space then we will elevate 
ourselves from plane curves to surfaces, which are determined by either their points or 
their tangential planes.  Two surfaces intersect in a spatial curve and will be enveloped by 
a developable surface; three surfaces have a certain number of intersection points and 
common tangential planes.  From surfaces, we ascend to complexes that consist of lines, 
which we can, on the one hand, consider to be rays, and, on the other hand, as axes.  The 
lines that agree in two complexes – in which the two complexes intersect in some fashion 
– define a congruence, and those that belong to three complexes simultaneously define a 
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ray or axial surface.  Four complexes likewise correspond to only a certain number of 
rays or axes. 
 There is an analysis of two variable quantities that can be represented in a plane and 
an analysis of three variables that can be pictured in space.  The analysis of four variables 
finds its visual representation when we give these variables the meaning of line 
coordinates. 
 
 
 25.  With this, we have reached the limits of the development in the present volume.  
However, the path to new generalizations has been initiated.  We can add a fifth 
independent coordinate for the line to the four.  Here, we once more encounter coordinate 
relationships that correspond to the way that we first considered the line to be a ray and 
then as an axis.  If we take the fifth coordinate in the former way of looking at things in 
four coordinates to be one of the quantities for a given segment that we will either apply 
arbitrarily or at a given point then we will have thus determined a force.  Its five 
coordinates are its intensity and the four ray coordinates of the line along which it acts.  
The symmetry and simplicity of the representation require that here, instead of taking the 
four independent ray coordinates, we also take the five coordinates r, s, ρ, σ, η, between 
which the relation exists that: 

η = r σ – s ρ, 
 

and which we derive from the six coordinates of the line when we divide five of them by 
the other one.  However, we have already occasionally stressed that these six coordinates 
refer to the projections X, Y, Z of an arbitrary force that acts along the line onto the 
coordinate axes and the twice the moments L, M, N of this force in relation to the same 
axis.  If the magnitude of the force is given then these quantities, between which, the 
relation exists: 

X · L + Y · M + Z · N = 0, 
 
can be regarded as the six coordinates of the force.  The same coordinates that take on 
only relative values for rays will take on absolute values for forces.  Ray complexes will 
be represented by homogeneous equations in the six complexes, and force complexes, by 
general equations. 
 Just as we can represent a force, when it is considered to be a ray, by a line and by 
two points that lie on it, so can we represent a rotation (expressed more precisely, the 
other type of force that brings about a rotation) by a line, considered to be an axis, and 
two planes that go through it.  When we then exchange the point coordinates with plane 
coordinates and correspondingly, ray coordinates with axial coordinates, the six force 
coordinates: 

X, Y, Z¸L, M, N 
will go to other expressions: 

X, Y, Z, L, M, N, 

 
between which, the relation will exist: 
 

X · L + Y · M + Z · N = 0. 



§ 2.  On complexes and congruences in general. 23 

These six expressions determine a rotation and are to be regarded as the six coordinates 
of this rotation.  As a consequence of the latter condition equation, they reduce to the five 
independent coordinates for it.  These coordinates, which possess only relative values for 
axes, take on absolute values for a rotation.  Homogeneous equations between the six 
coordinates of a rotation represent axis complexes, while non-homogeneous equations 
between the coordinate represent rotation complexes. 
 However, whereas rays and axes are identical, in and of themselves, forces and 
rotations, in turn, are placed next to each other in a way that is analogous to points and 
planes.  The principle of reciprocity finds the same application to forces and rotations as 
it does to points and planes.  However, the transition from the three coordinates of points 
and planes to the four coordinates of lines is entirely similar to the transition that we 
make when we go from the five independent coordinates of forces and rotations to the six 
independent coordinates of dynames. 
 By the term “dyname,” I am referring to the cause of an arbitrary motion of a rigid 
system, or, since the nature of this cause, like the nature of a force itself, eludes our 
understanding, the motion itself: i.e., not the cause, but the effect.  Since both are 
proportional, in the mathematical representation this will come down to replacing an 
ideal unit with a concrete one. – Arbitrary forces and rotations, when they act 
simultaneously, may be reduced to two forces, as well as two rotations, in an infinitude of 
ways.  We can therefore regard a dyname in two ways, as well as determining it in two 
ways: On the one hand, by two forces and on the other hand, by two rotations, and this 
corresponds to representing, on the one hand, the coordinates of two forces, and, on the 
other hand, the coordinates of two rotations, respectively. 
 However, the six coordinates of a dyname are the same six quantities: 
 

X, Y, Z, L, M, N, 
or: 

X, Y, Y, Z, L, M, N 

 
that originally served for the determination of lines for us, when we assigned only 
relative values to them and between which a condition equation was imposed.  They will 
then serve for the determination of forces and rotations when give them absolute values, 
under the restricting assumption of the condition equation.  When this condition equation 
is removed, they will become the coordinates of a dyname.  For a given dyname, the six 
coordinates will take on absolute values, and conversely, if we assign arbitrary values to 
these values, they will determine a dyname in a linear way. 
 Just as the reciprocity between points and planes is true for a line, so is the reciprocity 
between forces and rotations true for a dyname.  We can represent a line complex by one 
equation in a two-fold coordinate system, just as we can represent a dyname complex by 
one equation in a two-fold coordinate system.  The properties of both complexes are dual, 
in an analogous sense. 
 In the foregoing reasoning on coordinates, an intermediate possibility still remained 
unconsidered, that involved the case in which the six coordinates in question are not 
subject to the restricting condition, are assigned only relative values, and 
correspondingly, we let homogeneous equations enter in place of the general equations 
that represent dyname complexes.  Mechanics, in particular, would then disappear, and, 
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to confine myself to a brief suggestion: Geometric structures would appear that would 
have the same relationship to dynames that lines do to forces and rotations. 
 The foregoing considerations find their completion in dynames. 
 

__________ 
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§ 1. 
 

First-degree line complexes. 
 

 26.  If we take the general homogeneous equation of the first degree in terms of the 
six ray coordinates: 
 

(x – x′),    (y – y′),    (z – z′),    (yz′ – y′z),   (x′z – xz′),   (xy′ – x′y)  (1) 
 

to be the following one: 
 

A(x – x′) + B(y – y′) + C(z – z′) + D(yz′ – y′z) + E(x′z – xz′) + F(xy′ – x′y) = 0, (2) 
 

in order to represent a complex of first degree, then we will simultaneously obtain the 
representation of the same complex in terms of the axial coordinates: 
 

(t – t′),    (u – u′),    (v – v′),    (uv′ – u′v),   (t′v – tv′),   (tu′ – t′u)  (3) 
 
in the following equation: 
 

D(t – t′) + E(u – u′) + F(v – v′) + (uv′ – u′v) + B(t′v – tv′) + C(tu′ – t′u) = 0.  (3) 
 

In order to go from one of these equations to the other one, we must only exchange the 
point coordinates x, y, z, x′, y′, z′ with the plane coordinates t, u, v, t′, u′, v′, resp., and 
likewise exchange A,B, C with D, E, F, resp. 
 If we take the five coordinates: 

r, s, σ, ρ, η,      (5)  
 
instead of six coordinates (1) and (3), then, from nos. 2 and 3, equations (2) and (4) will 
go to: 

Ar + Bs + C – Dσ + Eρ + Fη = 0    (7) 
and (*): 

                                                
 (*) We cannot avoid distinguishing one of the three coordinate axes in the analytical representation of 
the lines.  In establishing equations (1) and (2) as the fundamental ones, we have chosen OZ for this axis, in 
order to make everything that relates to this axis symmetric in the angle between the two planes XZ and YZ.  
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Dp + Eq + F – Aχ + Bπ + Cω = 0.   (8) 
 
 

 27.  We can develop both equations (3) and (4), which represent the same complex, in 
the following way: 
  ( A + Fy′ − Ez′) x 
  + ( B − Fx′ + Dz′) y 
  + ( C + Ex′ − Dy′) z 

 + (Ax′ + By′  + Cz′) = 0,          (9) 
and: 
  ( D + Cu′ − Bv′) t 
  + ( E − Ct′ + Av′) u 
  + ( F + Bt′ − Au′) z 

 − (Dt′  + Eu′ + Fv′) = 0,        (10) 
resp. 
 If we first let (x′, y′, z′) be a given point, and we then consider x′, y′, z′ to be constant 
in (9), while x, y, z are variable, then this equation will represent a plane, namely, the 
geometric locus of arbitrary points of the rays that go through the given point; in other 
words, the geometric locus of these rays themselves.  The equation will be satisfied if we 
replace the variable quantities with the coordinates of the given point; the respective 
plane will go through that point.  Each point of space will then correspond to a plane that 
contains all of the lines of the complex that go through this point. 
 If we next let the t′, u′, v′ in (10) refer to a given plane (t′, u′, v′), and thus regard them 
as constant, while t, u, v remain variable, then this equation will represent a point in plane 
coordinates that will envelop the axes of the complex that lie in the given plane; that is, 
the point at which these axes intersect.  Thus, in every plane there are infinitely many 
lines of the complex that are united into a point of that plane, which we will describe by 
saying that it corresponds to the plane. 
 
 At each point of space, there are infinitely many lines of the complex that lie in a 
plane that goes through that point. 
 
 In each plane that goes through space, there are infinitely many lines of the complex 
that intersect at a point of the plane. 
 
 The two parts of the theorem imply each other.  The relationship between points and 
planes is a reciprocal one.  For any arbitrary point of space, there is a plane that includes 

                                                                                                                                            
This is in contradiction to the manner in which the rotational moment with respect to the three coordinate 
axes is defined in mechanics. 
 For the sake of later investigations in mechanics, we decide to establish that the three doubled moments 
are represented by the last three coordinates (1), with their signs.  The desired symmetry in relation to OZ 
will then achieved.  However, in order to further present the analytical examination of complexes in the 
case where we take (7) and (8) to be the general equations, we must consider the positive σ and, 
corresponding to it, the positive χ to be coordinates, although we must introduce the terms that include σ 
and χ in odd powers with negative signs.  Corresponding to them, Dσ and Aχ will occur in the two 
equations (7) and (8) with negative signs. 
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the lines of the complex that go through this point, and conversely, for that plane there is, 
in turn, a point at which all lines of the complex that lie in this plane intersect. 
 
 
 28.  The plane that corresponds to a given point is determined by any two lines of the 
complex that intersect at that point, and the point that corresponds to a given plane is 
determined by two lines of the complex that lie in the plane. 
 Let P and P′ be two points, through which the line (PP′) passes, and let p and p′ be 
the two planes that correspond to these points, which intersect in a second line (pp′).  All 
lines that go through P or P′ and intersect the line (pp′) will then belong to the complex.  
If two lines that go through P and P′, respectively, intersect at any point of (pp′) then the 
plane that contains these two lines, will be the plane that corresponds to their point of 
intersection on (pp′), and this plane will go through (PP′).  One also likewise proves that 
not only the planes that correspond to the two points P and P′, but, in fact, all of the 
planes that correspond to all of the points of the line (PP′), will intersect in the line (pp′).  
We call the two lines (PP′) and (pp′), whose relationship to each other is reciprocal, two 
conjugate polars relative to the complex. 
 
 1. Any line in space has a conjugate polar. 
 2. Any line in space can be regarded as a ray. 
 3. If that ray is described by a point then the planes that correspond to this point will 
envelop an axis that is conjugate to the ray. 
 4. Any line in space can be regarded as an axis. 
 5. If a line in space is enveloped by the planes that rotate around it then the point 
that corresponds to this plane will describe a ray that is conjugate to the axis. 
 6. Any two conjugate lines can be regarded as a ray and an axis. 
 7. Any line that intersects two conjugate polars is a line of the complex. 
 8. Any line of the complex can be regarded as two coincident conjugate lines. 
 
 
 29.  A complex is completely determined by five of its lines.  Each of the lines 
produces a linear equation for the determination of the five independent constants of the 
general complex equation.  Four of the five constants can thus be replaced in such a way 
that any two associated polars of the complex are given.  Namely, since any given line 
has only one associated line, which is determined in a linear way by four constants, we 
will then obtain four linear condition equations between the constants of the general 
equation when any two associated polars of a complex are given.  Two given associated 
polars of a complex are thus equivalent to four of its lines for its determination, such that 
the complex is completely determined whenever we know one other line of it, in addition 
to the two associated polars. 
 This yields a fifth simple construction of a complex when any five of its lines are 
given:  If we select any four of these five lines then the two lines that intersect these four 
lines will be two associated polars of the complex, and any new line that intersects these 
two associated polars is a new line of the complex.  We can proceed in this manner, by 
appending the lines thus found in order to define new combinations of any four of them.  
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Thus, we must not overlook the fact that four real lines will not always be intersected by 
two real lines, since these two lines can also be imaginary (*). 
 If a complex is given by five of its lines then for each given point we can construct 
the corresponding plane, and for each given plane, the corresponding point.  A pair of 
associated polars of the complex is determined by any four given lines.  A single line can 
be drawn through a given point that intersects the polars of each pair.  The line that is 
thus determined lies in the plane that corresponds to the point and is completely 
determined by two of these lines.  A given plane cuts the two polars of each pair in two 
points.  The lines that connect the two intersection points of each pair intersect in the 
point that corresponds to the plane that is determined by two of these lines. 
 The foregoing remarks conclude with the general theory of reciprocity.  The equation 
of the complexes (2) and (4) can be regarded as special cases of the general equation in 
point coordinates x, y, z, x′, y′, z′ and the plane coordinates t, u, v, t′, u′, v′, by which the 
reciprocity of two systems is expressed, to begin with.  If these equations are symmetric 
with respect to x, y, z and x′, y′, z′, as well as with respect to t, u, v and t′, u′, v′, then the 
same point will correspond to the same plane in each of the two systems relative to the 
polar plane to that point and its pole in the other system.  This happens in the case of 
complex equations.  However, one must add the condition that the pole of a given plane 
must lie in that plane itself.  By this new condition, it is no longer possible to construct 
poles and polar planes in the desired way by means of surfaces of order and class two. 
(** )  Whereas, in general, the polar plane of a point is determined by three of its points, 
and the pole of a plane, by three planes that intersect at it, here, it suffices to know two 
points and two planes for this determination.  If a line that rotates around a fixed point 
describes a conic surface of order n then the associated polar will envelop a curve of class 
n in which the fixed point corresponds to the planes that go through this plane.  The n 
lines in which the planes that correspond to the vertex of the cone intersect will likewise 
be the n tangents that go from the vertex (which reciprocally corresponds to the planes) to 

                                                
 (*) Three of the five given lines can always be regarded as three lines that include the two generators of 
a hyperboloid.  If a fourth line cuts the hyperboloid then one may lay a line of the second generator of the 
hyperboloid through each of the two intersection points that intersects all four lines.  If the two intersection 
points are imaginary then both lines will be the corresponding ones. 
 (** ) The analytical basis for this lies in the following remark: In the general case, the basic equation for 
the reciprocity is (we restrict ourselves here to the case of point coordinates and make the equations 
homogenous by the introduction of τ): 
 

(ax′ + by′ + cz′ + dτ′) x + (bx′ + b1y′ + c1z′ + d1τ′) y + (cx′ + c1y′ + c2z′ + d2τ′) z 
+ (dx′ + d1y′ + d2y′ + d3τ′) τ = 0. 

 
If we write x′, y′, z′, τ′ for x, y, z, τ, resp., in the left-hand side of this equation then it will become a 
homogeneous function of second degree: 
 

Π = ax′2 + 2bx′y′ + 2cx′z′ + 2dx′τ′ + b1y′2 + 2c1y′z′ + 2d1y′τ′ + c2z′2 + 2d2z′τ′ + d3τ′2. 
 
By means of this function, we can write the reciprocity equation in the following way: 
 

d

dx

Π
′ · x + 

d

dy

Π
′  · y + 

d

dz

Π
′ · z + 

d

dτ
Π

′ · τ = 0. 
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the curve in this plane.  Namely, since these lines belong to the complex, they will be 
their own associated polars. 
 
 
 30.  We now return to the purely analytical path of investigation. 
 The ordinary coordinates of points that correspond to the given plane (t′, u′, v′) and 
are represented by equation (10) in plane coordinates are: 
 

,

,

.

D Cu Bv
x

Dt Eu Fv
E Ct Av

y
Dt Eu Fv
F Bt Au

z
Dt Eu Fv

′ ′+ −= −
′ ′ ′+ +

′ ′− += −
′ ′ ′+ +

′ ′+ −= −
′ ′ ′+ +

     (11) 

 
If the given plane is displaced parallel to itself then the points that correspond to it and lie 
in it will describe a geometric locus.  If we distinguish the coordinates of the 
corresponding points of those parallel planes that go through the coordinate origin by x0, 
y0, z0 then that will give, when we set t′, u′, v′ equal to ∞: 
 

0

0

0

,

,

,

Cu Bv
x

Dt Eu Fv
Ct Av

y
Dt Eu Fv

Bt Au
z

Dt Eu Fv

′ ′−= −
′ ′ ′+ +

′ ′− += −
′ ′ ′+ +

′ ′−= −
′ ′ ′+ +

    (12) 

and, from this: 

0

0

0

,

,

.

D
x x

Dt Eu Fv
E

y y
Dt Eu Fv

F
z z

Dt Eu Fv

− = −
′ ′ ′+ +

− = −
′ ′ ′+ +

− = −
′ ′ ′+ +

    (13) 

From this, we infer that: 
(x – x0) : (y – y0) : (z – z0) = D: E : F,    (14) 

 
so the geometric locus in question, which is represented by the double equation: 
 

0x x

D

−
= 

0y y

E

−
= 

0z z

F

−
,    (15) 

 
is a line.  The direction of this line is independent of the direction of the parallel planes.  
We call it a diameter of the first-degree line complex, and say that the parallel planes are 
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associated with the diameter, and conversely, or that the parallel planes are associated 
with the diameter. 
 
 All diameters of a first-degree line complex are parallel to each other. 
 One such diameter goes through any point of space. 
 
 
 31.  Among the diameters of the complex, there is just one of them that is 
perpendicular to the plane that it is associated with.  Should the double equation (15) 
represent this axis then one would find that: 
 

t′, u′, v′ = D: E: F 
 

expresses the notion that it is perpendicular to the parallel plane (t′, u′, v′), so equations 
(12) would then give the following values for x0, y0, z0 : 
 

0 2 2 2

0 2 2 2

0 2 2 2

,

,

.

BF CE
x

D E F
CD AF

y
D E F

AE BD
z

D E F

−=
+ +

−=
+ +

−=
+ +

     (16) 

 
In particular, these coordinate values will be equal to zero, and the axis will go through 
the origin when: 

A: B : C = D : E: F.     (17) 
 

We would like to call the planes that are perpendicular to the axis the principal 
intersections of the complex.  The principal intersection that goes through the origin has 
the equation: 

Dx + Ey + Fz = 0.     (18) 
 

 If F vanishes then the diameters of the complex (among which one also finds the axis 
itself) will be parallel to the plane XY.  When F and C vanish simultaneously, x0 and y0 
will be equal to zero.  The axis of the complex will cut the coordinate axis OZ; z0 will 
take on the value above for the point of intersection.  The coordinates (x – x′), (y – y′), 
(yz′ – y′z), (x′y – xy′) will be equal to zero on the axis OZ.  This axis will then be a line of 
the complex when F and C vanish, and indeed, one that is cut by the axis itself.  The 
principal intersection: 

Dx + Ey = 0 
will go through it. 
 
 
 32.  We would like to treat equation (9), which represents the planes that contain all 
of the lines of the complex that go through a given point (x′, y′, z′) – in other words, the 
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ones that correspond to this point − in the same manner.  If we call the coordinates of this 
plane t, u, v then that will make: 

,

,

.

A Fy Ez
t

Ax By Cz

B Fx Dz
u

Ax By Cz

C Ex Dy
v

Ax By Cz

′ ′+ −= −
′ ′ ′+ +

′ ′− += −
′ ′ ′+ +

′ ′+ −= −
′ ′ ′+ +

     (19) 

 
 If we assume that the point (x′, y′, z′) moves along a fixed line that goes through the 
origin then the ratio of the coordinates of the point x′ : y′ : z′ will remain constant.  The 
point at infinity on a fixed line will corresponds to a certain plan, which we denote by: 
 

0

0

0

,

,

.

Fy Ez
t

Ax By Cz

Fx Dz
u

Ax By Cz

Ex Dy
v

Ax By Cz

′ ′−= −
′ ′ ′+ +

′ ′− += −
′ ′ ′+ +

′ ′−= −
′ ′ ′+ +

    (20) 

It will follow from this that: 

0

0

0

,

,

,

A
t t

Ax By Cz

B
u u

Ax By Cz

C
v v

Ax By Cz

− = −
′ ′ ′+ +

− = −
′ ′ ′+ +

− = −
′ ′ ′+ +

    (21) 

so: 
(t – t0) : (u – u0) : (v – v0) = A : B : C. 

 
If we regard t, u, v as variables then the double equation: 
 

0t t

A

−
= 0u u

B

−
 = 0v v

C

−
    (22) 

 
will represent a line that is enveloped by the planes that correspond to the points of a 
fixed line that goes through the origin.  Since the origin of the coordinates, by the 
arbitrary assumption itself, has no special relationship to the complex, the general 
theorem on conjugate polars in the foregoing will be proved (no. 28). 
 Equation (19) shows that if the point (x′, y′, z′) lies in the plane that is represented by 
the equation: 

Ax + By + Cz = 0     (23) 
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then the coordinates t′, u′, v′ of the corresponding plane will become infinitely large, so 
the plane itself will go through the origin.  From this, it will follow that the plane (23) is 
the one that corresponds to the origin and that, as a consequence, it will be the geometric 
locus of all lines that are conjugate to the ones that go through the origin.  Lines that lie in 
the plane and likewise go through the origin will be their own conjugates and will thus 
belong to the complex. 
 If we consider, among those lines that go through the origin, the diameter of the 
complex that goes through this point, in particular, then, as a result of the double equation 
(15) for each point (x′, y′, z′) of it, one will have: 
 

x′ : y′ : z′ = D: E: F.      (24) 
 

It will then follow from equations (20) that: 
 

t0 = 0,  u0 = 0,  v0 = 0, 
 

and the double equation (21), which reduces to: 
 

t

A
= 

u

B
= 

v

C
 

 
for them, will give the polar that is conjugate to the diameter as a line that lies in the 
plane at infinity (23). 
 By the arbitrary nature of the origin of the coordinate system, we have thus expressed 
the idea that a line that is associated with an arbitrary diameter of the complex will lie at 
infinity in any plane that corresponds to a point of it.  However, a line that lies at infinity 
in a given plane will admit no closer approximation, since it has lost its direction, and 
will remain the same when the plane that contains it is displaced parallel to itself.  A line 
at infinity will always be parallel to a given line and will assume all possible positions at 
infinity when the plane rotates around one of its points.  In each such position, it will 
correspond to a diameter of the complex.  All lines infinity in space define a plane at 
infinity whose corresponding point is itself at infinity in the given direction, because it 
lies in that plane.  A consequence of this is that the diameters that converge to this point 
will be parallel to each other. 
 Distinguished among the lines that go through the origin are finitely many of them 
that are perpendicular to the plane: 
 

Ax + By + Cz = 0     (25) 
 
that corresponds to the origin, and thus, they will be perpendicular to any line in this 
plane; i.e., to any line that is associated with one that goes through the origin, and, in 
particular, to the ones that are associated with themselves.  The line in question is thus 
characterized by the fact that for each of its points: 
 

x′ : y′ : z′ = A : B : C,     (26) 
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from which, t0, u0, v0 will take on the following values: 

0 2 2 2

0 2 2 2

0 2 2 2

,

,

.

BF CE
t

A B C
CD AF

u
A B C

AE BD
v

A B C

−= −
+ +

−= −
+ +

−= −
+ +

     (27) 

 
If we substitute these values in the double equation (21) then in the plane (23) this 
equation will represent the lines that are associated with the line (26) that goes through 
the origin. 
 If the axis of the complex goes through the origin of the coordinates axes then it will 
be the one that is perpendicular to its associated line.  However, from (15), one will then 
have: 

x′ : y′ : z′ = D : E : F, 
from which: 

A: B : C = D: E: F, 
in agreement with (17). 
 
 
 33.  One finds from equations (10) that: 
 

0,

0,

0

Cu Bv D

Ct Av E

Bt Au F

− + =
− + + =

− + =
     (28) 

 
are the equations for the three points that correspond to the coordinate planes YZ, XZ, XY, 
while: 

Dt + Eu + Fv = 0     (29) 
 
represents those points that correspond to the plane at infinity and are themselves at 
infinity in the given direction. 
 One finds from equations (9): 

0,

0,

0,

Fy Ez A

Fx Dz B

Ex Dy C

− + =
− + + =

− + =
     (30) 

 
are the equations for the three planes that correspond to the points at infinity in the 
directions of the three coordinate axes OX, OY, OZ, while, as we already pointed out 
(23): 

Ax + By + Cz = 0 
 

represents the plane that corresponds to the origin. 
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 34. From the three equations (9) and the three equations (10), we obtain 
correspondingly, the condition equation: 
 

(Ax + By + Cz) (Dt + Eu + Fv) + (AD + BE + CF) = 0  (31) 
 
if (x, y, z) is a point and (t, u, v) is a plane that mutually correspond to each other relative 
to the complex. 
 The foregoing equation includes, as a special case: 
 

AD + BE + CF = 0.      (32) 
 

This special case corresponds to a particularization of the first-degree complex. 
 
 
 35.  The two general equations: 
 

A(x – x′) + B(y – y′) + C(z – z′) + D(yz′ – y′z) + E(x′z – xz′) + F(xy′ – x′y) = 0, 
D(t – t′) + E(u – u′) + F(v – v′) + A(uv′ – u′v) + B(t′v – tv′) + C(tu′ – t′u) = 0, 

 
which represent the first-degree complex in the doubled coordinate determination, will 
simplify when we let one of the rectangular coordinate axes coincide with one of the axes 
of the complex, from which, the other two will lie in a principal intersection of it.  If we 
choose the coordinate axis that coincides with the axis of the complex to be OZ, OY, OX, 
in sequence, then, by the vanishing of: 
 

A, B, and D, E, 
A, C and D, F, 
B, C and E, F, 

 
respectively, the foregoing two equations will assume the following forms: 
 

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

xy x y k z z

x z xz k y y

xy x y k x x

′ ′ ′− + − =
′ ′ ′− + − =
′ ′ ′− + − =

 (33)  

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

v v k tu t u

u u k t v tv

t t k uv u v

′ ′ ′− + − =
′ ′ ′− + − =

′ ′ ′− + − =
 (34) 

 
In this form, they include only one constant (k), and it is the same in all equations.  This 
is obvious from the outset.  This value does not change when we go from one of the two 
equations in the same row to the other one.   This follows from the double determination 
of the line by means of point and plane coordinates, from which, for example: 
 

xy x y

z z

′ ′−
′−

 = 
v v

tu t u

′−
′ ′−

. 

 
However, the value of the constant k will also remain unchanged under the transition 
from one of the three equations of the complex to one of the other ones.  The expressions: 
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xy x y

z z

′ ′−
′−

, 
x z xz

y y

′ ′−
′−

, 
yz y z

x x

′ ′−
′−

, 

 
for example, have an absolute geometric meaning when they are referred to an arbitrary 
line of the complex, which is mediated by the current choice of coordinate system, but 
independent of it.  Under the transition from the one coordinate system to another, the 
foregoing three expressions  will go into each other by means of the corresponding 
coordinate permutation; however, their geometric meaning, which must always be the 
same, will not change, and, as a result, k will not change, either. 
 We would like to call the quantity k, which represents the length of a line, the 
parameter of the complex.  The complex is completely determined by its parameter, 
when we neglect its position in space. 
 
 
 36.  The general equation of a first-degree line complex includes five mutually 
independent constants in each of the two coordinate determinations.  Equations (33) and 
(34) involve just one constant.  The number of constants has thus been reduced by four.  
However, since we have six constants at our disposal for the determination of a new 
coordinate system, the coordinate system that is at the basis of the latter equations will be 
determined only incompletely.  We have two constants available for position, without 
which these equations could change in any manner.  We will confirm this in the 
following number. 
 
 
 37.  The first of the three equations (33): 
 

(xy′ – x′y) + k(z – z′) = 0, 
 

which we can choose arbitrarily, does not change when the origin of the coordinates 
moves arbitrarily along OZ, which is the axis of the complex.  The same equation will 
also remain unchanged when the coordinate system rotates arbitrarily around OZ.  Then, 
on the one hand, z and z′ will remain unchanged, and, on the other hand, xy′ − x′y will 
also preserve its value.  This expression, in fact, represents the projection onto XY of 
twice the area of the triangle whose three vertices are the origin of the coordinate system 
and the two points (x, y, z) and (x′, y′, z′), through which the lines of the complex are 
determined, and this projection will not change when the complex rotates around its axis 
OZ.  Thus, equations (33), and as a result, equations (34) themselves, will remain 
unchanged when the origin of the axis of the complex moves along the axis of the 
complex and the coordinate system rotates around this axis.  In other words: 
 
 A first-degree line complex remain unchanged whenever it is displaced parallel to its 
axis and when it is rotated around it. 
 
 All of the lines of the complex in the original position go to other lines of it after the 
translation and rotation. 
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 38.  We can transform the general complex equations (2), (4) into the six equations 
(33), (34) step-wise by changing the coordinate system.  Since the single constant that 
enters into these equations has the same value (viz., k), in this transformation one will be 
dealing with only the determination of k, and it will suffice to carry out the 
transformation in a single case.  If, for the sake of brevity, we use the equations: 
 

Ar + Bs + C – Dσ + Eσ + Fη = 0,    (7) 
Dp + Eq + F – Aχ + Bπ + Cω = 0     (8) 

 
for our basis, instead of equations (2), (4), then equations (33) and (34) will assume the 
following form: 

0,

0,

0,

k

ks

kr

η
ρ
σ

+ =
+ =

− + =
  (35)  

1
0,

0,

0.

q

p

τ
χ

π
χ

χ
χ

+ =

+ =

− + =

   (36) 

 
We shall confine ourselves to deriving the first of equations (35) from equation (7). 
 If we displace the original coordinate system, to which equation (7) is referred, 
parallel to itself, and the coordinates of the new origin are x0, y0, z0, then, by an 
application of the conversion formulas (37) of no. 12, this equation will go to the 
following one: 
 

(A + Fy0 – Ez0) r′ + (B − Fx0 + Dz0) s′ + (C + Ex0 – Dy0) − Dσ′ + Eρ′ + Fη′ = 0. (37) 
 

In particular, when: 
0x

D
= 

0y

E
= 

0z

F
, 

 
the form of the original equation will do not change under the displacement of the 
coordinate system.  The complex will then remain the same when it is displaced parallel 
to the direction of those lines that are represented by the last equation when we regard the 
x0, y0, z0 in them as variable – i.e., parallel to the direction of the diameter [cf., (15)]. 
 We obtain the cosines of the angles that this diametral direction makes with the three 
coordinate axes OX, OY, OZ in the form of: 

2 2 2

D

D E F+ +
, 

2 2 2

E

D E F+ +
, 

2 2 2

F

D E F+ +
,  

resp. 
 We would like to rotate the original coordinate system around OZ through an angle α 
in the sense that was established in no. 13.  From the conversion formulas (40) of no. 13, 
the general equation (7) will go to the following one: 
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( cos sin ) ( sin cos )

( cos sin ) ( sin cos ) 0.

A B r A B s C

D E D E F

α α α α
α α σ α α ρ η

′ ′+ + − + +
′ ′ ′− + + − + + =

  (38) 

 
We would like to determine α in such a way that: 
 

− D sin α + E cos α = 0,    (39) 
from which: 

cos2α  = 
2

2 2

D

D E+
.     (40) 

 
We can then write the equation of the complex in the following way, if we omit the 
prime: 

A′r + B′s + C′ – D′s + F′η = 0,    (41) 
 
an equation that, since ρ is missing, characterizes the complex in question as one whose 
diameters are parallel to the XZ plane.  Since C′ and F′ keep their previous values, one 
will find that: 

2 2

cos
( ) ,

cos
( ) ,

cos
( ) ,

A AD BE
D

B AE BE
D

D D E
D

α

α

α

′ = +

′ = − +

′ = +

     (42) 

and from this: 

2 2 2

,

.

A D AD BE

D D E

′ ′ = +
′ = +

      (43) 

 
 After performing the first rotation of the coordinate system, we would like to rotate it 
through an angle γ around OY, which, as in no. 13, may be measured from OZ to OX.  
The conversion formulas (43) of no. 13 will then give: 
 

( cos sin ) ( sin cos )

( cos sin ) ( sin cos ) 0

A C r B s A C

D F D F

γ γ γ γ
γ γ σ γ γ η

′ ′ ′ ′ ′ ′ ′− + + +
′ ′ ′ ′ ′ ′− − + − + =

   (44) 

 
for the equation of the complex.  In order for the new axis OZ to coincide with the 
diameter of the complex that runs through the origin, σ′ must drop out of equation (44).  
We correspondingly set: 

D′ cos γ – F′ sin γ = 0,     (45) 
from which: 

cos2 γ  = 
2

2 2

F

D F

′
′ ′+

.     (46) 
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For the sake of brevity, we can then write the complex equation (44) in the following 
way: 

A″r + B″s + C″ + F″η = 0.    (47) 
 

Since B″ keeps its previous value, one will have: 
 

2 2

cos
( ) ,

cos
( ) ,

cos
( ) ,

A A F C D
F

C A D C F
F

F D F
F

γ

γ

γ

′′ ′ ′ ′ ′= −
′

′′ ′ ′ ′ ′= +
′

′′ ′ ′− = +
′

    (48) 

and from this: 

2 2

2 2 2
.

C A D C F

F D F
AD BE CF

D E F

′′ ′ ′ ′ ′+=
′′ ′ ′+

+ +=
+ +

     (49) 

 
 If we finally displace the coordinate axes parallel to themselves, as in no. 12, then 
equation (47) will become: 
 

(A″ + F″ y0) r′ + (B″ − F″ x0) s′ + C″ + F″ η′ = 0,   (50) 
 

and will reduce, when we take: 
 

y0 = − 
A

F

′′
′′

,  x0 = 
B

F

′′
′′

,    (51) 

to: 
η + k = 0,     (52) 

 
when we, for the sake of brevity, set: 
 

k ≡ 
2 2 2

AD BE CF

D E F

+ +
+ +

.     (53) 

 
The complex will then have its axis along the OZ coordinate axis, while, as usual, the 
other two coordinate axes, OX and OY, which are perpendicular to each other and OZ, 
will intersect OZ at an arbitrary point. 
 
 
 39.  We immediately obtain the interpretation for the form of the equations: 
 

η + k = 0,  (xy′ – x′y) + k(z – z′) = 0. 
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If we imagine a force of arbitrary intensity that acts in the direction of any line of the 
complex then we can regard the expression (xy′ – x′y) as the double moment of this force 
relative to the axis of the complex and (z – z′) as proportional to the force on this axis.  
Thus: 
 
 If an arbitrary force acts along the lines of a linear complex then the ratio of the 
projection of this force onto the axis of the complex to the moment of this force relative to 
the axis will be constant and equal to the parameter of the complex (*). 
 

B 
Z 

E 

Y 

H 

X 

K 

G A 

D  J 

O 

K′ 

Figure 2. 

K 

Figure 3. 
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O H 
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G 
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 If we take the points (x, y, z) and (x′, y′, z′), by which the lines of the complex are 
determined, to be, in particular, the two points A and B at which the coordinate planes are 
be cut by them then the values of x and y′ will vanish.  One will then have: 
 

x′y = K(z −  z′),     (54) 
 

so, referring to the figures (Figs. 2, 3) (** ), one will have: 
 

k = 
OH OJ

EG

⋅
,      (55) 

 
which is an immediate consequence of the foregoing theorem, which also follows 
immediately from the determination of the constants for the line (confer number 11).  We 
will get: 
 

                                                
 (*) This theorem will enter into the later discussion of the mechanical aspects in its natural connection 
with other things. 
 (** ) For our purposes, there is a certain advantage to the sort of projection under which the three 
mutually-perpendicular coordinate axes OZ, OY, OX are represented in the same plane in such a way that – 
say – OZ and OX keep their natural position, but the positive extension of OY coincides with the negative 
extension of OX. 
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− η = OJ · 
OH

EG
= − OJ cotan BFX = OJ tan OJK = OK = k,   (56) 

− η = OH · 
OJ

EG
= OH cotan ADY = − OH tan OHK′ = − OK′ = k  (57) 

 
for an arbitrary line of the complex.  Therefore, JK will be drawn perpendicular to GF 
and HK′ will be perpendicular to ED.  In the case of the first figure, k will be positive, 
and in the case of the second figure, k will be negative. 
 From the aforementioned number 11, if we employ the axial coordinates of a line 
instead of its ray coordinates, and then start with the equations: 
 

ω = 
1

k
 = 0, (v – v′) + k(tu′ – t′u) = 0 

then we will have: 
 

− 
1

ω
= 

OF OJ

OG

⋅
= OF tan AOZ = − OF tan OFK′ = − OK′ = k,  (58) 

− 
1

ω
= − 

OD OH

OE

⋅
= − OD tan BOZ = OD tan ODK = OK = k.   (59) 

 
Thus, FK′ will be drawn perpendicular to OA and DK will be perpendicular to OB. 
 The following construction may also be mentioned (Figs. 4, 5): 
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X O 

G A 

F′ D′ F 

M 

E 
Z 

Figure 5.  
 
 Through the points DE and FG, which are the projections of a given line of the 
complex, we can, in a single way, lay a system of two parallel plane: EDF′ and GDF′, 
which intersect the coordinate axes OZ, OY, OX in the points E and G, D and D′, F and 
F′, respectively.  We then get: 
 

EG = 
rs

η
, DD′ = −

r

η
, F′ F = − 

s

η
, 

and from this: 

η = 
DD F F

EG

′ ′⋅
.     (60) 
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In order to construct this expression, we draw a plane parallel to XY through G that cuts 
DE at A and F′ E at M.  We will then have: 
 

− 
DD F F

EG

′ ′⋅
 = 

AG GM

EG

⋅
 = GK = k,    (61) 

 
if K is the point of the triangle AME at which the perpendiculars from the vertices to the 
opposite sides intersect.  In the first of the two figures, k is positive, while in the second 
one, it is negative. 
 
 
 40.  Since the equation for the complex contains only one constant when the axis is 
given and assumed to be a coordinate axis, it will also be true that this complex is 
determined completely when a line of the complex is likewise given, along with the axis.  
Just as the constant was determined to be k in the latter developments, as long as a line of 
the complex was given, so can we also conversely construct all lines of the complex 
when k is given.  We can subject the line that we would like to determine to three linear 
conditions from the outset, and thus arrive at a series of problems that I will not discuss 
further here. 
 
 
 41.  We again take the equation of the complex to be: 
 

(xy′ – x′y) + k(z – z′) = 0.    (33) 
 
If we regard x, y, z as the variables then: 
 

y′ · x – x′ · y + k · z – k · z′ = 0    (62) 
 
will be the equation of the plane that corresponds to any point (x′, y′, z′).  If we call the 
angle that this plane makes with the axis of the complex λ then we will have: 
 

sin2 λ = 
2

2 2 2

k

y x K′ ′+ +
,    (63) 

and, as a result: 

y′2 + x′2 = 
2

2tan

k

λ
.     (64) 

 
 The interpretation of the foregoing equations gives the following geometric relations: 
 
 If any point P is given then the same associated plane will go through any line that 
can be drawn from that point perpendicular to the axis of the complex. 
 
 The associated planes of all points that have the same distance from the axis of the 
complex all define the same angle with this axis. 
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 While a point describes a circle when it rotates around the axis, the associated planes 
will envelop a cone of rotation that has that point at which the plane of the circle cuts the 
axis for its vertex. 
 
 If the points of the circle describe a diameter when they move parallel to the axis then 
the cone will be displaced parallel to itself, such that its vertex will always remain on the 
axis. 
 
 Diameters that have the same distance from the axis of the complex define the same 
angle with their associated planes. 
 
 
 42.  If we take a line through a point P that is drawn perpendicular to the axis to be 
the OX axis then the coordinates z′ and y′ will vanish.  The equation of the associated 
plane will then be: 

x′y = kz.      (65) 
 

For the points of those lines that cut this YZ plane, one has: 
 

y

z
= tan λ = 

k

x′
,     (66) 

 
so for the line that is perpendicular to it and goes through the origin, one will have: 
 

y

z
 = − 

x

k

′
  or 

z

y
= − k

x′
.    (67) 

 
If k is given then we can then likewise determine the plane that is associated with an 
arbitrary point P, and conversely, if any point and its associated plane are given then we 
can determine the parameter k of the complex. 
 Let a perpendicular PK to this axis be erected by the aforementioned manner of 
projection at the point P, which is assumed to be on OX, and let its length be taken to be 
equal to k.  Any line OL that is drawn through O perpendicular to OK will then be the 
intersection line of the plane that corresponds to P with the coordinate plane YZ.  The 
plane itself is found with that.  Likewise, when the plane LOX and k are given that will 
immediately yield the point P that is associated with this plane. 
 If the point P is at a distance from the axis then tan λ will decrease in proportion to 
the distance. 
 The foregoing gives an intuitive picture for a complex.   All lines that go through the 
arbitrary point P and cut the line OL belong to the complex, and this will still be true 
when the point P and the line OL are displaced parallel to the axis, and also when the 
point rotates around the axis with OL.  The circle that the point describes under this 
rotation will correspond to a cone of rotation whose axis goes through the center of the 
circle and is perpendicular to its plane, in such a way that any line of the complex that 
goes through a point of the circle will contact this cone.  By the converse of this theorem, 
one must consider that, to some extent, equations (63), (64) correspond to the same cone 
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of the same circle for two different complexes whose parameters have the same absolute 
values, but opposite signs.  Of the two tangential planes that can be laid through a point 
of the circle to the cone, if the sign of the parameter k is given then only one of them can 
be chosen whose intersection line with the YZ-plane defines an angle with the axis of the 
complex whose trigonometric tangent (66) is equal to + k/x′.  Due to the fact that when 
the circle moves parallel to itself along the axis OZ, thus describing a cylinder of rotation, 
the cone that corresponds to the circle will move parallel to itself in a manner that is 
similar to the one that was already discussed in the previous number. 
 
 
 43.   The lines in space arrange themselves into pairs with respect to a given complex, 
such that each line will have its associate and the relationship of any two associated lines 
to each other will be reciprocal and will be mediated by the complex in a linear way.  
From the discussion above, we would like to base our analysis, in turn, upon the simplest 
equation for the complex: 

(xy′ – x′y) + k(z – z′) = 0, 
 

where the axis of the complex is taken to be the OZ axis. 
 Let (x′, y′, z′) and (x″, y″, z″) be any two points in space, and let the line that connects 
them be one of two conjugate polars.  The equations of this line are: 
 

( ) ( ) : ( ),

( ) ( ) : ( ),

z z x x x x z x z

z z y y y y z y z

′ ′′ ′ ′′ ′ ′′ ′′ ′− = − − −
′ ′′ ′ ′′ ′ ′′ ′′ ′− = − − −

    (68) 

 
and their five ray coordinates, which we would like to distinguish by r0, s0, ρ0, σ0, η0 , 
are: 

0 0

0 0

0

, ,

, ,

.

x x y y
r s

z z z z

x z x z y z y z

z z z z

x y x y

z z

ρ σ

η

′ ′′ ′ ′′− −= =
′ ′′ ′ ′′− −

′ ′′ ′′ ′ ′ ′′ ′′ ′− −= − = −
′ ′′ ′ ′′− −

′ ′′ ′′ ′−=
′ ′′−

   (69) 

 
We can construct the second of the two associated polars as the line of intersection of 
those two planes that correspond to the two points (x′, y′, z′) and (x″, y″, z″), which lie on 
the former plane, and which are the following ones: 
 

0,

0.

y x x y kz kz

y x x y kz kz

′ ′ ′− + − =
′′ ′′ ′′− + − =

    (70) 

 
From these two equations, one obtains, by successively eliminating y and x: 
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( ) [ ( ) ( )] 0,

( ) [ ( ) ( )] 0,

x y x y x k x x z x z x z

x y x y y k y y z y z y z

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − − + − =
′ ′′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − − + − =

   (71) 

and therefore the first four of the five coordinates of the second line, which we would like 
to distinguish by r0, s0, ρ0, σ0, η0, will be: 

0 0

0 0

, ,

, .

x x y y
r k s k

x y x y x y x y

x z x z y z y z
k k

x y x y x y x y
ρ σ

′ ′′ ′ ′′− −= ⋅ = ⋅
′ ′′ ′′ ′ ′ ′′ ′′ ′− −

′ ′′ ′′ ′ ′ ′′ ′′ ′− −= − ⋅ = − ⋅
′ ′′ ′′ ′ ′ ′′ ′′ ′− −

  (72) 

 
From the combination of the foregoing four equations with equations (69), one obtains a 
series of relations between the five coordinates of the two conjugate polars: 
 

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

, ,

, ,

r r s s

r r

s s

ρ σρ σ

ρ ρ
σ σ

= =

= =
     (73) 

and furthermore: 
0 0

0 0

0 0

0 0
0 0

0 0

, ,

, ,

r sr s

k k

k k

η η
ρ σρ σ
η η

= =

= =
     (74) 

 
and from this, when we consider that: 
 

η0 = r0 σ0 – s0 ρ0, 
it will follow that: 

η0η0 = k2.     (75) 
 

We can summarize all of the relations in the following equations: 
 

0
0

r

r
 = 0

0

s

s
 = 0

0

ρ
ρ

= 0
0

σ
σ

= 0

k

η
= 0

k

η
.   (76) 

 
The reciprocal relationship between the two associated lines is expressed in these 
equations collectively.  In order to go from the second of the two conjugate polars to the 
first one, we obtain: 
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0 0
0 0

0 0

0 0
0 0

0 0

, ,

, .

r sr s

k k

k k

η η
ρ σρ σ

η η

= =

= =
     (77) 

 
 If we consider that any two mutually perpendicular planes that go through the OZ axis 
can be taken to be the XY, YZ coordinate planes without changing the equation of the 
complex in any way then we can deduce from the first two of equations (73) that any 
plane that goes through the axis of the complex will be cut by any two associated lines in 
such a way that the two points of intersection will lie on a straight line that is 
perpendicular to the axis. 
 The square of the distance to the point at which one of the two associated lines cuts 
the plane perpendicular to the axis OZ, which is determined by any value of z, is: 
 

(s0 z + σ0)
2 + (r0 z + ρ0)

2. 
 

The value of z for which this distance is a minimum is: 
 

z = − 0 0 0 0
2 2
0 0

s r

s

σ ρ
ρ

+
+

.      (78) 

 
If we draw the XY-plane through the shortest distance (which will not change the 
equation of the complex) then we will obtain the condition equation: 
 

s0 σ0 + r0 ρ0 = 0,     (79) 
 
and the shortest distance itself will be: 

2 2
0 0σ ρ+ . 

 
The condition equation (79) brings with it the corresponding expression for the other 
conjugate polar: 

s0 σ0 + r0 ρ0 = 0.     (80) 
 
 The shortest distances from any two associated polars to the axis of the complex lie in 
the same plane perpendicular to this axis and coincide in the same line in this plane. 
 
 The last part of this theorem follows immediately from the foregoing theorem.  The 
direct proof of it is based in the fact that when we let the OZ-axis coincide with the 
shortest distance to one of the associated lines, s0 will vanish, which brings with it the 
fact that σ0 will also vanish (74).  As a result of equation (79), r0 will then vanish, so, 
from (74), r0 will, as well.  Since equation (80) will be satisfied by this, the proof is 
complete. 
 The shortest distances themselves are ρ0 and ρ0.  Thus: 
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η0 = − s0 ρ0 = 
2

0

k

η
= − 

2

0 0

k

s ρ
.    (81) 

 
 
 44.  There are infinitely many complexes that have a given line for their axis.  Each of 
them is determined completely by one of its lines.  Each of two conjugate lines thus 
determines a complex that also has the given axis for its own axis, and on which that line 
lies.  The parameter of the given complex is proportional to the mean of the two 
parameters of the two new complexes.  All of the lines of one of them have the lines that 
lie on the other one for their conjugates.  We can call the two complexes two polar 
complexes relative to the given one. 
 The foregoing delivers a series of simple constructions in the manner of 
representation that we are using.  If the complex: 
 

η + k = 0 
 
is given then we can construct the associated line to any given line, and the complex will 
be determined completely when the axis of the complex is given, along with a system of 
two conjugate polars that fulfill the conditions that, from the previous number, must be 
satisfied by a given complex axis. 
 Let D0E and F0G be the projections of a given line onto YZ and XZ (Fig. 6).  If OZ is 
the axis of the complex then we will know that the corresponding projection of the 
conjugate line likewise goes through E and G, and all that will still remain for the 
determination of this line is to find two points D0 and F0 at which its two projections OY 
and OX intersect.  In a manner analogous to the earlier one, we would like to let A0 and 
B0 denote the points at which the given line meets the YZ and XZ coordinate planes, resp., 
and their projections onto OY (OX, resp.) by J0 (H0, resp.).  Finally, let the complex 

parameter k be 
equal to OK = − 
OK′. 
 
 In the figure, we 
have dropped 
perpendiculars from 
K′ to H0E and from 
K to J0G.  The first 
perpendicular cuts 
OY at D0 and the 
second one cuts OX 
at F0. 
 One draws two 
lines from K and K′ 
to J0 and H0 and 
drops two 

perpendiculars from these two lines to G and E, respectively.  These two perpendiculars 
will cut OX and OY at F0 and D0, resp. 

 

Y 

H0 
D0  J0 D0 O 

K′ 

F0 F0 
X 

Figure 6. 

K0 

G 

K0 

K 

A0 

B0 
E 

Z 

A0 

B0 
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 The two foregoing constructions are immediately linked with equations (74). 
 On the one hand, one essentially has the construction [§ 1, (34)]: 
 

ρ0 = k 0

0

ρ
η

= 
0tan

k

A OZ

−
= − OK · tan A0OJ0 = OK tan OKF0 = OF0,   (82) 

σ0 = k 0

0

σ
η

= 
0tan

k

B OZ
= − OK′ · tan B0OJ0 = OK′ tan OKD0 = OD0; (83) 

 
on the other [§ 1, (33)]: 

tan F0GO = − r0 = − k 0

0

r

η
= 

0

OK

OJ
= 

0OF

OG
,   (84) 

tan D0EO = − s0 = − k 0

0

s

η
 = 

0

OK

OH

′
 =

0OD

OE
.    (85) 

 
 From the foregoing constructions, we can likewise derive other ones that immediately 
give, instead of the projections of the lines that are to be determined, the points at which 
they cut the coordinate planes. 
 We likewise obtain the complex parameter k = OK = − OK′ immediately when the 
two associated polars are given.  K and K′ will then be the crossing points of the 
perpendiculars that can be dropped from the vertices of the triangles J0GF0 and H0ED0 to 
the opposite sides. 

 The parameters of the two polar complexes, which we shall distinguish by k0 and k0, 
are given immediately from a discussion in an earlier number.  One drops perpendiculars 
from D0 and D0 to OB0 and OB0, resp., which cut OZ at K0 and K0, resp.  One will then 
have (no. 39): 

k0 = OK0 ,  k0 = OK0,   (86) 
from which: 

OK0 · OK0 = 
2

OK .    (87) 
 

 
 45.  If the parameter of the complex k vanishes then that will specialize the complex.  
Its equation: 

xy′ – x′y = 0     (88) 
 
shows that all lines of the complex cut its axis.  The general geometric definition of a 
first-degree complex preserves its validity, such that infinitely many lines of it will go 
through each point of space, all of them will lie in the same plane, and correspondingly 
each plane that goes through space will contain infinitely many lines of it that intersect at 
the same point, even with the specialization.  Only those planes that are associated with 
arbitrary points will intersect in the axis of the complex, just as points that are associated 
with arbitrary planes will all lie on this axis.  All diameters of this complex will coincide 
on its axis.  Any arbitrary line will be associated with the axis. 
 If we represent the complex by the general equation: 
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Ar + Bs + C – Dσ + Eρ + Fη = 0 
 
then in order to express the idea that it is specialized in the manner in question (cf., also 
no. 34) we will obtain the equation (*): 
 

AD + BE + CF = 0.     (89) 

For the determination of those lines of the complex that go through any given point (x, y, 
z), we can eliminate r, s, and h between the general equation of the complex and the 
equations: 
      x = rz + ρ, 
      y = sz + σ, 
      ry – sx = η, 

 
which express the idea that the given point lies on the line (r, s, ρ, σ, η).  In the resulting 
equation: 

(A + Fy – Ez) r + (B – Fx + Dz) s + (C + Ex – Dy) = 0,  (90) 
 
r and s determine the direction of the plane that is associated with the point (x, y, z).  If 
the three equations: 

0,

0,

0

A Fy Ez

B Fx Dz

C Ex Dy

+ − =
− + =
+ − =

     (91) 

                                                
 (*) Here, we omit the case in which D, E, and F vanish simultaneously, and thus: 
 

k ≡ 2 2 2

AD BE CF

D E F+

+ +
+

 

 
becomes infinitely large.  The basis for this is as follows: A complex with infinitely large parameters, 
whose equation we shall take to be: 

(xy′ – x′y) + k(z – z′) = 0, 
 

includes only those lines that are parallel to the XY plane or lie at infinity.  The foregoing equation will, in 
fact, be satisfied only when one either has: 

z – z′ = 0 
or: 

xy x y

z z

′ ′−
′−

= ∞. 

 
For such a complex, the concept of axis as a completely determined line will then fall away since every line 
parallel to OZ will have an equal to right to this name. 
 However, we can also consider the same complex to be a complex of a special type whose parameter 
equals zero and whose axis lies at infinity in the XY plane.  The justification for this lies in the fact that as 
long as the condition: 

AD + BE + CF = 0 
 
is fulfilled, one can generally speak of a complex of special type whose parameter is equal to zero (cf., also 
equation (91) in the text). 
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are satisfied simultaneously (which the condition equation (89) assumes) then the 
direction of the associated plane will be indeterminate.  The point (x, y, z) will then be 
assumed to be on a line whose three projections are represented by the last three 
equations, if we consider x, y, z to be variable.  This line will be the axis of the complex. 
 Without the restricting condition equation (89), the foregoing three equations, when 
taken individually, will represent planes that correspond to points that lie at infinity along 
the directions of the coordinate axes OX, OY, OZ. 
 In a similar way, the three equations: 
 

0,

0,

0

D Cu Bv

E Ct Av

F Et Au

+ − =
− + =
+ − =

     (92) 

 
represent those points in the coordinate planes YZ, XZ, XY that are associated with these 
planes.  These three equations will be valid simultaneously when the condition equation 
(89) is satisfied.  The three points will then lie along a line and will be the ones at which 
the three coordinate planes are cut by the axis of the complex. 
 The condition equation (89) remains unchanged when we consider the complex to be 
an axial complex and correspondingly represent it by the equation: 
 

Dp + Eq + F – Aχ + Bπ + Cω = 0. 
 
However, we remark that this equation will then be illusory in the special case that we 
consider if we take the axis of the complex to be one of the three coordinate axes, as we 
did in the case of ray coordinates. 
 We can satisfy the condition equation (89) in such a way that we set three of the 
constants of the general complex equation equal to zero, and will obtain four essentially 
different cases, when we choose the vanishing constants to be, in sequence: 
 

D, E, F, A, B, C, C, D, E, A, B, F. 
 

These four cases correspond to the following equations in ray and axis coordinates: 
 

0,

0,

0,

0,

0,

0,

0,

0.

Ar Bs C

A B C

D E F

Dp Eq F

Ar Bs F

A B F

C D E

C Dp Eq

χ π ω
σ ρ η

η
χ π

σ ρ
ω

+ + = 
− + + = 
− + + =
+ + = 
+ + = 
− + + =


− + = 
+ + = 

    (93) 
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In the case of equations (93), the axis of the complex lies at infinity on all of the lines that 
intersects it.  It is, like all lines of the complex, parallel to the plane that is represented by 
the equation: 

Ax + By + Cz = 0     (97) 
 

[cf., the note about (89)]. 
 In the case of equations (94), the axis of the complex is perpendicular at the origin to 
the plane that is represented by the equation: 
 

Dx + Ey + Fz = 0.     (98) 
 

 In the case of equations (95), the axis of the complex is parallel to the coordinate axis 
OZ and cuts the plane XY at a point that is represented in this plane by the equation: 
 

Bt – Au + Fv = 0.     (99) 
 

 In the case of equations (96), the axis in the XY-plane in question is finite and will be 
represented in this plane by the equation: 
 

C + Ex – Dy  = 0.     (100) 
 
 

 46.  In the foregoing, when we took the axis of a complex to be one of the three 
coordinates axes OZ, OY, OX, we were led to present its equation in the following simple 
forms: 

η + k = 0, ρ + ks = 0, σ − kr = 0, 
 

in which k means the parameter of the complex.  The origin can thus have an arbitrary 
position on the axis of the complex and the remaining two coordinate axes can be 
assumed to be arbitrary, under the condition that they remain perpendicular to each other 
and to the axis of the complex.  From now on, we would like to take an arbitrary diameter 
of the complex that is parallel to it to be the OZ-axis, instead of the axis.  With no loss of 
generality, we can lay the YZ-plane through the diameter and the axis.  We would like to 
denote the distance from the diameter to the axis by y0.  When we switch (cf., no. 14): 
 

η  with η + y0 · r, 
 

the same complex that was previously represented by the equation: 
 

η + k = 0 
will be represented by the equation: 

η + y0 r + k = 0    (101) 
 

from now on.  Since the OZ and OY axes will remain unchanged if we then rotate the OX 
axis in the XZ-plane in such a way that after the rotation it forms an angle of δ with OZ, 
the conversion formulas (42) of number 13, if we write γ ′ = δ, γ = 0, will express: 
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r and η 
in the following forms: 

sin

cos 1

r

r

δ
δ +

, 
sin

cos 1r

η δ
δ +

, 

 
resp.  If we substitute these expressions in the equation of the complex then that will 
give: 

η sin δ + y0r sin δ + k(r cos δ + 1) = 0.    (102) 
 
δ means the inclination of the XY-plane with respect to the OZ-axis, and thus with respect 
to the diameter of the complex.  If we determine this inclination by the equation: 
 

y0 sin δ + k cos δ = 0     (103) 
 

then that will simplify the equation of the complex into the following form: 
 

η + 
sin

k

δ
= 0,      (104) 

or: 
η + k′ = 0,      (105) 

when we set: 

sin

k

δ
 ≡ k′.      (106) 

 
We have called the constant k the “parameter of the complex,” but we can also call it the 
“parameter of the axis of the complex,” and in this sense, speak of the parameter of any 
arbitrary diameter whatsoever, and, in particular, let k′ denote the parameter of the 
diameter that is taken to be the OZ-axis.  Among the diameters of a complex, the axis has 
the smallest parameter. 
 When we represent the complex by the foregoing equation, we refer it to any of its 
diameters as the OZ axis and take an arbitrary associated plane through the diameter to be 
the XY-plane.  The two axes OX and OY in this plane will be perpendicular to each other 
and OY will be the projection of the diameter onto the plane associated with it. 
 In order to then go from an arbitrary diameter to the axis, we merely need to displace 
this diameter along the line in the conjugate plane, and indeed, along a line segment of 
length: 

− y0 = k′ cos δ. 
 

 The equation of the complex, which we can write in the form: 
 

(xy′ – x′y) + k′(z – z′) = 0,    (107) 
 

will remain unchanged when we rotate the rectangular coordinate axes arbitrarily inside 
the XY-plane.  However, if we rotate them independently of each other in such a way that 
after the rotation they make an angle ε then we will have to switch: 
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(xy′ – x′y) and η 
with: 

(xy′ – x′y) sin ε and η sin ε, 
 
resp.  Thus, the form of the complex equation will also still remain the same: 
 

η + k″ = 0,     (108) 
in which we set: 

sin

k

ε
′

 = 
sin sin

k

ε δ
 ≡ k″.    (109) 

 
This will be the equation of the complex when we take the OZ-axis to be an arbitrary 
diameter that makes an angle δ with its plane and choose two arbitrary axes OX and OY 
in the plane that subtend an angle ε. 
 We obtain the corresponding forms for the equations: 
 

ρ + 
sin sin

ks

δ ε
 = 0,  σ − 

sin sin

kr

δ ε
 = 0,   (110) 

 
when we let OX and OY, in sequence, coincide with the axis of the complex, instead of 
OZ. 
 
 
 47.  Up to now, in our discussion of complexes we have left unmentioned the 
influence that the sign of the parameter has on the nature of a complex.  We 
correspondingly obtain two essentially different types of complex of the first degree for 
the two signs that this value can have. 
 If we select any line from among the lines of the complex and translate it parallel to 
the axis of the complex while rotating it arbitrarily around this axis then in all of its new 
positions it will coincide with other lines of the complex.  It thus continually contacts a 
cylinder of rotation whose axis is the axis of the complex and whose circle of intersection 
has the shortest distance for the lines from the axis of the complex for its radius.  The line 
that contacts the cylinder can, in agreement with the statement, move around the cylinder 
in such a way that it envelops a curve.  This curve will then be a helix that lies on the 
cylinder.  If we displace the helix through the height of loop on the cylinder then the 
tangents to the helix in the various positions of the latter will all give complex lines that 
contact the cylinder. 
 Let: 

η + k ≡ (rσ – sρ) + k = 0 
 
be the equation of the complex, and let: 
 

y2 + x2 = R2     (111) 
 
be the equation of a cylinder of rotation that has the axis of the complex for its own axis, 
and whose circular basis has radius R.  Any line whose three coordinates are: 
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r = 0, ρ = R, σ = 0     (112) 
 
will then be a tangent to the cylinder.  In order to express the fact that it belongs to the 
complex, we obtain: 

Rs = k.      (113) 
 

The line lies in a plane that is parallel to the YZ coordinate plane.  If its projection onto 
YZ defines an angle λ with OZ that has a positive trigonometric tangent then it will be the 
tangent to a right-wound helix that is described on the cylinder.  As a result of the 
following equation: 

Rs – R tan λ = k,    (114) 
 

the parameter of the complex k will be positive.  Conversely, if tan λ is negative then the 
line will be tangent to a left-wound helix that is described on the cylinder and the 
parameter of the complex k will be negative.  From the last equation, however, it follows, 
when we set R equal to all positive values in it, that all lines of a complex will be tangent 
to right-wound helices when one line of it contacts a right-wound helix, just as all lines of 
a complex will be tangent to left-wound helices when one line of it contacts a left-wound 
helix.  We thus have two essentially different types of first-degree complexes, which we 
would like to distinguish as right-wound and left-wound complexes. 
 
 We can regard a first-degree complex as the totality of tangents to helices that are 
inscribed in a cylinders of rotation and whose circular intersections have radii that 
increase from 0 to ∞.  All helices are wound the same way for the same complex. 
 
 For every cylinder, the pitch h of the helix is determined by the equation: 
 

h = 
2

tan

Rπ
λ

.     (115) 

 
If we eliminate λ between this equation and the foregoing one then that will give: 
 

h · k = 2π R2;     (116) 
 
that is: for any cylinder, the product of the pitch of the helix with the parameter of the 
complex is equal to twice the area of its circular section. 
 
 
 48.  If we represent a complex by the general equation: 
 

Ar + Bs + C – Dσ + Eρ + F = 0 
 
then we have: 

k = 
2 2 2

AD BE CF

D E F

+ +
+ +
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for its parameter.  The complex will then be right-wound when: 
 

AD + BE + CF > 0     (117) 
and left-wound when: 

AD + BE + CF < 0.     (118) 
The transitional case: 

AD + BE + CF = 0     (119) 
 
corresponds to the notion that the axis of the complex is cut by all of its lines (cf., no. 45). 
 The values of the constant k are equal, but of opposite sign, for two conjugate 
complexes.  The helices of both complexes are oppositely wound.  For the sake of 
visualization, we can regard two complexes as the mirror images of each other, if we 
think of the plane of the mirror as being perpendicular to the common axis of the 
complex. 
 Each point of space is cut by two oppositely wound helices that are inscribed on the 
same cylinder and each belong to one of two conjugate complexes.  The tangents to the 
two helices at this point are lines of the two complexes that go through it.  The angle that 
they make with each other is 2(π − λ).  However, one has: 
 

tan (π − λ) = 
R

k
,     (120) 

 
so the tangent of the angle at which the lines of the two complexes intersect each other is: 
 

tan 2(π − λ) = 
2 2

2Rk

k R−
.    (121) 

 
This angle of intersection decreases with the distance from the point to the axis of the 
complex.  When: 

k = R, 
 
it will go through a right angle, and it will become ever larger when R increases further, 
such that for R = ∞, it will approach the limit π. 
 Only one helix of a complex goes through each given point.  The tangent to this helix 
at the given point is a line of the complex and thus lies in the plane corresponding to this 
point.  This plane is determined completely by a second line that goes through this point 
and belongs to the complex.  We find such lines in the consecutive tangents to the same 
helix.  The plane that contains the two tangents is the osculating plane of the helix at the 
given point. 
 
 The osculating plane to a complex helix at each of its points is the plane that 
corresponds to this point. 
 
 We find the confirmation of this theorem in the fact that, on the one hand, both planes 
go through the tangents to the helix at the given point, and, on the other hand, they both 
go through the perpendicular that can be dropped from this point to the axis. 
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 If a point moves along one of two associated polars then at each point they will 
correspond to a helix and an osculating plane to it that always goes through the other 
polar.  If the line is a side (Seite) of a cylinder that the helix is inscribed in − in other 
words, a diameter of the complex – then the corresponding osculating planes will be 
parallel and will be the planes associated with the diameters, such that the polar 
associated with the diameter lies at infinity (*). 
 
 
 49.  I shall conclude this investigation of first-degree complexes with some general 
remarks. 
 Just as we can construct polygons whose vertices lie in a given plane from lines, and 
solid angles whose planes go through a given point, we can also simultaneously construct 
spatial polygons and polyhedra from the lines of a first-degree complex that correspond 
to them.  The sides of these spatial polygons are the edges of the polyhedra.  At the 
vertices of the polygon, two successive sides of it will intersect.  The plane that goes 
through two such sides will be the plane that corresponds to the vertex in the complex 
and a face of the polyhedron.  The mutual relationships between polygons and polyhedra 
are the ones that we already spoke of in the note in number 29. 
 We would like to call a spatial polygon whose sides are lines of the complex a 
complex polygon and the corresponding polyhedron, a complex polyhedron. 
 In order to describe a complex polyhedron, we choose a line of the complex and an 
initial vertex of the polygon that lies in it.  Just as infinitely many lines go through any 
plane through a point, so do infinitely many lines of a complex go through a point.  On a 
complex line that goes through the first vertex of a polygon, we choose the second vertex, 
then choose the third one on one of the complex lines that goes through it, and so on.  In 
order to close the polygon, through the last point that is determined in this way, we draw 
the plane that corresponds to this point under the complex.  It will intersect the first 
complex line at a point.  The line that connects both points will be a line of the complex 
and close the polygon.  We can derive a complex polyhedron from the corresponding 
complex polygon, or also construct it directly in a manner that is analogous to this one.  
To that end, we consider a given complex line to be the edge of a polyhedron and lay the 
first face of it through this edge, through an arbitrary complex line in this plane, we lay 
the second face, through an arbitrary complex line in the latter, the third, and so forth.  In 
the last-determined polyhedral face, we determine the point that corresponds to it in the 
complex.  The plane that goes through this point and the first complex line closes the 
polyhedron. 
 The sides of a complex polygon are oriented the same – that is, they are tangents to 
equally-wound helices – and that will define a characteristic sequence of vertices of that 
polygon as a consequence.  The faces of a complex polyhedron through which two 
oriented edges of it go will be rotated in the same sense.  We can refer to polygons and 
polyhedra as right-wound or left-wound in their own right according to whether they 
belong to right-wound or left-wound complexes, respectively.  The mirror image (we 
revert to our previous manner of visualization and, in turn, take the reflecting surface to 

                                                
 (*) We have always taken the constants in the general equation of a complex to be real and thus k, as 
well.  However, if we combine several complexes then the generality of the discussion will extend in such a 
way that we must now consider complexes with imaginary constants. 
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be perpendicular to the complex axis) of a complex polygon or complex polyhedron will 
belong to the conjugate complex and will be wound the opposite way. 
 
 
 50.  A plane curve will be enveloped by a line that constantly moves in the plane, and 
a cone surface will be described by a line that rotates around one of its points.  A spatial 
curve will be enveloped by a continuously moving line that belongs to a given complex at 
all of its points, while a developable surface will be simultaneously described by it.  We 
refer to any of the former as curves and any of the latter as developable surfaces of the 
first-degree complex. 
 We can inscribe infinitely many curves of a given complex in any given surface.  
Such a complex curve will go through each given point of the given surface.  The tangent 
to the complex curve at this point will be the line in which the plane that corresponds to 
the given point in the complex intersects the tangential plane to the surface at this point. 
(*) 
 In order to summarize everything in a word: Just as there is a geometry of the plane, 
there is also a geometry of the first-degree complex. 
 
 

§ 2.  Congruences of two linear complexes. 
 

 51.  The coincident lines of two first-degree linear complexes will define a line 
congruence.  We can consider the lines of a congruence to be rays and axes, and 
correspondingly, congruences can be represented in two ways: first, by a system of 
equations in ray coordinates: 
 

0,

0,

Ar Bs C D E F

A r B s C D E F

σ ρ η
σ ρ η

Ω ≡ + + − + + = 
′ ′ ′ ′ ′ ′ ′Ω ≡ + + − + + = 

  (1) 

 
and secondly, by a system of two equations in axial coordinates: 
 

0,

0.

Dp Eq F Ak B C

D p E q F A k B C

π ω
π ω

Φ ≡ + + − + + = 
′ ′ ′ ′ ′ ′ ′Φ ≡ + + − + + = 

   (2) 

 
 
 52.  In each of the two complexes that determine the congruence, infinitely many 
lines will go through a given point that will lie in the plane that corresponds to the point.  
The line of intersection of the two planes that correspond to the given point is the single 

                                                
 (*) In order to clarify the general reasoning of the text by a simple example, we would like to consider 
the outer surface of a sphere whose center falls on the axis of the complex, and whose radius R is arbitrary.  
The complex curves inscribed on this sphere define a system of loxodromes that intersect the meridian of 
the sphere at an angle of λ, which is given by the equation: 
 

tan λ = k

R
. 
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line that simultaneously goes through that point and both complexes, and will thus belong 
to the complex.  A single straight line will go through every point of space, which we will 
say corresponds to the point under the congruence. 
 In each of the two complexes, infinitely many lines will lie in a given plane that cuts 
the point that corresponds to the plane.  The straight line that links the two corresponding 
points in the given planes will be the only one that simultaneously lies in that plane and 
the two complexes, and thus belongs to the congruence.  A single straight line will lie in 
any plane that is drawn through space, of which we will say that it corresponds to the 
plane under the congruence. 
 We can regard the two given relations, one of which will necessarily be a 
consequence of the other one, as the geometric definition of a congruence of linear 
complexes. 
 
 
 53.  For the determination of a congruence, we can replace the two given complexes: 
 

Ω = 0,  Ω′ = 0 
 
with two other ones that will be represented by the following equation: 
 

Ω + µ Ω′ = 0     (3) 
 
for an arbitrary choice of the undetermined coefficient µ, and we can then also replace Ω 
and Ω′ with Φ and Φ′, resp.  We say that all complexes that can be represented by the 
foregoing equations, and two of which will determine the congruence, define a two-
parameter group of linear complexes. 
 
 
 54.  In number 31, we obtained the following equation for the principal section of the 
complex (3) that goes through the coordinate origin: 
 

Dx + Ey + Fz + µ (D′ x + E′ y + F′ z) = 0,    (4) 
 
and this equation will be satisfied for arbitrary values of µ when one simultaneously has: 
 

0,

0.

Dx Ey Fz

D x E y F z

+ + =
′ ′ ′+ + =

     (5) 

 
 Since the coordinate origin will be assumed to be arbitrary from now on, this will 
therefore express the idea that in any complex a two-parameter group that belongs to the 
congruence will intersect the principal section that goes through a given point in the same 
straight line.  Since the diameter of a complex is perpendicular to its principal section, 
that will yield the following theorem: 
 
 The diameter of any complex in a two-parameter group will be parallel to its plane. 
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 55.  In order to determine the direction of the diameter, we will get the following 
double equation: 

x

D Dµ ′+
 = 

y

E Eµ ′+
 = 

z

F Fµ ′+
    (6) 

 
when we introduce the direction constants r and s: 
 

r = 
D D

F F

µ
µ

′+
′+
,  s = 

E E

F F

µ
µ

′+
′+
.    (7) 

 
If we eliminate µ from these equations then we will find that: 
 

(E′ F – E F′) r – (D′ F – D F′) s + (D′ E – D E′) = 0.   (8) 
 
The direction of the plane that is parallel to the diameter of all the complexes is 
determined by this equation.  When we replace r and s with x / z and y / z, we will get the 
equation: 

(E′ F – E F′) x – (D′ F – D F′) y + (D′ E – D E′) z = 0,  (9) 
 
which will represent the plane that goes through the origin in the chosen direction in 
ordinary point-coordinates, and we will then get the double equation for the 
determination of the direction that is perpendicular to that plane: 
 

x

E F EF′ ′−
 = 

y

D F ED′ ′−
 = 

z

D E DE′ ′−
.   (10) 

 
If we make this direction the OZ-axis then F and F′ will vanish, and the complex 
equations (1) will become: 

0,

0.

Ar Bs C D E

A r B s C D E

σ ρ
σ ρ

Ω ≡ + + − + =
′ ′ ′ ′ ′ ′Ω ≡ + + − + =

     (11) 

 
The diameters of all complexes of the group (3) will then be parallel to the XY-plane. 
 
 
 56.  If one of the three following condition equations: 
 

D′ E – D E′  = 0, D′ F – D F′  = 0, E′ F – E F′  = 0 (12) 
 
is true then the straight line along which the principal section that goes through the origin 
intersects all complexes of the group will lie in one of the three coordinate planes XY, XZ, 
YZ, resp.  The diameters of all the complexes will then be parallel to a plane that goes 
through OZ, OY, OX, resp.  If the three condition equations (12) were satisfied 
simultaneously then that would raise the contradiction that a plane would have to be 
simultaneously parallel to the three coordinate axis, which would prevent any 
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determination of that plane.  One would then correspondingly find one of the complexes 
of the group (3): 

µ = − D

D′
 = − 

E

E′
 = − F

F ′
, 

 
whose equation we could take to be the following one: 
 

(A′ D – AD′ ) r + (B′ D – BD′ ) s + (C′ D – C D′ ) = 0.  (13) 
 
All of the lines in this complex would be parallel to the plane that is represented by the 
equation: 

(A′ D – AD′ ) x + (B′ D – BD′ ) y + (C′ D – C D′ ) z = 0.  (14) 
 
The congruence would be specialized in this case by the fact that since its lines all belong 
to this complex, they would all be parallel to the plane that was just determined.  
Therefore, the axes of all complexes in the two-parameter group would be parallel to 
each other, which could be seen in the double equation (10).  We would like to call such a 
congruence parabolic.  We will exclude them from the following considerations, and will 
subject them to a special discussion later on (no. 75). 
 This case will also come about especially when F and F′ vanish, and: 
 

D′ E – DE′  = 0,     (15) 
moreover. 
 
 
 57.  If we shift the origin of the coordinates to any point (x0, y0) then the constant term 
in the equation of the complex group (3) will become: 
 

(C + Ex0 – Dy0) + µ (C′ + E′ x0 – D′ y0). 
 
This term will then drop out when the new origin in the XY-plane is assumed to be on the 
straight line that is represented by: 
 

(C + Ex – Dy) + µ (C′ + E′ x – D′ y) = 0.   (16) 
 
If we take this point to be the intersection of the two straight lines: 
 

0,

0

C E x D y

C E x D y

+ − = 
′ ′ ′+ − = 

    (17) 

 
then the constant term will vanish from the equation of all complexes of the group.  One 
will then get: 

0,

0.

Ar B s D E

A r B s D E

σ ρ
σ ρ

Ω ≡ + − + = 
′ ′ ′ ′ ′Ω ≡ + − + = 

    (18) 

 We have: 
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Ax + By + Cz + µ (A′ X + B′ y + C′ z) = 0   (19) 
 
for the general equation of those planes that correspond to the origin in the various 
complexes of the group (3) (no. 32), and this equation will be satisfied, independently of 
the particular value of µ, when one simultaneously has: 
 

0,

0.

A x B y C z

A x B y C z

+ + = 
′ ′ ′+ + = 

    (20) 

 
 All of the planes that correspond to the origin will then intersect on the straight line 
that is represented by the two equations, and since the origin will assumed to be arbitrary 
from now on, we will arrive at the following theorem: 
 
 In the complexes of a two-parameter group, a given point will correspond to planes 
that intersect in the same line. 
 
 This theorem is given immediately by combining the ones in numbers 52 and 53. 
 When C and C′ vanish, the planes that correspond to the origin under the various 
complexes of the two-parameter group will intersect along the OZ-axis. 
 
 
 58.  When F and F′, as well as C and C′, vanish, OZ will become a common line to all 
complexes, and thus a line of the congruence that is intersected by the axes of all 
complexes (cf., no. 31). 
 
 In any congruence, there is, in general, a single and completely-determined straight 
line that will be intersected by the axes of all complexes of the two-parameter group by 
which the congruence is determined. 
 
 We would like to call the straight line that has an exclusive relationship with the 
congruence the axis of the congruence.  When we base the determination of the function 
on equation (18), we will take the axis of the congruence to be the OZ-axis. 
 When the condition equation: 

D′ E – D E′ = 0 
 
is verified, the congruence can generally no longer be represented by the system of two 
equations (18).  F and F′ cannot both drop out.  The principal sections of all complexes of 
the two-parameter groups that go through the origin will then intersect (when the 
condition equation above is satisfied) on one of the straight lines that lie in the coordinate 
planes, and whose equation will be the following one: 
 

y + 
Dx

E
≡ y′ + 

D x

E

′
 = 0. 
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From number 54, the diameter − and especially the axes − of all complexes of the group 
will be parallel to a plane that is perpendicular to that line.  Therefore, the XY-plane 
cannot be parallel to the diameter, in general, and therefore one will get the impossibility 
of F and F′ vanishing.  This possibility first will arise when: 
 

D

D′
 = 

E

E′
 = 

F

F ′
; 

 
that is, in the case of a parabolic congruence, such that equations (5) become identical, 
and corresponding to that, all of the principal sections that go through the origin will 
coincide.  All of the complex axes will then be perpendicular to this plane, and will then 
be mutually parallel, in agreement with number 56.  In order for F and F′ to drop out, one 
will then need only to choose the XY-plane such that it is perpendicular to the plane in 
question, or − what amounts to the same thing − the OZ-axis must lie in that plane, 
although it can have any direction within that plane. 
 However, when the condition equation above is satisfied, C and C′ cannot also drop 
out simultaneously, in general.  In fact, inside of XY, the shift of the coordinate origin that 
demands this dropping out is illusory, and indeed in such a way that the two lines (17), at 
whose intersection the new origin lies, will be parallel.  (The values of F and F′ do not 
come into consideration in this.)  Only when one has: 
 

C

C′
 = 

D

D′
 = 

E

E′
 

 
simultaneously, and as a consequence, the two straight lines (17) coincide in a single one, 
can C and C′, in turn, be removed by a shift of the origin, and indeed, to that end, we can 
take any arbitrary point of the straight line: 
 

1 + 
Ex Dy

C C
−  ≡ 1 + 

E x D y

C C

′ ′
−

′ ′
 = 0 

 
to be the new coordinate origin.  Later, we will encounter the case in which the two lines 
(17) coincide in a single one, and we will see that this coincidence is based upon a special 
position of the congruence relative to the coordinate system. 
 
 
 59.  If one of the three conditions: 
 

A′B − AB′ = 0,  A′C − AC′ = 0,  B′C − BC′ = 0   (21) 
 
is satisfied then any straight line in which all of the planes that correspond to the origin 
intersect will lie in the coordinate planes, XY, XZ, YZ, respectively.  If two of these 
equations – and consequently, all three of them – are satisfied then among the complexes 
of the group (3), corresponding to: 
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µ = − 
A

A′
 = − 

B

B′
 = − 

C

C′
, 

 
there will be one of them whose lines all intersect on its axis, and this axis will go 
through the origin.  We can take: 
 

− (A′D − AD′) σ + (A′E − AE′) ρ + (A′F − AF′ ) η = 0  (22) 
 
to be its equation.  These conditions will correspond when C and C′ vanish and one 
simultaneously has: 

A′D − AD′ = 0.     (23) 
 
The axis of the complex that goes through the origin will then lie in the YZ-plane. 
 If C and C′, F and F′ vanish at the same time, and the condition (23) is likewise 
fulfilled then the axis of the complex will coincide with the coordinate axis OY.  The 
discussion of this case will find its completion later (in no. 76). 
 
 
 60.  The complexes Ω and Ω′ are any two that we have selected arbitrarily from the 
complex group (3).  However, among the infinitude of complexes in the group, in 
general, one will find ones that depend upon one less constant, and whose lines will all 
cut the axis (cf., no. 45).  For the determination of these complexes, we would like to start 
with the function determination (18), which, from the foregoing, is always permitted, 
except in the case where the condition equations (12) are likewise valid.  All axes of the 
complex, which is, moreover, represented by the equation: 
 

(Ar + Bs – Dσ + Eρ) + m (A′r + B′s – D′σ + E′ρ) = 0,  (24) 
 
will then intersect OZ in a right angle. 
 If the complex that corresponds to an arbitrary value of µ is of the type referred to 
then, from number 45, we will obtain the following equations for the three projections of 
its axis: 

(A   – Ez) + µ (A′   – E′z) = 0,    (25) 
(B   – Dz) + µ (B′   – D′z) = 0,    (26) 
(Ex – Dy) + µ (E′x – D′y) = 0.    (27) 

 
In such a complex, the plane that corresponds to a point in space is the one that can be 
drawn through the point and the axis of the complex in which all of its diameters coincide 
(no. 55).  The equation of the plane that corresponds to the origin is, by our assumption 
on the coordinate axes, the following one: 
 

(Ax + By) + µ (A′x + B′y) = 0.    (28) 
 
The axis of the complex will then lie in this plane. 
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 If we express any point on the axis of a to-be-determined complex by (x, y, z) then the 
foregoing four equations will exist between these coordinates simultaneously.  If we 
eliminate Z from (25) and (26) then we will get: 
 

(A + µ A′)(D + µ D′) + (B + µ B′)(E + µ E′ ) = 0.  (29) 
 
 We obtained the same equation by eliminating y / x between (27) and (28).  It 
expresses the idea that the parameter of the complex vanishes (no. 38).  We could have 
posed it from the outset. 
 
 
 61.  When we develop the last equation, it will become: 
 

 (A′D′ + B′E′) µ2 + [(A′D + AD′) + (B′E + EB′)] µ + (AD + EB) = 0. (30) 
 
If we denote the roots of this equation by µ0 and µ0 then that will give: 
 

µ0 + µ0 = − 
( ) ( )A D AD B E BE

A D B E

′ ′ ′ ′+ + +
′ ′ ′ ′+

,   (31) 

 

(µ0 − µ0)
2 = − 

2

2

[( ) ( )] 4( )( )

( )

A D AD B E BE A B AB D E DE

A D B E

′ ′ ′ ′ ′ ′ ′ ′− + − − − −
′ ′ ′ ′+

.  (32) 

 
There are then two complexes of a special kind in the complex group: 
 

Ω + µΩ′ = 0, 
 
such that the lines in each of them intersect along a fixed line – viz., the axis.  According 
to whether the two values of µ0 and µ0 are real or imaginary, the same will be true for the 
two complexes and their axes.  We would like to call the axes of the two complexes thus 
determined the two directrices of the congruence. 
 All lines of a congruence will cut its directrices. 
 
 
 62.  From the result that we achieved in the previous number, we can, moreover, 
define a congruence geometrically by saying that it is the totality of all lines that cut two 
given fixed straight lines.  The straight line in the congruence that corresponds to a given 
point is thus the one that goes through the given point and intersects the two directrices, 
while the straight line that corresponds to a given plane is the one that connects the 
intersection points of the given plane with the two directrices. 
 
 
 63.  If we eliminate µ from the two equations (25) and (26) then that will give: 
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A Ez

A E z

−
′ ′−

  = 
B Dz

B D z

+
′ ′+

,      (33) 

 
and when we develop this, we will get: 
 

(D′E − DE′) z2 + [(A′D − AD′) + (B′E − BE′)] z + (A′B′ − AB′) = 0.  (33) 
 
The roots of this equation determine the planes in which the directrices of the congruence 
lie, and thus the points at which OZ will be cut by the two directrices. 
 If we eliminate µ from the two equations (27) and (28) then that will give: 
 

Ex Dy

E x D y

−
′ ′−

 = 
Ax By

A x B y

+
′ ′+

.    (35) 

 
The two values that this equation gives for y / x are the trigonometric tangents of the 
angles that the two directrices of the congruence make with the direction of OX in the 
plane that was just determined.  If we set: 
 

y

x
 = tan ϑ, 

 
when we call that angle ϑ, then when we develop (35), that will give: 
 

(B′D – BD′) tan2 ϑ + [(A′B − AD′) – (B′E − BE′)] tan ϑ – (A′E − AE′) = 0.  (36) 
 
 
 64.  Due to the coincidence of the OZ coordinate axis with the straight line that cuts 
the two directrices of the congruence that is determined by (3) at right angles, the 
equations of the two complexes Ω and Ω′, which we choose arbitrarily from the two-
parameter group, will assume the following form: 
 

0,

0.

Ar Bs D E

A r B s D E

σ ρ
σ ρ

+ − + = 
′ ′ ′ ′+ − + = 

   (37) 

 
We can remove even more constants from the system of two equations. 
 The point that lies on the OZ axis at the midpoint between the two directrices shall be 
called the center of the congruence, and one half-the distance between the two directrices 
shall be called its constant.  If we then lay the XY-plane through the midpoint of the 
congruence then equation (34) will give: 
 

(A′D – AD′) + (B′E − BE′) = 0,   (38) 
 
and thus, if we denote the constant of the congruence by ∆: 
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∆ = 
A B AB

D E DE

′ ′−−
′ ′−

.     (39) 

Because the case: 
D′E − DE′ = 0 

 
under discussion is temporarily excluded, ∆ will always take on a finite value. 
 Up to now, the directions of the two coordinate axes have remained undetermined.  
We now additionally determine these directions in such a way that it bisects the angle 
that the directions of the two directrices define with each other – which can happen in 
two ways – so equation (36) will give: 
 

(A′D – AD′) – (B′E – BE′) = 0,   (40) 
 
and the trigonometric tangent of the angle that the directions of the two directrices make 
with OX will become: 

tan ϑ = 
A E AE

B D BD

′ ′−±
′ ′−

.    (41) 

 
 If we give the OX and OY axes the directions that were just referred to, and 
simultaneously assume that the origin is at the center of the congruence then the two 
condition equations (38) and (40) will be likewise valid, and can then be replaced by the 
following two: 

A′D – AD′ = 0,     (42) 
B′E – BE′ = 0.     (43) 

 
 We would like to call the two coordinate axes in the position thus determined the two 
auxiliary axes of the congruence.  They lie in the central plane of the congruence and 
bisect the angle that the two projections of the directrices onto this plane define with each 
other. 
 
 
 65.  This coordinate system yields: 
 

∆ = 
A B

D E

′ ′
−

′ ′
 = 

AB

DE
− ,    (44) 

 

tan ϑ = 
A E

B D

′ ′
± −

′ ′
 = 

AE

BD
± − .    (45) 

 
A congruence is determined by its two directions in a linear way, and will thus depend 
upon eight mutually-independent constants.  Six of these are again related to the choice of 
coordinate system, which is determined completely when we take the principal axis and 
the two auxiliary axes of the congruence to be coordinate axes.  The two complexes (37) 
that serve to determine the congruence depend upon six independent constants that enter 
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into their equations.  Since there are two condition equations (42) and (43), the number of 
them will reduce to four.  Two of these four constants will be still superfluous, which 
finds its explanation in the fact that we did not choose two distinguished complexes of 
the two-parameter group: 

Ω + µ Ω′ = 0 
 
for the determination of the congruence, but two arbitrary ones – namely, Ω and Ω′ 
− corresponding to µ = 0 and µ = ∞, respectively.  However, two distinguished 
complexes of the group are the two that have the two directrices for axes; that is, the ones 
whose parameters are equal to zero.  If we take these two complexes to be Ω and Ω′ then 
that will yield the two new condition equations: 
 

A D +  B E = 0,       (46) 
A′D′ + B′E′ = 0.        (47) 

 
Along with the six constants of the position, two constants will then remain for the 
determination of the congruence.  The number of constants will then necessarily be 
reduced to eight. 
 
 
 66.  In the new coordinate determination, the expressions (31) and (32) that were 
developed above will become: 

µ0 + µ0 = − 2 
AD BE

A D B E

′ ′+
′ ′ ′+

,    (48) 

 

(µ0 − µ0)
2 = − 4 2

( )( )

( )

A B AB D E DE

A D B E

′ ′ ′ ′− −
′ ′ ′+

.       (49) 

The two roots µ0 and µ0 are real when: 
 

(A′B – AB′)(D′E – DE′) < 0,    (50) 
and imaginary when: 

(A′B – AB′)(D′E – DE′) > 0.    (51) 
 
The foregoing expression can be written in accordance with the conditions equations (42) 
and (43) in the following form: 
 

A′B′D′E′ 
2

B A

B A
 − ′ ′ 

,  ABDE 
2

B A

B A

′ ′ −  
. 

 
The reality of the two roots will thus depend upon whether the products A′B′D′E′ and 
ABCE, which agree with each other in sign, are negative or positive.  In the former case, 
µ0 and µ0 will be real, and with them, in accordance with (44) and (45), A and the two 
values of tan ϑ will be real, as well; in the latter case, µ0, µ0 , ∆, and the two values of tan 
ϑ will be simultaneously imaginary. 
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 67.  The two values of µ0 and µ0 will be equal to each other when one of the two 
condition equations: 

A′B – AB′ = 0,  D′E – DE′ = 0    (52) 
 
is satisfied.  However, in this case, with consideration given to equations (42) and (43), 
one will generally get: 

A

A′
 = 

B

B′
 = 

D

D′
 = 

E

E′
. 

 
The two complexes Ω and Ω′ of the two-parameter group, and consequently all 
complexes of that group, will then be identical to them.  The determination of the 
congruence becomes illusory. 
 The apparent contradiction is resolved by this. 
 
 
 68.  However, there are also special cases in which the equation form (18) keeps its 
meaning even when the two values µ0 and µ0 are equal to each other.  In general, the two 
equations (42) and (43), in conjunction with one of the two equations (53), demand the 
second of the latter equations.  However, if − say − A and A′ are equal to zero then this 
will no longer be the case; we will then be dealing with an actual congruence that is of a 
special type. 
 In fact, (44) and (45) will vanish in this case, as well as ∆ and tan ϑ.  The two 
directrices of the congruence coincide in a straight line.  In agreement with this, the 
numerator in the value (49) for (µ0 − µ0)

2 will vanish, while the denominator will keep a 
finite value. 
 In our case, we can take the equation of the two-parameter group (37), with 
consideration given to equation (43): 

B′E – BE′ = 0, 
to be the following one: 

(Bs + Eρ) – Dσ + µ [(Bs + Eρ) – D′σ] = 0,   (53) 
 
and select the distinguished complexes from that group to be the following two whose 
equations are: 

Bs + Eρ = 0,  σ = 0, 
 
and these equations will also be written in the following way in homogeneous 
coordinates: 

B (y – y′) + E (x′z – xz′) = 0,  yz′ – y′z = 0.   (54) 
 
The first of the foregoing two complexes has the OY coordinate axis for its axis; its 
parameter is B / E.  The second complex is of a special kind that has a parameter that is 
equal to zero.  Its axis, which will then cut all of its lines, will fall along the OX 
coordinate axis.  In agreement with (44) and (45), OX will then be the directrix of the 
congruence. 
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 Whereas a congruence must generally be determined by its two directrices, in the 
special cases in which the two directrices coincide with a straight line, in addition to that 
straight line, yet another new complex of the two-parameter group that is determined by 
the  congruence will be given (*). 
 In the complex whose equation is the following one: 
 

B (y – y′) + E (x′z – xz′) = 0, 
 
any point of the OX coordinate axis will correspond to the plane: 
 

By + Ex′z = 0, 
 
where x′ refers to the distance to the point from the origin.  For any other complex of the 
two-parameter group (53), we will find the same plane, since y′ and z′ will vanish for all 
points that lie along OX.  This plane goes through OX.  We then conclude: 
 
 If the two directrices in a congruence coincide with a straight line then that line itself 
will be a common line of all complexes; that is, a line of the congruence. 
 
 We thus obtain a congruence of the kind in question when we take all lines in a 
complex that cut a fixed line in it.  When a point advances along a line of a complex, the 
plane that corresponds to it will rotate around that line (no. 28).  Infinitely many lines of 
the congruence will then go through each point of that straight line in which the two 
directrices coincide, which will all belong to a plane that goes through that straight line, 
in its own right.  If the point advances along a straight line then the plane will rotate 
around it.  The relationship between points and planes is completely reciprocal. 
 We further specify that A, A′, B, and B′ be equal to zero.  From (44), ∆ will then 
vanish, while, from (45), tan ϑ will take the form 0 / 0, and since no relation exists 
between the vanishing coefficients, it will be indeterminate.  Thus, to be consistent, the 
numerator and denominator in the expression (49) for (µ0 – µ0)

2 will likewise take on the 
value zero. 
 
 Any line that goes through the origin in the XY coordinate plane is a directrix of the 
congruence. 
 
 We take the equation of the two-parameter group that the congruence determines to 
be the following one, into which only mutually-independent constants enter: 
 

− Dσ + Eρ + µ (− D′σ + E′ρ) = 0.    (55) 
 
In particular, we can select the following two complexes from this group: 
                                                
 (*) The basis for this lies in the fact that a straight line represents four constants, while a congruence − 
which, like the present one, is specified by one condition − will depend upon seven.  We find the three 
remaining constants in the second given complex, which then depends upon only three arbitrary constants, 
since it is coupled to the two conditions that its axis cuts the straight line in which the two directrices of the 
congruence coincide, and in fact at right angles. 
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ρ = 0,  σ = 0, 
 
which will have the following equations, when expressed in homogeneous coordinates: 
 

x′z – xz′ = 0, yz′ – y′z = 0.    (56) 
 
Therefore, the congruence encompasses, on the one hand, all lines that lie in the XY 
plane, as well as all lines that go through the origin. 
 
 Every line of the congruence cuts all of its directrices.  The directrices are themselves 
lines of the congruence. 
 
 In general, a single line of the congruence in question will go through a given point: 
viz., the line that connects it to the origin.  In particular, if the given point lies in the XY 
plane then infinitely many lines of the congruence will go through it that all belong to the 
aforementioned coordinate plane.  If one shifts the point that is assumed to be in the XY 
plane to the origin, in particular, then each of the straight lines that go through it will 
belong to the congruence. 
 On the other hand, in general, one line of the congruence lies in each given plane: 
viz., its intersection line with the XY coordinate plane.  If the plane that goes through the 
origin coincides with the XY coordinate plane, in particular, then each of the straight lines 
that lie in it will belong to the congruence. 
 
 
 69.  In the foregoing, we took the principal axis of a congruence and its two auxiliary 
axes to be coordinate axes, and thus represented the congruence by the following two 
complex equations: 

0,

0,

Ar Bs D E

A r B s D E

σ ρ
σ ρ

Ω ≡ + − + = 
′ ′ ′ ′ ′Ω ≡ + − + = 

    (37) 

under the assumption that: 
A′D – AD′ = 0,      (42) 
B′E – B E′ = 0,     (43) 

and obtained: 

∆2 = − 
AB

DE
,      (44) 

tan2 ϑ = − AE

BD
       (45) 

 
for the geometric determination of the congruence.  The last two equations leave 
undecided whether the directrix of the congruence that corresponds to + tan ϑ cuts its 
principal axis at a point for which z = + ∆ or z = − ∆, so the other directrix, which 
corresponds to – tan ϑ, will cut the axis at the point whose z has the opposite sign.  
Therefore, in agreement with the above, we will arrive at the same equations (44) and 
(45) when we simultaneously change the signs of A and B and A′ and B′ in equations 
(37), or – what amounts to the same thing – the signs of D and E and D′ and E′.  If we 
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denote the complexes that corresponding to this exchange by the symbols Ω1 and 1′Ω  

then the following equations will enter in place of the previous ones: 
 

1

1

0,

0.

Ar Bs D E

A r B s D E

σ ρ
σ ρ

Ω ≡ + + − = 
′ ′ ′ ′ ′Ω ≡ + + − = 

     (57) 

 
The two congruences that are represented by the two equation-pairs (37) and (57) have 
the same center and the same central plane, and perpendicular to it, the same principal 
axis and the same auxiliary axes.  The distances between the two directrices and the 
angles that their directions make with each other are equal in the two congruences.  The 
relationship between the two congruences is a reciprocal one; when we once more appeal 
to the previous image of a reflection and consider the XY-plane (or some other coordinate 
plane in its place) to be a plane of reflection, the one will be the mirror image of the 
other.  We would like to call two congruences that have this relationship to each other 
two conjugate congruences. 
 
 
 70.  In the foregoing, we showed that a congruence simultaneously belongs to all 
complexes in a two-parameter family, and that among these complexes, in general, two of 
them will be of the special kind whose parameter is equal to zero.  The axis of each of the 
two complexes will be cut by all of its lines, from which, it will follow that all lines of the 
congruence will cut its two axes, since they must also belong to these two complexes.  
Correspondingly, we have defined these axes to be the two directrices of a congruence.  
However, we can also regard the two directrices from a different viewpoint. 
 
 
 71.  A congruence is determined in such a way that its lines simultaneously belong to 
two complexes that are taken arbitrarily from a two-parameter group of complexes.  The 
complex will be represented by the equation: 
 

Ω + µ Ω′ = 0, 
 
when we set µ equal to two successive, arbitrary values in it.  In that way, however, the 
number of independent constants in that equation will be reduced by one unit.  The 
number of constants upon which the congruence depends will then amount to: 
 

2 (5 – 1) = 8, 
 
which is the sum of the constants in two complexes when their constants have been 
reduced from five to four.  If a line that belongs to the congruence is given then we will 
obtain a linear condition equation between the four constants of each of the two 
complexes by which the congruence will be given.  Four given straight lines of the 
congruence are necessary and sufficient to determine the two complexes, and thus, the 
congruence.  Two straight lines that do not belong to the congruence are determined by 
four given straight lines of the congruence if they intersect the four given ones.  These 



§ 2.  Congruences of two linear complexes. 71 

lines depend upon eight constants; they mutually determine the four given lines and all 
lines of the congruence. 
 Four lines of a complex will determine a congruence that the complex belongs to.  If 
the congruence is given by four of its lines then a complex that belongs to the congruence 
will be determined by a fifth line.  The two lines that cut the four given lines are, on the 
one hand, the two directrices of the congruence, and on the other hand, two associated 
polars of any complex that belongs to the congruence. 
 
 Two associated polars of a given complex are the two directrices of a congruence 
that the complex belongs to. 
 The two directrices of a given congruence are two associated polars of any complex 
that belongs to the congruence. 
 If the two directrices coincide in a straight line then this common line to all 
complexes will then itself be a line of the congruence (cf., no. 68). 
 
 
 72.  In general, only one line of a given congruence will go through a given point, just 
as only one of its lines will lie in any plane.  We can consider the two directrices to be the 
locus of points through which infinitely many lines of the congruence go, as well as, on 
the other hand, the locus of all points that are enveloped by planes in which infinitely 
many lines of the congruence lie.  Namely, if a point is assumed to be on one of two 
associated polars of a complex in the two-parameter group then the plane that goes 
through the point and the other polar will be the plane that corresponds to the point in the 
complex.  Therefore, if the two associated polars belong to all complexes of a two-
parameter group then each point of one of the two common polars in all complexes will 
correspond to the same plane that is determined by the fact that it goes through the other 
polar.  The relationship between the two polars to the complexes of the group is 
completely reciprocal.  Conversely, we can also start with a plane that is drawn through 
one of the two polars; the point that corresponds to that plane in all complexes of the two-
parameter group will then be the same point, and indeed, it will be the intersection of that 
plane with the other polars.  Thus, whereas a given point will correspond to one straight 
line in a congruence, if it is assumed to be on one of the two directrices, in particular, 
then it will correspond to one plane that goes through the other directrix, just as any plane 
that generally corresponds to a single straight line, will correspond to one point that lies 
on one of the directrices when it goes through the other directrix. 
 
 
 73.  We can thus paraphrase the foregoing definition of the directrices in the 
following way: They are the geometric loci of those points that correspond to the same 
plane in the various complexes of the relevant two-parameter family, or also the loci of 
points that are enveloped by those planes that correspond to the same point in the various 
complexes.  This is immediately linked to a new analytical determination of the two 
directrices of a congruence whether we make use of ray coordinates or axial coordinates. 
 As before (3), we would like to take: 
 

Ω + µ Ω′ = 0 
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to be the equation of the complex group, in which we generally set: 
 
 Ω  ≡ A r + B s + C  – D σ + E ρ + F η, 
 Ω′ ≡ A′r + B′s + C′ – D′σ + E′ρ + F′η. 
 
The equation of the plane that corresponds to a given point x′, y′, z′ in any complex of the 
group that is referred to an arbitrary choice of undetermined coefficients will then be the 
following one (no. 27): 
 

(A + Fy′ − Ez′) x + (B − Fx′ + Dz′) y + (C + Ex′ − Dy′) z + (Ax′ + By′ + Cz′) 
+ µ [(A′ + F′y′ − E′z′) x + (B′ − F′x′ + D′z′) y + (C′ + E′x′ − D′y′) z + (A′x′ + B′y′ + C′z′)] 

= 0.    (58) 
 

This equation will always be satisfied, no matter what the value of µ might be, when one 
has: 

(A + Fy′ − Ez′) x + (B − Fx′ + Dz′) y + (C + Ex′ − Dy′) z + (Ax′ + By′ + Cz′) = 0, (59) 
 

(A′ + F′ y′ − E′z′) x + (B′ − F′ x′ + D′z′) y + (C′ + E′x′ − D′y′) z + (A′x′ + B′y′ + C′z′) 
= 0,    (60) 

 
simultaneously.  The two planes that are represented by these equations will correspond 
to the given point in the complexes Ω and Ω′; they will have a common line of 
intersection with the planes that correspond to the same point in the various complexes of 
the group.  In particular, if the two planes (59) and (60) coincide then all of the planes 
(58) that correspond to that point will coincide.  In order for this to happen, the last two 
equations must be zero identically, which immediately yields the following six relations: 
 

A Fy Ez

A F y E z

′ ′+ −
′ ′ ′ ′ ′+ −

 = 
B Fx Dz

B F x D z

′ ′− +
′ ′ ′ ′ ′− +

= 
C Ex Dy

C E x D y

′ ′+ −
′ ′ ′ ′ ′+ −

= 
A By Cz

A B y C z

′ ′+ +
′ ′ ′ ′ ′+ +

. (61) 

 
The point (x′, y′, z′) that is determined by (61) lies on the two directrices of the 
congruence.  We would like to consider its coordinates to be variable and 
correspondingly drop the prime that they are endowed with from now on. 
 
 
 74.  In order to interpret equations (61) geometrically, we would like to let P and P′, 
Q and Q′, R and R′ denote those planes that are associated with the axes OX, OY, OZ, 
resp., in the two complexes Ω and Ω′ − in other words, they correspond to the points that 
lie at infinity on these axes – and denote the planes that correspond to the origin in the 
two complexes by S and S′.  The equations of these planes will then be: 
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0, 0,

0, 0,

0, 0,

0, 0.

A Fy Ez p A F y E z p

B Fx Dz q B F x D z q

C Ex Dy r C E x D y r

Ax By Cz s A x B y C z s

′ ′ ′ ′+ − = = + − = = 
′ ′ ′ ′− + = = − + = = 
′ ′ ′ ′+ − = = + − = = 
′ ′ ′ ′+ + = = + + = = 

  (62) 

 
The following two identities exist between the linear functions p, q, r, s and p′, q′, r′, s′ : 
 

,

.

p x q y r z s

p x q y r z s

+ + ≡ 
′ ′ ′ ′+ + ≡ 

    (63) 

 
Reciprocally, the special form of the eight linear functions is determined by these two 
identities. 
 The straight lines PP′, QQ′, RR′, SS′ are four straight lines that correspond in the 
congruence to those four points that have a distinguished position relative to the chosen 
coordinate system, namely, the three points that lie at infinity in the directions of the 
three coordinate axes and the origin.  The four lines belong to the congruence.  The two 
directrices of the congruence are determined completely by saying that they cut these 
four straight lines.  The two directrices will be real or imaginary according to whether the 
ruled surface that has any three of the four straight lines PP′, QQ′, RR′, SS′ as the lines of 
its generators is or is not cut by the fourth of these lines, respectively. 
 After introducing the eight symbols, the four-part equation (61) will become: 
 

p

p′
 = 

q

q′
 = 

r

r ′
 = 

s

s′
.     (64) 

 
As a consequence of the two identities (62), this will immediately yield the three-part 
equation: 

p

p′
 = 

q

q′
 = 

r

r ′
.     (65) 

 
This equation will then be sufficient for the determination of the two directrices.  It will 
resolve into the following three equations: 
 

,

,

,

pq p q

pr p r

qr q r

′ ′= 
′ ′= 
′ ′= 

      (66) 

 
which represent three second-order ruled surfaces that go through the two directrices.  As 
a consequence of the four-part equation (64), three new ruled surfaces get added to these 
three ruled surfaces, which likewise contain the two directrices, and which will be 
represented by the equations: 
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,

,

.

ps p s

ps p s

qs q s

′ ′= 
′ ′= 
′ ′= 

       (67) 

 
The two directrices are determined in this way such that they intersect on any two of the 
six hyperboloids (66) and (67) (*). 
                                                
 (*) It should be stressed especially that the four-part equation (64) represents a system of two real or 
imaginary straight lines in exactly the same way that the three-part equation: 
 

0x x

a

−
= 0y y

b

−
= 0z z

c

−
 

 
represents a single straight line.  The foregoing equation then contains five independent constants, one of 
which is superfluous and comes down expressing to the fact that (x0, y0, z0) is an arbitrary point of the line 
that is represented.  By the determination of the functions that was made, equation (64) contains ten 
independent constants, including two superfluous ones that are required by the fact that the two complexes 
Ω and Ω′ can be replaced with two other ones in the two-parameter group: 
 

Ω + µ Ω′ = 0. 
 
 It would seem appropriate to derive this result directly, as well. 
 Equation (65) will be satisfied when the three equations: 
 
 p = λ p′, 
 q = λ q′, 
 r = λ r′ 
 
happen to be satisfied simultaneously, which, when developed, will go to the following ones: 
 

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

A A F F y E E z

B B F F x D D z

C C E E x D D y

λ λ λ
λ λ λ
λ λ λ

′ ′ ′ − + − − − =
′ ′ ′− − − + − = 
′ ′ ′− + − − + = 

    (68) 

 
Those points that simultaneously lie in the planes that are represented by these equations will belong to the 
locus that is represented by equation (65).  However, for a given value of λ, the foregoing three equations 
will generally contradict each other.  This contradiction will be eliminated only when x, y, z become 
infinitely large, and thus the relevant point goes to infinity.  However, it would then not be permissible to 
derive the fourth equation: 

s = λs′ 
from the foregoing three. 
 However, if one has: 
 

(A – λA′)(D – λD′) + (B – λB′)(E – λE′) + (C – λC′)(F – λF′) = 0,  (69) 
 
in particular, then one of the three equations in question will be an algebraic consequence of the other two; 
the three respective planes will intersect in a straight line.  Since the last equation generally gives two 
values to λ, there will also be two such straight lines.  The points of these two straight lines will then be 
points that lie at infinity whose coordinates satisfy equation (65), and thus (64).  Two straight lines will 
then be represented by equation (64), namely, the two directrices. 
 In order to add some clarifications, we would like to start with the theorem that two ruled surfaces of 
order and class two that go through two straight lines will intersect in two other straight lines, in addition.  
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 If C and F, C′ and F′ are equal to zero, in particular, then setting the four expressions 
(61) equal to each other will yield the two equations (34) and (36) by which we 
previously determined the two directrices (*). 
 
 

                                                                                                                                            
This theorem will also preserve its meaning when one of the two given straight lines lies at infinity in a 
given plane.  The surfaces will then no longer be two one-sheeted hyperboloids, but two hyperbolic 
paraboloids whose lines will be parallel to a generator of the given plane.  Thus, if the six surfaces (66) and 
(67) have two fixed straight lines for the lines of one of their two generators then, when composed pair-
wise, they will have two other lines for the common lines of their other generator.  Conversely, it must then 
be verified that any two of the six ruled surfaces go through the same two straight lines. 
 If we return to the functions that are represented by the symbols that enter into equations (66), and set, 
for the sake of brevity: 

(E′F – EF′ ) x – (D′F – DF′ ) y+ (D′E – DE′) z ≡ g, 
(A′B – AB′) – (A′F – AF′ ) x + (B′F – BF′ ) y + [(A′D – AD′) – (B′E – BE′)] z ≡ h2  

 
then the first of the three equations (66) will assume the form: 
 

h2 + g z = 0,     (70) 
 
with which, the last two of equations (65) will go to the following ones: 
 

2

0.

0,h

h gz

gz 


+ = 

+ =
     (71) 

 
The functions g are the same in the three equations.  The expressions h1 and h will be obtained immediately 
when we first switch B and B′ with C and C′, E and E′ with F and F′ in h2, as well as switching y with z 
with a change of sign and changing the sign of x; we then switch A and A′ with C and C′, D and D′ with F 
and F′, as well as switching x with z, with a change of sign, and changing the sign of y. 
 The original form of the three equations (66) shows that the three ruled surfaces that are represented by 
these equations, when taken pair-wise, have PP′, QQ′, RR′ for a common generator.  The new form of these 
equations shows that these three surfaces are hyperbolic paraboloids and have a second common generator 
that lies at infinity in the plane that is represented by the equation: 
 

(E′F – EF′ ) x – (D′F – DF′ ) y + (D′E – DE′) z ≡ h = 0. 
 
This plane is parallel to the three lines PP′, QQ′, RR′. 
 We can then develop equations (67) in the following way: 
 

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

pq p q y pr p r z

qr q r z pq p q x

pr p r x qr q r y

′ ′ ′ ′ − + − =
′ ′ ′ ′− + − = 
′ ′ ′ ′− + − = 

     (72) 

 
and then, from the foregoing, we can also write them as follows: 
 

1 2

2

1

0,
0,
0.

h h

h z h

h y h

z y
x
x




+ 
+ 

+ =
=
=

      (73) 

 (*) Confer “On a New Geometry of Space,” Phil. Trans. (1865), pp. 750.  
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 75.  Here, we would like to append to equations (61) only the discussion that is 
connected with those two cases that were left out of the previous discussion as a result of 
the special coordinate determination.  In the one case, one has: 
 

D

D′
 = 

E

E′
= 

F

F ′
,     (74) 

while in the other case, one has: 
A

A′
 = 

B

B′
 = 

C

C′
.     (75) 

 In the first case, when we set: 
 

µ = − 
D

D′
 = − E

E′
= − F

F ′
,     (76) 

 
we will get a complex whose equation we can take to be the following three identities: 
 

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

A D AD r B D BD s C D CD

A E AE r B E BE s C E CE

A F AF r B F BF s C F CF

′ ′ ′ ′ ′ ′− + − + − = 
′ ′ ′ ′ ′ ′− + − + − = 
′ ′ ′ ′ ′ ′− + − + − = 

   (77) 

 
All lines of the congruence will then be parallel to a plane whose equation we will get 
when we replace r and s with x / z and y / z, resp., in the foregoing equations.  A directrix 
lies at infinity in the same plane: viz., the line of intersection of parallel planes.  We have 
called a congruence whose one directrix lies at infinity a parabolic congruence.  The first 
expressions in (61) give the means to determine the directrix that does not lie at infinity 
when one sets them equal in pairs: 
 
( ) ( ) ( ) [( ) ( )] 0,

( ) ( ) [( ) ( )] ( ) 0,

( ) [( ) ( )] ( ) ( ) 0

A B AB A F AF x B F BF y A D AD B E BE z

A C AC A E AE x A D AD C F CF y C E CE z

B C BC B E BE C F CF x B D BD y C D CD z

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − + − + − = 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − − − + − + − = 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − + − − − − − = 

   (78) 

 
These three equations represent three planes that go through the directrix.  In particular, 
when F and F′ vanish, the conditions in question will reduce to: 
 

D′ E – D E′ = 0. 
 
We then get the following mutually identical equations for the plane that is parallel to one 
directrix: 

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

A D AD x B D BD y C D CD z

A E AE x B E BE y C E CE z

′ ′ ′ ′ ′ ′− + − + − = 
′ ′ ′ ′ ′ ′− + − + − = 

  (79) 

 
and the following equations for the other one: 
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( ) [( ) ( )] 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

A B AB A D AD B E BE z

A C AC A E AE x A D AD y C E CE z

B C BC B E BE x B D BD y C D CD z

′ ′ ′ ′ ′ ′− + − + − = 
′ ′ ′ ′ ′ ′ ′ ′− + − − − + − = 
′ ′ ′ ′ ′ ′ ′ ′− + − − − + − = 

 (80) 

 
The directrix that does not lie at infinity will then be parallel to the XY-plane. 
 The conditions in question will also be satisfied, in particular, when D and D′, E and 
E′ vanish simultaneously.  One directrix will then lie at infinity in the previous plane, 
which will now be represented by the equation: 
 

(A′F – AF′ ) x + (B′F – BF′ ) y + (C′F – CF′) z = 0.   (81) 
 
For the one directrix, one gets: 

( ) ( ) ( ) 0,

,

.

A B AB A F AF x B F BF y

A C AC
y

C F CF
B C BC

z
C F CF


′ ′ ′ ′ ′ ′ − − − − − =

′ ′− = ′ ′− 
′ ′− = − ′ ′− 

   (82) 

 
It will then be parallel to the OZ axis and cut the XY plane at a point whose coordinates 
are determined by the last two equations.  If we substitute these coordinate values in the 
first of the last three equations then that equation will be satisfied as a consequence of the 
identity: 
 

(A′B – AB′)(C′F – CF′ ) + (B′C – BC′)(A′F – AF′ ) – (A′C – AC′)(B′F – BF′ ) ≡ 0. 
 
 In particular, if: 

(A′D – AD′) + (B′E – BE′) + (C′F – CF′ ) = 0  (83) 
 
then that will specify a parabolic congruence.  Thereupon, the three planes (78), by 
whose intersection the finite directrix of the congruence was determined, will become 
parallel to each other and to the plane in which the second directrix at infinity lies. 
 
 The two directrices of a parabolic congruence coincide in a straight line at infinity. 
 
 We shall not go further into this special kind of congruence, since it is completely 
analogous to the case that was treated in number 68. 
 The foregoing condition equation (83) will be satisfied due to (62), in particular, 
when: 

0,

0.

A D B E C F

A D B E C F

+ + = 
′ ′ ′ ′ ′ ′+ + = 

    (84) 

 
Thereupon, all complexes of the two-parameter group that is determined by the 
congruence will be of the particular kind whose parameters vanish.  In agreement with 
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that, the three planes (78) will coincide in a single one.  Since the axes of all complexes 
that belong to a parabolic congruence are parallel to each other, we conclude that: 
 
 The congruence has infinitely many mutually-parallel directrices that lie in the same 
plane.  The directrix at infinity also lies in that plane. 
 
 This case corresponds to the second case of number 68.  It is merely the common 
intersection of the directrices, which has been shifted to infinity. 
 
 
 76.  When the condition equations (63) are fulfilled, the special values of the 
undetermined coefficient: 

µ = − A

A′
 = − B

B′
 = − C

C′
    (85) 

 
will correspond to a complex of the two-parameter group that is represented by one of the 
three following mutually identical equations: 
 

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

A D AD A E AE A F AF

B D BD B E BE B F BF

C D CD C E CE C F CF

σ ρ η
σ ρ η
σ ρ η

′ ′ ′ ′ ′ ′− − + − + − = 
′ ′ ′ ′ ′ ′− − + − + − = 
′ ′ ′ ′ ′ ′− − + − + − = 

  (86) 

 
The axis of the complex will be perpendicular at the origin to the plane that will be 
represented by the last equation when we switch – σ, ρ, η with x, y, z, resp.  Since the 
parameter of the complex is equal to zero, this axis will be one of the two directrices of 
the congruence.  In agreement with that, equations (61) will be satisfied when x, y, z 
vanish simultaneously.  In the present case, these equations will reduce to: 
 

A Fy Ez

A F y E z

+ −
′ ′ ′+ −

 = 
B Fx Dz

B F x D z

− +
′ ′ ′− +

= 
C Ex Dy

C E x D y

+ −
′ ′ ′+ −

= 
A

A′
 = 

B

B′
 ≡ 

C

C′
.  (87) 

 
If we set the first three of their four terms equal to the fourth one then that will give: 
 
 (C′F – CF′ ) y – (C′E – CE′) z  = 0, 
 (C′F – CF′ ) x – (C′D – CD′) z = 0, 
 (C′E – CE′ ) x – (C′D – CD′) y = 0. 
 
These equations, in which we can write B and A in place of C, can be consolidated in the 
following way: 

x

C D CD′ ′−
 = 

y

C E CE′ ′−
= 

z

C F CF′ ′−
,   (88) 

 
and represent the directrix that goes through the origin. 
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 The condition equations (63) will be satisfied, in particular, when A and A′, B and B′ 
vanish.  If we set the first three expressions in (61) equal to each other pair-wise then we 
will get: 

[( ) ( ) ( ) ] 0,

[( ) ( ) ( ) ( ) ] 0,

[( ) ( ) ( ) ( ) ] 0.

E F EF x D F DF y D E DE z z

C F CF E F EF x D F DF y D E DE z y

C F CF E F EF x D F DF y D E DE z x

′ ′ ′ ′ ′ ′− − − + − = 
′ ′ ′ ′ ′ ′ ′ ′− + − − − + − = 
′ ′ ′ ′ ′ ′ ′ ′− + − − − + − = 

 (89) 

 
In order to satisfy the foregoing three equations simultaneously, it will suffice to set: 
 

0,

( ) ( ) ( ) 0.

z

C F CF E F EF x D F DF y

= 
′ ′ ′ ′ ′ ′− + − − − = 

   (90) 

 
The straight line that is represented by these two equations is the second directrix of the 
congruence.  It lies in the XY coordinate plane. 
 
 
 77.  If one has: 

A

A′
 = 

B

B′
 = 

C

C′
, 

D

D′
= 

E

E′
= 

F

F ′
 

 
simultaneously then the congruence will be a parabolic one whose directrix that does not 
lie at infinity will go through the coordinate origin.  The equation of the plane that is 
drawn through the origin and parallel to the lines of the congruence will then be the 
following one: 

Ax + By + Cz = 0. 
 
The directrix that goes through the origin will have the equations: 
 

x

D
 = 

y

E
 = 

z

F
, 

 
and the plane that goes through the origin and is perpendicular to it will have the 
equation: 

Dx + Ey + Fz = 0. 
 
 

 78.  If we specialize by setting: 
 

A′B − AB′ = 0,  
D

D′
 = 

E

E′
 = 

F

F ′
   (91) 

 
then all of the lines of the parabolic congruence will be parallel to a plane that is 
perpendicular to the XY coordinate plane, while its directrix will go through the origin. 
 If: 
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A, A′, B, B′ = 0, 
D

D′
 = 

E

E′
 = 

F

F ′
   (92) 

 
then all lines of the parabolic congruence will be parallel to the XY plane. 
 If: 

D′E − DE′ = 0, F, F′ = 0, 
A

A′
 = 

B

B′
 = 

C

C′
  (93) 

 
then the directrix of the parabolic congruence will lie in the XY plane. 
 If: 

D, D′, E, E′ = 0, 
A

A′
 = 

B

B′
 = 

C

C′
   (93) 

 
then the directrix of the parabolic congruence will fall upon the OZ coordinate axis. 
 If: 

A, A′, B, B′, D, D′, E, E′ = 0    (95) 
 
then the lines of the parabolic congruence will be parallel to the XY coordinate plane, and 
its directrix will coincide with the OZ coordinate axis.  With that assumption, the 
equation of the two-parameter complex group will become: 
 

(C + Fη) + µ (C′ + F′η) = 0,    (96) 
 
and for an arbitrary choice of k all complexes of the group will be represented by (*): 
 

η + k = 0.     (97) 
 If: 

C

C′
= 

D

D′
= 

E

E′
     (98) 

then 

µ = − C

C′
= − D

D′
= − E

E′
    (99) 

 
will give the following equation for a complex of the two-parameter group: 
 

(A′C – AC′) r + (B′C – BC′) s – (C′F – CF′) η = 0. 
 

                                                

 (*) If we set η equal to the expression 
xy x y

z z

′ ′−
′−

 then the equation in the text will go to the following one: 

xy x y

z z

′ ′−
′−

 = k, 

and when k is undetermined, it will give: 
x′y – xy′ = 0, z – z′ = 0 

simultaneously. 
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This complex will be of a special kind whose lines all intersect its axis, and that axis, 
which is a directrix of the congruence, will be parallel to the OZ coordinate plane here 
and will cut the XY plane at a point whose equation in line coordinates of that plane will 
be the following one: 
 

(B′C – BC′) t – (A′C – AC′) u – (C′F – CF′) w = 0. 
 
[Cf., no. 45 (95)]. 
 In particular, if: 

A

A′
 = 

B

B′
 = 

C

C′
= 

E

E′
= 

F

F ′
    (100) 

 
then one directrix of the congruence will coincide with the OZ axis. 
 In order to give one last example, we would like to set: 
 

A

A′
 = 

B

B′
 = 

F

F ′
, 

C

C′
=

D

D′
=

E

E′
.    (101) 

 
If we then take: 

,
A B F

A B F
C D E

C D E

µ

µ

= − = − = − ′ ′ ′

= − = − = −
′ ′ ′ 

    (102) 

 
in succession then we will obtain the following equations for two complexes of the 
group: 
 Ω + µ Ω′ = 0, 
namely: 

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

A C AC A D AD A E AE

A C AC r B C BC s C F CF

σ ρ
η

′ ′ ′ ′ ′ ′− − − + − = 
′ ′ ′ ′ ′ ′− − − − − = 

  (103) 

 
These two equations will reduce to: 
 

0,

0,

C D E

Ar Bs F

σ ρ
η

− + = 
+ + = 

   (104) 

 
and will represent two complexes of the special kind whose parameters vanish.  The axes 
will be the directrices of the congruence.  One of them will lie in the XY plane and will be 
represented in that plane by the equation: 
 

C + Ex – Dy = 0.     (105) 
 
The other will be parallel to the OZ axis and will cut the XY plane at a point that will be 
represented by the equation: 



82 Chapter One: First-degree line complexes and their congruences 

Bt – Au + F = 0     (106) 
in that plane. 
 
 
 79.  Up to now, we have appealed to rectangular coordinate axes for the analytic 
representation of a two-parameter complex group and the congruence that it determines, 
and thereby chose the center of the congruence to be the coordinate origin and the OZ 
axis to be the line that intersects the two directrices at right angles.  When we then let the 
two OX and OY axes coincide with the two auxiliary axes of the congruence, we obtained 
the general determination of them in number 69 in the simplest way. 
 However, we can also take any arbitrary line of the congruence to be the OZ axis and 
the point at which it cuts the central plane to be the origin.  If we then displace the two 
auxiliary axes in that plane parallel to themselves in such a way that they intersect at the 
new origin then, as before, they will bisect the angle that the two directrices define with 
each other when projected onto the central plane along OZ.  It is clear that the equation of 
the complex group will keep its previous form in the new coordinate determination.  If γ 
is the angle of inclination of the OZ axis with respect to the XY plane then ∆ / sin γ will 
enter in place of ∆, moreover; that is, the distance from the intersection point of the OZ 
axis with the two directrices to the coordinate origin. 
 Finally, we can also choose the two OX and OY axes in the central plane arbitrarily 
without changing the form of the equation above, in such a way that they will define four 
harmonics with the projections of the two directrices.  We can refer to the OZ axis as a 
principal diameter and the OX and OY axes as two conjugate auxiliary diameters of the 
congruence.  The conjugate auxiliary diameters will also remain real when the two 
directrices are imaginary. 
 Previously, we defined two conjugate congruences in such a way that the axes and 
auxiliary axes were the same for both, except that the directrices that went through the 
vertex of the axis had their directions switched.  We can replace the axis of the 
congruence in this definition with an arbitrary diameter.  A congruence will then have 
infinitely many conjugates: Each of its diameters will correspond to one. 
 
 
 80.  The foregoing includes the complete discussion of the two congruences that are 
determined by two-parameter complex groups.  In the sequel, we would like to link this 
discussion with some new considerations that are determined in order to give an intuitive 
picture to the nature of such congruences. 
 In connection with number 69, with the assumption of rectangular coordinates: 
 

Ar + Bs – Dσ + Eρ = 0    (107) 
 
represents one of the two complexes of a special kind that have one of the two directrices 
of the congruence for an axis.  We then get the following equation for the determination 
of the constants in this equation: 

AD + BE = 0,     (108) 
 
along with the two equations (44) and (45).  The first two condition equations yield: 
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2

2

A

D
 = ∆2 tan2 ϑ,    (109) 

and (44) and (108) give: 
2

2

B

D
 = ∆2.     (110) 

 
If we divide the last two equations and consider (108) then that will give: 
 

2

2

A

B
= 

2

2

E

D
 = tan2 ϑ .    (111) 

 
If we set D = 1, while only taking absolute values of A, B, E, and we consider that, from 
number 66, the product: 

ABC = ∆2 tan2 ϑ  
 
must have a positive value for the case of real directrices then that will give the four 
following possible determinations of the constants: 
 

A = − ∆ tan ϑ,  B = + ∆, E = − tan ϑ,  (112) 
A = − ∆ tan ϑ,  B = − ∆, E = + tan ϑ,  (113) 
A = + ∆ tan ϑ,  B = + ∆, E = + tan ϑ,  (114) 
A = + ∆ tan ϑ,  B = − ∆, E = − tan ϑ .  (115) 

 
The first two combinations, and likewise the last two, can be derived from each other 
when one simultaneously changes the signs of ∆ and tan ϑ.  The first two combinations 
thus determine the complexes in question of one of two conjugate congruences, while the 
last two determine those of the other one.  When we set: 
 

tan tan 0,

tan tan 0,

r s

r s

σ ϑ ϑ ρ
σ ϑ ϑ ρ

Ξ ≡ − ∆ ⋅ − ⋅ + ∆ = 
′Ξ ≡ − ∆ ⋅ + ⋅ − ∆ = 

  (116) 

 
we can then represent the complex group of one congruence by: 
 

Ξ + µ Ξ′ = 0,     (117) 
and when we set: 

1

1

tan tan 0,

tan tan 0,

r s

r s

σ ϑ ϑ ρ
σ ϑ ϑ ρ

Ξ ≡ + ∆ ⋅ + ⋅ + ∆ = 
′Ξ ≡ + ∆ ⋅ − ⋅ − ∆ = 

  (118) 

 
we can represent the conjugate congruence by: 
 

Ξ1 + 1µ ′Ξ  = 0.     (119) 
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 81.  Perhaps it is not inappropriate to also derive the foregoing equations in a direct 
way.  While preserving the coordinate determination up to now, let the equations of the 
two directrices of a congruence, which are regarded as given, be: 
 

tan , ,

tan , .

y x z

y x z

ϑ
ϑ

= ⋅ = ∆ 
= − ⋅ = −∆ 

    (120) 

 
One will then be dealing with the determination of two complexes of a special kind 
whose axes coincide with the two directrices.  If we displace the two complexes with 
their axes in such a way that the latter shift into the XY coordinate plane, which coincides 
with the central plane of the congruence, then we will get the equations of the two 
complexes in the new position immediately when we switch the given x and y directions 
with ρ and σ in the equations, resp.  In this way, we will get: 
 

tan ,

tan .

σ ϑ ρ
σ ϑ ρ

= ⋅ 
= − ⋅ 

    (121) 

 
If we then return the complex to its original position then we will have to switch (no. 12) 
ρ and σ with: 

ρ + ∆ ⋅⋅⋅⋅ r and  σ + ∆ ⋅⋅⋅⋅ s, 
 
resp., in the equation of the first one and with: 
 

ρ − ∆ ⋅⋅⋅⋅ r and  σ − ∆ ⋅⋅⋅⋅ s, 
 
resp., in the equation of the second one.  After this exchange, we will get: 
 

tan tan 0,

tan tan 0.

r s

r s

σ ϑ ϑ ρ
σ ϑ ϑ ρ

− ∆ ⋅ − ⋅ + ∆ ⋅ = 
− ∆ ⋅ + ⋅ − ∆ ⋅ = 

   (116) 

 
These equations are the same as the ones that we just found for the first of the two 
conjugate congruences; we will get the equations of the second one by changing the sign 
of tan ϑ in (116), (118). 
 
 
 82.  We can take the two complexes Ξ and Ξ′, instead of the two complexes Ω and 
Ω′, for the determination of the congruence, and thus represent the same complex group 
that we previously represented by the equation: 
 

Ω + µ Ω′ = 0          (3) 
 
by the equation: 

Ξ + µ Ξ′ = 0     (117) 
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from now on.  When we develop this equation and set: 
 

1

1

µ
µ

−
+

 = λ,     (122) 

for the sake of brevity, it will become: 
 

σ – ∆ tan ϑ ⋅⋅⋅⋅ r – λ (tan ϑ ⋅⋅⋅⋅ ρ – ∆ ⋅⋅⋅⋅ s) = 0.   (123) 
 
When we substitute all possible values for λ, it will represent all of the complexes of the 
two-parameter group by which the congruence is determined. 
 Two complexes, in particular, belong to these complexes, which correspond to the 
values λ = 0 and λ = ∞, and when we set: 
 
  ∆ tan ϑ  ≡ k0, 

(124) 

     
tanϑ

∆
 ≡ k0

 , 

 
for the sake of brevity, they can be represented by the two equations: 
 

0 0

0 0

0,

0.

k r

k s

σ
ρ

Ω = + − ⋅ =
Ω = + − ⋅ = 

  (61) 

 
The parameters of the two complexes are k0 and k0 .  Their axes coincide with the two 
auxiliary axes of the congruence.  Their point of intersection is the center of the 
congruence.  Due to their distinguished relationship to the congruence, we would like to 
emphasize them especially, and call them its two central complexes. 
 When the conjugate congruences enter in place of the given one, the axes of the two 
central complexes, which coincide with the common auxiliary axes of the two 
congruences, will remain the same.  The absolute values of their two parameters will not 
change, but only as a result of changing the sign of tan ϑ simultaneously with the sign of 
both parameters. 
 If we set: 

λ tan ϑ ≡ λ0 , 
 
for the sake of brevity, then the equation of the complex group will assume the following 
simple form: 

Ω0 + λ0 Ω0 ≡ (σ – k0 r) + λ0 (ρ + k0 s) = 0.   (126) 
One has: 

0 2
0

0
2

0

,

tan ,

k k

k

k
ϑ

= −∆

= − 


    (127) 

and therefore: 
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0
0

0
0

0
0

0
0

2
,

sin cos sin 2
2

,
tan 2

cos2 .

k k

k k

k k

k k

ϑ ϑ ϑ

ϑ

ϑ

∆ ∆− = = 

− ∆+ = 

− = − + 

   (128) 

 
Here, we get the two parameters of the central complex of the congruence, in addition to 
the six constants of its position, for the determination of that congruence. 
 
 
 83.  If we start with the two equations: 
 

0,

0,

Ar B s D E

A r B s D E

σ ρ
σ ρ

Ω ≡ + − + =
′ ′ ′ ′ ′Ω ≡ + − + =

   (129) 

 
by which we previously determined the congruence, and between whose coefficients the 
relations will exist: 
 A′D − AD′ = 0, 
 B′E − BE′ = 0, 
 
when the auxiliary axes of the congruence are chosen to be the OX and OY coordinate 
axes, then we can easily derive the equation of the two central complexes from this.  To 
that end, we merely need to subtract the two equations, after we first multiply the first 
one by B′ and the second one by B, and then multiply the first one by A′ and the second 
one by A.  In that way, when we consider the foregoing condition equations, we will get: 
 
 (B′D − BD′) σ + (A′B − AB′) r = 0, 
 (A′E − AE′) ρ + (A′B − AB′) s = 0, 
from which: 

0

0

,

.

A B AB
k

B D BD
A B AB

k
A E AE

′ ′− = − ′ ′−
′ ′− =
′ ′− 

   (129) 

 
 
 84.  In order to determine one of the complexes in the two-parameter group that we 
would like to represent by the equation: 
 

Ar + Bs – Dσ + Eρ = 0, 
 
we must know its parameter k, the value of z for the point at which its axis cuts the OZ 
axis, and the angle ω that the direction of this axis defines with the direction of the OX 
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axis.  For the determination of these constants, we can start in the same simple way, once 
by assuming that the two central complexes are known, and then by assuming that the 
two directrices of the congruence are known.  Corresponding to that, if we first set the 
last equation to equation (126) identically, and then set it equal to equation (123) 
identically then that will yield the following relations: 
 

0

0 0

0

tan ,

,

1,

tan .

A k

B k

D

E

ϑ
λ λ

λ λ ϑ

= − = −∆
= = ∆ 
= − 
= = − 

    (130) 

 
If we set C and F equal to zero then the general equations of the previous paragraphs 
(15), (16), and (53) will yield 

2 2

2 2

tan ,

,

E

D
AE BD

z
E D
AD BE

k
E D

ω = 


− = + 
+ = + 

    (131) 

 
for the complex in question.  If we introduce k0, k0, and λ0 then that will give: 
 

tan ω = − λ0 ,      (132) 
 

z = − 
2
01

λ
λ+

(k0 – k0),     (133) 

k = 
0 2

0 0
2
01

k kλ
λ

+
+

,      (134) 

and thus, when we eliminate λ0 : 
 

z = (k0 – k0) sin ω cos ω,     (135) 
k = k0 cos2 ω + k0 sin2 ω,     (136) 

and finally, after eliminating ω: 
z2 + (k − k0)(k – k0) = 0.    (137) 

 
 When we introduce the constants of the two directrices, equations (135) and (136) 
will go to the following ones: 

z = ∆ ⋅⋅⋅⋅ sin 2

sin 2

ω
ϑ

,     (138) 

k = − 2∆ ⋅⋅⋅⋅ sin( ) sin( )

sin 2

ω ϑ ω ϑ
ϑ

+ ⋅ −
.   (139) 
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Each value of ω corresponds to a single value of z in (135), (138), and a value of the 
complex parameter in (136), (139).  However, since each value of z corresponds to two 
directions of the complex axis and two values of k, which can be real or imaginary, there 
will be a maximum distance between the complex axes and the central plane.  Equation 
(138) will give this maximum immediately, corresponding to the angle ω = π / 4: 
 

z = 
sin 2ϑ

∆
 = 1

2 (k0 – k0),    (140) 

 
and simultaneously, from (136), one will have: 
 

k = − 
tan 2ϑ

∆
 = 1

2 (k0 + k0).    (141) 

 
 
 85.  The discussion of the foregoing analytic developments yields a series of 
geometric results. 

 In number 64, we gave the OX axis one of the two directions that bisect the acute and 
obtuse vertex angles that are defined by the two directrices of a given congruence, and 
choose the positive half of this axis arbitrarily.  We calculate the angle between the 
positive half of the OX axis and the positive half of the OY axis.  The positive half of OY 
is determined when we denote that one of the two directions that corresponds to a 
positive Z by ϑ.  ( 1

2 π – ϑ) enters the two-fold coordinate system in place of ϑ, and thus 

(124) reciprocally switches the values of k0 and k0 with a change of sign.  We would like 
to choose the coordinate system in such a way that OX bisects the acute vertex angle, 
which is defined by the projections of the two directrices in the central plane of the 
congruence.  k0 is then positive in (128), k0 is negative, and since tan 2ϑ > 0: 

 
k0 + k0 < 0. 

 
The parameter of the central complex whose axis lies along OX is k0 and positive, while 
the parameter of the central complex whose axis lies along OY is k0 and negative.  The 
absolute value of the second parameter is taken to be greater than that of the first. 
 Previously, along with the given congruence, we constructed a second one that we 
called its conjugate (no. 69), and which we obtained when we simultaneously changed 
the signs of the two parameters k0 and k0 of the given central complex, or – what amounts 
to the same thing – when ∆ remained the same and ϑ changed its sign.  Along with the 
given congruence, one can define yet a third one, which we would like to call its adjoint, 
and which one obtains when k0 and k0 are switched with each other with their signs 

changed, as well.  It will emerge from (124) by letting 
2

π ϑ − 
 

 enter in place of ϑ.  

Finally, we obtain yet a fourth congruence that depends upon the given one immediately 
when we first take the conjugate of the given one and then take the adjoint of that one, 
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which amounts to switching k0 and k0 without changing sign, or – what amounts to the 

same thing – replacing ϑ with 
2

π ϑ − 
 

. 

 Under our assumption, 2ϑ is an acute angle for the given congruence; the 
corresponding angle (π − 2ϑ) will be obtuse for the adjoint congruence.  If we denote the 
parameters of the two central complexes of the adjoint congruence by (k0) and (k0), to 
distinguish them, then we will have: 

(k0) + (k0) > 0, 
 
and since (k0) is positive and (k0) is negative, (k0) will have a larger absolute value than 
(k0). 
 The axis, the central plane and the two auxiliary axes in it, as well as the distance 
between the two directrices, will remain the same for all four congruences. 
 
 
 86.  If we denote the coordinates of any point on the axis of any complex in the two-
parameter group by x, y, z then we will have: 
 

cos2 ω = 
2

2 2

x

x y+
,  sin2 ω = 

2

2 2

y

x y+
, 

 
with which, equation (135) will go to the following one: 
 

(x2 – y2) z ± (k0 – k0) xy = 0.    (142) 
 
This equation represents the ruled surface that is defined by the axes of the complexes of 
the two-parameter group that determines the congruence. 
 
 According to whether we take one or the other of the two signs in the foregoing 
equations, it will refer to the given congruence or its conjugate.  Should it refer to the 
given one, then from the coordinate determination that we chose, according to which, (k0 
– k0) is positive when take y / x to be equal to the tangent of the angle ϑ – and thus, 
positive – the value of z will also be positive and equal to + ∆.  We must then choose the 
lower sign, and thus obtain: 

 (x2 – y2) z − (k0 – k0) xy = 0.    (143) 
 
The only constant that enters into this equation – viz., (k0 – k0) – is the sum of the 
absolute values of the parameters of the central complex.  However, from (140), this sum 
will also be twice the maximum of z, and thus equal to the height h of the surface that is 
included by two planes, through whose midpoint the central plane goes.  The surface will 
be cut by each intermediate plane along two straight lines that are perpendicular to each 
other in the central plane, in which coincide with the two axes of the central complex.  
When the intersecting planes of the central plane move away on the positive side, the 
angle that they define with each other will always become smaller, until it vanishes for ω 
= π / 4 in the limit plane, and the two lines then coalesce into a single one.  When the 
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intersecting planes of the central plane move away on the negative side, the angle that the 
two lines of intersection define with each other will become an obtuse one, until it 
becomes equal to π in the other limit plane, which corresponds to ω = − π / 4, and then 
the two lines of intersection will again coalesce.  Equation (135) shows that lines that 
bisect the angle of the two lines of intersection in an arbitrary plane that is parallel to the 
central plane will lie in those two planes that define the same angle with the XY and YZ 
coordinate planes (*). 

 Since the given congruence depends upon two constants k0 and k0, but the surface in 
question depends upon just one constant that is the difference of the latter two, this 
surface will have the same relationship to infinitely many congruences, so it will be the 
geometric locus of the relevant complex axes.  Among these congruences, one also finds 
the adjoint of the given one; we can then exchange k0 and k0, while changing their signs, 
without changing the equation of surface.  This surface thus has the same relationship to 
the given congruence and its adjoint. 
 
 
 87.  We would like to determine the complex in the 
two-parameter group geometrically in such a way that we 
apply the parameters (with consideration given to their 
signs) that correspond to its axes that all intersect OZ to the 
axes.  We will then get a curve that is inscribed in the ruled 
surface that was considered in the previous number, by 
which the entire two-parameter complex group was 
determined.  We would like to call this curve the 
characteristic curve of the congruence.  It will suffice to 
know the projection of that curve onto the XY coordinate 
plane; each point of the projection will then correspond to a 
single real point on the surface. 
 Equation (136) will be the equation of that projection in polar coordinates when we 
consider k to be the guiding ray in it and simultaneously consider ω to be variable.  When 
we set: 

k = 2 2x y± + , cos ω = 
x

k
, sin ω = 

y

k
, 

 
this equation will go to the following one: 
 

(x2 + y2)3 = (k0 x2 + k0 y
2)2,    (144) 

 
and will thus represent the projected curve in ordinary point coordinates.  This equation 
will remain the same when we simultaneously change k0 and k0 .  The curve that is 
represented by the equation will then have the same relationship to the given congruence 
and its conjugate.  It consists (Fig. 7) of four pair-wise equal loops, which lie inside of 
four of the vertex angles that are defined by the projection of the two directrices. 
                                                
 (*) Which is a great simplification for the models that I can construct for this and similar surfaces, and 
that appeal to geometric intuition. 
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 88.  When we treat equation (137) in the same way that we treated equation (136) in 
the previous number, it will produce a new surface that goes through the curve of double 
curvature that was just determined.  This equation will be converted into the following 
one: 

(x2 + y2 + z2 + k0 k0)
2 = (k0 + k0)

2 (x2 + y2),   (145) 
 
and will represent a fourth-order surface.  This surface will be a surface of revolution 
whose axis is OZ.  For its meridian curves in the XZ plane, we get: 
 

(x2 + z2 + k0 k0)
2 = (k0 + k0)

2 x2, 
when we let y vanish, and: 

z2 + 
20

0

2

k k
x
 +± 
 

= 
20

0

2

k k −
 
 

. 

 
This equation represents a system of two circles whose two-sided radius is: 
 

1
2 (k0 − k0) ≡ h,     (146) 

 
and whose center on the OX axis has the distance: 
 

− 1
2 (k0 + k0) ≡ c    (147) 

 
from the OZ axis, on the opposite side.  The two circles intersect along OZ in those two 
points at which that axis is cut by the two directrices (*). 
 The new surface will then be generated by rotating a circle around the axis of the 
congruence.  Its radius is equal to one-half the height of the ruled surface (142).  Its 
center lies in the central plane, and its distance from the OZ axis is equal to the parameter 
of the complex whose axis falls in the limit plane of the ruled surface (142).  The surface 
of rotation lies completely between those planes and will be contacted by each of them 
along the circumference of a circle. 

 Equation (145) will remain unchanged when k0 and k0 are exchanged reciprocally, as 
well as when both constants change their signs simultaneously.  The surface of rotation 
thus refers simultaneously to the given congruence, its conjugate, its adjoint, and the one 
that is conjugate adjoint to it. 

 
 89.  To summarize, we get the following determination of the axes of the two-
parameter complex group by which the given congruence is determined: We have 
assumed that ϑ < π / 4.  We would like to start with the value ω = 0, for which, the 
complex axis will lie in the central plane and the complex parameter will attain its 

                                                
 (*) We can remark, in passing, that the intersection points of the two directrices with the axis of the 
congruence are the two focal points of an ellipsoid of rotation whose center coincides with the center of the 
congruence whose rotational axis lies along OZ and is equal to h, while the radius of its equatorial circle 
has the value c. 
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positive maximum k.  When ω increases from 0 to + ϑ, the complex axis will move away 
from the central plane on its positive side, while the complex parameter will decrease.  
When ω then increases from ϑ to π / 4, z (which is the distance from the central plane 
that goes through ∆, where the complex axis will coincide with one of the directrices of 
the congruence) will increase until it attains its maximum of 1

2 (k0 – k0) ≡ h, while the 

complex parameter will go through zero and take on negative values, and the limit will be 
equal to 12 (k0 + k0) ≡ c.  If the complex axis advances in such a way as to rotate around 

OZ from ω = π / 4 to ω = π / 2 then it will again approach the central plane, while the 
negative value of the complex parameter will increase until it attains the maximum of k0 
in that plane.  If the rotation continues from ω = π / 2 to ω = 3π / 4 then the axis will 
again move away from the central plane on its negative side until it attains its negative 
maximum (viz., − h) in the limit z, while the negative value of the complex parameter 
will decrease and take the value c in the limit.  Under the rotation from ω = 3π / 4 to ω = 
π − ϑ, the axis will again approach the central plane until it coincides with the second 
axis of the congruence, corresponding to z = − ∆, while the negative complex parameter 
will decrease until it vanishes.  If the axis completes its rotation around OZ when ω 
increases from (π − ϑ) to π then it will once more approach the central plane until it again 
assumes the position from which we started, while the complex parameter, which 
changes its sign, will increase and, in turn attain its positive maximum in the central 
plane. 
 
 
 90.  In order to achieve symmetry in this investigation, we must consider the given 
congruence simultaneously with the aforementioned other three that depend upon it 
immediately.  That will first demand that we reconsider the ruled surfaces that are 
determined by equation (142) with the double sign.  We can represent the system of these 
two surfaces by the single equation: 

(x2 + y2)2 z2 = (k0 – k0)
2 x2 y2.   (148) 

 
 The complete intersection of the surface of rotation (145) with the two ruled surfaces 
decomposes into two algebraic space curves, one of 
which lies on each of the two surfaces.  The 
projections of the two spatial intersection curves onto 
the central plane cover it, and thus resolve into two 
sixth-degree curves, one of which will be represented 
by the previous equation: 

(x2 + y2)3 = (k0 x2 + k0 y
2)2,   (149) 

 
while the other one will be represented by the 
following one: 

(x2 + y2)3 = (k0 x
2 + k0 y2)2.   (150) 

 
Under the assumption of real directrices that we have 
used up to now, each of the two curves (Figure 8) will 
consist of four loops that define a four-fold point at the 
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coordinate origin.  When one rotates one of the two curves in its plane around the origin 
through an angle of π / 2, one will obtain the other one. 
 The characteristic curve of the given congruence lies upon the first ruled surface 
(142), but it does not define a closed path in it.  Its projection onto the central plane of the 
congruence defines only one-half AOBOC of the curve (149).  It is limited by two points 
that lie on OX on both sides of the origin and at equal distances from it. 
 The characteristic curve of the adjoint congruence lies on the same ruled surface, and 
its projection is the A′OB′OC′ half of the curve (150).  Analogously to before, it breaks 
into two points on OX. 
 The characteristic curve of the conjugate congruence lies in the second ruled surface 
(142).  Its projection defines the CODOA half of the curve (149), which extends the 
projection of the characteristic curve of the given congruence to the complete curve 
(149).  The two characteristic curves break into the same two points A and D on OX. 
 The characteristic curve of the conjugate-adjoint congruence lies in the second ruled 
surface, and its projection defines the second half C′OD′OA′ of the curve (150), which 
extends the projection of the characteristic curve of the adjoint congruence to the 
complete, algebraic curve. 
 The second projecting cylinder, which cuts the central plane in the curve (150), cuts 
the first ruled surface along a closed curve that consists of two components: viz., the 
characteristic curve of the adjoint congruence and the mirror image of the characteristic 
curve of the conjugate-adjoint one. 
 Likewise, the characteristic curve of the conjugate-adjoint congruence and the mirror 
image of the characteristic curve of the adjoint congruence define a closed curve on the 
second ruled surface, which, like the foregoing one, has the curve (150) for its projection. 
 The four closed curves thus determined define the complete real part of an algebraic 
space curve.  Each of them has two double points, which fall upon the common axis of 
the four congruences in those two points at which that axis is cut by the directrices of the 
congruences.  Each space curve will be divided into four branches at these two points, 
such that we obtain sixteen such curve branches, in total, which all emanate from the two 
points on the axis.  The eight curve branches on one ruled surface and the eight curve 
branches on the second ruled surface have the eight loops of the two curves (149) and 
(150) for common projections.  Those curve branches that have the large loops for their 
projections cut the limiting lines of the two ruled surfaces in points that have the same 
distance from the axis; those curve branches whose projections are the small ovals do not 
cut the axis. 
 The four closed curves lie completely on the surface of rotation that is represented by 
equation (145). 
 
 
 91.  If we start with a given ruled surface (143) then we can carry the characteristic 
curves of infinitely many congruences on it.  Each of these curves is determined by an 
intersection with a surface of rotation that is included with the ruled surface between limit 
planes.  These limit planes contact the ruled surface in a straight line and the surface of 
rotation in a circle.  The directions of the two contact lines that cut the OZ axis are 
perpendicular to each other; the two contact circles have their centers on the axis and 
their radii equal to each other.  The individual surface of rotation is determined 
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completely by this radius.  This radius is equal to the distance from the center of the 
circle that is generated by rotating the surface of rotation around OZ to that axis.  If we 
successively give the center of this circle in the central plane, whose radius always 
remains the same, all possible distance from the OZ axis then we will get all possible 
surfaces of rotation and a congruence that corresponds to each of them. 
 If we preserve the previous notation then the difference of the parameters of the two 
central complexes will not change; it will be: 
 

k0 – k0 = 2h,     (151) 
 
while the sum of these constants will vary from one congruence to another in such a way 
that: 

k0 + k0 = − 2c.     (152) 
Thus: 

k0 = h – c,  k0 = − (h + c),   (153) 
 

∆2 = − k0 k0 = h2 – c2,    (154) 
 

tan2 ϑ = − 
0

0

k

k
= 

h c

h c

−
+

.   (155) 

 
If we then successively take the constant c, by which the instantaneous surface of rotation 
is determined, to have all possible positive values then each value of that constant will 
correspond to a characteristic curve on the given ruled surface.  The curves that 
correspond to the instantaneous adjoint congruences will possess the same absolute 
values of c, but with the opposite signs. 
 
 
 92.  If c = 0 then one will get: 
 

k0 = − k0 = h = ∆,  tan2 ϑ = 1.  (156) 
 
The two directrices will then lie in the planes that limit the ruled surface and have the 
largest possible distance from the central plane.  Their two directions will be 
perpendicular to each other and will be the same for both adjoint congruences.  The 
equation of the surface of rotation in this case will be: 
 

x2 + y2 + z2 = h2.    (157) 
 
 When c increases, the absolute value of the negative k0 will increase, while that of the 
positive k0 will decrease.  The distance of the two directrices from the central plane will 
decrease, and the angle that their two directions make with each other will always 
increase beyond a right angle.  Within the limits of 2h and 0, we can choose the distance 
between the two directrices of a congruence arbitrarily.  The circle that generates the 
surface of rotation will then cut the axis of rotation at two real points. 
 At the limit c = h, one has: 
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k0 = 0,  k0 = − 2h, ∆ = 0,  tan ϑ = 0.  (158) 
 
The parameter of one of the two central complexes is equal to zero.  The two directrices 
of the congruence coincide with the OX axis.  The circle that generates the surface of 
rotation contacts the axis of rotation OZ at the coordinate origin O.  The equation of the 
surface of rotation becomes: 

(x2 + y2 + z2) 2 = h2 (x2 + y2).    (159) 
 
As before, the characteristic curve determines the parameter and the axis position of 
infinitely many complexes.  This is the first case that was treated in no. 68. 
 When c > h, k0 will become negative, as is k0 .  The two directices of the congruence, 
like their adjoints, will become imaginary; either their directions or their intersections 
with OZ will remain real.  The surface of rotation will define a complete circuit, as long 
as the generating circle does not cut the OZ axis, and its intersection curve with the ruled 
surface will be drawn around that axis without cutting it. 
 When the absolute value of the negative k0 increases, c (the distance to the center of 
the generating circle) will always grow larger, while the ratio of the two parameters of the 
central complex of the congruence will approach unity.  In the limit, one will have: 
 

tan2 ϑ = − 1.     (160) 
 
 
 93.  We can infer an uncommon, simple process for carrying the characteristic curves 
of all congruence on the given ruled surface from the equation: 
 

z2 + (k – k0)(k – k0) = 0.    (137) 
 
Under the transition from one characteristic curve to another, the two constants k0 and k0 
will increase by the same quantity, which might also be the value of z.  The foregoing 
equation will always be satisfied during it when the variables k themselves take on the 
same increases. 

 Therefore, let any characteristic curve that is 
inscribed on a ruled surface be given, and we can 
take it to be, in particular, the one along which the 
ruled surface is cut by a sphere that has the same 
altitude above its diameter and also the same center 
as it.  We will then successively obtain all 
characteristic curves when we approach all 
intersection points of the given curves with the 
generators of the ruled surface on these generators 
of the axis by a constant increment or go away from 
it. 
 We will arrive at the same construction in a 
geometric way when we ponder the fact that a 
characteristic curve is the geometric locus of those 
points at which the generators of the surface is cut 
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by the circle that describes the surface of rotation, and the fact that from one 
characteristic curve to another, the center of the circle (whose plane goes through OZ) 
will approach the OZ axis or move away from it. 
 
 
 94.  When we project the characteristic curves of two conjugate congruences onto the 
central plane for the case in which the surface of rotation coincides with a spherical outer 
surface, we will obtain the equation: 
 

(x2 + y2)2 = h2 (x2 – y2)2    (161) 
 
for the projection. Like the general curves (149) or (150), the projected curve will have a 
four-fold point at the origin; the four loops that it consists of are equal.  With our 
assumption, the two curves (149) and (150) will coincide in the one (161) (Fig. 9). 
 Under the second transition (Fig. 10), where the two directrices coincide with OZ, the 
two equations (149) and (150) will go to the following ones: 
 

(x2 + y2)3 = 4h2 y4,     (162) 
(x2 + y2)3 = 4h2 x4.     (163) 

 
 When the value of ϑ that corresponds to increasing c by ± h gradually gets larger by π 
/ 4 in such a way that in the one case it decreases until it vanishes and in the other case it 
approaches π / 2, two loops of the curve (161) will gradually vanish when the points at 
which, in one case, the OX axis and in the other case, the OY axis are cut by it, always 
move closer to the point O, while likewise its tangents that intersect at O always approach 
the respective coordinate axes and coincide with them in the 
limit.  The curve will then consist of two equal ovals that 
contact one of the two auxiliary axes on 
opposite sides. 
 Finally, when c grows beyond h and 
ϑ becomes imaginary, the curve will 
surround the origin O, at which four 
isolated points of it will coincide (Fig. 
11), moreover. 
 The curves that are represented by 
each of the two equations (149) and 
(150) for different choices of constants, 
like the space curves whose projections 
they are, will all be obtained when one 
of them is given.  When we consider k 
to be a guiding ray in the equation: 
 

k = k0 cos2 ω + k0 sin2 ω,    (136) 
 
this equation will be the equation of the same curve in polar coordinates that we 
previously represented by equation (149).  One of these curves is given by definite values 
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of k0 and k0, and we will get all of the remaining ones when we let these constants 
increase by the same quantity δ.  However, we will then have: 
 

k + δ = (k0 + δ) cos2 ω + (k0 + δ) sin2 ω ;  (164) 
 
i.e., all guiding rays will increase by δ from one curve to another. 
 The equation of the curve (162) becomes: 
 

k = 2h sin2 ω      (165) 
 
in polar coordinates, so this curve can be constructed in an exceptionally simple way with 
the help of a curve with a diameter 2h.  The construction of all curves (149) and (150) is 
then given by that. 
 
 
 95.  The discussion of the complexes of a two-parameter group: 
 

Ω + µ Ω′ = 0 
 
is still lacking for the case in which a parabolic congruence is determined by this group.  
For the determination of such a congruence, it is sufficient to know its single directrix 
and a plane that is parallel to all of its lines.  We would like to take the directrix to be the 
OX coordinate axis.  Among the complexes of the group, one will then find one whose 
equation is: 

σ = 0.      (166) 
 
We would further like to draw the ZX coordinate plane through OX in such a way that it 
is perpendicular to the plane that all lines of the congruence are parallel to.  We can then 
give the equation of that plane the following form: 
 

x + λ z = 0,     (167) 
 
in which λ means a given constant.  We will then get: 
 

r + λ = 0,     (168) 
 
in order to express a complex that consists of lines that are all parallel to the plane in 
question, and which will then likewise belong to the congruence. 
 When take Ω and Ω′ to be the two complexes thus determined we will get: 
 

s + µ (r + λ) = 0    (169) 
 
for the equation of the group.  This equation says that all lines of the parabolic 
congruence cut the OX axis and are parallel to the plane (167). 
 The axes of the various complexes that define the parabolic congruence all lie in the 
XY plane and cut out a piece: 
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y = − µ λ     (170) 
 
from the OY axis in that plane (no. 31).  The respective parameter is: 
 

k = − µ,     (171) 
and therefore: 

y = λ k      (172) 
 
will be the equation of the characteristic curve of the parabolic congruence.  When we lay 
k along the complex axis from OY outward, and thus as x, this equation will represent a 
straight line in XY that defines the same angle with OX as the plane (167) does with the 
YZ coordinate plane. 
 
 
 96.  In connection with the geometric considerations of number 79, in analogy to 
what happened in number 46 for a single complex, we can deduce some analytic 
developments that aim to put the equation for a congruence into its simplest expression in 
oblique coordinate, as well.  Let: 
 

σ – k0 r = 0, ρ + k0 s = 0    (173) 
 
be the two central complexes by which a congruence is determined in rectangular 
coordinates.  We would like to place the origin in the central plane at an arbitrary point 
(x0, y0).  To that end, if we first displace the coordinate system parallel to itself in the 
direction of OY through an increment y0 then the equation of the second complex, which 
has OY for its axis, will remain unchanged, while the equation of the first complex will 
go to the following one: 

s − 
0

0sin

k

δ
⋅⋅⋅⋅ r = 0,    (174) 

in which: 
y0 sin δ 0 – k0 cos δ 0 = 0.   (175) 

The OX axis will remain a diameter of the first congruence under this displacement.  In 
order for us to rotate the OZ axis in the XZ plane around OY in such a way that OX 
defines the angle δ 0 with OZ in the new position, YZ will have to be the plane that is 
associated with the diameter OX, and δ 0 will have to be the angle of inclination of the 
diameter out of its associated plane.  The angle YOZ will remain a right angle. 
 If we then displace the axis system parallel to OX through an increment x0 then the 
equation of the first complex (173) will remain unchanged, while the equation of the 
second complex will go to the following one: 
 

ρ + 0

0sin

k

δ
⋅⋅⋅⋅ s = 0,    (176) 

in which: 
x0 sin δ0 + k0 cos δ0 = 0.   (177) 
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Here, the angle δ0 is the inclination angle of OY with respect to XZ, so it is the inclination 
angle of the diameter of the complex that falls in OY with respect to its associated plane.  
The angle XOZ remains a right angle. 
 The equations of the two planes that are associated in the two complexes with OX – 
the diameter of the first one – and OY – the diameter of the second complex have the 
equations: 

0

0

cot ,

cot .

x z

y z

δ
δ

= ⋅


= ⋅ 
    (178) 

 
Finally, if we take the OZ axis to be the line of intersection of the two associated planes 
then the YZ and XZ planes, which are conjugate to OX and OY, resp., will no longer be 
perpendicular to each other in the analytic representation of the two axes.  If we denote 
the angles YOZ and XOZ by ε0 and ε0, resp. then we will have: 
 

sin δ 0 sin ε0 = sin δ0 sin ε0 = sin δ,   (179) 
 
when we let δ denote the inclination angle of the new OZ axis with respect to XY. 
 If we then take any two diameters of the central complex to be OX and OY, instead of 
its two axes, when we displace the original coordinate axes parallel to themselves, and 
take OZ to be the intersection of two planes that are associated with those diameters, then 
the equations of that complex will become: 
 

σ − 
0

sin

k

δ
⋅⋅⋅⋅ r = 0, ρ + 0

sin

k

δ
⋅⋅⋅⋅ s = 0,  (180) 

 
and the same congruence that was previously determined by the equation: 
 

(σ – k0 r) + µ (ρ + k0 s) = 0 
 
will now be determined by the equation of entirely the same form: 
 

0
0

sin sin

kk
r sσ µ ρ

δ δ
   − ⋅ + + ⋅   

  
= 0   (181) 

in the new coordinate system. 
 
 
 97.  If we eliminate cot δ 0 and cot δ0 from (178) using (175) and (177) then we will 
get: 

y

x
 = − 

0
0
0

0

k x

k y
, 

or 

tan α ⋅⋅⋅⋅ tan α′ = −
0

0

k

k
,    (182) 
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if α and α′ are the angles that, on the one hand, the line that links the new origin to the 
old one, and on the other hand, the projection of the new principal diameter of the 
congruence, define with the OX axis.  In particular, if k0 = k0 then the two lines will be 
perpendicular to each other for any change of origin. 
 We have: 

sin2 δ = 
2 0 2

0

1

1 cot cotδ δ+ +
, 

so: 

2

1

sin δ
 = 1 + cot2 δ 0 + cot2 δ0 , 

 
and with consideration given to (175) and (177): 
 

2 02
0
2 02
0

x y

k k
+  = 

2

1

tan δ
,     (183) 

or: 

02 2 2 02
0 0k x k y+  = ∆2 ⋅⋅⋅⋅ 2

1

tan δ
.     (184) 

 
It follows from this that δ will be constant when the new origin is chosen to be on an 
ellipse in the central plane whose axes fall on OX and OY in the way that k0 relates to k0, 
resp. 
 
 The principal diameters of a congruence that have the same inclination with respect 
to the central plane cut that plane in the points of an ellipse. 
 
 
 98.  Let an imaginary congruence be given by two imaginary complexes.  Under the 
assumption of rectangular coordinate axes, we would like to take the equation: 
 

1 2( 1) ( 1)k r k sσ µ ρ− − + + −  = 0    (185) 

 
to be the symbol of such a congruence.  When we simultaneously change the signs of k1 
and k2, this equation will go to the following one: 
 

1 2( 1) ( 1)k r k sσ µ ρ+ − + − −  = 0    (186) 

 
It will then refer to yet a second imaginary congruence.  In analogy with the above, we 
will refer to the two congruences as two conjugate imaginary congruences.  The 
equations of the two congruences can be combined into the following quadratic equation: 
 

(σ + µρ)2 + (k1 r – µ k2 s)
2 = 0.    (187) 

 
The two central complexes of the two congruences are: 
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1 1k rσ −∓  = 0, 2 1k sρ ± − = 0. 

 
The two congruences have a real common principal axis and two common real auxiliary 
axes.  The distance between the two directrices and the angle that the two directrices 
define will be equal for both of them.  If we call that distance ∆ and that angle ϑ then, 
from number 82, we will have: 
 k1 k2 =   ∆2, 

(188) 

 1

2

k

k
 = − tan2 ϑ.  

 
 If k1 and k2 agree in sign then ∆ will be real and tan ϑ will be imaginary.  The two 
directrices of the one congruence will then intersect the two directrices of the other one at 
two real points on the OZ axis.  The directions of the two directrices will be imaginary.  
When projected onto XY, they will be represented by the two equations: 
 

1 2k x k y⋅ ± − ⋅ = 0, 

 
which can be combined into the following one: 
 

k1 x
2 + k2 y

2 = 0. 
 
 When k1 and k2 have opposite signs, ∆ will become imaginary and tan ϑ will remain 
real.  The projection of the two directrices onto XY will then be real, but the points at 
which the OZ axis is cut by them will be imaginary. 
 In summary, we have encountered a four-fold distinction between congruences: 
 1. The two directrices are real. 
 2. The two directrices are imaginary, and indeed in such a way that either they go 
through a real point or they have a real direction. 
 3. The two directrices are imaginary, but they cut the axis of the congruence in two 
real points through which the two directrices of the conjugate congruence also go. 
 4. The two directrices are imaginary and go through no real point on the axis of the 
congruence, but they have real directions. 
 In the first two cases, the complexes of the two-parameter group that the congruence 
determines will be real, and in the last two, they will be imaginary. 
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§ 3. 
 

Congruences of three linear complexes.  Ruled surfaces. 
 
 

 99.  Let: 
0,

0,

0

A r B s C D E F

A r B s C D E F

A r B s C D E F

σ ρ η
σ ρ η
σ ρ η

Ω ≡ + + − + + = 
′ ′ ′ ′ ′ ′ ′Ω ≡ + + − + + = 
′′ ′′ ′′ ′′ ′′ ′′ ′′Ω ≡ + + − + + = 

  (1) 

 
be the general equations of three given first-degree complexes.  The straight lines whose 
coordinates satisfy these three equations will simultaneously belong to three given 
complexes.  They will simultaneously belong to all complexes of the three-parameter 
group that is represented by the following equation: 
 

Ω + µ Ω′ + µ′  Ω″ = 0,    (2) 
 
when we denote two undetermined coefficients by µ and µ′.  From number 22, such lines 
will define a surface of order and class two, so if we first direct our attention to only real 
straight lines, it will be a one-sheeted hyperboloid that can degenerate into a hyperbolic 
paraboloid.  We must then not overlook the fact that only the lines of one of its two 
generators will be determined by the complex group.  We would then like to refer to this 
generator as the first generator of the surface. 
 
 
 100.  Three of complexes Ω, Ω′, Ω″ that are chosen arbitrarily from the three-
parameter group, when taken pair-wise, will define three congruences (Ω Ω′), (Ω Ω″), 
(Ω′, Ω″).  The lines of the surface will then also belong to these three congruences, and as 
a result, will intersect the two directrices of each of the three congruences.  Three of the 
six directrices will be sufficient for the determination of the surface, from which, we will 
get the usual construction of the hyperboloid.  However, along with the first generator of 
the surface, we will also encounter its second generator.  The lines of the first generator 
are the ones that belong to all of the complexes of the three-parameter group, while the 
lines of the second generator will be the directrices of all congruences that we obtain 
when we combine the complexes of the group pair-wise. 
 
 
 101.  In order to construct the ruled surface, we can also return to the complexes of 
the three-parameter group, and for that purpose, choose the three complexes Ω, Ω′, Ω″, in 
turn.  Let A0B0 be any given straight line, and let AB, A′B′, A″B″ be the three associated 
polars of this line relative to the three complexes.  Those lines that cut A0B0 and AB, A0B0 
and A′B′, A0B0 and A″B″, respectively, will belong to the complexes Ω, Ω′, Ω″.  In 
general, there will be two straight lines that cut four given ones.  Thus, the two straight 
lines that cut A0B0 and AB, A′B′, A″B″ will simultaneously belong to all three complexes, 
and thus, to the ray surface.  We will obtain the same two rays of the surface when we let 
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any other complexes of the group (2) enter in place of the complexes Ω, Ω′, Ω″.  The 
polars of the given straight line with respect to all complexes of the group will define a 
congruence that has the two rays of the surface for its directrices. 
 The two points at which the given straight line is met by the rays of the surface can be 
real or imaginary and coincide.  In the latter case, the surface will be contacted by that 
line. 
 In particular, we can choose the straight line A0B0 in such a way that it is one of the 
two directrices of the congruence that belongs to the complexes Ω and Ω′, so the polar 
A′B′ will coincide with AB.  Any ray of the surface will then cut the two lines A0B0 and 
AB; these lines belong to its second generator.  However, the rays of the surface will also 
cut A″B″, as well as the polars of A0B0 relative to all complexes of the group. 
 In summary, we obtain the following general theorems: 
 
 A one-sheeted hyperboloid simultaneously belongs to three mutually independent 
complexes, and as a result of that, to all complexes of a three-parameter group.  The 
straight lines that are common to all complexes are the rays of its first generator, while 
the directrices of the congruences of any two of these complexes define the lines of its 
second generator. 
 The polars of a given straight line relative to all complexes of a three-parameter 
group define a congruence whose two directrices are those two rays of the surface that 
cut the given straight line.  The polars of an arbitrary line of the second generator of the 
surface relative to all complexes of the group are lines of that generator. 
 
 
 102.  The central planes of any three congruences that belong to the surface intersect 
in a point at which three diameters of the congruences – viz., those three straight lines 
that go through that point and cut the two directrices of the three congruences – mutually 
bisect each other.  These diameters are likewise three diameters of the surface.  Their 
vertices are their intersections with the directrices that are lines of the second generator of 
the surface. 
 
 The central planes of all congruences of a three-parameter group: 
 

Ω + µ Ω′ + µ′ Ω″ = 0 
 

intersect at the same point: viz., the center of the surface that is given by the group (*). 
                                                
 (*) Since a direct proof of this theorem might seem desirable, I will add the following: 
 The expression: 

A′ B – AB′, 
  
when we replace the two complexes Ω and Ω′ with any other two complexes in the two-parameter group: 
 

Ω + λ Ω′ = 0 
 

(perhaps when we take corresponding values of λ0 and λ0), will be converted into the following one: 
 

(A + λ0 A′) (B + λ0 B′) − (A + λ0 A′) (B + λ0 B′) ≡ (λ0 – λ0) (A′ B – AB′ ). 
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 We can consider two arbitrary lines of the second generator of the surface to be 
directrices of a congruence that the lines of its first generator belong to, and likewise 
consider two arbitrary lines of its first generator to be directrices of a congruence that the 
lines of its second generator belong to. 

                                                                                                                                            
 
The foregoing expression – and the same thing will be true for all expressions A′C – AC′, B′C – BC′, … 
that are constructed in the same way from two pairs of corresponding coefficients of the equations of the 
two complexes Ω and Ω′ – will then change its value under a permutation of the complexes only in such a 
way that a factor of (λ0 – λ0) appears, which merely depends upon the choice of the two complexes in the 
two-parameter group. 
 The central plane of the congruence that corresponds to the two-parameter group, whose equation we 
would like to take to be the following one: 

p″ = 0, 
 
is independent of the choice of the two complexes that we make for the determination of the congruence.  
As a consequence of that, the coefficients of its equation must be homogeneous functions of the same 
degree of (A′ B – AB′ ) and analogously-defined expressions: (A′ C – AC′ ), (B′ C – BC′ ), … 
 Similar statements are true for the two congruences: 
 

Ω + λ Ω″ = 0, Ω′ + λ Ω″ = 0, 
 
whose central planes might have the following equations: 
 

p′ = 0, p = 0. 
 
   In our special case, the expressions of the form in question are contained in the three equations only in 
a linear way. 
 If we take any congruence of the three-parameter complex group and represent it by: 
 

(Ω + µ0 Ω′  +
0

µ ′ ′′Ω ) + λ (Ω + µ0 Ω′  +
1

µ ′ ′′Ω ) = 0 

and its central plane by: 
q = 0 

then when we set: 

π ≡ 0 0

0 1 0
µ µ µ µ′ − , π ′ ≡ 0

0 1
µ µ′ − ,  p″ ≡ µ0 – µ0, 

 
we will easily deduce from the foregoing that: 
 

q ≡ π p + π ′ p′ + π ″ p″, 
 
from which, one will get the proof that all central planes intersect in the same point. 
 We can express this theorem in the following way: 
 
 The central planes of the congruence of a three-parameter complex group define a three-parameter 
group of planes in their own right. 
 
 Just as the equation of the complex group is the symbol of a ray surface, the last equation will be the 
equation of the symbol of a point, namely, the center of the surface, at which infinitely many central planes 
will intersect. 
 Here, I must content myself by saying that I can give an extended interpretation to the theorem in this 
book, when it is expressed in the new form, that is associated with a far-reaching viewpoint.  Should I be 
allowed to extend the developments that are restricted to straight lines here to forces, rotations, dynames, 
later on, this theorem would find its modest place in a systematic whole. 
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 Any plane that is parallel to any two lines of the same generator of a hyperboloid and 
bisects the distance between them will go through the center of the surface. 
 
 The locus of the centers of all surfaces that go through two non-intersecting lines is a 
plane.  The locus of the centers of all surfaces that go through a spatial rectangle is a 
straight line. 
 If a third line of a generator is added to two lines of the same generator then pair-wise 
combination of the three lines will yield three congruences that have these line-pairs for 
directrices.  The surface is determined completely by these congruences.  The intersection 
point of the three central planes of the congruences is the center of the surface; the three 
straight lines that go through the center and cut the two directrices are three of its 
diameters. 
 
 
 103.  A plane that cuts a second-degree surface in one straight line will intersect it in 
a second one, in addition.  The two lines of intersection will belong to the two different 
generators of the surface.  Each such surface will be a tangential plane, and the point at 
which the two generators intersect on it will be the contact point.  Any line that goes 
through the intersection of two lines of different generators and lies in the plane that goes 
through these lines will be a tangent to the surface.  A plane that goes through a given 
generator and the center of the surface will be a tangential plane in which the contact 
point lies at infinity in the direction of the given generators when the second generator is 
parallel to the given one. 
 The planes that one can draw through each of the two directrices in each of three 
congruences whose lines belong to the first generator of a surface and parallel to the 
central plane will be tangential planes at the vertices of the relevant diameters.  The 
central plane is associated with the diameter relative to the surface.  The two directrices 
are lines of the second generator in the tangential planes; one obtains the lines of the first 
generator when one draws a straight line through the vertex of the diameter in any 
tangential plane that is parallel to the directrix of the other one. 
 
 
 104.  From the foregoing, a plane that is parallel to any two lines of the same 
generator and bisects the distance between them will go through the center of the surface.  
If we let the two lines coincide then the plane in question will go through that line itself, 
and will thus be a tangential plane that goes through the center.  The contact point will go 
to infinity.  If the straight line is generated by a continuous motion of the surface then the 
plane in question will envelop a conic surface that will likewise be described by a straight 
line that goes through the center and will remain parallel to the straight line that generates 
the surface in all of its positions.  We will obtain the same conic surface when the straight 
line that describes the surface belongs to the other generator.  This conic surface, which 
will thus contact every plane that goes through the center and any line of one of the two 
generators, and whose sides will be those lines that are drawn through the center parallel 
to any line of one of the two generators, is called the asymptotic cone of the surface.  The 
sides of the asymptotic cone are not the only straight lines that contact the surface at 
infinity.  Any straight line that lies in a tangential plane to the asymptotic cone and is 
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parallel to those sides along which that cone will be contacted is an asymptote of the 
surface.  Two such asymptotes can be drawn through each point outside the cone that are 
parallel to two of its sides. 
 
 
 105.  The two lines of the second generator of a surface that go through the two 
vertices of any of its diameters are the two directrices of a congruence that belongs to the 
surface.  The central plane of the congruence is the diametral plane that is associated with 
the diameter relative to the surface.  If we project the two directrices onto the central 
plane along the diameter then we will obtain the asymptotes of the intersection curve of 
the surface with the central plane.  Any two associated diameters of the intersection curve 
will fall on two associated auxiliary diameters of the congruence.  Any diameter of the 
congruence and two associated auxiliary diameters in its central plane shall be called 
three associated diameters of the surface. 
 According to whether the diameter does or does not encounter the surface, the 
directrices of the relevant congruence will be real or imaginary, respectively, and 
corresponding to that, the two asymptotes of the intersection curve in the central plane 
will also be real or imaginary, respectively.  This curve will be a hyperbola in one case 
and an ellipse in the other.  The intersection curves in planes that are parallel to the 
central plane will be equally-oriented hyperbolas or ellipses.  The hyperbolas will 
degenerate into systems of straight lines in the planes that go through the endpoints of the 
diameters and are tangential planes.  The ellipses will always keep finite dimensions, 
since the corresponding tangential planes are imaginary.  If we consider one side of the 
asymptotic cone to be the diameters then the directrices of the relevant congruence will 
coincide (cf., no. 68), and the plane that contacts the asymptotic cone along that side will 
be its central plane.  The intersection curve of the surface with the central plane 
degenerates into a system of two parallel lines whose diameter is a side of the cone.  The 
intersection curves in parallel planes are parabolas whose diameters are parallel to sides 
of the cone. 
 
 
 106.  Every diameter of the surface corresponds to two different congruences whose 
directrices intersect at the endpoints of the diameters and are lines of the two different 
generators of the surface.  We have called two such congruences (no. 79) two conjugate 
congruences relative to the diameter.  Those of these two congruences that have two lines 
of the second generator for directrices belong to the lines of the first generator; the other 
one, which has two lines of the first generator for directrices, belongs to the lines of the 
second generator. 
 
 
 107.  The associated polars of a given line A0B0 of space relative to the various 
complexes of the three-parameter group: 
 

Ω + µ Ω′ + µ′ Ω″ = 0 
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by which a ruled surface is determined define a congruence whose two directrices are 
lines of the first generator of the first surface (no. 101).  The given straight line cuts the 
two directrices at two points.  Let these two intersection points be A0 and B0 ; they are 
likewise the two intersection points of the given line with the surface.  Let the two 
directrices be A0 A

0 and B0 B
0.  The planes that go through A0 B0 and A0 A

0 will contact 
the surface because A0 A

0 is a line of the first generator; let the contact point that lies on 
this line be A0.  Likewise, the plane that goes through A0 B0 and B0 B

0 will contact the 
surface at a point of B0 B

0; let that point be B0.  We would like to connect the two contact 
points A0 and B0, which lie on the two directrices, and thus on the surface, with a straight 
line A0B0. 
 If a tangential plane of the surface is drawn through a line of its first generator, A0 A

0 
or B0 B

0, respectively, then the line of the second generator that goes through the contact 
point, A0 or B0, respectively, will be determined in such a way that it will cut any other 
line of the first generator, B0 B

0 or A0 A
0, respectively.  In the construction above, A0 B

0 
and A0 B0 will then be lines of the second generator.  A0A

0B0B0 will be a rectangle that is 
described on the surface whose two pairs of opposite sides belong to the second 
generator.  The two diagonals of the rectangle will be A0 B0 and A0B0.  The sides of the 
rectangle will likewise be four of the six edges of a tetrahedron; the surface itself, which 
will contain each of two successive sides, will contact the ruled surface at the four 
corners of the rectangle.  A0 B0 and A0B0 will be the two remaining mutually opposite 
edges of the trihedron. 
 
 
 108.  It follows immediately from the foregoing that the relationship between the two 
lines A0 B0 and A0B0 on the surface is completely reciprocal.  The two tangential planes to 
the surface that can be drawn through each of them will contact the surface at the two 
intersection points of the other ones; the tangential planes at the intersection points of 
each of them with the surface will intersect on the other one.  We call the two lines two 
associated polars relative to the surface.  Any line in space is associated with a second 
one as its associated polar. 
 If we determine a congruence in such a way that we can take any two lines of a 
surface to be its directrices then the congruence will associate lines pair-wise in such a 
way that each of these lines will correspond to another one, with which, it will define two 
associated polars relative to the surface.  Those of these lines that coincide with their 
associates polars will belong to the surface. 
 Any two lines of the one generator, along with any two lines of the other one, define a 
rectangle that is inscribed on the surface, as the four edges of a tetrahedron that is 
circumscribed on it; the two diagonals of this rectangle, or – what amounts to the same 
thing – the two opposite edges of the tetrahedron, will be two conjugate polars relative to 
the surface. 
 
 
 109.  Three lines of the one generator of a ruled surface and three lines of the other 
generator will intersect each other at nine points that belong to the surface.  These three 
points can be arranged into three groups: 
 



108 Chapter One: First-degree line complexes and their congruences 

P, Q, R, P′, Q′, R′, P″, Q″, R″   (3) 
 
in such a way that at the three points of the same group the three lines of one generator 
will intersect the three lines of the other generator.  The nine points will correspond to 
nine planes that contact the surface at these points: 
 

p, q, r,  p′, q′, r′, p″, q″, r″.   (4) 
 
The three lines of the one generator will contain the points: 
 

P, Q″, R′, R, P″, Q′, Q, R″, P′, 
 
and the lines of the generator will contain the points: 
 

P, R″, Q′, Q, P″, R′, R, Q″, P′. 
 
 The nine points will determine three hexagons that are inscribed on the surface: 
 

,

,

.

P Q R P Q R

PQ R P Q R

P Q R P Q R

′ ′′ ′ ′′ ′ ′′ 
′′ ′′ ′′ 
′ ′ ′ 

     (5) 

 
 In a similar way, we obtain three six-faced bodies that are defined by the tangential 
planes at the corners of the three hexagons.  The entire geometric structure is determined 
just the same regardless of whether we start with the three points of the three groups (3), 
or the three tangential planes at three such points, or finally with one of the three 
hexagons (5), and correspondingly, arbitrarily choose three points of the surface, or three 
of its tangential planes, or a hexagon that is inscribed on the surface from the outset. 
 If we start with three points P, Q, R of the surface then a plane (P, Q, R) will be 
determined by these three points and a point (p, q, r) will be determined by the three 
tangential planes at these points.  The three lines of intersection of the three tangential 
planes will be the three diagonals of the third hexagon: 
 
 The three diagonals of a hexagon that is inscribed on a ruled surface intersect at the 
same point. 
 
 The first inscribed hexagon has P′ and P″, Q′ and Q″, R′ and R″ as its opposite 
vertices; the tangential planes at the three pairs of opposite vertices intersect in the three 
lines (P, Q), (P, R), (Q, R) that connect the given points P, Q, R with each other pair-
wise, and thus lie in the same plane. 
 
 The tangential planes at any two opposite vertices of a hexagon that is inscribed on a 
ruled surface intersect in three straight lines that lie in the same plane. 
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 110.  An inscribed hexagon, which we would like to take to be the first one, 
determines three inscribed rectangles.  The sides of each rectangle are those four sides of 
the hexagon that meet in two opposite vertices of it when taken pair-wise.  The three 
diagonals of the hexagon (R′, R″), (Q′, Q″), (P′, P″), which intersect at the point (p, q, r), 
are three diagonals of the three rectangles; the second three diagonals of these rectangles 
are (P, Q), (P, R), (Q, R), which lie in the plane (P, Q, R).  Consistent with number 104, 
three straight lines that go through the same point will then have three straight lines as 
associated points that lie in the same plane.  Thus: 
 
 The associated polars of all lines that intersect in the same point lie in the same 
plane. 
 
 Therefore, any point in space will correspond to a plane, and any plane, to a point.  
The plane is the polar plane of the point, and the point is the pole of the plane, relative to 
the surface.  From the foregoing, the tangential planes of the surface to the points of 
planar intersection curve will envelope a conic surface that goes through that curve has 
the pole of the intersecting plane as its center.  Conversely, all tangential planes of the 
surface that go through a point will contact the surface in a plane curve whose plane is 
the polar plane of the given point (*). 
 
 
 111.  We could deduce some analytic developments that are determined to further 
support and extend the foregoing geometric ideas, although this would not be the place to 
pursue them further.  We would like to represent a ray surface that is given by the 
equations of three first-degree complexes, which we can choose arbitrarily from a three-
parameter group: 

Ω + µ Ω′ + µ ′ Ω″ = 0, 
 
by an equation in ordinary point-coordinates. 
 We will next take the three complexes of the group to be three complexes whose lines 
all intersect its axis.  If we determine the origin arbitrarily and draw the three coordinate 
planes through the three axes of the complex then we will obtain the following equations 
for the three complexes: 

Ω  ≡ C   – D  σ + E  ρ = 0,    (6) 
Ω′ ≡ C′  – D′ σ + E′ ρ = 0,    (7) 
Ω″ ≡ C″ – D″σ + E″ρ = 0.    (8) 

 
We have the following two relations: 
 

x = rz + ρ, y = sz + σ 

                                                
 (*) I have already considered the three associated hexagons that are inscribed on the surface some time 
ago in System der Geometrie des Raumes (cf. no. 87-93), and carried out the proof in analytical symbols 
that, on the one hand, the three points at which the diagonals of the three hexagons intersect will lie on a 
straight line, and on the other hand, the three planes that contain the lines of intersection of the tangential 
planes at the opposite vertices of the three hexagons will intersect on a second straight line, and finally that 
these two straight lines will be two associated polars relative to the surface. 



110 Chapter One: First-degree line complexes and their congruences 

between the coordinates of any point x, y, z that lies on any ray, and the four coordinates 
r, s, ρ, and σ of the ray, from which, the determination of the fifth coordinate will follow: 
 

r y – s x = η. 
 
If we eliminate the five ray coordinates from the foregoing six equations then the 
resulting equation in x, y, z will represent the ray surface in point coordinates. 
 If we first eliminate η then we will get: 
 
 (B′  –  F′ x) s + F′ y ⋅⋅⋅⋅ r – D′ σ = 0, 
 (A″ + F″ y) r + F″ x ⋅⋅⋅⋅ s – E″ρ = 0, 
 
instead of the last two complex equations (7) and (8), and when we then eliminate ρ and 
σ, we will get: 
 Ez ⋅⋅⋅⋅ r − Dz ⋅⋅⋅⋅ s – C – E x + D y = 0, 
 F′ z ⋅⋅⋅⋅ r + (B′ − F′ x + D′z) s –D′ y = 0, 
 (A″ + F″y − E″z) r − F″x ⋅⋅⋅⋅ s + E″ x  = 0. 
 
If we determine the values of s and r from the last two of the foregoing three equations 
and substitute them into the first of these equations then that will give: 
 
 E x z [E″ (B′  – F′ x + D′ z) – D′ F″ y] 
 + D y z [D′ (A″ + F″y − E″ z) – E″ F′ x] 

+ (C + Ex – Dy) [(A″ + F″y – E″z)(B′ – F′ x + D′z) + F F″ xy] = 0. 
 
The higher powers of x, y, z will vanish from this equation, and we will get: 
 

A″B′C + A″ (B′E – CF′ ) x + B′ (CF″ – A″D) y + C (A″D′ – B′E″) z 
− A″E F′ ⋅⋅⋅⋅ x2 – B′D F″ ⋅⋅⋅⋅ y2 – C D′E″ z2 

+ (CD′F″ + B′DE″) y z + (CE″F + A″D′E) x z + (B′EF″ + A″DF′ ) x y = 0. 
 

If we divide this equation by ABC and write: 
 

E

C
, − 

D

C
, − 

F

B

′
′
, 

D

B

′
′

, 
F

A

′′
′′

, − 
E

A

′′
′′

 

as: 
t′, u″, t″, v′, u′, v″, 

 
respectively, then that will give the following equation: 
 

1 + (t′ + t″) x + (u′ + u″) y + (v′ + v″) z 
+ t′ t″ x2 + u′ u″ y2 + v′ v″ z2 

+ (u′ v′ + u″ v″) y z + (t′ v′ + t″ v″) x z + (t′ u′ + t″ u″) x y = 0. (9) 
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This equation will represent the same surface in point coordinates that was originally 
represented by the three complex equations (6), (7), and (8).  When we introduce the six 
new constants, those three equations will become: 
 

1 0,

0,

0,

t u

v t s

u v r

ρ σ
σ η
η ρ

′ ′′+ + = 
′ ′′− − + = 
′ ′′− + = 

     (10) 

 
and as a result, when µ and µ′ denote two undetermined coefficients, the general equation 
of the three-parameter complex group by which the ray surface is determined will be the 
following one: 

(t′ρ + u″ σ + 1) + µ (v′σ + t″ η – s) + µ′ (u′ η – v″ ρ + r) = 0. (11) 
 
 
 112.  If we set z, y, and x equal to zero in equation (9) in succession then we will 
obtain: 

( 1) ( 1) 0,

( 1) ( 1) 0,

( 1) ( 1) 0.

t x u y t x u y

v z t x v z t x

u y v z u y v z

′ ′′ ′′ ′+ + ⋅ + + = 
′ ′′ ′′ ′+ + ⋅ + + = 
′ ′′ ′′ ′+ + ⋅ + + = 

 

 
The intersection curve of the surface with the three coordinate planes will thus degenerate 
into a system of two straight lines.  The surface will be contacted by the XY, XZ, YZ 
coordinate planes; the lines of the second generator of the surface in these planes will be: 
 

1 0,

1 0,

1 0,

t x u y

v z t x

u y v z

′ ′′+ + = 
′ ′′+ + = 
′ ′′+ + = 

      (12) 

 
and the lines of the first generator will be: 
 

1 0,

1 0,

1 0.

t x u y

v z t x

u y v z

′′ ′+ + = 
′′ ′+ + = 
′′ ′+ + = 

     (13) 

 
The contact points in the three coordinate planes will be the intersections of the lines of 
the first and second generator in each of the three planes.  The three lines of the second 
generator will be the axes of three complexes of the three-parameter group on all of 
whose lines the complexes intersect, or in other words, three directrices of three 
congruences of the group.  If we exchange the three lines of the second generator with the 
three lines of the first generator then the following three complexes will enter in place of 
the three complexes (10): 
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1 0,

0,

0,

t u

v t s

u v r

ρ σ
σ η
η ρ

′′ ′+ + = 
′′ ′− − + = 
′′ ′− + = 

    (14) 

 
and for the determination of its ray surface, we will obtain the new three-parameter 
complex group: 

(t″ρ + u′σ + 1) + µ1 (v″σ + t′η – s) + 1µ′ (u″η − v′ρ + r) = 0.  (15) 

 
Any congruence of one of the two three-parameter complex groups (11) and (15) will 
correspond to a conjugate congruence in the other one. 
 
 
 113.  In particular, if: 

t′ + t″ = 0, u′ + u″ = 0, v′ + v″ = 0   (16) 
 
then the equation of the surface will assume the following simpler form: 
 

1 – t′2 x2 – u′2 y2 – v′2 z2 + 2 u′ v′ ⋅⋅⋅⋅ y z + 2 t′ v′ x z + 2 t′ u′ x y = 0.  (17) 
 
The two lines of different generators in each of the three coordinate planes will then be 
parallel to each other, and will be equally distant from the coordinate origin.  It will be 
the center of the surface.  The three coordinate planes will contact the asymptotic cone of 
the surface. 
 
 
 114.  If the surface is a hyperbolic paraboloid, in particular, then the three straight 
lines (12) will remain lines of the same of its generators, but will be subject to the 
condition that they be parallel to a given plane.  If we take the equation of this plane to 
be: 

ax + by + cz = 0     (18) 
then that will give: 

a

b
 = 

t

u

′
′′

, 
b

c
 = 

u

v

′
′′

, 
c

a
 = 

v

t

′
′′

,   (19) 

 
which yields the following condition equation between the six constants upon which the 
surface depends: 

t′ u′ v′ = t″ u″ v″.     (20) 
 
As a result of this condition equation, the lines of the second generator will be parallel to 
a second given plane.  If we take: 
 

a′x + b′y + c′z = 0     (21) 
 
to be the equation of that plane then that will give: 
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a

b

′
′
 = 

t

u

′′
′
, 

b

c

′
′
 = 

u

v

′′
′

, 
c

a

′
′
 = 

v

t

′′
′

.   (22) 

 
If we develop equations (18) and (21) then that will give: 
 

0,

0.

t v x u v y v v z

t v x u v y v v z

′′ ′′ ′ ′ ′ ′′+ + = 
′ ′ ′′ ′′ ′ ′′+ + = 

    (23) 

 
The line of intersection of those two planes that the lines of the first and second 
generators of the paraboloid are parallel to will determine the direction of its diameter. 
 We will find this by considering the condition equation (20): 
 

t t x

t t

′ ′′
′ ′′−

 = 
u u y

u u

′ ′′
′ ′′−

 = 
v v z

v v

′ ′′
′ ′′−

.    (24) 

 
 
 115.  Up to now, we have mainly considered straight lines to be rays, because this 
manner of presentation lies closer to our viewpoint, and we require brevity.  The concept 
of a straight line as an axis is, however, equivalent.  Ray congruences will then appear to 
be axial congruences and ray surfaces will appear to be axial surfaces.  Here, we would 
like to consider the same surface that we have just regarded as a ray surface as an axial 
surface from now on.  It will be determined by the previous complexes Ω, Ω′, Ω″, which 
will be represented by the following equations: 
 

Φ   ≡    C ω + D p  + E q = 0,    (25) 
Φ′  ≡    B′ π + D′ p + F′   = 0,    (26) 
Φ″ ≡ − A″κ + E″ q + F″  = 0.    (27) 

 
We will obtain the equation of this surface in plane coordinates t, u, v when we eliminate 
the five axial coordinates from the foregoing three equations and the equations: 
 
 t = p v + π, 
 u = q v + κ, 
 p u – q t = ω. 
 
If we then eliminate ω, π, κ from the first and sixth, second and fourth, and the third and 
fifth of the foregoing six equations, respectively, then that will give: 
 
 (C u + D ) p = (C  t – E  ) q, 
 (B′ t + F′ ) = (B′ v – D′ ) p, 
 (A″v + E″) q = (A″ u – F″), 
 
and thus, when we multiply these three equations together, we will get: 
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( )( )( )

( )( )( )

Ct E A u F B v D

B t F Cu D A v E

′′ ′′ ′ ′− − −
′ ′ ′′ ′′+ + +

 = 1. 

 
If we divide the numerator and denominator of this fraction on the left-hand side of this 
equation by A″ ⋅⋅⋅⋅ B′ ⋅⋅⋅⋅ C then, when we, in turn, introduce the previous constants t′ and t″, 
u′ and u″, v′ and v″, for the sake of brevity, that will give: 
 

( )( )( )

( )( )( )

t t u u v v

t t u u v v

′ ′ ′− − −
′′ ′′ ′′− − −

 = 1.   (28) 

 
When we develop this equation, the product of the three variables will drop out.  It will 
represent the same surface in plane coordinates that we previously represented by 
equation (9) in point coordinates. 
 
 
 116.  The foregoing equation will be satisfied when one has simultaneously: 
 

0

0,

0,

t t

u u

v v

′− = 
′− = 
′− = 

  

0

0,

0,

u u

v v

t t

′′− = 
′′− = 
′′− = 

    (29) 

 
and likewise, when one has simultaneously: 
 

0

0,

0,

t t

u u

v v

′− = 
′− = 
′− = 

  

0

0,

0.

v v

t t

u u

′′− = 
′′− = 
′′− = 

    (30) 

 
 Equations (29) and (30) will reduce to six distinct ones, and when taken individually, 
they will represent six points, two of which will lie on each of the three coordinate axes.  
When they are combined pair-wise, as we did in the foregoing, the axes, which lie in the 
three coordinate planes and likewise on the surface, will represent, on the one hand, the 
three lines of the second generator of the surface (12), and on the other hand, the three 
lines of the first generator of the surface (13).  The surface will be contacted by the three 
coordinate planes. 
 We can represent the surface, corresponding to its double generator, by each of the 
two following three-parameter groups of linear axial complexes: 
 

(ω – u″ p + t′ q) + λ (π + v′ p – t″) + λ′ (k + v″ q – u′)  = 0,   (31) 
(ω – u′ p + t″ q) + λ1 (π + v″p – t′) + 1λ′ (k + v′ q – u″) = 0,   (32) 

 
in which we denote the undetermined coefficients by λ, λ′, λ1, 1λ′ . 
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 117.  If we take any three tangential planes of the asymptotic cone of the surface to be 
the three coordinate planes then as a consequence of the relations (16): 
 

t′ + t″ = 0, u′ + u″ = 0, v′ + v″ = 0, 
 
the equation of the surface in plane coordinates will assume the following form: 
 

( )( )( )

( )( )( )

t t u u v v

t t u u v v

′ ′ ′− − −
′ ′ ′+ + +

 = 1.    (33) 

 
In the case of the hyperbolic paraboloid, the general equation (28) can be specialized in 
such a way that the constant term drops out in the development, which will once more 
lead to the previous condition equation (20). 
 
 
 118.  In the last numbers, we have represented the same generator of the same 
surface, in one case by three linear equations in ray coordinates, and in the other case by 
three linear equation in axial coordinates, and derived the equation of that surface from 
three linear equations in point coordinates, in one case, and in plane coordinates, in the 
other. 
 As a second example, we would like to determine a ruled surface by three complexes 
of a special kind when we take their equations to be three that emerge from the previous 
ones when we permute the constants with their reciprocal values and reciprocally switch: 
 

r, s, ρ, σ, η with p, q, π, κ, ω, 
resp. 
 In that way, when we denote the reciprocal values to t′, t″, u′, u″, v′, v″ by x′, x″, y′, 
y″, z′, z″, respectively, we will get the following complex equations in place of the three 
in (10): 

1 0,

0,

0.

x y

z x q

y z p

π κ
κ ω
ω π

′ ′′+ + = 
′ ′′− − + = 
′ ′′− + = 

    (34) 

 
 119.  If we eliminate the five axial coordinates p, q, π, κ, ω from these equations and 
the three equations: 

t = pv + π, u = qv + κ, pu – qt = ω 
 
then we will get the following equation for the surface in plane coordinates: 
 

1 + (x′ + x″) t + (y′ + y″) u + (z′ + z″) v 
+ x′ x″ t2 + y′ y″ u2 + z′ z″ v2 

+ (y′ z′ + y″ z″) uv + (x′ z′ + x″ z″) tv + (x′y′ + x″y″) tu = 0.  (35) 
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We will get this equation immediately when we replace t′, t″, u′, u″, v′, v″ with x′, x″, y′, 
y″, z′, z″ and x, y, z with t, u, v, resp., in equation (9). 
 In order to express this complex (34) in ray coordinates, we get: 
 

0,

0,

0,

y r x s

z r x

z s y

η
ρ
σ

′′ ′− ⋅ + ⋅ = 
′ ′′+ ⋅ − = 
′′ ′− − ⋅ + = 

    (36) 

 
and when we eliminate the ray coordinates r, s, ρ, σ, η from these three equations and the 
following three: 

x = rz + ρ, y = sz + σ, ry – sx = η, 
we will get: 

( )( )( )

( )( )( )

x x y y z z

x x y y z z

′ ′ ′− − −
′′ ′′ ′′− − −

 = 1.    (37) 

 
We will obtain this equation immediately when we exchange t′, t″, u′, u″, v′, v″ with x′, 
x″, y′, y″, z′, z″ and t, u, v with x, y, z, resp., in equation (28). 
 The two equations (35) and (37) represent the same surface in plane and point 
coordinate that was represented by the system of linear equations (34) and (36) in axial 
and ray coordinates. 
 
 
 120.  If we set v, u, and t equal to zero in equation (35) in succession then we will get: 
 

( 1)( 1) 0,

( 1) ( 1) 0,

( 1)( 1) 0.

x t y u x t y u

z v x t z v x t

y u z v y u z v

′ ′′ ′′ ′+ + + + = 
′ ′′ ′′ ′+ + + + = 
′ ′′ ′′ ′+ + + + = 

    (38) 

 
 Whereas the tangential planes of a surface of order and class two that are parallel to a 
given straight line will envelop a cylinder, in general, this cylinder will degenerate into a 
system of two parallel straight lines when we take the given straight line to be the three 
coordinate axes in succession.  The coordinate axes will then be parallel to any three 
generators of the ruled surface, or – what amounts to the same thing – any three sides of 
the asymptotic cone.  All planes that go through any line of the surface will then be 
tangential planes to the surface.  Three lines of the first generator that are taken to be 
parallel to the three coordinates axes will then be parallel to the three lines of the second 
generator.  The two point-pairs at which the YZ, XZ, ZY planes are met by the lines of 
both generators, which are parallel to the OZ, OY, OX axes, respectively, will be 
represented by equations (38). 
 
 
 121.  In agreement with that, in order to satisfy equation (37), we will get, in the one 
case, the three equations-pairs: 
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0,

0,

0,

x x

y y

z z

′− = 
′− = 
′− = 

  

0,

0,

0,

y y

z z

x x

′′− = 
′′− = 
′′− = 

   (39) 

 
which represent the three lines of the second generator, and in the other case, the three 
equation-pairs: 

0,

0,

0,

x x

y y

z z

′− = 
′− = 
′− = 

  

0,

0,

0,

z z

x x

y y

′′− = 
′′− = 
′′− = 

    (40) 

 
which represent the three lines of the first generator, which are parallel to the three 
coordinate axes OZ, OX, OY and OY, OZ, OX, respectively. 
 
 
 123.  The three complexes of a special kind by which the surface is determined – in 
one case, by equations (34) and in the other case by equations (36) – have those lines of 
the second generator that are represented by the equation-pair (39) for their axes, and on 
the other hand, are determined by the fact that they are parallel to the OX, OY, OZ 
coordinate axes and cut the YZ, XZ, XY coordinate planes, respectively, which will be 
represented by the equations: 

1 0,

1 0,

1 0

y u z v

z v x t

x t y u

′ ′′+ + = 
′ ′′+ + = 
′ ′′+ + = 

     (41) 

in these planes. 
 If we take the three sides of the asymptotic cone itself to be the coordinate axes then 
that will give: 

x′ + x″ = 0, y′ + y″ = 0, z′ + z″ = 0.   (42) 
 
The equation of the surface in plane coordinates will then assume the following form: 
 

1 − x′2 t2 − y′2 u2 − z′2 v2 + 2y′ z′ ⋅⋅⋅⋅ uv + 2 x′z′ ⋅⋅⋅⋅ tv + 2x′ y′ ⋅⋅⋅⋅ tu = 0,  (43) 
 
and the equation of that surface in point coordinates will assume the following one: 
 

( )( )( )

( )( )( )

x x y y z z

x x y y z z

′ ′ ′− − −
′ ′ ′+ + +

 = 1.    (44) 

 
 

 124.  Finally, first under the assumption of rectangular coordinate axes, we would like 
to take the following three equations for the complexes of a three-parameter group: 
 

Ω + µ Ω′ + µ′ Ω″ = 0 
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that determine a ruled surface, namely: 
 

1

2

3

0,

0,

0.

k r

k s

k

σ
ρ
η

Ω ≡ − = 
′Ω ≡ + = 
′′Ω ≡ + = 

     (45) 

 
The axes of the three complexes then will fall upon the three OX, OY, OZ coordinate 
axes, so like them they will be mutually-perpendicular and intersect each other at the 
coordinate origin.  The parameters will be k1, k2, k3 .  If we combine the three complexes 
pair-wise then we will get three congruences (Ω′, Ω″), (Ω, Ω″), (Ω, Ω′), whose principal 
axes will fall upon OX, OY, OZ, resp., and whose pairs of auxiliary axes will fall upon OY 
and OZ, OX and OZ, and OX and OY, resp. 
 If we, as before, eliminate σ, ρ, and η by means of the three equations: 
 

x = rz + ρ, y = sz + σ, rx – sy = η 
then that will give: 
 y – sz – k1 r = 0, 
 x – rz + k2 s = 0, 
 ry – sx + k3 = 0. 
 
It follows from the first two of the foregoing equations that: 
 
 (k1 k2 + z2) r =    x z + k2 y, 
 (k1 k2 + z2) s = − y z + k1 x, 
 
and when we eliminate r and s from these two equations and the third of the foregoing 
three equations, it will follow that: 
 

k1 x
2 + k2 y

2 + k3 z
2 + k1 k2 k3 = 0, 

or: 
2 2 2

2 3 1 3 1 2

x y z

k k k k k k
− +  + 1 = 0.    (46) 

 
 
 125.  If the parameters of the three original complexes are all positive, and thus the 
parameters of the three new complexes will be negative, or conversely, when the former 
is negative and the latter is positive, then the surface will be imaginary.  In every 
remaining case, as long as the values of the parameters remain real, the surface will be a 
one-sheeted hyperboloid.  The values of two of the three parameters of the two groups of 
complexes will then agree in sign, and the values of the present three parameters will 
have the opposite sign.  According to whether the parameters of the first, second, or third 
complexes of the group do or do not deviate in sign from the parameters of the two 
remaining complexes, the imaginary axis of the hyperboloid will fall upon the OX, OY, 
OZ coordinate axes, respectively.  In the first case, we will get: 
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2 2 2
x y z

a b c
     − −     
     

 = − 1,    (47) 

when we set: 
2

2 3
2

1 3
2

1 2

,

,

.

k k a

k k b

k k c

=
= − 
= − 

     (48) 

 
 If we base the foregoing developments on plane coordinates, in place of point 
coordinates, and thus consider the lines of the complex to be axes, instead of rays, then 
we will get the following equation for the same ruled surface, which will now become an 
axial surface from now on: 
 

k2 k3 t
2 + k1 k3 u

2 + k1 k2 v
2 + 1 = 0.    (49) 

 
 

 126.  Any given straight line in space is parallel to of the infinitude of diameters of a 
three-parameter group.  We can then consider the three coordinate axes to be diameters of 
three complexes by which a ruled surface is determined.  In the case of rectangular 
coordinate axes, equations (45) will represent three complexes whose three axes fall upon 
the three axes of the ruled surface.  The principal parameters of the three complexes are 
k1, k2, k3 .  When we take any three associated diameters of that ruled surface to be the 
coordinate axes, equation (45) will always represent three complexes of the three-
parameter group, except that k1, k2, k3 will then no longer represent the principal 
parameters of the three complexes, but the parameters of their three diameters that 
coincide with the three coordinate axes.  We would like to denote these three parameters 
by, 0

1k , 0
2k , 0

3k , to distinguish them, and let the three constants above keep their meanings 

as principal parameters of the three complexes.  We would like to call three complexes of 
the three-parameter group whose diameters are parallel to any three associated diameters 
of the ruled surface that is determined by this group, three conjugate complexes, relative 
to the ruled surface.  Let ε″, ε′, ε be the three angles XOY, XOZ, YOZ, resp., that the three 
coordinate axes define with each other, when taken pair-wise, and let δ″, δ′, δ be the 
inclination angles of OZ with respect to XY, OY with respect to XZ, and OX with respect 
to YZ, respectively.  The three expressions: 
 

sin ε″ sin δ″, sin ε′ sin δ′, sin ε sin δ 
 
will then be equal to each other.  If we denote that value by γ, for the sake of brevity, then 
we will get: 

0
1k  = 1k

γ
, 0

2k  = 2k

γ
, 0

3k  = 3k

γ
, 

and thus: 
0
1k : 0

2k : 0
3k  = k1 : k2 : k3 .    (50) 
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If, corresponding to equations (48), we set: 
 

0 0 2
2 3 0
0 0 2
1 3 0
0 0 2
1 2 0

,

,

k k a

k k b

k k c

=
= − 
= − 

     (51) 

then we will get: 
2 2 2

0 0 0

x y z

a b c

     
− −     

     
 = − 1    (52) 

for the equation of the ruled surface in oblique coordinates.  0 1a − , b0, c0 mean those 

radii of the surface that coincide with the OX, OY, OZ coordinate axes, respectively.  If 
we set: 

2 2 2 2
0 0 0a b cγ ⋅  ≡ Θ2    (53) 

 
then it is known that Θ will be a quantity that does not change when we take any other 
three associated diameters of the surface to be the coordinate axes instead of the three 
given associated diameters. 
 
 
 127.  If we multiply the last two equations (51) with each other term-by-term and 
divide by the first of these equations then that will give: 
 

02
1k  = 

2 2
0 0

2
0

b c

a
, 

 
and if we introduce k1 in place of 0

1k then: 

 

2
1k  = γ 2 

2 2
0 0

2
0

b c

a
= 

2

2
0a

Θ
. 

Thus: 

k1 = ± 
0a

Θ
.     (54) 

 
 k1 is the principal parameter of the complex of the three-parameter group whose 
diameter is parallel to the OX axis, and 2

0a  (when taken with the opposite sign) is the 

square of the radius of the surface that falls upon that axis.  Since we can take any 
arbitrary diameter of the ruled surface to be a coordinate axis from the outset (whereby, 

2
0a  must be taken to have a positive or negative sign according to whether the new 

diameter cuts the surface or not), this will immediately yield the following theorem: 
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 The principal parameters of the complexes of a three-parameter group whose 
diameter is parallel to any diameter of the ruled surface that is determined by the group 
are, conversely, proportional to the square of the length of the diameter of the surface. 
 
 
 128.  An arbitrary plane that is drawn through the origin is simultaneously associated 
with a diameter of the ruled surface, the principal diameter of a congruence that belongs 
to that surface, and a diameter of a complex of the three-parameter group by which the 
surface is determined.  The planes that are associated with the diameter of the surface are 
parallel to the central plane of the congruence and are likewise associated with the 
diameter of the complex that coincides with the diameter of the surface.  This will follow 
immediately from the equations of the three conjugate complexes (45) by which a ruled 
surface is determined, also under the assumption of oblique coordinates.  The diameter of 
one of the three complexes that falls upon one of the three coordinate axes is associated 
with the coordinate plane that goes through the other two coordinate axes, and that plane 
will be, on the one hand, the central plane of the congruence that is determined by the 
remaining two complexes and, on the other hand, the diametral plane of the surface that 
is conjugate to its diameter that coincides with the diameter of the complex. 
 A complex of a three-parameter group is determined completely when the direction of 
its diameter is given.  In the previous number, we obtained its parameters in the simplest 
way by means of the corresponding ruled surface.  The foregoing discussion gives us the 
associated planes to its diameter.  The construction of its axis therefore reverts back to the 
one in number 46. 
 One applies the parameters of the complex to the diameter of the surface that has the 
given direction of the diameter of the complex from the center outward and projects them 
onto the diametral plane of the surface that is associated with the diameter.  From the 
previous number, the parameter will be equal to 2

0/ rΘ , if we denote the length of the 

radius of the surface by 20r , and its projection will be equal to: 

 

2
0r

Θ
cos δ0, 

 
if we call the angle that the diameter of the surface defines with its conjugate plane δ0 .  If 
we then displace the diameter of the surface parallel to itself on the projecting plane 
through an increment that is equal to that projection then the displaced diameter of the 
surface in the new position will be the axis of the complex. 
 This displacement can be performed in the opposite direction.  Corresponding to that, 
we will get the two axes of two different complexes that are parallel to each other and 
equally distant from the center.  These two complexes belong to the two different 
generators of the ruled complex. 
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 129.  We obtain: 
 

0
1k  = ± 0 0

0

b c

a
,  0

2k  = 0 0

0

a c

b
∓ ,  0

3k  = ± 0 0

0

a b

c
∓   (55) 

 
for the parameters of the diameters of the three conjugate complexes that fall upon the 
OX, OY, OZ axes, resp., and: 
 

k1 = ± 
2

0a

Θ
, k2 = 

2
0b

Θ
∓ , k3 = 

2
0c

Θ
∓    (56) 

 
for the principal parameters of that complex.  In accordance with equations (58), 02k  and 

0
3k  have the same signs and 0

1k  deviates from them in sign, from which, it will follow, 

with consideration given to the proportions (50), that k3 and k2 have the same sign, while 
k1 has the opposite sign to them.  We must then take the three upper or the three lower 
signs together in equations (55), as well as in equations (56). 
 If we multiply the three equations (55) by each other term-by-term then that will give: 
 

0 0 0
1 2 3k k k  = ± a0 b0 c0 .     (57) 

 
 The product of the parameters of the diameters of three conjugate complexes that 
coincide with the three associated diameters of the ruled surface is equal to the product 
of the three radii of the surface. 
 
 If we multiply the three equations (56) by each other term-by-term then that will give: 
 

k1 k2 k3 = ± 
3

2 2 2
0 0 0a b c

Θ
= ± γ 2 ⋅⋅⋅⋅ a0 b0 c0 = ± γ 2 ⋅⋅⋅⋅ a b c, 

so: 

1 2 3k k k

abc
 = ± γ 2.      (58) 

 
 From the same three equations (56), we will further get: 
 

2 2 2
0 0 0( )a b c− − = ± Θ 

1 2 3

1 1 1

k k k

 
+ + 

 
, 

and from this: 

1 2 3

1 1 1

k k k
+ +  = ± 

2 2 2a b c

abc

− −
.   (59) 

 
 The sum of the reciprocal values of the parameters of any three complexes that are 
associated with a given ruled surface is constant. 
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 130.  We would like to displace the axes of the complexes of a three-parameter group 
by which a ruled surface is determined parallel to themselves until they go through the 
center of the surface, and then, when we consider the diameter of the surface to be a 
guiding ray, apply to each of the from the center outwards the principal parameters of the 
complexes that also have that diameter for their own.  We will then get a new surface that 
plays the same role in relation to the ruled surface that the characteristic curve of a ruled 
surface does in relation to it.  We would like to call the new surface the characteristic 
surface of the ruled surface. 
 If we denote any guiding ray of the characteristic surface by r and the corresponding 
guiding ray of the ruled surface by r1 then we will have: 
 

r = ± 
2

1r

Θ
. 

 
We would like to refer the ruled surface (47) to its three axes as coordinate axes.  When 
we then call the three angles that an arbitrary guiding ray r1 defines with the three axes α, 
β, γ then we can write the equation of that surface in the way below: 
 

2 2 2

2 2 2

cos cos cos

a b c

α β γ− −  = − 
2

1

1

r
, 

 
and obtain the equation of the characteristic surface when we replace 2

11/ r  with its value 

/r± Θ  in this equation.  In this way, we will get: 
 

2 2 2

2 2 2

cos cos cos

a b c

α β γ 
Θ − − 
 

 = ± r, 

 
and if we revert to the rectangular point coordinates: 
 

2 2 2

2 2 2

x y z

a b c

 
Θ − − 
 

 = ± r3.     (60) 

 
If we square both sides of the last equation and write (x2 + y2 + z2) and a2 b2 c2 for r2 and 
Θ2, respectively, then that will give: 
 

a2 b2 c2 
22 2 2

2 2 2

x y z

a b c

 
− − 

 
 = (x2 + y2 + z2)3,   (61) 

or: 
(b2 c2 x2 – a2 c2 y2 – a2 b2 z2)2 = a2 b2 c2 (x2 + y2 + z2)3.  (62) 
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 131.  The complete characteristic surface decomposes into two parts that are 
individually represented by equation (60) when we take r with both signs in succession.  
There will always be two three-parameter groups of complexes that have the geometric 
relationship to each other that the complexes of the two groups differ from each other 
merely by the fact that their parameters have opposite signs.  Two such complex groups 
will correspond to the two generators of the same surface.  In particular, there will thus be 
two systems of three conjugate complexes whose diameters are parallel to any three 
associated diameters of the ruled surface, as well, and whose respective parameters are 
equal, but have the opposite signs.  The two generators of the ruled surface will be 
determined by the two groups of associated complexes.  The characteristic surface will 
be related equivalently to both generators. 
 
 
 132.  In accordance with the relations (48), we can introduce the principal parameters 
of three conjugate complexes whose diameters are parallel to the axes of the ruled surface 
into the equation of the characteristic surface in place of the three semi-axes of the ruled 
surface.  In that way, we will find that: 
 

(k1 x
2 + k2 y

2 + k3 z
2)2 = (x2 + y2 + z2)3,       (63) 

 
while the equation of the ruled surface itself will become the following one: 
 

k1 x
2 + k2 y

2 + k3 z
2 = k1 k2 k3 ,    (64) 

 
after the introduction of those constants. 
 If we set x, y, z equal to zero in equation (63) in sequence then we will obtain the 
following equations for the intersection curve of the characteristic surface with the three 
coordinate planes: 

2 2 2 2 2 3
1 2

2 2 2 2 2 3
1 3

2 2 2 2 2 3
2 3

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

k x k y x y

k x k z x z

k y k z y z

+ = +
+ = + 
+ = + 

   (67) 

 
 Three congruences are determined by three conjugate complexes, when taken pair-
wise, which we can refer to as three conjugate congruences of the ruled surface, in their 
own right.  The two systems of three conjugate complexes whose diameters are parallel 
to the three axes of the ruled surface correspond to two systems of three conjugate 
congruences, each of which has an axis of the ruled surface for its principal axis and its 
other two axes for auxiliary axes.  The three congruences of one of the two systems 
correspond to one of the three congruences of the other system of the other generator of 
the ruled surface.  The first of the three equations (67) agrees completely with equation 
(149) of the previous paragraph.  From that, we infer the following theorem: 
 
 The three intersection curves of the characteristic surface of a given ruled surface 
with the three principal sections XY, XZ, YZ of the latter surface are, in these principal 
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sections, the projections of the characteristic curves of three conjugate congruences that 
have OZ, OY, OX for their principal axes, respectively (*). 
 
 We confirm what the discussion in the previous paragraphs of the intersection curve 
(67) asserted, and remark merely that the intersection curve that lies in XY and XZ 
consists of four loops and has a four-fold point at the center of the surface, while that 
point will be an isolated point for the intersection curve that lies in YZ. 
 
 
 133.  In order to satisfy the equation of the characteristic surface, we can 
simultaneously set: 

2 2 2
1 2 3 1 2 3

2 2 2 2 2 2
0 1 2 3

,

,

k x k y k z k k k

x y z k k k

κ

κ

+ + = ± ⋅ 


+ + = 

  (68) 

 
when we denote two arbitrary constants by κ and κ0, between which the following 
relationship exists: 

κ2 = κ0
3. 

 
In particular, this relation will be satisfied when the two constants are equal to unity.  A 
characteristic surface can be described by a space curve that is the intersection of a 
sphere with two second-order surfaces.  In each of its positions, this curve will determine 
complexes whose parameters are equal, up to sign. 
 In our case, the given ruled surface is a one-sheeted hyperboloid.  If we once more 
introduce the square of the semi-axes into the last two equations, instead of the 
parameters, then we will obtain: 

2 2 2

2 2 2

2 2 2 2 2 2
0

,

.

x y z

a b c

x y z a b c

κ

κ


− − = ± 


+ + = 

   (69) 

 
When we set κ and κ0 equal to unity, the first of the two foregoing equations will 
represent the given one-sheeted hyperboloid when we take the lower sign and a two-
sheeted hyperboloid when we take the upper sign.  The two hyperboloids will have the 
same asymptotic cones, and the squares of any two equally-directed diameters of them 
will be equal and of opposite signs.  We would like to call a one-sheeted hyperboloid and 
a two-sheeted one that have this reciprocal relationship to each other two associated 
hyperboloids. 
 
 The characteristic surface of a given one-sheeted hyperboloid goes through the curve 
along which intersect the given one-sheeted hyperboloid and the two-sheeted hyperboloid 
that is associated with a sphere whose radius is equal to the cube root of the product of 
three semi-axes of the given hyperboloid. 

                                                
 (*) We can extend the theorem in the text to three arbitrary associated complexes of a given ruled 
surfaces and the three corresponding associated diameters. 
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 If we let the linear dimensions of the two hyperboloids increase in a quadratic way 
and let the radius of the sphere thus determined increase in a cubic way then the 
intersection curves will describe the characteristic surface. 
 
 
 134.  The complete characteristic surface divides into two parts that are separated 
from each other by the asymptotic cone.  The one part consists of path curves that lie on 
the one-sheeted hyperboloid.  They determine the parameters of complexes whose 
diameters are parallel to the real diameters of the given one-sheeted hyperboloid.  The 
other part consists of path curves that lie on the two-sheeted hyperboloids.  They 
determine the (always real) parameters of the complexes whose diameters are parallel 
(along their lengths) to the imaginary diameters of the given one-sheeted hyperboloid.  
When the diameter of the surface through which the sides of the asymptotic cone goes 
becomes infinitely large, the corresponding parameters will become zero.  This transition 
will correspond to the transitions between real and imaginary diameters of the surface 
and between positive and negative parameters of the complexes. 
 
 
 135.  Up to now, we have considered merely the one-sheeted hyperboloid whose 
generators are real straight lines.  The imaginary ruled surfaces, which we would like to 
call imaginary ellipsoids, correspond to the case where the parameters of the three central 
complexes have the same sign.  If we correspondingly set: 
 
 k2 k3 = a2, 

k1 k3 = b2,         (70) 
 k1 k2 = c2 
 
then we will get the following equation for the imaginary ellipsoid: 
 

2 2 2

2 2 2

x y z

a b c
+ + + 1 = 0.     (71) 

 
 However, equation (64), which represents the ruled surface, will also remain real 
when the parameters of the three central complexes simultaneously become imaginary.  If 

we replace k1, k2, k3 with the imaginary values 1 1k′ − , 2 1k′ − , 3 1k′ − then that equation 

will go to the following one: 
2 2 2

1 2 3k x k y k z′ ′ ′+ +  = − 1 2 3k k k′ ′ ′ .   (72) 

 
Here, we have, in turn, two cases to distinguish: Either only two of the three new 
constants have the same sign and the third one has the opposite sign, or the signs of all of 
them coincide.  In former case, we can set: 
 
  2 3k k′ ′  =    a2, 

1 3k k′ ′  = − b2,       (73) 



§ 3.  Congruences of three linear complexes.  Ruled surfaces. 127 

  1 2k k′ ′  = − c2, 

and obtain: 
2 2 2

2 2 2

x y z

a b c
− −  = 1.     (74) 

 
The surface is then a two-sheeted hyperboloid.  In the second case, we can set: 
 
  2 3k k′ ′  = a2, 

k1 k3 = b2,       (75) 
  k1 k2 = c2 
and get: 

2 2 2

2 2 2

x y z

a b c
+ +  = 1.     (74) 

The surface is then an ellipsoid. 
 Two imaginary generators will intersect at each point of the two-sheeted hyperboloid 
and the ellipsoid.  The surfaces will be generated by imaginary lines in two ways, since 
the two imaginary straight lines that intersect at each point of the surfaces will belong to 
their two generators. 
 
 
 136.  The considerations concerning characteristic surfaces in number 133 will be 
first completed when we consider the characteristic surface of the imaginary ruled surface 
(which remains real), and the imaginary characteristic surfaces of the two-sheeted 
hyperboloid and the ellipsoid, in addition to the characteristic surface of the one-sheeted 
hyperboloid. 
 We have called the one-sheeted and two-sheeted hyperboloid, which are represented 
by equations (47) and (74), two associated hyperboloids in the case where k1 = 1k′ , k2 = 

2k′ , k3 = 3k′ .  Under the same assumption, we will say that the imaginary and real 

ellipsoids that are represented by equations (72) and (76), resp., are associated. 
 In order to get the equation of the characteristic surface for the imaginary ellipsoid 
(72), we merely need to change the signs of b2 and c2 in the equation of this surface for 
the one-sheeted hyperboloid (47).  In place of (61), one will then get: 
 

a2 b2 c2 
22 2 2

2 2 2

x y z

a b c

 
+ + 

 
= (x2 + y2 + z2)3,   (77) 

 
and in place of (69), we will get the following two equations: 
 

2 2 2

2 2 2

2 2 2 2 2 23
0

,

,

x y z

a b c

x y z a b c

κ

κ


+ + = ± 


+ + = 

    (78) 
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in which the previous condition equations persist for κ and κ0 .  Here, the characteristic 
surface consists of a real and an imaginary component.  These two components will be 
generated by curves, along which real and imaginary ellipsoids that are associated with 
spheres will intersect.  Among the imaginary ellipsoids, one finds the given one, in 
particular.  The real ellipsoid that is associated with it will always be intersected by the 
characteristic surface along a real curve that simultaneously lies on a sphere whose radius 
is equal to the third root of the product of the three semi-axes of that ellipsoid. 
 If the equation of the real characteristic surface (63) for the case of the one-sheeted 
hyperboloid and the imaginary ellipsoid is to be related to the case of the two-sheeted 

hyperboloid and the real ellipsoid then we must switch k1, k2, k3 with 1 1k′ − , 2 1k′ − , 

3 1k′ − .  The square of the guiding ray of the characteristic surface will then become 

negative, so the surface itself will be imaginary.  However, we will get a new real surface 

when we take 1r −  for the imaginary guiding ray.  We will then get: 
 

2 2 2 2
1 2 3( )k x k y k z′ ′ ′+ +  = (x2 + y2 + z2)3, 

 
and when k1 = 1k′ , k2 = 2k′ , k3 = 3k′ , in particular, this equation will be the same as the one 

that we started with. 
 
 The characteristic surface of a one-sheeted hyperboloid then likewise determines the 
imaginary parameters of all complexes of the associated two-sheeted hyperboloid, as 
well as the characteristic surface of an imaginary ellipsoid, and the imaginary 
parameters of all complexes of the associated real ellipsoid. 
 
 
 137.  In number 98, we distinguished between four different types of congruences.  
Any diameter of a surface of order and class two that has a center will coincide, in 
direction and magnitude, with the principal diameter of a congruence that belongs to the 
surface.  It will thus correspond to the diameter of the one-sheeted hyperboloid of a 
congruence of the first or second kind, according to whether this diameter does or does 
not cut the hyperboloid.  The transition refers to the case in which the two directrices of 
the congruence coincide in an asymptote of the surface. 
 Any diameter of an imaginary ellipsoid will correspond to a congruence of the second 
kind. 
 Any diameter of a two-sheeted hyperboloid will correspond to a congruence of the 
third or fourth kind according to whether it does or does not cut the surface, resp. 
 Any diameter of a real ellipsoid will correspond to a congruence of the third kind. 
 
 
 138.  The surfaces of order and class two that have no center and, in one case, are 
generated by real straight lines and in the other case, by imaginary ones are excluded 
from the foregoing developments; viz., the hyperbolic and elliptic paraboloids, resp. 
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 139.  In number 111, we already determined a second-order surface by three 
complexes whose parameters were equal to zero.  It emerged from this that the axes of 
three such complexes should be considered to be lines of the second generator of the 
surface that are cut by the lines of the first generator.  We drew three arbitrary planes 
through the three lines of the second generator and took these planes to be coordinate 
planes.  The surface then contacted these three planes.  These planes cut the surface in 
three lines of the first generator, in addition to the three lines of the second generator.  In 
each of these planes, the intersection of the lines was the two-fold generator of the points 
at which they contacted the surface.  With analogous assumptions, we can also determine 
the two-sheeted hyperboloid and the ellipsoid.  We take any three tangential planes of 
one of these surfaces to be coordinate planes.  Each of these planes will then go through 
two conjugate imaginary lines of the surface, and these lines will intersect in the real 
points at which the planes contact the surface.  Consistent with that, we would like to set: 
 

0 0

0 0

0 0

, 1,

, 1,

, 1,

t t t t

u u u u

v v v v

′ ′′ ′≡ ± −
′ ′′ ′≡ ± − 
′ ′′ ′≡ ± − 

    (79) 

 
when we return to the cited number.  Equations (12) and (13) of that number, which 
represent the three lines of the second generator and the three lines of the first one that lie 
in the three coordinate planes, will then go to the following ones: 
 

0 0 0 0

0 0 0 0

0 0 0 0

( 1) ( 1) 1 0,

( 1) ( 1) 1 0,

( 1) ( 1) 1 0,

t t x u u y

v v z t t x

u u y v v z

′ ′+ − + − − + =
′ ′+ − + − − + = 
′ ′+ − + − − + = 

   (80) 

and 

0 0 0 0

0 0 0 0

0 0 0 0

( 1) ( 1) 1 0,

( 1) ( 1) 1 0,

( 1) ( 1) 1 0.

t t x u u y

v v z t t x

u u y v v z

′ ′− − + + − + =
′ ′− − + + − + = 
′ ′− − + + − + = 

    (81) 

 
The coordinates of the three contact points with the three XY, XZ, YZ coordinate planes 
are (*): 

 x1 = 0

0 0 0 0

u

t u t u

′−
′ ′+

, y2 = 0

0 0 0 0

t

t u t u

′−
′ ′+

, 

                                                
 (*) Equations (81) immediately give: 

x1 y1 z1 = x2 y2 z2 , 
 
which is a geometric relationship between any three tangential planes of a given surface of order and class 
two, but this is not the place for a discussion of that. 
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 x2 = 0

0 0 0 0

v

t v t v

′−
′ ′+

, z1 = 0

0 0 0 0

t

t v t v

′−
′ ′+

,   (82) 

 y1 = 0

0 0 0 0

v

u v u v

′−
′ ′+

, z2 = 0

0 0 0 0

u

u v u v

′−
′ ′+

. 

 
 We get the equation of the ruled surface from (9): 
 
 1 + 2t0 x + 2u0 y + 2v0 z + 2 2

0 0( )t t′+ x2 + 2 2
0 0( )u u′+ y2 + 2 2

0 0( )v v′+ z2 

+ 2 (u0 v0 − 0 0u v′ ′ ) y z + 2 (t0 v0 − 0 0t v′ ′ ) x z + 2(t0 u0 − 0 0t u′ ′ ) x y = 0.  (83) 

 
According to whether: 

2 2 2
0 0( )t t′+ > 0 0 0 0 0 0 0 0( )( )t v t v t v t v′ ′ ′ ′− −  

or 
2 2 2

0 0( )t t′+ < 0 0 0 0 0 0 0 0( )( )t v t v t v t v′ ′ ′ ′− − , 

 
this equation will represent a two-sheeted hyperboloid or an ellipsoid, respectively (*). 

 If we set t0, u0, v0 equal to zero in this equation then that will give: 
 

1 + 2 2 2 2 2 2
0 0 0 0 0 0 0 0 02 2 2t x u y v z u v y z t v x z t u x y′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − −  = 0.  (84) 

 
The surface will then be a two-sheeted hyperboloid that is referred to its center as the 
origin of the coordinates. 
 
 
 140.  The determination of the elliptic paraboloid is completely analogous to the 
determination of the hyperbolic one in number 114.  The condition equation (20) goes to 
the following one: 

0 0 0

0 0 0

t u v

t u v
+ +

′ ′ ′
 = 1.     (85) 

 
Along with the lines of the two generators, the two planes that are parallel to them will 
also be conjugate imaginary.  We get the following equations for them, which we 
combine into a single one: 
 

2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0[( ) ( ) 1] [( ) ( ) 1] ( )t v t v t v t v x u v u v u v u v y v v z′ ′ ′ ′ ′ ′ ′ ′ ′+ − − + + + − + +∓ ∓  

= 0,      (86) 
 
and for the determination of the direction of the real intersection, we will get: 
 

                                                
 (*) Geometrie des Raumes, no. 26.  
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2 2
0 0

0

t t

t

′+
′

 x =  
2 2

0 0

0

u u

u

′+
′

 y = 
2 2

0 0

0

v v

v

′+
′

z    (87) 

from (24). 
 
 
 141.  With that, we have represented all of the real surfaces of order and class two by 
equations of three linear complexes whose parameters vanish, and derived their equations 
in point coordinates from a system of three such equations: the one-sheeted hyperboloid 
(9), the same thing, referred to its center (17), the hyperbolic paraboloid (9), under the 
assumption of the condition equation (20), the two-sheeted hyperboloid, and the ellipsoid 
(83), the former referred to its center (84), and finally, under the assumption of the 
condition equation (85), the elliptic paraboloid (86).  The assumption that the coordinate 
origin lies inside of the stated surfaces remains excluded here for the cases of the two-
sheeted hyperboloid, the elliptic paraboloid, and the ellipsoid.  There is no inside and no 
outside for the case of the one-sheeted hyperboloid.  The imaginary surfaces are excluded 
completely.  The coordinate system will become illusory when the origin is chosen to be 
on the surface. 
 
 
 142.  The same surfaces of order and class two that we have represented by three 
linear equations in ray coordinates have also been represented by us in an analogous way 
by three equations in axial coordinates, and just as we have derived the equation of the 
surface in point coordinates, we have also derived the equation of the that surface in 
plane coordinates.  For real surfaces that are not generated by real straight lines, equation 
(28), which we obtained in number 115, will go to the following one: 
 

0 0 0 0 0 0

0 0 0 0 0 0

(( ) 1)(( ) 1)(( ) 1)

(( ) 1)(( ) 1)(( ) 1)

t t t u u u v v v

t t t u u u v v v

′ ′ ′− − − − − − − − −
′ ′ ′− + − − + − − + −

 = 1.  (88) 

 
If we develop this then the imaginaries will vanish from this equation. 
 
 
 143.  Real and imaginary conic surfaces, as well as real and imaginary plane curves, 
can be represented by three linear equations, either in ray coordinates or axial 
coordinates.  These are not to be regarded as surfaces of class two or as surfaces of order 
two. 
 
 
 144.  However, the question of whether the ruled surfaces that we have represented 
by the symbol: 

Ω + µ Ω′ + µ′ Ω″ = 0 
 
might degenerate into other geometric structures by specializing the complexes Ω, Ω′, Ω″ 
is not resolved with that. 
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 We would like to let one of the three complexes retain its full generality, but assume 
that the other complexes are of the special sort that all of the lines in each of them 
encounter a fixed straight line, and that the two fixed straight lines intersect, or – what 
amounts to the same thing – lie in the same plane.  We would like to let the two OZ and 
OY coordinate axes coincide with them.  The equations: 
 

Ω′ ≡ η ≡ rσ – sρ = 0,  Ω″ ≡ ρ = 0 
 

will then represent the two complexes in question.  These two equations have the 
consequence that either σ or ρ will be equal to zero.  In agreement with this, on the one 
hand, all lines whose coordinates satisfy the three equations: 
 

0,

0, 0,

Ar Bs C

ρ σ
+ + = 

= = 
     (89) 

 
and, on the other hand, all lines whose coordinates satisfy the three equations: 
 

0,

0, 0,

Bs C D

r

σ
ρ
+ − = 

= = 
      (90) 

 
will belong to the ruled surface that is represented by the three-parameter complex group.  
All lines that simultaneously belong to the three complexes (89) will lie in the plane that 
is represented by the equation: 

Ax + By + Cz = 0     (91) 
 
and will go through the coordinate origin in that plane.  All lines that simultaneously 
belong to the three complexes (90) will lie in the YZ coordinate plane and will go through 
the point in that plane that is represented by the equation: 
 

Cu – Bv + Dw = 0.     (92) 
 
The plane (91) will remain the same for all complexes of the three-parameter group: 
 

(Ar – Bs + C) + µρ + µ′ s = 0 
 
as it is for all of the planes that correspond to the coordinate origin.  The point (92) will 
remain the same for all complexes of the three-parameter group: 
 

(Bs + C – Dσ) + µρ + µ′ r = 0 
 
as it is for all of the points that correspond to the YZ coordinate plane. 
 The lines that belong to the ruled surfaces thus determined then lie in two planes and 
go through a fixed point of the line of intersection of the two planes in each of these two 
planes.  The two planes and the two points correspond to each other in all complexes of 
the three-parameter group. 
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 We can represent the ruled surface by a second-order equation in point coordinates.  
We will then obtain the two planes that we just determined; however, each trace of the 
generators of these planes will vanish along a straight line that rotates around a fixed 
point inside of them.  We will get the two points when we appeal to plane coordinates for 
the representation of the ruled surface; however, each trace of the envelope of these 
points will vanish along a straight line that lies in a fixed plane. 
 
 
 145.  In this case, the geometric determination of the ruled surface will come down to 
the determination of the straight lines that intersect two given, mutually-intersecting, 
straight lines and belong to a given complex, moreover.  These lines will either lie in the 
plane of the two given straight lines and go through the intersection point or they will go 
through the intersection point of the two given straight lines and likewise lie in the planes 
that correspond to that point in the complex. 
 The foregoing geometric considerations can be extended in such a way that a 
complex of the special kind can be found amongst the complexes of the group.  The fixed 
lines that are cut by all lines of this complexes and which do not encounter the two given 
straight lines, in general, will, like them, be cut by the lines of the ruled surface.  This 
ruled surface is, in general, a one-sheeted hyperboloid whose lines cut a generator of the 
three given straight lines, but degenerates when two of the three given lines intersect into 
a system of two planes or a system of two points, respectively. 
 Nothing essential will change in the foregoing relationships when the fixed line 
encounters one of the two given intersecting straight lines,.  One of the three lines of the 
same surface generator will then be cut by the remaining two at two points, or – what 
amounts to the same thing – the three generators will lie in two planes.  These two planes, 
on the one hand, and the two intersection points, on the other, will be the ones into which 
the ruled surface will degenerate. 
 
 
 146.  However, if the intersection point of the two given straight lines corresponds to 
the plane that goes through that line in the complexes of the three-parameter group then 
the constants B and C will vanish in the foregoing analytic developments; the plane (91) 
will then coincide with the YZ coordinate plane and the point (92), with the coordinate 
origin. 
 In this case, the ruled surface will degenerate into two coincident planes (a system of 
two coincident points in these planes, respectively). 
 
 
 147.  In the last cases considered, one must carefully distinguish between the one for 
which: 

σ = 0, ρ = 0, η = 0,     (93) 
or 

r = 0, ρ = 0, η = 0,     (93) 
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with no further conditions.  In the first case, the coordinates of every straight line that 
goes through the origin will satisfy the three-parameter complex equation, while in the 
second case, the coordinates of every straight line that lies in the YZ plane will satisfy it. 
 Just as two coincident directrices will first determine a congruence (no. 68) when one 
adds the condition that its lines belong to a given complex that has a line that coincides 
with the directrices, so will three generators that go through the same point first 
determine a ruled surface when one adds the condition that its lines belong to a given 
complex.  When these two conditions are absent, we will obtain, in the first case, a 
complex of the special kind whose lines cut the two coincident directrices instead of the 
congruence.  In the second case, two of the three complex equations: 
 

ρ = 0,  η ≡ r σ – s ρ = 0   (95) 
 
require that r σ must be equal to zero, and this condition can correspond to the vanishing 
of σ, as well as the vanishing of r.  Thus, the two foregoing equations will be equivalent, 
in the one case, to the three equations (93), and in the other, to the three equations (94).  
The congruences of the special kind that are represented by the two equations (95) and 
have the OZ and OY coordinate axes for their directrices will encompass, in the one case, 
all lines that lie in the YZ − viz., the plane of the two directrices − and in the other case, 
all lines that go through O − viz., the intersection of the two directrices.  If one adds the 
condition σ = 0 to equation (93) then all of the lines that lie in the plane of the two 
directrices and do not go through their intersection will be excluded from the congruence.  
If one adds the condition r = 0 to equation (94) then all lines will be excluded from the 
congruence that go through the intersection of the two directrices and do not lie in the 
same plane as them.  We can then say that the two equations (93) and (94) together will 
represent the congruences of the special kind.  The lines of the one component of the 
congruence will envelop a point that we will consider to be a ruled surface of class one 
that can be represented by an equation in plane coordinates.  The lines of the other 
component of the congruence will lie in a plane that we will consider to be a ruled 
surface of order one and that can be represented by an equation in point coordinates (*). 
 
 
 148.  In the present paragraphs − in which we introduced the straight line, in its 
double geometric meaning as a ray and an axis, as a space element, instead of the point 
and the plane − we determined a surface of order and class two by three linear equations 
in such a way that each of its two generators were represented by three such equations.  
While the surface, and thus its tangential planes and their contact points are real, the two 
lines of intersection of the tangential planes with the surface – viz., the two generators 
that go through the contact point – can be real, as well as imaginary.  From that 
viewpoint, thus extended, we can regard all surfaces of order and class two as ruled 
surfaces.  All of the properties of such surfaces, including the path that is taken in the 
foregoing, can be derived in the same way from the discussion of the three linear 
                                                
 (*) In order to prevent possible mistakes in the analytical discussion of the particular cases in question, 
it is generally advisable to base it upon homogeneous equations in the six line coordinates.  For example, if 
we switch the OZ and OX coordinate axes with each other in the foregoing analytical discussion then we 
can easily be led to hasty conclusions. 
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equations in ray and axial coordinates as they have been derived up to now from the 
discussion of a quadratic equation in point or plane coordinates. 
 

____________ 
 



 

 

Chapter Two 
 

Second-degree complexes. 
______ 

 
 

Part I. 
 

Two-fold analytic representation of a complex of degree two.  Complex curves of 
class two that are enveloped by lines of the complex.  Complex cones of order two 
that are described by lines in it.  Complex surfaces of order and class four, one of 
which is described by complex curves, and the other of which is enveloped by 
complex cones. 
 

________ 
 
 

§ 1. 
 

The general equation of the second-degree line complex in ray and axial 
coordinates. 

 
 
 149.  Of the four ray coordinates: 

r, s, ρ, σ, 
 
r and s mean the trigonometric tangents of the angles that the two projections of the rays 
onto the XZ and YZ coordinate planes define with the OZ coordinate axis, while ρ and σ 
mean the line segments that these two projections cut out of the OX and OY coordinate 
axes.  The fifth ray coordinate: 

η ≡ rσ – sρ 
 
is derived from them. 
 Let the general second-degree equation in the five coordinates be the following one 
(*): 

(I)    

2 2 2 2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2 0.

Ar Bs C D E F

Gs Hr Jrs K L M

Nr Os

Pr Qr Rs Ss T U

σ ρ η
ρη ση ρσ

σ ρ
ρ η η σ σ ρ

+ + + + +
+ + + + − −

− +
+ + + − − + =

 

                                                
 (*) The same considerations that allowed us to take negative signs for the coefficients of σ and κ in the 
general equation of the first-degree complex in five ray or axial coordinates, respectively (confer the note in 
number 26), allow us to do the same thing in the corresponding equations for the second-degree complex. 
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 This equation contains nineteen mutually independent constants.  It is unnecessary to 
add a last term of + 2Vη; that would have the effect of reducing the absolute values of the 
constants N and O by V.  Indeed, the introduction of such a superfluous term would 
succeed in making things symmetric, in general.  It is not advisable to preserve such a 
term for special examinations, and all the less since we can add it into special cases with 
no further analysis. 
 
 
 150.  From this general equation, we can immediately go on to the following one, in 
which x′, y′, z′ and x, y, z appear as the coordinates of any two points of a line of the 
complex (*)(** ): 

(II)  

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

2 ( )( ) 2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )(

A x x B y y C z z

D yz y z E x z xz F xy x y

G y y z z H x x z z J x x y y

K xy x y x z xz L xy x y yz y z M x z xz yz y z

N x x yz y z O y y x

′ ′ ′− + − + −
′ ′ ′ ′ ′ ′+ − + − + −

′ ′ ′ ′ ′ ′+ − − + − − + − −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − − + − − + − −

′ ′ ′ ′ ′+ − − + − )

2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( ) 0.

z xz

P x x x z xz Q x x xy x y

R y y xy x y S y y yz y z

T z z yz y z U z z x z xz

′−
′ ′ ′ ′ ′ ′+ − − + − −
′ ′ ′ ′ ′ ′+ − − + − −

′ ′ ′ ′ ′ ′+ − − + − − =

 

 
If we regard x′, y′, z′ as the coordinates of any fixed point and then take them to be 
constant, while we let x, y, z vary, then this general complex equation will be the equation 
of a second-order conic surface.  This conic surface will have the fixed point for its 
center, and its lines will be the lines of the complex that go through the center. 
 
 
 151.  Of the four axial coordinates: 

p, q, π, κ, 
 
the last two π and κ, when taken to be reciprocal and negative, mean that x and y are the 
two points at which the straight line cuts the XZ and YZ planes, respectively.  If one 
connects these two points with the coordinate origin with straight lines then these lines 
will define two angles with the OZ axis in the XZ and YZ coordinate planes whose 

                                                
 (*) Introductory considerations in no. 2.  
 (** ) The two terms: 

2N(x − x′)(yz′ − y′z) + 2O(y − y′)(x′z − xz′) 
 
would combine with the superfluous term: 
 

2Vη ≡ 2 V(z − z′)(xy′ − x′y). 
 

However, the three terms could then combine into the following two: 
 

2(N – V)(x – x′)(yz′ – y′z) + 2(O – V)(y – y′)(x′z – xz′). 
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trigonometric tangents, which are taken to be reciprocal and negative, will be p and q.  
The fifth coordinate: 

ω ≡ pκ – qπ 
is derived from them. 
 The equation of the same second-degree complex that we represented in ray 
coordinates by equation (I) will become the following one with the use of axis 
coordinates (*): 

(III)   

2 2 2 2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2 0.

Dp Eq F A B C

Kq Lp Mpq G H J

Np Oq

Sp Tp Uq Pq Q R

κ π ω
πω κω πκ

κ π
π ω ω κ κ π

+ + + + +
+ + + + − −

− +
+ + + − − + =

 

 
 
 152.  We can immediately go from this general equation to one in which t′, u′, v′ and 
t, u, v appear as the coordinates of any two planes that intersect in the line in question 
(** ): 

(IV)  

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

2 ( )( ) 2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )(

D t t E u u F v v

A uv u v B t v tv C tu t u

K u u v v L t t v v M t t u u

G tu t u t v tv H tu t u uv u v J t v tv uv u v

N t t uv u v O u u t

′ ′ ′− + − + −
′ ′ ′ ′ ′ ′+ − + − + −

′ ′ ′ ′ ′ ′+ − − + − − + − −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − − + − − + − −

′ ′ ′ ′ ′+ − − + − )

2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( )

2 ( )( ) 2 ( )( ) 0.

v tv

S t t t v tv T t t tu t u

U u u tu t u P u u uv u v

Q v v uv u v R v v t v tv

′−
′ ′ ′ ′ ′ ′+ − − + − −
′ ′ ′ ′ ′ ′+ − − + − −

′ ′ ′ ′ ′ ′+ − − + − − =

 

 
 When we let t′, u′, v refer to an arbitrary, fixed plane and correspondingly consider 
them to be constant, equation (IV), which is the general equation of a second-degree 
complex, will represent a curve of class two that will be enveloped by the lines of the 
complex that lie in the fixed plane. 
 
 
 153.  The exchange of: 

r, s, 1, − σ, ρ, η 
and 

− κ, π, ω, p, q, 1, 
 
as well as the corresponding exchange of: 
 

(x − x′), (y − y′), (z − z′), (yz′ – y′z),  (x′z – xz′), (xy′ – x′y) 
 

                                                
 (*) Introductory considerations from no. 5. 
 (** ) Intro. cons., no. 3.  
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and 
(uv′ – u′v), (t′v – tv′), (tu′ – t′u), (t – t′), (u − u′), (v − v′), 

 
which we must make in order for equations (I) and (III) and equations (II) and (IV) to be 
consistent with each other, come from the exchange of: 
 

r, s, σ, ρ, η 
with 

p, q, κ, π, ω, 
 
resp., on the one hand, and the exchange of: 
 

x, y, z, x′, y′, z′ 
with 

t, u, v, t′, u′, v′, 
 

resp., on the other, as well as the reciprocal exchange of: 
 

A, B, C, G, H, J, P, Q, R 
with 

D, E, F, K, L, M, S, T, U 
resp., in both cases. 
 
 
 154.  Equation (I) will first become symmetric when we make it homogeneous by the 
introduction of a sixth variable into it, as was suggested already (intro. cons., no. 6).  If h 
is the new variable, and we preserve the superfluous constant V, moreover, then (I) will 
go to (*): 
 

                                                
 (*) The introduction of h amounts to the replacement of the first of the three projections of the straight 
line (r, ρ, s, σ): 

x = rz + ρ, y = sz + σ, ry = sx + η 
with the following two: 

hx = rz + ρ, hy = sz+ σ. 
 
We can thus represent the straight line in a symmetric way in terms of the two equations of any two of its 
projections, such as the last two, in the following way: 
 

sx = ry – η, sz = hy – σ, 
and the following: 

ry = sx + η, rz = hx – ρ, 
 
in which the condition equation will be fulfilled: 
 

rσ – sρ = hη. 
 
It is hardly necessary to remark here that when we write (z – z′) for h, equation (V) will go to equation (I). 
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(V)    

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 0.

Ar Bs Ch D E F

Gsh Hrh Jrs K L M

Nr Os Vh

Pr Qr Rs Ss Th Uh

σ ρ η
ρη ση ρσ

σ ρ η
ρ η η σ σ ρ

+ + + + +
+ + + + − −

− + +
+ + + + − + =

 

 
 
 155.  A permutation of the three coordinate axis with each other corresponds to a 
permutation of the constants in the general equation of the second-degree complex.  We 
would thus like to use equation (II) as a basis, but for the sake of symmetry, we will add 
the term: 

2V(z – z′)(xy′ – x′y), 
 
when we exchange N and O with N′ and O′, resp., and set: 
 

N = N′ − V′, O = O′ − V′. 
 

If we then first exchange the two coordinate axes OX and OY with each other then (x – x′) 
and (y – y′) will switch reciprocally, while (z − z′) will remain unchanged, as well as 
exchanging (x′z − xz′) and – (yz′ − y′z), while (xy′ − x′y) will change sign.  In that way, 
the exchange will by no means affect the coefficients: 
 

C, F, J, M, 
while 

A, D, G, K 
will switch with 

B, E, H, L, 
 
respectively, with no change of sign, and: 
 

N′, P, R, T 
will switch with 

O′, S, Q, U, 
 
resp., with a simultaneous change of sign, and V′ will change its sign. 
 Thus, in equation (V): 

r and ρ 
will switch reciprocally with 

s and σ, 
respectively, while η will change it sign. 
 If we secondly permute the OX and OZ with each other then the expressions (x – x′) 
and (z – z′) will switch in (II), while (y − y′) will remain unchanged, and likewise (yz′ − 
y′z) will switch with – (xy′ − x′y), while (x′z − xz′) will change its sign.  Correspondingly, 
one exchanges: 
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r and ρ 
with 

 h and – η 
 
resp., in (V), while s changes its sign.  The exchange will therefore not affect the 
coefficients: 

B, E, H, L, 
while the coefficients: 

A, D, G, K 
will switch with: 

C, F, J, M, 
resp., with no change of sign, but: 

N′, P, R, T 
will switch with: 

V′, U, S, Q, 
 

resp., with simultaneous sign changes, and O′ will change its sign. 
 If we thirdly permute the two axes OY and OZ with each other then the expressions (y 
– y′) and (z – z′) will switch with each other in (II), as well as (xy′ − x′y) and – (x′z − xz′), 
while (x – x′) will remain unchanged, and (yz′ − y′z) will change its sign.  One exchanges: 
 

s and σ 
with 

h and η, 
 
resp., in (V), while ρ changes its sign.  The exchange will not affect: 
 

A, D, G, K, 
while the coefficients: 

B, E, H, L 
will switch with: 

C, F, J, M, 
resp., with no change of sign, but: 

O′, P, R, T 
will switch with: 

V′, Q, U, S, 
 

resp., with a simultaneous change of sign, and N′ will change its sign. 
 It remains for us discuss the modifications that come about when we let the 
superfluous term drop away. 
 If we set V′ equal to zero in the first permutation then the coefficients: 
 

N and O 
 

will switch simultaneously with the exchange of the OX and OY coordinate axes with a 
change of sign. 
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 If we set O′ equal to zero in the second permutation then that will make V′ = − O, N′ 
= N – O.  With the exchange of the OX and OZ coordinate axes, V′ and N′ will switch 
with a change of sign, or – what amounts to the same thing: 
 

O and N – O 
will switch with no change of sign. 
 Finally, in the third case, the coefficients: 
 

N and N – O 
 
will switch with a change of sign simultaneously with the OY and OZ coordinate axes. 
 One should not overlook the fact that in all equations the rotational moments of OX 
with respect to OY, of OY with respect to OZ, and of OZ with respect to OX are to be 
taken after the permutation. 
 
 
 156.  Since equation (III) contains the same constants − but in a different sequence − 
as equation (I), if it is to represent the same second-degree complex when referred to the 
same coordinate axes then the permutation rules that were developed in the previous 
number will also preserve their complete and immediate validity for the equation of the 
complex in axis coordinates. 
 
 
 157.  If we place the coordinate origin at any point (x0, y0, z0) then the following 
expressions will appear in place of ρ, σ, η (intro. cons. no. 14): 
 
 ρ + r z0 – x0 , 
 σ + s z0 – y0 , 
 η + s x0 – ry0 , 
 
while r and s remain unchanged, with which, equation (I) will go to (*): 
 

 

2 2 2
0 0 0 0 0 0
2 2 2
0 0 0 0 0 0
2 2
0 0 0 0 0 0

( 2 2 2 )

( 2 2 2 )

( 2 2 2 )

A Ez Fy Ky z Pz Qy r

B Dz Fx Lx z Rx Sz s

C Dy Ex Mx y Ty Ux

+ + − + −
+ + + − + −
+ + + − + −

 

+ Dσ2 + Eρ2 + Fη2 

                                                
 (*) If we introduce the three terms: 

− 2Nrσ + 2Osρ + 2Vhη , 
in place of the two terms: 

− 2Nrσ + 2Osρ , 
 
then we can write the values of these terms that we obtain after conversion as: 
 

− 2(N – Ly0 + Mz0) rσ + 2(O + Kx0 – Mz0) sρ + 2(V – Kx0 + Ly0) η . 
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(VI)  

2
0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0

2( )

2( )

2 ( ( ) )

G Dy z Kx Lx y Mx z Ox Sy Tz s

H Ex y Kx y Ly My z Ny Px Uz r

J Fx y Kx z Ly z Mz N O z Qx Ry rs

+ − − + + − + −
+ − + − + + − +
+ − + + − − − + −

 

+ 2 Kρη – 2Lση – 2Mρσ 
− 2(N + Kx0 – 2Ly0 + Mz0) rσ + 2(O + 2Kx0 – Ly0 – Mz0) sρ 

 + 2(P + Ez0 – Ky0) rρ + 2(Q – Fy0 + Kz0) rη 
 + 2(R + Fx0 – Lz0) sη − 2(S  – Dz0 + Lx0) sσ 
 + 2(T + Dy0 – Mx0) σ + 2(U – Ex0 + My0) ρ = 0. 
 
 
 158.  In order to refer the equation of the complex in axial coordinates to the new 
origin, we merely need to carry out the same permutations by which we derived the 
complex equation (III) from (I) in number 153 in the present equations.  In this way, we 
immediately get: 

Dp2 + Eq2 + F 
2 2 2
0 0 0 0 0 0
2 2 2
0 0 0 0 0 0
2 2 2
0 0 0 0 0 0

( 2 2 2 )

( 2 2 2 )

( 2 2 2 )

A Ez Fy Ky z Pz Qy

B Dz Fx Lx z Rx Sz

C Dy Ex Mx y Ty Ux

κ
π
ω

+ + + − + −
+ + + − + −
+ + + − + −

 

+ 2Kq + 2Lp + 2Mpq 

(VII)  

2
0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

2( )

2( )

2( ( ) )

2( 2 ) 2( 2 )

G Dy z Kx Lx y Mx z Ox Sy Tz

H Ex z Kx y Ly My z Ny Px Uz

J Fx y Kx z Ly z Mz N O z Qx Ry

N Kx Ly Mz p O Kx Ly Mz q

πω
κω

πκ
κ π

+ − − + + − + −
− − + − + + − +
− − + + − − − + −
− + − + + + − −

 

 + 2(S – Dz0  + Lx0) pπ  + 2(T + Dy0 – Mx0) pω 
 + 2(U – Ex0 + My0) qω + 2(P + Ez0 – Ky0) qκ 
 + 2(Q – Fy0 + Kz0) κ     + 2(R + Fx0 – Lz0) π = 0. 
 
 
 159.  We would like to further replace the coordinate system to which the complex (I) 
was originally referred with another one whose axes intersect at the original origin, but 
whose directions have changed arbitrarily.  In the introductory considerations, this 
coordinate conversion was performed in three successive operations, in which each time 
one of the three coordinate axes was preserved, while the other two were rotated in their 
plane arbitrarily.  We thus satisfy ourselves with writing the result of these three 
analogous operations.  Starting from a rectangular coordinate system, we would like to 
preserve the OZ coordinate axis and rotate the other OY and OZ coordinate-axes in such a 
way that in their new positions they define the angles α and α′ with OX in the original 
position, so that the angle that the OX and OY axes define with each other in the new 
position becomes (α′ – α) ≡ ϑ.  When we switch (intro. cons., no. 14): 
 
 r     with    r cos α + s cos α′, s    with     r sin α + s sin α′, 
 ρ     with    ρ cos α + σ cos α′, σ    with     ρ sin α + σ sin α′, 
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η    with η sin ϑ, 
 
equation (I) will go to the following one: 
 

(A cos2 α + B sin2 α + 2J sin α cos α) r2 + (B sin2 α′ + A cos2 α′ + 2J sin α′ cos α′ ) s2 
+ C 

+ (D sin2α′ + E cos2α′ − 2M sin α′ cos α′) σ2 + (E cos2α + D sin2 α  − 2M sin α cos α) ρ2 
+ F sin2 ϑ ⋅⋅⋅⋅ η2 

+ 2(G sin α′ + H cos α′ ) s + 2(H cos α  + G sin α) r 
 + 2(J (sin α cos α′ + sin α′ cos α)  + A cos α cos α′ + B sin α sin α′ ) r s 
(VIII) + 2(K cos α − L sin α) sin ϑ ⋅⋅⋅⋅ ρη        − 2(L sin α′ − K cos α′ )  sin ϑ ⋅⋅⋅⋅ ση 
 − 2(M (sin α cos α′ + sin α′ cos α)     − D sin α sin α′ − E cos α cos α′ ) ρσ 
 − 2(N sin α′ cos α   − O sin α cos α′  − P cos α cos α′ + S sin α sin α′ ) rσ 
 − 2(O sin α′ cos α   − N sin α cos α′  + P sin α sin α′ − S cos α cos α′ ) sρ 
+ 2 (P cos2 α – (N – O) sin α cos α – S sin2 α) rρ + 2 (Q cos α + R sin α) sin ϑ ⋅⋅⋅⋅ r η 
+ 2 (R sin α′ + Q cos α′ ) sin ϑ ⋅⋅⋅⋅ sη – 2 (S sin2α′ + (N – O) sin α′ cos α′  − P cos2α′ ) sσ 

− 2 (T sin α′ − U cos α′ ) σ + 2 (U cos α – T sin α) ρ = 0. 
If we set: 

ϑ = 
2

π
,    sin α′  = cos α,    cos α′ = − sin α 

 
then the coordinate system will remain rectangular, and will be merely rotated through an 
angle of α around the OZ axis. 
 Under the same change of coordinate system, equation (III) will go to the following 
one: 
 
(D sin2α′ + E cos2α′ − 2M sin α′ cos α′) p2 + (E cos2 α + D sin2 α  − 2M sin α cos α) q2 

+ F sin2 ϑ 
+ (A cos2 α + B sin2 α + 2J sin α cos α) κ2 + (B sin2 α′ + A cos2 α′ + 2J sin α′ cos α′ ) π2 

+ C ω2 
 + 2 (K cos α − L sin α) sin ϑ ⋅⋅⋅⋅ q        + 2 (L sin α′ − K cos α′ )  sin ϑ ⋅⋅⋅⋅ p 
 − 2 (M (sin α cos α′ + sin α′ cos α)  − D sin α sin α′ − E cos α cos α′ ) pq 
(IX) + 2 (G sin α′ + H cos α′ ) πω      − 2 (H cos α + G sin α) κω 
 − 2(J (sin α cos α′ + sin α′ cos α)     + A cos α cos α′ + B sin α sin α′ ) πκ 
 − 2(N sin α′ cos α  − O sin α cos α′  − P cos α cos α′ + S sin α sin α′ ) pκ 
 − 2(O sin α′ cos α  − N sin α cos α′  + P sin α sin α′   − S cos α cos α′ ) qπ 
 + 2 (S sin2α′ + (N – O) sin α′ cos α′ – P cos2 α′ ) pπ + 2 (T sin α  − U cos α′ ) pω 
 + 2 (U cos α − T sin α) qω – 2 (P cos2α − (N – O) sin α cos α  − S sin2α) pκ 

− 2 (Q cos α + R sin α) sin ϑ ⋅⋅⋅⋅ κ + 2 (R sin α′ + Q cos α′ ) sin ϑ ⋅⋅⋅⋅ π = 0. 
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§ 2. 
 

Equatorial surfaces that are described by a complex curve whose plane moves 
parallel to itself. 

 
 
 160.  Due to the great complexity of a second-degree complex, we must try to find 
some means of easing our overview, and thus our understanding, of that subject.  The two 
theorems that we already gave in the previous paragraphs as the immediate geometric 
expression of equations (II) and (IV), which represent the second-degree complex in the 
two-fold coordinate determination, will serve as a means to that end for us.  Namely, 
when we, on the one hand, combine the infinitely many lines of the complex that lie in 
the same plane into a single group, we can introduce the curve of class two that is 
enveloped by them in place of it.  On the other hand, when we unite the infinitely many 
lines of the complex that go through that point into a group, we can, in an analogous way, 
introduce that second-order conic surface that the complex defines in place of it. 
 Since all lines in space lie with a given point in some plane, in order to encompass all 
lines of the complex, we will then need, on the one hand, to consider only those complex 
curves whose planes go through the given point.  On the other hand, since all lines in 
space cut a given plane, we will obtain all lines of the complex when we consider only 
those cones whose centers lie in the given plane.  Thus, infinitely many (∞2) complex 
curves (infinitely many (∞2) complex cones, resp.) will appear in place of infinitely many 
(∞3) complex lines. 
 
 
 161.  We can go a step further.  If a plane moves then the varying curve of class two 
that is enveloped in it by lines of the complex will describe a surface.  If a point moves 
then a surface will be enveloped by the varying complex cones that has that point for 
their vertices.  In the determination of the complex, infinitely many (∞) complex curves 
(infinitely many (∞) complex cones, resp.) will replace these surfaces.  The simplest 
surfaces of this kind will correspond, on the one hand, to the case in which the plane of 
the curve thus described rotates around a fixed axis or moves parallel to itself, and on the 
other hand, to the case in which the center of the enveloping cone describes a fixed 
straight line, or, when the fixed line goes to infinity, to the case in which the cone 
degenerates into enveloping cylinders whose axes are parallel to a given plane. 
 We would like to call all such surfaces thus determined complex surfaces. 
 When we introduce these complex surfaces, we can replace the infinitely many (∞3) 
complex lines with infinitely many (∞) complex surfaces whose fixed axes lie in a given 
plane and intersect in a given point of this plane. 
 We would like to subject each of the given generators of the complex surface to an 
analytical discussion, in succession. 
 
 
 162.  We would like to start with the general equation: 
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D(t – t′)2 + E(u – u′)2 + F(v – v′)2 
+ A(uv′ – u′v)2 + B(t′v – tv′)2 + C(tu′ + t′u)2 

+ 2K(u − u′)(v − v′) + 2L(t − t′)(v − v′) + 2M(t − t′)(u − u′) 
+ 2G(tu′ − t′u)(t′u − tv′) + 2H(tu′ − t′u)(uv′ − u′v) + 2J(t′v − tv′)(uv′ − u′v) 

 + 2N (t – t′)  (uv′ − u′v) + 2O (u – u′)(t′v – tv′)          (IV) 
 + 2S (t – t′)   (t′v − tv′) + 2T (t – t′)  (tu′ – t′u) 
 + 2U (u – u′) (tu′ − t′v) + 2P (u – u′) (uv′ – u′v) 
 + 2Q (v – v′) (uv′ − u′v) + 2R (v – v′) (t′v – tv′), 
 
which represents the second-degree complex in axial coordinates.  If we consider t′, u′, v′ 
to be constant in this equation then it will represent a curve of class two in space that will 
contact all planes whose coordinates t, u, v satisfy the equation.  This curve will lie in the 
plane (t′, u′, v′) and will be enveloped by lines of the complex in it. 
 The projection of this curve onto one of the three coordinates planes YZ, XZ, XY is 
deduced immediately when we set t¸ u, v equal to zero, respectively.  In that way, if we 
only consider the projection onto YZ and likewise make the equation homogeneous by the 
introduction of w and w′ then we will obtain: 
 

(Dt′2 + Eu′2 + Fv′2 + 2K u′ v′ + 2L t′ v′ + 2 M t′ u′) w2 
− 2 (F v′w′ + K u′w′ + L t′w′ – (N – O) t′u′ – P u′ 2 – Q u′v′ + R t′ v′ + S t′ 2) vw 

+ (Au′2 + Bt′2 + Fw′2 – 2J t′ u′ – 2Q u′ w′ + 2R t′ w′) v2 
− 2 (E u′ w′ + K v′ w′ + M t′ w′ + N t′ v′ + P u′ v′ + Q v′ 2 – T t′ 2 – U t′ u′) u w (1) 

− 2 (A u′ v′ + G t′ 2 – H t′ u′ – J t′ v′ – Kw′ 2 – O t′ w′ + P u′ w′ – Q v′ w′) u v 
+ (A v′ 2 + C t′ 2 + E w′ 2 – 2H t′ v′ + 2P v′ w′ – 2 U t′ w′) u2 = 0. 

 
 

 163.  If we take t′, u′, v′ to be constant in the foregoing equation and let w′ vary then 
the plane (t′, u′, v′, w′) that contains the complex curve will move parallel to itself.  In 
particular, if we make the assumption that this plane is parallel to the YZ-plane then we 
will get: 

u′ = 0,  v′ = 0,  
w

t

′
′

 = − x′, 

 
in which x′ means the distance from the instantaneous plane of the complex curve to the 
YZ-plane.  If we likewise divide by t′2 then equation (1) will be converted into the 
following one: 

2 2 2

2 2 2

2( ) ( 2 )

2( ) 2( ) ( 2 ) 0.

Dw Lx S vw Fx Rx B v

Mx T uw Kx Ox G uv Ex Ux C u

′ ′ ′+ − + − +
′ ′ ′ ′ ′+ + + − − + + + =

  (2) 

 
Once the distance x to a plane that is parallel to YZ has been determined, this equation 
will give the projection of the complex curve that lies in that plane onto YZ in ordinary 
line coordinates u, v, w, or also this curve itself in its own plane when we displace the YZ 
coordinate plane parallel to itself in such a way that it coincides with the plane of the 
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instantaneous complex curve.  If we then also consider x′ to be variable and then drop the 
prime then that equation: 

2 2 2

2 2 2

2( ) 2( 2 )

2( ) 2( ) ( 2 ) 0

Dw Lx S vw Fx Rx B v

Mx T uw Kx Ox G uv Ex Ux C u

+ − + − +
+ + + − − + + + =

 (3) 

 
will represent the totality of all complex curves whose planes are parallel to YZ in mixed 
point and line coordinates x, u, v, w. 
 Complex curves in planes that are parallel to each other define a complex surface that 
we would like to call an equatorial surface, while the individual complex curves might 
be called latitude curves. 
 Equation (3) includes thirteen mutually-independent constants.  Since the coordinate 
determination has no further relationship to the equatorial surface than the fact that the 
direction of the YZ coordinate plane is a distinguished one, the equatorial surface will 
depend upon fifteen constants, in all. 
 
 
 164.  We obtain the determination of the center of the latitude curve in a plane that is 
determined by x′ in a well-known way by its equation in line coordinates.  The 
coordinates of this point are: 
 

z = 
Lx S

D

′ −
,  y = 

Mx T

D

′ +
,    (4) 

 
and when we drop the prime that will yield: 
 

0,

0.

Dz Lx S

Dy Mx T

− + = 
− − = 

     (5) 

 
When we consider the x to be variable, these two equations will represent a straight line, 
and this straight line will be the geometric locus of the centers of the complex curves that 
define the equatorial surface.  We would like to call this straight line the diameter of the 
equatorial surface and the planes of the latitude curves the associated planes of this 
diameter. 
 Any system of parallel planes corresponds to an equatorial surface in the complex 
with a diameter that is associated with the planes that are parallel to its own plane. 
 
 
 165.  Equation (3) gives any latitude curve in its plane in line coordinates u, v, w after 
this plane has been determined by the value of x.  However, we can also represent this 
same curve in its plane by the ordinary point coordinates y and z.  We will then find its 
equation in a known way (*): 
                                                
 (*) If the same conic section in the YZ plane is represented, in one case by means of point coordinates y, 
z, and in the other case by means of line coordinates u, v, w, by the two equations: 
 

ay2 + 2byz + 2dy + 2ez + f = 0, 
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2 2 2

2 2

2 2 2

2 2

2 2

2 2 2 2

[( ) ( 2 )]

2[( ( ) ( )( )]

[( ) ( 2 )]

2[( )( 2 ) ( )( )]

2[( )( 2 ) ( )( )]

2[( ) ( 2 )( 2 )] 0.

Lx S D Fx Rx B y

D Kx Ox G Lx S Mx T y

Mx T D Ex Ux C z

Mx T Fx Rx B Lx S Kx Ox G y

Lx S Ex Ux C Mx T Kx Ox G z

Kx Ox G Fx Rx B Ex Ux C

− − − +
+ − − − − +

+ + − − +
+ + − + − − − −
+ − − + − + − −

+ − − − − + − + =

  (6) 

 
If we consider not just y and z, but also x, to be variable in this equation then it will 
represent the equatorial surface in ordinary point coordinates. 
 Equatorial surfaces are therefore fourth-order surfaces.  They will be cut by the 
planes that are conjugate to their diameter in second-order curves, since a double ray of 
the surface will lie at infinity in these planes. 
 
 
 166.  We obtain the following three equations: 
 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2

2( ) ( 2 )

2( ) 2( ) ( 2 ) 0,

2( ) ( 2 )

2( ) 2( ) ( 2 ) 0,

2( ) ( 2 )

2( ) 2( ( ) ) ( 2

Dw Lx S vw Fx Rx B v

Mx T uw Kx Ox G uv Ex Ux C u

Ew My U tw Dy Ty C t

Ky P vw Ly Ny H tv Fy Qy A v

Fw Kz Q uw Ez Pz A u

Lz R tw Mz N O z J tu Dz Sz

+ − + − +
+ + + − − + + + =

+ − + − +

+ + + + − + + + =

+ − + − +
+ + + − − − + + 2) 0B t












+ = 

 (7) 

 
for the equations of the equatorial surface whose latitude curves are parallel to YZ, XZ, 
XY, respectively, in mixed point and line coordinates.  The first of the foregoing three 
equations is equation (3) of number 163, and the other two are derived from it by the 
permutation rules of number 155.  When we substitute all possible values for the three 
variables x, y, z, the equations will represent the individual latitude curves in their planes.  

                                                                                                                                            
Aw2 + 2Bvw + Cv2 + 2Duw + 2Euv + Fu2 = 0, 

 
then we can determine the constants of the one equation in terms of the constants of the other one in the 
following way: 
 a =  B2 – AC, A = b2 – ac, 
 b = AE – BD, B = ae – bd, 
 c =  D2 – AF, C = d2 – af, 
 d = CD – BE, D = cd – be, 
 e = BF – DE, E =  bf – de, 
 f =   E2 – CF, F = e2 – cf. 
 
I have abstracted these expressions from second group of the “developments” in nos. 484 and 552. 
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In particular, if we set x, y, z equal to zero then we will obtain the equations of the three 
complex curves in the three coordinate planes: 
 

2 2 2

2 2 2

2 2 2

2 2 2 0,

2 2 2 0,

2 2 2 0.

Dw Svw Bv Tuw Guv Cu

Ew Utw Ct Pvw Htv Av

Fw Ouw Au Rtw Jtu Bt

− + + − + =
− + + − + = 
− + + − + = 

  (8) 

 
 

§ 3. 
 

Meridian surfaces that are described by a complex curve whose plane rotates 
around a fixed straight line. 

 
 
 167.  Equatorial surfaces, which were the subject of examination in the previous 
paragraphs, are the geometric loci of curves that will be enveloped by lines of the 
complex in parallel planes, or, in other words, ones whose planes intersect in infinitely-
distant straight lines.  They are to be regarded as a specialization of complex curves that 
are the geometric loci of complex curves whose planes go through a fixed axis.  We 
would like to refer to such complex surfaces as meridian surfaces, while we likewise call 
the complex curves that define a meridian surface meridian curves, and the plane in 
which they lie, meridian planes. 
 The determination of the meridian surfaces is connected with the equation: 
 

2 2 2 2

2 2

2 2 2 2

2 2

2

( 2 2 2 )

2( ( ) )

( 2 2 2 )

2( )

2(

Dt Eu Fv Ku v Lt v Mt u w

Fv w Ku w Lt w N O t u Pu Qu v Rt v St vw

Au Bt Fw Jt u Qu w Rt w v

Eu w Kv w Mt w Nt v Pu v Qv Tt Ut u uw

Au v Gt H

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − − − + +

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − − +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + + + + − −
′ ′ ′− + − 2

2 2 2 2

)

( 2 2 2 ) 0,

t u Jt v Kw Ot w Pu w Qv w uv

Av Ct Ew Ht v Pv w Ut w u

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + −
′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − + − =

 (1) 

 
by which we determined the equatorial surface in the previous paragraphs. 
 
 
 168.  For an arbitrary choice of coordinate system, we can − with no loss of generality 
− take the fixed axis around which the planes of the complex curve rotate to be one of the 
three coordinate axes.  If we choose it to be the OZ-axis then we must set v′ and w′ equal 
to zero in the foregoing equations.  It will then go to the following one: 
 

2 2 2 2 2 2 2 2

2 2

( 2 ) 2(( ) ) ( 2 )

2( ) 2( ) 0.

Dt Eu Mt u w N O t u Pu St vw Au Bt Jt u v

Tt Uu t uw Gt Hu t uv Ct u

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − + − + + −
′ ′ ′ ′ ′ ′ ′+ + ⋅ − − + =

   (9) 
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The position of the meridian plane is determined by t′ / u′; if y and x are two of the three 
coordinates of an arbitrary point of the plane then we can determine them in the same 
way by: 

y

x
 = − 

t

u

′
′
. 

 
The last equation will then be the following one, when we likewise order it in powers of x 
and y: 
 

2 2 2 2 2 2 2 2

2 2

( 2 ) 2( ( ) ) ( 2 )

2( ) 2( ) 0.

Ex Mxy Dy w Px N O xy Sy vw Ax Jxy By v

Ux Ty y uw Hx Gy y uv Cy u

− + + − − − + + +
− − ⋅ − + ⋅ + =

 (10) 

 
When we permute the OZ and OY with each other according to the permutation rules of 
the first paragraph, this equation will go to: 
 

2 2 2 2 2 2 2 2

2 2

( 2 ) 2( ) ( 2 )

2( ) 2( ) 0,

Fx Lxy Dy w Qx Nxy Tz uw Ax Hxz Cz u

Rx Sz z vw Jx Gz z uv Bz v

− + − − − + + +
+ − ⋅ − + ⋅ + ⋅ =

  (11) 

 
and this equation, in turn, will go to the following one when we switch the two axes OY 
and OX with each other: 
 

2 2 2 2 2 2 2 2

2 2

( 2 ) 2( ) ( 2 )

2( ) 2( ) 0.

Fy Kyz Ez w Ry Oyz Uz tw By Gyz Cz t

Qy Pz z vw Jy Hz z tv Az v

− + + − − + + +
− − ⋅ − + ⋅ + ⋅ =

  (12) 

 
Equation (11) represents the projection onto YZ of those complex curves whose planes go 
through OY, while equation (12) represents the projection onto XZ of the complex curves 
whose planes go through OX.  We would like to regard the latter as the general equation 
of the meridian surfaces in mixed point and line coordinates. 
 Like the general equation of the equatorial surface (3), it contains thirteen mutually-
independent constants.  However, whereas in the case of equatorial surfaces, the 
coordinate system depended upon the surface only insofar as the direction of the YZ 
coordinate plane was given by it, here, the meridian surface will be determined by the OX 
axis.  A meridian surface will then depends upon four new constants, in addition to the 
thirteen constants above, so seventeen constants, in all. 
 
 
 169.  We would like to base the following discussion upon the latter equation. 
 If we denote the angle that an arbitrary meridian plane defines with XZ by ϕ then: 
 

tan ϕ = 
y

x
. 

 
We then obtain the equation of the projection of the relevant meridian surface onto XZ 
when replace the coordinates: 
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y and z 
 
in the last equation with the trigonometric functions: 
 

sin ϕ and cos ϕ, 
 

resp.  It will then go to the following one: 
 

2 2 2

2 2

2 2 2

2 2

( sin 2 sin cos cos )

2( sin sin cos cos )

( sin 2 sin cos cos )

2( sin cos )cos 2( sin cos )cos cos 0,

F K E w

R O U tw

B G C t

Q P vw J H tv A v

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− +
+ − −
+ + +

− − ⋅ − + ⋅ + ⋅ =

 (13) 

 
and, when we divide by cos2 ϕ, that will give: 
 

2 2

2

2 2

2

( tan 2 tan )

2( tan tan )

( tan 2 tan )

2( tan ) 2( tan ) 0.

F K E w

R O U tw

B G C t

Q P vw J H tv Av

ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

− +
+ − −
+ + +

− − − + + =

    (14) 

 
 Finally, if we rotate the XZ coordinate plane around OX through an angle of ϕ, such 
that after the rotation XZ′ will coincide with the relevant meridian plane in the new 
position, then the new coordinate determination t / w will remain unchanged, while one 
will get v / w for v / w ⋅⋅⋅⋅ cos ϕ, which is constructed in ordinary line coordinates on OZ′.  
In order to then obtain the equation of the meridian curve in its own plane, we have to 
write v, in place of v ⋅⋅⋅⋅ cos ϕ, in equation (13), with which, it will go to the following one: 
 

2 2 2

2 2

2 2 2

2

( sin 2 sin cos cos )

2( sin sin cos cos )

( sin 2 sin cos cos )

2( sin cos ) 2( sin cos ) 0.

F K E w

R O U tw

B G C t

Q P vw J H tv Av

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− +
+ − −
+ + +

− − − + + =

   (15) 

 
When we consider ϕ to be variable, the last equation will represent the totality of all 
meridian curves; in other words, the meridian surface itself. 
 In the case of equations (13) and (14), this will happen in such a way that once ϕ has 
taken on a definite value by the choice of the meridian plane, these equations will 
represent the projection of the meridian curve onto XZ in line coordinates t, v, w, with 
which the curve itself will be given.  The same curve will be represented in its own plane 
by means of the latter equation (15) by the choice of ϕ.  If the meridian plane rotates 
around OX then the meridian curve in it that generates the meridian surface will change, 
independently of ϕ.  In each of its positions, it is referred to the unchanged remaining 
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axis OX and a variable axis OZ′, which rotates around OX with it and in the meridian 
plane that contains it. 
 We thus arrive at an analytical representation and construction of the meridian 
surfaces that is completely analogous to the representation and construction of the 
equatorial surfaces. 
 
 
 170.  The equation of the pole of the OX axis relative to the curve of class two that 
was represented by equation (14) that corresponds to the instantaneous values of ϕ is the 
following one: 

(Q tan ϕ – P) w + (J tan ϕ + H) t – Av = 0. 
 

The curve (14) is the projection onto XZ of the relevant meridian curve, and thus the pole 
in question is likewise the projection of the pole of the OX axis relative to the meridian 
curve itself.  Two of the three coordinates of that point will then be: 
 

x = 
tan

tan

J H

Q P

ϕ
ϕ

+
−

, z = 
tan

A

Q Pϕ
−

−
, 

and the third one will be: 

y = z ⋅⋅⋅⋅ tan ϕ = 
tan

tan

A

Q P

ϕ
ϕ

−
−

. 

 
In order to determine the geometric locus of the pole of OY relative to the various 
meridian curves, we have to eliminate ϕ from the foregoing three equations.  To that end, 
we set tan ϕ equal to its value y / z in the second equation, which will give: 
 

Qy – Pz + A = 0.     (16) 
The first equation gives: 

x = 
Jy Hz

Qy Pz

+
−

 = − Jy Hz

A

+
, 

from which, it will follow that: 
Ax + Jy + Hz = 0.     (17) 

 
 We have thus arrived at the following result: 
 
 When a plane rotates around a fixed axis that lies in it, the geometric locus of the 
poles of that fixed axis relative to all complex curves that the plane contains during its 
rotation will be a straight line. 
 
 We would like to call this straight line the polar of the meridian surface. 
 
 
 171.  The foregoing equation (15) is, in turn, regarded as the equation of the complex 
surface in mixed coordinates.  tan ϕ is then to be considered as one of the three linear 
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coordinates y / z, x / z, 1 / z of a point (x, y, z), while t, u, w mean the line coordinates of 
the plane. 
 In order to represent the meridian surface that we speak of in point coordinates x, y, z, 
we return to equation (12), which is equivalent to (15).  We merely need to introduce the 
two point coordinates x and z in place of the line coordinates t, v, w by which that 
equation expresses the projections of the meridian curves in that plane onto YZ.  The 
known transformation (no. 165, Note), when applied to the present case, will give the 
following equation when we likewise divide by z2: 
 

2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

[( ) ( 2 )( 2 )]

2[( )( 2 ) ( )( )]

[( ) ( 2 )]

2[( )( 2 ) ( )( )]

2[ ( ) ( )( )]

Ry Oyz Uz Fy Kyz Ez By Gyz Cz

Jy Hz Fy Kyz Ez Qy Pz Ry Oyz Uz x

Qy Pz A Fy Kyz Ez x

Qy Pz By Gyz Cz Jy Hz Ry Oyz Uz

A Ry Oyz Uz Qy Pz Jy Hz

− − − − + + +
− + − + − − − −

+ − − − +
− − + + − + − −

+ − − − − +
2 2 2[( ) ( 2 )] 0.

x

Jy Hz A By Gyz Cz+ + − + + =

  (18) 

 
 The meridian surfaces, like the equatorial surfaces, are then of order four. 
 
 
 172.  Any straight line that goes through the OX axis cuts the meridian surface in four 
points, two of which will coincide on that axis.  The axis is then a double ray of the 
meridian surface.  An arbitrary plane cuts the meridian surface in a fourth-order curve 
that has a double point on its double ray.  That point will go to infinity when the 
intersecting plane is parallel to the double ray.  If the plane goes through the double ray 
then it will also be a double line of the intersection curve.  As a consequence, the order of 
the curve will reduce to two, with which it will become a complex curve. 
 
 

§ 4. 
 

Meridian surfaces that are enveloped by complex cones whose centers  
lie upon a straight line. 

 
 

 173.  All lines of a second-degree complex that encounter a given straight line can be 
grouped together in two ways: On the one hand, they define the totality of all tangents to 
infinitely many complex curves of class two whose planes go through the straight line, 
and on the other hand, they define the totality of all lines of infinitely many complex 
cones of order two whose vertices lie along the given straight line.  We can thus consider 
the same complex surface that we regarded as being described complex curves in the 
previous two paragraphs as being enveloped by complex cones from now on. 
 In agreement with that, one can draw two tangents to the complex curve that lie in 
each plane that goes through a given straight line that goes through an arbitrary point.  
These two lines are lines of the complex, and when the plane rotates around the given 
straight line as an axis, they will generate a conic surface that belongs to the complex, 
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which has the given point for its vertex and which circumscribes the complex surface in 
question.  Each point of the given straight line will then correspond to a complex cone 
that will be of order two, since it will be cut by each of the planes that go through its 
vertex along two straight lines.  The curve in which such a cone contacts the complex 
surface is not a plane curve, in general, nor do the tangential planes to the surface at the 
points of a complex curve generally envelop a conic surface. 
 
 
 174.  We would like to start with the general equation: 
 

A (x – x′)2 + B (y – y′)2 + C (z – z′)2 
+ D (yz′ – y′z)2 + E (x′z – xz′)2 + F (xy′ – x′y)2 

+ 2G (y – y′)(z – z′) + 2H (x – x′)(z – z′) + 2J (x – x′) (y – y′) 
+ 2K (xy′ – x′y) (x′z – xz′) + 2L (xy′ – x′y) (yz′ – y′z) + 2M (x′z – xz′)(yz′ – y′z) 

+ 2 N (x – x′)(yz′ – y′z) + 2O (y – y′)(x′z – xz′)         (II) 
+ 2 P (x – x′)(x′z – xz′) + 2 Q (x – x′)(xy′ – x′y)    
+ 2 R (y – y′)(xy′ – x′y) + 2 S (y – y′)(yz′ – y′z)    
+ 2 T (z – z′)(yz′ – y′z) + 2 U (z – z′)(x′z – xz′) = 0,    

 
which represents the second-degree complex in ray coordinates.  If we consider x′, y′, z′ 
to be constant in this equation then it will represent a second-order cone that goes through 
all of the points in space whose coordinates x, y, z satisfy the equation.  This cone will 
have the point (x′, y′, z′) for its vertex and will be the geometric locus of the lines of the 
complex that go through that point. 
 The intersection of this cone with one of the three coordinate planes YZ, XZ, XY is 
obtained immediately when we set x, y, z, resp., equal to zero in the foregoing equation.  
In this way, when we consider only the intersection with YZ, we will get the following 
equation: 

2 2 2

2 2

2 2 2

2 2

2

( 2 2 2 )

2( ( ) )

( 2 2 )

2( )

2(

Ax By Cz Gy z Hx z Jx y

Cz Gy Hx N O x y Px Sy Ty z Ux z z

C Dy Ex Mx y Ty Ux z

By Gz Jx Nx z Qx Rx y Sy z Tz y

Dy z G Kx Lx y Mx z Ox Sy Tz

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − + − − +

′ ′ ′ ′ ′ ′+ + + − − +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + + − − + +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − + − − − + −

2 2 2

)

( 2 2 2 ) 0.

yz

B Dz Fx Lx z Rx Sz y′ ′ ′ ′ ′ ′+ + + − − + =

 (19) 

 
 This equation is analogous to the one that we derived in no. 162 from the equation of 
the complex in axial coordinates in order to represent the projection of the complex curve 
that lies in the (t′, u′, v′, w′) onto the coordinate plane YZ.  In order to derive the new 
equation from the earlier one (1) directly, we have only to set w and w′ equal to 1 in it 
and then proceed in accordance with the permutation rules in number 153. 
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 175.   Equation (19) represents a second-order curve in the coordinate plane YZ, 
namely, the locus of intersection points of lines of the complex that go through the given 
point (x′, y′, z′) with that plane.  The cone is thus determined completely. 
 If we consider x′, y′, z′ to be variable in this equation, along with y and z, and regard 
them as the coordinates of the vertex of a complex cone then we can say that the 
foregoing equation (19) represents the totality of all complex cones, and therefore also 
the complex itself. 
 We would like to let the point (x′, y′, z′) move along a straight line.  The complex 
cones in question will then envelop a complex surface.  If we take that straight line to be 
the OX coordinate axis, in particular, then the enveloped surface will be the same 
meridian surface that we determined in the previous paragraphs as the geometric locus of 
those complex curves whose planes intersect in that same axis. 
 
 
 176.  When we set y′ and z′ equal to zero, consistent with the assumption that was 
made, the latter equation will go to the following one: 
 

2 2 2 2 2

2

( 2 ) 2( ) ( 2 )

2( ) 2( ) 0.

Fx Rx B y Kx Ox G yz Ex Ux C z

Qx J x y Px H x z Ax

′ ′ ′ ′ ′ ′− + − − − + + +
′ ′ ′ ′ ′+ − − + + =

  (20) 

 
When consider x′ to be variable, along with y and z, this equation will then represent the 
totality of all conic surfaces of the complex whose vertices lie on the OX axis, and is then 
to be regarded as the equation of the complex surface that is enveloped by them, in the 
sense that was established above.  The equation gives the base for such a conic surface in 
YZ in point coordinates once its vertex is determined by x′.  Any straight line that 
connects this point with a point of the base will then be a line of the cone. 
 We can construct the tangential planes to the cone directly, and indeed in such a way 
that we draw planes through its center and the tangents to the base in YZ.  A coordinate of 
one such tangential plane is: 

t

w
 = − 

1

x
, 

 
so we can write the latter equation in the following form: 
 

2 2 2 2 2 2 2 2

2

( 2 ) 2( ) ( 2 )

2( ) 2( ) 0.

Fw Rtw Bt y Kw Otw Gt yz Ew Utw Ct z

Qw Jt wy Pw Ht wz Aw

+ + − + − + − +
+ + − − + =

 (21) 

 
The foregoing equation represents the meridian surface in mixed point and plane 
coordinates. 
 
 
 177.  The tangential planes of the enveloping cone are likewise tangential planes of 
the enveloping complex surface.  The vertex of the corresponding enveloping cone is 
determined by the choice of t / w as the coordinate of such a plane.  Since that plane goes 
through a tangent to the base of the cone in YZ, the other two coordinates of such a 
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tangential plane will be identical with the two coordinates of that tangent in its plane.  If 
we then introduce the line coordinates u / w and v / w in place of the two point 
coordinates y and z, with which this equation goes to the following one when one applies 
the transformation formulas (no. 165, Note), after division by w2: 
 

2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

[( ) ( 2 )( 2 )]

2[( )( 2 ) ( )( )]

[( ) ( 2 )]

2[( )( 2 ) ( )( )]

2[ ( ) ( )( )

Kw Otw Gt Fw Rtw Bt Ew Utw Ct

Pw Ht Fw Rtw Bt Qw Jt Kw Otw Gt v

Qw Jt A Fw Rtw Bt v

Qw Jt Ew Utw Ct Pw Ht Kw Otw Gt u

A Kw Otw Gt Qw Jt Pw Ht

+ − − + + − +
− − + + − + + −

+ + − + +
+ + − + − − + −

− + − − + −
2 2 2 2

]

[( ) ( 2 )] 0

uv

Pw Ht A Ew Utw Ct u+ − − − + =

  (22) 

 
then this equation will represent the same meridian surface in plane coordinates that we 
represented in point coordinates in the previous paragraphs by equation (18). 
 
 The meridian surfaces are surfaces of order four, as well as surfaces of class four. 
 
 
 178.  In order to obtain the polar plane to the OX axis with respect to an arbitrary 
conic surface whose vertex lies in that axis, we simply need to draw a plane through its 
instantaneous vertex and the polar to the coordinate origin relative to the intersection 
curve in YZ.  If we take equation (20) to be the equation of this intersection curve, once x′ 
has been chosen, then, as is known, we will obtain the equation: 
 

(Qx′ − J) y – (Px′ + H) z + Ax′ = 0 
 
for the polar in question after omitting the common factor of x′.  With that, the equation 
of the polar plane will become: 
 

− Ax + (Qx′ − J) y – (Px′ + H) z + Ax′ = 0.   (23) 
 
In particular, this equation will be satisfied, independently of x′, when one has 
simultaneously: 
 Ax + Jy + Hz = 0, 
 Qy − Pz +  A = 0. 
 
The polar planes of the OX coordinate axis relative to the complex cone whose vertex lies 
upon OX intersect in the same straight line that was represented by the last two equations. 
 These two equations are, however, the same ones that we obtained earlier (no. 170) 
for the polar of the meridian surface. 
 
 The polar of a meridian surface then has the double relationship to it that, on the one 
hand, it is the geometric locus of the poles of the double ray of the surface relative to all 
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meridian curves, and on the other hand, it is enveloped by the polar planes to the same 
straight line relative to all enveloping complex cones. 
 
 
 179.  One can draw four tangential planes to the complex surface through any straight 
line that cuts the OX axis, two of which will go through the axis.  This axis will then be a 
double axis of the meridian surface.  One can draw a cone of class four that has a double 
plane that goes through OX from an arbitrary point on the surface.  In particular, if the 
point is chosen to be on the double axis of the complex surface then it will also be a 
double line of the contact cone of class four – that is, a straight line that goes through its 
center that will be enveloped by infinitely many tangential planes.  In that way, the cone 
will reduce to class two, with which it will be a complex cone. 
 When we combine these results with the ones in the foregoing paragraphs, we will 
arrive at the consequence that the OX coordinate axis is simultaneously a double ray and 
a double axis of the same meridian surface.  We can then speak of the double line of the 
meridian surface and regard it as a double ray, in one case, and a double axis, in the 
other. 
 
 

§ 5. 
 

Equatorial surfaces that are enveloped by cylindrical surfaces of the complex whose 
lines are parallel to a fixed plane. 

 
 

 180.  A cylinder whose center on the double line of a meridian surface lies at infinity 
belongs to the set of complex cones that envelop the meridian surface.  There are 
infinitely many such cylindrical surfaces.  Any given direction is a line of one such 
cylinder, as well as parallel to its axis.  It is obvious that not every two cylinders have a 
common line, and that all lines of all cylinders will define the totality of all lines of the 
complex.  We can group together infinitely many of the cylinders whose axes are parallel 
to a given plane.  Such cylinders will then envelop a surface.  In order to ease the 
understanding of a complex, we can then also group together its infinitely many (∞3) 
lines into infinitely many (∞2) groups, each of which will consist of the lines of a 
cylinder, and in turn, introduce infinitely many (∞) surfaces instead of the infinitely many 
(∞2) cylinders, each of which will be enveloped by infinitely many (∞) cylinders. 
 The surface that is enveloped by infinitely many complex cylinders whose axes are 
parallel to a given plane is nothing but the equatorial surface that is defined by complex 
curves in planes that are parallel to the given one.  The equatorial surface should be 
regarded as one of the previously-considered complex surfaces whose double line lies at 
infinity and whose polar is its diameter. 
 
 
 181.  In order to represent the totality of all complex cylinders by a single equation, 
we merely need to take the x′, y′, z′ in equation (19) of the previous paragraphs to be 



158 Chapter Two, Part I: Second-degree complexes. 

 

infinitely large.  We then obtain the following equation, which is homogeneous in these 
quantities: 
 

2 2 2 2 2 2 2

2 2 2 2

2 2 2

[ 2 ] 2[ ] [ 2 ]

2[ ] 2[ ( ) ]

[ 2 2 2 ] 0.

Fx Lx z Dz y Kx Lx y Mx z Dy z yz Ex Mx y Dy z

Qx Rx y Nx z Sy z Tz y Px N O x y Sy Ux z Ty z z

Ax Jx y By Hx z Gy z Cz

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − − − + + − +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − − − − − − − + +

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + =
(24) 

 
If we let α, β, γ denote the angles that the instantaneous direction of the axis of the 
cylinder defines with the three coordinate axes (assuming rectangular coordinate axes) 
then we will have: 

x′ : y′ : z′ = cos α : cos β : cos γ ; 
 
we can then introduce cos α, cos β, cos γ, in place of x′, y′, z′ in the last equation.  Once 
these three cosines are determined, the foregoing curve will represent that second-order 
curve along which the relevant cylinder cuts the YZ coordinate plane.  If we likewise 
regard the three cosines cos α, cos β, cos γ, between which, the known relation exists: 
 

cos2 α + cos2 β + cos2 γ = 1, 
 
as variable then we can also regard the same equation (24), which now assumes the 
following form: 

2 2 2

2

2 2 2

2 2

2 2

[ cos 2 cos cos cos ]

2[ cos cos cos cos cos cos cos ]

[ cos 2 cos cos cos ]

2[ cos cos cos cos cos cos cos cos ]

2[ cos ( )cos cos cos cos cos cos cos ]

F L D y

K L M D yz

E M D z

Q R N S T y

P N O S U T z

α α γ γ
α α β α γ β γ

α α β β
α α β α γ β γ γ

α α β β α γ β γ

− −
− − − +

+ − +
+ + − − −

− − − − + −
+ 2 2 2[ cos 2 cos cos cos 2 cos cos 2 cos cos cos ] 0,A J B H G Cα α β β α γ β γ γ+ + + + + =

(25) 

 
as also being the equation of the complex itself.  All of the constants of the general 
complex equation enter into it.  The quantities: 
 

y,    z,    
cos

cos

β
α

,    
cos

cos

γ
α

 

 
that appear here in this representation of the complex take the place of r, s, ρ, σ, resp., in 
equation (I) or p, q, π, κ, resp., in equation (III). 
 
 
 182.  If we assume that the axes of all cylinders are parallel to a given plane, which 
we would like to take to be the XZ plane, then y′ will vanish, as opposed to x′ and z′, or 
cos α will equal zero.  The foregoing general equation (24) will then go to the following 
one: 
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2 2 2 2 2

2 2 2 2

[ 2 ] 2[ ]

2[ ] 2[ ] [ 2 ] 0.

Fx Lx z Dz y Kx Mz x yz Ex z

Qx Nx z Tz y Px Ux x z Ax Hx z Cz

′ ′ ′ ′ ′ ′ ′ ′− + − − ⋅ + ⋅
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − + ⋅ + + + =

 (26) 

 
 For the sake of agreement with the developments of the second paragraph, we would 
like to switch the OX and OY axes with each other, with consideration given to the 
permutation rules of the first paragraph.  We would then find: 
 

2 2 2 2 2

2 2 2 2

[ 2 ] 2[ ]

2[ ] 2[ ] [ 2 ] 0.

Fy Ky z Ez x Ly Mz y xz Dy z

Ry Oy z Uz x Sy Tx y z By Gy z Cz

′ ′ ′ ′ ′ ′ ′ ′− + − − ⋅ + ⋅
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + + ⋅ + + + =

 (27) 

 
This equation represents the totality of cylinders whose axes are parallel to the YZ-plane, 
or – what amounts to the same thing – the equatorial surface that is enveloped by these 
cylinders. 
 When we divide by z2, and after the division set: 
 

y

z

′
′
 = 

cos

cos

α
γ

 = tan γ, 

 
the last equation will go to the following one: 
 

[F tan2 γ – 2K tan γ + E] x2 – 2[L tan γ – M] tan γ ⋅⋅⋅⋅ xz + D tan2 γ ⋅⋅⋅⋅ z2 
− 2[R tan2 γ – O tan γ – U] x + 2[S tan γ + J] tan γ ⋅⋅⋅⋅ z     (28) 

+ [B tan2 γ + 2G tan γ + C] = 0. 
 

 Finally, we would like to determine the intersection curve of the cylinder with those 
planes that are perpendicular to the axis of the cylinder, instead of the intersection curve 
with XZ that we have considered up to now.  To that end, we switch z with z ⋅⋅⋅⋅ cos γ in the 
foregoing equation, while x remain unchanged.  When we multiply by cos2 γ that will 
give: 
 

[F sin2γ – 2K sin γ cos γ + E cos2γ] x2 – 2[L sin γ – M cos γ] sin γ ⋅⋅⋅⋅ xz + D sin2γ ⋅⋅⋅⋅ z2 
− 2[R sin2 γ – O sin γ cos γ – U cos2γ] x + 2[S sin γ + T cos γ] sin γ ⋅⋅⋅⋅ z (29) 

+ [B sin2γ + 2G sin γ cos γ  + C cos2γ] = 0. 
 
 
 183.  In order to obtain the equation of the equatorial surface in plane coordinates, we 
next introduce into equation (28) the quotients of the coordinates v / w and u / w of a 
tangential plane to the cylinder that is also a tangential plane of the equatorial surface, 
which we shall do by means of the equation: 
 

tan γ = − v

u
. 

 
Equation (28) will then be converted into the following one when we first multiply by u2: 
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2 2 2 2 2

2 2 2 2

[ 2 ] 2[ ]

2[ ] 2( ) [ 2 ] 0.

Fv Kuv Eu x Lv Mu v xz Dv z

Rv Ouv Uu x Sv Tu v z Bv Guv Cu

+ + − + ⋅ + ⋅
− + − + − ⋅ + − + =

  (30) 

 
 For a given value of γ, equation (28) represents the intersection curve of the relevant 
cylinder with the XZ coordinate plane in terms of the point coordinates x and z.  We 
would like to introduce the coordinates of the tangents to that curve in place of these 
coordinates and take them to be t / u and w / u.  However, these two coordinates of the 
tangent to the intersection curve are likewise two coordinates of the tangential plane of 
the cylinder and the equatorial surface whose third coordinate is v / u.  In that way, after 
dividing by v2, we will find the equation of the equatorial surface in plane coordinates: 
 

2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

2 2

2 2 2 2

[( ) ( 2 )]

2[( )( 2 ) ( )( )

[( ) ( 2 )( 2 )]

2[ ( ) ( )( )]

2[( )( 2 ) ( )( )

Lv Mu D Fv Kuv Eu w

Sv Tu Fv Kuv Eu Lv Mu Rv Ouv Uu w

Rv Ouv Uu Fv Kuv Eu Bv Guv Cu

D Rv Ouv Uu Lv Mu Sv Tu tw

Lv Mu Bv Guv Cu Sv Tu Rv Ouv Uu

+ − + +
+ − + + − + + −
+ + − − + + − +

− + − − + −
− + − + − − + −

2 2 2 2

]

[( ) ( 2 )] 0.

t

Sv Tu D Bv Guv Cu t+ − − − + =

  (31) 

 
 The equatorial surfaces, like the meridian surfaces, are likewise of order four and 
class four.  The double axis of the surface at infinity in YZ is distinguished in the 
foregoing equation by the fact that u and v are not present in any powers lower than two.  
From the second paragraphs, the double axis at infinity of the equatorial surface is 
likewise a double ray of it.  We can then say that the equatorial surfaces have an double 
line at infinity. 
 
 
 184.  The polar plane of the double line at infinity in YZ relative to an arbitrary 
complex cylinder that cuts the XZ plane in the curve (28) goes through that diameter of 
the intersection curve that is associated with the direction of the OZ coordinate axis.  
When we differentiate equation (28) with respect to z, we will obtain: 
 

− (L tan γ – M) x + D tan γ ⋅⋅⋅⋅ z + (S tan γ + T) = 0 
 
for the equation of that diameter, and from that: 
 

− (L tan γ – M) x − Dy + D tan γ ⋅⋅⋅⋅ z + (S tan γ + T) = 0 
 
for the equation of the polar plane.  This equation will be satisfied independently of γ, in 
particular, when one simultaneously has: 
 
 Dz –  Lx + S = 0, 
 Dy – Mx – T = 0. 
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The polar planes to the straight line at infinity in the YZ relative to all complex cylinders 
whose axes are parallel to that plane will then intersect in a fixed straight line that will be 
represented by the two foregoing equations. 
 These two equations are, however, the ones that we obtained earlier (no. 164) for the 
determination of the diameter of the equatorial surface. 
 
 The diameter of an equatorial surface then has the double relationship to that surface 
that, in the one case, it is the geometric locus of the centers of the latitude curves that 
generate the surface, and on the other hand, it will be enveloped by the polar planes of 
those straight lines that lie at infinity in the planes of the latitude curves in relation to the 
enveloping complex cylinder. 
 
 
 185.  The following three equations represent the bases in YZ, XZ, XY of those three 
complex cylinders whose axes are parallel to the three OX, OY, OZ coordinate axes, 
respectively: 

2 2

2 2

2 2

2 2 2 0,

2 2 2 0,

2 2 2 0.

Fy Kyz Ez Qy Pz A

Fx Lxz Dz Sz Rx B

Ey Mxy Dy Ux Ty C

− + + − + =
− + + − + = 
− + + − + = 

   (32) 

 
The second of these equations is deduced immediately from equation (30) when we set U 
equal to zero in that equation, and the remaining two are deduced from the permutation 
rules of number 155. 
 
 

§ 6. 
 

Analytical determination of the double points and double planes  
of complex surfaces. 

 
 

 186.  Let: 
a α2 + 2b αβ + c β2 + 2d αγ + 2e βγ + f γ2 = 0 

 
be a homogeneous equation of degree two in the variables α, β, γ.  We then get the 
following algebraic decomposition: 
 

a(a α2 + 2b αβ + c β2 + 2d αγ + 2e βγ + f γ2) 

≡ 2 2 2 2[ ( ) ( ) ] [ ( ) ( ) ]a b b ac d d af a b b ac d d afα β γ α β γ+ + − + + − ⋅ + − − + − −  

− 2 [(bd – ae) − 2 2( ) ( )b ac d af− − ] βγ 

≡ 2 2 2 2[ ( ) ( ) ] [ ( ) ( ) ]a b b ac d d af a b b ac d d afα β γ α β γ+ + − + − − ⋅ + − − + + −  

− 2 [(bd – ae) + 2 2( ) ( )b ac d af− − ] βγ 
Thus, if: 
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 (bd – ae) − 2 2( ) ( )b ac d af− − = 0    (33) 
 
then the given second-degree equation will resolve into the following two first-degree 
equations: 

2 2

2 2

( ) ( ) 0,

( ) ( ) 0,

a b b ac d d af

a b b ac d d af

α β γ

α β γ

+ + − + + − = 


+ − − + − − = 

  (34) 

and if: 

(bd – ae) + 2 2( ) ( )b ac d af− − = 0    (35) 

 
then it will resolve into the following two: 
 

2 2

2 2

( ) ( ) 0,

( ) ( ) 0.

a b b ac d d af

a b b ac d d af

α β γ

α β γ

+ + − + − − = 


+ − − + + − = 

  (36) 

 
We can combine the condition equations (33) and (35) into the following one: 
 

(bd – ae)2 – (b2 – ac)(d2 – af) = 0.   (37) 
 
If this condition equation is satisfied then the given second-degree equation will resolve 
into two first-degree equations. 
 Two of the variables – viz., β and γ – enter into the equation forms (34) and (36) in 
the same way, while the third one – viz., α – enters in a distinguished way.  We then 
obtain two entirely analogous decompositions along with the foregoing ones, and in fact, 
by a mere change of notation.  Corresponding to them, we can also write the condition 
equation (37) in the following form: 
 

2 2 2

2 2 2

( ) ( )( ) 0,

( ) ( )( ) 0.

be cd b ac e cf

de fb d af e cf

− − − − =


− − − − = 
   (38) 

 
Finally, the foregoing three will go to the following one: 
 

acf – ae2 – cd 2 – fb2 + 2bde = 0    (39) 
 
under the same equations when we develop them.  The three equation forms (37) and (38) 
show that in the event that such a decomposition exists, the three expressions: 
 

(b2 – ae), (d 2 – af), (e2 – cf) 
 
will have the same sign.  If these signs are positive then the decomposition will be a real 
one, while if they are negative then it will be an imaginary one.  If two of the three 
expressions vanish simultaneously, which will imply the vanishing of the third one as a 
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result of the condition equations (37) and (38), then the two equations into which the 
given one resolves will be identical.  One likewise has: 
 

(bd – ae) = 0,  (be – cd) = 0,  (de – fb) = 0. 
 

 The given second-degree, homogeneous equation resolves into the two first-degree 
equations (34) or the two equations (36), respectively, according to whether the condition 
equation (33) or the condition equation (35) is satisfied, respectively.  That corresponds 
to the expression (bd – ae) being positive in one case and negative in the other, in the 
case of a real decomposition, and conversely, the same expression is negative in one case 
and positive in the other in the case of an imaginary decomposition.  This comes down to 
the same thing as saying that the decomposition (34) or (36) exists, resp., according to 
whether the expression (bd – ae) does or does not agree in sign, respectively, with one of 
the three expressions: 

(b2 – ae), (d 2 – af), (e2 – cf), 
 
and thus, with all of them. 
 Some transformations are coupled with the foregoing equations (37) and (38) that will 
find immediate applications in the sequel. 
 Equation (37) gives: 

2

bd ae

d af

−
−

 = 
2b ac

bd ae

−
−

 = 
2

2

b ac

d af

−±
−

.    (40) 

 
The upper or lower sign in this is taken according to whether the decomposition (34) or 
(36) exists, respectively. 
 Furthermore, equations (38) give: 

be cd

de fb

−
−

 = 
2

2

b ac

d af

−±
−

,     (41) 

 
in which the signs of the expressions (be – cd) and (de – fb) determine the double sign 
immediately.  When no decomposition of the given second-degree function into two 
linear factors is possible, which would be expressed by the condition equation (39), we 
will get: 

(bd – ac)(be – cd)(de – fb) = − (b2 – ac)(d 2 – af)(e2 – cf). 
 

It follows from this that we have to take the upper or lower sign in equation (41) 
according to whether the decomposition (36) or (34) exists, respectively. 
 
 
 187.  Complex surfaces, in their most general form, which we have called “meridian 
surfaces,” are surfaces that are, on the one hand, generated by a variable complex curve 
whose plane rotates around a fixed line that lies in it, and are, on the other hand, 
enveloped by complex cones whose vertices advance along the same straight line.  In 
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connection with the first generation of the surface, we have obtained equation (15) as the 
analytic determination of the surface.  For the sake of brevity, we set: 
 

2 2

2 2

2 2

( sin 2 sin cos cos ) ,

( sin sin cos cos ) ,

( sin 2 sin cos cos ) ,

( sin cos ) ,

( sin cos ) ,

,

F K E a

R O U b

B G C c

Q P d

J H e

A f

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

− + ≡
− − ≡ 
+ + ≡ 


− − ≡ 
− + ≡


≡ 

  (42) 

so we can write the equation in the following way: 
 

aw2 + 2btw + ct2 + 2dvw + 2etv + fv2 = 0.   (42) 
 
In this, OX is taken to be the fixed straight line that will be a double line of the surface, 
and ϕ is the angle that the instantaneous meridian plane makes with a fixed plane – viz., 
the XZ coordinate plane.  If we take the intersection of it with YZ in the instantaneous 
meridian plane to be the OZ axis, and denote it by OZ′, while preserving the double line 
of the surface as the OX axis, then the latter equation will represent the relevant complex 
curve in its own plane in ordinary line coordinates. 
 Since the constants in the last equation are functions of ϕ, the complex curve that lies 
in the meridian plane will vary with ϕ – i.e., with the position of that plane.  If we 
establish any condition equation between these constants and thus specialize the complex 
curve in it then this equation will give the meridian plane in which the curve, thus 
specialized, lies. 
 In particular, the complex curve degenerates into a system of two points when the 
condition equation (39) for the constants in its equation (43), which we can also write as: 
 

f(b2 – ae) + ae2 + cd2 – 2bde = 0,    (44) 
is fulfilled. 
 When we revert to the constants of the complex and likewise divide by cos2ϕ, the 
foregoing equation will become: 
 

2 2 2 2

2 2

2 2

2

[( tan tan ) ( tan 2 tan )( tan 2 tan )]

( tan ) ( tan 2 tan )

( tan ) ( tan 2 tan )

2( tan )( tan )( tan tan ) 0.

A R O U F K E B G C

J H F K E

Q P B G C

J H Q P R O U

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− − − − + + +
+ + − +
+ − + +

− + − − − =

 (45) 

 
This equation is of degree four with respect to tan ϕ.  There are then four meridian 
planes, in general, in which the complex curves degenerate into systems of two points.  
Since these four planes go through the fixed coordinate axis OX, the four point-pairs will 
lie in the four planes on four straight lines that cut this axis.  The point-pairs into which 
the four complex curves degenerate will be double points of the surface.  We would like 



§ 6.  Analytical determination of the double points and double planes of complex surfaces. 165 

 

to call the four straight lines on which these point-pairs lie singular rays of the complex 
surface. 
 A complex surface has eight double points, in general, and four singular rays that cut 
the double lines of the surface, which will contain the double points, when taken pair-
wise. 
 
 
 188.  The four values of tan ϕ correspond to four groups of values for the constants in 
equation (43).  For any group of values, this equation will then give the equations of the 
two points in its meridian plane.  We can combine these equations into the following one: 
 

aw + (b ± 2b ac− ) t + (d ± 2d af− ) v′ = 0,  (46) 

 
in which we must take square roots to have equal sign in one case and unequal signs in 
the other, according to whether the decomposition (34) or (36) exists, respectively.  The 
two coordinates of the two points in the respective meridian planes are: 
 

x = 
2b b ac

a

± −
, z′ = 

2d d af

a

± −
,   (47) 

in which we will get: 
 

z =
2d d af

a

± −
⋅⋅⋅⋅ cos ϕ, y = 

2d d af

a

± −
⋅⋅⋅⋅ sin ϕ ,  (48) 

 
instead of the value of z′ above when we return to the original coordinates system.  The 
singular ray that connects the two double points lies in the meridian plane that is 
determined by ϕ.  We obtain: 

x = 
2 22

2 2

b d af b acb ac
z

d af a d af

− −− ′± ⋅ +
− −

∓
    (49) 

 
for its equation in that plane, or, with consideration to equation (40): 
 

x = 2 2

bd ae de fb
z

d af d af

− −′⋅ +
− −

 = 
2 2b ac e cf

z
bd ae de fb

− −′⋅ +
− −

.  (50) 

 

We can replace z′ with 
sin

y

ϕ
 and 

cos

z

ϕ
 in this equation, in succession, and then obtain 

the equations of the projections of that ray onto XY and XZ, resp. 
 The singular ray cuts out a segment: 
 

x0 = 2

de fb

d af

−
−

 = 
2e cf

de fb

−
−

    (51) 
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from the double line OX and determines an angle δ with it that is determined by: 
 

tan δ = 
2d af

bd ae

−
−

= 
2

bd ae

b ac

−
−

.    (52) 

 
 The singular ray that corresponds to each value of ϕ that one finds is always real, 
although the expressions: 

2b ac−  and 2d af−  

 
can be real or imaginary.  By contrast, the two double points on the singular ray are 
likewise real or imaginary according to these two expressions. 
 If an arbitrary line in space is taken to be the double line of the surface of a given 
second-degree complex then the determination of the four meridian planes that contain 
the double points of the surface will depend upon the solution of a fourth-degree 
equation.  Thus, the singular line that connects the two double points in this meridian 
plane is given in a linear way.  The determination of the two double points on the singular 
ray then depends ultimately upon the solution of a quadratic equation.  The four meridian 
planes in which the singular rays of the surface lie can be pair-wise imaginary; the same 
will then be also true for the singular rays and the two double points.  However, when the 
singular rays are real, the two double points that lie upon them can also be imaginary, as 
well as real. 
 
 
 189.  In the following paragraph, we shall represent the same general complex surface 
by means of equation (20) that we determined in the third paragraph by means of 
equation (15) by starting with the second way of determining a complex.  If we set: 
 

2

2

2

( 2 ) ,

( ) ,

( 2 ) ,

( ) ,

( ) ,

,

Fx Rx B a

Kx Ox G b

Ex Ux C c

Qx J d

Px H e

A f

− + ≡
− − − ≡ 
+ + ≡ 


− ≡ 
− + ≡


≡ 

    (53) 

 
while dropping the prime on x′, then we can write this equation in the following way: 
 

ay2 + 2byz + cz2 + 2dy + 2c + f = 0.   (54) 
 
Once x has been chosen in YZ, it will represent the basis for the conic surface whose 
vertex lies on the double line of the surface and through which the choice of x on this 
double line will be determined. 
 The coefficients of the foregoing equation are functions of x.  In particular, if we set: 
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f (b2 – ae) + ae2 + cd 2 – 2bde = 0   (44) 
 

then the base for the conic surface will no be longer a second-order curve, but that curve 
will degenerate into a system of two straight lines, so the corresponding conic surface 
will degenerate into a system of two planes whose line of intersection will meet the 
double line of the surface at the point that is determined by x.  If we reintroduce the 
original constants of the complex into the foregoing equation then after dropping the 
common factor of x2 we will get: 
 

A [(Kx2 – Ox – G)2 – (Fx2 – 2Rx + B)(Ex2 + 2Ux + C)] 
+ (Px + H)2 (Fx2 – 2Rx + B) + (Qx − J)2 (Ex2 + 2Ux + C)  (55) 

+ 2(Px + H)(Qx − J)(Kx2 – Ox – G) = 0. 
 

This equation is of degree four with respect to x.  There are then four points on the double 
line, in general, that are no longer the centers of the circumscribed complex cones.  These 
complex cones degenerate into systems of two planes whose line of intersection goes 
through the four points.  The planes are double planes of the surface.  The double planes 
of the surface arrange themselves into four pairs; the two double planes of any pair will 
intersect in four straight lines that meet the double lines of surface in the four points that 
are determined by the values of x.  We call these four straight lines the singular axes of 
the meridian surface. 
 
 A complex surface has eight double planes, in general, which will intersect in the four 
singular axes of the surface, when taken pair-wise.  Like the four singular rays, the four 
singular axes will cut the double lines of the surfaces. 
 
 
 190.  The four values of x correspond to four groups of values for the constants in 
equation (51).  For any group of values, this equation will represent a system of two 
straight lines in which the YZ coordinate plane will be cut by two associated double 
planes.  These two lines will intersect in those points at which the singular axis (along 
which the two double planes intersect) meets the YZ-plane. 
 From the developments in number 185, we immediately obtain the following equation 
for the equation of the two straight lines in YZ: 
 

ay + 2 2( ) ( )b b ac z d d af± − + ± −  = 0,    (56) 
 
in which we have to take the square roots to have equal signs for both lines in one case 
and unequal signs in the other, according to the whether the decomposition (34) or (36) 
exists, respectively.  The coordinates of the two straight lines in YZ are: 
 

v

u
 = 

2b b ac

a

± −
,  

w

u
 = 

2d d af

a

± −
,    (57) 

 
and we then get: 



168 Chapter Two, Part I: Second-degree complexes. 

 

v = 
2 22

2 2

b d af d b acb ac
w u

d af a d af

− −−± ⋅ + ⋅
− −

∓
   (58) 

 
for the equation of their intersection point, or, with consideration given to equation (40): 
 

v = 2 2

bd ae de fb
w u

d af d af

− −⋅ + ⋅
− −

 = 
2 2b ac e cf

w u
bd ae de fb

− −⋅ + ⋅
− −

.   (59) 

 
The coordinates of this point are then: 
 

y = 
de fb

bd ae

−
−

 = − 
2

be cd

b ac

−
−

 = − 
2e cf

be cd

−
−

, z = − 
2d af

bd ae

−
−

= − 
2

bd ae

b ac

−
−

.  (60) 

 
The singular axis is determined analytically by means of equation (58), combined with 
the following one: 

tx + w = 0.     (61) 
 
The angle ϕ0, which XZ defines with the meridian plane, which includes that axis, is 
given by the following equation: 
 

tan ϕ0 = 
be cd

bd ae

−
−

 = − 2

de fb

d af

−
−

 = −
2e cf

de fb

−
−

.    (62) 

We finally get: 
 

x tan ε = 
2 2

2 2

( ) ( )

( )

bd ae be cd

b ac

− + −
−

    (63) 

 
for the determination of the angle ε that the singular axis makes with OX, which is the 
double line of the surface. 
 The determination of four singular axes of the meridian surface is linear, since the 
four points at which it intersects the double line will be determined by solving a fourth-
degree equation.  The determination of the two double planes of the surface, which 
intersect along one of the singular axes, depends upon the solution of a second-degree 
equation.  The four points at which the singular axes cut the double line can be pair-wise 
imaginary; the same will also be true for the singular axes then.  However, the double 
planes that intersect in the singular axes can also be imaginary, as well as real, when the 
singular axes are real. 
 
 
 191.  Meridian surfaces of a special kind have lines of the complex for their double 
lines.  In that case, the double lines of the surface will contact the generating curves in the 
various meridian planes.  They will likewise be common lines of the complex cones that 
envelop the surface. 
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 If we, in turn, take the OX axis to be the double line of the meridian surface then we 
will obtain the condition that A must vanish in the equation of the complex in order to 
express the idea that this line must belong to the complex.  As a consequence of that, f 
will also vanish in equation (43), as well as in equation (54).  Equation (45), by which the 
position of the meridian plane in which the singular rays lie is determined, reduces to the 
following one: 

(J tan ϕ + H)2 (F tan2 ϕ  – 2K tan ϕ + E) 
+ (Q tan ϕ – P)2 (B tan2 ϕ + 2G tan ϕ + C)   (64) 

− 2(J tan ϕ + H) (Q tan ϕ – P)(R tan2 ϕ – O tan ϕ – U) = 0. 
 

The equation remains of degree four with respect to tan ϕ.  The meridian surface then 
preserves its four singular rays.  From (47), the two double points on it have the 
following coordinates: 
 

x = 
2b b ac

a

± −
,  z′ = 

2d

a
, 0.   (65) 

 
One of the two points falls upon the double line of the surface.  Since this determination 
is independent of the instantaneous value of ϕ, one of the two double points will then fall 
upon each of the four singular rays in the double line of the surface. 
 The value of x0 for that point on the double line at which the singular ray cuts the 
double line will be determined reduces to: 
 

x0 = 
e

d
 = 

tan

tan

J H

Q P

ϕ
ϕ

+
−

     (66) 

when we let f vanish in (51). 
 
 
 192.  As a result of the assumption that the double line of the meridian surface is itself 
a line of the complex, equation (55), by means of which, the point at which the singular 
axes cut the double line is determined, will reduce to: 
 

2 2 2 2

2

( ) ( 2 ) ( ) ( 2 )

2( )( )( ) 0

Px H Fx Rx B Qx J Ex Ux C

Px H Qx J Kx Ox G

+ − + + − + +
− + − − − =

  (67) 

 
by the vanishing of A.  Since this equation remains of degree four with respect to x, the 
meridian surface will preserve its four singular axes.  We obtain the following 
coordinates from equation (57): 
 

u = a, v = b ± 2b ac− , w = 2d,  0  (68) 
 
for the two double planes that go through one of the four singular axes, and whose 
intersection with the double line will be determined by the foregoing equation.  One of 
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the two double planes of the surface that intersect in one of the four singular axes of the 
surface will then go through its double line. 
 When we let f vanish in equation (62), we will have: 
 

tan ϕ0 = − e

d
 = 

Px H

Qx J

+
−

    (69) 

 
for the angle ϕ0 that the meridian plane that goes through the singular axis defines with 
XZ. 
 
 
 193.  We can write the two equations: 
 

x0 = 
tan

tan

J H

Q P

ϕ
ϕ

+
−

,     (66) 

tan ϕ0 = 
Px H

Qx J

+
−

      (69) 

in the following way: 
Φ(x0, tan ϕ) = 0, Φ(x, tan ϕ0) = 0,   (70) 

 
in which we denote the same function by Φ both times.  If we introduce the foregoing 
value of x0 into equation (64) and the value of tan ϕ0 into equation (67) then we will get: 
 

2 2 2
0

2
0

2 2 2
0 0 0 0

2
0 0

2 2 2
0

2
0

2 2 2
0 0 0 0

( tan 2 tan ) ( tan 2 tan )

2 ( tan tan )

tan ( 2 ) ( 2 )

2 tan ( ) 0,

tan ( 2 ) ( 2 )

2 tan ( )

( tan 2 tan ) ( tan 2 tan )

x F K E B G C

x R O U

Fx Rx B Ex Ux C

Kx Ox G

Fx Rx B Ex Ux C

Kx Ox G

x F K E B G C

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ
ϕ

ϕ
ϕ

ϕ ϕ ϕ ϕ

− + + + +
− − − ≡

− + + + +
− − − =

− + + + +
− − − ≡

− + + + +
2

0 02 ( tan tan ) 0.x R O Uϕ ϕ














− − − = 

 (71) 

 
When we, in turn, denote the same function by Ψ, we can write the foregoing equations 
as: 

Ψ(x0, tan ϕ) = 0, Ψ(x, tan ϕ0) = 0.   (72) 
 
If we then eliminate x0 from the first two equations in (70) and (72) and x from the 
second two equations in (70) and (72) then we will obtain the same fourth-degree 
equation for the determination of ϕ and ϕ0 .  If we eliminate tan ϕ from the same two 
equation pairs, in the one case, and tan ϕ0, in the other, then we will obtain the same 
fourth-degree equation for the determination of x0 and x. 
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 The four singular rays and the four singular axes intersect in the same points of the 
double lines of the planes that go through those double lines and lie in them, respectively. 
 
 We then obtain the determination of these points and planes when we combine these 
two equations: 

( , tan ) 0,

( . tan ) 0,

x

x

ϕ
ϕ

Φ = 
Ψ = 

     (73) 

 
in which we consider x and tan ϕ to be variable (*). 

                                                

 (*) When x and tan ϕ v

u
 ≡− 
 

 are considered to be variable quantities, each of the two equations (73), 

when taken individually, will express a relation between the position of a point that moves along the OX 
coordinate axis and a plane that rotates around that axis: i.e., it will represent a geometric locus.  The first 
equation, to which we would like to restrict ourselves here, determines, in a general way, how any position 
of the point corresponds to a single position of the plane, and conversely.  That is the case, for example, 
when the point moves along a generator of a ruled surface, while the corresponding tangential plane rotates 
around that generator.  For the analytic statement of that, let: 
 

qy = pz 
 
be the equation of such a ruled surface that has the OX coordinate axis for one of its generators when we 
denote any two linear functions by p and q.  The equation of the tangential plane of the surface at any point 
on its generator, which corresponds to the function values p′ and q′, will then be the following one: 
 

q′y = p′z. 
This yields: 

tan ϕ = 
p

q

′
′ = 

gx h

g x h

+
′ ′+

, 

 
when x refers to the contact point, and g, h, g′, h′ mean the requisite constants to be determined.  This 
equation has the form in question. 
 For the geometric interpretation of the dependency between a plane and a point that lies in it that is 
expressed by such an equation, we can, from the outset, assume that two straight lines are given arbitrarily, 
and when we let the plane rotate around one of these two lines, we can determine its various positions by 
tan ϕ, while the position of the moving intersection point with the rotating plane on the second straight line 
will be determined by x.  If, for example, we take any two associated polars of a linear complex to be the 
two straight lines then if a point moves on one of the two polars then the plane that corresponds to that 
point in the complex will rotate around the other one.  The equation form above will give the law of 
rotation of the plane for a given motion of the point. 
 The same law of rotation is true for a plane that goes through a point that moves along a generator of a 
ruled surface, and likewise rotates around a second line of its generator.  Finally, the same law is true for 
the rotation of the meridian plane around the double line of a complex surface when the plane is drawn 
through a point that moves on the polar of the complex surface.  We immediately deduce the analytic 
statement of this latter geometric relation from number 170, in which, the equation that was cited there: 
 

tan ϕ = Px H

Qx J

+
−

, 

which we can also write in the following form: 

x = 
tan
tan

J H

Q P

ϕ
ϕ

+
−

, 
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 194.  In the event that the double line of the complex surface lies at infinity, we have 
called such a surface an equatorial surface.  If we take the YZ-plane to be the one in 
which the double line goes to infinity then we will obtain the following equation for the 
equation of the equatorial surface: 
 

2 2 2

2 2

2( ) ( 2 )

2( ) 2( ) ( 2 ) 0.

Dw Lx S vw Fx Rx B v

Mx T uw Kx Ox G uv Ex Ux C

+ − + − +
+ + + − − + + + =

  (3) 

 
We thus think of the surface as being generated by a variable complex curve whose plane 
is parallel to YZ and moves parallel to that plane.  The instantaneous plane of this curve is 
determined by x.  In special cases, as is true for the meridian surfaces, the curve can 
degenerate into a system of points.  The straight lines that connect two such points are 
singular rays of the equatorial surface, while the points themselves are double points of 
it.  The singular rays of the equatorial surface are parallel to the YZ coordinate plane; in 
other words, they intersect the infinitely-distant double lines of that surface. 
 If, for the sake of brevity, we set: 

2

2

2

,

( ) ,

( 2 ) ,

( ) ,

( ) ,

( 2 )

D a

Lx S b

Fx Rx B c

Mx T d

Kx Ox G e

Ex Ux C f

≡ 
− ≡ 
− + ≡
+ ≡ 
− − ≡


+ + ≡ 

    (74) 

 
then the foregoing equation (3) will go to the following one: 
 

aw2 + 2bvw + cv2 + 2duw + 2euv + fu2 = 0,   (75) 
 
and in order to express the idea that this equation represents a system of two points, the 
development of (41) will give: 
 

D [(Kx2 – Ox − G)2 – (Fx2 – 2Rx + B) (Ex2 + 2Ux + C)] 
+ (Mx + T)2 (Fx2 – 2Rx + B) + (Lx – S)2 (Ex2 + 2Ux + C)  (76) 

+ (Lx – S) (Mx + T) (Kx2 – Ox – G) = 0. 
 

Since the degree of this equation with respect to x is four, an equatorial surface, like a 
meridian surface, will also have four singular rays, in general. 
 
 
 195.  The center of the complex curve that generates the surface describes a diameter 
of the complex during that generation that we have referred to as the diameter of the 

                                                                                                                                            
 
gives the pole of the double line, relative to the complex curve in the meridian plane that is determined by 
ϕ, for a given value of ϕ on the polars of the complex surface by way of the corresponding value of x. 
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equatorial surface (no. 164).  If we take this diameter to be the remaining up-to-now 
undetermined axis OX then those terms in equation (3) that contain w in the first power 
will vanish, and in order for this to be true for every value of x, the four complex 
constants L, M, S, and T must vanish.  The foregoing equation will then reduce to: 
 

(Kx2 – Ox – G)2 – (Fx2 – 2Rx + B) (Ex2 + 2Ux + C) = 0.  (77) 
 
Once we have determined the planes that contain the four singular rays by means of this 
equation, we will get: 

y = 
c

a
± − ,  z = 

f

a
± −     (78) 

 
for the determination of the two double points, when we set b and d equal to zero on each 
of these rays, in accordance with the coordinate system.  According to whether the 
decomposition (34) or (36) exists – that is, according to whether e and f do or do not 
agree in sign, respectively – we must take the foregoing expressions for y and z for each 
of the two points to have equal or opposite signs, respectively.  The singular line will be 
intersected by the diameter of the surface, and indeed in such a way that the two double 
points on it lie on both sides of the diameter at an equal distance from each other.  The 
angle δ that the instantaneous singular ray makes with the XZ-plane will be determined 
by the equation: 

tan δ = 
c

f
±  = 

e

f
 = 

c

e
,    (79) 

 
in which the upper or lower sign is to be taken in the first or second of the two distinct 
cases above, respectively. 
 
 
 196.  If we determine the same equatorial surface that have determined above by its 
latitude curves by enveloping cylinders whose axes are parallel to the YZ-plane then 
equation (28) will appear in place of equation (3).  For the direction of the cylinder axis 
that is determined by γ, the new equation represents the intersection of that cylinder with 
the XZ-plane.  If, for the sake of brevity, we set: 
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   (80) 

 
then the equation of the intersection curve will become: 
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ax2 + 2bxz + cx2 + 2dx + 2ez + f = 0.   (81) 
 
In order to express the idea that this equation represents a system of two straight lines, 
and thus that the enveloping cylinder degenerates into a system of two planes that 
intersect the XZ-plane in these two straight lines, the development of equation (39) gives: 
 

D [(R tan2 γ – O tan γ – U)2 – (F tan2 γ − 2K tan γ + E)(B tan2 γ + 2G tan γ + C)] 
+ (S tan γ + T)2 (F tan2 γ – 2K tan γ + E) + (L tan γ – M)2 (B tan2 γ + 2G tan γ + C)   (82) 

+ 2 (L tan γ – M) (S tan γ + T) (R tan2 γ – O tan γ – U) = 0. 
 

Corresponding to the four values of tan γ that the solution to this equation gives, there 
will then be four pairs of double planes of the equatorial surface into which four of the 
circumscribed cylinders will resolve; the two planes of each pair will intersect in one of 
the four singular axes of the surfaces.  In each direction that is parallel to the YZ-plane, 
the equatorial surface will project onto second-order curves; the projections will be 
systems of two straight lines in the directions of the four singular axes. 
 
 
 197.  If we take the diameter of the complex that is associated with the YZ-plane to be 
the OX axis then the foregoing equation will reduce to: 
 

(R tan2γ – O tan γ – U)2 – (F tan2γ  – 2K tan γ  + E) (B tan2γ  + 2G tan γ  + C) = 0, (83) 
 
and the equation of the intersection curve of the relevant enveloping cylinder with the 
XZ-plane will reduce to: 

ax2 + cz2 + 2ez + f = 0.    (84) 
 
The equation resolves into the following two when the foregoing condition (83) is 
fulfilled: 

ax ± ac−  ⋅⋅⋅⋅ z ± af− = 0,    (85) 

 
in which we must give the square roots the same or opposite signs according to whether 
condition (33) or condition (35) is fulfilled, resp., for each of the two lines that the 
equation represents. 
 The straight lines that are represented by the double equation (85) intersect in the 
same point.  We get: 

x = 
f

a
−∓      (86) 

 
for this intersection point.  Thus, the singular axis of the equatorial surface, along which, 
two of its double planes will intersect, will also go through that point.  Thus, the four 
singular axes, like the four singular rays of the surface, will, on the one hand, intersect the 
infinitely-distant double line because they are parallel to the YZ-plane, and on the other 
hand, will intersect the diameter of the surface, which we can consider to be its polar. 
 We get from (85): 
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z

f
x

a
± −

 = 
a

c
−∓       (87) 

 
for the determination of the angle that the intersecting lines of the two double planes, 
which intersect along a singular axis, make with the OX with the XZ-plane in this plane.  
The two double planes, along with the two planes that intersect along the singular axis, 
one of which goes through the diameter of the surface and the other of which is 
associated with it, then define four harmonic planes, and are thus equally inclined with 
respect to them when the diameter is perpendicular to its associated planes. 
 
 
 198.  We encounter a special kind of equatorial surface when we take an infinitely-
distant line that belongs to the complex to be the double line of the surface.  This comes 
down to saying that all latitude curves of the surface are parabolas. 
 As before, if we take the double line in the YZ-plane to be infinitely distant then the 
constant D will vanish in the equation of the complex, under the assumption that was 
made.  Equation (76), by which, we have determined the distance between the singular 
rays, which are parallel to the coordinate plane, will then go to the following one: 
 

2 2 2 2

2
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( )( )( 2 ) 0.

Mx T Kx Ox G Lx S Ex Ux C

Lx S Mx T Fx Rx B

+ − − + − + +
+ − + − + =

  (88) 

 
The surface has lost its diameter, which has gone to infinity. 
 If we set: 
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    (89) 

 
then equation (3) will go to the following one: 
 

au2 + 2buv + cv2 + 2duw + 2cvw = 0,   (90) 
 
and when we take x to be one of the four roots of equation (88), this equation will resolve 
into the following two: 

2

2

( ) 2 0,

( ) 0,

au b b ac v dw

au b b ac v

+ ± − + = 


+ − = ∓

   (91) 
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in which we have to take the upper or lower sign according to whether the decomposition 
(34) or (36) exists, resp. 
 One double point of the surface will then lie on the singular ray at infinity, while the 
other one will have: 

y = 
2

a

d
, z = 

2

2

b b ac

d

± −
   (92) 

 
for its coordinates in its plane.  The angle γ0 that the direction of the singular ray defines 
with OZ is determined by the equation: 
 

tan γ0 = 
2

a

b b ac± −
 = 

2b b ac

c

−∓
 = 

d

e
.   (93) 

 
If we again introduce the constants of the complex then that will give: 
 

tan γ0 = 
Mx T

Lx S

+
−

.    (94) 

 
 
 199.  If we are to determine the equatorial surface by its enveloping cylinder then we 
must start with equation (28).  Under the assumption that was made that the infinitely-
distant line in YZ belongs to the complex, equation (76), which expresses the idea that the 
curve that is represented by (28) resolves into a pair of lines, will become the following 
one: 
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2
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 (95) 

 
When we again introduce the constant determination (80) and let c vanish, for the sake of 
brevity, equation (28) will go to the following one: 
 

ax2 + 2bxz + 2dx + 2ez + f = 0,   (96) 
 
and if tan γ is taken to be one of the roots of the foregoing equation then this equation 
will resolve to the following two: 

2

2

2 ( ) 0,

( ) 0,

ax bz d d af

ax d d af

+ + ± − = 


+ − = ∓

   (97) 

 
where we have to take the upper or lower sign according to whether the decomposition 
(34) or (36) exists, respectively. 
 One of the two double planes into which the complex cylinder that envelops the 
surface resolves will then always go to the double line at infinity of the surface.  It cuts 
out a piece of OX: 
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x0 = − 
2d d af

a

−∓
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2

f

d d af± −
 = − 

e

b
,  (98) 

 
or, when we reintroduce the constants of the complex: 
 

x0 = 
tan

tan

S T

L M

γ
γ

+
−

.     (99) 

 
 
 200.  When we introduce the value of tan γ0 from equation (94) into equation (88) and 
the value of x0 from equation (99) into equation (95), we will arrive at the following 
theorem for equatorial surfaces of the special kind, as we did in number 193 for meridian 
surfaces: 
 
 The four singular rays and the four singular axes lie in the same plane, respectively, 
which goes through the double line at infinity of the surface, and are parallel to each 
other in that plane, respectively. 
 
 

§ 7. 
 

General considerations on complex surfaces, their double lines, double points, and 
double planes. 

 
 

 210.  If a straight line moves in space then it will generate a ruled surface.  It is 
therefore irrelevant whether we consider it to be a ray or an axis.  We can represent the 
ruled surface by three equations in either ray coordinates or axial coordinates, which 
come down to a single equation in point coordinates, in the first case, and a single 
equation in plane coordinates in the second case. 
 
 
 202.  In particular, if the straight line in space moves in such a way that any two 
successive positions of it are contained in the same plane, or – what amounts to the same 
thing – goes through the same point then it will describe a developable surface when it is 
considered to be a ray; when it is considered to be an axis, it will envelop a spatial curve.  
According to the two-fold conception of a straight line, the ruled surface will then go to a 
curve or developable surface, resp.  The various positions of the straight line will then be 
represented by two complex equations in ray or axial coordinates.  If we take: 
 
 y = sz + σ, 
 x = rz + ρ 
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to be the equations of two projections of the straight line that is considered to be a ray, 
then differentiate with respect to r, s, ρ, σ, and eliminate z after the differentiation, then 
we will get: 

d

ds

σ
 = 

d

dr

ρ
,     (100) 

 
corresponding to the assumption that was made.  On the other hand, when consider the 
straight line to be an axis and take: 
 u = qv + κ, 
 t = pv + π 
 
to be the equations of its intersection points with two of the three coordinate planes then, 
corresponding to the same assumption, we will get the condition equation: 
 

dq

dκ
 = 

dp

dπ
.  (101) 

 
 A spatial curve is simultaneously determined by any developable surface, and 
reciprocally, a developable surface is determined by any spatial curve.  Equation (100) is 
the differential equation of the developable surface, while equation (101) is the 
differential equation of the spatial curve. 
 
 
 203.  We obtain a second determination of a developable surface when we think of it 
as being enveloped by a plane that goes through two of the successive positions of the 
generating lines, and is thus represented by two equations in plane coordinates.  The 
planes that envelop the developable surface belong to two surfaces as enveloping planes. 
 We obtain a second determination of the spatial curve when we think of it as being 
described by a point that is common to the enveloping axes in two successive positions, 
and will correspondingly be represented by two equations in point coordinates.  A spatial 
curve is the intersection of two surfaces that are determined by points. 
 Developable surfaces are represented by a single equation in point coordinates.  They 
are to be considered as ruled surfaces, insofar as we think of them as generated by a ray.  
Spatial curves are represented by a single equation in plane coordinates.  They are to be 
considered as ruled surfaces, insofar as we think of them as generated by an axis. 
 
 
 204.  A developable surface can degenerate into a conic surface upon further 
restriction.  All rays then go through a fixed point, namely, the vertex of the conic 
surface.  In order to express this, if (x0, y0, z0) is the vertex of the conic surface then we 
will obtain the three linear condition equations: 
 

0 0

0 0

0 0

,

,
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= + 
− = 

    (102) 
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Two of these equations will imply the third one, assuming that r and s take on finite 
values.  Once the fixed point is determined, the conic surface will be represented by a 
single complex equation in ray coordinates.  If we take the fixed point to be the 
coordinate origin, in particular, then the three coordinates ρ, σ, and η will vanish 
simultaneously for all rays, and we will then obtain an equation between the two 
remaining coordinate r and s for the determination of the conic surface. 
 The spatial curve can degenerate into a plane curve upon further restriction.  All of 
the axes that envelop the curve will then lie in a fixed plane, which will be expressed by 
three linear condition equations: 

0 0 0

0 0 0

0 0 0

,

,

u qv w

t pv w

pu qt w

κ
π

ω

= +
= + 
− = 

    (103) 

 

when we take 
0 0 0

0 0 0, ,
t u v

w w w

 
 
 

 to be that plane.  Two of these equations will imply the 

third one if one assumes that q and p remain finite.  When the plane is determined, the 
curve will be represented in that plane by a single complex equation in axial coordinates.  
This equation will reduce to one equation in two of the five axial coordinates when we 
take one of the three coordinate planes to be the plane of the curve, in particular.  If that 
plane is YZ then the three coordinates p, π, ω will vanish for all of the axes that envelop 
the curve, and we will obtain an equation in the two remaining axial coordinates q and κ 
for the enveloped curve, and we can also construe these two coordinates as line 
coordinates in the YZ-plane. 
 
 
 205.  However, we can also consider a conic surface as being enveloped by a plane 
and correspondingly represent its vertex by the equation: 
 

x0 t + y0 u + z0 v + w = 0. 
 

The conic surface will then determine a second equation in plane coordinates when it is 
combined with this one.  If we take its vertex to be the origin, with which, the foregoing 
equation will reduce to: 

w = 0, 
 

then the second equation alone will succeed in representing the conic surface.  In an 
analogous way, we can think of a plane curve as being described by a point and represent 
its planes by the equation: 

t0 x + u0 y + v0 z + w0 = 0. 
 
The plane curve will then determine a second equation in point coordinates when it is 
combined with this one.  If the curve lies in one of the three coordinate planes, which we 
would like to take to be YZ, in turn, then we will obtain: 
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x = 0 
 
instead of the foregoing equation, and a single equation between the two remaining point 
coordinates, which we can construct in the YZ-plane, will suffice to represent the curve. 
 
 
 206.  One can speak of the order of a conic surface only when we think of it as being 
described by a straight line, namely, a ray.  That order is equal to the degree of the 
equation by which the conic surface will be represented in point coordinates.  One can 
speak of the class of a plane curve only when we think of it as being enveloped by a 
straight line, namely, an axis.  This class is equal to the degree of the equation by which 
the curve will be represented in plane coordinates. 
 If we introduce the straight line into geometry as a spatial element, and consider the 
straight line to be a ray, in one case, and an axis, in the other, then we must put ordinary 
plane geometry, as completely coordinated, alongside point geometry, along with curves 
that are enveloped by axes in the plane and conic surfaces that will be defined by rays 
that go through the point.  The conic surfaces are of a given order and the curves are of a 
given class.  The class of a conic surface and the order of a curve appear as secondary 
concepts.  It is only when we think of a conic surfaces as being enveloped by planes that 
go through two successive generating rays that we can speak of its class.  That class will 
likewise be the class of its curves of intersection, and will be equal to the number of 
tangential planes to a conic surface that can be drawn through a straight line that goes 
through the vertex of that conic surface.  It is only when we think of the plane curve as 
being described by the intersection of successive axes that we can speak of its order.  
That order will then likewise be the order of the conic surface that can be drawn through 
it, and will be equal to the number of points at which a curve will be cut by a straight line 
that that lies in its plane. 
 
 
 207.  The following remarks, which are connected with the foregoing ones, touch 
upon the theory of the representation of spatial structures by means of line coordinates in 
an essential way. 
 In order to represent a conic surface in ray coordinates, we must express the idea that 
the rays that define it go through a fixed point (x0, y0, z0), namely, its vertex.  All three of 
equations (102) are necessary in order to achieve that completely.  If we take just two of 
these three equations − say, the first two: 
 

0 0

0 0

,

,

y sz

x rz

σ
ρ

= +
= +

     (104) 

 
then they will express the idea that the relevant ray (r, s, ρ, σ) cuts those two lines that 
project the point (x0, y0, z0) onto the two coordinate planes YZ and XZ.  This includes the 
double geometric condition that either the ray (r, s, ρ, σ) goes through the given point (x0, 
y0, z0)  or it lies in the plane that contains the two projecting lines, and thus goes through 
the point (x0, y0, z0) and is parallel to the XY-plane.  It is only when the third equation: 
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ry0 – sx0 = η 
 
enters in that the second interpretation for equation (104) will go away, and then all that 
will be expressed is the idea that the ray goes through the given point. 
 In order to represent a plane curve in axial coordinates, we must express the idea that 

the axes that envelop it lie in a fixed plane 
0 0 0

0 0 0, ,
t u v

w w w

 
 
 

.  All three of equations (103) 

are necessary for this.  If we take just two of these three equations – say, the first two: 
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     (105) 

 
then they will express the idea that the relevant axis (p, q, π, κ) goes through the line of 

intersection of the given plane 
0 0 0

0 0 0, ,
t u v

w w w

 
 
 

 and the two YZ and XZ  coordinate planes.  

That will correspond geometrically to two possibilities: Either the axis (p, q, π, κ) lies in 
the given plane, or it goes through the point at which the OZ coordinate axis intersects 
that plane.  The third equation: 

pu0 – qt0 = w0 
 
must be added in order to exclude the second geometric relationship. 
 If we have questions about the foregoing – at first glance, paradoxical – relations on 
analytical grounds then that will be due to the fact that when r and s (p and q, resp.) 
become infinitely large (*) the third of equations (102) and (103) will no longer be an 
algebraic consequence of the first two. 
 
 
 208.  When, along with the equation: 

Ωn = 0, 
 
                                                
 (*) Infinity will be avoided by the use of homogeneous line coordinates.  For example, if we replace the 
first two of equations (102) with the following ones: 
  
 y0 (z − z′) = z0 (y − y′) +  (yz′ − y′z), 
 x0 (z − z′) = z0 (x − x′) +  (x′z − xz′) 
 
then both equations will be satisfied simultaneously when: 
 

x = x0, y = y0, z = z0 ; 
 

that is, when the relevant ray goes through the given point. 
 The same two equations will also be satisfied when: 
 

z = z′ = z0 ; 
 
that is, when all rays lie inside of a plane that is parallel to XY whose distance from that plane is equal to z0. 
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which represents a line complex of an arbitrary degree n in ray coordinates, the two 
equations: 
 y0 = s z0 + σ, 
 x0 = r z0 + ρ, 
 
which we can regard as two linear complex equations, exist simultaneously, the 
coordinates of all rays that, on the one hand, define the complex cone of order n whose 
vertex is (x0, y0, z0), and on the other hand, envelop the complex curve of class n whose 
plane, which is parallel to XY, goes through the vertex of the cone, will satisfy the three 
foregoing equations.  These three equations then simultaneously represent a complex 
curve, along with the complex cone. 
 Likewise, the system that consists of the equation: 
 

Φn = 0 
 
of a complex of degree n in axial coordinates and the two linear equations: 
 
 u0 = q v0 + κ w0, 
 t0 = p v0 + π w0, 
 
which we can regard as the equations of two first-degree complexes, simultaneously 

represents a complex curve whose plane is 
0 0 0

0 0 0, ,
t u v

w w w

 
 
 

 and a complex conic surface 

whose vertex lies in that plane. 
 There exists a geometric relationship between the conic surface of order n and the 
curve of class n that is represented in the foregoing by the three complex equations that 
the n lines along which the conic surface is cut by the plane of the curve are, at the same 
time, those n tangents to the curve that go through the vertex of the conic surface. 
 
 Only those geometric structures that are reciprocal to themselves can be represented 
by one or more equations in line coordinates. 
 
 If we go to point coordinates in the case of ray coordinates then we will tacitly 
introduce the third of the three linear equations (102) into the foregoing developments, 
and any trace of the curve that is enveloped by the rays will vanish from the analytical 
representation. 
 If we go from axial coordinates to plane coordinates then we will tacitly introduce 
the third of the three linear equations (103), and any trace of the conic surface that is 
enveloped by the axes will vanish from the analytical representation. 
 
 
 209.  We have already presented the following two characteristic properties of a 
complex of degree n (no. 19), which are mutually reciprocal: 
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 Infinitely many lines of a complex of degree n lie in any plane that is drawn through 
space, which will envelop a curve of class n.  Infinitely many lines of the complex go 
through any point of space, which will define a conic surface of order n. 
 The double construction of the surfaces of a complex of order n is linked to that fact 
immediately.  Once we have chosen any fixed straight line, we can, in one case, define 
them by those complex curves of class n whose planes go through the fixed line, and in 
the other case, envelop them by those complex cones whose vertices lie on the fixed line. 
 Once the existence of the complex of degree n has be established, at all, we can 
couple each of the above two characteristic properties − which are only one, in principle 
− with the definition of such a complex, and that definition, when it is allowed, at all, 
which involves the imaginary in the domain of geometry, is referred to as a geometric 
one in the usual sense. 
 The double determination of a complex of degree n would lose its meaning, and we 
would search in vain for an analytical expression for the complex if we were to switch the 
words “order” and “class” in the definition. 
 When we determine complex surfaces by means of the complex that they belong to, 
that determination will be coupled with the consideration of straight lines and their 
coordinates. The surfaces of a complex of degree n are of equal order and class, which we 
would like to denote by p.  We consider surfaces of order p to consist of points that are 
cut from a curve of order p in a plane by a straight line at p points.  We consider surfaces 
of class p to be enveloped by planes; p planes of the surface will go through a straight 
line, and the enveloping cone will be of class p.  Complex surfaces have a multiple line, 
along which, a multiple ray and a multiple axis coincide; let the line be m-fold.  If we 
consider it to be a ray then it will cut m sheets of the surface: The surface will have m 
tangential planes at each point of the m-fold line.  The m-fold line is the geometric locus 
of the m-fold points of the surface and all curves, along which the surface is cut by 
planes, will have an m-fold point on that line.  The m-fold line, when considered as an 
axis, is a locus that is enveloped by m-fold planes of the surface.  Any plane that goes 
through the m-fold line will contact the surface at m points that lie on that line.  Any point 
of such a plane is the vertex of an enveloping cone that has m sheets that will be 
contacted by the plane, which is also an m-fold plane of the cone, along m lines of the 
cone that go through the m contact points on the surface. 
 
 
 210.  The surfaces of a second-degree complex have a double line.  They will be 
intersected by planes in curves of order four and enveloped by cones of class four.  When 
the intersection is a meridian plane, in particular, and thus goes through the double line, 
the fourth-order intersection curve will decompose into a second-order curve and two 
rays that coincide in the double line.  If we consider the curve to be enveloped by axes 
and we appeal to its analytic representation by line coordinates in its plane then its class 
will reduce to two when any trace of two coincident rays, which are foreign to the 
complex, drop out: The curve in the meridian plane will be a complex curve.  On the 
other hand, if we choose the center of the enveloping cone to be on the double line of the 
second-degree complex, in particular, then such a cone, which will be of class four, in 
general, will degenerate into a cone of class two and two enveloping axes that coincide in 
the double line.  Any trace of these two axes will vanish when we think of the cone as 
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being described by a ray.  The enveloping cone will then enter in as a second-order cone, 
and thus, as a complex cone. 
 
 
 211.  In the general case, the surfaces of a complex of degree n will detach from their 
intersection curves when the intersecting plane goes through the m-fold line of the 
surface, in particular, which will coincide in that line.  When we overlook these m rays, 
the order of the curve will reduce to (p – m).  On the other hand, since the intersection 
curves whose planes go through the m-fold line are complex curves, and as such are the 
general ones of class n, we will obtain n (n – 1) for the order of these curves.  In that way, 
we will find: 

p = n (n – 1) + m.     (106) 
 
When we choose the center of the enveloping cone to be on the m-fold line of the 
complex surface, in particular, that will separate m axes from that cone that coincide in 
the m-fold line, and when omit these m axes, the class of the enveloping cone will drop 
by p to (p – m).  It will then become a complex cone, and will be, as such, the general 
cone of order n, and will thus have class n (n – 1).  In that way, we will arrive at the 
foregoing equation, which includes a relationship between n, which is the degree of the 
complex that the surface belongs to, p, which is the order and class of that surface, and m, 
which is the number that gives how many rays, on the one hand, and how many axes, on 
the other, coincide in the multiple lines of the surfaces. 
 
 
 212.  In order for a complex surface to be described completely by a complex curve, 
the meridian plane that contains that variable curve must rotate around the arbitrarily 
chosen multiple line by 180 degrees.  Under this rotation, the complex curve will go 
through any given point of the multiple line of the complex surface in a certain number of 
positions of the meridian plane.  This number will likewise be the number of sheets of the 
surface that intersect on the multiple line, and will thus be equal to m. 
 Any point of the multiple line of the complex surface is the vertex of a complex cone 
of order n, at which, since it is the general cone of that order, n (n − 1) meridian planes 
can be drawn through the multiple lines that contact the conic surface.  The n (n – 1) lines 
of the cone along which this contact takes place likewise contact each other, since they 
are lines of the complex, namely, the meridian curves that lie in the same meridian plane 
at the center of the enveloping cone on the multiple line.  The number n (n – 1) will thus 
determine the number of meridian curves that go through the arbitrarily-chosen center of 
the enveloping cone on the multiple line, and thus, the number of sheets of the complex 
surface that intersect on the multiple line. 
 
 The multiple line is an n (n – 1)-fold line. 
 
 Any point of the n (n – 1)-fold line of the surface of a complex of degree n is the 
vertex of a complex cone of order n, at which, n(n – 1) planes can be drawn through the 
n(n – 1)-fold line.  The n(n − 1) lines along which the cone is contacted by these planes 
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will themselves contact the n(n – 1) complex curves that intersect at this point at the 
vertex of the cone. 
 
 Along with the foregoing theorem, one likewise states the following one: 
 
 Any meridian plane of the surface of a complex of degree n contains a complex curve 
that cuts the n(n – 1)-fold line of the surface in this plane at n(n – 1) points.  The tangents 
to the curve at these n(n – 1) points are lines of n(n – 1) complex cones that have those 
points for their vertices, and contact the meridian plane along these lines. 
 
 We can also immediately link the two foregoing theorems, which follow reciprocally 
from each other as the statement of correlative properties of a complex, to the definition 
above of the complex of degree n, and then obtain the following theorem: 
 
 The number of straight lines (rays and axes) that define the multiple line of a complex 
surface is equal to the order of the complex curves that generate the surface and the class 
of the complex cones that envelop it. 
 
 We have: 

m = n (n – 1),     (107) 
so: 

p = 2n (n – 1) = 2m.    (108) 
 
The surfaces of a complex of order n have order and class 2n (n – 1), and have an n(n – 
1)-fold line. 
 
 
 213.  In place of the foregoing geometric considerations, we can just as simply pose 
analytic ones.  We would thus lie to start with the surfaces of the second-degree complex.  
We have represented the projections of the individual meridian curves of such complex 
surfaces onto XZ by the following equation (no. 169): 
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and thereby made the assumptions that all meridian planes go through the OX coordinate 
axis and that OZ is perpendicular to OX.  Any arbitrary point of this axis is to be chosen 
as the origin of the coordinates.  The plane of the instantaneous meridian curve will be 
determined by the angle ϕ that it defines with a fixed meridian plane.  When we set w 
equal to zero in the foregoing equation under these assumptions and divide by t, we will 
obtain the following equation for the determination of the directions of the projections of 
the two tangents to the instantaneous meridian curve that is determined by ϕ that are 
drawn through the origin: 
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 + (B tan2 ϕ  – 2G tan ϕ  + C) = 0. (109) 

 
When the meridian curve goes through the coordinate origin, the two tangents that go 
through that point will coalesce, which is expressed analytically by saying that the 

foregoing quadratic equation in 
v

t
 
 
 

 has equal roots.  This demands that: 

 
A (B tan2 ϕ + 2G tan ϕ + C) – (J tan ϕ + H)2 = 0.  (110) 

 
This condition equation has degree two in tan ϕ.  Two of the infinitely many meridian 
curves of the complex surface will then go through any arbitrary point that is chosen on 
the OX coordinate axis.  That axis will then be a double line of the complex surface. 
 When we set: 

v

t
 = − tan ψ 

in the last equation, it will become: 
 

A tan2 ψ + B tan2 ϕ + C + 2G tan ϕ + 2H tan ψ + 2J tan ϕ tan ψ = 0. (111) 
 
This equation is to be regarded as the equation of a conic surface.  ψ means the angle that 

one line of it defines with the YZ plane, and 
2

π ψ − 
 

 means the angle that it defines with 

OX.  Once the plane in which two lines of the cone lie has been determined by an 
arbitrary choice of ϕ, that will give two values of ψ by which the directions of the two 
lines will be given in that plane.  However, ϕ is likewise the angle that the projection of 
this line of the cone onto YZ makes with the OZ coordinate axis, and ψ is the angle that 
its projection onto XZ defines with that axis; one thus comes to: 
 

tan ψ = r, tan ϕ = s, 
 
and the equation of the conic surface goes to the following one: 
 

Ar2 + Bs2 + C + 2Gs + 2Hr + 2Jrs = 0.   (112) 
 
We will obtain the same equation when set the line coordinates ρ, σ − and as a result of 
that, η − equal to zero in the general complex equation (I).  It will then represent the 
complex cone that has its vertex at the origin. 
 
 
 214.  By generalizing these considerations, we obtain the determination of the planes 
of the n (n – 1) meridian curves of class n for a complex of arbitrary degree n, which 
intersect an arbitrary point of their n (n – 1) lines at the origin, and the tangents to those 
curves at that point.  The equation of the complex cone whose vertex falls upon the origin 
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is deduced immediately when we set ρ, σ, and η equal to zero in the general equation of 
the n-degree complex, as above.  Let the resulting equation of degree n in r and s be: 
 

Φ(r, s) ≡ Ξn = 0; 
 
when we differentiate this, that will give: 
 

nd

dr

Ξ
 = 0. 

 
By eliminating r from the two foregoing equations, we obtain n (n – 1) values of s for the 
determination of the planes of the n (n – 1) meridian curves of the complex surface that 
intersection at the origin, and thus the directions of the tangents to the meridian curves at 
the origin from the corresponding n (n – 1) equal roots r of the penultimate equation. 
 
 
 215.  In paragraph 6 of this section, we proved analytically that the surface of a 
second-degree complex has eight double points that lie pair-wise in the four singular 
rays, and eight double planes that intersect pair-wise in the four singular axes.  Just as the 
four singular rays intersect the double line, the four singular axes will lie in the same 
plane as the double line, and will therefore likewise intersect it.  We would like to call the 
planes that can be drawn through the double line and the four singular rays the four 
singular planes of the complex surface, and denote the former by S1, S2, S3, S4 and the 
latter by E1, E2, E3, E4, respectively.  In a corresponding way, we would like to call the 
intersection points of the singular axes with the double line the four singular points of the 
complex surface, and denote the former by A1, A2, A3, A4 and the latter by P1, P2, P3, P4, 
respectively. 
 Any ray that encounters the double line as a double ray of the complex surface will 
intersect the surface, since it is of order four at two more points, in addition.  Any of the 
four singular rays will contain a pair of double points, in addition to the points at which it 
cuts the double lines, and thus, six pair-wise coincident points of the complex surface: It 
lies on that surface in its entirety. 
 If we draw a plane through the double line as a double ray of the complex surface, 
which we have referred to as the meridian plane, then the surface, since it is of order four, 
will be cut by that plane in yet another curve of second order, in addition to the two rays 
that coincide on the double line.  The meridian plane that goes through a singular ray is a 
tangential plane of the surface, since the second-order curve in it degenerates into two 
rays that coincide on the singular ray.  The meridian planes that go through the four 
singular rays will be contacted by the surface along these rays.  The complete fourth-
order intersection curve will degenerate into four rays in this case that pair-wise coincide 
in the double ray and the singular ray.  By contrast, if we consider the fourth-order 
meridian curve to be a complex curve of class two that is enveloped by axes, in which the 
two rays that coincide in the double line remain completely beyond consideration, then it 
will degenerate in the present case into a system of two points with which the double 
points that lie on the instantaneous ray will coincide.  The tangential plane to the surface 
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at any point of a singular ray will be the singular plane that goes through that ray and the 
double line. 
 
 
 216.  Since the complex surface is of class four, one can draw two more planes on the 
surface through any axis that lies in a plane with the double line (double axis) of the 
surface, in addition to the double plane that goes through the double line.  Any of the four 
singular axes will be contained in a pair of double planes, in addition to the double plane 
that goes through the double line; they will thus be contained in six pair-wise coincident 
planes of the complex surface.  As a consequence of this, any plane that is drawn through 
it will be a plane of the complex surface. 
 The enveloping cone of a complex surface of class four, which has a point of the 
double line for its center, resolves into the two axes that coincide with the double line and 
a cone of class two.  The singular points P at which the singular axes A cut the double 
line are the vertices of cones of class two that degenerate into two axes that coincide in 
the singular axes and contact the surface at the singular points.  The complete enveloping 
cone degenerates in this case into four axes that coincide pair-wise in the double line and 
the singular axis, respectively.  By contrast, if we consider the enveloping cone to be a 
second-order cone that is described by rays then it will degenerate into a system of two 
planes that coincide with the two double planes that go through the instantaneous singular 
axis.  The contact point of all planes with the surface that go through a singular axis is the 
singular point at which that axis will cut the double line. 
 
 
 217.  An arbitrary plane cuts the complex surface in a fourth-order curve that has a 
double point at its intersection with the double line.  Either two real or two imaginary 
branches of the curve will intersect at that double point; in the latter case, the double 
point will be an isolated point of the curve.  By going from one case to the other, it will 
become a cuspidal point.  That transition will correspond to the fact that the plane of the 
curve goes through one of the four singular points P1, P2, P3, P4 at which the double line 
of the complex surface will be intersected by the four singular axes A1, A2, A3, A4 .  The 
double line will be divided into four segments P1P2, P2P3, P3P4, P4P1 by these four 
points, where we shall count the two external segments that meet at infinity as a single 
one.  The double line lies completely in the complex surface, but in such a way that it will 
cut two real sheets of the surface in two segments that do not meet each other, while the 
remaining two segments, which likewise do not meet each other, will be the real 
intersections of two imaginary sheets of the surface.  The two tangents to the curve at its 
double point will likewise be real or imaginary, along with the two tangential planes of 
the complex surface at that point.  They will lie in these two tangential planes and rotate 
around the common double point in these two planes when the plane of the curve is 
rotated around that point arbitrarily.  If the intersecting plane goes through one of the four 
singular points then that point will generally be a cuspidal point of the intersection curve.  
The two tangential planes to the surface at such a point will coincide in those planes that 
go through the double line and the singular axis, respectively.  The tangents to all 
intersection curves at their common cuspidal point that coincides with the singular point 
will lie in this plane, whose directions might also be in the intersecting plane.  We can 
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describe the complex surface by a varying curve of order four with a cuspidal point that 
we can rotate around the tangent at that point.  These tangents can have all possible 
directions in the tangential planes to the surface; in particular, when they coincide with 
the singular axis, the intersection curve, like its plane, might rotate around that axis into 
all positions of the same two branches that contact on the singular axis at the singular 
point.  If the plane that rotates around the singular axis coincides, in particular, with one 
of the two planes into which the complex cone degenerates when its center falls upon the 
singular point then the fourth-order curve that lies in it will resolve into two curves of 
order two that coincide in those second-order curves along whose entire extent the 
surface will contact the planes.  Finally, if the plane that rotates around the singular axis 
likewise goes through the double line then the fourth-order intersection curve will resolve 
into a second-order curve and two straight lines that coincide in the double line that 
represent a second curve of order two that contacts the former at singular points. 
 
 
 218.  Any point of space is the center of a cone of class four that envelops the 
complex surface and has those meridian planes that that go through the point for its 
double planes. These double planes will either contact two real sheets of the conic surface 
in two real lines of it or those two sheets will be imaginary, and with them, the two lines 
of the cone.  In the latter case, the double contact will be imaginary; viz., the double 
plane will be an isolated one.  The two lines along which the enveloping cone contact the 
double plane will cut the double line of the complex surface in two points; that surface 
will contact the double plane at these two points.  The four singular planes E1, E2, E3, E4, 
which contain the four singular rays S1, S2, S3, S4 of the complex surface, will belong to 
the meridian planes.  They will divide the infinite space into four spatial components 
E1E2, E2E3, E3E4, E4E1, each of which will be bounded by two successive singular planes 
and will consist of two components that meet at infinity.  If the vertex of the enveloping 
cone of one of the four spatial components is found on a singular plane in the adjacent 
spatial component then the cone in question will be contacted along two of its lines at one 
of the two positions of its vertex, while in the other position of its vertex the meridian 
plane that goes through it will be an isolated double plane.  In the transitional case where 
the vertex of the enveloping cone lies in the singular plane itself, this plane will osculate 
the enveloping cone; it will then be an inflection plane of the enveloping cone that 
simultaneously contacts it and cuts it.  If the vertex of the enveloping cone changes 
position in the same meridian plane then the two lines along which the cone is contacted 
by that plane will rotate in that plane around two fixed points of the double line in which 
the complex surface will be contacted by the meridian plane.  When the meridian plane 
rotates around the double line, the two contact points on that line will change position.  In 
particular, when the vertex of the enveloping cone is chosen to be in one of the four 
singular planes, they will coincide in those points at which the singular ray meets the 
double line, respectively.  We can envelop a complex cone by a varying cone of order 
four that has a given plane for its inflection plane and whose vertex moves along a 
straight line in that plane.  The given plane will then be the singular plane of the complex 
surface and the given line in it will then cut the double line at the point at which it will be 
cut by the ray, respectively.  In particular, if the vertex of the enveloping cone lies in the 
singular line in the singular plane and moves along it then the cone in question will have 
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two sheets at all positions of its vertex that will contact the singular plane along the 
singular ray.  Only when the vertex is chosen to be at one of two double points on the ray 
that goes through those two of the eight double points will the enveloping cone of class 
four resolve into two cones of class two that coincide in the contact cone of the double 
point.  That cone will have the singular ray as one of its lines and will contact it along the 
respective singular plane. 
 
 
 219.  Any point of space is the center of an enveloping cone of the complex surface 
that has eight double lines that go through the eight double points of the surface.  All 
curves along which the surface will be contacted by circumscribing cones will also have 
the eight double points of the surface for their double points.  Therefore, this relationship 
will also exist when the vertex of the cone falls upon the double line of the surface.  
However, four pairs of planes will then separate from the conic surface, which, as a conic 
surface of class four with a double plane that goes through the double plane will 
generally be of order ten, and these pairs of planes will then coincide with the four 
singular planes of the surface, with which, only one second-order cone will remain.  The 
contact curve of this cone will go through the eight double points of the surface and will 
be cut by each of the four singular planes at two of these points. 
 If we, in agreement with the foregoing, project the surface onto an arbitrary plane (in 
order to illustrate the silhouette, we can take it to be the surface that is illuminated from a 
point of its double line) from a point that lies upon its double line and can move 
arbitrarily to infinity in it then we will obtain a conic section that perpetually moves with 
the change of position of the point on the double line, and likewise four straight lines that 
keep their positions.  They will be the projections of four singular rays, or also – what 
amounts to the same thing – the intersection lines of the image plane with the four 
singular planes of the surface.  They will all go through the point at which the double line 
of the surface meets the image plane, and will cut the conic section in the projection of 
the eight double points.  When the vertex of the circumscribing cone moves along the 
double line the system of the conic section and the four straight lines will transform into a 
curve with eight double points. 
 In particular, when the vertex of the second-order circumscribing cone falls upon one 
of the four singular points of the complex surface, and as a result, resolves into a system 
of two planes, the spatial fourth-order contact curve will decompose into two second-
order plane curves.  The eight double points of the surface will then distribute themselves 
along these two curves. 
 
 
 220.  Any plane cuts a complex surface in a curve that has order four, and will 
likewise have class ten, since it has a double point on the double line of the surface.  The 
tangential planes of the surface at points of the intersection curve determine a 
developable surface.  All such developable surfaces have the eight double planes of the 
complex surface in addition to their own.  The intersection curve will be enveloped by all 
axes along which their planes are cut by the enveloping planes of the developable 
surface; the intersection lines with the eight double planes will be double axes of the 
intersection curve.  These relations also still continue to exist when the intersecting plane 
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goes through the double line of the complex surface.  Eight points will then separate from 
the intersection curve that coincide pair-wise at the four singular points that lie on the 
double line, and all that will remain is a curve of class two that belongs to both the 
complex surface and complex.  That curve will be enveloped by the eight intersections 
with the eight double planes that intersect pair-wise in the four singular points on the 
double line.  If the intersecting plane coincides with one of the four singular planes of the 
surface, in particular, then the curve of class two will resolve into two points that 
coincide with two double points of the complex surface, and the developable surface of 
class four will resolve into the two contact cones of class two at those two points.  Each 
of the two associated double planes will then go through one of the two double points. 
 
 
 221.  By the restricting condition that no double plane can contain two double points 
that lie upon the same double ray, and thus that two double planes cannot go through any 
double point that intersect in its singular axis, one is given immediately, on the one hand, 
the distribution of the eight double points into four plus four points that lie upon each of 
two double planes that intersect along its singular axis, as well as, on the other hand, the 
distribution of the eight double planes into four plus four planes that go through any two 
double points that lie on singular rays of them. 
 We would like to denote the four singular rays by the symbols: 
 

(1, 2), (3, 4), (5, 6), (7, 8) 
 
and the double points on them by: 
 

1,    2,    3,    4,    5,    6,    7,    8. 
 
We obtain the following eight groups of points: 
 

(1,3,5,7),

(1,3,6,8),

(1,5,4,8),

(1,7,4,6),

  

(2,4,6,8),

(2,4,5,7),

(2,6,3,7),

(2,8,3,5).

     (113) 

 
No two double points that lie upon the same line will appear in either of the groups.  Any 
two adjacent groups will contain eight double points, in all.  The four double points of 
one of the two groups will lie on one of two double planes, which intersect along a 
singular axis, while the four of the other group will lie on the other one.  In the same 
sequence, we would like to take the following, simpler, notation for the eight double 
planes, instead of the foregoing one: 
 
 I, II, 
 III, IV, 
 V, VI, 
 VII, VIII. 
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One will then have: 
(I, II),    (III, IV),    (V, VI),    (VII, VIII) 

 
for the symbols for the four singular axes along which the eight double planes I and II, III 
and IV, V and VI, VII and VIII intersect.  From the schema (113), we immediately obtain 
the following schema for the distribution of the eight double planes into groups of four 
planes that go through their double points: 
 

(I, III, V, VII),

(I, III, VI, VIII),

(I, V, IV, VIII),

(I, VIII, IV, VI),

  

(II, IV, VI, VIII),

(II, IV, V, VII),

(II, VI, III, VII),

(II, VIII, III, V).








   (114) 

 
The four double planes of the foregoing eight groups intersect in the eight double points, 
respectively, which we previously denoted by the symbols: 
 
 1, 2, 
 3, 4, 
 5, 6, 
 7, 8. 
 
These eight double points lie pair-wise on the four singular rays of the complex surface 
whose symbols are (1, 2), (3, 4), (5, 6), (7, 8). 
 Therefore, when the eight double points of the surface are given, we will immediately 
obtain its eight double planes, and conversely, when the latter are given, we will obtain 
the former.  A remarkable geometric structure that is polar reciprocal to itself is present in 
the eight points and eight planes. 
 
 
 222.  If we draw an arbitrary plane through the double line of a complex surface and 
choose a point of it arbitrarily then a complex curve of class two will lie in that plane and 
the point will be the vertex of a second-order complex cone.  Two lines of the cone will 
be two tangents of the curve.  The polar plane of the double line relative to the cone will 
go through the pole of its double line relative to the curve.  This relationship will 
continue to exist no matter how the plane of the curve might rotate around the double line 
or how the vertex of the cone might change position on that double line.  It will then 
follow from this immediately in a geometric way, as we previously proved analytically, 
that the poles of the double line of a complex surface relative to all of its meridian curves 
will lie on a straight line, and that the polar planes of the double line relative to all 
circumscribing complex cones will intersect along that straight line.  We have called this 
line the polar of the complex surface.  In order to determine it, we need only to construct 
the two poles of the double line relative to any two meridian curves of the surface or the 
two polar planes of the double line relative to any two circumscribing complex cones of 
the surface. 
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 On the one hand, if we take, instead of the meridian curves, those two points that lie 
on a singular ray into which the curve degenerates when its plane coincides with one of 
the four singular planes of the complex surface, in particular, and on the other hand, 
instead of the circumscribing complex cone, those two planes that intersect along a 
singular axis into which the cone degenerates when its vertex falls upon one of the four 
singular points of the complex surface then we will immediately obtain the following 
theorem: 
 
 The polar of a complex surface, like the double line itself, intersects its four singular 
rays and its four singular axes.  Any singular ray is harmonically separated with the two 
double points of the surface that it connects and the two intersections with double lines 
and polars.  The two double planes that intersect along any singular axis and the two 
planes that go through this axis and the double line and polar define a system of four 
harmonic planes. 
 
 
 223.  All of the singularities of a complex surface are determined in a linear way 
when we know the double line, the polar, and three double points 1, 3, 5, or in place of 
them, three double planes I, III, V of the surface.  In this, we are assuming only that no 
two double points lie upon the same singular ray and no two double planes intersect 
along the same singular axis. 
 We can draw three straight lines through the three given points that intersect the 
double line and the polar.  These three straight lines, which are three singular rays of the 
surface, go through the three associated double points 2, 4, 5, which we obtain 
immediately from the previous number. All that then remain unknown are two of the 
eight double points, whose symbols we would like to bracket, in order to distinguish 
them.  The known eight double points will suffice to determine all eight double planes 
(no. 221): 

 

(1, 3, 5, (7)) I,

(1, 3, 6, (8)) III,

(1, 5, 4, (8)) V,

(1, 4, 6, (7)) VII,

≡
≡
≡
≡

 

(2, 4, 6, (8)) II,

(2, 4, 5, (7)) IV,

(2, 6, 3, (7)) VI,

(2, 3, 5, (8)) VIII,

≡
≡
≡
≡

 

 
which intersect pair-wise in four singular axes.  In each of the eight double planes, we 
obtain immediately, and in a linear way, the contact curve that goes through three known 
double points and contacts the respective singular axis at its intersection with the double 
line, moreover.  Four of the eight double planes I, IV, VI, VII intersect at one of the two 
previously-unknown double points in (7), while the remaining four II, III, V, VIII 
intersect at the others (8).  With that, the fourth singular ray is also determined. 
 If we start with the three double planes I, III, V then those three straight lines that 
connect the points at which three planes intersect the double line and the polar will be 
three singular axes of the surface, and from the previous number, we will likewise obtain 
the three new double planes II, IV, VI, which intersect the three given ones along these 
three singular axes.  From number 221, the three pairs of double planes will suffice to 
determine the eight double points and the eight contact cones at the eight double points.  
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The two still-unknown double planes VII and VIII are determined by the fact that they 
contain the eight double points, four on one and four on the other; their intersection is the 
fourth singular axis. 
 The remarkable geometric structure that was already referred to at the end of number 
221 can thus be constructed by means of the double line and the polar of the surface – 
both lines have a completely equivalent relationship to it – and three points or planes of 
it.  This structure then depends upon: 
 

2 ⋅⋅⋅⋅ 4 + 3 ⋅⋅⋅⋅ 3 ≡ 17 
 
constants.  However, the general complex surface itself depends upon just as many 
constants.  That surface will be determined when the geometric structure that depends 
upon it is determined. 
 
 
 224.  Some remarkable linear constructions of the general complex surface are linked 
with the foregoing when the double line, the polar, and either three of its double points or 
three of its double planes are given. 
 Determination of the complex curve in an arbitrary meridian plane: 
 
 First construction.  One constructs the eight double planes.  A meridian plane cuts 
these eight double planes along eight straight lines, which will be contacted by the 
complex curves in them.  Five of these straight lines will be sufficient for the linear 
determination of the curve. 
 
 Second construction.  A meridian plane cuts the eight contact curves, except for the 
eight points that coincide pair-wise in the four singular points, at eight additional points.  
These eight points lie on the complex in the meridian plane.  Five of them will suffice for 
the linear determination of the curve.  From the first construction, we obtain the eight 
tangents in each meridian plane that can be drawn from the four singular points to the 
curve, and from the second construction, the contact points to these tangents. 
 Determination of the complex cone whose vertex is chosen arbitrarily upon the 
double line: 
 
 First. construction.  One constructs the eight double points of the surface.  The eight 
straight lines that connect the chosen vertex with these eight double points are eight lines 
of the complex cone, which is determined by five of these lines in a linear way. 
 
 Second construction.  One constructs the eight contact cones at the eight double 
points.  Two tangential planes to each of the eight contact cones can be drawn from their 
centers, which are chosen arbitrarily on the double line.  Of the sixteen tangential planes, 
four times two of them will coincide in the four singular planes.  The remaining eight 
tangential planes to the eight contact cones that do not go through the double line will 
contact the complex cone, which is determined in a linear way by five of these planes.  In 
the first construction, the complex cone will determined by eight lines that lie pair-wise 
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in four singular planes, and in the second construction, it will be determined by the planes 
that contact it along these lines. 
 
 In order to then describe the surface itself, we merely need to let the curve of order 
and class two that is determined by any position of the meridian plane rotate around the 
double line.  In order to envelop this surface with a complex cone of order class two, 
which is determined for any position of its vertex, we merely need to let this vertex move 
along the double line. 
 
 
 225.  The foregoing discussion of the singularities of complex surfaces of the general 
kind can likewise be carried over to the special case in which any line that belongs to the 
complex is taken to be the double line of the surface.  Then, on the one hand, the double 
line will contact all meridian curves of the surface, and on the other hand, a common line 
to all circumscribed complex cones will fall on the double line.  The double line and the 
polar to the surface will coincide in a straight line. 
 In the general case, there is no direct route from meridian curves that cut the double 
line to ones that do not cut it.  If there is a single such curve that contacts the double line 
then that line will belong to the complex, and will then contact all meridian curves.  
Nonetheless, there is a direct route from circumscribing complex cones with the property 
that the double line lies outside them to complex cones with the property that the double 
line lies inside them.  For the surfaces of the special kind, all meridian curves will be real, 
and none of the circumscribing complex cones will reduce to a point. 
 
 
 226.  Whereas the double line will be enveloped by a meridian plane that rotates 
around it, it will likewise be described by the points at which it is contacted by the 
complex curve that lies in the meridian plane.  Any line that goes through the contact 
point in an arbitrary position of the meridian plane will cut the surface in four points, 
three of which will coincide on the double line.  Any arbitrary plane that goes through 
such a line of the meridian plane will cut the surface in a curve of order four that has a 
cuspidal point at the contact point and the line in question for its tangent.  The meridian 
plane is the geometric locus of the cuspidal tangents to all intersection curves whose 
planes go through the contact point of the complex curve on the double line; the two 
tangential planes to the surface will coincide at that point.  When that point moves along 
the double line, the tangential plane to the surface at that point will rotate around that 
line.  The double line will be a cuspidal ray of the complex surface.  It will no longer 
consist of segments that are the (always real) intersections of rotating real and imaginary 
sheets of the surface; two real sheets of the surface will coalesce on the cuspidal edge. 
 
 
 227.  A complex cone whose vertex is chosen arbitrarily on the double line has a 
plane that goes through that double line for its tangent plane.  If we draw an arbitrary 
straight line through the vertex of the cone in that tangential plane and take an arbitrary 
point of it to be the vertex of an enveloping cone of class four then the tangential plane to 
the complex cone will be an inflection plane for that cone, which will be osculated by it 
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along the chosen straight line (viz., a line of inflection of the cone).  It follows from this 
that an arbitrary meridian plane will be the common inflection plane for all 
circumscribing cones of class four whose vertices lie in it.  If the meridian plane rotates 
around the double line then the vertex of the complex surface that it contacts will move 
on the double line.  If we intersect a circumscribing cone of class four whose center lies 
in an arbitrary meridian plane with a second meridian plane then the intersection curve 
will be of class four, will have the double line for its inflection line, and will have those 
points on it for inflection points that are vertices of those complex cones that contact the 
former meridian plane.  When this meridian plane of the vertex of the cone of class four 
rotates around the double line, the double line will continually remain the line of 
inflection of the intersection curve, while the inflection point will move along it.  The 
double line that entered in the previous numbers as a cuspidal ray of the surface will now 
enter in this number as an inflection axis. 
 
 
 228.  Exactly the same relationship exists between the advance of the contact point of 
the complex curves of a complex surface of the special kind along the double line and the 
rotation of its plane around that line as the one that exists between the advance of the 
vertex of the complex cone of the surface along the double line and the rotation of its 
tangential plane around that line.  In number 170, when we started with the general 
complex equation and chose those complex surfaces that had OX for their double line, 
under the assumption of rectangular coordinates, we arrived at the following equation: 
 

tan ϕ  = 
Px H

QX J

+
−

, 

 
where ϕ, in the general case that was already considered in the footnote in number 193, 
meant the angle that an arbitrary meridian plane made with the XZ coordinate plane, and 
x corresponded to the pole of the double line relative to the complex curve that lay in the 
meridian plane.  In the case of complex surfaces of the special kind, where the double 
line is a line of the complex, and thus the constant A vanishes in its equation, the position 
of the contact point of the complex curve with the double line will be given by x.  When 
the complex surface of the special kind is, in the one case, described by a complex curve, 
and in the other case, enveloped by a complex cone, the foregoing equation will then 
express the relationship in question that exists between the motion of the contact point on 
the complex curve (the vertex of the complex cone, resp.) along the double line and the 
rotation of the plane of the complex curve (the tangential plane of the complex cone, 
resp.) around that double line. 
 When we ignore the origins of the surface, we can refer x in the foregoing equation to 
an arbitrary point of the surface that lies upon the double line and ϕ to its tangential plane 
at that point.  If the contact point moves along the double line (viz., the cuspidal ray of 
the surface) then the tangential plane to the surface at that point will rotate around the 
double line (viz., the inflection axis of the surface) in the same way that the tangential 
plane rotates around a generator of a ruled surface of degree two when the contact point 
moves along it.  The law by which the contact point and tangential plane are reciprocally 
determined will be the same in both cases (see the footnote in number 193). 
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 229.  For the complex surface of the special kind that we consider here (for which, all 
complex curves contact the double line and that double line is simultaneously a common 
line of all complex cones, on the one hand, when the complex curve in any of the four 
singular planes degenerates into two points, one of the two points will coincide with the 
intersection of the respective ray and the double line, whereas on the other hand, when 
the vertex of the complex cone is one of the four singular points, and therefore the cone 
degenerates into a system of two planes), one of these two planes will go through the 
double line and the singular axis. 
 Complex curves and complex cones in the complex surface in question arrange 
themselves together pair-wise in such a way that points at which the curves contact the 
double line will be the vertices of cones and the planes of the curves will contact the 
cones along the double line.  Those complex cones that are associated with a complex 
curve that degenerates into two points will then degenerate into two planes, in their own 
right.  Under the assumption that was made, the complex cone must then contact the 
singular plane along the double line.  Furthermore, it must contain the singular ray that 
lies in that plane, since it will belong to the surface completely and go through its vertex.  
These two conditions can exist simultaneously only when the cone degenerates into a 
system of two planes, one of which is the singular plane.  It is then proved that the four 
singular axes of the surface lie in the four singular planes, and the four singular rays go 
through the four singular points. 
 
 
 229.  In order to distribute the eight double points on four of the eight double planes 
according to the schema (113) in number 221 in the case of the complex surfaces in 
question whose double lines are lines of the complex, we take the points that were 
referred to as: 

1,    3,     5,    8 
 
to be those four of those points that coincide on the double line with the four singular 
points: 

P1,    P2,     P3,    P4 . 
 
We would now like to represent the four remaining double points: 
 

2,    4,    6,    7, 
 

which are the four vertices of a tetrahedron, by: 
 

Q1,    Q2,     Q3,    Q4 , 
in such a way that: 

P1Q1,    P2Q2,    P3Q3,    P4Q4 
 

are the four singular rays.  The cited schema then gives the eight double planes: 
 
 I, II, 
 III, IV, 
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 V, VI, 
 VIII, VII 
the following symbols: 
 P1P2P3Q4, Q1Q2Q3P4, 
 P1P2P4Q3, Q1Q2Q4P3, 
 P1P3P4Q2, Q1Q3Q4P2, 
 P2P3P4Q1, Q2Q3Q4P1 . 
 
The four planes I, III, V, VIII go through the four vertices of the tetrahedron Q1Q2Q3Q4, 
and all of them intersect along the double line P1 P2 P3 P4 .  The four singular planes are 
then: 

E4,    E3,    E2,    E1 . 
 
The four planes II, IV, VI, VIII coincide with the four faces of the tetrahedron and cut the 
double line, moreover, at the four singular points P4 P3 P2 P1, respectively.  The four 
singular axes are: 

(I, II),    (III, IV),    (V, VI),    (VIII, VII). 
 

 We deduce the following relations from the foregoing: 
 Any vertex of the tetrahedron is a double point of the surface, and its opposite side is 
a double plane.  The latter intersects the double line at one of the four singular points, 
through which goes one of the four singular planes.  The straight line that connects the 
vertex of the tetrahedron with the singular point is one of the four singular rays and the 
line of intersection of the opposite face of the tetrahedron with the singular plane is one 
of the four singular axes of the surface. 
 
 A singular ray and a singular axis lie in each of four singular planes that are 
meridian planes.  They both intersect in that plane at the corresponding singular point 
along the double line. 
 
 
 230.  Complex surfaces depend upon seventeen mutually-independent constants, in 
general, and complex surfaces that have a line of the complex for their double line will 
depend upon one less constant.  These complex surfaces are determined completely when 
one is given their double line and those tetrahedra that have the four double points for 
their vertices and the four double planes for their faces.  Double lines and tetrahedra can 
thus be assumed to be arbitrary from here on. 
 The foregoing yields the following simple constructions: 
 An arbitrary face of the tetrahedron (Q2, Q3, Q4) is a double plane of the surface, the 
point at which it cuts the double line is a singular point P1, and the straight line P1Q1 that 
connects that point with the opposite vertex Q1 of the tetrahedron is a singular ray of the 
surface S1 .  If we project that singular ray onto the double plane (Q2, Q3, Q4) parallel to 
the double line then the projection will likewise be the singular axis A1 that goes through 
the singular point P1 and the projecting plane will be the singular plane E1 of the surface.  
The contact curve in the double plane will be determined by the fact that it goes through 
the three vertices Q2, Q3, Q4, and the singular point P1 in that plane and contact the 
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singular axis A1 at the latter point.  The contact cone at Q1 will be determined by the fact 
that it will be contacted by the three faces of the tetrahedron that intersect at that point, as 
well as the singular plane E1, and in fact along the singular ray S1 .  This cone, with (Q2, 
Q3, Q4) as its base, has a conic section that contacts the three tetrahedral edges Q2Q3, 
Q3Q4, Q4Q2 in that plane, along with the singular axis A1, and in fact at its intersection 
point P1 with the double line.  The singular axis A1 is then a common tangent to that base 
and the contact curve at the singular point P1 at which both double lines intersect.  
Whereas the contact curve goes through the three vertices of the triangle Q2Q3Q4, the 
base of the contact cone will contact its three sides.  In the name of reciprocity, we obtain 
two cones – viz., the contact cone at the double point Q1 and a cone with the same vertex 
that envelops the contact curve in the opposite face of the tetrahedron.  Both cones have 
the singular ray S1 for their common line and contact it in the singular plane E1 that goes 
through the double line.  Whereas the contact cone contact the faces of the tetrahedron 
that intersect at Q1, the cone that envelops the contact curve contain the three edges of the 
tetrahedron that meet that point. 
 We can repeat the same constructions three more times, and then obtain all of the 
singularities of the complex surface. 
 We can thus determine the complex surface itself in two ways: In one case, by its 
meridian curves, and in the other, by its enveloping cones whose vertices lie upon the 
double line.  In regard to the former manner of determination, to which we will restrict 
ourselves here, we draw any meridian plane through the double line that cuts the contact 
curves in the four double planes in any four points, in addition to the four singular points 
on the double line.  The curve along which the surface will be cut by the meridian plane 
will go through these four points and contact the double line, moreover.  There are two 
such meridian curves, and consequently, there are also two complex surfaces of the 
special kind that have all of their singularities in common – viz., the double line, the four 
singular points on them, the four singular planes that go through them, and finally, the 
four double points with their contact cones, as well as the four double planes with their 
contact curves (*). 
 
 
 231.  The discussion of the singularities of the general complex surfaces carries over 
immediately to the special case of equatorial surfaces when we let the double line of the 
surface go to infinity.  The planes of all complex curves (latitude planes of the surface) 
are mutually parallel, and their centers lie on the diameter of the surface, which enters 
here in place of the polar.  The circumscribing complex cones will be complex cylinders 

                                                
 (*) If just the singularities of a complex surface are given then it will remain to be decided which of the 
two straight lines that cut all four singular rays and all four singular axes will be the double line of the 
surface and which one will be its polar.  By this indeterminacy, the same singularities will correspond to 
two different complex surfaces that belong to two different second-degree complexes.  In the general case, 
the determination of the double line and polar of the surface will depend upon the solution of a quadratic 
equation.  In the special case where the double line and polar of the surface coincide in a line of the 
complex and cannot be separated from each other, the construction of the surface from it singularities will 
necessarily be based upon the solution of a quadratic equation, while in the general case the construction 
will depend upon a linear one, as long as we assume that of the two straight lines whose determination 
depends upon a quadratic equation, one of them is the double line, and therefore the other one will be the 
polar of the surface (224). 
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whose axes lie in latitude planes.  There are four latitude planes – viz., the four singular 
planes of the surface – in which the complex curve, when considered as a curve of class 
two, degenerates into two coincident straight lines at two points, when considered as a 
curve of order two.  The four lines that connect the four pairs of points are the four 
singular rays that lie in the surface entirely.  The four singular planes contact the surface 
along the entire extent of their four singular rays.  The diameter of the surface cuts these 
rays at the midpoint of the two double points that lie in them.  Four of the circumscribed 
complex cylinders degenerate into systems of two planes, which are double planes of the 
surface.  The lines of intersection of the four pairs of planes that meet the axes of the 
cylinder are the four singular axes of the surface; they lie in latitude planes and cut the 
diameter of the surface.  The intersection curve of a complex cylinder that circumscribes 
the surface with a given plane can be considered to be the projection of the surface onto 
that plane along the direction of the cylinder axis.  If we let the axes of the projecting 
cylinders rotate around the double line in the latitude planes then they will coincide with 
the singular axes of the surface in four special positions.  The projections then go through 
two intersecting straight lines, namely, the intersections of the image plane with the two 
respective double planes.  This corresponds to a transition from a hyperbola to a 
hyperbola whose real imaginary axes, which go through zero, have been switched (** ).  
The contact curve in the two double planes that intersect along the same singular axis 
have that axis for their common asymptote, and are thus determined by the fact that they 
contain eight double points – four on one plane and four on the other – moreover.  The 
contact cones at each of the two double points that lie upon the same singular ray will be 
contacted by that ray in the singular plane that goes through it, and will thus be 
determined by the fact that they contact eight double planes, four on one and four on the 
other. 
 
 
 232.  Finally, if we specialize further and consider the case in which a line of the 
complex that lies at infinity is taken to be the double line of the complex surface then of 
the eight double points on the double line, in this case, as well, four double planes will be 
at infinity and four of them will coincide with the four singular planes.  One of the four 
singular rays will lie in each of the latter planes, and parallel it, one of the four singular 
axes.  The complex curves in all latitude planes will be parabolas, since they contact the 
double line at infinity.  When their planes move parallel to themselves, the parabolas will 
change in a singular plane under the transition, in which they degenerate into two points, 
one of which is at infinity, in the sense of its extent.  The circumscribing complex 
cylinders will have the double line at infinity for their common line and will contact it 

                                                
 (** ) We may not draw the conclusions from this that the complex cylinders are all hyperbolic and the 
projections are all hyperbolas in the case of eight real double points and eight real double planes for the 
surface (this assumption is adapted to our terminology).  Two parabolic cylinders can also be given (no. 
182), and that would then refer to the transition from hyperbolic to elliptic complex cylinders.  Two 
projections would then be parabolas (corresponding to projection directions that both lie between the 
directions of two successive singular axes), with which hyperbolas would go to ellipses, and these into 
hyperbolas. 
 Under the assumptions that were made, the meridian curves between any two successive singular 
planes are either all ellipses or all hyperbolas.  Ellipses and hyperbolas go to each other under the 
transitions between each of the four singular planes. 
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along a latitude plane.  It is the hyperbolic cylinders that will have latitude planes for one 
of their asymptotic planes.  The hyperbolas along which they will be cut by an arbitrary 
plane are to be regarded as the projections of the surface itself.  If we give the axis of the 
projecting complex cylinder all possible directions then one of the two asymptotes of the 
hyperbola will move parallel to itself.  In particular, if we project along the direction of a 
singular axis (which is parallel to a singular ray) then the hyperbola will degenerate into a 
system of two straight lines that are the intersections of the image plane with the singular 
plane and the double plane, which goes through the instantaneous singular axis (*). 
 The four double points that do not lie at infinity are the vertices of a tetrahedron 
whose faces are the double planes that do not go through the double line at infinity.  A 
face of the tetrahedron and the singular latitude plane, which goes through the opposite 
vertex, intersect along a singular axis, and the respective singular ray goes parallel to it in 
the singular plane through the vertex of the tetrahedron.  The contact curve in the double 
plane has the singular axis for its asymptote and goes through the three double points in 
that plane.  The contact cone at the opposite double point cuts that double plane along a 
hyperbola that likewise has the singular axis that lies in it for its asymptote and the three 
edges of the tetrahedron that lie in it for its tangents. 
 
 
 233.  The complex surfaces to whose general discussion the present first section is 
chiefly dedicated define a remarkable family of surfaces of order and class four, which 
we can also define independently of the consideration of the complex in their own right 
as those surfaces of that order and class that have eight double points and eight double 
planes (which are mutually implicit), along with a double line.  The discussion of these 
surfaces thus takes on a surprising simplicity and symmetry due to the fact that we link 
their existence to the consideration of the complex, irrespective of the infinite variety of 
their forms and the great number of their constants.  On the other hand, these surfaces 
serve as an invaluable tool for the analytic discussion and geometric visualization of the 
complex.  In the next section, we will go on to the discussion of the complex itself, in 
order to come back to the discussion of its surface later on. 
 However, there is an even newer viewpoint from which complex surfaces can be 
considered that I shall not refrain from mentioning here.  The complex surfaces that we 
consider will be enveloped by lines that belong to a congruence, and indeed to one that 
consists of the coincident lines of two complexes, one of which is a general one of degree 
two, and the other of which is a first-degree complex of the special kind, such that all of 
its lines cut a fixed straight line.  Complex curves and complex cones will be enveloped 
and described, respectively, by successive lines of the congruence that intersect. 
 In an analogous way, any congruence has a reciprocal relationship with a certain 
surface.  Two successive intersecting straight lines of a congruence determine the 
intersection point of the two lines and a plane that contains both of them.  The point will 
be a point of the surface and the plane will be a plane of it. 
 The general expression, viz.: 

                                                
 (*) Whereas two parabolic complex cylinders appear for the equatorial surfaces, which refer to the 
bounding elliptic complex cylinders when they are real, here, the two parabolic cylinders will coincide, and 
the elliptic cylinders will not exist.  In special cases – such as all equatorial surfaces and especially all 
parabolic ones − all complex cylinders can be parabolic. 
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2n (n – 1), 
 
that we obtained for the order and class of the surfaces of the complex of an arbitrary 
degree n (no. 212) reduces to zero for a first-degree complex.  In this case, there are no 
lines in the surface that is enveloped by the congruence.  This surface will be met by two 
straight lines, and we can represent two such straight lines by a single equation in either 
point or plane coordinates.  The two straight lines will be sufficient for the determination 
of the congruence, and conversely, when the congruence is given, we will obtain the two 
straight lines in question from its two directrices. 
 
 

____________ 
 
 



 

 

Part II. 
 

Discussion of the general equation of a second-degree complex. 
 

________ 
 
 

§ 1. 
 

Diameter of a complex.  System of three associated diameters.  The complex 
cylinder that is associated with a three-axis system.  Central parallelepiped. 

Center of the complex. 
 

 234.  For any given plane (t′, u′, v′), if we consider t′, u′, v′ to be constant and t, u, v to 
be variable then equation (IV) will immediately give the complex curve that this plane 

contains when it is represented in space by plane coordinates.  If we introduce 
t

w

′
′
, 

u

w

′
′
, 

v

w

′
′
, instead of t′, u′, v′, resp., and 

t

w
, 

u

w
, 

v

w
, instead of t, u, v, resp., then we can write 

the condensed equation in the following form: 
 

(Dt′2 + Eu′2 + Fv′2 + 2Ku′v′ + 2Lt′v′ + 2Mt′u′) w2 
 − 2 (Dt′w′ + Lv′w′ + Mu′w′ − O u′v′ − Rv′2 − Sr′v′ + T t′u′ + Uu′2) tw 
 − 2 (Eu′w′ + Kv′w′ + M t′w′ + N t′v′ + Pu′v′ + Qv′2 − T t′u′ + Uu′2) uw 
 − 2 (Fv′w′ + Ku′w′ + L t′w′ − (N – O) t′u′ − Pu′2 − Qu′v′ + R t′v′ + St′2) vw 
 − 2 (Au′w′ − Kw′2 + G t′2 − H t′v′ − J t′v′ − O t′w′ + P u′w′ − Qv′w′) uv 
 − 2 (B t′v′ − Lw′2 − G t′u′ + H u′2 − J u′v′ + N u′w′ + R v′w′ − S t′w′) tv 
 − 2 (C t′u′ − Mw′2 − G t′v′ − H u′v′ + J v′2 − (N – O) v′w′ + T t′w′ − U u′w′) tu 
   + (Dw′2 + Bv′2 + Cu′2 – 2 G u′ v′ – 2 S v′ w′ + 2T u′ w′) t2 
   + (Ew′2 + Av′2 + Cu′2 – 2 H t′ v′ – 2 P v′ w′ − 2U t′ w′) u2 

+ (Fw′2 + Av′2 + Bu′2 – 2 J t′ u′ – 2 Q u′ w′ + 2R t′ w′) v2 = 0.        (X) 
 
 When we differentiate the equation of the curve with respect to w, we will obtain the 
following equation for the center of the curve (*): 
 

(Dt′2 + Eu′2 + Fv′2 + 2Ku′v′ + 2L t′v′ + 2Mt′u′) w 
− 2 (Dt′w′ + Lv′w′ + Mu′w′ − O u′v′ − Rv′2 − Sr′v′ + T t′u′ + Uu′2) t 

− 2 (Eu′w′ + Kv′w′ + M t′w′ + N t′v′ + Pu′v′ + Qv′2 − T t′u′ + Uu′2) u 
− 2 (Fv′w′ + Ku′w′ + L t′w′ − (N – O) t′u′ − Pu′2 − Qu′v′ + R t′v′ + St′2) v = 0. (1) 

 
If we next set: 

                                                
 (*) The complex curve appears as a surface of class two in the manner of representation in the text, and 
its center will be determined like the center of such a surface.  Geometrie des Raumes., pp. 192. 
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Dt′2 + Eu′2 + Fv′2 + 2Ku′v′ + 2L t′v′ + 2Mt′u′ ≡ Ξ′, 
 
for the sake of brevity, then the three coordinates of the center of the curve will be: 
 

2 2

2 2

2 2

,

,

( )
.

Dt Lv Mu Ou v Rv St v Tt u Uu
x w

Eu Kv Mt Nt v Pu v Qv Tt Ut u
y w

Fv Ku Lt N O t u Pu Qu v Rt v St
z w

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ + + + + − −′= − ⋅ + ′ ′Ξ Ξ 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − − − + + ′= − ⋅ + ′ ′Ξ Ξ 

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − + + − −′= − ⋅ + ′ ′Ξ Ξ 

 (2) 

 

The equation of the plane , ,
t u v

w w w

′ ′ ′ 
 ′ ′ ′ 

 is: 

 
t′ x + u′ y + v′ z + w′ = 0,     (3) 

 
and this will be satisfied by the foregoing coordinate values. 
 
 
 235.  If we consider t′, u′, v′ to be constant and w′ to be variable then the plane (3) 
will move parallel to itself, while the complex curve in it will change continually.  If we 
let w′ vanish, in particular, then we will obtain the following coordinate values for the 
center of the curve in the respective plane that goes through the origin and has the given 
direction, and whose equation is: 

t′ x + u′ y + v′ z = 0, 
namely: 

2 2

2 2

2 2

,

,

( )
.

Ou v Rv St v Tt u Uu
x

Nt v Pu v Qv Tt Ut u
y

N O t u u Qu v Rt v St
z

′ ′ ′ ′ ′ ′ ′ ′ + + − −′ = ′Ξ 
′ ′ ′ ′ ′ ′ ′ ′− − − + + ′ = ′Ξ 

′ ′ ′ ′ ′ ′ ′ ′− + + − −′ = ′Ξ 

  (4) 

 
We can thus write the previous general coordinate values (2) in the following way: 
 

,

,

.

Dt Lv Mu
x x

Eu Kv Mt
y y

Fv Ku Lt
z z

′ ′ ′+ + ′− = ′Ξ
′ ′ ′+ + − = ′Ξ 

′ ′ ′+ + ′− = ′Ξ 

    (5) 

This will then yield the double equation below: 
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x x

Dt Lv Mu

′−
′ ′ ′+ +

 = 
y y

Eu Kv Mt

′−
′ ′ ′+ +

= 
z z

Fv Ku Lt

′−
′ ′ ′+ +

,  (6) 

 
which we can also give the following form: 
 

x x
d

dt

′−
′Ξ  = 

y y
d

du

′−
′Ξ = 

z z
d

dv

′−
′Ξ .    (7) 

 
 If we consider x, y, z to be variable in them then the foregoing double equations will 
represent a straight line; w′ is eliminated from them.  The straight line that is represented 
will then be the geometric locus of the centers of the complex curves in parallel planes 
that are represented by equation (3) for an arbitrary choice of w′.  We call this line a 
diameter of the complex and say that it is associated with the system of parallel planes in 
the complex, and in particular, with each of those planes. 
 
 Any system of parallel planes in a second-degree complex is, in general, associated 
with a single diameter that contains the centers of all curves of class two that lie in the 
parallel planes. 
 
 The complex curves in parallel planes define an equatorial surface: The diameter of 
the surface is a diameter of the complex. 
 
 
 236.  If the diameter of the complex that is represented by (6) is to be perpendicular to 
the plane (3) to which it is conjugate then we will obtain the following condition 
equations: 

,

,

Dt Lv Mu t

Fv Ku Lt v
Eu Kv Mt u

Fv Ku Lt v

′ ′ ′ ′+ + = ′ ′ ′ ′+ +
′ ′ ′ ′+ + =
′ ′ ′ ′+ + 

    (8) 

 
which we can combine into the double equation: 
 

t
d

dt

′
′Ξ
′

= 
u

d

du

′
′Ξ
′

 = 
v

d

dv

′
′Ξ
′

.     (9) 

 
The diameter is an axis of the complex in this case.  The last double equation is identical 
with the one that is obtained for the determination of the direction of the three principal 

sections of a surface of class two when one considers 
t

w

′
′
, 

u

w

′
′
, 

v

w

′
′
 to be plane 
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coordinates that are variable and lets k denote an arbitrary constant, which is represented 
by the equation (*): 

Ξ′ + k w′2 = 0. 
 

 
 237.  The latter surface depends upon the six complex constants D, E, F, K, L, M, for 
the time being.  Since these constants will remain the same when we change the position 
of the origin of the coordinates arbitrarily, we can displace the surface parallel to itself 
without changing its relationship to the complex.  Corresponding to the arbitrary choice 
of k, its dimensions can be changed by any arbitrary ratio.  If we give other directions to 
the coordinates axes then the six complex constants above will assume other values and 
the same values will correspond to the six constants of the surface when we also refer 
them to the new coordinate axes. 
 We would like to call the surface thus defined, whose center and dimensions can be 
chosen arbitrarily, the characteristic of the complex.  We would like to once more write 
the equation of the complex in the following way: 
 

Ar2 + Bs + C + Dσ2 + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Jrs + 2Ksη – 2L ση – 2M ρσ − 2N rσ + 2O sρ   (Ι) 

+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0. 
 

When we take the origin to be the center of this surface, and after suppressing the primes, 
we will obtain the following equation for the characteristic of the complex: 
 

Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu + w2 = Ξ + w2 = 0.  (10) 
 
We have set k equal to unity in this equation, with no loss of generality. 
 The characteristic of a complex relieves us of any necessity for analytically 
discussing the direction of its diameter.  A system of parallel planes is associated with a 
diameter of the characteristic, and that diameter will be parallel to the one that is 
associated with those planes in the complex.  Three associated diameters of the 
characteristic will be parallel to three diameters of the complex, which we would like to 
refer to as three associated diameters of the complex, in their own right.  We can take any 
given diameter of the complex to be one of three associated diameters, so the other two 
planes that are associated with the given ones will be parallel.  Each of three associated 
diameters will be associated with those planes that are parallel to both of the other ones 
each time. 
 A complex has a single system of three axes that are perpendicular to each other, in 
general.  We would like to refer to the planes that these axes are parallel to when taken 
pair-wise as the principal sections of the complex.  The axes will be associated with the 
principal sections. 
 For the sake of determining the associated diameter of a complex, we can replace its 
characteristic with its asymptotic cone, and displace that cone parallel to itself arbitrarily.  

                                                
 (*) See Geometrie des Raumes, nos. 103 and 152.  
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If we take the origin of the coordinates to be its vertex then that cone will be represented 
by the following two equations: 
 

Ξ = 0,  w = 0 
 
in plane coordinates and the single equation: 
 

(K2 – EF) x2 + (L2 – DF) y2 + (M2 – DE) z2 
+ (DK – LM) yz + 2 (EL – KM) xz + 2 (FM – KL) xy = 0.  (11) 

 
in point coordinates. 
 The associated diameters of a complex have essentially different directions with 
respect to each other, according to whether the characteristic of the complex is a (one or 
two-sheeted) hyperboloid with a real asymptotic cone or a (real or imaginary) ellipsoid 
whose asymptotic cone reduces to an ellipsoidal point.  The latter case is indicated by the 
agreement in sign of the three expressions: 
 

K2 – EF, L2 – DF, M2 – DE,    (12) 
 

while this agreement was not present in the former case. 
 
 
 238.  If the characteristic is a surface of revolution, in particular, then the complex, 
like that surface, will have a principal axis and infinitely many axes along with it that are 
all directed perpendicular to the principal axis, when taken pair-wise, as well as to each 
other.  Under the assumption of rectangular coordinate axes, this special case will be 
characterized by the fact that: 
 

D − LM

K
= E − KM

L
 = F − KL

M
,    (13) 

 
and therefore the following double equation: 
 

Kx = Ly = Mz      (14) 
 
will determine the direction of the principal axis (*). 
 A more subordinate case is the one in which the characteristic goes to a cone, which 
corresponds to solving the double condition equations (13) into the following equations: 
 

K = 0, L = 0, M = 0, 
D = E = F. 

 

                                                
 (*) Geometrie des Raumes, no. 154.  
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All of the planes that go through space will then be principal sections of the complex to 
which the associated diameters will be perpendicular.  Any diameter of the complex will 
be one of its axes. 
 
 
 239.  If we take the coordinate axes to which the general equation (I) of the second-
degree complex is referred to be parallel to any three associated diameters of the complex 
then three constants in that general equation will vanish, as well as in the equation of the 
characteristic.  Namely, one will have: 
 

K = 0, L = 0, M = 0. 
 

This will happen, in particular, when rectangular axes are taken to be parallel to the axes 
of the complex.  This can happen infinitely often when the characteristic has an axis of 
rotation and the complex has a principal axis.  One of the coordinate axes is then taken to 
be parallel to the principal axis, while any two straight lines that are perpendicular to each 
other and the principal axis can be taken to be the other two coordinate axes.  When OX, 
OY, OZ are taken to be parallel to the principal axis in succession, the coefficients E and 
F, D and F, D and E will then become equal to each other, in turn.  K, L, M will vanish, 
and the three coefficients D, E, F will be equal to each other in the equation if a complex 
that has only rectangular associated diameters and is referred to an arbitrary system of 
rectangular coordinate axes. 
 In this paragraph, we would like to restrict ourselves to the general case in which the 
characteristic is a surface of class two with a center.  The cases in which the vanishing of 
K, L, M has the simultaneous vanishing of one of the three constants D, E, F as a 
consequence will thus still be excluded from the discussion, for the time being. 
 
 
 240.  For those diameters that are associated with planes that are parallel to a given 
plane: 

t′ x + u′ y + v′ z = 0, 
 

we have obtained the following double equation: 
 

x x

Dt Lv Mu

′−
′ ′ ′+ +

 = 
y y

Eu Kv Mt

′−
′ ′ ′+ +

= 
z z

Fv Ku Mt

′−
′ ′ ′+ +

.   (6) 

 
Corresponding to the successive assumptions that: 
 
 u′ = 0  and v′ = 0, 
 t′ = 0  “  v′ = 0, 
 t′ = 0  “  u′ = 0, 
from no. 234, one will have: 
 

 Ξ′ = Dt′2, x′ = 0, y′ = 
T

D
, z′ = − 

S

D
, 
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Ξ′ = Eu′2,       x′ = − U
E

,          y′ = 0,    z′ = 
P

E
,           (15) 

 

 Ξ′ = Fv′2, x′ = 
R

F
, y′ = − 

Q

F
, z′ = 0, 

 
respectively.  The foregoing double equation then resolves into the following three pairs 
of equations: 
 Mx – Dy + T = 0, Lx – Dz = S = 0, 

My – Ex – U = 0,     Ky – Ez + P = 0,         (16) 
 Lz – Fx + R  = 0, Kz – Fy – Q = 0, 
 
which represent those diameters of the complex that are associated with planes that are 
parallel to YZ, XZ, XY, respectively. 
 If we choose the three coordinate axes to be such that they are parallel to any three 
associated diameters of the complex, in particular, then the three constants K, L, M will 
vanish, and we will obtain the following three pairs of equations for the determination of 
the absolute positions of these three diameters that are parallel to the OX, OY, OZ 
coordinate axes: 

 y = + 
T

D
, z = − S

D
, 

x = − U
E

,  z = + 
P

E
,         (17) 

 x = + 
R

F
,  y = − 

Q

F
. 

 
The associated diameters, 
when taken pair-wise, will 
thus not intersect, in 
general.  However, like any 
three straight lines that do 
not intersect at all, they will 
determine a parallelepiped, 
which we will consider 
more closely here, since it 
is indicative of the complex, 
and we would like to call it 
a central parallelepiped of 
the complex. 
 The foregoing six 
equations (17), when taken 
individually, represent the 
six face planes of a central 
parallelepiped.  Any of two 
opposite face planes will go 
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through one of two of the three associated diameters and will be parallel to the other of 
the two.  Three non-intersecting edges of the parallelepiped will be the three associated 
diameters, which we would like to take to be AB, CD, EF in the Figure 12.  We can also 
arrange the same six equations (17) that represent the three associated diameters of the 
complex, when taken pair-wise, in the following way: 
 

 y = − 
Q

F
, z = + 

P

E
, 

x = + 
R

F
,  z = − 

S

D
,          (18) 

 x = − 
U

E
, y = + 

T

D
. 

 
These three pairs of equations will then represent the equations of those three edges of 
the parallelepiped that are opposite to the three associated diameters.  Those three edges 
DE, FA, BC, which also do not intersect, in their own right, will define a spatial hexangle 
ABCDEF with three edges that fall upon associated diameters.  The vertices of the 
hexangle will be six of the eight vertices of the parallelepiped.  Three diagonals of the 
parallelepiped will be the three diagonals of the hexangle, and the two points G, H that 
are linked with the fourth diagonal will have the coordinates: 
 

 x = + 
R

F
, y = + 

T

D
, z = + 

P

E
, 

(19) 

 x = − 
U

E
, y = − 

Q

F
, z = − 

S

D
. 

 
One gets: 

ER FU

EF

+
, 

DQ FT

DF

+
, 

DP ES

DE

+
   (20) 

 
for the lengths of the edges that are parallel to the three coordinate axes OX, OY, OZ, 
respectively, and: 

x0 = 
ER FU

EF

−
, y0 = 

DQ FT

DF

−
, z0 = 

DP ES

DE

−
  (21) 

 
for the center of the parallelepiped whose coordinates we would like to denote by x0, y0, 
z0, to distinguish them. 
 
 
 241.  The edges of the central parallelepiped that are represented by the pairs of 
equations (18) have a simple geometric relationship with the complex that we will obtain 
immediately when we revert to the equations of the three complex cylinders whose faces 
are parallel to the coordinate axes.  The equations of this cylinder will be the following 
ones (Chapter I, § 5, eq. 32): 



§ 1.  Diameter of a complex.  System of three associated diameters, etc. 211 

 

2 2

2 2

2 2

2 2 0,

2 2 0,

2 2 0,

Fy Ez Qy Pz

Fx Dz Rx Sz

Ex Dy Ux Ty

+ + − =
+ − + = 
+ + − = 

    (22) 

 
when we take the coordinate axes OX, OY, OZ to be parallel to any three associated 
diameters of the complex, as in the previous number, and then set K, L, M equal to zero.  
The three axes of this cylinder will be represented by the three pairs of equations (18).  
Whereas three edges of the central parallelepiped AB, CD, EF will fall upon three 
associated diameters of the complex, the three opposite edges to them DE, FA, BC will 
fall upon the axes of the three cylinders whose sides are parallel to the three associated 
diameters. 
 
 
 242.  If a second-degree complex is given, and we choose the direction of a plane 
arbitrarily then any line direction that is parallel to that plane direction will be associated 
with a second such line direction.  Any given plane direction (any family of parallel 
planes) is associated with a single line direction, and conversely, each given line direction 
is associated with a single plane direction.  Any given line direction is associated with 
infinitely many pairs of line directions, which will be parallel to the plane direction that is 
associated with the given line direction.  There are then infinitely many systems of three 
associated line directions, in such a way that, on the one hand, every given line direction 
corresponds to infinitely many pairs of associated line directions that are parallel to the 
associate plane direction, and on the other hand, the plane direction that is parallel to any 
two of three associated line directions will be associated with the third of these directions.  
There are infinitely many systems of three associated plane directions: They are parallel 
to two of three associated line directions. 
 On the one hand, there are three associated diameters of a complex that have the 
direction of three associated line direction, and on the other hand, there are three axes of 
complex cylinders that have the same direction, and which we can refer to as three 
conjugate cylinder axes, in their own right.  The three associated diameters and the three 
associated cylinder axes will define a spatial hexangle whose opposite sides are parallel.  
Its sides are, alternately, diameters and cylinder axes.  Any diameter will be cut by two 
cylinder axes that are parallel to the plane direction that is associated with the direction of 
the diameter.  Any cylinder axis will be cut by two diameters that are parallel to the plane 
direction that is associated with the direction of the cylinder axis. 
 A given plane is parallel to infinitely many diameters of the complex and the axes of 
infinitely many complex cylinders.  On the one hand, any diameter will define a ruled 
surface, and on the other hand, so will any cylinder axis.  The given plane is a associated 
with a diameter of the complex, just as it is associated with the axis of a complex 
cylinder.  Any diameter is parallel to that cylinder axis.  The axes of all complex 
cylinders that are parallel to the given plane cut the associated diameter, and all diameters 
of the complex that are parallel to the plane cut the associated cylinder axis. 
 
 



212 Chapter Two, Part II: Discussion of the general equation of a second-degree complex. 

 

 243.  It seems advisable to state and complete the foregoing geometric considerations 
with some analytical refinements. 
 The totality of all curves that lie in planes that are parallel to the YZ plane, and thus 
define an equatorial surface, is represented (Chap. I, § 2, no. 163) by the following 
equation: 

Dw2 + 2(Lx – S) vw + (Fx2 – 2Rx + B) v2 
+ 2(Mx + T) uw + 2 (Kx2 – Ox – G) uv + (Ex2 + 2Mx + C) u2 = 0.   (23) 

 
The plane of the curve is determined by x, and the curve in that plane will then be 
determined by the line coordinates u / w and v / w.  Should the axis OX have the direction 
that is associated with the YZ plane then L and M would have to vanish.  Should it 
coincide with the diameter of the complex that is associated with that plane then the 
centers of all curves would have to lie upon it.  This would demand that, along with: 
 

L = 0, M = 0, 
one would also need to have: 

S = 0, T = 0. 
 

The foregoing equation will then simplify into the following form: 
 

Dw2 + (Fx2 – 2Rx + B) v2 + 2 (Kx2 – X – G) uv + (Ex2 + 2Ux + C) u2 = 0.  (24) 
 
 The same equatorial surface that is represented by the foregoing equation by means of 
its breadth curves (Breitencurven) will be represented [Chap. I, § 5, eq. (30)], when one 
considers that L, M, S, and T vanish, by the following equation: 
 

(FV2 + 2Kuv + Eu2) x2 + Dv2 z2 + 2 (Rv2 + Ouv – Uu2) x + (Bv2 – 2Guv + Cu2) = 0   (25) 
 

by means of its circumscribing complex cylinder whose axes are parallel to the YZ 
coordinate plane.  Once we have determined one of these circumscribing complex 
cylinders by an arbitrary choice of v / u for the axis direction, the last equation will 
represent the second-order curve in XZ along which the relevant cylinder cuts that 
coordinate plane.  The axis of the cylinder that is parallel to YZ goes through the center of 
that curve of intersection that lies in the OX coordinate axis and is determined by the 
coordinate value: 

x = 
2 2

2 22

Rv Ouv Uu

Fv Kuv Eu

+ −
+ +

    (26) 

 
on that axis.  If we refer the coordinates y and z on any point of any cylinder axis that is 
parallel to YZ then we will have: 

v

u
= − 

y

z
, 

and we will obtain: 

x = 
2 2

2 22

Ry Oyz Uz

Fy Kyz Ez

− −
− +

,    (27) 
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as the equation of the geometric locus of the axes of complex cylinders that are parallel 
to the YZ plane. 
 The last equation expresses the idea that a single cylinder axis will lie in any plane 
that is laid through a given diameter and is parallel to the plane direction that is 
associated with the diameter, while two cylinder axes that intersect along the diameter 
will lie in any plane that has that direction. 
 
 
 244.  There is another way to determine the two cylinder axes that are contained in a 
given plane, which we have taken to be parallel to the YZ coordinate plane, here.  
Namely, if we differentiate equation (24) with respect to x then that will give: 
 

(Fx – R) v2 + (2Kx – O) uv + (Ex + U) u2 = 0. 
 
This equation immediately gives the value of x that was just found in terms of v and u 
(26).  The direction of the two cylinder axes in the YZ itself is given by the roots of the 
following equation: 

Rv2 + Ouv – Uu2 = 0. 
 
A complex cylinder whose axis lies in a given plane has two tangents to the complex 
curve of class two that lies in that plane that are parallel to two of its sides.  The axis of 
the cylinder will then go through the center of the complex curve.  If we project the 
complex curve in the parallel plane that is close to the given plane onto that given plane 
along the direction that is conjugate to these planes then that projection will also be 
contacted by the two cylinder sides.  In other words, the two parallel planes among them 
that contact the cylinder along these sides will simultaneously contact the equatorial 
surface that has OX for its diameter.  One is then dealing with the determination of those 
points of the complex curve in the given plane at which the equatorial surface is 
contacted by planes that are parallel to the diameter of that surface.  The cylinder that 
circumscribes the equatorial surface whose sides are parallel to its diameters contacts the 
surface along a spatial curve that is cut by a plane in four points.  In particular, it will be 
cut by the given plane, which is the breadth plane of the surface, in four points that are 
the end points of two diameters of the complex curve in the given plane.  The two 
diameters of the complex curve that are associated with these diameters will be the two 
axes of the cylinder to be constructed that lie in the given plane. 
 
 
 245.  We would now like to displace the OX axis, which, from our assumption up to 
now, coincides with a diameter of the complex in such a way that it coincides with the 
axis of complex cylinder that is parallel to that diameter.  The equation of the cylinder 
whose axis is parallel to the OX coordinate axis has the equation (no. 249): 
 

Fy2 – 2Kyz + Ez2 + 2Qy – 2Pz + A = 0. 
 
We get the following two conditions for the axis of the cylinder to coincide with OX: 
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P = 0,  Q = 0. 
 

 The general equation of the complex curves in plane coordinates (X), which we have 
placed at the apex of the developments in this paragraph, will then represent, in 
particular, the complex curve that is contained in an arbitrary plane: 
 

u′ y + v′ z = 0 
 
that is laid through the cylinder axis when we set t′ and w′ equal to zero in it.  If we 
consider that P and Q vanish then we will obtain the following equation for that curve: 
 

(Eu′2 + 2Ku′v′ + Fv′2) w′2 – 2 (Uu′2 − Ou′v′ − Rv′2) tw 
− 2(Hu′2 − Ju′v′) tv + 2 (Hu′v′ − Jv′2) tu 

+ (Cu′2 – 2Gu′v′ + Bv′2) t2 
+ A (u′v − v′u) 2 = 0.     (28) 

 
The center of this curve lies in the OX coordinate axis, and is determined on that axis by 
the coordinate value: 

x = 
2 2

2 22

Rv Ou v Uu

Fv Ku v Eu

′ ′ ′ ′+ −
′ ′ ′ ′+ +

.    (29) 

 
 When we consider v′ / u′ to be variable in it, the foregoing equation (28) will 
represent a meridian surface that has the axis of a complex cylinder for its double line.  It 
is characterized by the fact that the centers of all of its meridian curves lie on the double 
line. 
 
 
 246.  After exchanging v′ / u′ and v / u, the two equations (27) and (29) will be 
identical.  If we then let v′ / u′ determine the direction of a cylinder axis that is parallel to 
the YZ plane and thus cuts the diameter of the complex that is parallel to OX then it will 
lie in a plane that cuts the cylinder axis OX at the point that is determined by (29).  The 
straight line that lies in that plane goes through that point, and whose direction is 
conjugate to the direction of the plane of the complex curve that is determined by v′ / u′, 
and thus also to the direction of the cylinder axis that is determined by v / u, will be the 
desired diameter of the complex. 
 In order to then construct the diameter of the complex in question that goes through 
the center of the curve (28), we appeal to the characteristic of the surface.  For the sake of 
simplicity, we would like to let the previously-undetermined direction of the two 
coordinate axes OY and OZ coincide with any two associated diameters of the 
intersection curve of the characteristic with the YZ coordinate plane.  K will then vanish 
from the equation of the complex, and the equation of that curve of intersection will be: 
 

Fv2 + Eu2 + kw2 = 0. 
We obtain the equation: 
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v v E

u u F

′
⋅ +

′
= 0     (30) 

 
for the determination of the direction that is associated with the direction v′ / u′, which we 
would like to denote by v / u.  If we introduce v/ u into (29), in place of v′ / u′, by means 
of this equation then that will give: 
 

x = − 
2 2 2 2

2 2( )

F Uv EFOuv E Ru

EF Fv Eu

+ −
+

.    (31) 

 
Finally, if we refer y and z to any point of the diameter of the complex that is parallel to 
YZ then we will get: 

v

u
= − 

y

z
, 

and thus: 

x = 
2 2 2 2

2 2( )

F Uy EFOyz E Rz

EF Fy Ez

− + +
+

.   (32) 

 
 When we consider x, y, z to be variable, this equation will represent the geometric 
locus of the diameters of the given complex that are parallel to the YZ plane.  It says that 
a single diameter of the complex lies in any plane that is laid through the axis of a given 
complex cylinder, and it is parallel to the plane direction that is associated with the 
cylinder axis, while two diameters will lie in any plane with that direction that will 

intersect on the axis of the given cylinder. 
 An arbitrary plane AFF′ EGG′A cuts the 
diameter AB of the complex and the axis DE 
of the complex cylinder whose direction is 
associated with it in two points A and E.  
Two cylinder axes AF and AF′ lie in this 
plane that cut the diameter AB at A and two 
complex diameters EF and EF′ that cut the 
cylinder axis DE at E.  The directions of the 
two diameters in this plane are conjugate to 
the directions of the two cylinder axes in it, 
respectively.  They simultaneously belong to 
two central parallelepipeds that have two 
opposite edges in common that fall upon the 
diameter AB and the cylinder axis DE that is 
parallel to it.  The opposite face-planes of 
the parallelepiped fall in the same plane 
BC′CDH′HB.  The two diameters of the 

complex, CD and CD′, that lie in these two planes are the opposite edges of the two 
parallelepipeds to the two cylinder axes in the first plane, as well as the two cylinder axes 
in the second, while BC and BC′ are those of the two diameters in the first plane.  The 
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common center of the two central parallelepipeds lies in a plane that is parallel with the 
two opposite face-planes (which we would like to take to be parallel to the YZ coordinate 
plane, as before) and goes halfway between the two planes.  It will then bisect the 
distance between a diameter and a cylinder axis of the complex that are parallel to each 
other and to YZ.  Due to the fact that we have chosen the common direction of both of 
them to be parallel to YZ from the outset, the two opposite face-planes of a parallelepiped 
will be determined in a linear way. 
 If we refer equation (27), like equation (32), to the OY and OZ coordinate axes, which 
are parallel to two associated diameters of the complex, or – what amounts to the same 
thing – two associated cylinder axes of it, then K will also vanish on it, and we will get: 
 

x = 
2 2

2 2

Ry Oyz Uz

Fy Ez

− −
+

.     (33) 

 
Under the assumption that y / z was assigned the same value in the foregoing equation 
(33) and equation (32), in both equations, x will mean the distance between a cylinder 
axis of the complex and one of its diameters, whose direction is the same and given by y / 
z, from the YZ coordinate plane.  One-half the sum of that distance, which we would like 
to denote by x0, will then give the distance from the middle plane of the relevant central 
parallelepiped to the same coordinate plane.  If we add the equations in question, (32) and 
(33), then we will get: 

x0 = 1
2

R U

F E
 − 
 

,      (34) 

 
in agreement with (21).  The value of x0 is independent of the arbitrarily-chosen value of 
y / z.  Moreover, the midpoints of all central parallelepipeds whose opposite edges fall on 
the diameter that is associated with YZ and the cylinder axis that is associated with that 
plane will lie on the midline between that cylinder axis and that diameter.  We draw the 
conclusion from this that all central parallelepipeds with one edge that falls on a given 
diameter of the complex, so the opposite edge then falls on the cylinder axis that is 
parallel to the diameter, will have a common center. 
 The foregoing theorem immediately gives us a whole new series of central 
parallelepipeds that have the same point for center amongst themselves and with the 
parallelepipeds of the first series.  To that end, we merely need to replace the given 
diameter with any new one that is associated with it and then proceed in such a way that 
each time new ones are replaced with ones that are associated with them.  A given 
diameter of the characteristic of the complex is, however, associated with any diameter 
that lies in the given associated diametral plane.  Two given diameters will then have two 
associated diameters along which the two diametral planes that are associated with the 
two given planes will intersect.  We can then also go from a given diameter of a complex 
to any two given diameters of the same kind in such a way that we replace the first given 
diameter with a third diameter that is associated with them, and then replace that third 
one with the second given one that is associated with it, in its own right.  We will then 
arrive at the following theorem: 
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 All central parallelepipeds of a given complex have the same point for their centers. 
 
 We would like to call the common center of all central parallelepipeds the center of 
the complex, any plane that goes through it a central plane, and any straight line that goes 
through a central line. 
 
 A second-degree complex has one center, in general. 
 A plane that goes parallel to any two associated diameters or to any two associated 
cylinder axes of a complex and lies halfway between them is a central plane of the 
complex. 
 Any diameter of a complex is the axis of a cylinder that is parallel to it; the middle 
line between them is a central line of the complex. 
 
 
 247.  If we take YZ to be a central plane of the complex and take the OX axis to be, 
first, its associated diameter and then, the cylinder axis that it is associated with it then 
the two ruled surfaces, one of which goes through all of the diameters that are associated 
with cylinder axes that are parallel to YZ, while the other one contains all of the diameters 
of the complex that are associated with the cylinder axes and parallel to YZ, will be 
represented by the following two equations: 
 

 x =    
2 2

2 2

Ry Oyz Uz

Fy Ez

− −
+

, 

 

 x = − 
2 2

2 2

Ry Oyz Uz

Fy Ez

− −
+

. 

 
If we displace the two ruled surfaces − and with them, at the same time, the relevant OX 
coordinate axis − parallel to themselves and to the central plane then their equations will 
not change.  If, after the displacement, the conjugate diameter coincides with the 
conjugate cylinder axes then the foregoing equations will represent the two surfaces when 
they are referred to the same coordinate system.  The geometric relationship between the 
two surfaces will then be the same as the one that we just described. 
 In this, we can always assume that the coordinate axes OY and OZ in YZ, which are 
parallel to any two associated diameters of the complex, are perpendicular to each other.  
In particular, if we take the given central plane to be one of the three principal sections of 
the complex that goes through its center then OX will also be perpendicular to OY and 
OZ.  If we consider the central plane to be a reflecting plane then one of the two ruled 
surfaces will be the mirror image of the other one after a suitable reciprocal displacement 
of it. 
 
 
 238.  When we take the center of the complex to be the origin of the coordinates and 
lay the three coordinate axes through it and parallel with any three associated diameters 
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and cylinder axes then when we set K, L, M equal to zero, the equation of the complex 
will become: 

Ar2 + Bs2 + C + Dσ2 + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Jrs 

− 2Nrσ + 2Osρ 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0,   (35) 

 
by which, the following three condition equations (no. 240) will be fulfilled: 
 

R

F
 = 

U

E
, 

Q

F
= 

T

D
, 

P

E
 = 

S

D
,   (36) 

 
from which, the following one can be derived: 
 

PRT = QSU.     (36a) 
The three pairs of coordinates: 
 

, ,

, ,

,

T Q S P
y z

D F D E
U R P S

x z
E F E D
R U Q T

x y
F E F D

= = = − = − 

= − = − = = 

= = = − = − 


   (37) 

 
will determine the position of the three associated diameters, and the same three 
coordinate pairs with the opposite signs will determine the position of the three 
associated cylinder axes. 
 The coordinate axes will be rectangular when we take them to be parallel to the three 
axes of the complex.  The central parallelepiped that is determined by it will also be 
rectangular.  The square of the length of one-half of its four diagonals will be: 
 

2 2 2
R P T

F E D
     + +     
     

= 
2 2 2

Q U S

F E D
     + +     
     

.    (38) 

 
One of these four diagonals is distinguished by the fact that it cuts none of the three axes 
of the complex and none of the three cylinder axes that are parallel to then.  If we denote 
the angles that they define with the three coordinate axes OX, OY, OZ by α¸ β, γ, 
respectively, then: 

cos α : cos β : cos γ = : :
U Q S

E F D
= : :

R T P

F D E
.  (39) 

 
The eighth part of the volume of the central parallelepiped is: 
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PRT

DEF
≡ 

QSU

DEF
.    (40) 

 
 

 249.  Once we have accounted for the six constants of the position, the number of 
constants of the complex will still amount to just thirteen, which will be recovered in 
equation (35) when we consider the condition equations (36).  The single condition that 
must be satisfied if we would like to give the equation of the complex the foregoing form 
will consist of demanding that none of the three constants D, E, F vanish at the same time 
as K, L, M.  Under the assumption of rectangular coordinate axes, we can then represent 
the complex by equation (35) in a single way, in general. 
 We will treat the special cases in which one or more of the three constants D, E, F 
vanishes at the same time as K, L, M later (§ 3). 
 
 

___________ 
 

 
§ 2. 

 
Specialization of the complexes that have a center. 

Complexes whose lines envelop a second-degree surface. 
 

 250.  There are twenty constants in the general complex equation (I): 
 

Ar2 + Bs2 + C + Dσ2 + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Jrs + 2Kρη – 2Lση − 2Mρσ 

− 2Nrσ + 2Osρ 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0, 

 
and when we divide by any of the remaining ones that will give nineteen constants that 
are necessary for the determination of the complex and its position; one can arrange them 
into the following six groups: 
 
 A, B, C and G, H, J, 
 D, E, F   “ K, L, M, 

N, O, 
P, Q, R, S, T, U. 

 
The six constants of the last group can be arranged in various ways, in their own right; 
e.g., two sets of three pairs: 
 
 P and Q, R and S, T and U, 
 P  “    U, R   “   Q, T   “    S, 
 
and one set of two groups of three: 
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P, R, T  and  Q, S, U. 
 
 

 251.  In the first paragraph, we verified that when the three constants K, L, M vanish 
the three coordinate axes will be parallel to three associated diameters of the complex.  
We can then let three more constants drop out of the equation of the complex, moreover, 
by a suitable placement of the origin.  If x0, y0, z0 are the coordinates of the new origin 
then the six constants of the last group will take on the following new values, which we 
would like to distinguish by P0, Q0, R0, S0, T0, U0 (no. 157): 
 
 P0 = P + E z0 , Q0 = Q – F y0 , 

R0 = R + F x0, S0 = S – D z0 ,        (41) 
 T0 = T + D y0 , U0 = U – E x0 . 
 
If we take one of the eight vertices of the relevant central parallelepiped to be the origin 
then three of the new constants will vanish.  According to whether this vertex (Fig. 12) is 
one of the six at which a diameter and a cylinder axis intersect, or one of the two 
remaining vertices through which will go either one of the three conjugate diameters or 
one of the three conjugate cylinder axes, one will have the vanishing of: 
 
 S0, T0, U0, R0, S0, T0, Q0, R0, S0 
 P0, Q0, R0, U0, P0, Q0, T0, U0, P0 
and 

S0, Q0, U0, P0, R0, T0, 
respectively. 
 The six new constants can vanish simultaneously only when the following three 
relations exist between the original ones: 
 

R U

F E
+  = 0,  

T Q

D F
+  = 0,  

P S

E D
+  = 0.  (42) 

 
The result of the vanishing of the new constants is that the three new coordinate axes 
coincide with three associated diameters of the complex.  The new origin will be the 
center of the complex.  The complex curves in the three coordinate planes will also have 
that point for their common center, and at the same time, the three coordinate axes for the 
axes of three complex cylinders.  Since the coordinate system still depends upon three 
arbitrary constants, there will generally be a system of three associated diameters in any 
complex that will intersect at its center.  If we refer the complex to the three intersecting 
diameters as coordinate axes then its equation will become: 
 

Ar2 + Bs2 + C + Dσ2 + E ρ2 + F η2 
+ 2Gs + 2Hr + 2Jrs 

− 2Nrσ + 2Osρ = 0.   (43) 
 
This equation contains ten mutually-independent constants, since the coordinate system is 
specified by nine conditions. 
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 The coordinates of the centers of the complex in an arbitrary plane that goes through 
the center of the complex are: 

2 2 2

2 2 2

2 2 2

,

,

( )
.

Ou v
x

Dt Eu Fv
Nt v

y
Dt Eu Fv

N O t u
z

Dt Eu Fv

′ ′ = ′ ′ ′+ +
′ ′− = ′ ′ ′+ + 

′ ′− = ′ ′ ′+ + 

    (44) 

 
 Since the values of the three coordinates x, y, z vanish simultaneously only when two 
of the three coordinates of the plane t′, v′, r′ vanish simultaneously, there will generally 
be no other diameters of the complex that go through its center besides the three 
associated diameters, which were taken to be coordinate axes. 
 When we eliminate t′, u′, v′ from them, the three foregoing equations will give: 
 

DO2 y2 z2 + EN2 x2 z2 + F(N – O)2 x2 y2 − NO (N – O) xyz = 0.  (45) 
This equation represents the geometric locus of the centers of the complex curve in the 
planes that go through the three associated diameters and are rotated arbitrarily around 
that point (*). 
 
 
 252.  A specialization of the complex will come about when we let one of the three 
constants: 

N, O, N – O 
 
vanish, along with the six constants of the last group.  If O is the vanishing constant then 
the three equations (44) will give: 
 

x = 0,  u′ y + v′ z = 0. 
In any plane: 

t′ x + u′ y + v′ z = 0 
 
that goes through the origin, the center of the complex curve will lie upon the straight line 
along which the YZ coordinate plane intersects that plane, and will advance upon that line 
when that plane is rotated around that line.  When that plane goes through the OX 
coordinate axis, in particular, t′ will vanish, and as a result of that, y and z will be equal to 
zero at the same time as x: The center of the curve will then coincide with the origin, or in 
other words, all of the diameters that are associated with the OX coordinate axis will go 
through the origin and lie in the YZ plane.  Any line in this plane that goes through the 
origin will be a diameter of the complex, just as it will be the axis of a complex cylinder. 

                                                
 (*) The surface that is represented by equation (45) is a complex surface that has been specified in such 
a way that it will possess three double lines that intersect at a point: viz., the three coordinate axes OX, OY, 
OZ.  Corresponding to that, they can be generated in three ways by rotating a variable conic section around 
a fixed axis.  
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 If the two constants N and O of the foregoing group vanish at the same time as the six 
constants of the latter group then the values of x, y, z will vanish in equation (44).  All 
diameters of the complex will then go through its center.  They will likewise be the axes 
of the complex cylinder.  Any complex curve whose plane goes through the center of the 
complex will also have that point for its center. 
 In this case, the general equation (I) will become: 
 

Ar2 + Bs2 + C + Dσ2 + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Jrs = 0.    (45) 

 
It represents a complex whose diameters all intersect at its center, so five of its constants 
have disappeared, and along with the six constants of position, it will depend upon eight 
constants that are again found in its equation.  It will be referred to any three associated 
diameters as coordinate axes, which we can, despite the generality, also choose to be its 
three axes. 
 
 
 253.  When all diameters of the complex intersect at its center and any three of these 
diameters that are associated with each other are taken to be coordinate axes, equations 
(3), (30), (12), (21) of the previous section will go to the following ones: 
 

Dw2 + (Fx2 + B) v2 – 2Guv + (Ex2 + C) u2 = 0,  (46) 
 

2 2
2 2

2 2 2
u u u

E F x Dz C G B
v v v

   
+ + + − +   

   
 = 0,  (47) 

 
2 2

2 2 2
2 2 2 2

y y y y
F E w B G C t J H tv Av

z z z z

     + + + + − + +     
    

 = 0,  (48) 

 
2 2 2

2 2 2
2 2 22 2 2

y t t t t
F E w B F y C E z J y H z A

z w w w w

     
+ + + + + + + +     

     
= 0. (49) 

 
 The first two of the foregoing equations (46) and (47) will represent the equatorial 
surface that has OX for its diameter in mixed coordinates, in one case, by its breadth 
curve, whose instantaneous plane is determined by x, and in the other case, by means of 
its enveloping complex cylinder whose axes define an angle with XZ whose trigonometric 
tangent is equal to (− u / v).  It will follow from equation (47) that the axes of all 
enveloping complex cylinders will lie in YZ and intersect the OY coordinate axis at the 
origin. 
 The last two of the foregoing equations − viz., (48) and (49) − represent (in mixed 
coordinates) the meridian surface that has the OX coordinate axis for its double line, in 
one case, by its meridian curves whose instantaneous plane is determined by y / z, the 
trigonometric tangent of the angle that it defines with XZ.  In the other case, that surface 
will be represented by means of its enveloping complex cone whose instantaneous vertex 
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lies in OX at a distance of (− w / t) from the origin of the coordinates.  As equation (48) 
shows, all meridian curves have a center that coincides with the center of the complex 
and should be regarded as a center of the surface itself. 
 
 
 254.  If the constant G in the group: 

G, H, I 
 
vanishes along with the previous eleven constants then equation (46) will show that all 
breadth curves of the respective equatorial surface whose diameter is OX will have two 
associated diameters that are parallel to the two associated diameters of the complex.  
One specifies the equatorial surface whose diameters are OY and OZ by the vanishing of 
H and I in the same way that the equatorial surface whose diameter is OX was specified 
by the vanishing of G. 
 If H and I vanish at the same time then all complex cones whose midpoints lie on the 
double line of the surface will intersect the diametral plane that is conjugate to it along 
curve whose midpoints coincide with the midpoint of the complex. 
 If the three constants G, H, I vanish simultaneously then one can choose three 
associated diameters of the complex to be coordinate axes in such a way that all cones of 
the complex whose midpoints lie in one of these three associated diameters will intersect 
the plane of the other two instantaneous second-order curves whose centers all coincide 
with the center of the complex. 
 
 
 255.  The six constants: 

G, H, I, K, L, M 
 
will vanish simultaneously when the coordinate axes are taken to be three diameters of 
the complex cone whose vertices fall upon the origin and are parallel to three associated 
diameters of the complex.  This condition can be fulfilled for a given complex in a single 
way, in general.  Any two concentric second-order surfaces − in particular, two cones 
with the same vertex – will have a single system of three associated diameters in common 
(*).  We take the two cones to be the cone of the complex: 
 

Ax2 + By2 + Cz2 + 2Gyz + 2Hxz + 2Ixy = 0,   (50) 
 
whose vertex falls upon the origin and the asymptotic cone of the characteristic, whose 
vertex we likewise place at the origin (11): 
 

(K2 – EF) x2 + (L2 – DF) y2 + (M2 – DE) z2 
+ 2 (DK – LM) yz + 2 (EL – KM) xz + 2 (FM – KL) xy = 0.  (51) 

 
The system of the two common three conjugate diameters will then be the coordinate 
system that was to be determined. 

                                                
 (*) See Geometrie des Raumes, no. 262.  



224 Chapter Two, Part II: Discussion of the general equation of a second-degree complex. 

 

 256.  In the case in which all diameters of the complex intersect at its vertex (and we 
will take its three diameters, which are associated with each other relative to the complex, 
as well as with respect to the complex cone that has the center of the complex for its 
vertex, to be coordinate axes) the equation of the complex will become: 
 

Ar2 + Bs2 + C + Dσ2 + Eρ2 + Fη2 = 0.   (52) 
 
 This equation will contain five mutually-independent constants, and together with the 
nine constants of position, that will give the fourteen constants upon which the complex 
still depends. 
 
 
 257.  With the vanishing of G, H, I, the equations of the equatorial surface in mixed 
coordinates, (46) and (47), will go to: 
 

w2 + 
2 2

2 2Fx B Ex C
v u

D D

+ +⋅ + ⋅  = 0,    (53) 

 
2

2
2 2

2 2

2 2

u
E F Dv x z

u u
C B C B

v v

+
⋅ + ⋅

+ +
+ 1 = 0,    (54) 

 
and can be converted immediately into the following ones, which represent that 
equatorial surface in point and plane coordinates, respectively: 
 

2 2

2 2

Dz Dy

Fx B Ex C
+

+ +
 + 1 = 0,    (55) 

 
2

2
2 2 2

2

2

u
C B C Bv t u v

u D D
E F

v

+
⋅ + +

+
+ w2 = 0.    (56) 

 
 The meridian surface whose double line is OX will be represented by the following 
equations in mixed coordinates in the case in question: 
 

w2 +

2

2
2 2

2 2

2 2

y
B C Az t v

y y
F E F E

z z

+
⋅ + ⋅

+ +
 = 0,    (57) 
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2 2

2 2
2 2

t t
B F C E

w wy z
A A

+ +
⋅ + ⋅ + 1 = 0,    (58) 

 
respectively.  We obtain the equations of that meridian surface in point and plane 
coordinates immediately from these equations: 
 

2

2
2 2 2

2

2

y
F E F Ez x y z

y A A
B C

z

+
⋅ + ⋅ + ⋅

+
 + 1 = 0,   (59) 

 
2 2

2 2

2 2

A A
u v

t t
B F C E

w w

⋅ + ⋅
+ +

 + w2 = 0,   (60) 

respectively. 
 
 The equatorial surface that has OX for its diameter and the meridian surface that has 
OX for its double line will also remain of order and class four after the specialization. 
 
 
 258.  If the new condition equation: 
 

BE = CF     (61) 
is satisfied, from which: 

2

2

Fx B

Ex C

+
+

 = 
F

E
= 

B

C
, 

 
 
then all breadth curves of the equatorial surface (55) will be second-degree curves that 
are similar and lie similarly.  Their equation: 
 

D (Fx2 + B) y2 + D (Ex2 + C) z2 + (Fx2 + B) (Ex2 + C) = 0, 
 
when we neglect the common factor: 
 

DE (Fx2 + B) ≡ DF (Ex2 + C), 
 
will be converted into the following one: 
 

2 2 2x y z C

D E F DE
+ + +  = 0.    (62) 

If we ignore the two planes: 
E (Fx2 + B) ≡ F (Ex2 + C) = 0    (63) 
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that intersect in the double line at infinity of the surface and contact the surface along the 
OX axis then the equatorial surface will reduce to a second-degree surface and lose its 
double ray that lies at infinity in YZ. 
 The two planes that are represented by equation (63) are two planes in which the 
curve of class two that is enveloped by lines of the complex resolves to two points that 
coincide in one point. 
 In a similar way, when we multiply equation (56) by DE / C and consider that it will 
follow from the condition equation (61) that: 
 

2

2

2

2

u
C B

v
u

E F
v

+

+
= 

C

E
 = 

B

F
, 

 
then equation (56) will be converted into the following one: 
 

Dt2 + Eu2+ Fv2 + 
DE

C
 ⋅⋅⋅⋅ w2 = 0,   (64) 

 
which is the equation, in plane coordinates, of the second-degree surface that we just 
represented by its equation (62) in point coordinates. 
 In this, we neglect two points: 

Eu2 + Fv2 = 0,     (65) 
 
which lie in the double axis at infinity, which will therefore likewise vanish.  These two 
points will be ones for which the second-order cone that is defined by the complex lines 
will resolve into two planes that coincide. 
 When we multiply the equation of the meridian surface in point coordinates (59) by A 
/ EF, it will reduce to: 

2 2
2A y z A

x
CF E F EF

+ + +  = 0    (66) 

 
as a result of the condition equation (61).  When we multiply the equation (60) of that 
surface in plane coordinates by: 

          
F

A
(Ct2 + Ew2) ≡ 

E

A
(Bt2 + Fw2), 

it will go to the following one: 

2 2 2 2CF EF
t Eu Fv w

A A
+ + + = 0.   (67) 

 
As a result of the condition equation (61), the meridian surface will reduce to one of 
degree two and lose its double line.  If we consider it to be the geometric locus of points 
and accordingly represent it by equation (66) after the reduction then the basis for this 
reduction will lie in the fact that we are ignoring the two planes: 
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B (Fy2 + Ez2) ≡ F (By2 + Cz2) = 0,   (68)  
 
which correspond to the neglected factor.  These two planes intersect along OX and are 
the two tangential planes to the surface that go through OX.  The complex curve in each 
of them has resolved into a system of two points that coincide.  If we consider the 
meridian surface as being enveloped by planes and represented by equation (67) after the 
reduction then that reduction will be the result of the fact that we have ignored the two 
points: 

E (Bt2 + Fw2) ≡ F (Ct2 + Ew2) = 0,   (69) 
 
which correspond to the neglected factor.  These two points will be the ones at which the 
surface will be cut by the OX axis.  The complex cone that has either of these two points 
for its vertex will degenerate into a system of two planes that coincide in a point. 
 
 
 259.  When we consider a second-degree surface to be an equatorial surface, a 
diameter of it will be likewise determined that is associated with a given plane direction.  
When we consider it to be a meridian surface, a diameter of it will be given immediately 
that corresponds to the previous double line. 
 
 
 260.  As a result of the condition equation (61): 
 

BE = CF, 
 
the equatorial and meridian surface, which have OX for their diameter and double line, 
respectively, will both go to second-degree surfaces.  When the double condition 
equation: 

AD = BE = CF      (70) 
 
is satisfied, these two surfaces will be identical.  We can take the following equation to be 
their common equation in point coordinates: 
 

2 2 2x y z A

D E F EF
+ + +  = 0,    (71) 

 
and also switch A / EF with B / DF and C / DE. 
 The double condition equation (70), in conjunction with the fact that G, H, I, K, L, M 
vanish, says that the complex cone and the asymptotic cone of the characteristic, which 
have the center of the complex for their common center, are identical.  More generally, 
when the six constants above do not vanish, we will obtain the following five-fold 
condition equation from both equation (50) and (51) in order to express this identity: 
 

2 2 2: : : : :

: : : : : .

K EF L DF M DE DK LM EL KM FM KL

A B C G H I

− − − − − −
=

  (72) 



228 Chapter Two, Part II: Discussion of the general equation of a second-degree complex. 

 

However, when the two cones above are identical, we can take each system of its 
associated diameters to be coordinate axes and each arbitrary diameter to be the OX axis.  
The equatorial surface and the meridian surface, which has an arbitrary diameter of the 
complex for its diameter or double line, respectively, will be identical second-degree 
surfaces. 
 If we consider the two meridian surfaces that have OX and OY for their respective 
double lines in the chosen coordinate system then the intersection of these two surfaces 
will be identical with the three coordinate planes.  Next, both surfaces have the complex 
curve that lies in XY in common.  However, the intersection curves in XZ and YZ 
coincide, insofar as the complex curve that lies in each of the two coordinate planes is, on 
the one hand, the meridian curve of the one meridian surface, but it is also the breadth 
curve of the equatorial surface that is identical with the other meridian surface.  As a 
result of this, all meridian surfaces and equatorial surfaces that have an arbitrary diameter 
of the complex for their double line or diameter, respectively, will coincide in the same 
second-degree surface. 
 
 All lines of a second-degree complex that has been specialized in that way, which 
now depends upon only nine constants, envelop a second-degree surface.  We can say 
that this surface is represented by the equation of the complex. 

 It is only due to the fact that the general complex is subjected to a ten-fold restriction 
that it will go to one whose lines envelop a second-degree surface.  We can summarize 
these restrictions by saying that first all diameters of the complex intersect in the same 
point and second the complex cone and the asymptotic cone of the characteristic of the 
complex that have that point for their common center are identical.  The first assumption 
corresponds to five condition equations that we get in their most general form when we 
eliminate the three coordinates x0, y0, z0 from the eight equations that we obtain by 
annihilating the last eight coefficients of the complex equation (VI) that refers to the new 
origin (x0, y0, z0).  The second assumption corresponds to the five condition equations 
(72). 
 If we satisfy the same condition equations in a different sequence then we will arrive 
at the same result by a different specialization. 
 
 
 261.  We would like to turn back to equation (52) and denote the radii of the curves of 
the complex in the three coordinate planes YZ, ZX, XY, which fall upon OY and OZ, OX 
and OZ, OZ and OY, respectively, by b1 and a1, a2 and c2, a3 and b3 , resp.  One will then 
have: 

2 2
1 1

2 2
1 1

2 2
3 3

, ,

, ,

, .

C B
b c

D D
C A

a c
E E
B A

a b
F F

= − = − 

= − = − 

= − = − 


    (73) 
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The same six quantities, when combined in the following way: 
 

b3 and c2 ,  a3 and c1 , a2 and b1 , 
 
will be, at the same time, the radii that fall along OY and OZ, OX and OZ, OX and OY, 
resp., of the bases in YZ, XZ, XY, resp., of the complex cylinders whose sides are parallel 
to OX, OY, OZ, resp.  We get: 

2 2 2
3 1 2a b c  = 2 2 2

2 3 1a b c .     (74) 

 
 If the double condition equation: 

AD = BE = CF 
 
is satisfied by the six constants of equation (69) then the three complex curves will 
intersect in the three coordinate planes of the three coordinate axes at the same point.  
These three complex curves coincide with the bases of the three complex cylinders.  If we 
suppress the symbols a, b, c then we will get: 
 

2

2

2

,

,

.

C B
a

E F
C A

b
D F
B A

c
D E

= = − 

= = − 

= = − 


     (75) 

 
We can choose one of the six constants of the complex equation (52) arbitrarily.  If we 
set: 

C = a2 b2 
then the last equations will give: 

A = b2 c2, B = a2 c2, 
D = − a2, E = − b2, F = − c2. 

 
The equation in question will then go to the following one: 
 

b2 c2 r2 + a2 c2 s2 + a2 b2 = a2σ2 + b2ρ2 + c2η2.  (76) 
 

It will represent a complex whose lines envelop a second-degree surface with a midpoint; 
it will represent the surface itself. 
 The equation of the same surface in point coordinates is: 
 

2 2 2

2 2 2

x y z

a b c
+ +  = 1,     (77) 

and in plane coordinates, it is: 
a2 t2 + b2 u2 + c2 v2 = w2.    (78) 
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 262.  In order to represent a given second-degree surface, for whose general equation 
in point coordinates we would like to take the following one: 
 

ax2 + a′y2 + a″z2 + 2b″xy + 2b′xz + 2byz + 2cx + 2c′y + 2c″y + d = 0, (79) 
 

we need merely to determine the equation of the cone that circumscribes the surface, 
which has any given point (x′, y′, z′) for its vertex.  As is known (*), we will get: 
 

(ax2 + a′y2 + a″z2 + 2b″xy + 2b′xz + 2byz + 2cx + 2c′y + 2c″z + d) 
(ax′2 + a′y′ 2 + a″z′ 2 + 2b″x′y′ + 2b′x′z′ + 2by′z′ + 2cx′ + 2c′y′ + 2c″z′ + d) 
= [(ax + b″y + b′z + c) x′ + (b″x + a′y + bz + c′) y + (b′x + by + a″z + c) z′  

+ (cx + c′y + c″z + d)]2    (80) 
 

for this equation.  If we consider x′, y′, z′ to be variable, instead of x, y, z, then the 
equation of this cone will be the complex equation of the surface.  We can actually write 
it in the general form: 

A (x – x′)2 + B (y – y′)2 + C (z – z′)2 
+ D (yz′ – y′z)2 + E (x′z – xz′)2 + F (xy′ – x′y)2 

+ 2G (y – y′)(z – z′) + 2H (x – x′)(z – z′) + 2I(x – x′)(y – y′) 
+ 2K (xy′ – x′y) (x′z – xz′) + 2L (xy′ – x′y) (yz′ – y′z) + 2M (x′z – xz′) (yz′ – y′z) 

 + 2N′ (x – x′)(yz′ – y′z) + 2O′(y – y′)(x′z – xz′) + 2V′ (z – z′)(xy′ – x′y) 
+ 2P (x − x′)(x′z – xz′) + 2Q (x – x′) (xy′ – x′y) 
+ 2R (y − y′)(xy′ – x′y) + 2S (y – y′) (yz′ – y′z) 

+ 2T (z – z′) (yz′ – y′z) + 2U (z – z′)(x′z – xz′) = 0, 
 
in which, we have set: 
 

                                                
 (*) The equation in the text can be derived in the following way: 
 The equation of any second-degree surface that contacts a given second-degree surface: 
 

Ω = 0 
along the intersection curve with a plane: 

p = 0 
takes the form: 

λ Ω – p2 = 0, 
 
in which λ denotes an arbitrary constant.  Here, p is taken to be the polar plane of the point (x′, y′, z′) 
relative to the given surface (Ω), and λ is determined such that the new surface will go through the point 
(x′, y′, z′). 
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b b ab K bb a b L bb a b M

b c b c N bc b c O b c bc V

b c ac P ac b c Q

b c

′ ′ ′′ ′′− = − = − =
′ ′′ ′′ ′ ′ ′′− = − = − =
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, .

a c R a c bc S

bc a c T a c b c U












′ ′′ ′= − = 
′′ ′′ ′ ′′ ′ ′′− = − = 

  (81) 

 Thus: 
N′ + O′ + V′ = 0,     (82) 

and 
2 ,

2 .

N N V b c b c bc

O O V b c bc b c

′ ′ ′′ ′′ ′ ′= − = − + 
′ ′ ′′ ′′ ′ ′= − = − + − 

    (83) 

 
 
 263.  In order to determine the second-degree surface when its complex equation is 
given, we immediately obtain a series of relations from the foregoing equations (81) in 
which the constants enter into the equations of the complex and the surface linearly.  For 
example, the six equations: 
 
 a′a″ – b2 = D, a a″ – b′2 = E, a a′ – b″2 = F, 
 b′b″ – ab = K, bb″ – a′b′ = L, bb′ – a″b″ = M 
 
will yield the following six for the determination of the ratios of a, a′, a″, b, b′, b″: 
 

0,

0,

0,

0,

0,

0.

aL b F b K

aM b K b E

a M b D bL

a K b L bF

a K bE b M

a L bM b D

′ ′′+ + = 
′ ′′+ + = 

′ ′′ + + =
′ ′′+ + = 
′′ ′+ + =


′′ ′+ + = 

    (84) 

 
We shall refrain from writing down these relations completely, from which, the 
elimination of the quantities a, a′, etc., will yield immediately the conditions that the 
constants of general complex equation must fulfill in order for the complex lines to 
envelop a second-degree surface. 
 
 
 264.  Just as when we appeal to the point coordinates x, y, z, the equation of the conic 
surface that circumscribes a given second-degree surface will be the complex equation of 
the surface in ray coordinates when we consider the coordinates x′, y′, z′ of its vertex to 
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be variable, as well, so will the equation of the intersection curve of a second-degree 
surface with an arbitrary intersecting plane (t′, u′, v′) be the complex equation of that 
surface in axial coordinates when we appeal to plane coordinates t, u, v and consider its 
coordinates  to be likewise variable.  In a completely analogous way to the way that we 
went from the complex equation of a given second-degree surface in ray coordinates to 
its usual equation in point coordinates, we can likewise go from the complex equation of 
that surface in axial coordinates to the equation of the surface in plane coordinates.  Since 
both of them will always exist at the same time, when one of the two equations of a 
complex is given in ray and axial coordinates, the foregoing will show the simplest way 
to go from one of the two equations of a second-degree surface in point and plane 
coordinates to the other one. 
 
 
 265.  The basis for the representability of a second-degree surface by a complex 
equation lies in the property of these surfaces that any plane will cut it along a curve of 
class two and any point of it will be the vertex of an enveloping cone of order two. 
 The surface can, on the one hand, degenerate into a conic surface and, on the other, 
into a plane curve.  In both cases, it can be represented by an equation in line coordinates. 
 In the first case, all of the complex cones will degenerate into a system of two planes, 
which will contact the conic surface that is being represented.  All straight lines that go 
through the vertex of the surface will belong to the complex. 
 In the second case, the complex curve in an arbitrary plane will degenerate into a 
system of two points at which the curve being represented will be cut by the given plane.  
All of the straight lines that lie in the plane of the curve will be lines of the complex. 
 Whereas a plane curve cannot be represented by a single equation in point 
coordinates and a conic surface cannot be represented by a single equation in plane 
coordinates, both geometric structures will find a representation in line coordinates.  
However, whereas a conic surface is of order two and is determined by a second-degree 
equation in point coordinates, an a plane curve is of class two and is given by an equation 
in plane coordinates, a second-degree complex can represent only a cone of class two and 
a curve of order two. 
 A cone of class two can resolve into two axes that intersect at its vertex; a curve of 
order two can resolve into two rays that lie in its plane.  With this specialization, the cone 
and the curve will be identical, and as before they will find their representation in an 
equation in line coordinates. 
 We come to the same specialization of the second-degree complex from yet another 
direction.  Its equation can be resolved into linear factors, and these factors, in turn, can 
satisfy the condition that they represent first-degree complexes of the special kind whose 
lines all intersect a fixed straight line.  When the two straight lines that are represented in 
this way go through the same point, or – what amounts to the same thing – lie in the same 
plane, we will have, in one case, the specialized cone of class two, and in the other case, 
the specialized curve of order two. 
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 266.  If we choose a straight line in a given plane arbitrarily and move it parallel to 
itself ever further then it will lose every trace of its original direction in the plane at 
infinity.  We can also replace the given plane, which contains the line shifted to infinity, 
with any other plane that is parallel to it.  All straight lines at infinity in parallel planes 
will coincide in a single line at infinity.  The straight line that was shifted to infinity will 
be the intersection of infinitely many parallel planes.  It will have no relationship to finite 
points at infinity, except that it is parallel to a given plane direction of a given plane. 
 When a given plane is shifted ever further parallel to itself it will lose its direction, in 
its own right.  The plane at infinity must be regarded as parallel to any given plane.  The 
straight lines that lie in it have lost any relationship to finite points, and thus, any 
meaning in the usual sense. 
 These geometric insights find an immediate analytical expression.  In order for a 
straight line: 
 x = r z + ρ, 
 y = s z + σ, 
to be contained in a plane: 

tx + uy + vz + w = 0, 
 
one must have the following three relations: 
 
   tr + us + v = 0,  
 tρ + uσ + w = 0, 
   tη + vσ – ws = 0. 
 
If the straight line lies at infinity in the given plane then ρ and σ − and as a result, also η 
≡ rσ – sρ − will be infinitely large.  The last two equations will then given the foregoing 
equations: 

t : u : v = − σ : ρ : η, 
 
while the first equation merely expresses the fact that the straight line that was shifted to 
infinity is parallel to the given plane. 
 If the given plane is shifted to infinity then w will become infinitely large, or – what 
amounts to the same thing – t, u, and v will vanish.  Its equation will no longer express its 
direction, and the foregoing three relations will lose their meaning. 
 
 267.  If we take the general equation of the second-degree complex to be the 
following one: 

Ar2 + Bs2 + C + Dσ2 + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Irs + 2Kρη – 2Lση – 2Mρσ 

− 2Nrσ + 2Osρ 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0,   (I) 
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and let ρ, σ, η become infinitely large in it, and thus neglect the two remaining variables, 
r and s, as well as constant quantities, in comparison to these three variables, and finally, 
neglect first powers of the first-mentioned three variables in comparison to their second 
powers then that will give: 
 

Dσ2 + Eρ2 + Fη2 + 2Kρη – 2Lση – 2Mρσ = 0   (85) 
 
for the lines of the complex that lie at infinity. 
 This equation, like any equation in line coordinates, represents a complex.  We would 
like to call it the asymptotic complex of the given complex.  From the discussion in the 
previous paragraph, this complex will be subsumed by the one that represents a cone of 
class two.  The vertex of this conic surface will coincide with the coordinate origin, and 
its intersection with the plane at infinity will be curve of class two that is enveloped by 
the lines of the complex that lie in that plane. 
 Any second-degree complex in whose equation the terms of second order in ρ, σ¸ η 
are multiplied by the same constants D, E, F, K, L, M that are in the equation of the given 
complex will represent the lines of the given complex that lie at infinity with the same 
precision as the complex whose equation is the foregoing one (85).  It is the asymptotic 
complex, which has the same relationship to all of those complexes as the given one, in 
its own right, due to the simplicity of its equation, and corresponding to that, by the 
obvious grouping of its lines, by singling out a special position for the coordinate system, 
as well. 
 The degree of the approximation by which the asymptotic complex represents the 
lines of the given complex that lie at infinity is only the first degree, insofar as its 
equation agrees with the given one only in the terms of order two in the variables that 
come under consideration, but not with those of first order. 
 
 
 268.  If we replace – σ, ρ, η in equation (85) with the values of t, u, v above that these 
coordinates will assume for straight lines at infinity then we will get the following 
equation: 

Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu = 0 
 
for the determination of those plane directions along which lines of the complex will lie 
at infinity.  If we draw planes through the coordinate origin that have these directions 
then they will envelop a conic surface of class two, which is the conic surface was 
represented by equation (85) in line coordinates.  We can displace the conic surface, and 
with it, the asymptotic complex, parallel to themselves arbitrarily without changing their 
relationships to the given complex.  From the coordinate transformation formulas of 
number 157, the coefficients D, E, F, K, L, M, which are the only ones that appear here, 
will remain unchanged under such a displacement.  The tangential planes of the conic 
surface will move parallel to themselves under the displacement.  All mutually parallel 
tangential planes will intersect along a line of the given complex that lies at infinity. 
 In the first paragraph of this section, we have used the term “the characteristic of a 
complex” to refer to a surface of class two whose center and absolute dimensions can be 
chosen arbitrarily, and which will be represented by the following equation: 
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Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu + kw2 = 0 
 
when we place its center at the origin of the coordinates, and let k denote an arbitrary 
constant.  From the foregoing, the lines of the complex that lie at infinity will lie in the 
tangential planes to the asymptotic cone of the characteristic, and this asymptotic cone 
will be represented by equation (85) in line coordinates.  A plane, which we can shift to 
infinity, but in such a way that it does not lose its original direction, will cut this 
asymptotic cone, and thus, the characteristics itself, as well, along a curve that will be 
enveloped by the lines of the complex that lie at infinity.  One is therefore not dealing 
with a finite characteristic and its asymptotic cone. 
 
 
 269.  We can approximate the plane at infinity (for which we hardly have a geometric 
representation) in infinitely many ways, when we start with a plane with a given direction 
and shift it ever further while preserving that direction.  Such a plane will contain, on the 
one hand, a complex curve of class two, and on the other hand, a second such curve as its 
intersection with the characteristic.  The two curves will coincide when their planes are 
shifted to infinity.  In other words, the curves of all equatorial surfaces of a given 
complex that lie in breadth planes that are shifted to infinity will lie on the characteristic. 
 When a plane of a given direction is shifted, the complex curve in it will shift 
continually, and that will describe the equatorial surface.  The directions of the two axes 
of the curve and their ratio will get closer to a certain limit when the plane is shifted ever 
further, corresponding to the direction of the plane.  This limit is given by the constant 
direction and the constant ratio of the axes of the curve of intersection of the moving 
plane with the characteristic.  Since complex curves and intersection curves with the 
characteristic that are contained in parallel planes will coincide at infinity, the diameter of 
the relevant equatorial surface of the given complex must be parallel to the diameter of 
the characteristic, which is associated with the plane that moves parallel to itself, as was 
confirmed by the analytical developments of the first paragraph. 
 The foregoing geometric insights point to the relations between the given complex 
and its characteristic.  In agreement with that, we will get the following equations: 
 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 0,

2 2 2 0,

2 2 2 0

Dw Lxvw Fx v Mxuw Kx uv Ex u

Ew Mytw Dy t Kyuw Ly tv Fy v

Fw Kzuw Ez u Lztw Mz tu Dz t

+ + + + + =
+ + + + + = 
+ + + + + = 

  (86) 

 
from equations (7) in number 166, which will give the three complex curves in planes 
that are shifted to infinity parallel to the arbitrarily-chosen coordinate planes YZ, XZ, XY, 
when we neglect the first powers of x, y, z, and constants of the second power, and those 
equations will coincide with the equations of the intersection curves of the three planes in 
question with the asymptotic cone of the characteristic. 
 
 
 270.  The conic surfaces of class two that are enveloped by the lines of the asymptotic 
complex can be real or imaginary, and accordingly, the given second-degree complex 
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might or might not include real lines that lie at infinity.  Therefore, the general second-
degree complexes will split into two coordinated types.  We would like to call complexes 
of the first kind hyperboloidal, while complexes of the second will be ellipsoidal.  In this 
classification, we first ignore complexes whose asymptotic complex has be specialized in 
some way. 
 Hyperboloidal complexes will have a characteristic with a real asymptotic cone, and 
will thus be defined analytically by the fact that only two of the three expressions: 
 

D − 
LM

K
, E − 

MK

L
, F − 

KL

M
 

 
will have values with equal signs. 
 Ellipsoidal complexes have a characteristic whose asymptotic cone reduces to an 
ellipsoidal point; the three expressions above will have values that all agree in sign for 
such complexes. 
 
 
 271.  In hyperboloidal complexes, the tangential planes of the asymptotic cone of the 
characteristic determine the directions of the planes along which lines of the complex will 
lie at infinity.  The complex curves in such planes will be parabolas that contact the lines 
at infinity.  If one moves such a plane parallel to itself then the parabola that lies in it that 
is enveloped by lines of the complex will describe a parabolic equatorial surface (no. 
232).  The side along which the asymptotic cone of the characteristic is contacted by a 
breadth plane of the surface will determine the direction that the direction of the axis of 
the parabola will approach when its plane moves ever further, which can happen in two 
ways. 
 Any other plane direction, along which no line of the complex lies at infinity, 
determines an equatorial surface whose breadth curves possess a center.  Here, we first 
emphasize that with increasing distance, when a plane that moves parallel to itself the 
complex curve in it will become a hyperbola or an ellipse, according to whether the plane 
cuts the asymptotic cone in a hyperbola or an ellipse, resp. 
 Two planes in which a line of a hyperboloidal complex lies at infinity will go through 
a given straight line, in general.  If we take any point of the given straight line to be the 
vertex of the asymptotic cone of the characteristic then the two tangential planes to this 
cone that can be drawn through the given line will be the two planes in question.  They 
will be real or imaginary according to whether the line lies outside or inside the cone, 
respectively, and will coincide in a tangential plane to the cone when the line is a side of 
the cone.  Corresponding to them, two parabolas can appear among the meridian curves 
of the meridian surface of a hyperboloidal complex; they can also coincide.  That will 
depend upon the direction of the double line of the meridian surface relative to the 
asymptotic cone of the characteristic of the complex. 
 The lines of the complex that are parallel to the double line of a meridian surface 
define a complex cylinder that circumscribes the meridian surface.  This cylinder will be 
hyperbolic or elliptic (*), according to whether the two meridian planes in which 
                                                
 (*) Here, and in what follows, we understand hyperbolic and elliptic cylinders to mean ones that 
intersect the plane at infinity in two real or two imaginary lines, resp.; thus, the imaginary cylinder will also 
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parabolic curves lie are real or imaginary, respectively.  If the two planes coincide then 
the complex cylinder will be called parabolic. 
 From the foregoing, the cylinders that are defined by the lines of a hyperbolic 
complex will be elliptic or hyperbolic according to whether the direction of the complex 
lines that generate it do or do not lie in the asymptotic cone of the characteristic, resp.  
All complex cylinders whose generators are parallel to a side of the asymptotic cone are 
parabolic. 
 
 
 272.  There are no parabolic curves whatsoever in ellipsoidal complexes.  All 
equatorial surfaces are included between two planes that are found at a finite distance 
from each other.  These planes refer to the transition from planes in which a real complex 
curve lies to ones in which an imaginary curve is enveloped by lines of the complex. 
 One finds no parabolas among the meridian curves of an arbitrary meridian surface 
that belongs to a complex.  The two meridian planes in which parabolas are enveloped by 
lines of the complex in the case of hyperboloid complex will be imaginary in the case of 
ellipsoidal complexes that are independent of the direction of the double line.  As a result 
of this, all cylinders that are defined by lines of an ellipsoidal complex will be elliptic 
cylinders. 
 
 
 273.  In number 163, we obtained the following equation in mixed point and line 
coordinates x, u, v, w: 

Dw2 + 2 (Lx – S) vw + (Fx2 – 2Rx + B) v2 
+ 2 (Mx + T) uw + 2 (Kx2 – Ox − G) uv + (Ex2 + 2Ux + C) u2 = 0  (87) 

 
for an equatorial surface whose breadth curves are parallel to the YZ plane.  This 
equation contains thirteen constants, which gives the fifteen constants upon which the 
equatorial surface depends when one includes the two constants by which the coordinate 
system is specialized. 
 If we determine the OX axis in such a way that it runs parallel to the diameter of the 
complex that is associated with the arbitrary plane that is taken to be YZ then the 
constants L and M will vanish.; if it coincides with that diameter then S and T will vanish 
simultaneously.  K will vanish when we give the two axes OY and OZ directions in YZ 
such that the three coordinate axes are parallel to the three associated diameters of the 
complex.  The general equation of the equatorial surface will lose five more constants by 
this coordinate determination, and it will go to the following one: 
 

Dw2 + (Fx2 – 2Rx + B) v2 – 2 (Ox + G) uv + (Ex2 + 2Ux + C) u2 = 0. (88) 
 

                                                                                                                                            
be referred to as elliptic.  In particular, one can resolve hyperbolic and elliptic cylinders into systems of two 
intersecting planes that will be real or imaginary, respectively. 
 If the two lines of intersection coincide with the plane at infinity in a straight line then the cylinder will 
be called parabolic, even if it has been specialized into a system of two parallel real or imaginary planes. 
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If we displace the coordinate plane YZ parallel to itself until it goes through the center of 
the complex then that will reduce the number of constants by a sixth unit, in accordance 
with the condition equation (36): 

ER = FU. 
 
 

 274.  All equatorial surfaces for ellipsoidal complexes are representable by an 
equation with the latter form (88), since we might also choose the direction of the YZ 
plane.  However, if we take the breadth planes of the equatorial surface to be parallel to a 
tangential plane to the asymptotic cone of the characteristic for hyperboloidal complexes, 
in particular, then the associated diameter of the characteristic will be parallel to these 
planes, and as a result, the foregoing coordinate system will no longer be possible.  The 
general equation of the equatorial surface (87) will then lose the constant D, such that the 
surface will depend upon only fourteen constants.  We have called such equatorial 
surfaces parabolic. 
 The vanishing of D corresponds to the fact that YZ is a tangential plane to the 
asymptotic cone of the characteristic whose midpoint we have chosen to be the 
coordinate origin.  We would like to let the OZ axis coincide with the side of the 
asymptotic cone along which it will contact the YZ plane.  The constant M will then 
vanish in the equation for the equatorial surface.  In the general case, the coordinates of 
the center of an arbitrary breadth curve will be: 
 

y = − 
Mx T

D

+
,  z = − 

Lx S

D

−
. 

 
When D vanishes, the center in the plane of the curve will go to infinity, and the direction 
along which it lies at infinity will be determined by the equation: 
 

tan α = 
Mx T

Lx S

+
−

, 

 
in which α denotes the angle that this direction – viz., the direction of the axis of the 
parabola – makes with OZ.  For the parabola at infinity, one will get: 
 

tan α = 
M

L
. 

 
This axis direction will be parallel to the OZ axis when M vanishes. 
 The direction of the OY axis still remains undetermined, as of now.  We can take it to 
be the one in YZ that is perpendicular to OZ.  If we then draw a second tangential plane to 
the asymptotic cone through OY and take it to be the XY plane and the side along which it 
contacts the asymptotic cone to be the OX axis then the two constants F and K will vanish 
from the equation of the equatorial surface.  One then writes the equation of the surface 
in the following form: 
 

2 (Lx – S) vw – (2Rx – B) v2 + 2Tuw − 2 (Ox + G) uv + (Ex2 + 2Ux + C) u2 = 0. (89) 
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We can drop three more constants from this equation by a proper choice of origin. 
 
 
 275.  When the expression: 
 

Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu, 
 
which corresponds to the condition equation: 
 

DEF – DK2 – EL2 – FM 2 + 2KLM = 0,   (90) 
 
resolves into two first-degree factors, that will specialize the complex by eliminating one 
of its nineteen constants. 
 The foregoing condition equation then comes down to saying that when we let K, L, 
M vanish by a suitable choice of directions for the three coordinate axes, as before, one of 
the three constants D, E, F will likewise vanish as a result.  If D is the vanishing constant 
then the equation of the complex will become: 
 

Ar2 + Bs2 + C + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Irs 

− 2Nrσ + 2Osρ 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0.   (91) 

 
 We can eliminate three more constants from this equation, in which we would like to 
choose the coordinate system to be rectangular, despite its generality, by determining the 
origin of the coordinates.  It is essential in the following considerations that none of the 
other constants D, E, F vanish by the choice of directions for the coordinate axes, except 
for D. 
 
 
 276.  We have represented the characteristic of the equation: 
 

Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu + kw2 = 0. 
 
This characteristic is a second-degree surface with a center in the general case of 
hyperboloidal and ellipsoidal complexes.  The center of that surface and its absolute 
dimensions, which are independent of the arbitrary constant k, can be chosen arbitrarily.  
In the case of complexes of the special kind that we are now considering, and which we 
have represented by equation (91), the characteristic will reduce to a second-degree curve 
with a center.  We would like to call this curve the characteristic curve of the complex of 
the special kind. 
 A distinguished plane direction for the complex is given by the plane of the 
characteristic curve.  If we take it to be parallel to the YZ coordinate plane then D, L, M 
will vanish, and the equation of the curve will go to the following one: 
 

Eu2 + Fv2 + 2Kuv + kw2 = 0. 
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If we take two associated diameters of the curve − in particular, its two axes − to be the 
OY and OZ coordinate axes then K will vanish, and then its coordinate axes will be the 
ones to which the complex in equation (91) is referred. 
 
 
 277.  We have reduced the determination of the direction of the associated diameter 
of a complex of the general kind to the consideration of the diameter of its characteristic 
surface.  We can regard the characteristic curve of a complex of the special kind as the 
limit of characteristic surfaces, and as a result, say that two associated diameters of the 
curve are simultaneously associated with all planes that can be drawn through other ones 
in an arbitrary direction each time.  We can also say that each straight line that goes 
through the center of the curve that does not lie in the plane of that curve will be 
associated with that plane, and finally the fact that any such straight line and two 
diameters of the curve will define a system of three associated diameters of the curve. 
 These relations carry over immediately to complexes of the special kind.  A given 
plane corresponds to a diameter of the complex that will be parallel to the plane of the 
characteristic curve and will remain parallel to this plane, even if the direction of the 
given plane might change.  In other words, the diameters of all equatorial surfaces of the 
complex are parallel to the plane of its characteristic curve. 
 If the given plane rotates around its line of intersection with the plane of the 
characteristic curve then the associated diameter of the complex will move parallel to 
itself.  There will then be infinitely many mutually-parallel diameters of the complex.  
Finally, if the rotating plane coincides with the plane of the characteristic curve then the 
diameter will be indeterminate.  It will lose its direction when it goes to infinity. 
 In the general case of hyperboloidal and ellipsoidal complexes, we have shown that 
any two conjugate diameters will be cut by the axis of the complex cylinder whose sides 
are parallel to the third conjugate diameter.  In the case of the special complex that we are 
considering here, the third conjugate diameter will be shifted to infinity every time.  
However, as before, any two arbitrary conjugate diameters that are parallel to the central 
plane will determine the directions of the sides of a complex cylinder whose axes cut the 
two diameters by the intersection of their associated planes.  We say that this cylinder − 
and in particular, its axis − is associated with the system of two diameters. 
 
 
 278.  In order to confirm and extend this result, we would like to return to equations 
(5), which represent the diameter that is associated with a given plane: 
 

tx + uy + vz + w = 0 
 
in the general case of complexes.  When we use the equation of the complex of the 
special kind (91) as a basis, and let x, y, z keep their previous meaning, these equations 
will reduce to: 
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    (92) 

 Thus: 
(y – y′) Fv = (z – z′) Eu.    (93) 

 
In accordance with the first of the three equations (92), the diameter is parallel to the YZ 
plane.  Equation (93), when written in the following way: 
 

y y v

z z u

′− ⋅
′−

=
E

F
,      (94) 

 
immediately expresses the idea that the intersection of the given YZ plane and the 
diameter of the complex that is associated with that plane will have the direction of two 
associated diameters of the characteristic curve, which, from the vanishing of K will be 
represented by the equation: 

Eu2 + Fv2 + kw2 = 0. 
 
 The values of x′ : y′ : z′ that we have used as a basis for equations (92) are the 
following ones: 
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    (4) 

 
The distance x′ of the diameter from the YZ plane then remains the same for all planes 
whose coordinates satisfy the following equation: 
 

(Eu2 + Fv2) x′ = Ouv + Rv2 + Stv – Ttu – Uu2.   (95) 
 
All such planes envelop a curve at infinity of class two.  When the term in t2 is missing 
from the foregoing equation, that curve will contact the straight line at infinity in YZ, 
independently of the choice of x′.  We get: 
 

Sv – Tu = 0     (96) 
 
for the contact point; x′ no longer enters into this equation.  It determines a distinguished 
direction for the complex. 



242 Chapter Two, Part II: Discussion of the general equation of second-degree complex. 

 

 The coordinates of the point x′, y′, z′, which determine the position of the diameter, 
will become infinitely large when u and v vanish at the same time.  As equations (92) 
show, the diameter will then lose its direction at infinity.  However, the quotient y′ / z′ 
will keep a finite and well-defined value.  When we let u and v vanish, we will get from 
(4) that: 

y

z

′
′
 = − 

T

S
.     (97) 

 
The diameter will then be shifted to infinity in the direction that is indicated by the 
foregoing equation.  This direction will coincide with the one that we have determined by 
equation (96).  We can say that the infinitude of diameters that are associated with the 
plane of the characteristic curve in the complex intersect that plane in the same point at 
infinity.  That point will be the center of curve that is enveloped by lines of the complex 
in the plane of the characteristic curve, and will remain unchanged when the plane moves 
parallel to itself.  We will obtain the analytic confirmation of this geometric consequence 
in the following number. 
 
 
 279.  We get: 

, ,

,

U P
x x

E E
R Q

x y
F F

= − = 

= = −


    (98) 

 
for the intersection of the two diameters that are associated with the XZ and XY 
coordinate planes and parallel to OY and OZ with these two coordinate planes.  If we set: 
 

P = 0,  Q = 0 
 

then we will displace the XZ and XY planes in such a way that after the displacement the 
two diameters that are associated with these two planes will cut the OX axis. 
 Of the pairs of equations (18) in number 240, by which the axes of three complex 
cylinders whose sides are parallel to the OX, OY, OZ coordinate axes were represented, 
the first one: 

y = − 
Q

F
,  z = 

P

E
,    (99) 

 
showed that one of the cylinder axes coincided with OX.  The other two pairs of 
equations gave: 
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    (100) 
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The other two cylinder axes in the same planes that are parallel to YZ, and in which the 
two associated diameters lie, will be shifted to infinity. 
 Of the three coordinates of the center of the central parallelepiped whose edges are 
parallel to OX, OY, OZ, respectively, for which we have obtained: 
 

x0 = 
2

ER FU

EF

−
, y0 = −

2

DQ FT

DF

−
, z0 = 

2

DP ES

DE

−
   (21) 

 
in the general case, only x0 remains finite and determined completely, while y0 and z0 will 
become infinitely large; the ratio of y0 and z0 will remain determinate.  We will get: 
 

0

0

y

z
= − T

S
      (101) 

for it. 
 The same thing will be determined by this equation that we obtained in the previous 
number (97). 
 The center of the central parallelepiped that we have chosen lies in a plane that is 
determined, not only in direction, but also in position, in which the sense that is 
determined by equation (101) is at infinity.  If we keep the OX axis as a side of the central 
parallelepiped and take OY and OZ arbitrarily to be two conjugate diameters of the 
characteristic curve then we will obtain a series of central parallelepipeds.  The same 
considerations that we posed in number 246 in the case of hyperboloidal and ellipsoidal 
complexes, show us here that the center of all of these central parallelepipeds will be 
shifted to infinity in the same direction and in the same plane that is parallel to the plane 
of the characteristic curve. 
 If we choose another cylinder axis of the complex in place of the OX axis then we 
will obtain a new series of central parallelepipeds.  The centers of all these 
parallelepipeds will be shifted to infinity in the same direction, as before, parallel to the 
plane of the characteristic curve, since the determination of that direction was 
independent of the choice of the OX coordinate axis.  By contrast, the plane in which the 
center of the parallelepiped is shifted to infinity will generally be different.  If we then 
choose any two conjugate diameters of the complex and replace the one with another one 
that is parallel to it then that will change the central plane that goes halfway between the 
two conjugate diameters. 
 We have then come to the following theorems: 
 
 In the complexes of the special kind that we are considering, the center is shifted to 
infinity parallel to the plane of the characteristic curve in the given direction: 
 

y

z
 = 0

0

y

z
= − 

T

S
. 

 
 All central parallelepipeds that have the same finite cylinder axis for one of their 
edges will possess the same central plane parallel to the plane of the characteristic 
curve. 
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 280.  We will get the following equation for the complex of the special kind: 
 

Ar2 + Bs2 + C + Eρ2 + Fη2 
+ 2Gs + 2Hr + 2Irs 

− 2Nrσ + 2Osρ 
+ 2Rsη – 2Sσ – 2Tσ + 2Uρ = 0   (102) 

 
when we let the axis of any of its cylinders coincide with the OX coordinate axis and 
choose OY and OZ to be any two diameters of the characteristic curve.  We can add to 
that the condition equation: 

ER = FU     (103) 
 
and then determine that the central plane that belongs to the OX axis will coincide with 
the YZ coordinate plane.  Finally, we can let S or T vanish at will when we take one of the 
two axes OY, OZ to be parallel to the direction that is determined by equation (101). 
 When one considers that simplification, equation (102) will contain eleven mutually-
independent constants.  When we add to them the seven constants by which the 
coordinate system was specialized, we will obtain the eighteen constants of the complex 
of the special kind. 
 
 
 281.  The asymptotic cone of the characteristic surface of a complex of the general 
kind will be represented by the two asymptotes of the characteristic curve for the 
complexes of the special kind that we consider here. 
 In the case of the general complex, the curve along which a given plane cuts the 
asymptotic cone will determine the nature of the complex curve in the plane that is 
shifted to infinity parallel to the given one.  In complexes of the special kind, this curve 
will resolve into the two intersection points of the given plane with the asymptotes.  The 
complex curve will then degenerate into a system of two points that lie at infinity in the 
direction of the two asymptotes in the plane that has been shifted to infinity. 
 All equatorial surfaces whose breadth planes are parallel to one of the two asymptotes 
are parabolic.  We will also obtain a parabolic equatorial surface when we take its breadth 
planes to be parallel to the plane of the characteristic curve.  The equation of this surface 
is: 

− 2Svw + (Fx2 – 2Rx + B) v2 + 2Tuw 
− 2(Ox + G) uv + (Ex2 + 2Ux + C) u2 = 0,   (104) 

 
and the surface will be specialized in such a way that the axes of the parabola are directed 
the same in all breadth planes.  This direction is, in agreement with number 278, the one 
along which the center of the complex is shifted to infinity. 
 If we determine that equatorial surface by its enveloping cylindrical surfaces, instead 
of by its breadth curves, then we will get the following equation from the developments 
of number 182: 

(Fy′2 + Ez′2) x2 – 2 (Ry′2 – Oy′z′ – Uz′2) x 
+ 2 (Sy′ + Tz′) y′ ⋅⋅⋅⋅ z + (By′2 + 2Gy′z′ + Cz′2) = 0.         (105) 
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This represents the intersection of XZ with the complex cylinder whose sides are parallel 
to the direction that is determined by the ratio y′ / z′. 
 The term in z2 is missing from the foregoing equation.  All complex cylinders whose 
sides are parallel to the plane of the characteristic curve are parabolic cylinders.  Their 
diametral planes are parallel to the stated plane.  In particular, those two cylinders whose 
sides are parallel to one of the two asymptotes of the characteristic curve will resolve into 
a system of two planes, one of which is shifted to infinity.  As a result of this, the 
equation of the cylinder will reduce to one of first degree.  If we finally give the sides of 
the cylinder the direction in which the center of the complex is shifted to infinity then we 
will get: 

Sy′ + Tz′ = 0, 
 

and the cylinder will decompose into two planes that are both parallel to the plane of the 
characteristic curve. 
 
 
 282.  We would like to call a complex of the special kind hyperbolic or elliptic 
according to whether the two asymptotes of the characteristic curve are real or imaginary, 
respectively. 
 In both kinds of complexes, a line of the complex will lie at infinity in planes that are 
parallel to the plane of the characteristic curve.  There no other planes that contain lines 
of the complex at infinity in elliptic complexes.  In hyperbolic complexes, two real planes 
can be drawn through any line in space, which are parallel to the two asymptotes of the 
characteristic curve, respectively.  The complex cures in these planes will be parabolas.  
With the exception of the complex cylinders whose sides run parallel to the plane of the 
characteristic curve, all cylinder surfaces that belong to a hyperbolic complex will be 
hyperbolic, and the cylinders that belong to an elliptic complex will be elliptic. 
 We can say that the curves of the complex that lie in the plane at infinity resolve into 
a system of two real points in the case of hyperbolic complexes and a system of two 
imaginary points in the case of elliptic complexes. 
 
 
 283.  If we consider only the terms of degree two in ρ, σ, η in order to represent the 
totality of lines of the complex that lie at infinity, as we did in the general case (no. 267), 
then we will get: 

Eρ2 + Fη2 = 0     (106) 
from equation (102). 
 This equation represents the two asymptotes of the characteristic curve in line 
coordinates. 
 However, with a greater approximation than one gets by using the characteristic 
curve, we can determine the lines of the given complex at infinity when we neglect, as 
before, first powers of ρ and η in comparison to the second powers, as well as the 
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variables r, s, and constants, while we keep first powers of σ.  In this way (*), we will get 
the following equation: 

Eρ2 + Fη2 – 2 (Ss + T) σ = 0.    (107) 
 
A term with N or O does not enter in.  Namely, one has: 
 

− N rσ + Osρ = − Nη + (O – N) sρ ; 
 

that is, rσ will always have the same order as the terms with η and sρ, so it will not come 
under consideration. 
 The foregoing equation represents a new complex that we would like to call the 
asymptotic complex of the given one. 
 As in the general case, the approximation of the asymptotic complex is of first degree 
to the given one, while it would be only of degree 1/2 by neglecting the terms of first 
order in σ. 
 If we displace the origin of the coordinates arbitrarily then the two constants S and T 
will remain unchanged in equation (91), which does not include D, K, L, M.  Since we 
might then displace the given complex and its asymptotic complex parallel to themselves 
with respect to each other, their reciprocal relationship will remain the same. 
 The equation of the asymptotic complex will be satisfied when we simultaneously 
have: 

ρ = 0, σ = 0, η = 0. 
 

All of the straight lines that go through the coordinate origin will belong to the 
asymptotic complex.  The complex further encompasses all straight lines that obey the 
two equations: 

Eρ2 + Fη2 = 0,  σ = 0, 
or the following two: 

Eρ2 + Fη2 = 0,  Ss + T = 0. 
 
 Any straight line that cuts the OX axis and the two asymptotes of the characteristic 
curve that lie in YZ will then be a line of the asymptotic complex.  Moreover, it will also 
contain any straight line that cuts one of the two asymptotes and is parallel to the plane 
through the origin: 

Sy + Tz = 0, 
 
which refers to the direction in which the center of the given complex is shifted to infinity 
in the plane of the characteristic curve.  As a result of this, the complex curve will 
degenerate into the system of two points in the YZ plane, one of which will coincide with 
the coordinate origin and the other of which will be shifted to infinity in the direction that 

                                                
 (*) Analogously, a curve branch with a parabolic asymptote has only one point that lies at infinity, when 
taken absolutely, namely, the one in which it is intersected by the diameter of the parabolic asymptote.  We 
will get a more precise insight into the position of the infinitely-close points by the parabolic asymptote 
itself whose points will lie at infinity in the direction of the axis, as well as perpendicular to it when they 
are shifted to infinity.  However, this happens in such a way that when the magnitude of the distance to the 
axis is of first order, the order of the magnitude of the distance from the axis will only be 1/2. 
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was specified by the foregoing equation.  The equatorial surface of the asymptotic 
complex whose breadth planes are parallel to YZ consists of parabolas, like that of the 
given complex.  All of these parabolas will contact the two planes that can be drawn 
through the OX axis and the two asymptotes of the characteristic curve.  If the breadth 
plane is shifted to infinity parallel to YZ then the parabola in it will degenerate into a 
system of two points at infinity.  We have imagined the transition from a parabola to two 
points at infinity in such a way that the contact points will be shifted to infinity along two 
fixed tangents to the curve. 
 
 
 284.  If the plane in which the center of a given complex is shifted to infinity contains 
one of the two asymptotes or is undetermined then we will obtain a corresponding 
specialization of the complex relative to the position of its diameter and the arrangement 
of its lines at infinity.  In general, such complexes will depend upon seventeen or sixteen 
constants, respectively. 
 Here, we would like to consider only the latter case, in which S and T vanish in the 
general complex equation, along with K, L, M.  The variable σ will then drop out of the 
equation of the complex, thus-specialized, completely. 
 The most general form of equation in which these variables are missing is: 
 

Ar2 + Bs2 + C + 2Gs + 2Hr + 2Irs 
+ Eρ2 + Fη2 + 2Kρη 
+ 2 (O – N) sρ – 2Nη 

+ 2Prρ + 2Qrη + 2Rsη + 2Uρ = 0.         (108) 
 
K will vanish in this equation due to the fact that we take the OY and OZ coordinate axes 
to be parallel to two associated diameters of the characteristic curve.  P and Q will vanish 
when we let the OX axis (which was assumed to be arbitrary, up to now) coincide with 
the axis of a complex cylinder.  Finally, by displacing the YZ plane parallel to itself, we 
will obtain the relation: 

ER = FU. 
 The equation: 

Ar2 + Bs2 + C + 2Gs + 2Hr + 2Irs 
+ Eρ2 + Fη2 

+ 2 (O – N) sρ – 2Nη 
+ 2Rsη + 2Uρ = 0,          (109) 

in which: 
ER = FU, 

 
is then to be regarded as the general equation of the complex that has been specialized in 
the manner in question.  It will include ten mutually-independent constants, to which, one 
must add the six constants of position, which arise from the fact that the YZ plane is 
determined by the complex, the fact that the two axes, OY and OZ, have associated 
directions relative to the characteristic curve, and finally, the fact that OX is a cylinder 
axis of the complex. 
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 The condition that a second-degree can then be represented by a second-degree 
equation in only four of the five variables: 
 

r, s, σ, ρ, (rσ – sρ ≡ η), 
 
corresponds to a three-fold specialization of the complex (*). 
 
 
 285.  It is interesting to examine the complex thus-specialized more closely. 
 For the distance from the diameter of the complex that is associated with a given 
plane: 

tx + uy + vz + w = 0 
 

to the YZ coordinate plane that is parallel to it, we find: 
 

x = 
2 2

2 2

Rv Ouv Uu

Eu Fv

+ −
+

     (110) 

 
from the formulas of number 278, when we set S and T equal to zero.  If we then rotate 
the given plane arbitrarily around its intersection with the plane of the characteristic 
curve then the diameter that is associated with it will always remain in the same plane 
that is determined by the foregoing value of x, while the distance between the diameter 
that is associated with it and the YZ plane will change under rotation of the given plane in 
the general case of hyperbolic and elliptic complexes. 
 With that, the previously-obtained result will go to the following one: 
 The diameters of the complex that are parallel to any two associated diameters of the 
characteristic plane lie in two parallel planes that have the same distance from a fixed 
plane.  We would like to call this plane the central plane of the given complex. 
 The coordinates of the center of the complex in the central plane are no longer 
infinitely large; their values take the form 0 / 0.  The center no longer lies at infinity.  Any 
point of the central axis can be regarded as the center of the complex. 
 
 
 286.  For the complexes of the special kind that we consider, as in the general case of 
hyperbolic and elliptic complexes, lines at infinity will lie in all planes that are parallel to 
one of the two asymptotes of the characteristic curve, and the complex curves in them 
will be parabolas.  However, in planes that are parallel to the central plane − and thus, 
both asymptotes – the complex curves will be represented by the equation: 

                                                
 (*) Instead of letting σ drop out, as we did in the text, we can also choose η by taking the XY coordinate 
plane to be the plane of the characteristic curve.  The equation of the complex is then written immediately 
as the general second-degree equation in the four variables r, s, σ, ρ that we encounter when we determine 
the straight line by its projections onto XZ and YZ.  Instead of the previous constants K, P, Q, we can let M, 
T, U vanish here, and obtain the relation: 

DP = ES 
 

 by a suitable displacement of the XY coordinate plane. 
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(Fx2 – 2Rx + B) v2 – 2 (Ox + G) uv + (Ex2 + 2Ux + C) v2 = 0, (111) 
 
due to the vanishing of S and T.  They will cease to be parabolas and will degenerate into 
systems of two points that lie at infinity in directions that change from one plane to 
another. 
 The lines of the complex on one of the planes that are parallel to the central plane will 
then consist of all lines in the plane that are parallel to two given ones.  These lines can 
be real or imaginary, and they can lie at infinity.  If the plane moves even further from the 
central plane then the directions of the two line systems will always approach the 
directions of the two asymptotes of the characteristic curve more closely. 
 To summarize, the complex is then specialized by the fact that any point of a straight 
line in the plane at infinity is the center of a complex cone that resolves into the system of 
two planes that intersect in the line in question, or – what amounts to the same thing – 
that any plane that can be drawn through a distinguished straight line in the plane at 
infinity will contain a complex curve that resolves into the system of two points that lie 
upon the straight line in question. 
 
 
 287.  In the foregoing, we have discussed the case in which the complex that is 
represented by the general second-degree equation is specialized in relation to its lines at 
infinity as a result of the fact that the expression: 
 

Dσ2 + Eρ2 + Fη2 + 2Kρη – 2Lση – 2Mρσ 
 
resolves into two linear factors.  We would now like to consider a new specialization of 
the complex, by which, the same expression will be the square of a linear function, which 
would correspond to the fact that one simultaneously has: 
 

K2 – EF = 0,  L2 – DF = 0,  M2 – DE = 0.  (112) 
 
It will then come down to the fact that in the associated determination of the directions of 
the coordinate axes, two of the three constants D, E, F will vanish along with K, L, M.  If 
E and F are the two vanishing constants then the equation of the complex will be the 
following one: 

Ar2 + Bs2 + C + 2Gs + 2Hr + 2Irs 
+ Dσ2 

− 2Nrs + 2Osρ 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0.  (113) 

 
 
 288.  Equations (2) of number 234 will give the following equations for the 
determination of the diameter of the complex that is associated with the given plane: 
 

tx + uy + vz + w = 0, 
namely: 
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  (114) 

 
 All diameters of the complex are parallel to the OX axis.  The direction of the OX axis 
is then given by the complex.  The sixteen constants of the complex that is specialized by 
the three conditions (112) are found in the fourteen constants of its equation (113) and the 
two constants by which we have determined the direction of the aforementioned axis.  
With no loss of generality, we can then take the coordinate system to which the complex 
is referred in equation (113) to be a rectangular one. 
 For the determination of the three cylinder axes that are parallel to the three 
coordinate axes OX, OY, OZ, respectively, we will get: 
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    (115) 

 
from equations (18).  All cylinder axes of the complex are shifted to infinity. 
 We can eliminate the two terms in equation (113) that are endowed with sσ and σ by 
a parallel displacement of the OX axis.  We then choose the center of the complex curve 
that lies in the YZ plane to be the coordinate origin, which will be represented by the 
following two equations in the case of equation (113): 
 

y = 
T

D
, z = − 

S

D
. 

 
 The OX axis will then become the diameter of the complex that is cut by the two axes 
of the cylinders that are parallel to OY and OZ, and are shifted to infinity along OX.  Of 
the edges of the central parallelepiped that is determined by the directions of the three 
coordinate axes in the complex, only one of them will remain at infinity.  Corresponding 
to that, the coordinates of the center of the complex, as we have determined then using 
equations (21), will all be infinitely large.  The quotient of any two of them will take the 
form 0 / 0.  The center of the central parallelepiped is shifted to infinity in an 
undetermined direction. 
 
 
 289.  For an arbitrary plane that contains the OX axis, and is therefore parallel to all 
of the diameters of the complex that lie at infinity, the coordinates x′, y′, z′ (114) will take 
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on infinitely large values when t vanishes; however, their ratios will remain finite.  The 
complex curve in any such plane will be a parabola, and the direction of the diameter of 
that parabola will be indicated by that finite ratio.  From (114), we find this direction to 
be: 

x′ : y′ : z′ = (Ouv + Rv2 – Uu2) : − v (Pu + Qv) : u (Pu + Qv), 
 

and when we set: 
u

v
 = − 

z

y

′
′
 

and drop the prime, that will give us: 
 

x (Pz – Qy) = Ry2 – Oyz – Uz2.   (116) 
 
This equation will represent a second-order conic surface whose vertex falls upon the 
coordinate origin, and which will contain the OX axis as one side.  Those two sides along 
which the conic surface is cut by an arbitrary plane that is drawn through the OX axis will 
give the direction in which the vertex is shifted to infinity in the chosen plane.  This 
direction will remain unchanged when the chosen plane is displaced parallel to itself.  
From the transformation formulas of number 158, the coefficients O, P, Q, R, U that enter 
into the foregoing equation will remain unchanged under a displacement of the 
coordinate system as long as the constants E, F, K, L, M vanish, as in the special case that 
we are considering.  The equatorial surfaces of the complex whose breadth curves are 
parallel to the OX axis will then be specialized in such a way that their breath curves 
(which will be parabolas) will possess the same direction for their diameters.  The 
common direction of the diameters of all parabolas will be given by equation (116). 
 In the case of the elliptic and hyperbolic complexes, there is an equatorial surface that 
was specialized in that way; viz., the one whose breadth planes were parallel to the plane 
of the characteristic curve.  The axis direction that is common to all breadth curves in that 
parabolic equatorial surface is indicated by the center of the complex that lies in the plane 
at infinity.  Corresponding to that, we will get infinitely many directions along which the 
center of the complex is shifted to infinity for the complexes of the special kind that we 
are considering, and this infinitude of directions will be indicated by equation (116). 
 
 The center of the complexes of the special kind that we are considering will be 
undetermined.  The geometric locus of them is one of the second-order curves that lie in 
the plane at infinity. 
 
 
 290.  The complex curves in all planes that are parallel to OX are parabolas in the 
case that we are considering.  Consistent with that, from equations (115), all complex 
cylinders will be parabolic cylinders whose diametral planes are parallel to the OX axis.  
All lines that lie in the plane at infinity and cut the OX axis will belong to the complex.  
We can say that the curve that is enveloped by the lines of the complex in the plane at 
infinity has resolved into a system of two points that coincide at infinity along the OX 
axis.  We would like to call such a degenerate complex that corresponds to the previous 
relationship a parabolic complex. 
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 The cylinder whose side is parallel to the common direction of all diameters of the 
complex resolves into a system of two planes, one of which is at infinity, and as in the 
case of hyperbolic and elliptic complexes, if the cylinder whose sides indicate the 
direction in which the center of the complex was shifted to infinity decomposes into two 
planes that are parallel to the plane of the characteristic curve then a cylinder in a 
parabolic complex whose sides possess any direction in which the midpoint of the 
complex is shifted to infinity will resolve into a system of two planes that are parallel to 
OX.  We will find the analytical confirmation of this assertion in equation (27) of number 
182, which determines those cylinders whose sides are parallel to the YZ plane – which is 
an arbitrarily-chosen plane that has no distinguished relationship to the complex 
whatsoever – by its intersection with XZ.  This equation is the following one: 
 

Dy′2 ⋅⋅⋅⋅ z2 – 2 (Ry′2 − Oy′z′ – Uz′2) x + (By′2 + 2Gy′z′ + Cz′2) = 0. 
 

The assumption corresponds to the fact that: 
 

Ry′2 − Oy′z′ – Uz′2 = 0; 
 
that is, that the sides of the complex cylinder have the direction of one of the two straight 
lines along which the conic surface (116) is cut by the YZ plane, so it will decompose into 
two linear factors in which x no longer occurs, and will thus represent two planes that are 
parallel to OX. 
 
 
 291.  If we neglect first powers of the variables ρ, σ, η, as well as r, s, and constants, 
in the complex equation (113) when compared with second powers of ρ, σ, η then we 
will find that the lines of the complex at infinity can be represented by: 
 

Dσ2 = 0.     (117) 
 
All lines that cut the OX coordinate axis will belong to the previous complex.  The two 
asymptotes of the characteristic curve for hyperbolic and elliptic complexes will then 
coincide in a single straight line for parabolic complexes. 
 However, we can represent lines of the complex at infinity to a higher degree of 
approximation than is possible in the foregoing equation when we keep the first powers 
of ρ and η, along with the second power of σ.  The resultant equation: 
 

Dσ2 – 2Nη + 2 (O – N) sρ + 2 (Pr + U) ρ + 2 (Qr + Rs) η = 0  (118) 
 
will represent a new complex that we would like to call the asymptotic complex of the 
given one.  Since we might also displace the given complex and its asymptotic complex 
with respect to each other, their reciprocal relationship to each other will remain the 
same.  According to the rules in number 157, the coefficients D, N, O, P, Q, R, U will 
then keep the same values under a displacement of the coordinate system parallel to itself 
in the case that we are considering. 
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 The asymptotic complex that is represented by equation (118) will subsume all lines 
that go through the coordinate origin.  When we let the constants B, C, E, F, G, K, L, M, 
S, T vanish, we will obtain the following equation from number 165 for the equation of 
its equatorial surface whose breadth planes are parallel to the YZ coordinate plane by 
solving for the factor x: 

2Dry2 – 2DOyz + 2DUz2 + O2x – 4RUx = 0.   (119) 
 

This equation has degree two and represents a paraboloid that contacts the YZ plane at the 
coordinate origin, and whose diameter is parallel to OX.  The reduction of the fourth-
degree equation for the general equatorial surface to degree two comes about here, in 
agreement with the developments of number 258, as a result of the fact that the equatorial 
surface splits into two planes, in which two points that coalesce into one will be 
enveloped by the lines of the complex.  In the present case, they will be the YZ coordinate 
plane and the plane at infinity. 
 From number 169, we get the following equation in mixed coordinates for the 
meridian surface that has OX for the double lines: 
 

(R tan2 ϕ – O tan ϕ  – U) tw – (Q tan ϕ  – P) vw = 0.   (120) 
 
In an arbitrary meridian plane, the curve will then resolve into a system of two points, 
one of which coincides with the coordinate origin, and the other of which is shifted to 
infinity in the direction that is indicated by the equation: 
 

(R tan2 ϕ – O tan ϕ  – U) t – (Q tan ϕ  – P) v = 0.   (121) 
 
The cylinders of the complex whose sides possess that direction will resolve into a 
system of two planes that are parallel to the plane that is determined by the value of tan 
ϕ. 
 
 
 292.  We obtain one last specialization of the complex when we let six constants from 
the group: 

D, E, F, K, L, M 
 
vanish at the same time.  The general equation of the complex will then contain only 
thirteen mutually-independent constants. 
 In order to represent lines of the complex − thus-specialized − that belong to the 
(absolute) plane at infinity, we obtain the identity: 
 

0 = 0. 
 

In complexes of the special kind that we consider, any straight line that lies in the plane 
at infinity will belong to the complex.  The complex curve in an arbitrary plane is a 
parabola.  All of the complex cylinders decompose into systems of two planes and reduce 
to first degree when one shifts one of them to infinity.  We say nothing further about 
central parallelepipeds of complexes.  The complex has lost its center. 
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 We refer to the complex whose equation is derived from the given complex by 
neglecting the variables r, s, and constants in comparison to the first powers of ρ, σ, η as 
the asymptotic complex.  We thus obtain: 
 

− 2Nrσ + 2Osρ + 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Tσ + 2Uρ = 0.  (122) 
 
 As a result of the form of this equation, the relationship of the asymptotic complex to 
the given one will not change when one displaces it parallel to itself through a finite 
segment. 
 We might next remark that the asymptotic complex in whose equation the constants: 
 

A, B, C, G, H, I, 
as well as the constants: 

D, E, F, K, L, M, 
 
are missing is specialized with respect to the origin in a manner that is analogous to the 
way that it is specialized with respect to the plane at infinity.  All lines that lie at infinity, 
as well as all lines that go through the coordinate origin, belong to the asymptotic 
complex. 
 As in the case of the given complex, all of the cylinder surfaces that are defined by 
lines of the asymptotic complex will degenerate into systems of planes, one of which is 
shifted to infinity.  However, a new specialization appears, in that the other plane will go 
through the coordinate origin in every case.  Whereas a parabola in an arbitrary plane in 
space will be enveloped by lines of the complex, the complex curve in any plane that 
goes through the coordinate origin will split into a system of two points, one of which 
will coincide with the coordinate origin, while the other of which will be shifted to 
infinity.  As a result of this, any equatorial surface of the complex will degenerate into a 
cone of order two whose vertex will fall upon the coordinate origin and that will be cut 
by the associated breadth planes in parabolas.  In particular, any breadth plane that goes 
through the coordinate origin will contact the conic surface along a side that points in the 
direction in which one of the points into which the complex curve has resolved in the 
plane in question has been shifted to infinity. 
 
 
 293.  In the foregoing, we have discussed the position of the straight lines at infinity 
and the behavior of the corresponding diameters for second-degree complexes, and 
illustrated this, in particular, by means of a simpler second-degree complex that we 
referred to as the “asymptotic complex.”  In summary, we have thus arrived at a sixteen-
fold distinction between second-degree complexes. 
 In hyperbolic complexes, the lines of the complex at infinity will envelop a real curve 
of class two, and in elliptic ones, the curve will be imaginary.  In the case of hyperbolic 
complexes, this curve will resolve into a system of two real points, and in the case of 
elliptic complexes, the points will be imaginary.  If these two points coincide then the 
complex will be parabolic.  Finally, the case can come about, in which all of the straight 
lines that belong to the plane at infinity are lines of the complex. 
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§ 4. 
 

Tangential and polar complexes of degree one. 
 

 294.  The results that were obtained in the foregoing can be generalized with no 
further assumptions when we carry over all of the considerations that we previously 
posed for the plane at infinity to an arbitrary plane and to an arbitrary point, according 
to the rules of the principle of reciprocity.  However, we can propose a series of other 
arguments that are intended to extend the theorems of the foregoing paragraphs and bring 
them under a more general viewpoint. 
 Let Ωn be a homogeneous function of degree n in arbitrarily many variables p, q, r, … 
In accordance with the known theorems of homogeneous functions, we will then get: 
 

n n np q r
p q r

δ δ δ
δ δ δ
Ω Ω Ω⋅ + ⋅ + ⋅ + … ≡ n ⋅⋅⋅⋅ Ωn .   (123) 

 
We can thus also write the equation: 

Ωn = 0      (124) 
in the following way: 

n n np q r
p q r

δ δ δ
δ δ δ
Ω Ω Ω⋅ + ⋅ + ⋅ + … ≡ 0.    (125) 

 
Thus, if p′, q′, r′, … are given values that satisfy equation (124) then these values will 
satisfy equation (125).  The partial differential quotients that enter into this equation and 
are generally homogeneous functions of degree n – 1 will then take on constant values 
that we would like to enclose in parentheses below, in order to distinguish them.  If we go 
from the given values p′, q′, r′, … to neighboring ones then we will find from (124) that: 
 

n n ndp dq dr
p q r

δ δ δ
δ δ δ

   Ω Ω Ω + +     
    

+ … = 0.    (126) 

 
 The following equation: 
 

n n np q r
p q r

δ δ δ
δ δ δ

   Ω Ω Ω + +     
    

+ … ≡ Π = 0,   (127) 

 
in which the bracketed differential quotients have the meaning that was just given to 
them, is an equation of degree one in the variables p, q, r, …  The given values p′, q′, r′, 
… satisfy the foregoing equation, just as they satisfy equation (124), which has degree n.  
If we then write the latter equation in the form (125) then we will get, in agreement with 
both equations: 

n n np q r
p q r

δ δ δ
δ δ δ

   Ω Ω Ω ′ ′ ′+ +     
    

+ … = 0. 
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However, when we go from the given values p′, q′, r′, … to neighboring ones, equation 
(127) will give us the same equation (126) that gave us the nth degree equation (124) 
above.  Corresponding to that, we would like to call Π a linear tangential function of the 
given homogeneous function Ωn of degree n. 
 If we assume that the constant values of p′, q′, r′, … are completely arbitrary, instead 
of assuming that they satisfy the given function Ωn, then the form of the function Π will 
not be changed in any way.  In this general case, we would like to call Π a linear polar 
function of the given function Ωn .  A polar function will go to a tangential function by the 
assumption above. 
 In particular, when n = 2, the differential quotients of Ωn will be functions of degree 
one in the variables.  We can then exchange the variable quantities p, q, r, … with their 
constant values p′, q′, r′, … in the polar function Π without changing anything about in 
the function.  Consistent with that, we can write equation (127) in the following two 
ways: 

2 2 2p q r
p q r

δ δ δ
δ δ δ

   Ω Ω Ω + +     
    

 + … = 0,   (128) 

 

2 2 2p q r
p q r

δ δ δ
δ δ δ
Ω Ω Ω′ ′ ′+ + + … = 0.    (129) 

 
 The foregoing carries over immediately to the more general case of inhomogeneous 
functions.  To that end, we can make the inhomogeneous function homogeneous by the 
introduction of new variables, derive the polar function for the function that has been 
made homogeneous, which will be a homogeneous function of degree one, and set the 
variables that have been introduced into it, along with their constant values, equal to 
unity. 
 If the given variables p, q, r, … are not mutually independent, but have to satisfy 
arbitrarily many (m) condition equations: 
 

Φ = 0, Φ′ = 0, …     (130) 
 
(whose degree we would like to make the same as that of Ωn, for the sake of simplicity) 
then the foregoing considerations will be modified.  The same values of the variables p, 
q¸ r, …that must satisfy the equation: 

Ωn = 0 
 
will each satisfy an equation of the following form: 
 

Ωn + λΦ + λ′ Φ′ + … = 0,    (131) 
 
where λ, λ′, … mean undetermined constants.  We will obtain a polar function that is 
linear with respect to any equation of that form that corresponds to a given system of 
values for the variables. 
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 These polar functions will represent linear equations when they are set equal to zero.  
They will also be satisfied by the values of the variables p, q, r, … that satisfy the 
following m + 1 equations: 
 

0,

0,

0,

............................................................

n n np q r
p q r

p q r
p q r

p q r
p q r

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ δ

   Ω Ω Ω + + + =      
     

   Φ Φ Φ  + + + =      
     

′ ′ ′   Φ Φ Φ  + + + =          



⋯

⋯

⋯

   (132) 

 
The infinitude (viz., ∞n) of linear polar functions that correspond to a given system of 
values of the variables p, q, r, … define an (m + 1)-parameter group (*). 
 We can choose any linear polar function from the m-fold infinitude of them, 
corresponding to an arbitrary choice of λ, λ′, …  In particular, if n = 2 then the variables 
in it can be exchanged with the corresponding differential quotients without changing the 
form of the polar function, as in the case of independent variables.  However, whereas in 
the case of independent variables the one linear polar function that it gave has an 
exclusive relationship to the system of given values for the variables and to the given 
equation, now, any arbitrarily-chosen linear polar function will be as good as any other 
one.  We can say that the given constant values p′, q′, r′, … are not associated with any 
individual polar function as they are with the m-fold infinite family of all polar functions. 
 
 
 295.  If we restrict ourselves to three variables then we will have: 
 

Ωn = f(p, q, r), 
and we will get: 

Π = n n np q r
p q r

δ δ δ
δ δ δ

   Ω Ω Ω + +     
    

. 

 
If we give the variables the meaning of point coordinates in the plane then p′, q′, r′ will 
determine a point, and the homogeneous equation: 
 

Ωn = 0      (124) 
will represent a curve of order n, while: 
 

                                                
 (*) We thus ignore the case in which one finds linear Φ among the condition equations.  The 
corresponding equation (132) will be satisfied with this assumption, anyway, since the condition equations 
themselves will not differ. 
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Π ≡ n n np q r
p q r

δ δ δ
δ δ δ

   Ω Ω Ω + +     
    

 = 0   (133) 

 
will represent the equation of the polars of the given point relative to the curve, and in 
particular, when the point lies upon the curve, it will represent the equation of the tangent 
to the curve at that point. 
 The principle of reciprocity that relates to second-order curves rests upon the two-fold 
form that the latter equation will assume in the case of n = 2. 
 If we give the three variables the meaning of line coordinates in the plane then a 
straight line will be determined by three constant values of them, and equation (124) will 
represent a curve of class n, while equation (133) will represent the pole of that straight 
line relative to that curve; in particular, when a straight line is a tangent to the curve, it 
will represent its contact point. 
 The remarks that were made in relation to curves of order two will be true for curves 
of class two. 
 
 
 296.  In the case of four variables, let: 
 

Ωn = f(p, q, r, s) 
and 

Π = n n n np q r s
p q r s

δ δ δ δ
δ δ δ δ

   Ω Ω Ω Ω   + + +       
      

. 

 
If we give the four variables the meaning of point coordinates in space then the equation: 
 

Ωn = 0      (124) 
will represent a surface of order n, and: 
 

Π = 0      (134) 
 
will be the equation of the polar plane to the point (p′, q′, r′, s′) relative to the surface; in 
particular, when the point lies upon the surface, it will represent the tangential plane to 
the surface at that point. 
 If p, q, r, s means plane coordinates then equation (124) will represent a surface of 
class n and (p′, q′, r′, s′) will refer to a given plane.  (134) will then be the equation of the 
pole of that plane relative to the surface; in particular, when the plane contacts the 
surface, it will be the equation of the contact point. 
 The double form of equation (134) in the case of n = 2 includes the principle of 
reciprocity for surfaces of order two and surfaces of class two, which was first developed 
by Gergonne in an elegant way for curves and surfaces of order two. 
 We can also consider the four variables to be point or line coordinates in the plane, 
but a linear condition equation must exist between them in this case, and thus between 
their constant values, as well.  Equation (124) will then, in turn, represent a curve of order 
n or class n, and equation (134) will represent the polar of the point (p′, q′, r′, s′) or the 
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pole of the straight line (p′, q′, r′, s′), respectively, with respect to the curve.  Polars and 
poles will go to tangents and contact points when the given point lies upon the curve or 
the given straight line contacts the curve, respectively.  We can add to the given equation 
of degree n, the linear condition equation that the variables p, q, r, s must satisfy, when it 
is multiplied by an arbitrary (homogeneous) function of degree n – 1.  However, equation 
(134) for the polars (poles, resp.) will not be changed, insofar as the variables p, q, r, s, as 
well as their fixed values p′, q′, r′, s′, must satisfy the linear condition equation in 
question. 
 
 
 297.  Finally, if: 

Ωn = f (p, q, r, s, t, u) 
then we will obtain: 
 

Π = n n n n n np q r s t u
p q r s t u

δ δ δ δ δ δ
δ δ δ δ δ δ

   Ω Ω Ω Ω Ω Ω       + + + + +           
          

. 

 
We would like to give the variables the meaning of line coordinates, and indeed, we will 
first take them to be line coordinates: 
 

(x – x′), (y – y′), (z – z′), (yz′ – y′z), (x′z – xz′), (xy′ – x′y) 
 
and then axial coordinates: 
 

(uv′ – u′v), (t′v – tv′), (tu′ – t′u), (t – t′), (u – u′), (v – v′) . 
 
The homogeneous equation: 

Ωn = 0      (124) 
 
will represent the same complex of degree n with either choice, and when we refer the 
constant values p′, q′, r′, s′, t′, u′ that the partial differential quotients include to a straight 
line (whether a ray or axis), the equation: 
 

Π = 0      (135) 
 
will represent a linear complex that we would like to call the polar complex of the given 
straight line (p′, q′, r′, s′, t′, u′) relative to the given complex of degree n.  In particular, if 
the given straight line belongs to the complex itself then the polar complex will go to a 
tangential complex; that is, in a complex of degree one that contains the given straight 
line and all of the lines of the given complex that lie infinitely close to it. 
 
 
 298.  The six coordinates of the straight line are not independent of each other, but 
must satisfy a second-degree equation that finds its expression in the identity: 
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(x – x′)(yz′ – y′z) + (y – y′)(x′z – xz′) + (z – z′)(xy′ – x′y) = 0. 
 
Corresponding to that, from the discussion in number 294, we will obtain a two-
parameter group of linear polar complexes that all have the same relationship to the 
given straight line and the given complex.  The two-parameter group of linear polar 
complexes that is associated with a given straight line will determine a linear 
congruence, about which, we can say, in particular, that it is associated with the given 
straight line relative to the complex of degree n. 
 In the sequel, as before, we would like to denote the six line coordinates in the 
foregoing sequence by: 

r, s, h, − σ, ρ, η . 
 
The condition equation that the line coordinate must satisfy will then be written in the 
following form: 

− rσ + sρ + hη = 0.     (136) 
 
We assign the coordinates r′, s′, h′, − σ′, ρ′, η′ to the given straight line. 
 Without changing the given complex of degree n: 
 

Ωn = 0, 
 
we can add that equation to equation (136), when it has been multiplied by a 
homogeneous function of degree n – 2.  We can then add a term 2Vη to the general 
equation (I) of the second-degree complex at will.  With no loss of generality, we would 
like to denote the arbitrary function of degree n – 2 by λ and consider it to be constant in 
the definition of the polar function.  The terms in the polar function that we therefore 
neglect will then appear to be multiplied by the factor (− r′σ′ + s′ρ′ + h′η′), and that 
factor will be equal to zero, since the coordinates r′, s′, h′, − σ′, ρ′, η′ of the chosen 
straight line must satisfy equation (136). 
 We can thus take the equation of the given complex to be the following one: 
 

Ωn + λ (− rσ + sρ + hη) = 0.    (137) 
 
The equation of the polar complex will then become: 
 

Π + λ (− rσ′ + sρ′ + hη′ − r′σ + s′ρ + h′η) = 0,  (138) 
 
where Π denotes the function: 
 

Π = n n n n n nr s h
r s h

δ δ δ δ δ δσ ρ η
δ δ δ δσ δρ δη
Ω Ω Ω Ω  Ω   Ω        + + + − + +          

           
. 

 
Each value of λ will correspond to a different polar complex. 
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 299.  Of the two directrices of the congruence that is determined by the two-
parameter group of the polar complex, one of them will coincide with the given straight 
line.  When we take λ to be infinitely large, equation (138) will become: 
 

− rσ′ + sρ′ + hη′ − r′σ + s′ρ + h′η = 0,   (139) 
 
and, from the discussion of number 45, this equation will represent a linear complex that 
subsumes all lines that cut the given straight line.  In connection with the considerations 
of number 71, we can expression this theorem as follows: 
 
 A given straight line corresponds to the same straight line as its conjugate polar 
relative to the two-parameter group of its associated linear polar complexes. 
 
 This latter straight line is the second directrix of the congruence that is determined by 
the polar complex.  We say that this straight line is associated with the given one relative 
to the complex of degree n, and call it the polar of the given straight line relative to the 
complex of degree n (*). 
 We can choose the undetermined constant λ in equation (138) in such a way that the 
equation represents a complex of degree one whose lines all cut a fixed straight line.  To 
that end, we would like to write equation (138) in the following way: 
 

n n nr r h
r s h

δ δ δλσ λρ λη
δ δ δ

 Ω   Ω   Ω      ′ ′ ′− + − + −          
          

 

− n n nr s h
δ δ δλ σ λ ρ λ η
δσ δρ δη

    Ω   Ω   Ω   ′ ′ ′− + + + + +        
         

 = 0.  (140) 

 
From number 45, we would then obtain: 
 

n n n nr s
r s

δ δ δ δλσ λ λρ λ
δ δσ δ δρ

  Ω   Ω   Ω   Ω      ′ ′ ′ ′− ⋅ − + + + ⋅ +            
             

 

+ n n h
h

δ δλη λ
δ δη

  Ω   Ω   ′ ′+ ⋅ +    
     

 = 0   (141) 

 
for the determination of λ.  As a result of equation (136), a root of the foregoing equation 
will be infinitely large, which corresponds to the fact that one directrix of the congruence 
that is determined by the two-parameter group (138) will coincide with the given straight 
line.  Equation (141) will then reduce to degree one, and if we set: 
 

                                                
 (*) Here, we might just as well remark that a straight line and its polar do not have the same reciprocal 
relationship to each other.  The polar of the given straight line corresponds to a new straight line as the 
polar that is associated with it, etc.  There are only a finite number of straight lines that are the polars of 
their own polars.  
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− n n n n n n

r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη
Ω Ω Ω Ω Ω Ω⋅ + ⋅ + ⋅ = Φ, 

 
 for the sake of brevity, that will give: 

λ = − 
1

2 n

 Φ
 Ω 

     (142) 

 
for the determination of the second directrix, which we have referred to as the polar of 
the given straight line.  In this last expression, the values of the coordinates of the given 
straight line are substituted in Φ and Ωn, and we have employed the parentheses for that 
reason. 
 
 
 300.  If the given straight line belongs to the given complex Ωn, in particular, then we 
will get a two-parameter group of tangential complexes, in place of the two-parameter 
group of polar complexes. 
 The two directrices of the congruence that is determined by them coincide with the 
given straight line.  Since Ωn will vanish for the coordinates of the given straight line, the 
value of λ, as we have determined it by means of equation (142), will then become 
infinitely large.  The congruence has been specialized in such a way that it will subsume 
all of the lines of a linear complex that cut a fixed straight line that itself belongs to the 
complex (cf., no. 68).  The fixed straight line will be the given one (r′, s′, h′, − σ′, ρ′, η′). 
 Only in the special case in which the given straight line belongs to the following 
complex: 

Φ ≡ − n n n n n n

r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη
Ω Ω Ω Ω Ω Ω⋅ + ⋅ + ⋅ ,   (143) 

 
along with the given complex Ωn, will the value of λ that is given by (142) be 
indeterminate.  Since Ω, as well as Φ, vanishes, λ will take the form 0 / 0.  For each 
arbitrary choice of λ, we will obtain a tangential complex whose lines all cut a fixed 
straight line.  If we choose λ to be infinitely large then that straight line will coincide with 
the given one.  The given straight remains, as before, one of the directices of the 
congruence that is determined by the two-parameter group of tangential planes.  From the 
discussion in number 68, this congruence will have been specialized in such a way that it 
will possess infinitely many directions that lie in a plane and go through a point in it.  All 
lines that lie in the plane that is determined by the directices or go through their point of 
intersection will belong to the congruence. 
 We would like to refer to those straight lines that belong to the given complex of 
degree n: 

Ωn = 0, 
 
as well as the complex of degree 2 (n – 1) that is derived from them: 
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Φ ≡ − n n n n n n

r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη
Ω Ω Ω Ω Ω Ω⋅ + ⋅ + ⋅  = 0,   (143) 

 
as the singular lines of the given complex. 
 The singular lines of a complex of degree n define a congruence of order and class 2n 
⋅⋅⋅⋅ (n − 1). 
 From the foregoing discussion, each singular line corresponds to a plane and a point 
in a distinguished way.  We would like to call that plane a singular plane and the point, a 
singular point of the complex, and refer to them as being associated with or 
corresponding to the chosen singular line. 
 One last case still remains to be considered.  If: 
 

r′ : s′ : h′ : – σ′ : ρ′ : η′ 
 

= : : : : :n n n n n n

r s h

δ δ δ δ δ δ
δσ δρ δη δ δ δ
Ω  Ω   Ω  Ω Ω Ω       −           

          
 

 
then the polar complex of the given straight line will represent the totality of all of those 
straight lines that cut the given one independently of the special values that we might 
assign to λ.  The polar complexes will be identical to each other and will no longer 
determine a linear congruence.  Each arbitrary straight line will be regarded as the polar 
of the given straight line. 
 We would like to call the given straight line a double line of the complex. 
 Whereas two conditions must be fulfilled in order for a given straight line to be a 
singular line of the complex, and there will then be a congruence of singular lines in a 
given complex, there are five conditions that must be satisfied in order for a given straight 
line to be a double line of the complex.  Since a straight line depends upon four constants, 
a given complex will contain no double lines, in general.  One specialization of it will 
then be necessary. 
 
 
 301.  We restrict ourselves to the complexes of degree two in what follows. 
 Let the general equation of the complex in ray coordinates be: 
 

Ar2 + Bs2 + C + Ds2 + Er2 + Fh2 
+ 2Gsh + 2Hrh + 2Irs + 2Kρη – 2Lση − 2Mρσ 

− 2Nrσ + 2Osρ + 2Vhη 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Thσ + 2Uhρ = 0.   (V) 

 
 We then obtain the equation: 
 

(Ar′ + Hh′ + Is′ − Nσ′ + Pρ′ + Qη′) r 
+ (Bs′ + Gh′ + Ir ′ + Oρ′ + Rη′ − Sσ′) s 

+ (Ch′ + Gs′ + Hr′ + V′η − T σ′ + Uρ′) h 
− (− Dσ′ + Lη′ + Mρ′ + Nr′ + Ss′ + Th′) σ 
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+ (Eρ′ + Kη′ − Mσ′ + Os′ + Pr′ + Uh′) ρ 
+ (Fη′ + Kρ′ − Lσ′ + Vh′ + Qr′ + Rs′) η = 0   (144) 

 
for the equation of the polar complex of a given straight line (r′, s′, h′, − σ′, ρ′, η′) in ray 
coordinates.  We can set h and h′ equal to unity in the foregoing equation arbitrarily. 
 If we start with the equation of the complex in axial coordinates (III) and determine 
the given straight line by its axial coordinates (p′, q′, l′, − κ′, π′, ω′) then we will get: 
 

(Dp′ + Ll′ + Mq′ − Nκ′ + Sπ′ + Tω′) p 
+ (Eq′ + Kl′ + Mp′ + Oπ′ − Pκ′ + Uω′) q 
+ (Fl′ + Kq + Lp′ + Vω′ − Qπ′ + Rπ′) l 

− (− Ak′ + Hw′ + Ip′ + Np′ + Pq′ + Ql′) κ 
+ (Bπ′ + Gω′ − Iκ′ + Oq′ + Rl′ + Sp′) π 

+ (Cω′ + Gπ′ − Hκ′ + Vl′ + Tp′ + Uq′) ω = 0   (145) 
 
for the equation of that complex.  Thus, one has: 
 

r′ : s′ : h′ : − σ′ : ρ′ : η′ = − κ′ : π′ : ω′ : p′ : q′ : l′. 
 

 
 302.  In particular, if we set: 
 s′, h′, ρ′, σ′, η′, 
 r′, h′, ρ′, σ′, η′, 
 r′, s′, ρ′, σ′, η′ 
 
equal to zero, respectively, in the general equation of the polar complex (144) then the 
three resulting equations: 

0,

0,

0

Ar Hh Is N P Q

Bs Gh Ir O R S

Ch Gs Hr V T U

σ ρ η
ρ η σ

η σ ρ

+ + − + + = 
+ + + + − = 
+ + + − + = 

   (146) 

 
will represent the polar complexes of the three coordinate axes OX, OY, OZ, resp.  We 
can write these equations in the following forms: 
 

2

r

δ
δ
Ω

 = 0, 2

s

δ
δ
Ω

= 0, 2

h

δ
δ
Ω

= 0,   (146b) 

 
resp., which will be deduced immediately when we go back to equation (144). 
 If we take one of the three straight lines that lie at infinity in the YZ, XZ, XY planes to 
be the given one then: 
 r′, s′, h′, ρ′, η′, 
 r′, s′, h′, σ′, η′, 
 r′, s′, h′, σ′, ρ′ 
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will vanish, respectively.  We then get: 
 

0,

0,

0

D L M Nr Ss Th

E K M Os Pr Uh

F K L Vh Qr Rs

σ η ρ
ρ η σ
η ρ σ

− + + + + + = 
+ − + + + = 
+ − + + + = 

  (147) 

 
for the polar complexes of these three lines, or, when written in another form: 
 

2δ
δσ
Ω

 = 0, 2δ
δρ
Ω

 = 0, 2δ
δη
Ω

 = 0,   (148) 

resp. 
 
 
 303.  If we set r, ρ, and as a result, η, as well, equal to zero in the general equation 
(V) for the second-degree complex, which we would like to write in the following way: 
 

Ω2 = 0 
then we will find: 

Bs2 + Ch2 + Dσ2 + 2Gsh − 2sσ – 2Thσ ≡ 0
2Ω  = 0  (149) 

 
for the determination of the complex curve in YZ.  We will find: 
 

0
21

2

d

dh

Ω
 ≡ Ch + Gs – Tσ = 0    (150) 

 
for the equation of the pole of this complex curve relative to OZ, in a known way.  On the 
other hand, the equation of the polar complex to the OZ axis will be: 
 

21

2

d

dh

Ω
 ≡ Ch + Gs – Tσ + Uρ + Vη = 0. 

 
r, ρ, and η, are, in turn, equal to zero for all lines of the polar complex that lie in YZ, so 
the following equation: 

Ch + Gs – Tσ = 0     (150) 
 
will represent the point at which these lines intersect. 
 The pole of the OZ axis relative to the complex curve in YZ coincides with the points 
at which all lines of the polar complex that lie in YZ intersect.  This point of intersection 
describes a straight line when the YZ plane rotates around OZ.  This line is then, at the 
same time, the geometric locus of the pole of OZ relative to the complex curves whose 
planes go through OZ.  We then obtain the following theorem: 
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 An arbitrary straight line corresponds to a meridian surface in the complex.  The 
polar of this meridian surface coincides with the straight line that we have referred to as 
the polar of the given line relative to the complex (*). 
 
 In particular, a diameter of the complex will be the polar of the straight line at infinity 
in the parallel planes that are associated with it. 
 If we reduce the proof of the foregoing theorem to its simplest form then it will rest 
upon the fact that it is all the same whether we first set r, ρ, and η equal to zero in the 
function Ω2 and then differentiate with respect to h or we first differentiate with respect 
to h and then set r, ρ, and η equal to zero after the differentiation.  However, that is 
obvious. 
 
 
 304.  The foregoing gives a geometric definition for the congruence of the polar 
complex that is associated with a given straight line. 
 A complex curve of class two lies in an arbitrary plane that is drawn through the 
given straight line.  It will be cut by the given straight line in two points, in general.  The 
tangents to the complex curve at these points will belong to the congruence in question. 
 An arbitrary point of the given straight line is the midpoint of a complex cone of 
order two.  Two tangential planes to it can be drawn through the given straight line, in 
general.  The two sides along which it will be contacted by those two planes are likewise 
lines of the congruence. 
 
 The congruence that is determined by the polar complex of a given straight line 
belongs to the lines of the given complex that cut a next line of that complex that lies with 
it in the plane that is drawn through the given straight line at a point of the given line. 
 
 When the given straight line is itself a line of the complex, it will be contacted by all 
complex curves that lie in the planes that are drawn through it, and will be a common side 
of all complex cones whose vertices are chosen to lie along it.  The polar will then 
coincide with the given straight line.  All lines that lie in a plane that is drawn through the 
given straight line and go through the contact point of the relevant complex curve with 
the given straight line, or – what amounts to the same thing – all lines that go through a 
point of the given straight line and are contained in the plane by which the relevant 
complex cone is contacted by the given straight line, will belong to the congruence that is 
determined by the tangential complex to the given straight line. 
 The congruence in question has all lines that are the next line to the given one and cut 
it in common with the given second-degree complex. 
 
 
 305.  When the given straight line is a singular line of the complex, the congruence 
that is determined by the tangential complex will subsume all lines that lie in a certain 
plane that is drawn through the given straight line, as well as all such lines that go 

                                                
 (*) This theorem can be carried over immediately from complexes of second degree to complexes of 
arbitrary degree. 
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through a well-defined point of it.  We have called the plane and the point the associated 
singular plane and the associated singular point, respectively. 
 A singular line of the complex will thus be contacted at a fixed point by all complex 
curves that lie in the planes that go through it, and all complex cones whose midpoints 
were chosen to lie along a singular line of the complex will contact a fixed plane that goes 
through it. 
 We can confirm this result analytically.  If we demand that the OX coordinate axis 
must be a singular line of the given complex then if we set the variables: 
 

s, h, σ, ρ, η 
equal to zero in the two equations: 

Ω2 = 0,  Φ = 0, 
 
we will obtain the following two relations between the constants of the given complex 
equation: 

A = 0,  PI + HQ = 0.    (151) 
 
We have determined the contact point of OX with the complex curve in an arbitrary plane 
that goes through it by means of the following equation (no. 191): 
 

x0 = 
tan

tan

I H

Q P

ϕ
ϕ

+
−

,     (152) 

 
under the assumption that OX is a line of the given complex, so the constant A would 
have the value zero.  ϕ denotes the angle between the arbitrarily-chosen plane and the XY 
coordinate plane, and x0 denotes the distance from the contact point to the origin of the 
coordinates.  That distance will be constant, as long as the second of the conditions 
equations (151) is fulfilled. 
 Moreover, we have found that: 
 

tan ϕ0 = 
Px H

Qx I

+
−

,     (153) 

 
under the same assumption that was used in number 192 for the determination of the 
tangential plane to an arbitrary complex cone that is laid through OX and has its vertex on 
OX, and also that the latter expression will take on a constant value when the second of 
equations (151) is fulfilled. 
 
 
 306.  When the second of equations (151): 
 

PI + HQ = 0 
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is fulfilled, equation (64) of number 191, by which, we determined the planes that go 
through OX for which the complex curve will resolve into a system of two points, will 
possess the double root: 

tan ϕ = − 
H

I
 = 

P

Q
.     (154) 

 
 This value of tan ϕ will correspondingly resolve the complex curve into a system of 
two points that both lie along the OX axis.  The value of x0 (152) that determined the 
contact point of the complex curve with OX will then take the form of 0 / 0 for the value 
(154) of tan ϕ. 
 Under the same assumption, equation (67) in number 192, by which we determined 
the point on the OX axis for which the complex cone would resolve into a system of two 
planes, will have the double root: 

x = − 
H

P
 = 

I

Q
.    (155) 

 
This value of x will correspondingly resolve the complex cone into a system of two 
planes that intersect along OX.  The associated value of tan ϕ0 (153) will then take the 
form 0 / 0. 
 This gives the following geometric definition of the singular lines, points, and planes 
of a second-degree complex. 
 The connecting line of two such points into which a complex curve will resolve for 
certain position of its plane, or – what amounts to the same thing – the line of intersection 
of two such planes into which a complex cone decomposes for a special choice of its 
midpoint, is a singular line of the complex.  The planes and points for which the complex 
curves and complex cones, respectively, are specialized in the manner in question are 
singular planes and singular points of the complex, respectively. 
 In particular, the eight lines of a complex surface that we have referred to as its 
singular rays and singular axes (no. 187, 189), and the four singular planes and four 
singular points of a complex surface (no. 215), are singular lines, planes, and points of 
the complex, respectively. 
 In the previous paragraphs (no. 275-283), we have taken the plane at infinity to be a 
singular plane of the complex and chosen the singular line that corresponds to it to be 
parallel to YZ.  In agreement with the foregoing, we found that the complex curves are 
parabolas in all planes that are parallel to YZ whose diameter direction is the same (no. 
281).  The common direction of the diameters of all parabolas points to the singular point 
that is associated with the singular line at infinity in YZ. 
 
 
 307.  If: 

A, H, I, P, Q 
 
vanish simultaneously then that relation will specialize the singular line that coincides 
with OX to the complex.  The values of x0 (152) and tan ϕ0 (153) then take the form 0 / 0, 
independently of the choice of variables tan ϕ and x.  Corresponding to that, the complex 
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curve an arbitrary plane that goes through OX will resolve into a system of two points 
that lie along OX, and the complex cone whose vertex is an arbitrary point of OX will 
decompose into two planes that intersect along OX. 
 With this constant determination, we will obtain the following equation: 
 

σ = 0 
 
for the equation of the polar complex of the OX axis, which represents all lines that cut 
the OX axis.  The OX is a double line of the given complex (cf., no. 300).  A double line 
is then a singular line whose relationship to the complex has been specialized in such a 
way that any point that is chosen along it will be a singular point and any plane that goes 
through it will be a singular plane of the complex. 
 In numbers 284-286, we chose the line at infinity in YZ to be a double line of the 
complex, and correspondingly found that all complex cylinders whose sides are parallel 
to the YZ plane will decompose into systems of two planes that are parallel to YZ. 
 In general, a given second-degree complex will contain no double line.  That would 
require a simple specialization of it. 
 
 
 308.  We would, in turn, like to write the equation of the given second-degree 
complex in the following form: 

Ω = 0.      (156) 
We can add the identity: 

− rσ + sρ + hη = 0,     (157) 
 
when it is multiplied by an arbitrary factor, to that equation without changing the 
complex itself.  We will then obtain: 
 

Ω + λ (− rσ + sρ + hη) = 0.    (158) 
 
Corresponding to that, the equation of the polar complex that is associated with a given 
straight line (r′, s′, h′, − σ′, ρ′, η′) will become the following one: 
 

r s h r
r s h

δ δ δ δλσ λρ λη λ σ
δ δ δ δσ

 Ω   Ω   Ω   Ω        ′ ′ ′ ′− + + + + − − +              
              

 

 

+ s h
δ δλ ρ λ η
δρ δη

      Ω Ω′ ′+ + +      
      

 = 0,   (159) 

 
which can also be written in the other form: 
 

r s h
r s h

δ δ δλσ λρ λη
δ δ δ
Ω Ω Ω     ′ ′ ′− + + + +     
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− r s h
δ δ δλ σ λ ρ λ η
δσ δρ δη

   Ω Ω Ω  ′ ′ ′+ + + + +     
     

 = 0.  (160) 

 
If we assign a fixed value to λ then this double form of the same equation will be linked, 
in the same sense, with a theory of reciprocity that Gergonne first developed for plane 
curves and surfaces of second order (*).  We can summarize it in the following words: 
 
 Any straight line that belongs to the polar complex of a given straight line will 
correspond to a polar complex that, conversely, the given straight line belongs to. 
 
 The totality of all straight lines in space, along with their polar complexes, defines a 
polar system.  We can regard the foregoing two equations (159) and (160) – which are 
identical to each other − as its equation, when we consider r′, s′, h′, − σ′, ρ′, η′ to be 
variable, along with r, s, h, − σ, ρ, η, but independently of them.  Corresponding to 
another choice of the undetermined constant λ, we would obtain another polar system 
from the given second-degree complex that would have the same relationship to the 
complex as the originally-chosen one.  Whereas a second-degree complex depends upon 
nineteen constants, each of the polar systems that are associated with it will be 
determined by twenty constants. 
 
 
 309.  In order to express the idea that the given straight line itself belongs to the polar 
complex that is associated with it, independently of the special values that we would like 
to assign to the constant λ, if we recall equation (157) then we will get the following 
condition: 

r s
r s

δ δ
δ δ
Ω Ω   ′ ′+      

+ … = 0.    (161) 

 
 The lines that belong to their own associated polar system are the same in all polar 
systems and coincide with the lines of the given second-degree complex. 
 
 If the polar complex of a given straight line in a polar system, for whose equation we 
would like to consider (159), should be a complex of the special kind whose lines all cut 
a fixed straight line then, from the discussion in number 45, when we set: 
 

(Φ) ≡ − 
r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη

   Ω Ω Ω Ω Ω Ω       ⋅ + +          
          

, 

 
as in number 299, if we recall equation (157) then we will get: 
 

(Φ) + λ (Ω) = 0.     (162) 
 

                                                
 (*) Geometrie des Raumes, no. 258.  
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This equation will be fulfilled independently of the special value that we gave to λ as 
long as the two equations: 

(Φ) = 0, (Ω) = 0 
 
are satisfied.  These are the same equations by which we determined the singular lines of 
the given complex in number 300.  In agreement with what we said before, we will then 
get the theorem that the polar complexes of the singular lines of the given complexes in 
all associated polar systems are complexes of the special kind in which all lines will cut a 
fixed straight line. 
 
 
 310.  In what follows, we would like to set λ equal to zero, with no loss of generality, 
and subject the polar system that is determined by that value of λ to a closer 
consideration.  The equation of the polar system will then be written in the double form: 
 

r s h
r s h

δ δ δ δ δ δσ ρ η
δ δ δ δσ δρ δη

   Ω Ω Ω Ω Ω Ω       + + − − + +           
           

 = 0  (163) 

and 

r s h
r s h

δ δ δ δ δ δσ ρ η
δ δ δ δσ δρ δη
Ω Ω Ω Ω Ω Ω′ ′ ′ ′ ′ ′⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = 0.  (164) 

 
 Let a straight line be given.  It will correspond to a polar complex in the polar system.  
Any line of the latter will belong to a polar complex that contains the given straight line.  
However, in general, the polar complexes that correspond to the lines of an arbitrarily-
chosen line complex will have no straight lines in common with each other.  That would 
require a special position of it with respect to the given polar system. 
 The polar complexes that correspond to two given straight lines determine a linear 
congruence.  The two given straight lines will belong to each of the polar complexes that 
correspond to the lines of the congruence.  Conversely, the polar complexes of all lines of 
an arbitrarily-chosen linear congruence will have two fixed lines in common.  Four lines 
of the congruence will then determine two straight lines by their polar complexes.  The 
polar complexes of these two straight lines will have four lines of the given congruence 
in common, and thus all of them. 
 If three straight lines are given then the polar complex will determine a hyperboloid 
by way of the lines of one of its generators.  An arbitrary line of that generator − which 
we would like to refer to as the first one − will possess a polar complex that the three 
given straight lines will belong to.  As lines of the first generator, the three given lines 
will determine a second hyperboloid.  The two hyperboloids mutually correspond to each 
other.  The lines of the first generator of the second hyperboloid will belong to the polar 
complex of the lines of the first generator of the first hyperboloid, and likewise the lines 
of the first generator of the first hyperboloid will belong to the polar complex of the lines 
of the first generator of the second hyperboloid.  The second generator of each of the two 
hyperboloids will thus not come under consideration any longer.  Correspondingly, each 
generator of a given hyperboloid will be associated with a second one. 
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 Since we chose the three given straight lines especially so that they would intersect at 
a point or lie in a plane, they will determine all lines that go through a fixed point or are 
contained in a fixed plane.  Thus, in the polar system, every point and every plane will 
then correspond to one generator of a hyperboloid.  The polar complex that belongs to an 
arbitrary line of that generator will be of the special kind that all of its lines cut a fixed 
straight line.  That fixed straight line will go through the given point or lie in the given 
plane, respectively.  The lines of the one generator of a hyperboloid will belong to the 
complex that is determined by equation (162).  The hyperboloid itself is not specialized, 
only its position in respect to the polar system. 
 If we take the three intersecting straight lines to be the three coordinate axes OX, OY, 
OZ, in particular, or the three straight lines at infinity in the coordinate planes YZ, XZ, XY 
then we will get the following three equations for the determination of the hyperboloid 
that is associated with the coordinate origin or the plane at infinity, respectively: 
 

r

δ
δ
Ω

 = 0, 
s

δ
δ
Ω

 = 0, 
h

δ
δ
Ω

 = 0,   (165) 

or 
δ
δσ
Ω

 = 0, 
δ
δρ
Ω

 = 0, 
δ
δη
Ω

 = 0.   (165) 

Equation (162): 

Φ ≡ − 
r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη
Ω Ω Ω Ω Ω Ω⋅ + ⋅ + ⋅ = 0 

 
will be fulfilled with both assumptions, and it represents the straight lines that correspond 
to polar complexes whose lines all intersect a fixed straight line in the given polar system 
(λ = 0). 
 
 

§ 5. 
 

Surfaces of order and class four that are defined by the singular points of complexes 
and enveloped by their singular planes. 

 
 311.  We have a point whose complex cone resolves into a system of two planes – 
viz., a singular point – and a plane whose complex curve degenerates into a system of 
two points – viz., a singular plane – of the complex. 
 The line of intersection of the two planes into which the complex cone, whose vertex 
is a singular point, has resolved, as well as the connecting line of the two points into 
which the complex curve, whose plane is a singular plane, decomposes, are singular lines 
of the complex.  In that sense, any singular line will correspond to a singular point and a 
singular plane.  All complex curves that lie in planes that are drawn through a singular 
line will contact that line at the corresponding singular point, and all complex cones 
whose vertices are assumed to be on a singular line will contact the corresponding 
singular plane along it.  We would like to refer to the singular point and singular plane 
that correspond to a singular line as associated with each other. 
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 The singular lines of a given complex define a congruence of degree four.  It is 
determined by the two-parameter group of two complexes of degree two, one of which is 
given, and the other of which will be obtained when one replaces the line coordinates in 
the second-degree condition equation that the line coordinates must satisfy with the 
partial differential quotients of the equation of the given complex with respect to them.  
In general, four of the tangents to a given complex curve and four of the lines (Seiten) of 
a given complex cone will be singular lines.  In particular, if the complex curve resolves 
into a system of two points or the complex cone resolves into a system of two planes then 
two of the four singular lines will coalesce into the connecting line of the two points or 
the line of intersection of the two planes. 
 
 
 312.  When the complex curve in a given plane is specialized in such a way that it 
resolves into two points that coalesce into one, we would like to call the plane a double 
plane of the complex.  We refer to a point that is the center of a complex cone that 
degenerates into a system of two coincident planes as a double point.  No point that is 
enveloped by the lines of the complex in a double plane can be, in turn, a double point, 
any more than the planes that are defined by the lines of the complex that go through a 
double point can be double planes. 
 Any line of the given complex that goes through a double plane or a double point is a 
singular line of it.  The double planes and double points are those planes and points that 
contain infinitely many lines of the congruence of singular lines. 
 Any singular line that lies in a double plane corresponds to it as a singular plane.  Any 
singular point that corresponds to each singular line, in turn, still does not coincide with 
the singular point at which they all intersect.  Moreover, any singular line corresponds to 
a second singular point that is generally different from the first one.  If the singular line in 
the double plane rotates around the fixed point that is enveloped in it by the lines of the 
complex then the corresponding singular point will describe a second-order curve that 
goes through the fixed point.  Whereas a singular point is generally associated with a 
singular point, a double plane will correspond to infinitely many associated singular 
points that lie on a second-order curve. 
 Any singular line that goes through a double point will correspond to it as a singular 
point.  However, any of these singular lines will, in general, correspond to a singular 
plane that does not coincide with the fixed plane that is defined by the lines of the 
complex that go through the double point.  All of these planes envelop a conic surface of 
class two that contacts the fixed plane, in particular.  Whereas a singular point is, in 
general associated with one singular plane, a double point will correspond to infinitely 
many associated singular planes that envelop a conic surface of class two. 
 We derive the analytical statements of the foregoing geometric results from numbers 
289 and 290, in which the plane infinity is taken to be a double plane of the complex. 
 
 
 313.  A singular line can be specialized in such a way that any plane that goes through 
it is a singular plane and that any point on it can be assumed to be a singular point.  We 
have called such a line a “double line” of the complex (no. 307).  However, one arrives at 
a specialization of the given complex when one requires that it should contain a double 
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line.  We shall exclude the possibility that the given complex is specialized in the manner 
that is necessary for this to be true from further consideration. 
 There can be distinguished points or planes in a given complex with the property that 
all of the straight lines that go through them (all of the ones that lie in them, respectively) 
are lines of the complex.  Any plane that goes through the plane will then be a singular 
plane and any point that is taken from the plane will be a singular point.  In number 292, 
we let such a plane coincide with the plane at infinity.  From the discussion in that 
number, one requires a six-fold specialization in order for the plane at infinity for a given 
complex to be of this special kind.  In general, then, there will be no planes and points of 
that kind.  In the sequel, we shall omit the possibility that the given complex has been 
correspondingly specialized. 
 
 
 314.  In order for a given cone of order two to resolve into a system of two planes or 
for a given curve of class two to resolve into a system of two points, a condition equation 
must be fulfilled.  A surface will then be defined by the singular points of a complex, and 
a surface will be enveloped by its singular planes.  By contrast, three conditions will be 
fulfilled when the two planes into which a complex cone (the two points into which a 
complex curve, resp.) resolves must coincide.  There are then an infinite number of 
double points and double planes. 
 In the sixth and seventh paragraphs of the previous chapter, we proved that four 
singular points will lie on the OX coordinate axis, which we took to be the double line of 
a complex surface and was assumed to be completely arbitrary, and that four singular 
planes will go through it (cf., no. 215).  We thus immediately obtain the following 
theorem: 
 
 The surface that is defined by the singular points of a complex of degree two has 
order four. 
 The surface that is enveloped by the singular planes of a complex has class four. 
 
 
 315.  In order to obtain the equation for the surface of singular points in point 
coordinates, we start with equation (II) of the second-degree complex in ray coordinates.  
We have to express the idea that the cone that equation of the complex represents will 
resolve into a system of two planes as soon as we assign fixed values to the values x, y, z.  
Of the six ray coordinates: 
 

(x – x′),    (y – y′),    (z – z′),    (yz′ – y′z),    (x′z – xz′),    (xy′ – x′y), 
 
we can write the last three in the following way: 
 

((y – y′) z – y (z – z′)),  (x (z – z′) – (x – x′) z),  ((x – x′) y – x (y – y′)). 
 

In that way, equation (II) of the complex will assume the following form: 
 



§ 5.  Surfaces of order and class four. 275 

 

(167)  
2 2

2

( ) 2 ( )( ) ( )

2 ( )( ) 2 ( )( ) ( ) 0,

a x x b x x y y c y y

d x x z z e y y z z f z z

′ ′ ′ ′− + − − + −
′ ′ ′ ′ ′+ − − + − − + − =

 

 
where a, b, c, d, e, f are functions of degree two in x, y, z.  In particular, we find that: 
 

(168)  

2 2

2

2 2

2

2

2 2

2 2 2 ,

( ) ,

2 2 2 ,

,

,

2 2 2 .

a A Ez Fy Kyz Pz Qy

b I Fxy Kxz Lyz Mz N O z Qx Ry

c B Dz Fx Lxz Rx Sz

d H Exz Kxy Ly Myz Ny Px Uz

e G Dyz Kx Lxy Mxz Ox Sy Tz

f C Dy Ex Mxy Ty Ux

 = + + − − +
 = − + + − + − − +
 = + + − − +


= − + − + − + −
 = − − + + + − +


= + + − − +

 

 
 In order to express the idea that the cone that is represented by equation (167) 
resolves into a system of two planes, we get the following condition from number 186: 
 
(169)    acf + 2bde – ae2 – cd2 – fb2 = 0. 
 
We will obtain the desired equation for the surface when we substitute the values of a, b, 
c, d, e, f from equation (168) into this equation; it will obviously be of degree six.  When 
one actually carries out the suggested multiplications in (169), the terms of order five and 
six will then drop out. 
 
 
 316.  We obtain the equation of the surface that is enveloped by the singular planes of 
the complex in plane coordinates when we exchange: 
 

x, y, z with t, u, v 
 
in the present equations (168), using the exchange rules of number 153, and reciprocally 
exchange: 

A, B, C, G, H, I, P, Q, R 
with 

D, E, F, K, L, M, S, T, U, 
 
respectively.  The constants: 

N, O 
 
will remain unchanged by this.  If we write a′ in place of a, b′ in place of b, etc., after the 
exchange then we will get: 
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(170)  

2 2

2

2 2

2

2

2 2

2 2 2 ,

( ) ,

2 2 2 ,

,

,

2 2 2 ,

a D Bv Cu Guv Sv Tu

b M Ctu Gtv Huv Iv N O v Tt Uu

c E Av Ct Htv Ut Pv

d L Btv Gtu Hu Iuv Nu St Rv

e K Auv Gt Htu Itv Ot Pu Qv

f F Au Bt Itu Qu Rt

′ = + + − − +
 ′ = − + + − + − − +
 ′ = + + − − +
 ′ = − + − + − + −
 ′ = − − + + + − +


′ = + + − − +

 

 
and we will get the equation of the surface in the following form: 
 
(171)   a′ c′ f′ + 2b′ d′ e′ − a′ e′2 − c′ d′2 – f b′2 = 0. 
 
The analogous statement from the previous number regarding the reduction of the present 
equation, which is clearly of degree six in t, u, v, to degree four in those variables is still 
valid. 
 If we make the expressions (170) for a′, b′, c′, d′, e′, f′ homogeneous by the 
introduction of a fourth variable w, and then substitute into equation (171) then it will 
generally be of degree six, and will reduce to degree four only when a factor of w2 has 
been separated from it.  When interpreted geometrically, equation (171) says not so much 
that the complex curve in a given plane t, u, v, w resolves into a system of two points as 
much as that those cones of class two that can be drawn through the complex curve in 
question with the coordinate origin as their centers will decompose into a system of two 
enveloped axes.  That will then be true for any plane that goes through the coordinate 
origin, and therefore, when the factor w2 represents the coordinate origin when it is set to 
zero. 
 
 
 317.  An arbitrarily-chosen straight line cuts the surface of the singular points at four 
points, in general, and one can, in general, draw four tangential planes to the surface of 
singular planes.  If the chosen straight line is a singular line of the complex, in particular, 
then two of the four singular points will coalesce into the corresponding point and two of 
the four singular planes will coalesce into the corresponding plane (cf., no. 306).  A 
singular line will then contact the surface of singular points, as well as the surface of 
singular planes.  The contact point with the former surface will be the corresponding 
singular point, while the contact plane with the latter surface will be the corresponding 
singular plane. 
 For singular lines that lie in a double plane of the complex, two of the four 
intersection points with the surface of singular points will coincide pair-wise.  Such lines 
will then be double tangents of the surface of singular points, in the sense that they 
contact two distinct points of this surface. 
 Likewise, two of the four tangential planes that can generally be drawn through a 
given straight line on the surface of singular planes will coalesce pair-wise into one, as 
long as the given straight line is one of the singular lines that goes through a double point 
of the complex.  These lines will then be double tangents to the surface of singular 
planes, in the sense that they will contact that surface at two distinct planes. 
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 318.  The four singular lines of the complex that lie in an arbitrary plane contact the 
curve in that plane that is enveloped by lines of the complex in the singular points that 
correspond to them.  The same straight lines are contained in the fourth-order surface of 
singular points at the same points.  The fourth-order intersection curve of this surface 
with an arbitrary plane then contacts the complex curve that lies in this plane at four 
points.  Of the eight intersection points that the two curves must have, in any event, two 
of them will coalesce into one contact point. 
 Likewise, those complex cones that have an arbitrary point of space for their vertex 
will contact the cone of class four that can be drawn from the arbitrarily-chosen point to 
the surface of class four that is enveloped by the singular planes at four straight lines, 
which are the four singular lines that go through them.  The common tangential planes to 
the two cones along these four straight lines will be the corresponding singular planes. 
 We would like to choose a singular plane to be an arbitrarily-chosen plane, in 
particular.  The locus in it that is enveloped by lines of the complex will be, as before, 
contacted by the intersection curve of the singular planes with the surface of singular 
points at four points; the contact points of the singular lines will be the corresponding 
singular lines, respectively.  For a singular plane, two of the four singular lines that will 
generally lie in a given plane will coalesce into the singular line that corresponds to it.  
The other two will each go through one of the two points with which the complex curve 
resolved in arbitrary directions.  Two of the four contact points of the intersection curve 
of the surface of singular points with the locus that is enveloped by the lines of the 
complex will then coalesce into the two points into which the complex curve has resolved 
in the singular planes, while the other two will coincide with the singular points that are 
associated with the given singular planes. 
 
 The fourth-order intersection curve of the surface of singular points with an arbitrary 
singular plane has a double point at the singular points that are associated with that 
plane. 
 
 In the same way, we can prove the theorem: 
 
 The conic surface of class four that can be drawn from an arbitrary singular point to 
the surface of singular planes has the singular plane that is associated with that point for 
its double plane. 
 
 
 319.  We derive the analytic statement of these geometric results from equations 
(169) and (171), which represent the surface of singular points and the surface of singular 
planes, respectively, in point and plane coordinates, respectively.  If we assume that the 
XZ-plane is a singular plane and that the corresponding singular line coincides with OX, 
while the associated singular point coincides with O, then we will get the following 
determination of the constants from numbers 305 and 306: 
 

A = 0, H = 0, I = 0, P = 0. 
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In that way, when we let all of the y′ in them vanish, the expressions a, b, c, d, e, f in 
(168) will take on the following values: 
 

(172)  

2

2

2 2

2

2

,

( ) ,

2 2 2 ,

,

,

2 .

a Ez

b Kxz Mz N O z Qx

c B Dz Fx Lxz Rx Sz

d Exz Uz

e G Kx Mxz Ox Tz

f C Ex Ux

 =
 = − + − −
 = + + − − +


= − −
 = − + + +


= + +

 

 
If we neglect x and z in them compared to constants, as well as the second powers of x 
and z compared to the first, then we will obtain: 
 

(173)  

2,

( ) ,

,

,

,

.

a Ez

b N O z Qx

c B

d Uz

e G

f C

 =
 = − −
 =


= −
 =


=

 

 
When we substitute these values into equation (169): 
 

acf + 2bde – ae2 – cd2 – fb2 = 0, 
 
we will find the following equation: 
 
(174)  2 2 2 2 2 22 (( ) ) (( ) )BCEz GUz N O z Qx EG z BU z C N O z Qx− − − − − − − − = 0 
 
for the representation of singular points that lie in the singular plane XZ in the vicinity of 
the associated singular point O.  This equation includes only terms of second degree in x 
and z.  The intersection curve of the surface of singular points with the XZ-plane then 
possesses a double point at the coordinate origin, in agreement with the concluding 
remarks of the previous number. 
 We may further remark that this double point will be a point of regression when then 
constant Q vanishes, in addition to the constants A, H, I, P.  From the discussions in 
number 307, the OX-axis will be a double line of the complex. 
 In the same way, we can prove that the cone of class four that can be drawn from an 
arbitrary singular point to the surface of singular planes has the singular plane that is 
associated with the chosen singular point for a double plane. 
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 320.  From the foregoing, any singular plane is a tangential plane of the fourth-order 
surface that is defined by the singular points; its contact point is the associated singular 
point.  Conversely, any singular point is a point of the surface of class four that is 
enveloped by the singular planes.  The tangential plane to it is the associated singular 
plane. 
 
 The fourth-order surface that is defined by the singular points of the complex and the 
surface of class four that is enveloped by its singular planes are identical. 
 
 Any singular line of the complex contacts the fourth-order surface of singular points 
and the surface of class four of singular planes.  The contact point with the surface is the 
corresponding singular point, and the contact plane to it is the corresponding singular 
plane.  The two remaining intersection points of the singular line with the surface are 
those two points with which the complex curve resolves in the corresponding singular 
planes.  Likewise, the two remaining tangential planes that can be drawn through the 
singular lines to the surface are those two planes with which the complex cone whose 
vertex is the associated point decomposes.  The direction of the one singular plane and 
the singular line that corresponds to its associated singular point are still not given for the 
surfaces of singular points and singular planes, resp.  The surface depends upon fewer 
arbitrary constants then the second-degree complex that determines it. 
 
 
 321.  The surface that is defined by the singular points of the complex and the one 
that is enveloped by its singular planes are of order four and class four, respectively.  It 
will then have sixteen double points and sixteen double planes, in general.  The 
possibility that the surface possesses further singularities − in particular, a double ray and 
a double axis that coincides with it − by which, the number of double points and double 
planes will be reduced, remains excluded as long as the given complex is not itself 
specialized. 
 The tangential planes to the surface at a double point on it envelop a cone of class two 
and the contact points of it with its double planes will define a curve of order two.  In 
number 312, we proved that the singular planes that go through a double point of the 
complex also envelop a cone of class two and that the singular points that lie in a double 
plane of the complex define a curve of order two. 
 
 The double points and double planes of the complex coincide with the double points 
and double planes of the surfaces that are defined by the singular points and enveloped 
by the singular planes, respectively. 
 
 From this: 
 
 In any second-degree complex there are, in general, sixteen double points and sixteen 
double planes. 
 
 Which point in a double plane is enveloped by the lines of the complex and which 
plane is defined at a double point by the lines of the complex are still not determined for 



280 Chapter Two, Part II: Discussion of the general equation  of a second-degree complex. 

 

the surface of singular points and the surface of singular planes, respectively.  The point 
can be an arbitrary point of the contact curve, while the plane can be an arbitrary plane of 
the contact cone. 
 
 
 322.  We return to the equation for the surface of singular points and planes in plane 
coordinates (171): 

a′ c′ f′ + 2b′ d′ e′ – a′ e′2 – c′ d′ 2 – f′ b′ 2 = 0. 
 
We would like make this homogeneous through the introduction of a fourth variable w.  It 
will then come to pass that we will make the expressions (170) that were found for a′, b′, 
c′, d′, e′, f′  homogeneous by the introduction of these variables, and neglect the factor w2 
that will arise after replacing these expressions in equation (171). 
 We would like to write the equation for the surface in the following way: 
 
(175)     f = 0. 
 
According to number 296, we will then obtain the following equation for the pole of a 
given plane (t′, u′, v′, w′) relative to this surface: 
 

f f f f
t u v w

t u v w

δ δ δ δ
δ δ δ δ

       + + +       
       

 = 0. 

 
The rectangular coordinates of the poles are then: 
 

(176)   x′ = 

f

t
f

w

δ
δ
δ
δ

 
 
 

 
 
 

, y′ = 

f

u
f

w

δ
δ
δ
δ

 
 
 

 
 
 

, z′ = 

f

v
f

w

δ
δ
δ
δ

 
 
 

 
 
 

. 

 
If we substitute the expressions a′, b′, c′, d′, e′, f′, which have been made homogeneous, 
in equation (171) then we will obtain the equation: 
 
(177)     F = 0, 
 
and from the foregoing, one will have: 
 
(178)     F = w2 f. 
 
It is then permissible to replace the differential quotients of the function f with respect to 
t, u, v, w in formulas (176) with the following functions: 
 

F

t

δ
δ

 
 
 

, 
F

u

δ
δ

 
 
 

, 
F

v

δ
δ

 
 
 

, 
2F F

w w

δ
δ
 − 
 

, 
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respectively. 
 
 
 323.  We would like to choose the plane at infinity, in particular.  For the sake of 
simplicity, we set − as is always permissible – the constants K, L, M equal to zero in the 
equation of the given complex.  We then obtain the following values for the expressions 
a′, b′, c′, d′, e′, f′, which have been made homogeneous: 
 

(179)  

2 2 2

2

2 2 2

2

2

2 2 2

2 2 2 ,

( ) ,

2 2 2 ,

,

,

2 2 2 .

a Dw Bv Cu Guv Svw Tuw

b Ctu Gtv Huv Iv N O vw Ttw Uuw

c Ew Av Ct Htv Utw Pvw

d Btv Gtu Hu Iuv Nuw Stw Rvw

e Auv Gt Htu Itv Otw Puw Qvw

f Fw Au Bt Itu Quw Rtw

′ = + + − − +
 ′ = − + + − + − − −
 ′ = + + − − +
 ′ = − + − + − + −
 ′ = − − + + + − +


′ = + + − − +

 

 
If we substitute the coordinates of the plane at infinity: 
 

t′ = 0, u′ = 0, v′ = 0, w′ = w′ 
 
in these expressions and their differential quotients with respect to t, u, v, w then we will 
get: 
(180)  a′ = D w′2,    b′ = 0,    c′ = E w′2,    d′ = 0,    e′ = 0,    f′ = F w′2, 
and 

(181)  

0, 2 , 2 ,

2 , 0, 2 ,

2 , 2 , 0,

2 , 2 , 2 .

a c f
Uw Rw

t t t

a c f
Tw Qw

u u u

a c f
Sw Pw

v v v

a c f
Dw Ew Fw

w w w

δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ
δ δ δ

′ ′ ′      ′ ′= = − =     
     

′ ′ ′     ′ ′= = = −     
     

 ′ ′ ′     ′ ′= − = =     
     

′ ′ ′     ′ ′ ′= = =     
     













 

 
It is unnecessary for what follows to write down the differential quotients of b′, d′, e′. 
 From the foregoing equations, the four expressions: 
 

F

t

δ
δ

 
 
 

, 
F

u

δ
δ

 
 
 

, 
F

v

δ
δ

 
 
 

, 2
F F

w w

δ
δ
 − 
 

, 

 
where: 

F ≡ a′ c′ f′ + 2 b′ d′ e′ – a′ e′ 2 – c′ d′2 – f′ b′ 2 
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in which, just the one term: 
a′ c′ f′ 

 
comes under consideration for the plane at infinity, will take on the following values: 
 

(182)  

5

5

5

5 5 5

2 ( ),

2 ( ),

2 ( ),

2 6 2 4 .

F
Dw ER FU

t

F
Ew FT DQ

u

F
Fw DP ES

v

F F
DEFw DEFw DEFw

w w

δ
δ
δ
δ
δ
δ
δ
δ

   ′= − 
 

   ′= −  
  


  ′= −   


  ′ ′ ′− = − =   

 

 
The coordinates of the pole of the plane at infinity with respect to the surface – or, as we 
can say, the coordinates of the center of the surface – will then become: 
 

(183)  x′ = 
2

ER FU

EF

−
, y′ = −

2

DQ FT

DF

−
, z′ = 

2

DP ES

DE

−
. 

 
These are the same expressions that we found in number 240 for the coordinates of the 
center of the complex.  With that, we have the theorem: 
 
 The center of a second-degree complex coincides with the centers of the surfaces of 
its singular points and planes. 
 
 In agreement with that, the center of the complex goes to infinity when the plane at 
infinity is a singular plane, in particular, and those points at which it contacts the surfaces 
of singular points and planes (cf., no. 279) coincide with its associated singular points at 
infinity. 
 If the plane at infinity is a double plane of the complex then its center will become 
undetermined.  Its geometric locus will be a second-order curve that lies in the plane at 
infinity.  That curve will be the contact curve of the double plane with the surface of 
singular points and planes (cf., no. 289). 

  
 

§ 6. 
 

Pole of a given plane and polar plane of a given point that are associated relative to 
the complex. 

 
 324.  We now return to the considerations of the first three – and especially the third – 
sections of this Part of this Chapter.  In them, we investigated the relationship between 
the given second-degree complex and the plane at infinity.  We next concerned ourselves 
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with the totality of all diameters of the complex – viz., straight lines that are associated 
with the straight lines in the plane at infinity as polars relative to the complex – then the 
totality of all cylinders of the complex – viz., complex cones whose midpoint lies on the 
plane at infinity – and the axes of the these cylinders – viz., their polar lines relative to 
the plane at infinity that goes through their midpoint.  We then considered the curves that 
were enveloped by lines of the complex in the plane at infinity and in planes that were 
infinitely close to it and represented them by a complex of exceptional simplicity and a 
characteristic with respect to the coordinate system, namely, the asymptotic complex of 
the given one. 
 We can carry over all of these considerations, and in turn, all of the results that we 
found, from the plane at infinity to an arbitrary plane in space using known rules that 
already find their expression in the foregoing.  The basis for this convertibility lies in the 
identity of the analytic operations that correspond to the geometric considerations in the 
one case, as in the other. 
 In particular, we would like to let an arbitrarily-chosen plane coincide with one of the 
three coordinate planes.  The exchange of the plane at infinity with one of the 
corresponding coordinate planes gives us an exchange of the line coordinates among 
themselves, and therefore a reciprocal exchange of constants in the equation of the given 
complex.  In what follows, we will pose the rules for these exchanges, and then we will 
be spared any further analytic development in any coordinate plane, since it will suffice 
to switch the variables, as well as the constants, in all previous formulas according to 
these rules. 
 With the conversion of the theorems that were posed for the plane at infinity to an 
arbitrary plane, we will extend the previously-obtained results, to the extent that we are 
allowed by the foregoing two paragraphs to introduce the elements of complexes – viz., 
their singular points, lines, and planes – into the geometric considerations in a way that is 
more intuitive that was previously possible. 
 
 
 325.  We would like to use equation (V) for the second-degree complex as the basis 
for what follows, which we make homogeneous by the introduction of a sixth variable h, 
and make symmetric by the addition of a term 2Vhη.  The equation is then: 
 

Ar2 + Bs2 + Ch2 + Dσ2 + Eρ2 + Fη2 
+ 2Gsh + 2Hrh + 2Irs + 2Kρη – 2Lση − 2Mρσ 

− 2Nrσ + 2Osρ + 2Vhη 
+ 2Prρ + 2Qrη + 2Rsη – 2Ssσ – 2Thσ + 2Uhρ = 0.   (V) 

 
 In number 10, we obtained the following six proportional expressions for the ray 
coordinates: 

r, ş  h, − σ, ρ, η, 
namely: 

(xτ′ – x′τ), (yτ′ – y′τ), (zτ′ – z′τ), (yz′ – y′z), (x′z – xz′), (xy′ – x′y). 
The ratios: 

x

τ
, 

y

τ
, 

z

τ
 and 

x

τ
′
′
, 

y

τ
′
′
, 

z

τ
′
′
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then denote the coordinates of two points that are chosen arbitrarily on the straight line. 
 The exchange of the plane at infinity with the coordinate plane YZ will correspond to 
the exchange of: 

x with τ    and    x′ with τ′, resp. 
 

Corresponding to that, the six line coordinates: 
 

r, ş  h, − σ, ρ, η 
 
will be replaced with the following ones: 
 

− r, − η¸ r, − σ, h, − s, 
 
resp.  This exchange will not affect the coefficients: 
 

A, D, R, U, 
while 

B, C, I, M 
and 

F, E, Q, T 
 
respectively, will not change their signs, and: 
 

G, H, L, O 
and 

K, P, S, V, 
 
resp., will be reciprocally exchanged with a simultaneous change of sign, and N will 
change its sign. 
 Two of the plane coordinates: 

t, u, v, w, 
 
namely, t and w, will be exchanged reciprocally. 
 In particular, the equation for the curve that is enveloped by lines in the plane at 
infinity is: 

Dt 2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu = 0, 
 

and we will obtain the following equation from it for the complex curve in YZ by using 
the foregoing rules of exchange: 
 

Dw2 + Cu2 + Bv2 − 2Guv − 2Svw + 2Tuw = 0, 
 
in agreement with number 166. 
 We will get completely analogous rules of exchange that correspond to an exchange 
of the plane at infinity with one of the other two coordinate planes, XZ or XY.  We shall 
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not write them down here, since we shall refer back to the exchange rules of number 155, 
which correspond to an exchange of the three planes YZ, XZ, XY among themselves. 
 
 
 326.  Let an arbitrary plane P be given.  A curve K will be enveloped by lines of the 
complex in it.  The polar that corresponds to an arbitrarily-chosen straight line a in P with 
respect to the complex, and which we would like to denote by b, will cut the plane P in 
the pole of the line a relative to the curve K.  The polar of a straight line relative to the 
complex will then be the geometric locus of its poles relative to the curves that are 
enveloped by lines of the complex in the plane that goes through it.  Consistent with that, 
in number 236, we have constructed the direction of the diameters of the complex that are 
associated with a given system of parallel planes by means of the complex curve that lies 
in the plane at infinity. 
 Let a, a′, a″ be three straight lines in the plane P, which define a self-conjugate 
triangle with respect to the curve K; call the three associated polars b, b′, b″, resp.  b, b′, 
b″ will then go through the intersections of a′ and a″, a″ and a, a and a′, respectively.  
We would like to call b, b′, b″ three mutually-conjugate polars relative to the plane P, or 
also, more briefly, three mutually-conjugate polars, since the plane P remains fixed.  In 
the case of an arbitrarily-chosen plane, the system of three conjugate polars substitutes 
for the system of three conjugate diameters in the case of the plane that is shifted to 
infinity. 
 The intersection points (a′, a″), (a″, a), and (a, a′) are the vertices of three complex 
cones A, A′, A″.  If we consider the plane P to be fixed, as before, then we will refer to 
them as the three complex cones that are associated with the straight lines a, a′, a″, resp. 
 This plane is associated with a straight line relative to any complex cone whose 
vertex is chosen to be in P.  This line is the intersection of the tangential planes that 
contact the complex cone along the two edges, along which, it is intersected by the plane 
P.  If the plane P is shifted to infinity, in particular, then the complex cone will become a 
complex cylinder, and the straight line in question will become the cylinder axis.  We 
would like to refer to this straight line as the “polar line of the complex cone relative to 
the plane P, or more briefly, as its polar line, in order to distinguish it from the “polar,” 
which is the term that we used in order to refer to the straight line that is associated with 
the given one relative to complex. 
 Let the polar lines of the three complex cones A, A′, A″ be c, c′, c″.  We call these 
three polar lines mutually-conjugate and the three straight lines a, a′, a″, like their polars 
b, b′, b″, resp., associated.  Each polar line cuts the polar that it is associated with at a 
point of the plane P. 
 
 
 327.  The polars of an arbitrary straight line will be enveloped by its polar planes with 
respect to all complex cones whose vertices lie along it.  For example, b will then be the 
intersection of the two polar planes of the straight line a relative to the two complex 
cones A′ and A″.  However, one will also find the polar lines of the cones A′ and A″, 
which we have previously denoted by c′ and c″, in the same two planes.  b will thus cut c′ 
and c″. 
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 Each of three mutually-conjugate polars cuts the polar lines that are associated with 
the other two. 
 
 Thus, each of three conjugate polar lines will also cut the polars that are associated 
with the other two. 
 If the three polars b, b′, b″ are given then the three polar lines c, c′, c″, resp., can be 
constructed in a linear way.  Each of them will then go through the point of intersection 
of one of the three polars with the plane P and cut the other two.  b, b′, b″ will be 
determined in the same way when c, c′, c″ are given. 
 Three arbitrary straight lines − in particular, the three polars b, b′, b″ − determine a 
hyperboloid as lines of one generator.  All of them that cut the three given straight lines 
will belong to the second generators as lines.  The polar lines c, c′, c″ will then be lines of 
the second generator of the hyperboloid that is determined by the polars b, b′, b″ as lines 
of it.  The six straight lines b, b′, b″, c, c′, c″ determine a hexangle bc′b″cb′c″ (cf., no. 
109) that is drawn in the hyperboloid.  For an arbitrary choice of the plane P, this 
hexangle will substitute for the central parallelepiped that is determined by three 
conjugate diameters and the cylinder axes that are parallel to them in the case of the plane 
at infinity. 
 The three planes (b, c), (b′, c′), (b″, c″), which are the tangential planes to the 
hyperboloid that we speak of at the three points (a′, a″), (a″, a), (a, a′) that lie in P,   
intersect  at a point O, which is the pole of the plane P relative to the hyperboloid.  We 
can determine this point in yet another way.  The plane (b, c) cuts the plane P in a line d. 
The fourth harmonic to b, c, and d, which we would like to denote by e, will go through 
the desired point.  The three diagonals to the hexangle bc′b″cb′c″ will intersect at the 
same point. 
 When the plane P is shifted to infinity, the point O will become the midpoint of the 
central parallelepiped.  We can define the midpoint of such a parallelepiped to be either 
the point of intersection of the three planes that go through a diameter and the cylinder 
axis that is parallel to it or finally as the common intersection of the diagonals of the 
central parallelepiped. 
 
 
 328.  Precisely the same calculations and considerations that allowed us to prove, in 
numbers 245 and 246, that all central parallelepipeds of a given complex have the same 
center (which we referred to as the center of the complex)  will show that the pole O of 
the plane P relative to the hyperboloid that is determined by b, b′, b″ will be independent 
of the choice of those three conjugate polars. 
 
 The pole of the plane P relative to a hyperboloid that is determined by three 
conjugate polars is independent of the choice of these polars. 
 
 The point O is then associated with the plane P that goes through the given complex.  
We would like to call it the pole of the plane P relative to the complex. 
 
 For a second-degree complex, one point is associated with a given plane in a unique 
way, in general. 
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 In number 323, we proved that the center of the complex coincides with the center of 
the surface that is determined by its singular points and planes.  We then have the 
theorem: 
 
 The pole of a given plane relative to a second-degree complex coincides with the pole 
of the same plane with respect to the surface that is defined by the singular points of the 
complex and enveloped by its singular planes. 
 
 
 329.  Let an arbitrary line a in the plane P be given.  Let the polar that is associated 
with it be b and let the polar line be c.  We then construct the straight line c that connects 
the pole of the plane P with the point of intersection of the two straight lines b and c in 
such a way that we draw a plane through b and c and determine the fourth harmonic to b, 
c, and the line of intersection d of that plane with the plane P.  We next examine the 
extent to which this construction will maintain its validity when the chosen straight line a 
belongs to the complex; in particular, when it is singular line of it. 
 Let a be a line of the given complex.  The polar b then coincides with it.  However, 
the polar line c is also no different from a and b.  The pole of the straight line a relative to 
the complex curve that lies in P is its contact point with that curve, and the complex cone 
whose vertex is that point will contact the plane P along the tangent at that point; that is, 
along the chosen line a.  Thus, b and c, and therefore, also d, will coincide with the line a.  
The geometric construction of the connecting lines of the pole of the straight line a 
relative to the complex curve that lies in P with the pole of the plane P relative to the 
complex will become illusory. 
 If the straight line a, in particular, coincides with one of the four singular lines that lie 
in P then its polar b will next be determined.  It can be chosen arbitrarily from the straight 
lines that go through the associated singular point in the associated singular plane.  This 
point is the contact point of the singular line a with the complex curve that lies in P.  The 
complex cone that has it for its vertex will decompose into two planes that intersect along 
the singular line a.  The polar line c, like the polar b, will then be undetermined, and will 
be subject to the single condition that the plane that is harmonic to the aforementioned 
two and the plane P must go through the contact point that lies along a.  The desired line 
e will be contained in the fourth harmonic plane to the given plane P and the two planes 
in which b and c lie, respectively, but it will not be determined completely inside of them 
by the general construction. 
 
 
 330.  When the straight line a does not belong to the given complex, the associated 
polar b and the associated polar line c will generally be different.  That corresponds to the 
fact that three conjugate polars will not intersect, in general.  From the discussion in 
number 251, there is a system of three associated diameters that go through the center of 
the complex.  They coincide with the cylinder axes that parallel to them.  
Correspondingly, there are three mutually-associated polars for any plane that go through 
the pole of the plane, and thus coincide with the polar lines that are associated with it. 
 If we refer the complex to the three diameters that intersect in its center as coordinate 
axes, as in number 251, then its equation will be the following one: 
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Ar2 + Bs2 + Ch2 + Dσ2 + Eρ2 + Fη2 
+ 2Gsh + 2Hrh + 2Irs 

− 2Nrσ + 2Osρ + 2Vhη ≡ Ω = 0.   (184) 
We will then get: 

Dt2 + Eu2 + Fv2 = 0     (185) 
 
for the curve that is enveloped by its lines in the plane at infinity.  For the curve of the 
complex in the same plane whose equation is the following one: 
 

− 
r s h

δ δ δ δ δ δ
δ δσ δ δρ δ δη
Ω Ω Ω Ω Ω Ω⋅ + ⋅ + ⋅  = 0, 

we will find: 
DNt2 + EOu2 + FVv2 = 0.    (187) 

 
The variables enter into the two equations (185) and (187), only as squares.  The two 
curves that are represented by these equations will then be of class two when referred to a 
coordinate system that is self-conjugate with respect to them. 
 We have determined the singular lines of the given complex by means of equation 
(186), along with the equation of that complex.  They are the four singular lines of the 
common tangents to the two conic sections that are represented by equations (185) and 
(187) in the plane at infinity.  The three points at which the coordinate axes OX, OY, OZ 
cut the plane at infinity are then the three points at which the diagonals of the complete 
tetragon that is defined by the four singular lines that lie in that plane.  Its three 
diagonals are the straight lines that lie in the plane at infinity, and whose associated polar 
and polar line coincide without themselves belonging to the complex. 
 The foregoing considerations carry over immediately from the plane at infinity to an 
arbitrarily-chosen one. 
 
 
 331.  For a given plane, there is, in general only one system of three associated polars 
that intersect in the pole of the plane: It is the one that we constructed in the foregoing 
number.  The construction will be undetermined when the four singular lines coincide 
pair-wise in the chosen plane P, which would require a two-fold specialization of the 
relationship between the given complex and it.  A point of intersection o and a straight 
line p, which is the polar of o relative to the complex curve that lies in P, will be 
determined by the two straight lines in which the four singular lines coincide.  The polars 
of p relative to the complex will go through the point o and the pole of the plane P 
relative to the complex.  Conversely, the polar to any given line that can be drawn 
through O in P will go through a point of the straight line p and pole of the plane P 
relative to the complex.  There are then infinitely many polars that intersect in the pole of 
the plane P.  One of them will be distinguished, while the rest of them will all be 
conjugate to that one and will lie in a plane that goes through the pole. 
 If all polars of the straight lines that lie in P are to go through the pole of P then, from 
the geometric construction that we consider, all lines of the complex that lie in P must be 
singular lines of that complex.  As long as the given plane is not a singular plane, this will 
require a five-fold specialization of the relationship of the given plane to the complex.  
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That will then demand that either the curve that is enveloped by lines of the complex 
(186) in the given curve P is no different from the curve of the given complex in that 
plane, or that every line in the plane P belongs to the complex.  Whether the one or the 
other case is pertinent will depend upon the choice of the extra term in the equation of the 
given complex. 
 If the given second-degree complex is of the particular type for which its lines 
envelop a second-degree surface then the polars of all such straight lines that lie in an 
arbitrary plane will intersect at the pole of this plane relative to the complex that 
coincides with its pole relative to the surface, and generally speaking all lines of such a 
complex will be regarded as singular lines.  The surface that is defined by the singular 
points of the general second-degree complex and is enveloped by its singular planes is no 
different from the latter in the case of the special complex that represents a second-degree 
surface. 
 
 
 332.  If the given plane P is a singular plane then, from what was explained in 
numbers 279 and 323, its pole relative to the complex will coincide with the singular 
point that is associated with it.  That point will be the contact point of the given singular 
plane with the surface of the singular points and planes. 
 We easily convince ourselves of the validity of this result.  Corresponding to the 
assumption, the complex curve in the given plane P has resolved into the system of two 
points K1 and K2 .  Their connecting line (K1, K2) is the singular line that is associated 
with the given singular plane.  The associated singular point O that is the pole of the 
plane P is similarly arranged. 
 Let an arbitrary straight line a be given in the plane P.  Its polar b cuts the plane P at a 
point of the singular line (K1, K2).  The complex cone whose vertex is that point of 
intersection contacts the given plane P along (K1, K2).  The polar line c that is associated 
with the arbitrarily-chosen straight line a then coincides with (K1, K2).  This is expressed 
by saying that we seek the pole of the plane P on the singular line (K1, K2).  The plane 
that is drawn through b and c must then cut the plane P again along c, and the fourth 
harmonic to b, c, and this line of intersection must coincide with c, since b and c do not 
themselves coincide. 
 In order to determine the pole on the singular line (K1, K2), we let the arbitrarily-
chosen straight line a coincide with (K1, K2).  Infinitely many straight lines will then 
correspond to it as polars − namely, all of the ones that go through the associated singular 
point O in the given plane P.  The proof is complete with that.  The fourth harmonic to 
such a polar, the polar line to a complex cone whose vertex is chosen arbitrarily on it, and 
the line of intersection of the plane that is determined by the polar and the polar line with 
the given one P will coincide with the chosen polar itself. 
 
 
 333.  If the given plane P is a double plane of the complex then the position of its 
pole will be undetermined.  The geometric locus of them will be the second-order curve 
along which the double plane contacts the surface of singular points and planes.  The 
complex curve in the double plane will resolve into a system of two points that coincide 
in one point of the second-order contact curve.  The direction of the connecting line of 
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the two points will be undetermined.  Each line in P that goes through the point at which 
the two coincide will be a singular line.  The singular point that corresponds to each of 
them can be regarded as the pole of the plane P relative to the complex.  If the singular 
line in P rotates around the fixed point then the corresponding singular point will describe 
the second-order curve along which the double plane contacts the surface of singular 
points and planes. 
 We still have to mention the case in which all of the lines that lie in a given plane P 
belong to the complex.  One can say nothing further about a well-defined pole in such a 
plane with respect to the complex.  That corresponds to the fact that the plane is separated 
from the surface of singular points as an isolated plane, which will reduce to order three. 
 
 
 334.  We have represented the lines at infinity of the given complex by means of an 
especially simple complex whose equation was then more transparent when we put it into 
a close relationship with the coordinate system, namely, the asymptotic complex.  We 
obtained the equation of the asymptotic complex in the general case when we let the three 
variables r, s, h vanish in the equation of the given one.  It then represented a conic 
surface of class two whose vertex fell upon the coordinate origin, and which cut out a 
curve that was enveloped by lines of the complex from the plane at infinity.  If the 
relationship of the plane at infinity to the given complex is specialized in that way then 
further terms beyond those of second order in ρ, σ, η must be selected from the equation 
of the given complex for inclusion in the equation of the asymptotic complex in order for 
it to represent the lines of the complex at infinity with the same degree of approximation 
as in the general case.  The degree of approximation of the asymptotic complex with 
respect to the given complex is the first in all cases; that is, the relationship of the 
asymptotic complex to the given complex will remain unchanged when we displace them 
with respect to each other parallel to themselves through a finite line segment. 
 Similar considerations can be posed for an arbitrary plane, in particular, for each of 
the three coordinate planes.  We say “asymptotic complex of the given complex relative 
to a coordinate plane” to mean the complex that has in common with the given complex 
all lines that lie in this plane and, up to higher-order quantities, in all planes that differ 
infinitely little from the coordinate plane, and which is the simplest of the complexes that 
are endowed with that property, in and of themselves, as well as in relation to the 
coordinate system. 
 
 
 335.  In order to exhibit the equation of the asymptotic complex that is associated 
with a coordinate plane, we proceed as before in the case of the plane at infinity.  In 
particular, if we select the YZ plane then we will next get: 
 

Bs2 + Ch2 + Dσ2 + 2Gsh – 2Ssσ – 2Thσ = 0,   (188) 
 
since we let r, ρ, η vanish in the equation of the given complex, for which we would like 
to take equation (V).  This equation represents a complex whose lines envelop a cylinder 
surface of class two whose sides are parallel to OX, and which will cut out the complex 
curve that lies in the YZ plane from that plane. 
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 By a suitable choice of coordinate axes OY and OZ in the fixed YZ plane, we can, in 
general, bring the foregoing equation into the following form: 
 

Bs2 + Ch2 + Dσ2 = 0.     (189) 
 
If the complex curve in YZ resolves into a system of two points when YZ is a singular 
plane then one of the three constants B, C, and D will vanish.  If D vanishes then we must 
add terms from the equation of the given complex that contain the variable σ in the first 
power to equation (189), which represents the asymptotic complex in the general case.  In 
this way, the equation of the asymptotic complex will become: 
 

Bs2 + Ch2 – 2 (Lη + Mρ) s = 0.   (190) 
 
A term in rσ does not enter into this.  One then has: 
 

− Nrσ + Osρ + Vhη = (O – N) sρ + (V – N) hη . 
 

If the two points into which the complex curve in YZ has resolved, corresponding to the 
assumption that YZ is a double plane of the given complex, coincide in a point then two 
of the three constants B, C, D will vanish in equation (189).  If B and C are the two 
vanishing constants then when we add the terms of first order in s and h to equation (189) 
the equation of the asymptotic complex will become: 
 

Ds2 + 2 (Ir  + Rh) s + 2 (Hr + Ur) h + 2 (O – N) sρ + 2 (V – N) hη = 0. (191) 
 
Finally, if the three constants B, C, D vanish together in equation (189), corresponding to 
the assumption that every straight line in the YZ plane belongs to the given complex, 
when we select the terms of first order in s, h, s from the equation of the given complex, 
we will get: 
 

(Ir  + Rη) s + (Hr + Uρ) h – (Lη + Mρ) σ – Nrσ + Osρ + Vhη = 0  (192) 
 
for the equation of the asymptotic complex. 
 We will pursue these considerations no further here, but refer to the developments of 
the third paragraph, and in particular, we will go no further into a more detailed 
discussion of the complexes that are represented by equations (190), (191), (192). 
 
 
 336.  A line complex represents a self-reciprocal structure, in the sense that its 
equation has a double interpretation, according to whether we consider the straight line to 
be a ray or an axis.  An exchange of the two viewpoints will correspond to an exchange 
of the coordinates of the straight line among themselves.  The form of the equation of the 
complex will then remain unchanged.  In this fact, one finds the justification for carrying 
over all of the considerations and results that are contained in the foregoing from an 
arbitrary plane to an arbitrary point using the rules of the principle of reciprocity. 
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 In particular, we would like to let the arbitrary point coincide with the coordinate 
origin.  All analytic developments and relationships that we have posed for the plane at 
infinity will carry over to it, when we exchange point and plane coordinates, and ray and 
axial coordinates everywhere, corresponding to which, from the rules in number 153, the 
following constants in the complex equation: 
 

A, B, C,  G, H, I, P, Q, R 
 
will mutually switch with the constants: 
 

D, E, F, K, L, M, S, T, U, 
respectively. 
 In particular, we have obtained the equation: 
 

Dt2 + Eu2 + Fv2 + 2Kuv + 2Ltv + 2Mtu = 0 
 
for the complex curve that lies in the plane at infinity.  The equation that is derived from 
it according to the foregoing exchange rules: 
 

Ax2 + By2 + Cz2 + 2Gyz + 2Hxz + 2Ixy = 0 
 

represents the complex cone whose vertex is the coordinate origin. 
 If we shift the arbitrarily-chosen point that we have made coincide with coordinate 
origin to infinity then we can choose it to be any of the three points at which the plane at 
infinity is cut by the coordinate axes OX, OY, OZ, respectively.  The exchange rules that 
correspond to such an assumption are derived immediately from the foregoing ones when 
we next replace the plane at infinity with the coordinate planes XZ, YZ, XY, respectively, 
from the discussions of number 325. 
 
 
 337.  In what follows, we will restrict ourselves to expressing, with no further proof, 
the essential results that we previously derived for an arbitrary plane for an arbitrary 
point. 
 Let O be the chosen point, and let a, a′, a″ be three arbitrary lines that go through it 
that are conjugate to each other relative to the cone K whose vertex falls upon O.  The 
polars of these three straight lines relative to the complex − which we would like to 
denote by b, b′, b″ − will lie in the three planes (a′, a″), (a″, a), (a, a′), respectively.  We 
call the three polars mutually conjugate.  The polar lines of the point O relative to the 
complex curves that lie in the three planes (a′, a″), (a″, a), (a, a′) − which might be called 
c, c′, c″, respectively − are said to be associated with the three polars and the three given 
lines a, a′, a″.  We refer to them as three mutually-conjugate polar lines.  The following 
theorem is then true: 
 
 Any of three conjugate polars is cut by any of the polar lines that are associated with 
the other two. 
 



§ 6.  Pole of a given plane and polar plane of a given point. 293 

 

 Thus, any of three polar lines will also cut each of the polars that are associated with 
the other two.  When the point O and three conjugate polars or polar lines are given, the 
associated polar lines (polars, respectively) can be constructed linearly using this 
theorem. 
 Three conjugate polars determine a hyperboloid, as lines of one generator, and the 
associated polar lines will determine it as lines of the other generator.  The polar plane of 
the point O relative to that hyperboloid will be the plane P that contains the three points 
of intersection of any of the three conjugate lines with their associated polar line.  This 
plane will not change when we replace the chosen three conjugate planes with any other 
three. 
 
 The polar plane of the point O relative to a hyperboloid that is determined by three 
conjugate polars is independent of the choice of these polars. 
 
 The plane P is then associated with the point O through the given complex.  We 
would like to call it the polar plane of the point O relative to the complex. 
 
 In a second-degree complex, a given point will be in one-to-one correspondence with 
a plane, in general. 
 
 We construct this plane as the polar plane of the given point relative to the surface 
that is defined by the singular points of the complex and enveloped by singular planes of 
it. 
 
 
 338.  If the chosen three straight lines a, a′, a″ do not themselves belong to the 
complex then their associated polars will not intersect, in general.  In general, there is 
only one system of associated polars that do intersect, and which will then coincide with 
their associated polar lines in the polar plane of the given point.  The corresponding three 
straight lines a, a′, a″ are easy to construct. 
 Four singular lines of the complex go through the given point O.  The three lines of 
intersection of any two planes that collectively contain the four singular points will be the 
desired one. 
 Corresponding to a double specialization of the relationship between the second-
degree complex and the given point, we can let the four singular lines that go through it 
coincide pair-wise.  The polars of all straight lines that go through O in the plane that 
contains the two singular lines will then intersect in a point inside the polar plane P of the 
point O, namely, the point at which the polar plane P will be cut by the polar line of the 
aforementioned plane relative to the complex cone whose vertex falls upon OP, and the 
polar of this latter line will also fall in the plane P.  It is the line of intersection with the 
plane that is drawn through the two singular lines. 
 A five-fold specialization is required when all polars are to be contained in the polar 
plane P.  Each polar will then coincide with its associated polar line.  This would demand 
that all of the complex lines that go through the point O must be singular lines of it.  This 
condition is fulfilled, in particular, in the case of complex whose lines envelop a second-
degree surface.  All lines of such a complex are to be regarded as singular lines of it.  The 
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polar plane of an arbitrary point relative to such a complex will coincide with its polar 
plane relative to the surface that it envelops.  The latter will make the surface be one of 
order and class four, which will be determined by the singular points and planes of the 
complex in the general case. 
 
 
 339.  If the given point O is a singular point, in particular, then its polar plane will 
coincide with the associated singular plane.  The same thing will be true for the tangential 
planes to the surface at the singular point and the planes at the given singular point. 
 If the given point O is a double point of the complex then its polar plane will be 
undetermined.  It can be selected arbitrarily from the enveloping planes of a cone of class 
two that has the chosen point for its vertex.  The point O will then be a double point of 
the surface of singular points and planes.  The conic surface of class two that is 
enveloped by its polar planes will be the tangential cone of the surface at the double 
point. 
 Finally, all of the straight lines that go through the point O can belong to the complex.  
One could then no longer speak of a well-defined polar plane relative to the complex.  
That would correspond to the fact that the polar was separated from the surface of 
singular planes as an isolated point, which would reduce it to class three. 
 In conclusion, let it be remarked that in the case of the general second-degree 
complex, the correspondence between the polar plane and the given point is not 
reciprocal, as it is for second-degree surfaces.  If the pole of the polar plane relative to the 
complex should once more coincide with the initially-given point then a three-fold 
specialization of the position of the plane in the complex would be necessary.  There are 
then, in general, only a finite number of points and planes in a given complex that 
correspond reciprocally relative to the complex. 
 
 
 340.  We have represented the lines of the complex that lie in a given plane or in the 
neighborhood of it by its asymptotic complex relative to the given plane.  We can 
determine the straight lines in the complex that go through a given point and all of its 
neighboring points in a similar way. 
 Let the given point be the origin of the coordinates.  We will then get: 
 

Ar2 + Bs2 + Ch2 + 2Gsh + 2Hrh + 2Irs = 0   (193) 
 
for the asymptotic complex of the given complex relative to that point when we neglect 
the variables ρ, σ, η, as well as first powers of r, s, h in the equation of the latter.  This 
equation represents a curve of second order in the plane at infinity.  The straight lines that 
go through the coordinate origin and cut that curve will belong to the given complex. 
 By an appropriate choice of directions for the coordinate axes, we can bring the 
foregoing equation (193) into the form: 
 

Ar2 + Bs2 + Ch2 = 0.     (194) 
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When the coordinate origin is a singular point of the complex, in particular, one of the 
three constants A, B, C will vanish; let A be the vanishing constant.  In order to represent 
the lines of the given complex in the neighborhood of the coordinate origin to the same 
degree of approximation as before, we must then keep the terms of first order in r, along 
with the terms of second order in s and h, in the equation of the asymptotic complex.  We 
then find: 

Bs2 + Ch2 + 2 (Pρ + Qη) r = 0.    (195) 
 
No term in rσ will enter in, since: 
 

− Nrσ + Osρ + Vhη = (O – N) sρ + (V – N) hη. 
 
The simultaneous vanishing of two of the three constants A, B, C – say, B and C – would 
correspond to the case in which the coordinate origin is a double point of the complex, 
and we would get the following equation for the asymptotic complex: 
 

Ar2 + 2 (Rh – Ss) s + 2 (- Ts + Ur) h + 2 (O – N) sρ + 2 (V – N) hη = 0, (196) 
 
since we must consider first powers of s and h, along with second powers of r.  Finally, 
when all of the straight lines that go through the origin belong to the complex, and 
correspondingly A, B, C vanish at the same time, the equation of the asymptotic complex 
will become: 
 

(Pρ + Qη) r + (Rη – Sσ) s + (− Tσ + Uρ) h − Nrσ + Osρ + Vhη = 0 (197) 
 
This is the same equation that we found in number 292 in order to represent the lines at 
infinity of the given complex in the case in which terms of second order in the variables 
ρ, σ, η were missing from its equation. 
 We can impose considerations that are similar to the ones that we made for the 
coordinate origin for any of three points that are shifted to infinity along the three 
coordinate axes OX, OY, OZ. 
 
 
 341.  Here, we suspend our foregoing developments, whose objective was the 
discussion of the general equation of the second-degree complex, in order to once more 
turn to the investigation of complex surfaces.  In particular, we emphasize the great 
analogy that prevails between the theory of those complexes and the theory of second-
degree surfaces, an analogy that that finds its explanation in the fact that the latter can be 
regarded as second-degree complexes of a special kind.  The totality of all conditions that 
must be fulfilled in order for a given complex to represent a surface of that degree can be 
summarized in the statement that all lines of such a complex are singular lines of it. 
 

_____________ 
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Classification of the surfaces of a general second-degree 
complex.  Construction and discussion of the equatorial 
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 342.  We have understood the term “a complex surface” to mean a surface that is the 
geometric locus of the curves that are determined by the lines of a given complex that lie 
in a plane that is drawn through a fixed straight line, or − what amounts to the same thing 
− a surface that will be enveloped by all cones of a given complex whose vertices lie 
along a fixed straight line.  We can say that a complex surface represents the totality of 
all lines of a given complex that cut a fixed line.  The consideration of these surfaces has 
the same meaning for the investigation of the complexes for which we have regarded the 
straight line as space element that the consideration of the plane curves of intersection or 
enveloping cones has for the investigation of surfaces. 
 In the case of second-degree complexes, a complex surface will be of order and class 
four, in general.  The fixed straight line that determines the complex surface, along with 
the given complex, is a double line of the surface, in the two-fold sense that it appears a 
double ray and a double axis of it.  For four distinguished positions of the plane that 
rotates around the double line, the curve that is enveloped by the lines of the complex in 
it, and which generates the surface, will resolve into a system of two points.  These points 
will be double points of the surface.  We have called the plane a singular plane of the 
surface and the connecting line of the two double points in it, a singular ray.  The 
singular rays lie completely on the surface, in the sense that any point of the ray will be a 
point of the surface.  The surface will be contacted by the singular planes when they are 
extended.  Four of the points that lie along the double line are distinguished by the fact 
that they are the vertices of complex cones that have resolved into two planes.  These 
planes will be double planes of the surface.  We have called such a point a singular point 
and the line of intersection of the two double planes that it determines a singular axis of 
the surface.  The singular axis will belong to the surface entirely, insofar as each of the 
planes that is drawn through it will be a plane of the surface.  The common contact point 
of these planes will be the singular point. 
 
 
 343.  These definitions take on an immediate clarity when we think of introducing the 
surfaces of order and class four that are defined by the singular points of the complex and 
enveloped by its singular planes.  The four singular planes of a complex surface are the 
four tangential planes to that surface that can be drawn through its double line; the four 
singular points are the four points of intersection of the double line with that surface.  The 
four singular rays and four singular axes are the singular lines of the complex that are 
associated with the four singular planes and four singular points, respectively. 
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 In what follows, for the sake of brevity, we would like to denote the surface of order 
and class four that is determined by the singular points and planes of the given second-
degree complex by the symbol Φ and denote the fixed straight line that generates the 
complex surface that we are considering, along with the given complex, by d. 
 We immediately obtain a classification of the complex surfaces, and in particular, 
those of the given complex, when we successively distribute the straight lines d over all 
different positions with respect to the surface Φ.  The analysis in the fifth section of the 
previous chapter gives us enough material to proceed with such a discussion. 
 If we ignore the relationship of the complex surface to the given complex then the 
selected classification principle will emerge that allows us to decide how the singular 
elements of such a surface are grouped with respect to each other, and how many of them 
coincide, in particular.  Here, we especially emphasize that the order and class of the 
complex surface are gradually reduced by the coincidence of singular elements until the 
surface is finally of order and class two. 
 For the sake of a further classification of the complex surfaces, we can decide 
whether the fixed straight line d does or does not belong to the given complex, and 
furthermore, whether the singularities that the complex surface possesses – viz., its 
singular planes and points, its double points and double planes – are real or imaginary.  
This is not the place to go into the classification of complex surfaces in greater detail.  
We will restrict ourselves to just the first, and most essential, classification principle: viz., 
to examine the relationship of the fixed line d to the surface Φ. 
 
 
 344.  We thus obtain the classification below of the surfaces of a given second-degree 
complex in seven ways (*).  These ways are not coordinated with each other.  Moreover, 
each of the foregoing can be subsumed as a limiting case of the following one. 
 
 

I. 
 

The straight line d is chosen arbitrarily. 
 

 In section six of the last chapter, we subjected the case that we referred to as the 
general case to a thorough discussion and examined the mutual position of the 
singularities of the surface.  There, under the assumption of real singularities, we found, 
in particular, a linear construction for the surface that must be replaced with a 
construction of second degree only when the given straight line d is itself a complex line.  
As the object of consideration, we first emphasize that the straight line d is a double ray 
and a double axis of the surface, and then that the four singular rays and four singular 
axes of the surface are simple rays, null axes and null rays, and simple axes of it.  The 
order and class of the surface are both four.  The number of arbitrary constants upon 
which such a surface depends is seventeen. 
 
 
                                                
 (*) It is easy to derive even more sub-classifications from the same principle, although we shall not go 
into that here.  
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II. 
 

The straight line d contacts the surface Φ. 
 

 Two of the four singular points coincide with the contact point, and two of the four 
singular planes coincide with the respective tangential planes.  The two associated 
singular rays and singular axes will coincide in the same straight line: viz., the singular 
line that is associated in the complex with the contact point of the surface Φ with the 
straight line d and the tangential plane to it.  This line will be a double line of the surface, 
in the sense that it is a double ray, as well as a double axis.  The complex surface 
possesses two intersecting double lines.  The relationship between the two double lines 
and the surface is not the same.  The surface will be cut by a plane that goes through d in 
a curve of class two, and a point that is chosen along d will be the vertex of an enveloping 
cone of order two.  For the second double line, one switches the words “order” and 
“class.” 
 The complex surfaces that we consider are of order and class four as in the general 
case.  The number of arbitrary constants upon which they depend has been reduced to 
sixteen. 
 

III. 
 

The straight line d is a double tangent to the surface Φ. 
 

 The four singular planes and four singular points of the complex surface coincide 
pair-wise.  Two double lines of the surface appear in place of the four singular rays and 
four singular axes.  The surface contains three double lines, one of which (d) cuts the 
other two.  If we lay a plane through one of the last two lines then it will cut the complex 
surface in a curve of order two that will have a double point on the other one, and which 
will have then resolved into a system of two straight lines.  The complex surface has 
become a ruled surface.  Its order and class remain four.  Its constant count is fifteen. 
 
 

IV. 
 

The straight line d lies in a double plane of the surface Φ. 
 

 Of the four singular planes of the complex surface, two of them will coincide in the 
double plane, while the other two have an arbitrary direction.  The four singular points 
coincide pair-wise in the two points of intersection of the straight line d with the conic 
section, along which, the surface Φ is contacted by the given double plane.  Like the line 
d, they will be double lines of the surface.  Since the complex surface is cut by the double 
plane in three double lines, the double line will belong to the surface when it is extended.  
Of the four singular rays of the complex surface, two of them will have an arbitrary 
position.  The other two will be contained in the double plane and will be undetermined 
in it.  They can be chosen arbitrarily among the complex lines that lie in that plane.  We 
thus obtain the following result: If we regard the complex surface as being enveloped by 
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planes then it will remain of class four.  It will possess three double axes that lie in a 
plane.  If we consider the surface as being defined by points then that will separate an 
isolated plane from it.  In that way, the order of the surface will be reduced to three.  The 
separated plane will be contacted triply, since it cuts the surface along three simple rays.  
After removing that plane, the surface will have lost its double ray. 
 
 

V. 
 

The straight line d goes through a double point of the surface Φ. 
 

 While one can derive no new kinds of complex surfaces from the first three using the 
principle of reciprocity, but one will only arrive at the same kinds all over again, this 
principle will lead from the aforementioned kind to a new one that is coordinated with it.  
We obtain it when we do not choose the straight line d to be in a double plane of the 
surface Φ, but to go through one of its double points.  We will then find a surface of 
order four and class three that has three double rays that intersect at a point and are 
simple axes of the surface (*).  The reduction of the class from four to three comes about 
because one point of the surface – viz., the point of intersection of the three double rays – 
is separated as a disjoint locus of class one.  The complex surface then loses its double 
axes. 
 The surface, like the foregoing one, depends upon fifteen arbitrary constants. 
 
 

VI. 
 

The straight line d in a double plane of the surface Φ goes through one of its double 
points. 

 
 This assumes that a number of double points lie in any double plane of the surface Φ, 
which is easy to prove.  Two contact curves of order two lie in two arbitrary double 
planes of the surface Φ.  The line of intersection of the two double planes will be cut by 
these curves in the same two points.  These two points are double points of the surface. 
 Corresponding to the assumption that the straight line d in a double plane of the 
surface goes through one of its double points, we will obtain a kind of complex surface 
that has the same relationship to the last two kinds that were posed and is again reciprocal 
to itself.  The surface is of order three and class three.  It will possess a double ray that 
cuts the straight line d and is a simple axis, along with a double axis that likewise cuts the 
straight line d and is a simple ray.  The straight line d is then a simple line of the surface.  
As a surface of order three, or – what amounts to the same thing – a surface of class three 
with a double axis, the complex surface will be a ruled surface (** ).  The constant number 
has been reduced to fourteen. 

                                                
 (*) We encountered such a surface in number 251.  It was the geometric locus of the midpoints of all 
complex curves whose planes were drawn through the center of the complex. 
 (** ) We have already encountered such surfaces several times from completely different viewpoints.  The 
axes of the complexes of a linear congruence define such a surface whose double axis is shifted to infinity 
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VII. 
 

The straight line d is the line of intersection of two double planes of the surface Φ 
and the connecting line of two of its double points. 

 
 From the remark that was made just now, the line of intersection of two double planes 
is also always the connecting line of two double points.  The complex surface will then 
reduce to order two and class two (*), due to the fact that two isolated planes (viz., the 
two double planes of the surface Φ) or two isolated points (viz., the two double points of 
the surface) will be separated from it, according to whether we think of it as being 
determined in point or plane coordinates, resp.  It has lost all of its singularities.  In 
particular, the line d has become a null line of the surface. 
 Since there are 16 double planes (points, resp.) in a given complex, in general, the 
line d can assume a position in which its associated complex surface is of order and class 
two 16 ⋅⋅⋅⋅ 15 / 2 = 120 times. 
 We find thirteen for the number of arbitrary constants upon which such a complex 
surface depends.  Nine of them come from the second-degree surface, and four of them 
come from the latter straight line d, which is still in no way determined. 
 
 
 345.  A reduction in the order or class of a complex surface will come about when 
one separates isolated planes (points, resp.) from the surface for special choices of the 
straight line d.  We remark here incidentally that a reduction in order or class can come 
about in yet another way.  Let the given complex be specialized in such a way that all 
straight lines that go through a fixed point that is chosen along the straight line d belong 
to it.  The complex curve in an arbitrary plane that goes through d will then resolve into a 
system of two points, one of which will coincide with the given fixed point, and the other 
of which will have an arbitrary position.  If we determine that curve in point coordinates 
then the doubly-counted connecting line of the two points will enter in place of the 
system of those two points.  The complex surface will then be cut by a plane that goes 
through the straight line d in two coincident straight lines, along with d itself, that go 
through a fixed point that is given along d.  The complex surface will have then 
degenerated into a cone of order two (** ).  The reduction of order from four to two will 
result when the surface resolves into a system of two surfaces of order two that coincide. 
 
 
 346.  We have called complex surfaces that are defined by complex curves in parallel 
planes equatorial surfaces.  We now go on to a discussion of these equatorial surfaces 
and first consider a restricted family of them.  It will guide us to the double insight that, 
first of all, we will find a confirmation of the results up to now in simple and easily-

                                                                                                                                            
and is perpendicular to the double ray (no. 86).  We found an entirely similar surface in the general theory 
of second-degree complexes as the geometric locus of cylinder axes that cut a diameter or the diameters 
that cut a cylinder axis (no. 243, 246). 
 (*) We have already considered this kind of reduction in order and class of a complex surface in number 
258. 
 (** ) We represented a complex surface of this special kind in mixed coordinates in number 292.  
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constructible surfaces.  Then, however, we will arrive at, perhaps, an intuition into the 
multifaceted character of complex surfaces, to begin with, and with that, the distribution 
of straight lines in a second-degree complex using these surfaces.  In what follows, we 
will thus observe not just the number and positions of the singularities of the surface, as 
in the foregoing, but especially the form of the surface components, which define a 
transition between the singularities, and the structural character of that transition.  In 
these investigations, we will not consider equatorial surfaces in full generality, at first, 
but subject them to a number of simplifying conditions.  The possibilities that we thus 
exclude are of minor significance for our purposes, and their consideration would only 
complicate the argument unnecessarily.  We will also pass over the generation of 
equatorial surfaces by enveloping cylinders, and consider only their emergence from the 
advance of complex curves in parallel planes.  This way of determining a surface will lie 
incomparably closer to our intuition that the other way by enveloping cylinders. 
 
 
 347.  In number 273, when we assumed that the straight lines at infinity in the breadth 
planes did not themselves belong to the complex, we obtained the following equation for 
the general equation of such a surface: 
 

Dw2 + (Fx2 – 2Rx+ B) v2 – 2 (Ox + G) uv + (Ex2 + 2Ux + C) u2 = 0.  (1) 
 
The coordinate plane YZ is then chosen to be parallel to the breadth planes of the complex 
surface.  The OX axis coincides with the diameter of the given complex, which is 
associated with the system of breadth plane, and which we have referred to as the 
diameter of the equatorial surface.  Finally, OY and OZ have the directions in YZ of two 
diameters of the complex that are conjugate to each other and to OX. 
 Equation (1) contains eight mutually-independent constants, and along with the seven 
that specialize the coordinate system, that will give fifteen constants upon which an 
equatorial surface will depend.  The coordinate origin on OX (*) and the angle between 
the OY and OZ coordinate axes can be chosen arbitrarily. 
 In what follows, for the sake of simplicity and intuitiveness, we would like to assume 
that the coordinate system that equation (1) is based upon is rectangular, which will 
require a two-fold specialization of the equatorial surface.  The diameter of the surface 
will then be perpendicular to the direction of the parallel planes that are associated with it 
in the complex, and will thus coincide with one of the three principal axes of the 
complex. 
 
 

                                                
 (*) In the cited number, we determined the origin on OX by the following condition: 
 

ER = FU, 
 
which says that the plane YZ goes through the midpoint of the complex.  We can drop this condition here as 
being inessential for the following considerations. 
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 348.  We next link our further developments with the assumption that the two 
constants G and O in equation (1) vanish.  The equation of the surface, in which we 
would like to set D = 1, with no loss of generality (*), will then be the following one: 
 

w2 + (Fx2 – 2Rx + B) v2 + (Ex2 + 2Ux + C) u2 = 0.   (2) 
 
The complex curve that lies in an arbitrary breadth plane is referred to the two coordinate 
axes OY and OZ, just as it is to its own axes.  Corresponding to the vanishing of G and O, 
the equatorial surface (2) has been specialized in such a way that the axes of its breadth 
curves point in the same direction.  Thus, these equatorial surfaces will approach the type 
of second-order surfaces and will come closer our intuition.  Two of the four singular 
rays of the surface will be pair-wise parallel.  We can say that the surfaces that we 
consider are distinguished by the fact that their singular rays cut two of their double 
lines. 
 Equation (2) contains six mutually-independent constants.  The rectangular coordinate 
system to which it is referred is determined completely, up to the position of the origin, 
which can still be chosen arbitrarily along OX.  Thus, equatorial surfaces that are 
represented by equation (2) will depend upon eleven constants, while this number will 
amount to fifteen, in general. 
 We immediately obtain the equation for the surface in point coordinates from 
equation (1): 

2 2

2 22 2

y z

Ex Ux C Fx Rx B
+

+ + − +
+ 1 = 0.   (3) 

 
The surface remains of order four.  It will be cut by the coordinate planes XY, XZ in two 
second-order curves, since two singular rays of the surface will lie in that plane, along 
with the second-order intersection curve. 
 
 
 349.  We would like to refer to the second-order curves along which the equatorial 
surface is cut by the two coordinate planes XY and XZ as the two characteristics.  If we 
let z and y vanish in the foregoing equation, in succession, then we will get the following 
two equations for them: 

2 2

2 2

2 0,

2 0.

y Ex Ux C

z Fx Rx B

+ + + =


+ − + = 
    (4) 

 
Of the two axes of these two conic sections, one will fall along the OX coordinate axis, 
while the other will be parallel to OY and OZ, respectively. 
 In number 185, we obtained the following two equations in order to represent the 
complex cylinder whose sides are parallel to the OZ and OY coordinate axes, 
respectively: 

                                                
 (*) The assumption D = 0 corresponds to the parabolic equatorial surfaces, which will remain excluded 
here.  
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2 2

2 2

2 2 2 0,

2 2 2 0.

Fx L x z Dz Sz Rx B

Ex Mxy Dy Ux Ty C

− + + − + =


− + + − + = 
    (5) 

 
If we let L, M, S, and T vanish in these two equations, and set D equal to unity then they 
will coincide with the two equations (4).  As is also geometrically clear, the equatorial 
surface that is represented by equation (4) will be contacted by the two complex cylinders 
whose sides are parallel to OZ and OY, respectively, along the two characteristics that lie 
in XY and XZ, resp. 
 If the two characteristics are given then the equatorial surface will be determined 
uniquely and its geometric construction will be given.  The two equations of the 
characteristics will then collectively contain precisely the same number of independent 
constants as the equation of the surface itself.  The classification principle for equatorial 
surfaces of this kind is then borrowed from the differing natures and relative positions of 
the two characteristics. 
 
 
 350.  We would like to rotate the XZ plane, along with the characteristic that it 
contains, around OX in such a way that it coincides with XY.  If we then draw a parallel to 
OY through an arbitrary point of the OX then the four pair-wise equal line segments that 
are cut out of these straight lines by the two characteristics will give the magnitudes of 
the two semi-axes of the complex curve that lies in the breadth plane that goes through 
this straight line. 
 If the breadth curve is a hyperbola or an imaginary ellipse, and we would like to 
construct its imaginary axes as a real straight line in the same way, then we must add a 
second curve of order two to each characteristic that has a midpoint and an axis that falls 
upon OX in common, while the second axis equal to the second axis of the characteristic 
in absolute magnitude, but will be imaginary or real according to whether the latter is real 
or imaginary, respectively.  Once the two characteristics are extended in that way, the 
construction of the surface will be given in all cases. 
 We have brought the two characteristics into the same plane by rotating them around 
OX.  Their four points of intersection in it will determine the two breadth planes by which 
the equatorial surface will be intersected in real circles.  Imaginary circles, as curves of 
intersection with the surface, will lie in the two breadth planes that are given by the four 
points of intersection of the two second-order curves that we have affected the 
characteristics with.  Finally, the four points of intersection of a characteristic with the 
other associated extension curve will each time determine two breadth planes that will cut 
the equatorial surface in equilateral hyperbolas. 
 
 
 351.  In particular, if we give the breadth plane one of the four positions that are 
determined by the four points of intersection of the two characteristics with the OX axis 
then the magnitude of the one axis of the breadth curve will vanish, and as a result of that, 
it will reduce to two straight lines that coincide in one of them.  These straight lines will 
be the singular rays of the equatorial surface. 
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 Consistent with that, equation (77) of number 195, by which the breadth planes of the 
four singular rays were determined in the general case of equatorial surfaces, such that K, 
G, O vanished, will decompose into the two equations: 
 

2

2

2 0,

2 0,

Ex Ux C

Fx Rx B

+ + =


− + = 
    (6) 

 
and these two equations will determine the points of the diameter of the equatorial 
surface at which it will be cut by the two characteristics (4). 
 The two singular rays that lie in the plane of one characteristic perpendicular to the 
diameter will go through the intersection of the other characteristic with the diameter. 
 If the diameter of the surface is not cut by the either of two characteristics at any real 
point then the four singular rays will all be imaginary, and the equatorial surface will 
define an undivided whole. 
 If the diameter is cut by one characteristic in real points, but not by the other one, 
then two of the four singular rays will be real, and two of them will be imaginary.  When 
we consider the two external parts of the surface, which merge together at infinity into 
the complex curve at infinity, to be a single surface component, then that surface will 
decompose into two components, one of which is finite, while the other of which is at 
infinity, and between which the two singular rays will point to the transition.   
 If the diameter intersects both characteristics in real points then the four singular rays 
will all be real, and the surface will decompose into four parts that are separated by the 
singular rays when we once more consider the two external surface components to be a 
single one. 
 
 
 352.  We can distinguish two kinds of singular rays (cf., no. 188).  Singular rays of 
the first kind are the connecting lines of two real double points of the surface, and define 
the transition between real complex ellipses and complex hyperbolas.  Singular rays of 
the second kind are the connecting lines of two imaginary double points of the surface, 
and define the transition from complex hyperbolas to imaginary complex ellipses. 
 The surface component between two successive singular rays will be defined by 
curves of the same kind.  One can then find no parabolas among the breadth curves as 
transitions between curves of different kind, since otherwise the lines at infinity in the 
breadth planes would belong to the complex, which would contradict the assumption.  
According to whether the breadth curves between two successive singular rays are real 
ellipses, hyperbolas, or imaginary ellipses, we would like to refer to the surface 
component as elliptic, hyperbolic, or imaginary, respectively. 
 If an elliptic and a hyperbolic surface component follow in succession then they will 
merely merge into two points of the singular ray that separates them.  These two points 
(viz., the two into which the complex curve degenerates in the relevant singular plane) 
will divide the ray into a middle, finite segment and two external, infinite segments, 
which are to be regarded as one.  The middle segment will belong to the elliptic surface 
component, and should be regarded as an ellipse whose one axis vanishes.  The two 
external segments will belong to the hyperbolic surface component and should be 
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regarded as a hyperbola whose auxiliary axis vanishes, or – what amounts to the same 
thing – and whose asymptotic angle has become equal to zero. 
 If an imaginary surface component follows a hyperbolic one then the former will end 
up as an unbounded straight line along sides of the latter.  This straight line is to be 
regarded as a hyperbola whose principal axis vanishes, or – what amounts to the same 
thing – whose asymptotic angle has become equal to π. 
 
 
 353.  An elliptic surface component is bounded by two singular rays of the first kind 
(*).  They can be parallel or perpendicular to each other. 
 The ratio of the two axes of the generating ellipse, which is equal to zero in the two 
limiting positions, will be a maximum in the former case.  When this maximum is smaller 
than one, if one starts from one of the two limiting positions then the generating ellipse 
will approach a circle up to the maximum, and will then move away from it without 
having reached it, until it once more goes to a straight line at the other limit.  The major 
axis of the ellipse will always remain in the same direction.  When the maximum is 
greater than one, the generating ellipse will go through two circles between the two 
limiting positions.  Under this transition, the directions will switch their major and minor 
axes.  The major axis is directed perpendicular to the two limiting singular rays.  Finally, 
when the maximum is equal to one, there is a circle among the generating ellipses that 
should be regarded as two coincident ones.  There are then always two ellipses that are 
similar to the given one. 
 In the second case, the generating ellipse will go through a single circle on its way 
from one limiting position to the other.  Under the transition through the circle, the major 
and minor axes of the generating ellipse will switch their directions reciprocally.  There 
are two ellipses that are similar to a given ellipse for a crossed direction of their major 
axes. 
 We will get an equal classification into two different kinds for the imaginary surface 
components.  They are bounded by either two parallel rays of the second kind or two 
mutually-perpendicular rays of the second kind. 
 We must distinguish two cases for hyperbolic surface components, as well, according 
to whether the two limiting singular rays are parallel or cross.  In the former case, the two 
rays will have the same kind, while in the latter, they will have different kinds.  If the two 
rays are parallel then for all complex hyperbolas of the surface piece, either the principal 
axis or the auxiliary axis will have a finite magnitude.  This will depend upon whether the 
two rays are of the first or second kind, resp.  Under both assumptions, there will be two 
real or imaginary or coincident breadth planes, which will cut the surface component in 
equilateral hyperbolas.  By contrast, of the two singular rays that bound the hyperbolic 
surface piece, there will then be one, but also only one, equilateral hyperbola among the 
generating complex hyperbolas.  Whereas, in the first case, the asymptotic angle of the 
complex hyperbola will start from 0 (π, resp.) and will once more return to its initial 
value, in the second case, it will increase continuously from one of these values to the 
other one. 
 

                                                
 (*) In the text, we exclude the assumption that the equatorial surface consists of an undivided whole. 
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 354.  We would like to explain the foregoing with an example.  Let the two ellipses 
ABCD and A′B′C′D′ be the two characteristics in the figure, which we have brought into 
a plane by rotation around OX.  We extend the two ellipses, in the sense that was 
established above (no. 350), two hyperbolas; the two hyperbolas are AECF and A′E′C′F′.  
In order to suggest that the breadth curves will be determined, up to magnitude, by the 
imaginary axes, we have not removed them, but dotted them. 
 If we now draw a perpendicular to OX in the picture, corresponding to an arbitrary x, 
then the two sections of it, which are determined by the two characteristics and their 
extension curves, will represent the axes of the complex curve in the breadth plane that 
goes through x. 
 Corresponding to the vertex tangents at A′, A, C, C′, we will get the four singular rays 
of the equatorial surface.  The rays that go through C (A, resp.) are of the first kind, while 
the other two are of the second kind. 
 Between A and C, the 
breadth curves will be ellipses.  
Among them, one finds two 
circles, corresponding to the 
points of intersection K.  The 
elliptical surface piece is of 
the first kind.  Two hyperbolic 
surface pieces of the second 
kind will close up on it that 
reach from A to A′ (C to C′, 
resp.).  The two breadth planes 
that contain equilateral 
hyperbolas are the ones that 
are determined by the 
intersection of the ellipse 
A′B′C′D′ with the hyperbola 
AECF.  Imaginary breadth 
curves will ensue from A′ (C′, 
resp.) onward.  The equatorial 
surface is included completely 
between the breadth planes 
that are given by A′ and C′. 
 
 
 355.  In what follows, we would like to denote an elliptical surface component by E, a 
hyperbolic one by H, and an imaginary one by I, and let the applied numerals 1, 2 
distinguish whether a surface component is bounded by parallel or mutually-
perpendicular singular rays, resp.  The hyperbolic surface component of the first kind H1 
can be bounded by singular rays of either the first kind or the second; we correspondingly 
denote them by 1H ′  and 1H ′′ , resp.  In all cases in which surface components are no 

longer bounded on both sides by singular rays of a definite direction, we will use simply 
the symbols E, H, I. 
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 We will get a symbol for any equatorial surface when combine the symbols that were 
introduced for the individual surface components in such a way that we begin with the 
surface component that extends to infinity and also conclude with it, as well.  Thus: 
 

I1 H2 E1 H2 I1 
 
represents the surface that was considered in the previous number.  Such a symbol 
suggests, not only the type of the individual surface component, but also the type and 
position of the singular rays of the surface, such that they will succeed in characterizing 
an equatorial surface, as we have considered it here. 
 
 
 356.  One deduces the present enumeration of seventeen coordinates types (*) at once 
from the equatorial surfaces that are represented by equation (3) when one decides 
whether the two characteristics are imaginary ellipses, real ellipses, or hyperbolas (** ), 
and likewise directs one’s attention to the relative positions of their points of intersection 
with the diameters of the surface.  Each time, we shall give the type and position of the 
characteristics and the sequence of surface components that would require.  The 
seventeen types are arranged into three groups according to the reality of their singular 
rays (*** ). 
 
 First group:  The singular rays are all imaginary. 
 
 1. Two imaginary ellipses. I. 
 2. An imaginary ellipse and a hyperbola whose auxiliary axis falls upon the 
diameter. H. 
 3. Two hyperbolas whose auxiliary axes fall upon the diameter. E. 
 
 Second group: Two of the four singular rays are real, and two of them are imaginary. 
 
 4. An imaginary ellipse and a real ellipse.  I1 1H ′′ I1 . 

 5. An imaginary ellipse and a hyperbola whose principal axes fall upon the diameter.  

1H ′′  I1 1H ′′ . 

 6. A real ellipse and a hyperbola whose auxiliary axis falls upon the diameter. 

1 1 1H E H′ ′ . 

 7. A hyperbola whose principal axis and a hyperbola whose auxiliary axis falls upon 
the diameter.  E1 1H ′  E1. 

                                                
 (*) [Plücker has made models of most of the surfaces that are discussed in what follows, which eases 
the imagination of them considerably.   F. K.] 
 (** ) Here, we might emphasize incidentally that that the complex that determines the equatorial surface 
will necessarily be a hyperboloidal one, as long as one finds a hyperbola among the characteristics of the 
surface. 
 (*** )  Among the presently-enumerated surfaces, the ones whose characteristics possess the same 
midpoint are distinguished by their symmetry.  Such surfaces correspond to the assumption that all of the 
diameters that are associated with the OX axis in the complex that determines the equatorial surface will 
intersect at the center of the complex (cf., no. 252). 
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 Third group: The singular rays are all real. 
 
 A.  Two real ellipses. 
 
 8. The two points of intersection of the diameter with one ellipse follow from the 
two points of intersection of it with the other one.  I2 1H ′′ I2 1H ′′ I2 . 

 9. The intersection with the one ellipse with the surface lies between the two 
intersections with the other ellipse on the diameter of the surface (*).  I1 H2 E1 H2 I1 . 
 10. The points of intersection of one and the other ellipse with the surface lie 
alternately on its diameter.  I2 H2 E1 H2 I2 . 
 
 B.  A real ellipse and a hyperbola whose principal axis falls upon the diameter of the 
surface. 
 
 11. The diameter of the surface is cut by the ellipse in two points that lie between the 
two points of intersection with the hyperbola. 
 12. The intersection of the surface with the ellipse lies on the diameter of the surface 
inside of its branch of the hyperbola.  H2 I1 H2 E1 H2 . 
 13. The vertex of the hyperbola lies between the intersections of the ellipse with the 
diameter of the surface.  1H ′ E2 1H ′ E2 1H ′ . 
 14. Of the two vertices of the hyperbola, one of them lies outside of the ellipse and 
the other one lies inside of it.  H2 I2 H2 E2 H2 . 
 
 C.  Two hyperbolas whose principal axes fall upon the diameter of the surface. 
 
 15. The two vertices of the one hyperbola lie on the diameter between the two 
vertices of the other.  E1 H2 I1 H2 E1 . 
 16. The vertex of the one hyperbola follows the vertex of the other one along the 
diameter.  E2 1H ′ E2 1H ′ E2 . 
 17. One vertex of each of the two hyperbolas lies between the two vertices of the 
other one along the diameter. E2 H2 I1 H2 E2 . 
 
 
 357.  In our next discussion, we would like to emphasize the particular case in which 
two of the singular rays of the equatorial surface fall in its breadth plane.  The 
corresponding surfaces should be regarded as transitional forms between two of the 
previously-enumerated seventeen types.  They will depend upon one less constant than 
the surfaces that were considered up to now, and thus, upon ten constants.  Due to the fact 
that two singular rays of the surface fall in the same breadth plane, the surface component 
that is included between them will vanish.  The breadth plane will no longer refer to the 
transition between a hyperbolic and an elliptic or an imaginary surface component, as 
before. 
 The singular rays can fall pair-wise into the same breadth plane; three of them can lie 
in the same plane, etc.  All such surfaces are again found among the various kinds of 

                                                
 (*) The surface that was considered in number 354.  
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complex surfaces that we obtained in number 344 by a general classification when we 
assume that the relationship of the straight line d that determines the complex surface, 
along with the given complex, to the surface Φ of singular points and planes of the 
complex is specialized in some way. 
 We next obtain two specializations of the kind in question, since we can assume that 
either two parallel or two crossed singular rays fall upon the same breadth plane, so the 
equatorial surface will lose a surface component of the first or second kind, resp. 
 
 
 358.  Two parallel singular rays of the equatorial surfaces will coincide when we 
assume that one of the two characteristics has resolved into a system of two straight lines.  
The two coincident singular rays will then appear as a double ray of the equatorial 
surface.  When separated by the double line, two elliptic or two imaginary or two 
hyperbolic surface components that open in the same sense will connect with each other.  
In general, the double ray does not lie on a real component of the surface for its entire 
extent, but moves across it as an isolated straight line.  If the two coincident singular rays 
are of the first kind then a bounded piece of the double ray will define the transition 
between two elliptic or two hyperbolic surface components.  If they are of the second 
kind then the (always real) double ray will define the transition between two successive 
hyperbolic or imaginary surface components.  In the latter case, the double ray will be an 
isolated straight line. 
 The surfaces that we consider here should be regarded as transition forms between 
ones that belong to either the first and second group of equatorial surfaces that were 
enumerated in number 356 or to the second and third group.  In the general classification 
of the complex surfaces that we gave in number 344, they will be found there among the 
type that was denoted by II. 
 When we decide whether the line-pair into which the one characteristic decomposes 
is real or imaginary, and furthermore, whether the second characteristic is an imaginary 
ellipse or a hyperbola or a real ellipse, and when we fix our attention upon the position of 
the (always real) intersection of the two straight lines into which the one characteristic 
has resolved with respect to the second characteristic, we will obtain the following 
classification of such surfaces into twelve types.  We denote them by the numbers 18-29, 
in turn, and give the sequence of surface components for each of them and those two of 
the seventeen types that were enumerated up to now that define the transition between 
them.  We denote the double ray into which two parallel singular rays coincide by one or 
two vertical lines according to whether it is of the first or second kind, respectively.  We 
will then get the following table: 
 
 18.  I1 || I1 . 1, 4. 
 19. 1H ′′ || 1H ′′ . 2, 5. 

 20. 1H ′ | 1H ′ ,   2, 6. 

 21.  E1 | E1 . 3, 7. 
 22.  I2 || I2 1H ′′ I2 . 4, 8. 

 23.  I1 H2 H2 | I1 . 4, 9. 
 24. 1H ′′ I2 || I2 1H ′′ . 5, 11. 
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 25.  H2 I1 H2 | H2 . 5, 11. 
 26.  H2 || H2 E1 H2. 6, 12. 
 27. 1H ′ E2 | E2 H2 . 6, 13. 

 28.  E1 H2 || H2 E1. 7, 15. 
 29. E2 1H ′ E2 | E2 . 7, 16. 

 
 
 359.  Both characteristics can degenerate into systems of two (real or imaginary) 
straight lines.  Since the parallel singular rays coincide, the surface will then obtain two 
crossed double rays and will be a ruled surface.  It will still depend upon nine constants.  
Such surfaces belong to the third of the types that were exhibited by the general 
classification of complex surfaces.  They should be regarded as transitional cases 
between the twelve previously-enumerated cases.  We distinguish three types of them, 
according to the reality of the two line-pairs into which the characteristics decompose: 
 
 30. I2 || I1 || I1 . 18, 22. 
 31. H2 || H2 | H2 . 19, 25; 20, 26. 
 32. E2 | E2 | E2 . 21, 29. 
 
 
 360.  Two mutually-perpendicular singular rays of the equatorial surface will fall in 
the same breadth plane when we assume that the two characteristics of the surface 
intersect.  It emerges from this that the two characteristics contact at a point of the 
diameter after one brings them into the same plane by a rotation around the diameter.  
The lines of the complex will envelop a system of two points that coincide on the 
diameter of the surface in the breadth plane that is determined by that contact point.  The 
breadth plane will then be a double plane of the complex.  The equatorial surfaces that we 
consider here belong to the fourth of the types of complex surfaces that were exhibited in 
number 344.  They still depend upon ten constants.  When the double plane is separated 
from the equatorial surface as an isolated plane, that surface will become one of order 
three and will lose its double ray at infinity.  The double plane will cut the surface along 
three simple rays, one of which will lie at infinity, and the other two of which will 
intersect in the diameter. 
 We will obtain the analytical confirmation of this result immediately from equations 
(6), by which we have determined the four points of the diameter of the equatorial surface 
at which it is cut by the four singular rays of the surface.  When they possess a common 
root x′, we can write them in the following form: 
 

1

2

( )( ) 0,

( )( ) 0.

E x x x x

F x x x x

′− − = 
′− − = 

    (7) 

 
Equation (9), by which we have represented the equatorial surface in point coordinates, 
will then go to the following one: 



Construction and discussion of the equatorial surfaces. 311 

 

(x – x′)
2 2

1 2

( )
( ) ( )

y z
x x

E x x F x x

 ′+ + − − − 
 = 0.  (8) 

 The linear factor: 
x − x′ = 0      (9) 

 
corresponds to the plane that is separated from the equatorial surface, and the equation: 
 

2 2

1 2( ) ( )

y z

E x x F x x
+

− −
+ (x – x′) = 0,    (10) 

 
which represents the surface itself, will be of order three. 
 If we set x equal to x′, in particular, then the foregoing equation will go to the 
following one: 

2 2

1 2( ) ( )

y z

E x x F x x
+

− −
= 0,    (11) 

 
which is an equation that represents the real or imaginary line-pair according to whether 
the surface is or is not cut by the plane that is determined by equation (9) in its plane at 
infinity, in addition, respectively.  The plane (9) contacts the surface (10) at the three 
points of intersection of these three lines. 
 The equatorial surface has lost two of its singular rays by the separation of an isolated 
plane.  This plane defines the boundary of two successive elliptic and imaginary surface 
components or between hyperbolic surface components whose hyperbolas open in 
different senses.  The second-order surfaces will give an intuitive example of both kinds 
of transition, when we think of them as being generated by curves in the plane that is 
moved parallel to itself. 
 The two characteristics of an equatorial surface that we consider here can be only real 
ellipses or hyperbolas whose principal axis falls upon the diameter.  We then obtain the 
following enumeration of seven coordinate types, which characterize, in the previous 
way, by the givens of their surface component and those of the first seventeen surfaces 
between which the transition is defined.  We have thus indicated the separated breadth 
planes by a cross: 
 
 33. I2 H × H I2 . 8, 10. 
 34. I × E H2 I. 9, 10. 
 35. H I2 H × H. 11, 14. 
 36. H2 I × E H2 . 12, 14. 
 37. H × H E2 H. 13, 14. 
 38. E H2 I × E. 15, 17. 
 39. E2 H × H E2 . 16, 17. 
 
 
 361.  If the characteristics intersect the surface at two points then the surface will go 
to a second-order surface, since it will have lost all of its singularities.  Among the 
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breadth planes, there will then be two of them that are double planes of the complex that 
determines the surface and that contact the second-order surface.  These planes will 
themselves be given by the second-order surface, insofar as, by assumption, they are 
perpendicular to one of the three principal axes of that surface.  The equatorial surface 
will then depend upon just as many constants as a general second-degree surface.  In fact, 
we find that its number of constants will be nine, which is one less than in the case that 
was treated in the previous number.  If we have found thirteen constants for a complex 
surface that degenerates into a second-degree surface by the general classification of 
complex surfaces then four of the thirteen constants will belong to the straight line d, 
which has no particularly distinguished relationship to the surface, at all. 
 Here and in what follows, we shall not go further into the equatorial surfaces that 
degenerate into second-order surfaces. 
 
 
 362.  We will find further types of the equatorial surfaces that were considered here 
when we assume that one of the two intersecting characteristics has resolved into a 
system of two straight lines.  Such equatorial surfaces depend upon nine constants.  They 
do not correspond to any special kind that was described in the general classification of 
complex surface, although we shall not go into greater detail about that.  We will obtain 
one when we assume that the straight line d that determines the complex surface, along 
with the given complex, is contained in a double plane of the complex and contacts the 
conic section that this plane has in common with the surface Φ of singular points and 
planes of the complex. 
 In particular, we emphasize the singularity that such equatorial planes possess in their 
breadth plane that goes through the point of intersection of the two characteristics.  Three 
singular rays will fall in these breadth planes.  The breadth plane will then separate from 
the surface as an isolated plane, by which the order of the surface will become three, and 
the surface will lose two of its singular rays.  The equatorial surface will have then lost 
two of its surface components since three of its singular rays will have been shifted into 
the same breadth plane.  One of the two remaining ones will necessarily be hyperbolic, 
while the other one will be elliptic or imaginary, according to whether the line-pair into 
which the one characteristic has resolved is real or imaginary, resp.  In both cases, the 
hyperbolic part will be contacted along the entire extent of the remaining three singular 
rays by the separated breadth plane.  The point at which this singular ray cuts the 
diameter of the surface will be a double point of it.  The tangents to the surface at them 
will lie in two separate, real or imaginary, planes, namely, the planes that go through the 
singular ray and the two straight lines into which the characteristic has resolved.  The 
surface will be contacted by the two planes after the extension of these two straight lines.  
Every plane that contains the singular ray that goes through the equatorial surface at the 
double point can be regarded as a tangential plane to that surface.  Whereas the cone of 
order two that is defined by the tangents to a surface at a double point, in general, will 
resolve into a system of two planes, in our case, the cone of class two that is enveloped 
by the tangential planes of a surface at a double point, in general, will degenerate into the 
system of two enveloped axes that coincide in the singular ray, in our case. 
 Next, let the line-pair into which a characteristic has resolved be real.  An elliptic part 
of the surface will then follow a hyperbolic one.  When the moving breadth plane 
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approaches the distinguished position from the side of the hyperbolic component, the 
real, as well as the imaginary, axis of the hyperbola that is contained in it will always 
decrease in such a way that the asymptotic angle will always become larger and take on 
the value of π in the limit.  Once the moving breadth plane has exceeded the 
distinguished position, it will contain an infinitely-small ellipse whose axes are to be 
regarded as infinitely different.  It is the larger of the axes whose direction coincides with 
that of the singular ray. 
 If the line-pair into which the one characteristic has resolved is imaginary then an 
imaginary surface component will follow a hyperbolic one.  One has to think of the 
transition as being such that the principal and auxiliary axes of the hyperbola that is 
moving to the boundary both decrease, although the former will do so faster than the 
latter.  The hyperbolic part will then conclude in a hyperbola whose asymptotic angle is 
equal to zero against the imaginary one. 
 If we consider whether the line-pair into which the one characteristic has resolved is 
imaginary or real and whether the second characteristic is a real ellipse or a hyperbola 
whose principal axis falls along the diameter of the surface then we will get the 
enumeration of four types below.  In it, we denote the distinguished breadth plane by a 
horizontal line.  The equatorial surfaces that we consider here can be regarded as 
transitional forms between two surfaces whose one characteristic is a line-pair that does 
not cut the second characteristic, as well as ones between surfaces whose characteristics 
intersect without one of them resolving into a line-pair.  We then obtain the following 
table: 
 
 40. I2 – H2 I2 . 22, 23; 33, 24. 
 41. H2 – I2 H2 . 24, 25; 35, 36. 
 42. H2 – E2 H2 . 26, 27; 36, 37. 
 43. E2 – H2 E2 . 28, 29; 38, 39. 
 
 It might finally be remarked that when both of the intersecting characteristics become 
line-pairs, the equatorial surface will reduce to order two when it is conic surface. 
 
 
 363.  It still remains for us to discuss the case in which one or more of the singular 
rays of the surface are shifted to infinity (*). 
 If we assume that one of the two characteristics is a parabola then one of the singular 
rays will be moved to infinity.  When a singular ray is moved to infinity, the surface will 
be divided into two parts by the plane at infinity.  As long as no further singularities 
occur, one of these parts will be hyperbolic, while the other one will be elliptic or 
imaginary.  Such a surface should be regarded as a transitional form between two of the 
types that were enumerated up to now that have a common characteristic, while the other 
one is a real ellipse and a hyperbola whose principal axis fall along the diameter, 
respectively.  It depends upon on less constant than each of the two surfaces between 

                                                
 (*) Such a surface will give one an intuition into the distribution of the lines in complexes for which the 
plane at infinity is a singular plane or a double plane; i.e., into hyperbolic, elliptic, and parabolic 
complexes. 
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which the transition is defined.  We immediately obtain the following enumeration of the 
cases that are possible here, although we shall not enter into a deeper discussion of them: 
 
 44. I1 1H ′′ . 4, 5. 

 45. 1H ′  E1 . 6, 7. 

 46. I2 1H ′′ I2 1H ′′ . 8, 11. 

 47. I1 H2 E1 H2 . 9, 12. 
 48.  I2 H2 E2 H2 . 10, 14. 
 49.  H2 I1 H2 E1 . 12, 15. 
 50. 1H ′ E2 1H ′ E2 . 13, 16. 

 51.  H2 I2 H2 E2 . 14, 17. 
 52.  I1 H2 | H2 . 23, 24. 
 53.  I1 H2 | H2 . 23, 25. 
 54.  H2 || H2 E1 . 26, 28. 
 55. 1H ′  E2 | E2 . 27, 29. 

 56. I1 H × H. 33, 35. 
 57. I × E H2 . 34, 36. 
 58. H2 I × E. 36, 38. 
 59. H × H E2 . 37, 39. 
 60. I2 – H2 . 40, 41. 
 61. H2 – E2 . 42, 43. 
 
 In the foregoing, the parabolic characteristic can be replaced everywhere with a 
system of two parallel, real or imaginary, straight lines.  The surface will then obtain a 
second double ray at infinity.  Such surfaces can take the form of limiting cases of the 
previously-enumerated surfaces whose one characteristic was a line-pair.  They will 
accordingly depend upon one less constant.  We combine the different types that we have 
encountered here into the following table, in which we denote the double ray of the 
surface in the previous way, also once it is moved to infinity, and in which we cite the 
previously-named type of equatorial surface from which the new one is derived. 
 
 62. || I ||. 18. 
 63. || 1H ′′ ||. 19. 

 64. | 1H ′  |. 20. 

 65. | E1 |. 21. 
 66. || I2 1H ′′  I2 ||. 22. 

 67. | H2 I1 H2 |. 25. 
 68. || H2 E1 H2 ||. 26. 
 69. | E2 E2 |. 29. 
 70. || I2 || I2 ||. 30. 
 71. || H2 || H2 ||. 31. 
 72. | H2 | H2 |. 31. 
 73. | E2 | E2 |. 32. 
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 Both characteristics of the equatorial surface can be parabolas.  The plane at infinity 
will then be a double plane of the complex that determined the equatorial surface.  A 
plane is separated from the surface as isolated, and in that way the surface will become 
one of order three.  We obtain the following enumeration, which is understandable with 
no further explanation: 
 
 74. × I H2 E × . 34, 38; 47, 48, 49, 51. 
 75. × H I2 H × . 35; 46, 51. 
 76. × H E2 H × . 37; 48, 50. 
 
Finally, of the two characteristics, one of them can be a parabola and the other one, a 
real or imaginary pair of parallel straight lines.  We will then obtain the following two 
surfaces: 
 
 77. − I2 H2 −. 40, 41; 66, 67; 74, 75. 
 78. − H2 E2 −. 42, 43; 68, 69; 74, 76. 
 
Corresponding to the assumption that both characteristics decompose into pairs of real or 
imaginary, parallel straight lines, the equatorial surface will be of order two and will 
degenerate into a cylinder surface. 
 
 
 364.  The various cases of equatorial surfaces that are represented by equation (3) will 
be exhausted by this classification into 78 types, provided that their order does not drop 
below two.  All of these equatorial surfaces will belong to the first four of the types that 
were exhibited in number 344 for the classification of complex surfaces.  Since they are 
distinguished from the general types of surfaces that belong to it by structural simplicity 
and clarity, they can certainly be used as representatives of them.  For equatorial surfaces 
that belong to the fifth or sixth of the types that were exhibited in number 344, we will 
have to include an addendum. 
 Here, our first problem is to examine what value the enumeration of the 78 types that 
we gave here will have in the general discussion of the equatorial surfaces.  The single 
specializing condition that we subjected the equatorial surface to in the foregoing was 
that we assumed that the axes of its breadth curves were equally-directed.  In the general 
case, the sequence of surface components, the type of singular rays, etc., remained the 
same as it was under that special assumption.  We will get an intuition for the general 
equatorial surface when we think of the breadth curves of one of the surfaces that were 
considered up to now as being rotated with respect to the other one in their planes. 
 We can think of the equatorial surfaces as twisted when their breadth curves possess 
fixed axis directions that are generally rotated with respect to each other. 
 This determination of a general equatorial surface is obviously only an approximate 
one.  When the breadth curves rotate in their planes, their dimensions must change 
accordingly if the surface that arises is to be an equatorial surface.  Meanwhile, these 
changes are only of order two when the magnitude of the rotation is of order one.  We 
would like to use equation (2) as a basis: 
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w2 + (Fx2 – 2Rx + B) v2 + (Ex2 + 2Ux + C) u2 = 0. 
 
If we rotate the breadth curves in their plane, which is determined by x, from XZ to XY 
through an angle α then the equation of the surface that is defined by that will be: 
 

w2 + (Fx2 – 2Rx + B) (u sin α + v cos α)2 
+ (Ex2 + 2Ux + C) (u cos α − v sin α)2 = 0.   (12) 

 
We would like to determine the angle α by the equation: 
 

sin α = 
2 2( 2 ) ( 2 )

ax b

Fx Rx B Ex Ux C

+
− + − + +

.  (13) 

 
Equation (12) will then go to the following one: 
 

w2 + (Fx2 – 2Rx + B – (ax+ b)2) v2 

+ 2 (ax+ b) ⋅⋅⋅⋅ 21 ( )ax b− + ⋅⋅⋅⋅ uv 
+ (Ex2 + 2Ux + C – (ax + b)2) u2 = 0.    (14) 

 
Up to quantities that are of second order in (ax + b), we can set the square root that occurs 
in the latter equation equal to unity.  The equation of the surface will then become: 
 

w2 + (Fx2 – 2Rx + B – (ax+ b)2) v2 
+ 2 (ax+ b) uv 

+ (Ex2 + 2Ux + C – (ax + b)2) u2 = 0,    (15) 
 
and will agree in form completely with the general equation (1) for the equatorial 
surfaces.  In this equation, it is obvious that we must assume that either the two recently-
introduced constants a, b are infinitely-small or that the consideration is coupled to only 
those breadth curves of the equatorial surface whose planes are close to the plane that is 
determined by the equation: 

ax + b = 0. 
 

 
 365.  In general, an equatorial surface whose equation in mixed coordinates is, in 
turn, the following one: 

w2 + (Fx2 – 2Rx + B) v2 – 2 (Ox + G) uv 
+ (Ex2 + 2Ux + C) u2 = 0,     (1) 

 
will be cut by the two coordinate planes XZ, XY in two curves of order four.  These 
curves determine the four breadth planes in which the singular rays lie by their 
intersection with the diameter of the surface. 
 However, the two cylinders that project the surface along OY and OZ, respectively, 
will remain of degree two, as before.  We think of them as being given by their bases in 
XZ and XY, respectively.  If we direct our attention to their type and relative positions 
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then we will obtain precisely the same enumeration of 78 different cases as we did under 
the assumption that was used up to now that the bases of both cylinders were 
characteristics of the surface.  The two projection cylinders will no longer have the 
exclusive relationship to the surface that they did before.  The planes of the singular rays 
will not be determined by their intersection with the diameter of the equatorial surface, 
but by breadth planes in which hyperbolas will be enveloped by lines of the complex that 
possess an asymptote that is parallel to OY or OZ, respectively.  For an arbitrary breadth 
curve, the two cylinders give only four pair-wise parallel tangents (*).  A new condition 
must be added in order to determined the breadth curve completely. 
 As such a condition, we can take the directions of its axes or their magnitude ratio. 
 
 
 366.  If we let ϕ denote the angle that one of the axes of the breadth curve that is 
determined by x defines with the OZ coordinate axis then we will get, as is known (** ): 
 

tan 2ϕ = 2 2

2( )

( 2 ) ( 2 )

Ox G

Fx Rx B Ex Ux C

− +
− + − + +

.    (16) 

 
For any point on one of the two axes, this will give: 
 

tan ϕ = 
y

z
, tan 2ϕ = 2 2

2yz

y z

−
−

. 

With that, one will get: 

2 2

yz

y z−
= 2 2( 2 ) ( 2 )

Ox G

Fx Rx B Ex Ux C

+
− + − + +

.  (17) 

 
The fourth-order surface that is represented by this equation is the geometric locus of the 
axes of the breadth curves of the equatorial surface that is determined by equation (1).  It 
is a ruled surface with two mutually-perpendicular double lines, one of which coincides 
with the diameter of the equatorial surface, while the other one lies at infinity in the 
breadth plane of the line. 
 Here, we must distinguish two essentially different cases according to whether the 
constant O in equation (16) does or does not vanish. 
 In the first case, the rotation of the axes will arrive at a maximum or minimum that 
corresponds immediately to the minimum or maximum of the denominator, respectively.  
Starting from x = − ∞, where, in general, the axes of the breadth curve are parallel to the 
coordinate axes OY, OZ, the system of two axes will be rotated to a certain limiting 
position, and from that position, for x = + ∞ the initial position will again be assumed.  
Whether the maximum of the rotation is larger or smaller than 45o will depend upon the 
reality of the roots of the following quadratic equation: 

                                                
 (*) One must especially emphasize the case in which the bases of the two projection cylinders have two 
points of intersection in common with the diameter of the surface.  The four planes in which the singular 
rays lie will then be determined by equations of degree two.  When we, in turn, let G and O vanish, the 
equatorial surface will generate into a surface of degree two. 
 (** ) Analytisch geometrische Entwicklungen II, no. 501. 



318 Chapter Three: Classification of the surfaces of a general second-degree complex. 

 

(Fx2 – 2Rx + B) – (Ex2 + 2Ux + C) = 0.   (18) 
 
The direction of the axes will be the same at equal distances from a breadth plane to the 
ones that correspond to the maximal rotation of the axes. 
 In the second case, there are two breadth planes for which the rotation of the axes is a 
maximum or a minimum.  These breadth planes can be imaginary or real.  In the latter 
case, they will lie at equal distances from both sides of the plane that is represented by the 
equation: 

Ox + G = 0.     (19) 
 
 If the two maximal values are imaginary then the axes of the breadth curves will 
rotate through 180o when x increases from − ∞ to + ∞.  In the plane that is given by 
equation (19), the rotation will amount to 90o. 
 If the two maximal values are real then the axes of the breadth curves will rotate up to 
a certain limiting position when x increases from − ∞, and then reverse in their path until 
they again arrive at their initial position in the plane (19), then continue their rotation 
until they reach another limiting position, then turn around, and once more assume their 
origin directions for x = + ∞.  The magnitude of the rotation will be the same for two 
values of x that correspond to breadth planes that lie harmonically with the two limiting 
positions.  When equation (18) has real roots in the case that we are considering, they will 
determine two breadth planes that lie harmonically to the limiting positions and contain 
complex curves whose axes are rotated by 45o around OY, OZ.  The one will then exceed 
the maximum rotation of 45o, but not the other one. 
 The construction of a breadth curve whose axes are not given, as far as position is 
concerned, and that is inscribed in the right angle that is determined by the two cylinders 
that are projected along OY and OZ requires no further explanation here.  We merely 
remark that in the case where the sides of the right angle are all real, a second tetrangle 
will be obtained at once that contacts the breadth curve when we describe a circle around 
the given right angle and connect the four points in which the two axes cut the circle with 
four new straight lines.  If two or four of the sides of the circumscribed right angle are 
imaginary then we can extend the corresponding projection cylinder in a manner that is 
similar to the way that did in number 350 with the two characteristics. 
 
 
 367.  For the determination of the two asymptotes of a breadth curve that is given by 
x, we get: 

(Fx2 – 2Rx + B) v2 – 2 (Ox + G) uv + (Ex2 + 2Ux + C) u2 = 0 
 
from equation (1) when we let w vanish.  If we set: 
 

− 
v

u
= 

y

z
 

then that will give: 
 

(Fx2 – 2Rx + B) y2 + 2 (Ox + G) yz + (Ex2 + 2Ux + C) z2 = 0. (19.b) 
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This equation represents a ruled surface of order four that is the geometric locus of the 
asymptotes of the breadth curves. 
 If we denote the asymptotic angles by ψ and π – ψ, and the angles that are defined by 
the same associated diameters by ω and π – ω then when we consider a given (real or 
imaginary) ellipse to be a hyperbola or a given hyperbola to be an ellipse, we will get (*): 
 

tan2 ψ = − sin2 ω . 
We then find (** ): 

tan2 ψ = − sin2 ω = 

= 
2 2 2

2 2

4[( ) ( 2 )( 2 )]

( 2 ) ( 2 )

Ox G Fx Rx B Ex Ux C

Fx Rx B Ex Ux C

+ − − + + +
− + − + +

.   (20) 

 
This equation shows that, in general, there are four of the breadth curves of an equatorial 
surface that are similar to a given conic section. 
 For the complete determination of the breadth curve, we get the square of its semi-
axis (*** ): 

r2 = − 1
2 [(Fx2 – 2Rx +B) + (Ex2 + 2Ux + C)] 

2 2 2 21
2 [( 2 ) ( 2 )] 4( )Fx Rx B Ex Ux C Ox G± − + − + + + +   (21) 

 
 The foregoing expression will serve as the model of a rotated equatorial surface in the 
calculations. 
 
 
 368.  We now turn to the consideration of those equatorial surfaces whose breadth 
planes contain a double point of the complex at infinity; that is, the equatorial surfaces 
that belong to the fifth and sixth types of complex surfaces that were presented in number 
344. 
 If the equatorial surface belongs to the fifth type, as we would like to first assume, 
then it will possess three double rays that intersect in a point that are simple axes.  The 
other two will be parallel to each other and to the breadth curves.  The order of the 
surface will be four and its class will be three.  The number of independent constants that 
enter into the equation of the surface will be thirteen. 
 What distinguishes such equatorial surfaces is the fact that their breadth curves are 
all hyperbolas whose one asymptote has a fixed direction.  It will likewise be the 
direction of the two mutually-parallel double rays of the surface.  This direction will 
point to the double point at infinity of the complex in the breadth plane. 
 The general linear construction of such equatorial surfaces is given by the foregoing 
remark.  Here, as in the general case, the two projection cylinders along OY and OZ 
determine four tangents to such a breadth curve.  A fifth tangent is given by the fixed 
direction of an asymptote.  Of the thirteen constants upon which the surface depends, six 
of them will enter this construction for the determination of the breadth plane and the 

                                                
 (*) System der analyt. Geometrie, no. 33.  
 (** ) Analytisch geometrie Entwicklungen, II , no. 490.  
 (*** ) Ibidem, no. 512.  
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diameter, while six more will determine the two projection cylinders that are parallel to 
OY, OZ, and finally, one will determine the fixed direction of the one asymptote. 
 We can put the equation of such a surface into a simpler form by letting the XZ plane 
coincide with the plane that refers to the fixed direction of the one asymptote.  The term 
in u2 will then vanish in the equation of the equatorial surface.  It is only then, in general, 
that it is not permitted to assume that OY and OZ have the directions of two associated 
diameters of the complex, and thus, that the constant K vanishes in equation (3) of 
number 163.  We thus obtain the following equation for the equation of the surface: 
 

w2 + (Fx2 – 2Rx + B) v2 + 2 (Kx2 – Ox – G) uv = 0.   (22) 
 
The two points at which the diameter is cut by the two double rays that are parallel to OZ 
are determined by the equation: 

Kx2 – Ox – G = 0.     (23) 
 
 
 369.  In the general case of equatorial surfaces, the asymptotes of the breadth curve 
will define a ruled surface of order and class four for which the diameter of the surface 
and the line at infinity in its breadth plane will be double lines.  When one of the two 
asymptotes of each breadth curve has a fixed direction, a plane that goes through the 
diameter will separate from this ruled surface, along with a point that lies on the line at 
infinity.  When we ignore those elements, the ruled surface will be of order and class 
three.  Thus, the diameter will remain a double axis of the surface, while it will be a 
simple ray of it.  Each point of it will be cut by a real generator of the ruled surface.  
Every plane that goes through it will contain two generators of the surface that will be 
real an imaginary, resp., and can also coincide.  In general, there will be two planes in 
which the two generators coincide; they can be real or imaginary (*).  Correspondingly, 
there will or will not be not two maximum rotations for the asymptotes of the breadth 
curves, resp. 
 The two generators along which the ruled surface is cut by the totality of the 
asymptotes of a certain surface that point in the same direction are the two double rays of 
the equatorial surface.  In the case where there is a maximum for the rotation of the 
second asymptote, it can be real or imaginary or coincide.  If there is no maximum for the 
second asymptote then the double rays will always be real. 
 Thus, when we first exclude the special assumption that the two double rays coincide, 
we will have three essentially different forms to distinguish for the equatorial surface that 
they belong to. 
 If the two double rays are imaginary then the equatorial surface will consist of an 
undivided whole.  Among the breadth curves, there will be a hyperbola whose asymptotic 
angle is a maximum, and another one whose asymptotic angle is a minimum. 
 If the two double rays are real then the equatorial surface will decompose into two 
parts, one of which will extend to infinity along both sides.  Here, as in number 358, we 
must next distinguish between double rays of the first and second kind.  Double rays of 
the first kind should be regarded as hyperbolas whose imaginary axis is equal to zero.  

                                                
 (*) A coincidence of the two either assumes a decomposition of the ruled surface or demands that the 
diameter of the surface be moved to infinity.  Both possibilities remain excluded here. 
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They are divided into two segments: an internal, finite one and an external, infinite one.  
Now, the latter lies on real shells of the surface.  A double ray of the second kind is to be 
regarded as a hyperbola whose principal axis is equal to zero.  Its entire extent will lie on 
a real component of the surface.  Under the transition of the breadth plane through the 
plane of a double ray, the second asymptote of the hyperbola that is contained in it will 
go to the first, fixed asymptote on the other side.  Thus, the asymptotic angle will arrive 
at the value of zero or 180o, according to whether the double ray is of the first or second 
kind, resp. 
 The two parallel double rays of the surface can be of the same or different types.  
There is a maximum and a minimum of the rotation of the second asymptote in the first 
case, but not in the second case.  The ruled surface that is defined by the second 
asymptote still does determine whether the two double rays are of the first or second kind 
in the first case and which of the two double rays belong to the first kind and which of 
them belong to the second kind, in the second case.  That will leave us with one arbitrary 
assumption. 
 A surface component that is bounded by two double rays of the first kind consists of 
hyperbolas whose asymptotic angles increase from zero up to a certain maximum and 
then decrease until they vanish again. 
 A surface component that is bounded by two double rays of the second kind will 
consist of hyperbolas whose asymptotic angle will increase continually up to the limiting 
value π. 
 In all cases, one of the two double rays can shift to infinity.  The surface will then 
decompose into two parts that come together, once at finite points and once at infinity. 
 We deduce the analytical confirmation of the foregoing geometric statements 
immediately from equation (22).  In particular, the case in which one of the two parallel 
double rays shifts to infinity will be characterized by the vanishing of K. 
 
 
 370.  We now turn to the consideration of the case in which the two parallel double 
rays of the surface coincide.  Such a surface is reciprocally coordinated with the kind that 
was treated in number 362.  It is distinguished by the fact that the straight line that lies at 
infinity in its breadth plane will go through a double point of the complex and contact the 
cone of class two that is defined by the singular planes that are associated with double 
points of the complex. 
 If the two double rays coincide in a straight line then they will contact two shells of 
the surface when they are extended.  The common tangential plane at all of its points is 
the plane that can be laid through it and the diameter.  The tangents in that plane will 
envelop two points that lie along the straight line, which will be real or imaginary 
according to whether the two coincident rays are of the first or second kind, resp.  The 
two points are contact points of all planes that can be laid through two such straight lines 
and connect the vertices of the hyperbolas that are contained in neighboring planes.  An 
arbitrary plane that goes through the straight line in which the two double rays coincide 
will contact the equatorial surface at the double point of the complex that lies at infinity 
on it. 
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 371.  It remains for us to discuss one last case, in which the equatorial surface 
degenerates into a ruled surface of order and class three.  It seems unnecessary to enter 
into a deeper discussion of that surface, which was already mentioned several times in the 
foregoing (nos. 344, 369).  Here, we shall only stress that in this case the surface that is 
defined by the asymptotes of the breadth curves will be a hyperbolic paraboloid.  It is 
derived from the surface of asymptotes that was considered in number 369 when one 
separates a plane that is parallel to the breadth plane from the latter as an isolated plane.  
Correspondingly, the equatorial surfaces in question will be characterized by the fact that 
when we represent them by an equation of the form (22), the two second-degree 
expressions: 

Fx2 – 2Rx + B,  Kx2 – Ox – G 
 
will possess a common factor. 
 Among these surfaces, one can distinguish the ones for which: 
 

Kx2 – Ox – G 
 
is the square of a linear expression, and thus the double ray that such a surface possesses 
will coincide with its double axis.  The straight lines at infinity in the breadth planes of 
such an equatorial surface that go through a double point in a double plane of the 
complex will then contact the second-order curve that is defined by the singular points 
that are associated with the double plane, or – what amounts to the same thing – it is a 
side of the cone of class two that is enveloped by the singular planes that are associated 
with the double point.  The ruled surface of order and class three whose double ray and 
double axis coincide can then be regarded as transitional forms between the types of 
equatorial surfaces that were exhibited in numbers 362 and 370. 
 
 
 372.  We have thus exhausted the different cases of equatorial surfaces whose breadth 
curve possess a midpoint.  It remains for us to discuss the ones whose breadth curves are 
parabolas, and which we have correspondingly referred to as parabolic.  Here, we must 
speak briefly and settle for few explanations.  The general classification of complex 
surfaces that we gave in number 344 will also retain its validity here.  When we link the 
generation of the surface to a given second-degree complex, the special character of the 
surface − and thus, the grouping of its singularities − will, in all cases, be determined by 
the fact that the straight line at infinity in the breadth planes is a line of the complex. 
 We single out only two forms that we have encountered already in the foregoing. 
 We have discussed how the singularities arrange themselves with respect to each 
other for the general case of the parabolic equatorial surface in the sixth and seventh 
paragraphs of the first chapter (nos. 198, 199; no. 231).  According to whether the four 
singular rays that such a surface possesses are or are not all imaginary, the surface will 
define an undivided whole or decompose into several parts.  The singular rays define the 
transition between parabolas that open in different senses. 
 In particular, the straight line at infinity in the breadth plane can be a singular line of 
the complex.  The equatorial surface is then distinguished by the fact that the axes of its 
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breadth curves point in the same direction (*).  Two of its four singular rays will coincide 
with the straight line at infinity in the breadth plane. 
 In conclusion, we will summarize the formulas that serve to determine a parabola 
from its equation in line coordinates (*).  We then start with the general equation of the 
parabolic equatorial surface, as we would deduce from equation (3) in number 163 when 
we let the constant D vanish in it.  It is the following one: 
 

2 (Lx – S) vw + (Fx2 – 2Rx + B) v2 
+ 2 (Mx + T) uw + 2 (Kx2 – Ox – G) uv 

+ (Ex2 + 2Ux + C) u2 = 0,    (24) 
 
which we would like to write in the form below, for the sake of brevity: 
 

2bvw + cv2 + 2duw + 2euv + fu2 = 0.    (25) 
  
When we let α denote the angle that the axis of the parabola makes with the OZ 
coordinate axis, we will get: 

tan α =
d

b
      (26) 

 
for the direction of that axis.  The coordinates of the focal point are (** ): 
 

2 2

2 2

2 ( )
,

2( )

2 ( )
,

2( )

be d c f
y

b d

de b c f
z

b d

− − = + 
+ − =
+ 

    (27) 

and the parameter will become: 

Π = 
2 2

2 2 3/ 2

2

( )

d c bde b f

b d

− +±
+

.    (28) 

 
 
 373.  The foregoing numbers were dedicated to the consideration of equatorial 
surfaces.  We can discuss the various kinds of meridian surfaces in exactly the same way.  
Here, let us emphasize just one point: Among the complex curves that generate such a 
curve, one will find two parabolas, in general (no. 251), whose planes are real or 
imaginary and can also coincide.  These parabolas will define the transition between real 
ellipses and hyperbolas.  We will get an intuition for the type of such a transition, when 
we consider the succession of intersection curves of a given one-shelled hyperboloid with 
a plane that rotates around a fixed straight line that intersects the hyperboloid at two real 
                                                
 (*) We have considered such an equatorial surface in number 281.  
 (*) Analytisch geometrische Entwicklungen, II¸no. 480, 506.  
 (** ) In particular, we can assume: 

e = 0, c = f. 
 
The focal point of the parabola will then move along the OX axis. 
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points.  Whereas, for equatorial surfaces, a surface component that is bounded by two 
singular rays will necessarily be defined by complex curves of the same kind, amongst 
the components into which a meridian surface is decomposed by its singular rays, there 
can be two of them that are generated by the various kinds of complex curves.  This is the 
basis for the fact that there is a larger manifold of forms for meridian surfaces than the 
one that is defined by equatorial surfaces.  We ascend from the discussion of equatorial 
surfaces to a discussion of meridian surfaces when we invoke the two planes that contain 
the parabolas arbitrarily from among the breadth planes of the equatorial surface.  We 
shall then pursue the viewpoint that is suggested by that no further.  If has sufficed for the 
purpose of showing us how easy it is to arrive at a geometric understanding of the 
variegated surfaces of the second-degree complexes. 
 
 

___________ 
 


